1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2012 Texas Instruments 6 * 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/io.h> 11 #include <linux/clk.h> 12 #include <linux/timer.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/irqreturn.h> 16 #include <linux/interrupt.h> 17 #include <linux/if_ether.h> 18 #include <linux/etherdevice.h> 19 #include <linux/netdevice.h> 20 #include <linux/net_tstamp.h> 21 #include <linux/phy.h> 22 #include <linux/phy/phy.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/of_device.h> 31 #include <linux/if_vlan.h> 32 #include <linux/kmemleak.h> 33 #include <linux/sys_soc.h> 34 #include <net/page_pool.h> 35 #include <linux/bpf.h> 36 #include <linux/bpf_trace.h> 37 #include <linux/filter.h> 38 39 #include <linux/pinctrl/consumer.h> 40 #include <net/pkt_cls.h> 41 42 #include "cpsw.h" 43 #include "cpsw_ale.h" 44 #include "cpsw_priv.h" 45 #include "cpsw_sl.h" 46 #include "cpts.h" 47 #include "davinci_cpdma.h" 48 49 #include <net/pkt_sched.h> 50 51 static int debug_level; 52 module_param(debug_level, int, 0); 53 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 54 55 static int ale_ageout = 10; 56 module_param(ale_ageout, int, 0); 57 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 58 59 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 60 module_param(rx_packet_max, int, 0); 61 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 62 63 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 64 module_param(descs_pool_size, int, 0444); 65 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 66 67 /* The buf includes headroom compatible with both skb and xdpf */ 68 #define CPSW_HEADROOM_NA (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + NET_IP_ALIGN) 69 #define CPSW_HEADROOM ALIGN(CPSW_HEADROOM_NA, sizeof(long)) 70 71 #define for_each_slave(priv, func, arg...) \ 72 do { \ 73 struct cpsw_slave *slave; \ 74 struct cpsw_common *cpsw = (priv)->cpsw; \ 75 int n; \ 76 if (cpsw->data.dual_emac) \ 77 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 78 else \ 79 for (n = cpsw->data.slaves, \ 80 slave = cpsw->slaves; \ 81 n; n--) \ 82 (func)(slave++, ##arg); \ 83 } while (0) 84 85 #define CPSW_XMETA_OFFSET ALIGN(sizeof(struct xdp_frame), sizeof(long)) 86 87 #define CPSW_XDP_CONSUMED 1 88 #define CPSW_XDP_PASS 0 89 90 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 91 __be16 proto, u16 vid); 92 93 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 94 { 95 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 96 struct cpsw_ale *ale = cpsw->ale; 97 int i; 98 99 if (cpsw->data.dual_emac) { 100 bool flag = false; 101 102 /* Enabling promiscuous mode for one interface will be 103 * common for both the interface as the interface shares 104 * the same hardware resource. 105 */ 106 for (i = 0; i < cpsw->data.slaves; i++) 107 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 108 flag = true; 109 110 if (!enable && flag) { 111 enable = true; 112 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 113 } 114 115 if (enable) { 116 /* Enable Bypass */ 117 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 118 119 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 120 } else { 121 /* Disable Bypass */ 122 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 123 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 124 } 125 } else { 126 if (enable) { 127 unsigned long timeout = jiffies + HZ; 128 129 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 130 for (i = 0; i <= cpsw->data.slaves; i++) { 131 cpsw_ale_control_set(ale, i, 132 ALE_PORT_NOLEARN, 1); 133 cpsw_ale_control_set(ale, i, 134 ALE_PORT_NO_SA_UPDATE, 1); 135 } 136 137 /* Clear All Untouched entries */ 138 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 139 do { 140 cpu_relax(); 141 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 142 break; 143 } while (time_after(timeout, jiffies)); 144 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 145 146 /* Clear all mcast from ALE */ 147 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 148 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 149 150 /* Flood All Unicast Packets to Host port */ 151 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 152 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 153 } else { 154 /* Don't Flood All Unicast Packets to Host port */ 155 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 156 157 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 158 for (i = 0; i <= cpsw->data.slaves; i++) { 159 cpsw_ale_control_set(ale, i, 160 ALE_PORT_NOLEARN, 0); 161 cpsw_ale_control_set(ale, i, 162 ALE_PORT_NO_SA_UPDATE, 0); 163 } 164 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 165 } 166 } 167 } 168 169 /** 170 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 171 * if it's not deleted 172 * @ndev: device to sync 173 * @addr: address to be added or deleted 174 * @vid: vlan id, if vid < 0 set/unset address for real device 175 * @add: add address if the flag is set or remove otherwise 176 */ 177 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 178 int vid, int add) 179 { 180 struct cpsw_priv *priv = netdev_priv(ndev); 181 struct cpsw_common *cpsw = priv->cpsw; 182 int mask, flags, ret; 183 184 if (vid < 0) { 185 if (cpsw->data.dual_emac) 186 vid = cpsw->slaves[priv->emac_port].port_vlan; 187 else 188 vid = 0; 189 } 190 191 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 192 flags = vid ? ALE_VLAN : 0; 193 194 if (add) 195 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 196 else 197 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 198 199 return ret; 200 } 201 202 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 203 { 204 struct addr_sync_ctx *sync_ctx = ctx; 205 struct netdev_hw_addr *ha; 206 int found = 0, ret = 0; 207 208 if (!vdev || !(vdev->flags & IFF_UP)) 209 return 0; 210 211 /* vlan address is relevant if its sync_cnt != 0 */ 212 netdev_for_each_mc_addr(ha, vdev) { 213 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 214 found = ha->sync_cnt; 215 break; 216 } 217 } 218 219 if (found) 220 sync_ctx->consumed++; 221 222 if (sync_ctx->flush) { 223 if (!found) 224 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 225 return 0; 226 } 227 228 if (found) 229 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 230 231 return ret; 232 } 233 234 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 235 { 236 struct addr_sync_ctx sync_ctx; 237 int ret; 238 239 sync_ctx.consumed = 0; 240 sync_ctx.addr = addr; 241 sync_ctx.ndev = ndev; 242 sync_ctx.flush = 0; 243 244 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 245 if (sync_ctx.consumed < num && !ret) 246 ret = cpsw_set_mc(ndev, addr, -1, 1); 247 248 return ret; 249 } 250 251 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 252 { 253 struct addr_sync_ctx sync_ctx; 254 255 sync_ctx.consumed = 0; 256 sync_ctx.addr = addr; 257 sync_ctx.ndev = ndev; 258 sync_ctx.flush = 1; 259 260 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 261 if (sync_ctx.consumed == num) 262 cpsw_set_mc(ndev, addr, -1, 0); 263 264 return 0; 265 } 266 267 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 268 { 269 struct addr_sync_ctx *sync_ctx = ctx; 270 struct netdev_hw_addr *ha; 271 int found = 0; 272 273 if (!vdev || !(vdev->flags & IFF_UP)) 274 return 0; 275 276 /* vlan address is relevant if its sync_cnt != 0 */ 277 netdev_for_each_mc_addr(ha, vdev) { 278 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 279 found = ha->sync_cnt; 280 break; 281 } 282 } 283 284 if (!found) 285 return 0; 286 287 sync_ctx->consumed++; 288 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 289 return 0; 290 } 291 292 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 293 { 294 struct addr_sync_ctx sync_ctx; 295 296 sync_ctx.addr = addr; 297 sync_ctx.ndev = ndev; 298 sync_ctx.consumed = 0; 299 300 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 301 if (sync_ctx.consumed < num) 302 cpsw_set_mc(ndev, addr, -1, 0); 303 304 return 0; 305 } 306 307 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 308 { 309 struct cpsw_priv *priv = netdev_priv(ndev); 310 struct cpsw_common *cpsw = priv->cpsw; 311 int slave_port = -1; 312 313 if (cpsw->data.dual_emac) 314 slave_port = priv->emac_port + 1; 315 316 if (ndev->flags & IFF_PROMISC) { 317 /* Enable promiscuous mode */ 318 cpsw_set_promiscious(ndev, true); 319 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port); 320 return; 321 } else { 322 /* Disable promiscuous mode */ 323 cpsw_set_promiscious(ndev, false); 324 } 325 326 /* Restore allmulti on vlans if necessary */ 327 cpsw_ale_set_allmulti(cpsw->ale, 328 ndev->flags & IFF_ALLMULTI, slave_port); 329 330 /* add/remove mcast address either for real netdev or for vlan */ 331 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 332 cpsw_del_mc_addr); 333 } 334 335 void cpsw_intr_enable(struct cpsw_common *cpsw) 336 { 337 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 338 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 339 340 cpdma_ctlr_int_ctrl(cpsw->dma, true); 341 return; 342 } 343 344 void cpsw_intr_disable(struct cpsw_common *cpsw) 345 { 346 writel_relaxed(0, &cpsw->wr_regs->tx_en); 347 writel_relaxed(0, &cpsw->wr_regs->rx_en); 348 349 cpdma_ctlr_int_ctrl(cpsw->dma, false); 350 return; 351 } 352 353 static int cpsw_is_xdpf_handle(void *handle) 354 { 355 return (unsigned long)handle & BIT(0); 356 } 357 358 static void *cpsw_xdpf_to_handle(struct xdp_frame *xdpf) 359 { 360 return (void *)((unsigned long)xdpf | BIT(0)); 361 } 362 363 static struct xdp_frame *cpsw_handle_to_xdpf(void *handle) 364 { 365 return (struct xdp_frame *)((unsigned long)handle & ~BIT(0)); 366 } 367 368 struct __aligned(sizeof(long)) cpsw_meta_xdp { 369 struct net_device *ndev; 370 int ch; 371 }; 372 373 void cpsw_tx_handler(void *token, int len, int status) 374 { 375 struct cpsw_meta_xdp *xmeta; 376 struct xdp_frame *xdpf; 377 struct net_device *ndev; 378 struct netdev_queue *txq; 379 struct sk_buff *skb; 380 int ch; 381 382 if (cpsw_is_xdpf_handle(token)) { 383 xdpf = cpsw_handle_to_xdpf(token); 384 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 385 ndev = xmeta->ndev; 386 ch = xmeta->ch; 387 xdp_return_frame(xdpf); 388 } else { 389 skb = token; 390 ndev = skb->dev; 391 ch = skb_get_queue_mapping(skb); 392 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb); 393 dev_kfree_skb_any(skb); 394 } 395 396 /* Check whether the queue is stopped due to stalled tx dma, if the 397 * queue is stopped then start the queue as we have free desc for tx 398 */ 399 txq = netdev_get_tx_queue(ndev, ch); 400 if (unlikely(netif_tx_queue_stopped(txq))) 401 netif_tx_wake_queue(txq); 402 403 ndev->stats.tx_packets++; 404 ndev->stats.tx_bytes += len; 405 } 406 407 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 408 { 409 struct cpsw_priv *priv = netdev_priv(skb->dev); 410 struct cpsw_common *cpsw = priv->cpsw; 411 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 412 u16 vtag, vid, prio, pkt_type; 413 414 /* Remove VLAN header encapsulation word */ 415 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 416 417 pkt_type = (rx_vlan_encap_hdr >> 418 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 419 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 420 /* Ignore unknown & Priority-tagged packets*/ 421 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 422 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 423 return; 424 425 vid = (rx_vlan_encap_hdr >> 426 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 427 VLAN_VID_MASK; 428 /* Ignore vid 0 and pass packet as is */ 429 if (!vid) 430 return; 431 /* Ignore default vlans in dual mac mode */ 432 if (cpsw->data.dual_emac && 433 vid == cpsw->slaves[priv->emac_port].port_vlan) 434 return; 435 436 prio = (rx_vlan_encap_hdr >> 437 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 438 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 439 440 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 441 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 442 443 /* strip vlan tag for VLAN-tagged packet */ 444 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 445 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 446 skb_pull(skb, VLAN_HLEN); 447 } 448 } 449 450 static int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf, 451 struct page *page) 452 { 453 struct cpsw_common *cpsw = priv->cpsw; 454 struct cpsw_meta_xdp *xmeta; 455 struct cpdma_chan *txch; 456 dma_addr_t dma; 457 int ret, port; 458 459 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 460 xmeta->ndev = priv->ndev; 461 xmeta->ch = 0; 462 txch = cpsw->txv[0].ch; 463 464 port = priv->emac_port + cpsw->data.dual_emac; 465 if (page) { 466 dma = page_pool_get_dma_addr(page); 467 dma += xdpf->headroom + sizeof(struct xdp_frame); 468 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf), 469 dma, xdpf->len, port); 470 } else { 471 if (sizeof(*xmeta) > xdpf->headroom) { 472 xdp_return_frame_rx_napi(xdpf); 473 return -EINVAL; 474 } 475 476 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf), 477 xdpf->data, xdpf->len, port); 478 } 479 480 if (ret) { 481 priv->ndev->stats.tx_dropped++; 482 xdp_return_frame_rx_napi(xdpf); 483 } 484 485 return ret; 486 } 487 488 static int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp, 489 struct page *page) 490 { 491 struct cpsw_common *cpsw = priv->cpsw; 492 struct net_device *ndev = priv->ndev; 493 int ret = CPSW_XDP_CONSUMED; 494 struct xdp_frame *xdpf; 495 struct bpf_prog *prog; 496 u32 act; 497 498 rcu_read_lock(); 499 500 prog = READ_ONCE(priv->xdp_prog); 501 if (!prog) { 502 ret = CPSW_XDP_PASS; 503 goto out; 504 } 505 506 act = bpf_prog_run_xdp(prog, xdp); 507 switch (act) { 508 case XDP_PASS: 509 ret = CPSW_XDP_PASS; 510 break; 511 case XDP_TX: 512 xdpf = convert_to_xdp_frame(xdp); 513 if (unlikely(!xdpf)) 514 goto drop; 515 516 cpsw_xdp_tx_frame(priv, xdpf, page); 517 break; 518 case XDP_REDIRECT: 519 if (xdp_do_redirect(ndev, xdp, prog)) 520 goto drop; 521 522 /* Have to flush here, per packet, instead of doing it in bulk 523 * at the end of the napi handler. The RX devices on this 524 * particular hardware is sharing a common queue, so the 525 * incoming device might change per packet. 526 */ 527 xdp_do_flush_map(); 528 break; 529 default: 530 bpf_warn_invalid_xdp_action(act); 531 /* fall through */ 532 case XDP_ABORTED: 533 trace_xdp_exception(ndev, prog, act); 534 /* fall through -- handle aborts by dropping packet */ 535 case XDP_DROP: 536 goto drop; 537 } 538 out: 539 rcu_read_unlock(); 540 return ret; 541 drop: 542 rcu_read_unlock(); 543 page_pool_recycle_direct(cpsw->page_pool[ch], page); 544 return ret; 545 } 546 547 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 548 { 549 len += CPSW_HEADROOM; 550 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 551 552 return SKB_DATA_ALIGN(len); 553 } 554 555 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw, 556 int size) 557 { 558 struct page_pool_params pp_params; 559 struct page_pool *pool; 560 561 pp_params.order = 0; 562 pp_params.flags = PP_FLAG_DMA_MAP; 563 pp_params.pool_size = size; 564 pp_params.nid = NUMA_NO_NODE; 565 pp_params.dma_dir = DMA_BIDIRECTIONAL; 566 pp_params.dev = cpsw->dev; 567 568 pool = page_pool_create(&pp_params); 569 if (IS_ERR(pool)) 570 dev_err(cpsw->dev, "cannot create rx page pool\n"); 571 572 return pool; 573 } 574 575 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch) 576 { 577 struct cpsw_common *cpsw = priv->cpsw; 578 struct xdp_rxq_info *rxq; 579 struct page_pool *pool; 580 int ret; 581 582 pool = cpsw->page_pool[ch]; 583 rxq = &priv->xdp_rxq[ch]; 584 585 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch); 586 if (ret) 587 return ret; 588 589 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool); 590 if (ret) 591 xdp_rxq_info_unreg(rxq); 592 593 return ret; 594 } 595 596 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch) 597 { 598 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch]; 599 600 if (!xdp_rxq_info_is_reg(rxq)) 601 return; 602 603 xdp_rxq_info_unreg(rxq); 604 } 605 606 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch) 607 { 608 struct page_pool *pool; 609 int ret = 0, pool_size; 610 611 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 612 pool = cpsw_create_page_pool(cpsw, pool_size); 613 if (IS_ERR(pool)) 614 ret = PTR_ERR(pool); 615 else 616 cpsw->page_pool[ch] = pool; 617 618 return ret; 619 } 620 621 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw) 622 { 623 struct net_device *ndev; 624 int i, ch; 625 626 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 627 for (i = 0; i < cpsw->data.slaves; i++) { 628 ndev = cpsw->slaves[i].ndev; 629 if (!ndev) 630 continue; 631 632 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch); 633 } 634 635 page_pool_destroy(cpsw->page_pool[ch]); 636 cpsw->page_pool[ch] = NULL; 637 } 638 } 639 640 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw) 641 { 642 struct net_device *ndev; 643 int i, ch, ret; 644 645 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 646 ret = cpsw_create_rx_pool(cpsw, ch); 647 if (ret) 648 goto err_cleanup; 649 650 /* using same page pool is allowed as no running rx handlers 651 * simultaneously for both ndevs 652 */ 653 for (i = 0; i < cpsw->data.slaves; i++) { 654 ndev = cpsw->slaves[i].ndev; 655 if (!ndev) 656 continue; 657 658 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch); 659 if (ret) 660 goto err_cleanup; 661 } 662 } 663 664 return 0; 665 666 err_cleanup: 667 cpsw_destroy_xdp_rxqs(cpsw); 668 669 return ret; 670 } 671 672 static void cpsw_rx_handler(void *token, int len, int status) 673 { 674 struct page *new_page, *page = token; 675 void *pa = page_address(page); 676 struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET; 677 struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev); 678 int pkt_size = cpsw->rx_packet_max; 679 int ret = 0, port, ch = xmeta->ch; 680 int headroom = CPSW_HEADROOM; 681 struct net_device *ndev = xmeta->ndev; 682 struct cpsw_priv *priv; 683 struct page_pool *pool; 684 struct sk_buff *skb; 685 struct xdp_buff xdp; 686 dma_addr_t dma; 687 688 if (cpsw->data.dual_emac && status >= 0) { 689 port = CPDMA_RX_SOURCE_PORT(status); 690 if (port) 691 ndev = cpsw->slaves[--port].ndev; 692 } 693 694 priv = netdev_priv(ndev); 695 pool = cpsw->page_pool[ch]; 696 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 697 /* In dual emac mode check for all interfaces */ 698 if (cpsw->data.dual_emac && cpsw->usage_count && 699 (status >= 0)) { 700 /* The packet received is for the interface which 701 * is already down and the other interface is up 702 * and running, instead of freeing which results 703 * in reducing of the number of rx descriptor in 704 * DMA engine, requeue page back to cpdma. 705 */ 706 new_page = page; 707 goto requeue; 708 } 709 710 /* the interface is going down, pages are purged */ 711 page_pool_recycle_direct(pool, page); 712 return; 713 } 714 715 new_page = page_pool_dev_alloc_pages(pool); 716 if (unlikely(!new_page)) { 717 new_page = page; 718 ndev->stats.rx_dropped++; 719 goto requeue; 720 } 721 722 if (priv->xdp_prog) { 723 if (status & CPDMA_RX_VLAN_ENCAP) { 724 xdp.data = pa + CPSW_HEADROOM + 725 CPSW_RX_VLAN_ENCAP_HDR_SIZE; 726 xdp.data_end = xdp.data + len - 727 CPSW_RX_VLAN_ENCAP_HDR_SIZE; 728 } else { 729 xdp.data = pa + CPSW_HEADROOM; 730 xdp.data_end = xdp.data + len; 731 } 732 733 xdp_set_data_meta_invalid(&xdp); 734 735 xdp.data_hard_start = pa; 736 xdp.rxq = &priv->xdp_rxq[ch]; 737 738 ret = cpsw_run_xdp(priv, ch, &xdp, page); 739 if (ret != CPSW_XDP_PASS) 740 goto requeue; 741 742 /* XDP prog might have changed packet data and boundaries */ 743 len = xdp.data_end - xdp.data; 744 headroom = xdp.data - xdp.data_hard_start; 745 746 /* XDP prog can modify vlan tag, so can't use encap header */ 747 status &= ~CPDMA_RX_VLAN_ENCAP; 748 } 749 750 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 751 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 752 if (!skb) { 753 ndev->stats.rx_dropped++; 754 page_pool_recycle_direct(pool, page); 755 goto requeue; 756 } 757 758 skb_reserve(skb, headroom); 759 skb_put(skb, len); 760 skb->dev = ndev; 761 if (status & CPDMA_RX_VLAN_ENCAP) 762 cpsw_rx_vlan_encap(skb); 763 if (priv->rx_ts_enabled) 764 cpts_rx_timestamp(cpsw->cpts, skb); 765 skb->protocol = eth_type_trans(skb, ndev); 766 767 /* unmap page as no netstack skb page recycling */ 768 page_pool_release_page(pool, page); 769 netif_receive_skb(skb); 770 771 ndev->stats.rx_bytes += len; 772 ndev->stats.rx_packets++; 773 774 requeue: 775 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 776 xmeta->ndev = ndev; 777 xmeta->ch = ch; 778 779 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM; 780 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 781 pkt_size, 0); 782 if (ret < 0) { 783 WARN_ON(ret == -ENOMEM); 784 page_pool_recycle_direct(pool, new_page); 785 } 786 } 787 788 void cpsw_split_res(struct cpsw_common *cpsw) 789 { 790 u32 consumed_rate = 0, bigest_rate = 0; 791 struct cpsw_vector *txv = cpsw->txv; 792 int i, ch_weight, rlim_ch_num = 0; 793 int budget, bigest_rate_ch = 0; 794 u32 ch_rate, max_rate; 795 int ch_budget = 0; 796 797 