xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 4cff79e9)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 
40 #include <linux/pinctrl/consumer.h>
41 
42 #include "cpsw.h"
43 #include "cpsw_ale.h"
44 #include "cpts.h"
45 #include "davinci_cpdma.h"
46 
47 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
48 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
49 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
50 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
51 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
52 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
53 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
54 			 NETIF_MSG_RX_STATUS)
55 
56 #define cpsw_info(priv, type, format, ...)		\
57 do {								\
58 	if (netif_msg_##type(priv) && net_ratelimit())		\
59 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
60 } while (0)
61 
62 #define cpsw_err(priv, type, format, ...)		\
63 do {								\
64 	if (netif_msg_##type(priv) && net_ratelimit())		\
65 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
66 } while (0)
67 
68 #define cpsw_dbg(priv, type, format, ...)		\
69 do {								\
70 	if (netif_msg_##type(priv) && net_ratelimit())		\
71 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
72 } while (0)
73 
74 #define cpsw_notice(priv, type, format, ...)		\
75 do {								\
76 	if (netif_msg_##type(priv) && net_ratelimit())		\
77 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
78 } while (0)
79 
80 #define ALE_ALL_PORTS		0x7
81 
82 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
83 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
84 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
85 
86 #define CPSW_VERSION_1		0x19010a
87 #define CPSW_VERSION_2		0x19010c
88 #define CPSW_VERSION_3		0x19010f
89 #define CPSW_VERSION_4		0x190112
90 
91 #define HOST_PORT_NUM		0
92 #define CPSW_ALE_PORTS_NUM	3
93 #define SLIVER_SIZE		0x40
94 
95 #define CPSW1_HOST_PORT_OFFSET	0x028
96 #define CPSW1_SLAVE_OFFSET	0x050
97 #define CPSW1_SLAVE_SIZE	0x040
98 #define CPSW1_CPDMA_OFFSET	0x100
99 #define CPSW1_STATERAM_OFFSET	0x200
100 #define CPSW1_HW_STATS		0x400
101 #define CPSW1_CPTS_OFFSET	0x500
102 #define CPSW1_ALE_OFFSET	0x600
103 #define CPSW1_SLIVER_OFFSET	0x700
104 
105 #define CPSW2_HOST_PORT_OFFSET	0x108
106 #define CPSW2_SLAVE_OFFSET	0x200
107 #define CPSW2_SLAVE_SIZE	0x100
108 #define CPSW2_CPDMA_OFFSET	0x800
109 #define CPSW2_HW_STATS		0x900
110 #define CPSW2_STATERAM_OFFSET	0xa00
111 #define CPSW2_CPTS_OFFSET	0xc00
112 #define CPSW2_ALE_OFFSET	0xd00
113 #define CPSW2_SLIVER_OFFSET	0xd80
114 #define CPSW2_BD_OFFSET		0x2000
115 
116 #define CPDMA_RXTHRESH		0x0c0
117 #define CPDMA_RXFREE		0x0e0
118 #define CPDMA_TXHDP		0x00
119 #define CPDMA_RXHDP		0x20
120 #define CPDMA_TXCP		0x40
121 #define CPDMA_RXCP		0x60
122 
123 #define CPSW_POLL_WEIGHT	64
124 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
125 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
126 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
127 				 ETH_FCS_LEN +\
128 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
129 
130 #define RX_PRIORITY_MAPPING	0x76543210
131 #define TX_PRIORITY_MAPPING	0x33221100
132 #define CPDMA_TX_PRIORITY_MAP	0x76543210
133 
134 #define CPSW_VLAN_AWARE		BIT(1)
135 #define CPSW_RX_VLAN_ENCAP	BIT(2)
136 #define CPSW_ALE_VLAN_AWARE	1
137 
138 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
139 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
140 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
141 
142 #define CPSW_INTPACEEN		(0x3f << 16)
143 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
144 #define CPSW_CMINTMAX_CNT	63
145 #define CPSW_CMINTMIN_CNT	2
146 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
147 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
148 
149 #define cpsw_slave_index(cpsw, priv)				\
150 		((cpsw->data.dual_emac) ? priv->emac_port :	\
151 		cpsw->data.active_slave)
152 #define IRQ_NUM			2
153 #define CPSW_MAX_QUEUES		8
154 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
155 
156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
158 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
161 enum {
162 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
163 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
164 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
165 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
166 };
167 
168 static int debug_level;
169 module_param(debug_level, int, 0);
170 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
171 
172 static int ale_ageout = 10;
173 module_param(ale_ageout, int, 0);
174 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
175 
176 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
177 module_param(rx_packet_max, int, 0);
178 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
179 
180 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
181 module_param(descs_pool_size, int, 0444);
182 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
183 
184 struct cpsw_wr_regs {
185 	u32	id_ver;
186 	u32	soft_reset;
187 	u32	control;
188 	u32	int_control;
189 	u32	rx_thresh_en;
190 	u32	rx_en;
191 	u32	tx_en;
192 	u32	misc_en;
193 	u32	mem_allign1[8];
194 	u32	rx_thresh_stat;
195 	u32	rx_stat;
196 	u32	tx_stat;
197 	u32	misc_stat;
198 	u32	mem_allign2[8];
199 	u32	rx_imax;
200 	u32	tx_imax;
201 
202 };
203 
204 struct cpsw_ss_regs {
205 	u32	id_ver;
206 	u32	control;
207 	u32	soft_reset;
208 	u32	stat_port_en;
209 	u32	ptype;
210 	u32	soft_idle;
211 	u32	thru_rate;
212 	u32	gap_thresh;
213 	u32	tx_start_wds;
214 	u32	flow_control;
215 	u32	vlan_ltype;
216 	u32	ts_ltype;
217 	u32	dlr_ltype;
218 };
219 
220 /* CPSW_PORT_V1 */
221 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
222 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
223 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
224 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
225 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
226 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
227 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
228 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
229 
230 /* CPSW_PORT_V2 */
231 #define CPSW2_CONTROL       0x00 /* Control Register */
232 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
233 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
234 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
235 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
236 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
237 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
238 
239 /* CPSW_PORT_V1 and V2 */
240 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
241 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
242 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
243 
244 /* CPSW_PORT_V2 only */
245 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
246 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
253 
254 /* Bit definitions for the CPSW2_CONTROL register */
255 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
256 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
257 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
258 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
259 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
260 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
261 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
262 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
263 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
264 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
265 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
266 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
267 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
268 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
269 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
270 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
271 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
272 
273 #define CTRL_V2_TS_BITS \
274 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
275 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
276 
277 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
278 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
279 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
280 
281 
282 #define CTRL_V3_TS_BITS \
283 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
284 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
285 	 TS_LTYPE1_EN)
286 
287 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
288 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
289 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
290 
291 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
292 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
293 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
294 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
295 #define TS_MSG_TYPE_EN_MASK      (0xffff)
296 
297 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
298 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
299 
300 /* Bit definitions for the CPSW1_TS_CTL register */
301 #define CPSW_V1_TS_RX_EN		BIT(0)
302 #define CPSW_V1_TS_TX_EN		BIT(4)
303 #define CPSW_V1_MSG_TYPE_OFS		16
304 
305 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
306 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
307 
308 #define CPSW_MAX_BLKS_TX		15
309 #define CPSW_MAX_BLKS_TX_SHIFT		4
310 #define CPSW_MAX_BLKS_RX		5
311 
312 struct cpsw_host_regs {
313 	u32	max_blks;
314 	u32	blk_cnt;
315 	u32	tx_in_ctl;
316 	u32	port_vlan;
317 	u32	tx_pri_map;
318 	u32	cpdma_tx_pri_map;
319 	u32	cpdma_rx_chan_map;
320 };
321 
322 struct cpsw_sliver_regs {
323 	u32	id_ver;
324 	u32	mac_control;
325 	u32	mac_status;
326 	u32	soft_reset;
327 	u32	rx_maxlen;
328 	u32	__reserved_0;
329 	u32	rx_pause;
330 	u32	tx_pause;
331 	u32	__reserved_1;
332 	u32	rx_pri_map;
333 };
334 
335 struct cpsw_hw_stats {
336 	u32	rxgoodframes;
337 	u32	rxbroadcastframes;
338 	u32	rxmulticastframes;
339 	u32	rxpauseframes;
340 	u32	rxcrcerrors;
341 	u32	rxaligncodeerrors;
342 	u32	rxoversizedframes;
343 	u32	rxjabberframes;
344 	u32	rxundersizedframes;
345 	u32	rxfragments;
346 	u32	__pad_0[2];
347 	u32	rxoctets;
348 	u32	txgoodframes;
349 	u32	txbroadcastframes;
350 	u32	txmulticastframes;
351 	u32	txpauseframes;
352 	u32	txdeferredframes;
353 	u32	txcollisionframes;
354 	u32	txsinglecollframes;
355 	u32	txmultcollframes;
356 	u32	txexcessivecollisions;
357 	u32	txlatecollisions;
358 	u32	txunderrun;
359 	u32	txcarriersenseerrors;
360 	u32	txoctets;
361 	u32	octetframes64;
362 	u32	octetframes65t127;
363 	u32	octetframes128t255;
364 	u32	octetframes256t511;
365 	u32	octetframes512t1023;
366 	u32	octetframes1024tup;
367 	u32	netoctets;
368 	u32	rxsofoverruns;
369 	u32	rxmofoverruns;
370 	u32	rxdmaoverruns;
371 };
372 
373 struct cpsw_slave_data {
374 	struct device_node *phy_node;
375 	char		phy_id[MII_BUS_ID_SIZE];
376 	int		phy_if;
377 	u8		mac_addr[ETH_ALEN];
378 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
379 };
380 
381 struct cpsw_platform_data {
382 	struct cpsw_slave_data	*slave_data;
383 	u32	ss_reg_ofs;	/* Subsystem control register offset */
384 	u32	channels;	/* number of cpdma channels (symmetric) */
385 	u32	slaves;		/* number of slave cpgmac ports */
386 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
387 	u32	ale_entries;	/* ale table size */
388 	u32	bd_ram_size;  /*buffer descriptor ram size */
389 	u32	mac_control;	/* Mac control register */
390 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
391 	bool	dual_emac;	/* Enable Dual EMAC mode */
392 };
393 
394 struct cpsw_slave {
395 	void __iomem			*regs;
396 	struct cpsw_sliver_regs __iomem	*sliver;
397 	int				slave_num;
398 	u32				mac_control;
399 	struct cpsw_slave_data		*data;
400 	struct phy_device		*phy;
401 	struct net_device		*ndev;
402 	u32				port_vlan;
403 };
404 
405 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
406 {
407 	return readl_relaxed(slave->regs + offset);
408 }
409 
410 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
411 {
412 	writel_relaxed(val, slave->regs + offset);
413 }
414 
415 struct cpsw_vector {
416 	struct cpdma_chan *ch;
417 	int budget;
418 };
419 
420 struct cpsw_common {
421 	struct device			*dev;
422 	struct cpsw_platform_data	data;
423 	struct napi_struct		napi_rx;
424 	struct napi_struct		napi_tx;
425 	struct cpsw_ss_regs __iomem	*regs;
426 	struct cpsw_wr_regs __iomem	*wr_regs;
427 	u8 __iomem			*hw_stats;
428 	struct cpsw_host_regs __iomem	*host_port_regs;
429 	u32				version;
430 	u32				coal_intvl;
431 	u32				bus_freq_mhz;
432 	int				rx_packet_max;
433 	struct cpsw_slave		*slaves;
434 	struct cpdma_ctlr		*dma;
435 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
436 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
437 	struct cpsw_ale			*ale;
438 	bool				quirk_irq;
439 	bool				rx_irq_disabled;
440 	bool				tx_irq_disabled;
441 	u32 irqs_table[IRQ_NUM];
442 	struct cpts			*cpts;
443 	int				rx_ch_num, tx_ch_num;
444 	int				speed;
445 	int				usage_count;
446 };
447 
448 struct cpsw_priv {
449 	struct net_device		*ndev;
450 	struct device			*dev;
451 	u32				msg_enable;
452 	u8				mac_addr[ETH_ALEN];
453 	bool				rx_pause;
454 	bool				tx_pause;
455 	u32 emac_port;
456 	struct cpsw_common *cpsw;
457 };
458 
459 struct cpsw_stats {
460 	char stat_string[ETH_GSTRING_LEN];
461 	int type;
462 	int sizeof_stat;
463 	int stat_offset;
464 };
465 
466 enum {
467 	CPSW_STATS,
468 	CPDMA_RX_STATS,
469 	CPDMA_TX_STATS,
470 };
471 
472 #define CPSW_STAT(m)		CPSW_STATS,				\
473 				sizeof(((struct cpsw_hw_stats *)0)->m), \
474 				offsetof(struct cpsw_hw_stats, m)
475 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
476 				sizeof(((struct cpdma_chan_stats *)0)->m), \
477 				offsetof(struct cpdma_chan_stats, m)
478 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
479 				sizeof(((struct cpdma_chan_stats *)0)->m), \
480 				offsetof(struct cpdma_chan_stats, m)
481 
482 static const struct cpsw_stats cpsw_gstrings_stats[] = {
483 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
484 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
485 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
486 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
487 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
488 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
489 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
490 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
491 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
492 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
493 	{ "Rx Octets", CPSW_STAT(rxoctets) },
494 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
495 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
496 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
497 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
498 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
499 	{ "Collisions", CPSW_STAT(txcollisionframes) },
500 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
501 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
502 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
503 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
504 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
505 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
506 	{ "Tx Octets", CPSW_STAT(txoctets) },
507 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
508 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
509 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
510 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
511 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
512 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
513 	{ "Net Octets", CPSW_STAT(netoctets) },
514 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
515 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
516 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
517 };
518 
519 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
520 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
521 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
522 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
523 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
524 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
525 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
526 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
527 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
528 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
529 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
530 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
531 	{ "requeue", CPDMA_RX_STAT(requeue) },
532 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
533 };
534 
535 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
536 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
537 
538 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
539 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
540 #define for_each_slave(priv, func, arg...)				\
541 	do {								\
542 		struct cpsw_slave *slave;				\
543 		struct cpsw_common *cpsw = (priv)->cpsw;		\
544 		int n;							\
545 		if (cpsw->data.dual_emac)				\
546 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
547 		else							\
548 			for (n = cpsw->data.slaves,			\
549 					slave = cpsw->slaves;		\
550 					n; n--)				\
551 				(func)(slave++, ##arg);			\
552 	} while (0)
553 
554 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
555 	do {								\
556 		if (!cpsw->data.dual_emac)				\
557 			break;						\
558 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
559 			ndev = cpsw->slaves[0].ndev;			\
560 			skb->dev = ndev;				\
561 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
562 			ndev = cpsw->slaves[1].ndev;			\
563 			skb->dev = ndev;				\
564 		}							\
565 	} while (0)
566 #define cpsw_add_mcast(cpsw, priv, addr)				\
567 	do {								\
568 		if (cpsw->data.dual_emac) {				\
569 			struct cpsw_slave *slave = cpsw->slaves +	\
570 						priv->emac_port;	\
571 			int slave_port = cpsw_get_slave_port(		\
572 						slave->slave_num);	\
573 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
574 				1 << slave_port | ALE_PORT_HOST,	\
575 				ALE_VLAN, slave->port_vlan, 0);		\
576 		} else {						\
577 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
578 				ALE_ALL_PORTS,				\
579 				0, 0, 0);				\
580 		}							\
581 	} while (0)
582 
583 static inline int cpsw_get_slave_port(u32 slave_num)
584 {
585 	return slave_num + 1;
586 }
587 
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591 	struct cpsw_ale *ale = cpsw->ale;
592 	int i;
593 
594 	if (cpsw->data.dual_emac) {
595 		bool flag = false;
596 
597 		/* Enabling promiscuous mode for one interface will be
598 		 * common for both the interface as the interface shares
599 		 * the same hardware resource.
600 		 */
601 		for (i = 0; i < cpsw->data.slaves; i++)
602 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603 				flag = true;
604 
605 		if (!enable && flag) {
606 			enable = true;
607 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608 		}
609 
610 		if (enable) {
611 			/* Enable Bypass */
612 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613 
614 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
615 		} else {
616 			/* Disable Bypass */
617 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
619 		}
620 	} else {
621 		if (enable) {
622 			unsigned long timeout = jiffies + HZ;
623 
624 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625 			for (i = 0; i <= cpsw->data.slaves; i++) {
626 				cpsw_ale_control_set(ale, i,
627 						     ALE_PORT_NOLEARN, 1);
628 				cpsw_ale_control_set(ale, i,
629 						     ALE_PORT_NO_SA_UPDATE, 1);
630 			}
631 
632 			/* Clear All Untouched entries */
633 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634 			do {
635 				cpu_relax();
636 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637 					break;
638 			} while (time_after(timeout, jiffies));
639 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640 
641 			/* Clear all mcast from ALE */
642 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643 
644 			/* Flood All Unicast Packets to Host port */
645 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
646 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
647 		} else {
648 			/* Don't Flood All Unicast Packets to Host port */
649 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
650 
651 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
652 			for (i = 0; i <= cpsw->data.slaves; i++) {
653 				cpsw_ale_control_set(ale, i,
654 						     ALE_PORT_NOLEARN, 0);
655 				cpsw_ale_control_set(ale, i,
656 						     ALE_PORT_NO_SA_UPDATE, 0);
657 			}
658 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
659 		}
660 	}
661 }
662 
663 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
664 {
665 	struct cpsw_priv *priv = netdev_priv(ndev);
666 	struct cpsw_common *cpsw = priv->cpsw;
667 	int vid;
668 
669 	if (cpsw->data.dual_emac)
670 		vid = cpsw->slaves[priv->emac_port].port_vlan;
671 	else
672 		vid = cpsw->data.default_vlan;
673 
674 	if (ndev->flags & IFF_PROMISC) {
675 		/* Enable promiscuous mode */
676 		cpsw_set_promiscious(ndev, true);
677 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
678 		return;
679 	} else {
680 		/* Disable promiscuous mode */
681 		cpsw_set_promiscious(ndev, false);
682 	}
683 
684 	/* Restore allmulti on vlans if necessary */
685 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
686 
687 	/* Clear all mcast from ALE */
688 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
689 
690 	if (!netdev_mc_empty(ndev)) {
691 		struct netdev_hw_addr *ha;
692 
693 		/* program multicast address list into ALE register */
694 		netdev_for_each_mc_addr(ha, ndev) {
695 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
696 		}
697 	}
698 }
699 
700 static void cpsw_intr_enable(struct cpsw_common *cpsw)
701 {
702 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
703 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
704 
705 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
706 	return;
707 }
708 
709 static void cpsw_intr_disable(struct cpsw_common *cpsw)
710 {
711 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
712 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
713 
714 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
715 	return;
716 }
717 
718 static void cpsw_tx_handler(void *token, int len, int status)
719 {
720 	struct netdev_queue	*txq;
721 	struct sk_buff		*skb = token;
722 	struct net_device	*ndev = skb->dev;
723 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
724 
725 	/* Check whether the queue is stopped due to stalled tx dma, if the
726 	 * queue is stopped then start the queue as we have free desc for tx
727 	 */
728 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
729 	if (unlikely(netif_tx_queue_stopped(txq)))
730 		netif_tx_wake_queue(txq);
731 
732 	cpts_tx_timestamp(cpsw->cpts, skb);
733 	ndev->stats.tx_packets++;
734 	ndev->stats.tx_bytes += len;
735 	dev_kfree_skb_any(skb);
736 }
737 
738 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
739 {
740 	struct cpsw_priv *priv = netdev_priv(skb->dev);
741 	struct cpsw_common *cpsw = priv->cpsw;
742 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
743 	u16 vtag, vid, prio, pkt_type;
744 
745 	/* Remove VLAN header encapsulation word */
746 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
747 
748 	pkt_type = (rx_vlan_encap_hdr >>
749 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
750 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
751 	/* Ignore unknown & Priority-tagged packets*/
752 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
753 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
754 		return;
755 
756 	vid = (rx_vlan_encap_hdr >>
757 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
758 	       VLAN_VID_MASK;
759 	/* Ignore vid 0 and pass packet as is */
760 	if (!vid)
761 		return;
762 	/* Ignore default vlans in dual mac mode */
763 	if (cpsw->data.dual_emac &&
764 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
765 		return;
766 
767 	prio = (rx_vlan_encap_hdr >>
768 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
769 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
770 
771 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
772 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
773 
774 	/* strip vlan tag for VLAN-tagged packet */
775 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
776 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
777 		skb_pull(skb, VLAN_HLEN);
778 	}
779 }
780 
781 static void cpsw_rx_handler(void *token, int len, int status)
782 {
783 	struct cpdma_chan	*ch;
784 	struct sk_buff		*skb = token;
785 	struct sk_buff		*new_skb;
786 	struct net_device	*ndev = skb->dev;
787 	int			ret = 0;
788 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
789 
790 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
791 
792 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
793 		/* In dual emac mode check for all interfaces */
794 		if (cpsw->data.dual_emac && cpsw->usage_count &&
795 		    (status >= 0)) {
796 			/* The packet received is for the interface which
797 			 * is already down and the other interface is up
798 			 * and running, instead of freeing which results
799 			 * in reducing of the number of rx descriptor in
800 			 * DMA engine, requeue skb back to cpdma.