for (i = 0; i < cpsw->tx_ch_num; i++) { 798 ch_rate = cpdma_chan_get_rate(txv[i].ch); 799 if (!ch_rate) 800 continue; 801 802 rlim_ch_num++; 803 consumed_rate += ch_rate; 804 } 805 806 if (cpsw->tx_ch_num == rlim_ch_num) { 807 max_rate = consumed_rate; 808 } else if (!rlim_ch_num) { 809 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 810 bigest_rate = 0; 811 max_rate = consumed_rate; 812 } else { 813 max_rate = cpsw->speed * 1000; 814 815 /* if max_rate is less then expected due to reduced link speed, 816 * split proportionally according next potential max speed 817 */ 818 if (max_rate < consumed_rate) 819 max_rate *= 10; 820 821 if (max_rate < consumed_rate) 822 max_rate *= 10; 823 824 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 825 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 826 (cpsw->tx_ch_num - rlim_ch_num); 827 bigest_rate = (max_rate - consumed_rate) / 828 (cpsw->tx_ch_num - rlim_ch_num); 829 } 830 831 /* split tx weight/budget */ 832 budget = CPSW_POLL_WEIGHT; 833 for (i = 0; i < cpsw->tx_ch_num; i++) { 834 ch_rate = cpdma_chan_get_rate(txv[i].ch); 835 if (ch_rate) { 836 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 837 if (!txv[i].budget) 838 txv[i].budget++; 839 if (ch_rate > bigest_rate) { 840 bigest_rate_ch = i; 841 bigest_rate = ch_rate; 842 } 843 844 ch_weight = (ch_rate * 100) / max_rate; 845 if (!ch_weight) 846 ch_weight++; 847 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 848 } else { 849 txv[i].budget = ch_budget; 850 if (!bigest_rate_ch) 851 bigest_rate_ch = i; 852 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 853 } 854 855 budget -= txv[i].budget; 856 } 857 858 if (budget) 859 txv[bigest_rate_ch].budget += budget; 860 861 /* split rx budget */ 862 budget = CPSW_POLL_WEIGHT; 863 ch_budget = budget / cpsw->rx_ch_num; 864 for (i = 0; i < cpsw->rx_ch_num; i++) { 865 cpsw->rxv[i].budget = ch_budget; 866 budget -= ch_budget; 867 } 868 869 if (budget) 870 cpsw->rxv[0].budget += budget; 871 } 872 873 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 874 { 875 struct cpsw_common *cpsw = dev_id; 876 877 writel(0, &cpsw->wr_regs->tx_en); 878 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 879 880 if (cpsw->quirk_irq) { 881 disable_irq_nosync(cpsw->irqs_table[1]); 882 cpsw->tx_irq_disabled = true; 883 } 884 885 napi_schedule(&cpsw->napi_tx); 886 return IRQ_HANDLED; 887 } 888 889 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 890 { 891 struct cpsw_common *cpsw = dev_id; 892 893 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 894 writel(0, &cpsw->wr_regs->rx_en); 895 896 if (cpsw->quirk_irq) { 897 disable_irq_nosync(cpsw->irqs_table[0]); 898 cpsw->rx_irq_disabled = true; 899 } 900 901 napi_schedule(&cpsw->napi_rx); 902 return IRQ_HANDLED; 903 } 904 905 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 906 { 907 u32 ch_map; 908 int num_tx, cur_budget, ch; 909 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 910 struct cpsw_vector *txv; 911 912 /* process every unprocessed channel */ 913 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 914 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 915 if (!(ch_map & 0x80)) 916 continue; 917 918 txv = &cpsw->txv[ch]; 919 if (unlikely(txv->budget > budget - num_tx)) 920 cur_budget = budget - num_tx; 921 else 922 cur_budget = txv->budget; 923 924 num_tx += cpdma_chan_process(txv->ch, cur_budget); 925 if (num_tx >= budget) 926 break; 927 } 928 929 if (num_tx < budget) { 930 napi_complete(napi_tx); 931 writel(0xff, &cpsw->wr_regs->tx_en); 932 } 933 934 return num_tx; 935 } 936 937 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 938 { 939 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 940 int num_tx; 941 942 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 943 if (num_tx < budget) { 944 napi_complete(napi_tx); 945 writel(0xff, &cpsw->wr_regs->tx_en); 946 if (cpsw->tx_irq_disabled) { 947 cpsw->tx_irq_disabled = false; 948 enable_irq(cpsw->irqs_table[1]); 949 } 950 } 951 952 return num_tx; 953 } 954 955 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 956 { 957 u32 ch_map; 958 int num_rx, cur_budget, ch; 959 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 960 struct cpsw_vector *rxv; 961 962 /* process every unprocessed channel */ 963 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 964 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 965 if (!(ch_map & 0x01)) 966 continue; 967 968 rxv = &cpsw->rxv[ch]; 969 if (unlikely(rxv->budget > budget - num_rx)) 970 cur_budget = budget - num_rx; 971 else 972 cur_budget = rxv->budget; 973 974 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 975 if (num_rx >= budget) 976 break; 977 } 978 979 if (num_rx < budget) { 980 napi_complete_done(napi_rx, num_rx); 981 writel(0xff, &cpsw->wr_regs->rx_en); 982 } 983 984 return num_rx; 985 } 986 987 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 988 { 989 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 990 int num_rx; 991 992 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 993 if (num_rx < budget) { 994 napi_complete_done(napi_rx, num_rx); 995 writel(0xff, &cpsw->wr_regs->rx_en); 996 if (cpsw->rx_irq_disabled) { 997 cpsw->rx_irq_disabled = false; 998 enable_irq(cpsw->irqs_table[0]); 999 } 1000 } 1001 1002 return num_rx; 1003 } 1004 1005 static inline void soft_reset(const char *module, void __iomem *reg) 1006 { 1007 unsigned long timeout = jiffies + HZ; 1008 1009 writel_relaxed(1, reg); 1010 do { 1011 cpu_relax(); 1012 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1013 1014 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1015 } 1016 1017 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1018 struct cpsw_priv *priv) 1019 { 1020 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1021 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1022 } 1023 1024 static bool cpsw_shp_is_off(struct cpsw_priv *priv) 1025 { 1026 struct cpsw_common *cpsw = priv->cpsw; 1027 struct cpsw_slave *slave; 1028 u32 shift, mask, val; 1029 1030 val = readl_relaxed(&cpsw->regs->ptype); 1031 1032 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1033 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1034 mask = 7 << shift; 1035 val = val & mask; 1036 1037 return !val; 1038 } 1039 1040 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 1041 { 1042 struct cpsw_common *cpsw = priv->cpsw; 1043 struct cpsw_slave *slave; 1044 u32 shift, mask, val; 1045 1046 val = readl_relaxed(&cpsw->regs->ptype); 1047 1048 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1049 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1050 mask = (1 << --fifo) << shift; 1051 val = on ? val | mask : val & ~mask; 1052 1053 writel_relaxed(val, &cpsw->regs->ptype); 1054 } 1055 1056 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1057 struct cpsw_priv *priv, bool *link) 1058 { 1059 struct phy_device *phy = slave->phy; 1060 u32 mac_control = 0; 1061 u32 slave_port; 1062 struct cpsw_common *cpsw = priv->cpsw; 1063 1064 if (!phy) 1065 return; 1066 1067 slave_port = cpsw_get_slave_port(slave->slave_num); 1068 1069 if (phy->link) { 1070 mac_control = CPSW_SL_CTL_GMII_EN; 1071 1072 if (phy->speed == 1000) 1073 mac_control |= CPSW_SL_CTL_GIG; 1074 if (phy->duplex) 1075 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 1076 1077 /* set speed_in input in case RMII mode is used in 100Mbps */ 1078 if (phy->speed == 100) 1079 mac_control |= CPSW_SL_CTL_IFCTL_A; 1080 /* in band mode only works in 10Mbps RGMII mode */ 1081 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1082 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 1083 1084 if (priv->rx_pause) 1085 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 1086 1087 if (priv->tx_pause) 1088 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 1089 1090 if (mac_control != slave->mac_control) 1091 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 1092 1093 /* enable forwarding */ 1094 cpsw_ale_control_set(cpsw->ale, slave_port, 1095 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1096 1097 *link = true; 1098 1099 if (priv->shp_cfg_speed && 1100 priv->shp_cfg_speed != slave->phy->speed && 1101 !cpsw_shp_is_off(priv)) 1102 dev_warn(priv->dev, 1103 "Speed was changed, CBS shaper speeds are changed!"); 1104 } else { 1105 mac_control = 0; 1106 /* disable forwarding */ 1107 cpsw_ale_control_set(cpsw->ale, slave_port, 1108 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1109 1110 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 1111 1112 cpsw_sl_ctl_reset(slave->mac_sl); 1113 } 1114 1115 if (mac_control != slave->mac_control) 1116 phy_print_status(phy); 1117 1118 slave->mac_control = mac_control; 1119 } 1120 1121 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1122 { 1123 int i, speed; 1124 1125 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1126 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1127 speed += cpsw->slaves[i].phy->speed; 1128 1129 return speed; 1130 } 1131 1132 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1133 { 1134 int i, rlim_ch_num; 1135 int speed, ch_rate; 1136 1137 /* re-split resources only in case speed was changed */ 1138 speed = cpsw_get_common_speed(cpsw); 1139 if (speed == cpsw->speed || !speed) 1140 return 0; 1141 1142 cpsw->speed = speed; 1143 1144 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1145 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1146 if (!ch_rate) 1147 break; 1148 1149 rlim_ch_num++; 1150 } 1151 1152 /* cases not dependent on speed */ 1153 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1154 return 0; 1155 1156 return 1; 1157 } 1158 1159 static void cpsw_adjust_link(struct net_device *ndev) 1160 { 1161 struct cpsw_priv *priv = netdev_priv(ndev); 1162 struct cpsw_common *cpsw = priv->cpsw; 1163 bool link = false; 1164 1165 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1166 1167 if (link) { 1168 if (cpsw_need_resplit(cpsw)) 1169 cpsw_split_res(cpsw); 1170 1171 netif_carrier_on(ndev); 1172 if (netif_running(ndev)) 1173 netif_tx_wake_all_queues(ndev); 1174 } else { 1175 netif_carrier_off(ndev); 1176 netif_tx_stop_all_queues(ndev); 1177 } 1178 } 1179 1180 static inline void cpsw_add_dual_emac_def_ale_entries( 1181 struct cpsw_priv *priv, struct cpsw_slave *slave, 1182 u32 slave_port) 1183 { 1184 struct cpsw_common *cpsw = priv->cpsw; 1185 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1186 1187 if (cpsw->version == CPSW_VERSION_1) 1188 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1189 else 1190 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1191 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1192 