801 			 */
802 			new_skb = skb;
803 			goto requeue;
804 		}
805 
806 		/* the interface is going down, skbs are purged */
807 		dev_kfree_skb_any(skb);
808 		return;
809 	}
810 
811 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
812 	if (new_skb) {
813 		skb_copy_queue_mapping(new_skb, skb);
814 		skb_put(skb, len);
815 		if (status & CPDMA_RX_VLAN_ENCAP)
816 			cpsw_rx_vlan_encap(skb);
817 		cpts_rx_timestamp(cpsw->cpts, skb);
818 		skb->protocol = eth_type_trans(skb, ndev);
819 		netif_receive_skb(skb);
820 		ndev->stats.rx_bytes += len;
821 		ndev->stats.rx_packets++;
822 		kmemleak_not_leak(new_skb);
823 	} else {
824 		ndev->stats.rx_dropped++;
825 		new_skb = skb;
826 	}
827 
828 requeue:
829 	if (netif_dormant(ndev)) {
830 		dev_kfree_skb_any(new_skb);
831 		return;
832 	}
833 
834 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
835 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
836 				skb_tailroom(new_skb), 0);
837 	if (WARN_ON(ret < 0))
838 		dev_kfree_skb_any(new_skb);
839 }
840 
841 static void cpsw_split_res(struct net_device *ndev)
842 {
843 	struct cpsw_priv *priv = netdev_priv(ndev);
844 	u32 consumed_rate = 0, bigest_rate = 0;
845 	struct cpsw_common *cpsw = priv->cpsw;
846 	struct cpsw_vector *txv = cpsw->txv;
847 	int i, ch_weight, rlim_ch_num = 0;
848 	int budget, bigest_rate_ch = 0;
849 	u32 ch_rate, max_rate;
850 	int ch_budget = 0;
851 
852 	for (i = 0; i < cpsw->tx_ch_num; i++) {
853 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
854 		if (!ch_rate)
855 			continue;
856 
857 		rlim_ch_num++;
858 		consumed_rate += ch_rate;
859 	}
860 
861 	if (cpsw->tx_ch_num == rlim_ch_num) {
862 		max_rate = consumed_rate;
863 	} else if (!rlim_ch_num) {
864 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
865 		bigest_rate = 0;
866 		max_rate = consumed_rate;
867 	} else {
868 		max_rate = cpsw->speed * 1000;
869 
870 		/* if max_rate is less then expected due to reduced link speed,
871 		 * split proportionally according next potential max speed
872 		 */
873 		if (max_rate < consumed_rate)
874 			max_rate *= 10;
875 
876 		if (max_rate < consumed_rate)
877 			max_rate *= 10;
878 
879 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
880 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
881 			    (cpsw->tx_ch_num - rlim_ch_num);
882 		bigest_rate = (max_rate - consumed_rate) /
883 			      (cpsw->tx_ch_num - rlim_ch_num);
884 	}
885 
886 	/* split tx weight/budget */
887 	budget = CPSW_POLL_WEIGHT;
888 	for (i = 0; i < cpsw->tx_ch_num; i++) {
889 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
890 		if (ch_rate) {
891 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
892 			if (!txv[i].budget)
893 				txv[i].budget++;
894 			if (ch_rate > bigest_rate) {
895 				bigest_rate_ch = i;
896 				bigest_rate = ch_rate;
897 			}
898 
899 			ch_weight = (ch_rate * 100) / max_rate;
900 			if (!ch_weight)
901 				ch_weight++;
902 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
903 		} else {
904 			txv[i].budget = ch_budget;
905 			if (!bigest_rate_ch)
906 				bigest_rate_ch = i;
907 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
908 		}
909 
910 		budget -= txv[i].budget;
911 	}
912 
913 	if (budget)
914 		txv[bigest_rate_ch].budget += budget;
915 
916 	/* split rx budget */
917 	budget = CPSW_POLL_WEIGHT;
918 	ch_budget = budget / cpsw->rx_ch_num;
919 	for (i = 0; i < cpsw->rx_ch_num; i++) {
920 		cpsw->rxv[i].budget = ch_budget;
921 		budget -= ch_budget;
922 	}
923 
924 	if (budget)
925 		cpsw->rxv[0].budget += budget;
926 }
927 
928 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
929 {
930 	struct cpsw_common *cpsw = dev_id;
931 
932 	writel(0, &cpsw->wr_regs->tx_en);
933 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
934 
935 	if (cpsw->quirk_irq) {
936 		disable_irq_nosync(cpsw->irqs_table[1]);
937 		cpsw->tx_irq_disabled = true;
938 	}
939 
940 	napi_schedule(&cpsw->napi_tx);
941 	return IRQ_HANDLED;
942 }
943 
944 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
945 {
946 	struct cpsw_common *cpsw = dev_id;
947 
948 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
949 	writel(0, &cpsw->wr_regs->rx_en);
950 
951 	if (cpsw->quirk_irq) {
952 		disable_irq_nosync(cpsw->irqs_table[0]);
953 		cpsw->rx_irq_disabled = true;
954 	}
955 
956 	napi_schedule(&cpsw->napi_rx);
957 	return IRQ_HANDLED;
958 }
959 
960 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
961 {
962 	u32			ch_map;
963 	int			num_tx, cur_budget, ch;
964 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
965 	struct cpsw_vector	*txv;
966 
967 	/* process every unprocessed channel */
968 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
969 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
970 		if (!(ch_map & 0x01))
971 			continue;
972 
973 		txv = &cpsw->txv[ch];
974 		if (unlikely(txv->budget > budget - num_tx))
975 			cur_budget = budget - num_tx;
976 		else
977 			cur_budget = txv->budget;
978 
979 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
980 		if (num_tx >= budget)
981 			break;
982 	}
983 
984 	if (num_tx < budget) {
985 		napi_complete(napi_tx);
986 		writel(0xff, &cpsw->wr_regs->tx_en);
987 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
988 			cpsw->tx_irq_disabled = false;
989 			enable_irq(cpsw->irqs_table[1]);
990 		}
991 	}
992 
993 	return num_tx;
994 }
995 
996 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
997 {
998 	u32			ch_map;
999 	int			num_rx, cur_budget, ch;
1000 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1001 	struct cpsw_vector	*rxv;
1002 
1003 	/* process every unprocessed channel */
1004 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1005 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1006 		if (!(ch_map & 0x01))
1007 			continue;
1008 
1009 		rxv = &cpsw->rxv[ch];
1010 		if (unlikely(rxv->budget > budget - num_rx))
1011 			cur_budget = budget - num_rx;
1012 		else
1013 			cur_budget = rxv->budget;
1014 
1015 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1016 		if (num_rx >= budget)
1017 			break;
1018 	}
1019 
1020 	if (num_rx < budget) {
1021 		napi_complete_done(napi_rx, num_rx);
1022 		writel(0xff, &cpsw->wr_regs->rx_en);
1023 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
1024 			cpsw->rx_irq_disabled = false;
1025 			enable_irq(cpsw->irqs_table[0]);
1026 		}
1027 	}
1028 
1029 	return num_rx;
1030 }
1031 
1032 static inline void soft_reset(const char *module, void __iomem *reg)
1033 {
1034 	unsigned long timeout = jiffies + HZ;
1035 
1036 	writel_relaxed(1, reg);
1037 	do {
1038 		cpu_relax();
1039 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1040 
1041 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1042 }
1043 
1044 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1045 			       struct cpsw_priv *priv)
1046 {
1047 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1048 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1049 }
1050 
1051 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1052 			      struct cpsw_priv *priv, bool *link)
1053 {
1054 	struct phy_device	*phy = slave->phy;
1055 	u32			mac_control = 0;
1056 	u32			slave_port;
1057 	struct cpsw_common *cpsw = priv->cpsw;
1058 
1059 	if (!phy)
1060 		return;
1061 
1062 	slave_port = cpsw_get_slave_port(slave->slave_num);
1063 
1064 	if (phy->link) {
1065 		mac_control = cpsw->data.mac_control;
1066 
1067 		/* enable forwarding */
1068 		cpsw_ale_control_set(cpsw->ale, slave_port,
1069 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1070 
1071 		if (phy->speed == 1000)
1072 			mac_control |= BIT(7);	/* GIGABITEN	*/
1073 		if (phy->duplex)
1074 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1075 
1076 		/* set speed_in input in case RMII mode is used in 100Mbps */
1077 		if (phy->speed == 100)
1078 			mac_control |= BIT(15);
1079 		/* in band mode only works in 10Mbps RGMII mode */
1080 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1081 			mac_control |= BIT(18); /* In Band mode */
1082 
1083 		if (priv->rx_pause)
1084 			mac_control |= BIT(3);
1085 
1086 		if (priv->tx_pause)
1087 			mac_control |= BIT(4);
1088 
1089 		*link = true;
1090 	} else {
1091 		mac_control = 0;
1092 		/* disable forwarding */
1093 		cpsw_ale_control_set(cpsw->ale, slave_port,
1094 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1095 	}
1096 
1097 	if (mac_control != slave->mac_control) {
1098 		phy_print_status(phy);
1099 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1100 	}
1101 
1102 	slave->mac_control = mac_control;
1103 }
1104 
1105 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1106 {
1107 	int i, speed;
1108 
1109 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1110 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1111 			speed += cpsw->slaves[i].phy->speed;
1112 
1113 	return speed;
1114 }
1115 
1116 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1117 {
1118 	int i, rlim_ch_num;
1119 	int speed, ch_rate;
1120 
1121 	/* re-split resources only in case speed was changed */
1122 	speed = cpsw_get_common_speed(cpsw);
1123 	if (speed == cpsw->speed || !speed)
1124 		return 0;
1125 
1126 	cpsw->speed = speed;
1127 
1128 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1129 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1130 		if (!ch_rate)
1131 			break;
1132 
1133 		rlim_ch_num++;
1134 	}
1135 
1136 	/* cases not dependent on speed */
1137 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1138 		return 0;
1139 
1140 	return 1;
1141 }
1142 
1143 static void cpsw_adjust_link(struct net_device *ndev)
1144 {
1145 	struct cpsw_priv	*priv = netdev_priv(ndev);
1146 	struct cpsw_common	*cpsw = priv->cpsw;
1147 	bool			link = false;
1148 
1149 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1150 
1151 	if (link) {
1152 		if (cpsw_need_resplit(cpsw))
1153 			cpsw_split_res(ndev);
1154 
1155 		netif_carrier_on(ndev);
1156 		if (netif_running(ndev))
1157 			netif_tx_wake_all_queues(ndev);
1158 	} else {
1159 		netif_carrier_off(ndev);
1160 		netif_tx_stop_all_queues(ndev);
1161 	}
1162 }
1163 
1164 static int cpsw_get_coalesce(struct net_device *ndev,
1165 				struct ethtool_coalesce *coal)
1166 {
1167 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1168 
1169 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1170 	return 0;
1171 }
1172 
1173 static int cpsw_set_coalesce(struct net_device *ndev,
1174 				struct ethtool_coalesce *coal)
1175 {
1176 	struct cpsw_priv *priv = netdev_priv(ndev);
1177 	u32 int_ctrl;
1178 	u32 num_interrupts = 0;
1179 	u32 prescale = 0;
1180 	u32 addnl_dvdr = 1;
1181 	u32 coal_intvl = 0;
1182 	struct cpsw_common *cpsw = priv->cpsw;
1183 
1184 	coal_intvl = coal->rx_coalesce_usecs;
1185 
1186 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1187 	prescale = cpsw->bus_freq_mhz * 4;
1188 
1189 	if (!coal->rx_coalesce_usecs) {
1190 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1191 		goto update_return;
1192 	}
1193 
1194 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1195 		coal_intvl = CPSW_CMINTMIN_INTVL;
1196 
1197 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1198 		/* Interrupt pacer works with 4us Pulse, we can
1199 		 * throttle further by dilating the 4us pulse.