port_mask, port_mask, 0); 1193 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1194 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 1195 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1196 HOST_PORT_NUM, ALE_VLAN | 1197 ALE_SECURE, slave->port_vlan); 1198 cpsw_ale_control_set(cpsw->ale, slave_port, 1199 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1200 } 1201 1202 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1203 { 1204 u32 slave_port; 1205 struct phy_device *phy; 1206 struct cpsw_common *cpsw = priv->cpsw; 1207 1208 cpsw_sl_reset(slave->mac_sl, 100); 1209 cpsw_sl_ctl_reset(slave->mac_sl); 1210 1211 /* setup priority mapping */ 1212 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 1213 RX_PRIORITY_MAPPING); 1214 1215 switch (cpsw->version) { 1216 case CPSW_VERSION_1: 1217 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1218 /* Increase RX FIFO size to 5 for supporting fullduplex 1219 * flow control mode 1220 */ 1221 slave_write(slave, 1222 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1223 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1224 break; 1225 case CPSW_VERSION_2: 1226 case CPSW_VERSION_3: 1227 case CPSW_VERSION_4: 1228 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1229 /* Increase RX FIFO size to 5 for supporting fullduplex 1230 * flow control mode 1231 */ 1232 slave_write(slave, 1233 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1234 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1235 break; 1236 } 1237 1238 /* setup max packet size, and mac address */ 1239 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 1240 cpsw->rx_packet_max); 1241 cpsw_set_slave_mac(slave, priv); 1242 1243 slave->mac_control = 0; /* no link yet */ 1244 1245 slave_port = cpsw_get_slave_port(slave->slave_num); 1246 1247 if (cpsw->data.dual_emac) 1248 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1249 else 1250 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1251 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1252 1253 if (slave->data->phy_node) { 1254 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1255 &cpsw_adjust_link, 0, slave->data->phy_if); 1256 if (!phy) { 1257 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1258 slave->data->phy_node, 1259 slave->slave_num); 1260 return; 1261 } 1262 } else { 1263 phy = phy_connect(priv->ndev, slave->data->phy_id, 1264 &cpsw_adjust_link, slave->data->phy_if); 1265 if (IS_ERR(phy)) { 1266 dev_err(priv->dev, 1267 "phy \"%s\" not found on slave %d, err %ld\n", 1268 slave->data->phy_id, slave->slave_num, 1269 PTR_ERR(phy)); 1270 return; 1271 } 1272 } 1273 1274 slave->phy = phy; 1275 1276 phy_attached_info(slave->phy); 1277 1278 phy_start(slave->phy); 1279 1280 /* Configure GMII_SEL register */ 1281 if (!IS_ERR(slave->data->ifphy)) 1282 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 1283 slave->data->phy_if); 1284 else 1285 cpsw_phy_sel(cpsw->dev, slave->phy->interface, 1286 slave->slave_num); 1287 } 1288 1289 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1290 { 1291 struct cpsw_common *cpsw = priv->cpsw; 1292 const int vlan = cpsw->data.default_vlan; 1293 u32 reg; 1294 int i; 1295 int unreg_mcast_mask; 1296 1297 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1298 CPSW2_PORT_VLAN; 1299 1300 writel(vlan, &cpsw->host_port_regs->port_vlan); 1301 1302 for (i = 0; i < cpsw->data.slaves; i++) 1303 slave_write(cpsw->slaves + i, vlan, reg); 1304 1305 if (priv->ndev->flags & IFF_ALLMULTI) 1306 unreg_mcast_mask = ALE_ALL_PORTS; 1307 else 1308 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1309 1310 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1311 ALE_ALL_PORTS, ALE_ALL_PORTS, 1312 unreg_mcast_mask); 1313 } 1314 1315 static void cpsw_init_host_port(struct cpsw_priv *priv) 1316 { 1317 u32 fifo_mode; 1318 u32 control_reg; 1319 struct cpsw_common *cpsw = priv->cpsw; 1320 1321 /* soft reset the controller and initialize ale */ 1322 soft_reset("cpsw", &cpsw->regs->soft_reset); 1323 cpsw_ale_start(cpsw->ale); 1324 1325 /* switch to vlan unaware mode */ 1326 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1327 CPSW_ALE_VLAN_AWARE); 1328 control_reg = readl(&cpsw->regs->control); 1329 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1330 writel(control_reg, &cpsw->regs->control); 1331 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1332 CPSW_FIFO_NORMAL_MODE; 1333 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1334 1335 /* setup host port priority mapping */ 1336 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1337 &cpsw->host_port_regs->cpdma_tx_pri_map); 1338 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1339 1340 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1341 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1342 1343 if (!cpsw->data.dual_emac) { 1344 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1345 0, 0); 1346 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1347 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1348 } 1349 } 1350 1351 int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1352 { 1353 struct cpsw_common *cpsw = priv->cpsw; 1354 struct cpsw_meta_xdp *xmeta; 1355 struct page_pool *pool; 1356 struct page *page; 1357 int ch_buf_num; 1358 int ch, i, ret; 1359 dma_addr_t dma; 1360 1361 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1362 pool = cpsw->page_pool[ch]; 1363 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1364 for (i = 0; i < ch_buf_num; i++) { 1365 page = page_pool_dev_alloc_pages(pool); 1366 if (!page) { 1367 cpsw_err(priv, ifup, "allocate rx page err\n"); 1368 return -ENOMEM; 1369 } 1370 1371 xmeta = page_address(page) + CPSW_XMETA_OFFSET; 1372 xmeta->ndev = priv->ndev; 1373 xmeta->ch = ch; 1374 1375 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM; 1376 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch, 1377 page, dma, 1378 cpsw->rx_packet_max, 1379 0); 1380 if (ret < 0) { 1381 cpsw_err(priv, ifup, 1382 "cannot submit page to channel %d rx, error %d\n", 1383 ch, ret); 1384 page_pool_recycle_direct(pool, page); 1385 return ret; 1386 } 1387 } 1388 1389 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1390 ch, ch_buf_num); 1391 } 1392 1393 return 0; 1394 } 1395 1396 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1397 { 1398 u32 slave_port; 1399 1400 slave_port = cpsw_get_slave_port(slave->slave_num); 1401 1402 if (!slave->phy) 1403 return; 1404 phy_stop(slave->phy); 1405 phy_disconnect(slave->phy); 1406 slave->phy = NULL; 1407 cpsw_ale_control_set(cpsw->ale, slave_port, 1408 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1409 cpsw_sl_reset(slave->mac_sl, 100); 1410 cpsw_sl_ctl_reset(slave->mac_sl); 1411 } 1412 1413 static int cpsw_tc_to_fifo(int tc, int num_tc) 1414 { 1415 if (tc == num_tc - 1) 1416 return 0; 1417 1418 return CPSW_FIFO_SHAPERS_NUM - tc; 1419 } 1420 1421 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 1422 { 1423 struct cpsw_common *cpsw = priv->cpsw; 1424 u32 val = 0, send_pct, shift; 1425 struct cpsw_slave *slave; 1426 int pct = 0, i; 1427 1428 if (bw > priv->shp_cfg_speed * 1000) 1429 goto err; 1430 1431 /* shaping has to stay enabled for highest fifos linearly 1432 * and fifo bw no more then interface can allow 1433 */ 1434 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1435 send_pct = slave_read(slave, SEND_PERCENT); 1436 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 1437 if (!bw) { 1438 if (i >= fifo || !priv->fifo_bw[i]) 1439 continue; 1440 1441 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 1442 continue; 1443 } 1444 1445 if (!priv->fifo_bw[i] && i > fifo) { 1446 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 1447 return -EINVAL; 1448 } 1449 1450 shift = (i - 1) * 8; 1451 if (i == fifo) { 1452 send_pct &= ~(CPSW_PCT_MASK << shift); 1453 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 1454 if (!val) 1455 val = 1; 1456 1457 send_pct |= val << shift; 1458 pct += val; 1459 continue; 1460 } 1461 1462 if (priv->fifo_bw[i]) 1463 pct += (send_pct >> shift) & CPSW_PCT_MASK; 1464 } 1465 1466 if (pct >= 100) 1467 goto err; 1468 1469 slave_write(slave, send_pct, SEND_PERCENT); 1470 priv->fifo_bw[fifo] = bw; 1471 1472 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 1473 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 1474 1475 return 0; 1476 err: 1477 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 1478 return -EINVAL; 1479 } 1480 1481 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 1482 { 1483 struct cpsw_common *cpsw = priv->cpsw; 1484 struct cpsw_slave *slave; 1485 u32 tx_in_ctl_rg, val; 1486 int ret; 1487 1488 ret = cpsw_set_fifo_bw(priv, fifo, bw); 1489 if (ret) 1490 return ret; 1491 1492 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1493 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 1494 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 1495 1496 if (!bw) 1497 cpsw_fifo_shp_on(priv, fifo, bw); 1498 1499 val = slave_read(slave, tx_in_ctl_rg); 1500 if (cpsw_shp_is_off(priv)) { 1501 /* disable FIFOs rate limited queues */ 1502 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 1503 1504 /* set type of FIFO queues to normal priority mode */ 1505 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 1506 1507 /* set type of FIFO queues to be rate limited */ 1508 if (bw) 1509 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 1510 else 1511 priv->shp_cfg_speed = 0; 1512 } 1513 1514 /* toggle a FIFO rate limited queue */ 1515 if (bw) 1516 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1517 else 1518 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1519 slave_write(slave, val, tx_in_ctl_rg); 1520 1521 /* FIFO transmit shape enable */ 1522 cpsw_fifo_shp_on(priv, fifo, bw); 1523 return 0; 1524 } 1525 1526 /* Defaults: 1527 * class A - prio 3 1528 * class B - prio 2 1529 * shaping for class A should be set first 1530 */ 1531 static int cpsw_set_cbs(struct net_device *ndev, 1532 struct tc_cbs_qopt_offload *qopt) 1533 { 1534 struct cpsw_priv *priv = netdev_priv(ndev); 1535 struct cpsw_common *cpsw = priv->cpsw; 1536 struct cpsw_slave *slave; 1537 int prev_speed = 0; 1538 int tc, ret, fifo; 1539 u32 bw = 0; 1540 1541 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 1542 1543 /* enable channels in backward order, as highest FIFOs must be rate 1544 * limited first and for compliance with CPDMA rate limited channels 1545 * that also used in bacward order. FIFO0 cannot be rate limited. 1546 */ 1547 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 1548 if (!fifo) { 1549 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 1550 return -EINVAL; 1551 } 1552 1553 /* do nothing, it's disabled anyway */ 1554 if (!qopt->enable && !priv->fifo_bw[fifo]) 1555 return 0; 1556 1557 /* shapers can be set if link speed is known */ 1558 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1559 if (slave->phy && slave->phy->link) { 1560 if (priv->shp_cfg_speed && 1561 priv->shp_cfg_speed != slave->phy->speed) 1562 prev_speed = priv->shp_cfg_speed; 1563 1564 priv->shp_cfg_speed = slave->phy->speed; 1565 } 1566 1567 if (!priv->shp_cfg_speed) { 1568 dev_err(priv->dev, "Link speed is not known"); 1569 return -1; 1570 } 1571 1572 ret = pm_runtime_get_sync(cpsw->dev); 1573 if (ret < 0) { 1574 pm_runtime_put_noidle(cpsw->dev); 1575 return ret; 1576 } 1577 1578 bw = qopt->enable ? qopt->idleslope : 0; 1579 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 1580 if (ret) { 1581 priv->shp_cfg_speed = prev_speed; 1582 prev_speed = 0; 1583 } 1584 1585 if (bw && prev_speed) 1586 dev_warn(priv->dev, 1587 "Speed was changed, CBS shaper speeds are changed!"); 1588 1589 pm_runtime_put_sync(cpsw->dev); 1590 return ret; 1591 } 1592 1593 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1594 { 1595 int fifo, bw; 1596 1597 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1598 bw = priv->fifo_bw[fifo]; 1599 if (!bw) 1600 continue; 1601 1602 cpsw_set_fifo_rlimit(priv, fifo, bw); 1603 } 1604 } 1605 1606 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1607 { 1608 struct cpsw_common *cpsw = priv->cpsw; 1609 u32 tx_prio_map = 0; 1610 int i, tc, fifo; 1611 u32 tx_prio_rg; 1612 1613 if (!priv->mqprio_hw) 1614 return; 1615 1616 for (i = 0; i < 8; i++) { 1617 tc = netdev_get_prio_tc_map(priv->ndev, i); 1618 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1619 tx_prio_map |= fifo << (4 * i); 1620 } 1621 1622 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1623 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1624 1625 slave_write(slave, tx_prio_map, tx_prio_rg); 1626 } 1627 1628 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 1629 { 1630 struct cpsw_priv *priv = arg; 1631 1632 if (!vdev) 1633 return 0; 1634 1635 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 1636 return 0; 1637 } 1638 1639 /* restore resources after port reset */ 1640 static void cpsw_restore(struct cpsw_priv *priv) 1641 { 1642 /* restore vlan configurations */ 1643 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 1644 1645 /* restore MQPRIO offload */ 1646 for_each_slave(priv, cpsw_mqprio_resume, priv); 1647 1648 /* restore CBS offload */ 1649 for_each_slave(priv, cpsw_cbs_resume, priv); 1650 } 1651 1652 static int cpsw_ndo_open(struct net_device *ndev) 1653 { 1654 struct cpsw_priv *priv = netdev_priv(ndev); 1655 struct cpsw_common *cpsw = priv->cpsw; 1656 int ret; 1657 u32 reg; 1658 1659 ret = pm_runtime_get_sync(cpsw->dev); 1660 if (ret < 0) { 1661 pm_runtime_put_noidle(cpsw->dev); 1662 return ret; 1663 } 1664 1665 netif_carrier_off(ndev); 1666 1667 /* Notify the stack of the actual queue counts. */ 1668 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1669 if (ret) { 1670 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1671 goto err_cleanup; 1672 } 1673 1674 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1675 if (ret) { 1676 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1677 goto err_cleanup; 1678 } 1679 1680 reg = cpsw->version; 1681 1682 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1683 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1684 CPSW_RTL_VERSION(reg)); 1685 1686 /* Initialize host and slave ports */ 1687 if (!cpsw->usage_count) 1688 cpsw_init_host_port(priv); 1689 for_each_slave(priv, cpsw_slave_open, priv); 1690 1691 /* Add default VLAN */ 1692 if (!cpsw->data.dual_emac) 1693 cpsw_add_default_vlan(priv); 1694 else 1695 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1696 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1697 1698 /* initialize shared resources for every ndev */ 1699 if (!cpsw->usage_count) { 1700 /* disable priority elevation */ 1701 writel_relaxed(0, &cpsw->regs->ptype); 1702 1703 /* enable statistics collection only on all ports */ 1704 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1705 1706 /* Enable internal fifo flow control */ 1707 writel(0x7, &cpsw->regs->flow_control); 1708 1709 napi_enable(&cpsw->napi_rx); 1710 napi_enable(&cpsw->napi_tx); 1711 1712 if (cpsw->tx_irq_disabled) { 1713 cpsw->tx_irq_disabled = false; 1714 enable_irq(cpsw->irqs_table[1]); 1715 } 1716 1717 if (cpsw->rx_irq_disabled) { 1718 cpsw->rx_irq_disabled = false; 1719 enable_irq(cpsw->irqs_table[0]); 1720 } 1721 1722 /* create rxqs for both infs in dual mac as they use same pool 1723 * and must be destroyed together when no users. 1724 */ 1725 ret = cpsw_create_xdp_rxqs(cpsw); 1726 if (ret < 0) 1727 goto err_cleanup; 1728 1729 ret = cpsw_fill_rx_channels(priv); 1730 if (ret < 0) 1731 goto err_cleanup; 1732 1733 if (cpts_register(cpsw->cpts)) 1734 dev_err(priv->dev, "error registering cpts device\n"); 1735 1736 } 1737 1738 cpsw_restore(priv); 1739 1740 /* Enable Interrupt pacing if configured */ 1741 if (cpsw->coal_intvl != 0) { 1742 struct ethtool_coalesce coal; 1743 1744 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1745 cpsw_set_coalesce(ndev, &coal); 1746 } 1747 1748 cpdma_ctlr_start(cpsw->dma); 1749 cpsw_intr_enable(cpsw); 1750 cpsw->usage_count++; 1751 1752 return 0; 1753 1754 err_cleanup: 1755 if (!cpsw->usage_count) { 1756 cpdma_ctlr_stop(cpsw->dma); 1757 cpsw_destroy_xdp_rxqs(cpsw); 1758 } 1759 1760 for_each_slave(priv, cpsw_slave_stop, cpsw); 1761 pm_runtime_put_sync(cpsw->dev); 1762 netif_carrier_off(priv->ndev); 1763 return ret; 1764 } 1765 1766 static int cpsw_ndo_stop(struct net_device *ndev) 1767 { 1768 struct cpsw_priv *priv = netdev_priv(ndev); 1769 struct cpsw_common *cpsw = priv->cpsw; 1770 1771 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1772 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 1773 netif_tx_stop_all_queues(priv->ndev); 1774 netif_carrier_off(priv->ndev); 1775 1776 if (cpsw->usage_count <= 1) { 1777 napi_disable(&cpsw->napi_rx); 1778 napi_disable(&cpsw->napi_tx); 1779 cpts_unregister(cpsw->cpts); 1780 cpsw_intr_disable(cpsw); 1781 cpdma_ctlr_stop(cpsw->dma); 1782 cpsw_ale_stop(cpsw->ale); 1783 cpsw_destroy_xdp_rxqs(cpsw); 1784 } 1785 for_each_slave(priv, cpsw_slave_stop, cpsw); 1786 1787 if (cpsw_need_resplit(cpsw)) 1788 cpsw_split_res(cpsw); 1789 1790 cpsw->usage_count--; 1791 pm_runtime_put_sync(cpsw->dev); 1792 return 0; 1793 } 1794 1795 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1796 struct net_device *ndev) 1797 { 1798 struct cpsw_priv *priv = netdev_priv(ndev); 1799 struct cpsw_common *cpsw = priv->cpsw; 1800 struct cpts *cpts = cpsw->cpts; 1801 struct netdev_queue *txq; 1802 struct cpdma_chan *txch; 1803 int ret, q_idx; 1804 1805 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1806 cpsw_err(priv, tx_err, "packet pad failed\n"); 1807 ndev->stats.tx_dropped++; 1808 return NET_XMIT_DROP; 1809 } 1810 1811 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1812 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 1813 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1814 1815 q_idx = skb_get_queue_mapping(skb); 1816 if (q_idx >= cpsw->tx_ch_num) 1817 q_idx = q_idx % cpsw->tx_ch_num; 1818 1819 txch = cpsw->txv[q_idx].ch; 1820 txq = netdev_get_tx_queue(ndev, q_idx); 1821 skb_tx_timestamp(skb); 1822 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 1823 priv->emac_port + cpsw->data.dual_emac); 1824 if (unlikely(ret != 0)) { 1825 cpsw_err(priv, tx_err, "desc submit failed\n"); 1826 goto fail; 1827 } 1828 1829 /* If there is no more tx desc left free then we need to 1830 * tell the kernel to stop sending us tx frames. 1831 */ 1832 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1833 netif_tx_stop_queue(txq); 1834 1835 /* Barrier, so that stop_queue visible to other cpus */ 1836 smp_mb__after_atomic(); 1837 1838 if (cpdma_check_free_tx_desc(txch)) 1839 netif_tx_wake_queue(txq); 1840 } 1841 1842 return NETDEV_TX_OK; 1843 fail: 1844 ndev->stats.tx_dropped++; 1845 netif_tx_stop_queue(txq); 1846 1847 /* Barrier, so that stop_queue visible to other cpus */ 1848 smp_mb__after_atomic(); 1849 1850 if (cpdma_check_free_tx_desc(txch)) 1851 netif_tx_wake_queue(txq); 1852 1853 return NETDEV_TX_BUSY; 1854 } 1855 1856 #if IS_ENABLED(CONFIG_TI_CPTS) 1857 1858 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1859 { 1860 struct cpsw_common *cpsw = priv->cpsw; 1861 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1862 u32 ts_en, seq_id; 1863 1864 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 1865 slave_write(slave, 0, CPSW1_TS_CTL); 1866 return; 1867 } 1868 1869 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1870 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1871 1872 if (priv->tx_ts_enabled) 1873 ts_en |= CPSW_V1_TS_TX_EN; 1874 1875 if (priv->rx_ts_enabled) 1876 ts_en |= CPSW_V1_TS_RX_EN; 1877 1878 slave_write(slave, ts_en, CPSW1_TS_CTL); 1879 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1880 } 1881 1882 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1883 { 1884 struct cpsw_slave *slave; 1885 struct cpsw_common *cpsw = priv->cpsw; 1886 u32 ctrl, mtype; 1887 1888 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1889 1890 ctrl = slave_read(slave, CPSW2_CONTROL); 1891 switch (cpsw->version) { 1892 case CPSW_VERSION_2: 1893 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1894 1895 if (priv->tx_ts_enabled) 1896 ctrl |= CTRL_V2_TX_TS_BITS; 1897 1898 if (priv->rx_ts_enabled) 1899 ctrl |= CTRL_V2_RX_TS_BITS; 1900 break; 1901 case CPSW_VERSION_3: 1902 default: 1903 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1904 1905 if (priv->tx_ts_enabled) 1906 ctrl |= CTRL_V3_TX_TS_BITS; 1907 1908 if (priv->rx_ts_enabled) 1909 ctrl |= CTRL_V3_RX_TS_BITS; 1910 break; 1911 } 1912 1913 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1914 1915 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1916 slave_write(slave, ctrl, CPSW2_CONTROL); 1917 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 1918 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 1919 } 1920 1921 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1922 { 1923 struct cpsw_priv *priv = netdev_priv(dev); 1924 struct hwtstamp_config cfg; 1925 struct cpsw_common *cpsw = priv->cpsw; 1926 1927 if (cpsw->version != CPSW_VERSION_1 && 1928 cpsw->version != CPSW_VERSION_2 && 1929 cpsw->version != CPSW_VERSION_3) 1930 return -EOPNOTSUPP; 1931 1932 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1933 return -EFAULT; 1934 1935 /* reserved for future extensions */ 