1200 		 */
1201 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1202 
1203 		if (addnl_dvdr > 1) {
1204 			prescale *= addnl_dvdr;
1205 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1206 				coal_intvl = (CPSW_CMINTMAX_INTVL
1207 						* addnl_dvdr);
1208 		} else {
1209 			addnl_dvdr = 1;
1210 			coal_intvl = CPSW_CMINTMAX_INTVL;
1211 		}
1212 	}
1213 
1214 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1215 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1216 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1217 
1218 	int_ctrl |= CPSW_INTPACEEN;
1219 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1220 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1221 
1222 update_return:
1223 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1224 
1225 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1226 	cpsw->coal_intvl = coal_intvl;
1227 
1228 	return 0;
1229 }
1230 
1231 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1232 {
1233 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1234 
1235 	switch (sset) {
1236 	case ETH_SS_STATS:
1237 		return (CPSW_STATS_COMMON_LEN +
1238 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1239 		       CPSW_STATS_CH_LEN);
1240 	default:
1241 		return -EOPNOTSUPP;
1242 	}
1243 }
1244 
1245 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1246 {
1247 	int ch_stats_len;
1248 	int line;
1249 	int i;
1250 
1251 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1252 	for (i = 0; i < ch_stats_len; i++) {
1253 		line = i % CPSW_STATS_CH_LEN;
1254 		snprintf(*p, ETH_GSTRING_LEN,
1255 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1256 			 i / CPSW_STATS_CH_LEN,
1257 			 cpsw_gstrings_ch_stats[line].stat_string);
1258 		*p += ETH_GSTRING_LEN;
1259 	}
1260 }
1261 
1262 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1263 {
1264 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1265 	u8 *p = data;
1266 	int i;
1267 
1268 	switch (stringset) {
1269 	case ETH_SS_STATS:
1270 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1271 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1272 			       ETH_GSTRING_LEN);
1273 			p += ETH_GSTRING_LEN;
1274 		}
1275 
1276 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1277 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1278 		break;
1279 	}
1280 }
1281 
1282 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1283 				    struct ethtool_stats *stats, u64 *data)
1284 {
1285 	u8 *p;
1286 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1287 	struct cpdma_chan_stats ch_stats;
1288 	int i, l, ch;
1289 
1290 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1291 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1292 		data[l] = readl(cpsw->hw_stats +
1293 				cpsw_gstrings_stats[l].stat_offset);
1294 
1295 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1296 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1297 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1298 			p = (u8 *)&ch_stats +
1299 				cpsw_gstrings_ch_stats[i].stat_offset;
1300 			data[l] = *(u32 *)p;
1301 		}
1302 	}
1303 
1304 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1305 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1306 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1307 			p = (u8 *)&ch_stats +
1308 				cpsw_gstrings_ch_stats[i].stat_offset;
1309 			data[l] = *(u32 *)p;
1310 		}
1311 	}
1312 }
1313 
1314 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1315 					struct sk_buff *skb,
1316 					struct cpdma_chan *txch)
1317 {
1318 	struct cpsw_common *cpsw = priv->cpsw;
1319 
1320 	skb_tx_timestamp(skb);
1321 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1322 				 priv->emac_port + cpsw->data.dual_emac);
1323 }
1324 
1325 static inline void cpsw_add_dual_emac_def_ale_entries(
1326 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1327 		u32 slave_port)
1328 {
1329 	struct cpsw_common *cpsw = priv->cpsw;
1330 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1331 
1332 	if (cpsw->version == CPSW_VERSION_1)
1333 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1334 	else
1335 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1336 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1337 			  port_mask, port_mask, 0);
1338 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1339 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1340 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1341 			   HOST_PORT_NUM, ALE_VLAN |
1342 			   ALE_SECURE, slave->port_vlan);
1343 	cpsw_ale_control_set(cpsw->ale, slave_port,
1344 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1345 }
1346 
1347 static void soft_reset_slave(struct cpsw_slave *slave)
1348 {
1349 	char name[32];
1350 
1351 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1352 	soft_reset(name, &slave->sliver->soft_reset);
1353 }
1354 
1355 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1356 {
1357 	u32 slave_port;
1358 	struct phy_device *phy;
1359 	struct cpsw_common *cpsw = priv->cpsw;
1360 
1361 	soft_reset_slave(slave);
1362 
1363 	/* setup priority mapping */
1364 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1365 
1366 	switch (cpsw->version) {
1367 	case CPSW_VERSION_1:
1368 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1369 		/* Increase RX FIFO size to 5 for supporting fullduplex
1370 		 * flow control mode
1371 		 */
1372 		slave_write(slave,
1373 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1374 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1375 		break;
1376 	case CPSW_VERSION_2:
1377 	case CPSW_VERSION_3:
1378 	case CPSW_VERSION_4:
1379 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1380 		/* Increase RX FIFO size to 5 for supporting fullduplex
1381 		 * flow control mode
1382 		 */
1383 		slave_write(slave,
1384 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1385 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1386 		break;
1387 	}
1388 
1389 	/* setup max packet size, and mac address */
1390 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1391 	cpsw_set_slave_mac(slave, priv);
1392 
1393 	slave->mac_control = 0;	/* no link yet */
1394 
1395 	slave_port = cpsw_get_slave_port(slave->slave_num);
1396 
1397 	if (cpsw->data.dual_emac)
1398 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1399 	else
1400 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1401 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1402 
1403 	if (slave->data->phy_node) {
1404 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1405 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1406 		if (!phy) {
1407 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1408 				slave->data->phy_node,
1409 				slave->slave_num);
1410 			return;
1411 		}
1412 	} else {
1413 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1414 				 &cpsw_adjust_link, slave->data->phy_if);
1415 		if (IS_ERR(phy)) {
1416 			dev_err(priv->dev,
1417 				"phy \"%s\" not found on slave %d, err %ld\n",
1418 				slave->data->phy_id, slave->slave_num,
1419 				PTR_ERR(phy));
1420 			return;
1421 		}
1422 	}
1423 
1424 	slave->phy = phy;
1425 
1426 	phy_attached_info(slave->phy);
1427 
1428 	phy_start(slave->phy);
1429 
1430 	/* Configure GMII_SEL register */
1431 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1432 }
1433 
1434 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1435 {
1436 	struct cpsw_common *cpsw = priv->cpsw;
1437 	const int vlan = cpsw->data.default_vlan;
1438 	u32 reg;
1439 	int i;
1440 	int unreg_mcast_mask;
1441 
1442 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1443 	       CPSW2_PORT_VLAN;
1444 
1445 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1446 
1447 	for (i = 0; i < cpsw->data.slaves; i++)
1448 		slave_write(cpsw->slaves + i, vlan, reg);
1449 
1450 	if (priv->ndev->flags & IFF_ALLMULTI)
1451 		unreg_mcast_mask = ALE_ALL_PORTS;
1452 	else
1453 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1454 
1455 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1456 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1457 			  unreg_mcast_mask);
1458 }
1459 
1460 static void cpsw_init_host_port(struct cpsw_priv *priv)
1461 {
1462 	u32 fifo_mode;
1463 	u32 control_reg;
1464 	struct cpsw_common *cpsw = priv->cpsw;
1465 
1466 	/* soft reset the controller and initialize ale */
1467 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1468 	cpsw_ale_start(cpsw->ale);
1469 
1470 	/* switch to vlan unaware mode */
1471 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1472 			     CPSW_ALE_VLAN_AWARE);
1473 	control_reg = readl(&cpsw->regs->control);
1474 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1475 	writel(control_reg, &cpsw->regs->control);
1476 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1477 		     CPSW_FIFO_NORMAL_MODE;
1478 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1479 
1480 	/* setup host port priority mapping */
1481 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1482 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1483 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1484 
1485 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1486 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1487 
1488 	if (!cpsw->data.dual_emac) {
1489 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1490 				   0, 0);
1491 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1492 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1493 	}
1494 }
1495 
1496 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1497 {
1498 	struct cpsw_common *cpsw = priv->cpsw;
1499 	struct sk_buff *skb;
1500 	int ch_buf_num;
1501 	int ch, i, ret;
1502 
1503 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1504 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1505 		for (i = 0; i < ch_buf_num; i++) {
1506 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1507 							  cpsw->rx_packet_max,
1508 							  GFP_KERNEL);
1509 			if (!skb) {
1510 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1511 				return -ENOMEM;
1512 			}
1513 
1514 			skb_set_queue_mapping(skb, ch);
1515 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1516 						skb->data, skb_tailroom(skb),
1517 						0);
1518 			if (ret < 0) {
1519 				cpsw_err(priv, ifup,
1520 					 "cannot submit skb to channel %d rx, error %d\n",
1521 					 ch, ret);
1522 				kfree_skb(skb);
1523 				return ret;
1524 			}
1525 			kmemleak_not_leak(skb);
1526 		}
1527 
1528 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1529 			  ch, ch_buf_num);
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1536 {
1537 	u32 slave_port;
1538 
1539 	slave_port = cpsw_get_slave_port(slave->slave_num);
1540 
1541 	if (!slave->phy)
1542 		return;
1543 	phy_stop(slave->phy);
1544 	phy_disconnect(slave->phy);
1545 	slave->phy = NULL;
1546 	cpsw_ale_control_set(cpsw->ale, slave_port,
1547 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1548 	soft_reset_slave(slave);
1549 }
1550 
1551 static int cpsw_ndo_open(struct net_device *ndev)
1552 {
1553 	struct cpsw_priv *priv = netdev_priv(ndev);
1554 	struct cpsw_common *cpsw = priv->cpsw;
1555 	int ret;
1556 	u32 reg;
1557 
1558 	ret = pm_runtime_get_sync(cpsw->dev);
1559 	if (ret < 0) {
1560 		pm_runtime_put_noidle(cpsw->dev);
1561 		return ret;
1562 	}
1563 
1564 	netif_carrier_off(ndev);
1565 
1566 	/* Notify the stack of the actual queue counts. */
1567 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1568 	if (ret) {
1569 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1570 		goto err_cleanup;
1571 	}
1572 