1936 if (cfg.flags) 1937 return -EINVAL; 1938 1939 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1940 return -ERANGE; 1941 1942 switch (cfg.rx_filter) { 1943 case HWTSTAMP_FILTER_NONE: 1944 priv->rx_ts_enabled = 0; 1945 break; 1946 case HWTSTAMP_FILTER_ALL: 1947 case HWTSTAMP_FILTER_NTP_ALL: 1948 return -ERANGE; 1949 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1950 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1951 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1952 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1953 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1954 break; 1955 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1956 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1957 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1958 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1959 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1960 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1961 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1962 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1963 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1964 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 1965 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1966 break; 1967 default: 1968 return -ERANGE; 1969 } 1970 1971 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 1972 1973 switch (cpsw->version) { 1974 case CPSW_VERSION_1: 1975 cpsw_hwtstamp_v1(priv); 1976 break; 1977 case CPSW_VERSION_2: 1978 case CPSW_VERSION_3: 1979 cpsw_hwtstamp_v2(priv); 1980 break; 1981 default: 1982 WARN_ON(1); 1983 } 1984 1985 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1986 } 1987 1988 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1989 { 1990 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1991 struct cpsw_priv *priv = netdev_priv(dev); 1992 struct hwtstamp_config cfg; 1993 1994 if (cpsw->version != CPSW_VERSION_1 && 1995 cpsw->version != CPSW_VERSION_2 && 1996 cpsw->version != CPSW_VERSION_3) 1997 return -EOPNOTSUPP; 1998 1999 cfg.flags = 0; 2000 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2001 cfg.rx_filter = priv->rx_ts_enabled; 2002 2003 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2004 } 2005 #else 2006 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2007 { 2008 return -EOPNOTSUPP; 2009 } 2010 2011 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2012 { 2013 return -EOPNOTSUPP; 2014 } 2015 #endif /*CONFIG_TI_CPTS*/ 2016 2017 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2018 { 2019 struct cpsw_priv *priv = netdev_priv(dev); 2020 struct cpsw_common *cpsw = priv->cpsw; 2021 int slave_no = cpsw_slave_index(cpsw, priv); 2022 2023 if (!netif_running(dev)) 2024 return -EINVAL; 2025 2026 switch (cmd) { 2027 case SIOCSHWTSTAMP: 2028 return cpsw_hwtstamp_set(dev, req); 2029 case SIOCGHWTSTAMP: 2030 return cpsw_hwtstamp_get(dev, req); 2031 } 2032 2033 if (!cpsw->slaves[slave_no].phy) 2034 return -EOPNOTSUPP; 2035 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 2036 } 2037 2038 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 2039 { 2040 struct cpsw_priv *priv = netdev_priv(ndev); 2041 struct cpsw_common *cpsw = priv->cpsw; 2042 int ch; 2043 2044 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 2045 ndev->stats.tx_errors++; 2046 cpsw_intr_disable(cpsw); 2047 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 2048 cpdma_chan_stop(cpsw->txv[ch].ch); 2049 cpdma_chan_start(cpsw->txv[ch].ch); 2050 } 2051 2052 cpsw_intr_enable(cpsw); 2053 netif_trans_update(ndev); 2054 netif_tx_wake_all_queues(ndev); 2055 } 2056 2057 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 2058 { 2059 struct cpsw_priv *priv = netdev_priv(ndev); 2060 struct sockaddr *addr = (struct sockaddr *)p; 2061 struct cpsw_common *cpsw = priv->cpsw; 2062 int flags = 0; 2063 u16 vid = 0; 2064 int ret; 2065 2066 if (!is_valid_ether_addr(addr->sa_data)) 2067 return -EADDRNOTAVAIL; 2068 2069 ret = pm_runtime_get_sync(cpsw->dev); 2070 if (ret < 0) { 2071 pm_runtime_put_noidle(cpsw->dev); 2072 return ret; 2073 } 2074 2075 if (cpsw->data.dual_emac) { 2076 vid = cpsw->slaves[priv->emac_port].port_vlan; 2077 flags = ALE_VLAN; 2078 } 2079 2080 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 2081 flags, vid); 2082 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 2083 flags, vid); 2084 2085 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 2086 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2087 for_each_slave(priv, cpsw_set_slave_mac, priv); 2088 2089 pm_runtime_put(cpsw->dev); 2090 2091 return 0; 2092 } 2093 2094 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2095 unsigned short vid) 2096 { 2097 int ret; 2098 int unreg_mcast_mask = 0; 2099 int mcast_mask; 2100 u32 port_mask; 2101 struct cpsw_common *cpsw = priv->cpsw; 2102 2103 if (cpsw->data.dual_emac) { 2104 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2105 2106 mcast_mask = ALE_PORT_HOST; 2107 if (priv->ndev->flags & IFF_ALLMULTI) 2108 unreg_mcast_mask = mcast_mask; 2109 } else { 2110 port_mask = ALE_ALL_PORTS; 2111 mcast_mask = port_mask; 2112 2113 if (priv->ndev->flags & IFF_ALLMULTI) 2114 unreg_mcast_mask = ALE_ALL_PORTS; 2115 else 2116 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2117 } 2118 2119 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2120 unreg_mcast_mask); 2121 if (ret != 0) 2122 return ret; 2123 2124 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2125 HOST_PORT_NUM, ALE_VLAN, vid); 2126 if (ret != 0) 2127 goto clean_vid; 2128 2129 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2130 mcast_mask, ALE_VLAN, vid, 0); 2131 if (ret != 0) 2132 goto clean_vlan_ucast; 2133 return 0; 2134 2135 clean_vlan_ucast: 2136 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2137 HOST_PORT_NUM, ALE_VLAN, vid); 2138 clean_vid: 2139 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2140 return ret; 2141 } 2142 2143 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2144 __be16 proto, u16 vid) 2145 { 2146 struct cpsw_priv *priv = netdev_priv(ndev); 2147 struct cpsw_common *cpsw = priv->cpsw; 2148 int ret; 2149 2150 if (vid == cpsw->data.default_vlan) 2151 return 0; 2152 2153 ret = pm_runtime_get_sync(cpsw->dev); 2154 if (ret < 0) { 2155 pm_runtime_put_noidle(cpsw->dev); 2156 return ret; 2157 } 2158 2159 if (cpsw->data.dual_emac) { 2160 /* In dual EMAC, reserved VLAN id should not be used for 2161 * creating VLAN interfaces as this can break the dual 2162 * EMAC port separation 2163 */ 2164 int i; 2165 2166 for (i = 0; i < cpsw->data.slaves; i++) { 2167 if (vid == cpsw->slaves[i].port_vlan) { 2168 ret = -EINVAL; 2169 goto err; 2170 } 2171 } 2172 } 2173 2174 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2175 ret = cpsw_add_vlan_ale_entry(priv, vid); 2176 err: 2177 pm_runtime_put(cpsw->dev); 2178 return ret; 2179 } 2180 2181 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2182 __be16 proto, u16 vid) 2183 { 2184 struct cpsw_priv *priv = netdev_priv(ndev); 2185 struct cpsw_common *cpsw = priv->cpsw; 2186 int ret; 2187 2188 if (vid == cpsw->data.default_vlan) 2189 return 0; 2190 2191 ret = pm_runtime_get_sync(cpsw->dev); 2192 if (ret < 0) { 2193 pm_runtime_put_noidle(cpsw->dev); 2194 return ret; 2195 } 2196 2197 if (cpsw->data.dual_emac) { 2198 int i; 2199 2200 for (i = 0; i < cpsw->data.slaves; i++) { 2201 if (vid == cpsw->slaves[i].port_vlan) 2202 goto err; 2203 } 2204 } 2205 2206 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2207 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2208 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2209 HOST_PORT_NUM, ALE_VLAN, vid); 2210 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2211 0, ALE_VLAN, vid); 2212 ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid); 2213 err: 2214 pm_runtime_put(cpsw->dev); 2215 return ret; 2216 } 2217 2218 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2219 { 2220 struct cpsw_priv *priv = netdev_priv(ndev); 2221 struct cpsw_common *cpsw = priv->cpsw; 2222 struct cpsw_slave *slave; 2223 u32 min_rate; 2224 u32 ch_rate; 2225 int i, ret; 2226 2227 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2228 if (ch_rate == rate) 2229 return 0; 2230 2231 ch_rate = rate * 1000; 2232 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2233 if ((ch_rate < min_rate && ch_rate)) { 2234 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2235 min_rate); 2236 return -EINVAL; 2237 } 2238 2239 if (rate > cpsw->speed) { 2240 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2241 return -EINVAL; 2242 } 2243 2244 ret = pm_runtime_get_sync(cpsw->dev); 2245 if (ret < 0) { 2246 pm_runtime_put_noidle(cpsw->dev); 2247 return ret; 2248 } 2249 2250 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2251 pm_runtime_put(cpsw->dev); 2252 2253 if (ret) 2254 return ret; 2255 2256 /* update rates for slaves tx queues */ 2257 for (i = 0; i < cpsw->data.slaves; i++) { 2258 slave = &cpsw->slaves[i]; 2259 if (!slave->ndev) 2260 continue; 2261 2262 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2263 } 2264 2265 cpsw_split_res(cpsw); 2266 return ret; 2267 } 2268 2269 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 2270 { 2271 struct tc_mqprio_qopt_offload *mqprio = type_data; 2272 struct cpsw_priv *priv = netdev_priv(ndev); 2273 struct cpsw_common *cpsw = priv->cpsw; 2274 int fifo, num_tc, count, offset; 2275 struct cpsw_slave *slave; 2276 u32 tx_prio_map = 0; 2277 int i, tc, ret; 2278 2279 num_tc = mqprio->qopt.num_tc; 2280 if (num_tc > CPSW_TC_NUM) 2281 return -EINVAL; 2282 2283 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 2284 return -EINVAL; 2285 2286 ret = pm_runtime_get_sync(cpsw->dev); 2287 if (ret < 0) { 2288 pm_runtime_put_noidle(cpsw->dev); 2289 return ret; 2290 } 2291 2292 if (num_tc) { 2293 for (i = 0; i < 8; i++) { 2294 tc = mqprio->qopt.prio_tc_map[i]; 2295 fifo = cpsw_tc_to_fifo(tc, num_tc); 2296 tx_prio_map |= fifo << (4 * i); 2297 } 2298 2299 netdev_set_num_tc(ndev, num_tc); 2300 for (i = 0; i < num_tc; i++) { 2301 count = mqprio->qopt.count[i]; 2302 offset = mqprio->qopt.offset[i]; 2303 netdev_set_tc_queue(ndev, i, count, offset); 2304 } 2305 } 2306 2307 if (!mqprio->qopt.hw) { 2308 /* restore default configuration */ 2309 netdev_reset_tc(ndev); 2310 tx_prio_map = TX_PRIORITY_MAPPING; 2311 } 2312 2313 priv->mqprio_hw = mqprio->qopt.hw; 2314 2315 offset = cpsw->version == CPSW_VERSION_1 ? 2316 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 2317 2318 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2319 slave_write(slave, tx_prio_map, offset); 2320 2321 pm_runtime_put_sync(cpsw->dev); 2322 2323 return 0; 2324 } 2325 2326 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2327 void *type_data) 2328 { 2329 switch (type) { 2330 case TC_SETUP_QDISC_CBS: 2331 return cpsw_set_cbs(ndev, type_data); 2332 2333 case TC_SETUP_QDISC_MQPRIO: 2334 return cpsw_set_mqprio(ndev, type_data); 2335 2336 default: 2337 return -EOPNOTSUPP; 2338 } 2339 } 2340 2341 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf) 2342 { 2343 struct bpf_prog *prog = bpf->prog; 2344 2345 if (!priv->xdpi.prog && !prog) 2346 return 0; 2347 2348 if (!xdp_attachment_flags_ok(&priv->xdpi, bpf)) 2349 return -EBUSY; 2350 2351 WRITE_ONCE(priv->xdp_prog, prog); 2352 2353 xdp_attachment_setup(&priv->xdpi, bpf); 2354 2355 return 0; 2356 } 2357 2358 static int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf) 2359 { 2360 struct cpsw_priv *priv = netdev_priv(ndev); 2361 2362 switch (bpf->command) { 2363 case XDP_SETUP_PROG: 2364 return cpsw_xdp_prog_setup(priv, bpf); 2365 2366 case XDP_QUERY_PROG: 2367 return xdp_attachment_query(&priv->xdpi, bpf); 2368 2369 default: 2370 return -EINVAL; 2371 } 2372 } 2373 2374 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 2375 struct xdp_frame **frames, u32 flags) 2376 { 2377 struct cpsw_priv *priv = netdev_priv(ndev); 2378 struct xdp_frame *xdpf; 2379 int i, drops = 0; 2380 2381 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2382 return -EINVAL; 2383 2384 for (i = 0; i < n; i++) { 2385 xdpf = frames[i]; 2386 if (xdpf->len < CPSW_MIN_PACKET_SIZE) { 2387 xdp_return_frame_rx_napi(xdpf); 2388 drops++; 2389 continue; 2390 } 2391 2392 if (cpsw_xdp_tx_frame(priv, xdpf, NULL)) 2393 drops++; 2394 } 2395 2396 return n - drops; 2397 } 2398 2399 #ifdef CONFIG_NET_POLL_CONTROLLER 2400 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2401 { 2402 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2403 2404 cpsw_intr_disable(cpsw); 2405 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2406 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2407 cpsw_intr_enable(cpsw); 2408 } 2409 #endif 2410 2411 static const struct net_device_ops cpsw_netdev_ops = { 2412 .ndo_open = cpsw_ndo_open, 2413 .ndo_stop = cpsw_ndo_stop, 2414 .ndo_start_xmit = cpsw_ndo_start_xmit, 2415 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2416 .ndo_do_ioctl = cpsw_ndo_ioctl, 2417 .ndo_validate_addr = eth_validate_addr, 2418 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2419 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2420 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2421 #ifdef CONFIG_NET_POLL_CONTROLLER 2422 .ndo_poll_controller = cpsw_ndo_poll_controller, 2423 #endif 2424 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2425 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2426 .ndo_setup_tc = cpsw_ndo_setup_tc, 2427 .ndo_bpf = cpsw_ndo_bpf, 2428 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 2429 }; 2430 2431 static void cpsw_get_drvinfo(struct net_device *ndev, 2432 struct ethtool_drvinfo *info) 2433 { 2434 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2435 struct platform_device *pdev = to_platform_device(cpsw->dev); 2436 2437 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2438 strlcpy(info->version, "1.0", sizeof(info->version)); 2439 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2440 } 2441 2442 static int cpsw_set_pauseparam(struct net_device *ndev, 2443 struct ethtool_pauseparam *pause) 2444 { 2445 struct cpsw_priv *priv = netdev_priv(ndev); 2446 bool link; 2447 2448 priv->rx_pause = pause->rx_pause ? true : false; 2449 priv->tx_pause = pause->tx_pause ? true : false; 2450 2451 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2452 return 0; 2453 } 2454 2455 static int cpsw_set_channels(struct net_device *ndev, 2456 struct ethtool_channels *chs) 2457 { 2458 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 2459 } 2460 2461 static const struct ethtool_ops cpsw_ethtool_ops = { 2462 .get_drvinfo = cpsw_get_drvinfo, 2463 .get_msglevel = cpsw_get_msglevel, 2464 .set_msglevel = cpsw_set_msglevel, 2465 .get_link = ethtool_op_get_link, 2466 .get_ts_info = cpsw_get_ts_info, 2467 .get_coalesce = cpsw_get_coalesce, 2468 .set_coalesce = cpsw_set_coalesce, 2469 .get_sset_count = cpsw_get_sset_count, 2470 .get_strings = cpsw_get_strings, 2471 .get_ethtool_stats = cpsw_get_ethtool_stats, 2472 .get_pauseparam = cpsw_get_pauseparam, 2473 .set_pauseparam = cpsw_set_pauseparam, 2474 .get_wol = cpsw_get_wol, 2475 .set_wol = cpsw_set_wol, 2476 .get_regs_len = cpsw_get_regs_len, 2477 .get_regs = cpsw_get_regs, 2478 .begin = cpsw_ethtool_op_begin, 2479 .complete = cpsw_ethtool_op_complete, 2480 .get_channels = cpsw_get_channels, 2481 .set_channels = cpsw_set_channels, 2482 .get_link_ksettings = cpsw_get_link_ksettings, 2483 .set_link_ksettings = cpsw_set_link_ksettings, 2484 .get_eee = cpsw_get_eee, 2485 .set_eee = cpsw_set_eee, 2486 .nway_reset = cpsw_nway_reset, 2487 .get_ringparam = cpsw_get_ringparam, 2488 .set_ringparam = cpsw_set_ringparam, 2489 }; 2490 2491 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2492 struct platform_device *pdev) 2493 { 2494 struct device_node *node = pdev->dev.of_node; 2495 struct device_node *slave_node; 2496 int i = 0, ret; 2497 u32 prop; 2498 2499 if (!node) 2500 return -EINVAL; 2501 2502 if (of_property_read_u32(node, "slaves", &prop)) { 2503 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2504 return -EINVAL; 2505 } 2506 data->slaves = prop; 2507 2508 if (of_property_read_u32(node, "active_slave", &prop)) { 2509 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2510 return -EINVAL; 2511 } 2512 data->active_slave = prop; 2513 2514 data->slave_data = devm_kcalloc(&pdev->dev, 2515 data->slaves, 2516 sizeof(struct cpsw_slave_data), 2517 GFP_KERNEL); 2518 if (!data->slave_data) 2519 return -ENOMEM; 2520 2521 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2522 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2523 return -EINVAL; 2524 } 2525 data->channels = prop; 2526 2527 if (of_property_read_u32(node, "ale_entries", &prop)) { 2528 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2529 return -EINVAL; 2530 } 2531 data->ale_entries = prop; 2532 2533 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2534 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2535 return -EINVAL; 2536 } 2537 data->bd_ram_size = prop; 2538 2539 if (of_property_read_u32(node, "mac_control", &prop)) { 2540 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2541 return -EINVAL; 2542 } 2543 data->mac_control = prop; 2544 2545 if (of_property_read_bool(node, "dual_emac")) 2546 data->dual_emac = 1; 2547 2548 /* 2549 * Populate all the child nodes here... 2550 */ 2551 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2552 /* We do not want to force this, as in some cases may not have child */ 2553 if (ret) 2554 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2555 2556 for_each_available_child_of_node(node, slave_node) { 2557 struct cpsw_slave_data *slave_data = data->slave_data + i; 2558 const void *mac_addr = NULL; 2559 int lenp; 2560 const __be32 *parp; 2561 2562 /* This is no slave child node, continue */ 2563 if (!of_node_name_eq(slave_node, "slave")) 2564 continue; 2565 2566 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, 2567 NULL); 2568 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && 2569 IS_ERR(slave_data->ifphy)) { 2570 ret = PTR_ERR(slave_data->ifphy); 2571 dev_err(&pdev->dev, 2572 "%d: Error retrieving port phy: %d\n", i, ret); 2573 goto err_node_put; 2574 } 2575 2576 slave_data->slave_node = slave_node; 2577 slave_data->phy_node = of_parse_phandle(slave_node, 2578 "phy-handle", 0); 2579 parp = of_get_property(slave_node, "phy_id", &lenp); 2580 if (slave_data->phy_node) { 2581 dev_dbg(&pdev->dev, 2582 "slave[%d] using phy-handle=\"%pOF\"\n", 2583 i, slave_data->phy_node); 2584 } else if (of_phy_is_fixed_link(slave_node)) { 2585 /* In the case of a fixed PHY, the DT node associated 2586 * to the PHY is the Ethernet MAC DT node. 2587 */ 2588 ret = of_phy_register_fixed_link(slave_node); 2589 if (ret) { 2590 if (ret != -EPROBE_DEFER) 2591 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2592 goto err_node_put; 2593 } 2594 slave_data->phy_node = of_node_get(slave_node); 2595 } else if (parp) { 2596 u32 phyid; 2597 struct device_node *mdio_node; 2598 struct platform_device *mdio; 2599 2600 if (lenp != (sizeof(__be32) * 2)) { 2601 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2602 goto no_phy_slave; 2603 } 2604 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2605 phyid = be32_to_cpup(parp+1); 2606 mdio = of_find_device_by_node(mdio_node); 2607 of_node_put(mdio_node); 2608 if (!mdio) { 2609 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2610 ret = -EINVAL; 2611 goto err_node_put; 2612 } 2613 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2614 PHY_ID_FMT, mdio->name, phyid); 2615 put_device(&mdio->dev); 2616 } else { 2617 dev_err(&pdev->dev, 2618 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2619 i); 2620 goto no_phy_slave; 2621 } 2622 slave_data->phy_if = of_get_phy_mode(slave_node); 2623 if (slave_data->phy_if < 0) { 2624 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2625 i); 2626 ret = slave_data->phy_if; 2627 goto err_node_put; 2628 } 2629 2630 no_phy_slave: 2631 mac_addr = of_get_mac_address(slave_node); 2632 if (!IS_ERR(mac_addr)) { 2633 ether_addr_copy(slave_data->mac_addr, mac_addr); 2634 } else { 2635 ret = ti_cm_get_macid(&pdev->dev, i, 2636 slave_data->mac_addr); 2637 if (ret) 2638 goto err_node_put; 2639 } 2640 if (data->dual_emac) { 2641 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2642 &prop)) { 2643 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2644 slave_data->dual_emac_res_vlan = i+1; 2645 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2646 slave_data->dual_emac_res_vlan, i); 2647 } else { 2648 slave_data->dual_emac_res_vlan = prop; 2649 } 2650 } 2651 2652 i++; 2653 if (i == data->slaves) { 2654 ret = 0; 2655 goto err_node_put; 2656 } 2657 } 2658 2659 return 0; 2660 2661 err_node_put: 2662 of_node_put(slave_node); 2663 return ret; 2664 } 2665 2666 static void cpsw_remove_dt(struct platform_device *pdev) 2667 { 2668 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2669 struct cpsw_platform_data *data = &cpsw->data; 2670 struct device_node *node = pdev->dev.of_node; 2671 struct device_node *slave_node; 2672 int i = 0; 2673 2674 for_each_available_child_of_node(node, slave_node) { 2675 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2676 2677 if (!of_node_name_eq(slave_node, "slave")) 2678 continue; 2679 2680 if (of_phy_is_fixed_link(slave_node)) 