1573 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1574 	if (ret) {
1575 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1576 		goto err_cleanup;
1577 	}
1578 
1579 	reg = cpsw->version;
1580 
1581 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1582 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1583 		 CPSW_RTL_VERSION(reg));
1584 
1585 	/* Initialize host and slave ports */
1586 	if (!cpsw->usage_count)
1587 		cpsw_init_host_port(priv);
1588 	for_each_slave(priv, cpsw_slave_open, priv);
1589 
1590 	/* Add default VLAN */
1591 	if (!cpsw->data.dual_emac)
1592 		cpsw_add_default_vlan(priv);
1593 	else
1594 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1595 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1596 
1597 	/* initialize shared resources for every ndev */
1598 	if (!cpsw->usage_count) {
1599 		/* disable priority elevation */
1600 		writel_relaxed(0, &cpsw->regs->ptype);
1601 
1602 		/* enable statistics collection only on all ports */
1603 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1604 
1605 		/* Enable internal fifo flow control */
1606 		writel(0x7, &cpsw->regs->flow_control);
1607 
1608 		napi_enable(&cpsw->napi_rx);
1609 		napi_enable(&cpsw->napi_tx);
1610 
1611 		if (cpsw->tx_irq_disabled) {
1612 			cpsw->tx_irq_disabled = false;
1613 			enable_irq(cpsw->irqs_table[1]);
1614 		}
1615 
1616 		if (cpsw->rx_irq_disabled) {
1617 			cpsw->rx_irq_disabled = false;
1618 			enable_irq(cpsw->irqs_table[0]);
1619 		}
1620 
1621 		ret = cpsw_fill_rx_channels(priv);
1622 		if (ret < 0)
1623 			goto err_cleanup;
1624 
1625 		if (cpts_register(cpsw->cpts))
1626 			dev_err(priv->dev, "error registering cpts device\n");
1627 
1628 	}
1629 
1630 	/* Enable Interrupt pacing if configured */
1631 	if (cpsw->coal_intvl != 0) {
1632 		struct ethtool_coalesce coal;
1633 
1634 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1635 		cpsw_set_coalesce(ndev, &coal);
1636 	}
1637 
1638 	cpdma_ctlr_start(cpsw->dma);
1639 	cpsw_intr_enable(cpsw);
1640 	cpsw->usage_count++;
1641 
1642 	return 0;
1643 
1644 err_cleanup:
1645 	cpdma_ctlr_stop(cpsw->dma);
1646 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1647 	pm_runtime_put_sync(cpsw->dev);
1648 	netif_carrier_off(priv->ndev);
1649 	return ret;
1650 }
1651 
1652 static int cpsw_ndo_stop(struct net_device *ndev)
1653 {
1654 	struct cpsw_priv *priv = netdev_priv(ndev);
1655 	struct cpsw_common *cpsw = priv->cpsw;
1656 
1657 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1658 	netif_tx_stop_all_queues(priv->ndev);
1659 	netif_carrier_off(priv->ndev);
1660 
1661 	if (cpsw->usage_count <= 1) {
1662 		napi_disable(&cpsw->napi_rx);
1663 		napi_disable(&cpsw->napi_tx);
1664 		cpts_unregister(cpsw->cpts);
1665 		cpsw_intr_disable(cpsw);
1666 		cpdma_ctlr_stop(cpsw->dma);
1667 		cpsw_ale_stop(cpsw->ale);
1668 	}
1669 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1670 
1671 	if (cpsw_need_resplit(cpsw))
1672 		cpsw_split_res(ndev);
1673 
1674 	cpsw->usage_count--;
1675 	pm_runtime_put_sync(cpsw->dev);
1676 	return 0;
1677 }
1678 
1679 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1680 				       struct net_device *ndev)
1681 {
1682 	struct cpsw_priv *priv = netdev_priv(ndev);
1683 	struct cpsw_common *cpsw = priv->cpsw;
1684 	struct cpts *cpts = cpsw->cpts;
1685 	struct netdev_queue *txq;
1686 	struct cpdma_chan *txch;
1687 	int ret, q_idx;
1688 
1689 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1690 		cpsw_err(priv, tx_err, "packet pad failed\n");
1691 		ndev->stats.tx_dropped++;
1692 		return NET_XMIT_DROP;
1693 	}
1694 
1695 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1696 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1697 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1698 
1699 	q_idx = skb_get_queue_mapping(skb);
1700 	if (q_idx >= cpsw->tx_ch_num)
1701 		q_idx = q_idx % cpsw->tx_ch_num;
1702 
1703 	txch = cpsw->txv[q_idx].ch;
1704 	txq = netdev_get_tx_queue(ndev, q_idx);
1705 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1706 	if (unlikely(ret != 0)) {
1707 		cpsw_err(priv, tx_err, "desc submit failed\n");
1708 		goto fail;
1709 	}
1710 
1711 	/* If there is no more tx desc left free then we need to
1712 	 * tell the kernel to stop sending us tx frames.
1713 	 */
1714 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1715 		netif_tx_stop_queue(txq);
1716 
1717 		/* Barrier, so that stop_queue visible to other cpus */
1718 		smp_mb__after_atomic();
1719 
1720 		if (cpdma_check_free_tx_desc(txch))
1721 			netif_tx_wake_queue(txq);
1722 	}
1723 
1724 	return NETDEV_TX_OK;
1725 fail:
1726 	ndev->stats.tx_dropped++;
1727 	netif_tx_stop_queue(txq);
1728 
1729 	/* Barrier, so that stop_queue visible to other cpus */
1730 	smp_mb__after_atomic();
1731 
1732 	if (cpdma_check_free_tx_desc(txch))
1733 		netif_tx_wake_queue(txq);
1734 
1735 	return NETDEV_TX_BUSY;
1736 }
1737 
1738 #if IS_ENABLED(CONFIG_TI_CPTS)
1739 
1740 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1741 {
1742 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1743 	u32 ts_en, seq_id;
1744 
1745 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1746 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1747 		slave_write(slave, 0, CPSW1_TS_CTL);
1748 		return;
1749 	}
1750 
1751 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1752 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1753 
1754 	if (cpts_is_tx_enabled(cpsw->cpts))
1755 		ts_en |= CPSW_V1_TS_TX_EN;
1756 
1757 	if (cpts_is_rx_enabled(cpsw->cpts))
1758 		ts_en |= CPSW_V1_TS_RX_EN;
1759 
1760 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1761 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1762 }
1763 
1764 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1765 {
1766 	struct cpsw_slave *slave;
1767 	struct cpsw_common *cpsw = priv->cpsw;
1768 	u32 ctrl, mtype;
1769 
1770 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1771 
1772 	ctrl = slave_read(slave, CPSW2_CONTROL);
1773 	switch (cpsw->version) {
1774 	case CPSW_VERSION_2:
1775 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1776 
1777 		if (cpts_is_tx_enabled(cpsw->cpts))
1778 			ctrl |= CTRL_V2_TX_TS_BITS;
1779 
1780 		if (cpts_is_rx_enabled(cpsw->cpts))
1781 			ctrl |= CTRL_V2_RX_TS_BITS;
1782 		break;
1783 	case CPSW_VERSION_3:
1784 	default:
1785 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1786 
1787 		if (cpts_is_tx_enabled(cpsw->cpts))
1788 			ctrl |= CTRL_V3_TX_TS_BITS;
1789 
1790 		if (cpts_is_rx_enabled(cpsw->cpts))
1791 			ctrl |= CTRL_V3_RX_TS_BITS;
1792 		break;
1793 	}
1794 
1795 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1796 
1797 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1798 	slave_write(slave, ctrl, CPSW2_CONTROL);
1799 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1800 }
1801 
1802 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1803 {
1804 	struct cpsw_priv *priv = netdev_priv(dev);
1805 	struct hwtstamp_config cfg;
1806 	struct cpsw_common *cpsw = priv->cpsw;
1807 	struct cpts *cpts = cpsw->cpts;
1808 
1809 	if (cpsw->version != CPSW_VERSION_1 &&
1810 	    cpsw->version != CPSW_VERSION_2 &&
1811 	    cpsw->version != CPSW_VERSION_3)
1812 		return -EOPNOTSUPP;
1813 
1814 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1815 		return -EFAULT;
1816 
1817 	/* reserved for future extensions */
1818 	if (cfg.flags)
1819 		return -EINVAL;
1820 
1821 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1822 		return -ERANGE;
1823 
1824 	switch (cfg.rx_filter) {
1825 	case HWTSTAMP_FILTER_NONE:
1826 		cpts_rx_enable(cpts, 0);
1827 		break;
1828 	case HWTSTAMP_FILTER_ALL:
1829 	case HWTSTAMP_FILTER_NTP_ALL:
1830 		return -ERANGE;
1831 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1832 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1833 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1834 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1835 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1836 		break;
1837 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1838 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1839 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1840 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1841 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1842 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1843 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1844 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1845 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1846 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1847 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1848 		break;
1849 	default:
1850 		return -ERANGE;
1851 	}
1852 
1853 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1854 
1855 	switch (cpsw->version) {
1856 	case CPSW_VERSION_1:
1857 		cpsw_hwtstamp_v1(cpsw);
1858 		break;
1859 	case CPSW_VERSION_2:
1860 	case CPSW_VERSION_3:
1861 		cpsw_hwtstamp_v2(priv);
1862 		break;
1863 	default:
1864 		WARN_ON(1);
1865 	}
1866 
1867 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1868 }
1869 
1870 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1871 {
1872 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1873 	struct cpts *cpts = cpsw->cpts;
1874 	struct hwtstamp_config cfg;
1875 
1876 	if (cpsw->version != CPSW_VERSION_1 &&
1877 	    cpsw->version != CPSW_VERSION_2 &&
1878 	    cpsw->version != CPSW_VERSION_3)
1879 		return -EOPNOTSUPP;
1880 
1881 	cfg.flags = 0;
1882 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1883 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1884 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1885 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1886 
1887 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1888 }
1889 #else
1890 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1891 {
1892 	return -EOPNOTSUPP;
1893 }
1894 
1895 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1896 {
1897 	return -EOPNOTSUPP;
1898 }
1899 #endif /*CONFIG_TI_CPTS*/
1900 
1901 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1902 {
1903 	struct cpsw_priv *priv = netdev_priv(dev);
1904 	struct cpsw_common *cpsw = priv->cpsw;
1905 	int slave_no = cpsw_slave_index(cpsw, priv);
1906 
1907 	if (!netif_running(dev))
1908 		return -EINVAL;
1909 
1910 	switch (cmd) {
1911 	case SIOCSHWTSTAMP:
1912 		return cpsw_hwtstamp_set(dev, req);
1913 	case SIOCGHWTSTAMP:
1914 		return cpsw_hwtstamp_get(dev, req);
1915 	}
1916 
1917 	if (!cpsw->slaves[slave_no].phy)
1918 		return -EOPNOTSUPP;
1919 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1920 }
1921 
1922 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1923 {
1924 	struct cpsw_priv *priv = netdev_priv(ndev);
1925 	struct cpsw_common *cpsw = priv->cpsw;
1926 	int ch;
1927 
1928 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1929 	ndev->stats.tx_errors++;
1930 	cpsw_intr_disable(cpsw);
1931 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1932 		cpdma_chan_stop(cpsw->txv[ch].ch);
1933 		cpdma_chan_start(cpsw->txv[ch].ch);
1934 	}
1935 
1936 	cpsw_intr_enable(cpsw);
1937 	netif_trans_update(ndev);
1938 	netif_tx_wake_all_queues(ndev);
1939 }
1940 
1941 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1942 {
1943 	struct cpsw_priv *priv = netdev_priv(ndev);
1944 	struct sockaddr *addr = (struct sockaddr *)p;
1945 	struct cpsw_common *cpsw = priv->cpsw;
1946 	int flags = 0;
1947 	u16 vid = 0;
1948 	int ret;
1949 
1950 	if (!is_valid_ether_addr(addr->sa_data))
1951 		return -EADDRNOTAVAIL;
1952 
1953 	ret = pm_runtime_get_sync(cpsw->dev);
1954 	if (ret < 0) {
1955 		pm_runtime_put_noidle(cpsw->dev);
1956 		return ret;
1957 	}
1958 
1959 	if (cpsw->data.dual_emac) {
1960 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1961 		flags = ALE_VLAN;
1962 	}
1963 
1964 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1965 			   flags, vid);
1966 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1967 			   flags, vid);
1968 
1969 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1970 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1971 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1972 
1973 	pm_runtime_put(cpsw->dev);
1974 
1975 	return 0;
1976 }
1977 
1978 #ifdef CONFIG_NET_POLL_CONTROLLER
1979 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1980 {
1981 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1982 
1983 	cpsw_intr_disable(cpsw);
1984 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1985 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1986 	cpsw_intr_enable(cpsw);
1987 }
1988 #endif
1989 
1990 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1991 				unsigned short vid)
1992 {
1993 	int ret;
1994 	int unreg_mcast_mask = 0;
1995 	u32 port_mask;
1996 	struct cpsw_common *cpsw = priv->cpsw;
1997 
1998 	if (cpsw->data.dual_emac) {
1999 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2000 
2001 		if (priv->ndev->flags & IFF_ALLMULTI)
2002 			unreg_mcast_mask = port_mask;
2003 	} else {
2004 		port_mask = ALE_ALL_PORTS;
2005 
2006 		if (priv->ndev->flags & IFF_ALLMULTI)
2007 			unreg_mcast_mask = ALE_ALL_PORTS;
2008 		else
2009 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2010 	}
2011 
2012 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2013 				unreg_mcast_mask);
2014 	if (ret != 0)
2015 		return ret;
2016 
2017 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2018 				 HOST_PORT_NUM, ALE_VLAN, vid);
2019 	if (ret != 0)
2020 		goto clean_vid;
2021 
2022 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2023 				 port_mask, ALE_VLAN, vid, 0);
2024 	if (ret != 0)
2025 		goto clean_vlan_ucast;
2026 	return 0;
2027 
2028 clean_vlan_ucast:
2029 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2030 			   HOST_PORT_NUM, ALE_VLAN, vid);
2031 clean_vid:
2032 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2033 	return ret;
2034 }
2035 
2036 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2037 				    __be16 proto, u16 vid)
2038 {
2039 	struct cpsw_priv *priv = netdev_priv(ndev);
2040 	struct cpsw_common *cpsw = priv->cpsw;
2041 	int ret;
2042 
2043 	if (vid == cpsw->data.default_vlan)
2044 		return 0;
2045 
2046 	ret = pm_runtime_get_sync(cpsw->dev);
2047 	if (ret < 0) {
2048 		pm_runtime_put_noidle(cpsw->dev);
2049 		return ret;
2050 	}
2051 
2052 	if (cpsw->data.dual_emac) {
2053 		/* In dual EMAC, reserved VLAN id should not be used for
2054 		 * creating VLAN interfaces as this can break the dual
2055 		 * EMAC port separation
2056 		 */
2057 		int i;
2058 
2059 		for (i = 0; i < cpsw->data.slaves; i++) {
2060 			if (vid == cpsw->slaves[i].port_vlan)
2061 				return -EINVAL;
2062 		}
2063 	}
2064 
2065 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2066 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2067 
2068 	pm_runtime_put(cpsw->dev);
2069 	return ret;
2070 }
2071 
2072 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2073 				     __be16 proto, u16 vid)
2074 {
2075 	struct cpsw_priv *priv = netdev_priv(ndev);
2076 	struct cpsw_common *cpsw = priv->cpsw;
2077 	int ret;
2078 
2079 	if (vid == cpsw->data.default_vlan)
2080 		return 0;
2081 
2082 	ret = pm_runtime_get_sync(cpsw->dev);
2083 	if (ret < 0) {
2084 		pm_runtime_put_noidle(cpsw->dev);
2085 		return ret;
2086 	}
2087 
2088 	if (cpsw->data.dual_emac) {
2089 		int i;
2090 
2091 		for (i = 0; i < cpsw->data.slaves; i++) {
2092 			if (vid == cpsw->slaves[i].port_vlan)
2093 				return -EINVAL;
2094 		}
2095 	}
2096 
2097 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2098 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2099 	if (ret != 0)
2100 		return ret;
2101 
2102 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2103 				 HOST_PORT_NUM, ALE_VLAN, vid);
2104 	if (ret != 0)
2105 		return ret;
2106 
2107 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2108 				 0, ALE_VLAN, vid);
2109 	pm_runtime_put(cpsw->dev);
2110 	return ret;
2111 }
2112 
2113 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2114 {
2115 	struct cpsw_priv *priv = netdev_priv(ndev);
2116 	struct cpsw_common *cpsw = priv->cpsw;
2117 	struct cpsw_slave *slave;
2118 	u32 min_rate;
2119 	u32 ch_rate;
2120 	int i, ret;
2121 
2122 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2123 	if (ch_rate == rate)
2124 		return 0;
2125 
2126 	ch_rate = rate * 1000;
2127 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2128 	if ((ch_rate < min_rate && ch_rate)) {
2129 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2130 			min_rate);
2131 		return -EINVAL;
2132 	}
2133 
2134 	if (rate > cpsw->speed) {
2135 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2136 		return -EINVAL;
2137 	}
2138 
2139 	ret = pm_runtime_get_sync(cpsw->dev);
2140 	if (ret < 0) {
2141 		pm_runtime_put_noidle(cpsw->dev);
2142 		return ret;
2143 	}
2144 
2145 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2146 	pm_runtime_put(cpsw->dev);
2147 
2148 	if (ret)
2149 		return ret;
2150 
2151 	/* update rates for slaves tx queues */
2152 	for (i = 0; i < cpsw->data.slaves; i++) {
2153 		slave = &cpsw->slaves[i];
2154 		if (!slave->ndev)
2155 			continue;
2156 
2157 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2158 	}
2159 
2160 	cpsw_split_res(ndev);
2161 	return ret;
2162 }
2163 
2164 static const struct net_device_ops cpsw_netdev_ops = {
2165 	.ndo_open		= cpsw_ndo_open,
2166 	.ndo_stop		= cpsw_ndo_stop,
2167 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2168 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2169 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2170 	.ndo_validate_addr	= eth_validate_addr,
2171 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2172 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2173 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2174 #ifdef CONFIG_NET_POLL_CONTROLLER
2175 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2176 #endif
2177 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2178 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2179 };
2180 
2181 static int cpsw_get_regs_len(struct net_device *ndev)
2182 {
2183 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2184 
2185 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2186 }
2187 
2188 static void cpsw_get_regs(struct net_device *ndev,
2189 			  struct ethtool_regs *regs, void *p)
2190 {
2191 	u32 *reg = p;
2192 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2193 
2194 	/* update CPSW IP version */
2195 	regs->version = cpsw->version;
2196 
2197 	cpsw_ale_dump(cpsw->ale, reg);
2198 }
2199 
2200 static void cpsw_get_drvinfo(struct net_device *ndev,
2201 			     struct ethtool_drvinfo *info)
2202 {
2203 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2204 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2205 
2206 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2207 	strlcpy(info->version, "1.0", sizeof(info->version));
2208 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2209 }
2210 
2211 static u32 cpsw_get_msglevel(struct net_device *ndev)
2212 {
2213 	struct cpsw_priv *priv = netdev_priv(ndev);
2214 	return priv->msg_enable;
2215 }
2216 
2217 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2218 {
2219 	struct cpsw_priv *priv = netdev_priv(ndev);
2220 	priv->msg_enable = value;
2221 }
2222 
2223 #if IS_ENABLED(CONFIG_TI_CPTS)
2224 static int cpsw_get_ts_info(struct net_device *ndev,
2225 			    struct ethtool_ts_info *info)
2226 {
2227 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2228 
2229 	info->so_timestamping =
2230 		SOF_TIMESTAMPING_TX_HARDWARE |
2231 		SOF_TIMESTAMPING_TX_SOFTWARE |
2232 		SOF_TIMESTAMPING_RX_HARDWARE |
2233 		SOF_TIMESTAMPING_RX_SOFTWARE |
2234 		SOF_TIMESTAMPING_SOFTWARE |
2235 		SOF_TIMESTAMPING_RAW_HARDWARE;
2236 	info->phc_index = cpsw->cpts->phc_index;
2237 	info->tx_types =
2238 		(1 << HWTSTAMP_TX_OFF) |
2239 		(1 << HWTSTAMP_TX_ON);
2240 	info->rx_filters =
2241 		(1 << HWTSTAMP_FILTER_NONE) |
2242 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2243 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2244 	return 0;
2245 }
2246 #else
2247 static int cpsw_get_ts_info(struct net_device *ndev,
2248 			    struct ethtool_ts_info *info)
2249 {
2250 	info->so_timestamping =
2251 		SOF_TIMESTAMPING_TX_SOFTWARE |
2252 		SOF_TIMESTAMPING_RX_SOFTWARE |
2253 		SOF_TIMESTAMPING_SOFTWARE;
2254 	info->phc_index = -1;
2255 	info->tx_types = 0;
2256 	info->rx_filters = 0;
2257 	return 0;
2258 }
2259 #endif
2260 
2261 static int cpsw_get_link_ksettings(struct net_device *ndev,
2262 				   struct ethtool_link_ksettings *ecmd)
2263 {
2264 	struct cpsw_priv *priv = netdev_priv(ndev);
2265 	struct cpsw_common *cpsw = priv->cpsw;
2266 	int slave_no = cpsw_slave_index(cpsw, priv);
2267 
2268 	if (!cpsw->slaves[slave_no].phy)
2269 		return -EOPNOTSUPP;
2270 
2271 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2272 	return 0;
2273 }
2274 
2275 static int cpsw_set_link_ksettings(struct net_device *ndev,
2276 				   const struct ethtool_link_ksettings *ecmd)
2277 {
2278 	struct cpsw_priv *priv = netdev_priv(ndev);
2279 	struct cpsw_common *cpsw = priv->cpsw;
2280 	int slave_no = cpsw_slave_index(cpsw, priv);
2281 
2282 	if (cpsw->slaves[slave_no].phy)
2283 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2284 						 ecmd);
2285 	else
2286 		return -EOPNOTSUPP;
2287 }
2288 
2289 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2290 {
2291 	struct cpsw_priv *priv = netdev_priv(ndev);
2292 	struct cpsw_common *cpsw = priv->cpsw;
2293 	int slave_no = cpsw_slave_index(cpsw, priv);
2294 
2295 	wol->supported = 0;
2296 	wol->wolopts = 0;
2297 
2298 	if (cpsw->slaves[slave_no].phy)
2299 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2300 }
2301 
2302 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2303 {
2304 	struct cpsw_priv *priv = netdev_priv(ndev);
2305 	struct cpsw_common *cpsw = priv->cpsw;
2306 	int slave_no = cpsw_slave_index(cpsw, priv);
2307 
2308 	if (cpsw->slaves[slave_no].phy)
2309 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2310 	else
2311 		return -EOPNOTSUPP;
2312 }
2313 
2314 static void cpsw_get_pauseparam(struct net_device *ndev,
2315 				struct ethtool_pauseparam *pause)
2316 {
2317 	struct cpsw_priv *priv = netdev_priv(ndev);
2318 
2319 	pause->autoneg = AUTONEG_DISABLE;
2320 	pause->rx_pause = priv->rx_pause ? true : false;
2321 	pause->tx_pause = priv->tx_pause ? true : false;
2322 }
2323 
2324 static int cpsw_set_pauseparam(struct net_device *ndev,
2325 			       struct ethtool_pauseparam *pause)
2326 {
2327 	struct cpsw_priv *priv = netdev_priv(ndev);
2328 	bool link;
2329 
2330 	priv->rx_pause = pause->rx_pause ? true : false;
2331 	priv->tx_pause = pause->tx_pause ? true : false;
2332 
2333 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2334 	return 0;
2335 }
2336 
2337 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2338 {
2339 	struct cpsw_priv *priv = netdev_priv(ndev);
2340 	struct cpsw_common *cpsw = priv->cpsw;
2341 	int ret;
2342 
2343 	ret = pm_runtime_get_sync(cpsw->dev);
2344 	if (ret < 0) {
2345 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2346 		pm_runtime_put_noidle(cpsw->dev);