2681 of_phy_deregister_fixed_link(slave_node); 2682 2683 of_node_put(slave_data->phy_node); 2684 2685 i++; 2686 if (i == data->slaves) { 2687 of_node_put(slave_node); 2688 break; 2689 } 2690 } 2691 2692 of_platform_depopulate(&pdev->dev); 2693 } 2694 2695 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2696 { 2697 struct cpsw_common *cpsw = priv->cpsw; 2698 struct cpsw_platform_data *data = &cpsw->data; 2699 struct net_device *ndev; 2700 struct cpsw_priv *priv_sl2; 2701 int ret = 0; 2702 2703 ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv), 2704 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 2705 if (!ndev) { 2706 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2707 return -ENOMEM; 2708 } 2709 2710 priv_sl2 = netdev_priv(ndev); 2711 priv_sl2->cpsw = cpsw; 2712 priv_sl2->ndev = ndev; 2713 priv_sl2->dev = &ndev->dev; 2714 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2715 2716 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2717 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2718 ETH_ALEN); 2719 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2720 priv_sl2->mac_addr); 2721 } else { 2722 eth_random_addr(priv_sl2->mac_addr); 2723 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2724 priv_sl2->mac_addr); 2725 } 2726 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2727 2728 priv_sl2->emac_port = 1; 2729 cpsw->slaves[1].ndev = ndev; 2730 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 2731 2732 ndev->netdev_ops = &cpsw_netdev_ops; 2733 ndev->ethtool_ops = &cpsw_ethtool_ops; 2734 2735 /* register the network device */ 2736 SET_NETDEV_DEV(ndev, cpsw->dev); 2737 ndev->dev.of_node = cpsw->slaves[1].data->slave_node; 2738 ret = register_netdev(ndev); 2739 if (ret) 2740 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2741 2742 return ret; 2743 } 2744 2745 static const struct of_device_id cpsw_of_mtable[] = { 2746 { .compatible = "ti,cpsw"}, 2747 { .compatible = "ti,am335x-cpsw"}, 2748 { .compatible = "ti,am4372-cpsw"}, 2749 { .compatible = "ti,dra7-cpsw"}, 2750 { /* sentinel */ }, 2751 }; 2752 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2753 2754 static const struct soc_device_attribute cpsw_soc_devices[] = { 2755 { .family = "AM33xx", .revision = "ES1.0"}, 2756 { /* sentinel */ } 2757 }; 2758 2759 static int cpsw_probe(struct platform_device *pdev) 2760 { 2761 struct device *dev = &pdev->dev; 2762 struct clk *clk; 2763 struct cpsw_platform_data *data; 2764 struct net_device *ndev; 2765 struct cpsw_priv *priv; 2766 void __iomem *ss_regs; 2767 struct resource *res, *ss_res; 2768 struct gpio_descs *mode; 2769 const struct soc_device_attribute *soc; 2770 struct cpsw_common *cpsw; 2771 int ret = 0, ch; 2772 int irq; 2773 2774 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 2775 if (!cpsw) 2776 return -ENOMEM; 2777 2778 cpsw->dev = dev; 2779 2780 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 2781 if (IS_ERR(mode)) { 2782 ret = PTR_ERR(mode); 2783 dev_err(dev, "gpio request failed, ret %d\n", ret); 2784 return ret; 2785 } 2786 2787 clk = devm_clk_get(dev, "fck"); 2788 if (IS_ERR(clk)) { 2789 ret = PTR_ERR(clk); 2790 dev_err(dev, "fck is not found %d\n", ret); 2791 return ret; 2792 } 2793 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 2794 2795 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2796 ss_regs = devm_ioremap_resource(dev, ss_res); 2797 if (IS_ERR(ss_regs)) 2798 return PTR_ERR(ss_regs); 2799 cpsw->regs = ss_regs; 2800 2801 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2802 cpsw->wr_regs = devm_ioremap_resource(dev, res); 2803 if (IS_ERR(cpsw->wr_regs)) 2804 return PTR_ERR(cpsw->wr_regs); 2805 2806 /* RX IRQ */ 2807 irq = platform_get_irq(pdev, 1); 2808 if (irq < 0) 2809 return irq; 2810 cpsw->irqs_table[0] = irq; 2811 2812 /* TX IRQ */ 2813 irq = platform_get_irq(pdev, 2); 2814 if (irq < 0) 2815 return irq; 2816 cpsw->irqs_table[1] = irq; 2817 2818 /* 2819 * This may be required here for child devices. 2820 */ 2821 pm_runtime_enable(dev); 2822 2823 /* Need to enable clocks with runtime PM api to access module 2824 * registers 2825 */ 2826 ret = pm_runtime_get_sync(dev); 2827 if (ret < 0) { 2828 pm_runtime_put_noidle(dev); 2829 goto clean_runtime_disable_ret; 2830 } 2831 2832 ret = cpsw_probe_dt(&cpsw->data, pdev); 2833 if (ret) 2834 goto clean_dt_ret; 2835 2836 soc = soc_device_match(cpsw_soc_devices); 2837 if (soc) 2838 cpsw->quirk_irq = 1; 2839 2840 data = &cpsw->data; 2841 cpsw->slaves = devm_kcalloc(dev, 2842 data->slaves, sizeof(struct cpsw_slave), 2843 GFP_KERNEL); 2844 if (!cpsw->slaves) { 2845 ret = -ENOMEM; 2846 goto clean_dt_ret; 2847 } 2848 2849 cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE); 2850 cpsw->descs_pool_size = descs_pool_size; 2851 2852 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 2853 ss_res->start + CPSW2_BD_OFFSET, 2854 descs_pool_size); 2855 if (ret) 2856 goto clean_dt_ret; 2857 2858 ch = cpsw->quirk_irq ? 0 : 7; 2859 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 2860 if (IS_ERR(cpsw->txv[0].ch)) { 2861 dev_err(dev, "error initializing tx dma channel\n"); 2862 ret = PTR_ERR(cpsw->txv[0].ch); 2863 goto clean_cpts; 2864 } 2865 2866 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 2867 if (IS_ERR(cpsw->rxv[0].ch)) { 2868 dev_err(dev, "error initializing rx dma channel\n"); 2869 ret = PTR_ERR(cpsw->rxv[0].ch); 2870 goto clean_cpts; 2871 } 2872 cpsw_split_res(cpsw); 2873 2874 /* setup netdev */ 2875 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 2876 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 2877 if (!ndev) { 2878 dev_err(dev, "error allocating net_device\n"); 2879 goto clean_cpts; 2880 } 2881 2882 platform_set_drvdata(pdev, cpsw); 2883 priv = netdev_priv(ndev); 2884 priv->cpsw = cpsw; 2885 priv->ndev = ndev; 2886 priv->dev = dev; 2887 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2888 priv->emac_port = 0; 2889 2890 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2891 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2892 dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr); 2893 } else { 2894 eth_random_addr(priv->mac_addr); 2895 dev_info(dev, "Random MACID = %pM\n", priv->mac_addr); 2896 } 2897 2898 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2899 2900 cpsw->slaves[0].ndev = ndev; 2901 2902 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 2903 2904 ndev->netdev_ops = &cpsw_netdev_ops; 2905 ndev->ethtool_ops = &cpsw_ethtool_ops; 2906 netif_napi_add(ndev, &cpsw->napi_rx, 2907 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 2908 CPSW_POLL_WEIGHT); 2909 netif_tx_napi_add(ndev, &cpsw->napi_tx, 2910 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 2911 CPSW_POLL_WEIGHT); 2912 2913 /* register the network device */ 2914 SET_NETDEV_DEV(ndev, dev); 2915 ndev->dev.of_node = cpsw->slaves[0].data->slave_node; 2916 ret = register_netdev(ndev); 2917 if (ret) { 2918 dev_err(dev, "error registering net device\n"); 2919 ret = -ENODEV; 2920 goto clean_cpts; 2921 } 2922 2923 if (cpsw->data.dual_emac) { 2924 ret = cpsw_probe_dual_emac(priv); 2925 if (ret) { 2926 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2927 goto clean_unregister_netdev_ret; 2928 } 2929 } 2930 2931 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2932 * MISC IRQs which are always kept disabled with this driver so 2933 * we will not request them. 2934 * 2935 * If anyone wants to implement support for those, make sure to 2936 * first request and append them to irqs_table array. 2937 */ 2938 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 2939 0, dev_name(dev), cpsw); 2940 if (ret < 0) { 2941 dev_err(dev, "error attaching irq (%d)\n", ret); 2942 goto clean_unregister_netdev_ret; 2943 } 2944 2945 2946 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 2947 0, dev_name(&pdev->dev), cpsw); 2948 if (ret < 0) { 2949 dev_err(dev, "error attaching irq (%d)\n", ret); 2950 goto clean_unregister_netdev_ret; 2951 } 2952 2953 cpsw_notice(priv, probe, 2954 "initialized device (regs %pa, irq %d, pool size %d)\n", 2955 &ss_res->start, cpsw->irqs_table[0], descs_pool_size); 2956 2957 pm_runtime_put(&pdev->dev); 2958 2959 return 0; 2960 2961 clean_unregister_netdev_ret: 2962 unregister_netdev(ndev); 2963 clean_cpts: 2964 cpts_release(cpsw->cpts); 2965 cpdma_ctlr_destroy(cpsw->dma); 2966 clean_dt_ret: 2967 cpsw_remove_dt(pdev); 2968 pm_runtime_put_sync(&pdev->dev); 2969 clean_runtime_disable_ret: 2970 pm_runtime_disable(&pdev->dev); 2971 return ret; 2972 } 2973 2974 static int cpsw_remove(struct platform_device *pdev) 2975 { 2976 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2977 int i, ret; 2978 2979 ret = pm_runtime_get_sync(&pdev->dev); 2980 if (ret < 0) { 2981 pm_runtime_put_noidle(&pdev->dev); 2982 return ret; 2983 } 2984 2985 for (i = 0; i < cpsw->data.slaves; i++) 2986 if (cpsw->slaves[i].ndev) 2987 unregister_netdev(cpsw->slaves[i].ndev); 2988 2989 cpts_release(cpsw->cpts); 2990 cpdma_ctlr_destroy(cpsw->dma); 2991 cpsw_remove_dt(pdev); 2992 pm_runtime_put_sync(&pdev->dev); 2993 pm_runtime_disable(&pdev->dev); 2994 return 0; 2995 } 2996 2997 #ifdef CONFIG_PM_SLEEP 2998 static int cpsw_suspend(struct device *dev) 2999 { 3000 struct cpsw_common *cpsw = dev_get_drvdata(dev); 3001 int i; 3002 3003 for (i = 0; i < cpsw->data.slaves; i++) 3004 if (cpsw->slaves[i].ndev) 3005 if (netif_running(cpsw->slaves[i].ndev)) 3006 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3007 3008 /* Select sleep pin state */ 3009 pinctrl_pm_select_sleep_state(dev); 3010 3011 return 0; 3012 } 3013 3014 static int cpsw_resume(struct device *dev) 3015 { 3016 struct cpsw_common *cpsw = dev_get_drvdata(dev); 3017 int i; 3018 3019 /* Select default pin state */ 3020 pinctrl_pm_select_default_state(dev); 3021 3022 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3023 rtnl_lock(); 3024 3025 for (i = 0; i < cpsw->data.slaves; i++) 3026 if (cpsw->slaves[i].ndev) 3027 if (netif_running(cpsw->slaves[i].ndev)) 3028 cpsw_ndo_open(cpsw->slaves[i].ndev); 3029 3030 rtnl_unlock(); 3031 3032 return 0; 3033 } 3034 #endif 3035 3036 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3037 3038 static struct platform_driver cpsw_driver = { 3039 .driver = { 3040 .name = "cpsw", 3041 .pm = &cpsw_pm_ops, 3042 .of_match_table = cpsw_of_mtable, 3043 }, 3044 .probe = cpsw_probe, 3045 .remove = cpsw_remove, 3046 }; 3047 3048 module_platform_driver(cpsw_driver); 3049 3050 MODULE_LICENSE("GPL"); 3051 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3052 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3053 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3054