2347 	}
2348 
2349 	return ret;
2350 }
2351 
2352 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2353 {
2354 	struct cpsw_priv *priv = netdev_priv(ndev);
2355 	int ret;
2356 
2357 	ret = pm_runtime_put(priv->cpsw->dev);
2358 	if (ret < 0)
2359 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2360 }
2361 
2362 static void cpsw_get_channels(struct net_device *ndev,
2363 			      struct ethtool_channels *ch)
2364 {
2365 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2366 
2367 	ch->max_combined = 0;
2368 	ch->max_rx = CPSW_MAX_QUEUES;
2369 	ch->max_tx = CPSW_MAX_QUEUES;
2370 	ch->max_other = 0;
2371 	ch->other_count = 0;
2372 	ch->rx_count = cpsw->rx_ch_num;
2373 	ch->tx_count = cpsw->tx_ch_num;
2374 	ch->combined_count = 0;
2375 }
2376 
2377 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2378 				  struct ethtool_channels *ch)
2379 {
2380 	if (ch->combined_count)
2381 		return -EINVAL;
2382 
2383 	/* verify we have at least one channel in each direction */
2384 	if (!ch->rx_count || !ch->tx_count)
2385 		return -EINVAL;
2386 
2387 	if (ch->rx_count > cpsw->data.channels ||
2388 	    ch->tx_count > cpsw->data.channels)
2389 		return -EINVAL;
2390 
2391 	return 0;
2392 }
2393 
2394 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2395 {
2396 	struct cpsw_common *cpsw = priv->cpsw;
2397 	void (*handler)(void *, int, int);
2398 	struct netdev_queue *queue;
2399 	struct cpsw_vector *vec;
2400 	int ret, *ch;
2401 
2402 	if (rx) {
2403 		ch = &cpsw->rx_ch_num;
2404 		vec = cpsw->rxv;
2405 		handler = cpsw_rx_handler;
2406 	} else {
2407 		ch = &cpsw->tx_ch_num;
2408 		vec = cpsw->txv;
2409 		handler = cpsw_tx_handler;
2410 	}
2411 
2412 	while (*ch < ch_num) {
2413 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2414 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2415 		queue->tx_maxrate = 0;
2416 
2417 		if (IS_ERR(vec[*ch].ch))
2418 			return PTR_ERR(vec[*ch].ch);
2419 
2420 		if (!vec[*ch].ch)
2421 			return -EINVAL;
2422 
2423 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2424 			  (rx ? "rx" : "tx"));
2425 		(*ch)++;
2426 	}
2427 
2428 	while (*ch > ch_num) {
2429 		(*ch)--;
2430 
2431 		ret = cpdma_chan_destroy(vec[*ch].ch);
2432 		if (ret)
2433 			return ret;
2434 
2435 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2436 			  (rx ? "rx" : "tx"));
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int cpsw_update_channels(struct cpsw_priv *priv,
2443 				struct ethtool_channels *ch)
2444 {
2445 	int ret;
2446 
2447 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2448 	if (ret)
2449 		return ret;
2450 
2451 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2452 	if (ret)
2453 		return ret;
2454 
2455 	return 0;
2456 }
2457 
2458 static void cpsw_suspend_data_pass(struct net_device *ndev)
2459 {
2460 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2461 	struct cpsw_slave *slave;
2462 	int i;
2463 
2464 	/* Disable NAPI scheduling */
2465 	cpsw_intr_disable(cpsw);
2466 
2467 	/* Stop all transmit queues for every network device.
2468 	 * Disable re-using rx descriptors with dormant_on.
2469 	 */
2470 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2471 		if (!(slave->ndev && netif_running(slave->ndev)))
2472 			continue;
2473 
2474 		netif_tx_stop_all_queues(slave->ndev);
2475 		netif_dormant_on(slave->ndev);
2476 	}
2477 
2478 	/* Handle rest of tx packets and stop cpdma channels */
2479 	cpdma_ctlr_stop(cpsw->dma);
2480 }
2481 
2482 static int cpsw_resume_data_pass(struct net_device *ndev)
2483 {
2484 	struct cpsw_priv *priv = netdev_priv(ndev);
2485 	struct cpsw_common *cpsw = priv->cpsw;
2486 	struct cpsw_slave *slave;
2487 	int i, ret;
2488 
2489 	/* Allow rx packets handling */
2490 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2491 		if (slave->ndev && netif_running(slave->ndev))
2492 			netif_dormant_off(slave->ndev);
2493 
2494 	/* After this receive is started */
2495 	if (cpsw->usage_count) {
2496 		ret = cpsw_fill_rx_channels(priv);
2497 		if (ret)
2498 			return ret;
2499 
2500 		cpdma_ctlr_start(cpsw->dma);
2501 		cpsw_intr_enable(cpsw);
2502 	}
2503 
2504 	/* Resume transmit for every affected interface */
2505 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2506 		if (slave->ndev && netif_running(slave->ndev))
2507 			netif_tx_start_all_queues(slave->ndev);
2508 
2509 	return 0;
2510 }
2511 
2512 static int cpsw_set_channels(struct net_device *ndev,
2513 			     struct ethtool_channels *chs)
2514 {
2515 	struct cpsw_priv *priv = netdev_priv(ndev);
2516 	struct cpsw_common *cpsw = priv->cpsw;
2517 	struct cpsw_slave *slave;
2518 	int i, ret;
2519 
2520 	ret = cpsw_check_ch_settings(cpsw, chs);
2521 	if (ret < 0)
2522 		return ret;
2523 
2524 	cpsw_suspend_data_pass(ndev);
2525 	ret = cpsw_update_channels(priv, chs);
2526 	if (ret)
2527 		goto err;
2528 
2529 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2530 		if (!(slave->ndev && netif_running(slave->ndev)))
2531 			continue;
2532 
2533 		/* Inform stack about new count of queues */
2534 		ret = netif_set_real_num_tx_queues(slave->ndev,
2535 						   cpsw->tx_ch_num);
2536 		if (ret) {
2537 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2538 			goto err;
2539 		}
2540 
2541 		ret = netif_set_real_num_rx_queues(slave->ndev,
2542 						   cpsw->rx_ch_num);
2543 		if (ret) {
2544 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2545 			goto err;
2546 		}
2547 	}
2548 
2549 	if (cpsw->usage_count)
2550 		cpsw_split_res(ndev);
2551 
2552 	ret = cpsw_resume_data_pass(ndev);
2553 	if (!ret)
2554 		return 0;
2555 err:
2556 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2557 	dev_close(ndev);
2558 	return ret;
2559 }
2560 
2561 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2562 {
2563 	struct cpsw_priv *priv = netdev_priv(ndev);
2564 	struct cpsw_common *cpsw = priv->cpsw;
2565 	int slave_no = cpsw_slave_index(cpsw, priv);
2566 
2567 	if (cpsw->slaves[slave_no].phy)
2568 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2569 	else
2570 		return -EOPNOTSUPP;
2571 }
2572 
2573 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2574 {
2575 	struct cpsw_priv *priv = netdev_priv(ndev);
2576 	struct cpsw_common *cpsw = priv->cpsw;
2577 	int slave_no = cpsw_slave_index(cpsw, priv);
2578 
2579 	if (cpsw->slaves[slave_no].phy)
2580 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2581 	else
2582 		return -EOPNOTSUPP;
2583 }
2584 
2585 static int cpsw_nway_reset(struct net_device *ndev)
2586 {
2587 	struct cpsw_priv *priv = netdev_priv(ndev);
2588 	struct cpsw_common *cpsw = priv->cpsw;
2589 	int slave_no = cpsw_slave_index(cpsw, priv);
2590 
2591 	if (cpsw->slaves[slave_no].phy)
2592 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2593 	else
2594 		return -EOPNOTSUPP;
2595 }
2596 
2597 static void cpsw_get_ringparam(struct net_device *ndev,
2598 			       struct ethtool_ringparam *ering)
2599 {
2600 	struct cpsw_priv *priv = netdev_priv(ndev);
2601 	struct cpsw_common *cpsw = priv->cpsw;
2602 
2603 	/* not supported */
2604 	ering->tx_max_pending = 0;
2605 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2606 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2607 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2608 }
2609 
2610 static int cpsw_set_ringparam(struct net_device *ndev,
2611 			      struct ethtool_ringparam *ering)
2612 {
2613 	struct cpsw_priv *priv = netdev_priv(ndev);
2614 	struct cpsw_common *cpsw = priv->cpsw;
2615 	int ret;
2616 
2617 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2618 
2619 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2620 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2621 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2622 		return -EINVAL;
2623 
2624 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2625 		return 0;
2626 
2627 	cpsw_suspend_data_pass(ndev);
2628 
2629 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2630 
2631 	if (cpsw->usage_count)
2632 		cpdma_chan_split_pool(cpsw->dma);
2633 
2634 	ret = cpsw_resume_data_pass(ndev);
2635 	if (!ret)
2636 		return 0;
2637 
2638 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2639 	dev_close(ndev);
2640 	return ret;
2641 }
2642 
2643 static const struct ethtool_ops cpsw_ethtool_ops = {
2644 	.get_drvinfo	= cpsw_get_drvinfo,
2645 	.get_msglevel	= cpsw_get_msglevel,
2646 	.set_msglevel	= cpsw_set_msglevel,
2647 	.get_link	= ethtool_op_get_link,
2648 	.get_ts_info	= cpsw_get_ts_info,
2649 	.get_coalesce	= cpsw_get_coalesce,
2650 	.set_coalesce	= cpsw_set_coalesce,
2651 	.get_sset_count		= cpsw_get_sset_count,
2652 	.get_strings		= cpsw_get_strings,
2653 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2654 	.get_pauseparam		= cpsw_get_pauseparam,
2655 	.set_pauseparam		= cpsw_set_pauseparam,
2656 	.get_wol	= cpsw_get_wol,
2657 	.set_wol	= cpsw_set_wol,
2658 	.get_regs_len	= cpsw_get_regs_len,
2659 	.get_regs	= cpsw_get_regs,
2660 	.begin		= cpsw_ethtool_op_begin,
2661 	.complete	= cpsw_ethtool_op_complete,
2662 	.get_channels	= cpsw_get_channels,
2663 	.set_channels	= cpsw_set_channels,
2664 	.get_link_ksettings	= cpsw_get_link_ksettings,
2665 	.set_link_ksettings	= cpsw_set_link_ksettings,
2666 	.get_eee	= cpsw_get_eee,
2667 	.set_eee	= cpsw_set_eee,
2668 	.nway_reset	= cpsw_nway_reset,
2669 	.get_ringparam = cpsw_get_ringparam,
2670 	.set_ringparam = cpsw_set_ringparam,
2671 };
2672 
2673 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2674 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2675 {
2676 	void __iomem		*regs = cpsw->regs;
2677 	int			slave_num = slave->slave_num;
2678 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2679 
2680 	slave->data	= data;
2681 	slave->regs	= regs + slave_reg_ofs;
2682 	slave->sliver	= regs + sliver_reg_ofs;
2683 	slave->port_vlan = data->dual_emac_res_vlan;
2684 }
2685 
2686 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2687 			 struct platform_device *pdev)
2688 {
2689 	struct device_node *node = pdev->dev.of_node;
2690 	struct device_node *slave_node;
2691 	int i = 0, ret;
2692 	u32 prop;
2693 
2694 	if (!node)
2695 		return -EINVAL;
2696 
2697 	if (of_property_read_u32(node, "slaves", &prop)) {
2698 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2699 		return -EINVAL;
2700 	}
2701 	data->slaves = prop;
2702 
2703 	if (of_property_read_u32(node, "active_slave", &prop)) {
2704 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2705 		return -EINVAL;
2706 	}
2707 	data->active_slave = prop;
2708 
2709 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2710 					* sizeof(struct cpsw_slave_data),
2711 					GFP_KERNEL);
2712 	if (!data->slave_data)
2713 		return -ENOMEM;
2714 
2715 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2716 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2717 		return -EINVAL;
2718 	}
2719 	data->channels = prop;
2720 
2721 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2722 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2723 		return -EINVAL;
2724 	}
2725 	data->ale_entries = prop;
2726 
2727 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2728 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2729 		return -EINVAL;
2730 	}
2731 	data->bd_ram_size = prop;
2732 
2733 	if (of_property_read_u32(node, "mac_control", &prop)) {
2734 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2735 		return -EINVAL;
2736 	}
2737 	data->mac_control = prop;
2738 
2739 	if (of_property_read_bool(node, "dual_emac"))
2740 		data->dual_emac = 1;
2741 
2742 	/*
2743 	 * Populate all the child nodes here...
2744 	 */
2745 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2746 	/* We do not want to force this, as in some cases may not have child */
2747 	if (ret)
2748 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2749 
2750 	for_each_available_child_of_node(node, slave_node) {
2751 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2752 		const void *mac_addr = NULL;
2753 		int lenp;
2754 		const __be32 *parp;
2755 
2756 		/* This is no slave child node, continue */
2757 		if (strcmp(slave_node->name, "slave"))
2758 			continue;
2759 
2760 		slave_data->phy_node = of_parse_phandle(slave_node,
2761 							"phy-handle", 0);
2762 		parp = of_get_property(slave_node, "phy_id", &lenp);
2763 		if (slave_data->phy_node) {
2764 			dev_dbg(&pdev->dev,
2765 				"slave[%d] using phy-handle=\"%pOF\"\n",
2766 				i, slave_data->phy_node);
2767 		} else if (of_phy_is_fixed_link(slave_node)) {
2768 			/* In the case of a fixed PHY, the DT node associated
2769 			 * to the PHY is the Ethernet MAC DT node.
2770 			 */
2771 			ret = of_phy_register_fixed_link(slave_node);
2772 			if (ret) {
2773 				if (ret != -EPROBE_DEFER)
2774 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2775 				return ret;
2776 			}
2777 			slave_data->phy_node = of_node_get(slave_node);
2778 		} else if (parp) {
2779 			u32 phyid;
2780 			struct device_node *mdio_node;
2781 			struct platform_device *mdio;
2782 
2783 			if (lenp != (sizeof(__be32) * 2)) {
2784 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2785 				goto no_phy_slave;
2786 			}
2787 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2788 			phyid = be32_to_cpup(parp+1);
2789 			mdio = of_find_device_by_node(mdio_node);
2790 			of_node_put(mdio_node);
2791 			if (!mdio) {
2792 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2793 				return -EINVAL;
2794 			}
2795 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2796 				 PHY_ID_FMT, mdio->name, phyid);
2797 			put_device(&mdio->dev);
2798 		} else {
2799 			dev_err(&pdev->dev,
2800 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2801 				i);
2802 			goto no_phy_slave;
2803 		}
2804 		slave_data->phy_if = of_get_phy_mode(slave_node);
2805 		if (slave_data->phy_if < 0) {
2806 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2807 				i);
2808 			return slave_data->phy_if;
2809 		}
2810 
2811 no_phy_slave:
2812 		mac_addr = of_get_mac_address(slave_node);
2813 		if (mac_addr) {
2814 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2815 		} else {
2816 			ret = ti_cm_get_macid(&pdev->dev, i,
2817 					      slave_data->mac_addr);
2818 			if (ret)
2819 				return ret;
2820 		}
2821 		if (data->dual_emac) {
2822 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2823 						 &prop)) {
2824 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2825 				slave_data->dual_emac_res_vlan = i+1;
2826 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2827 					slave_data->dual_emac_res_vlan, i);
2828 			} else {
2829 				slave_data->dual_emac_res_vlan = prop;
2830 			}
2831 		}
2832 
2833 		i++;
2834 		if (i == data->slaves)
2835 			break;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static void cpsw_remove_dt(struct platform_device *pdev)
2842 {
2843 	struct net_device *ndev = platform_get_drvdata(pdev);
2844 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2845 	struct cpsw_platform_data *data = &cpsw->data;
2846 	struct device_node *node = pdev->dev.of_node;
2847 	struct device_node *slave_node;
2848 	int i = 0;
2849 
2850 	for_each_available_child_of_node(node, slave_node) {
2851 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2852 
2853 		if (strcmp(slave_node->name, "slave"))
2854 			continue;
2855 
2856 		if (of_phy_is_fixed_link(slave_node))
2857 			of_phy_deregister_fixed_link(slave_node);
2858 
2859 		of_node_put(slave_data->phy_node);
2860 
2861 		i++;
2862 		if (i == data->slaves)
2863 			break;
2864 	}
2865 
2866 	of_platform_depopulate(&pdev->dev);
2867 }
2868 
2869 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2870 {
2871 	struct cpsw_common		*cpsw = priv->cpsw;
2872 	struct cpsw_platform_data	*data = &cpsw->data;
2873 	struct net_device		*ndev;
2874 	struct cpsw_priv		*priv_sl2;
2875 	int ret = 0;
2876 
2877 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2878 	if (!ndev) {
2879 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2880 		return -ENOMEM;
2881 	}
2882 
2883 	priv_sl2 = netdev_priv(ndev);
2884 	priv_sl2->cpsw = cpsw;
2885 	priv_sl2->ndev = ndev;
2886 	priv_sl2->dev  = &ndev->dev;
2887 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2888 
2889 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2890 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2891 			ETH_ALEN);
2892 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2893 			 priv_sl2->mac_addr);
2894 	} else {
2895 		random_ether_addr(priv_sl2->mac_addr);
2896 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2897 			 priv_sl2->mac_addr);
2898 	}
2899 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2900 
2901 	priv_sl2->emac_port = 1;
2902 	cpsw->slaves[1].ndev = ndev;
2903 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2904 
2905 	ndev->netdev_ops = &cpsw_netdev_ops;
2906 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2907 
2908 	/* register the network device */
2909 	SET_NETDEV_DEV(ndev, cpsw->dev);
2910 	ret = register_netdev(ndev);
2911 	if (ret) {
2912 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2913 		free_netdev(ndev);
2914 		ret = -ENODEV;
2915 	}
2916 
2917 	return ret;
2918 }
2919 
2920 #define CPSW_QUIRK_IRQ		BIT(0)
2921 
2922 static const struct platform_device_id cpsw_devtype[] = {
2923 	{
2924 		/* keep it for existing comaptibles */
2925 		.name = "cpsw",
2926 		.driver_data = CPSW_QUIRK_IRQ,
2927 	}, {
2928 		.name = "am335x-cpsw",
2929 		.driver_data = CPSW_QUIRK_IRQ,
2930 	}, {
2931 		.name = "am4372-cpsw",
2932 		.driver_data = 0,
2933 	}, {
2934 		.name = "dra7-cpsw",
2935 		.driver_data = 0,
2936 	}, {
2937 		/* sentinel */
2938 	}
2939 };
2940 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2941 
2942 enum ti_cpsw_type {
2943 	CPSW = 0,
2944 	AM335X_CPSW,
2945 	AM4372_CPSW,
2946 	DRA7_CPSW,
2947 };
2948 
2949 static const struct of_device_id cpsw_of_mtable[] = {
2950 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2951 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2952 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2953 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2954 	{ /* sentinel */ },
2955 };
2956 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2957 
2958 static int cpsw_probe(struct platform_device *pdev)
2959 {
2960 	struct clk			*clk;
2961 	struct cpsw_platform_data	*data;
2962 	struct net_device		*ndev;
2963 	struct cpsw_priv		*priv;
2964 	struct cpdma_params		dma_params;
2965 	struct cpsw_ale_params		ale_params;
2966 	void __iomem			*ss_regs;
2967 	void __iomem			*cpts_regs;
2968 	struct resource			*res, *ss_res;
2969 	const struct of_device_id	*of_id;
2970 	struct gpio_descs		*mode;
2971 	u32 slave_offset, sliver_offset, slave_size;
2972 	struct cpsw_common		*cpsw;
2973 	int ret = 0, i;
2974 	int irq;
2975 
2976 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2977 	if (!cpsw)
2978 		return -ENOMEM;
2979 
2980 	cpsw->dev = &pdev->dev;
2981 
2982 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2983 	if (!ndev) {
2984 		dev_err(&pdev->dev, "error allocating net_device\n");
2985 		return -ENOMEM;
2986 	}
2987 
2988 	platform_set_drvdata(pdev, ndev);
2989 	priv = netdev_priv(ndev);
2990 	priv->cpsw = cpsw;
2991 	priv->ndev = ndev;
2992 	priv->dev  = &ndev->dev;
2993 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2994 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2995 
2996 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2997 	if (IS_ERR(mode)) {
2998 		ret = PTR_ERR(mode);
2999 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3000 		goto clean_ndev_ret;
3001 	}
3002 
3003 	/*
3004 	 * This may be required here for child devices.
3005 	 */
3006 	pm_runtime_enable(&pdev->dev);
3007 
3008 	/* Select default pin state */
3009 	pinctrl_pm_select_default_state(&pdev->dev);
3010 
3011 	/* Need to enable clocks with runtime PM api to access module
3012 	 * registers
3013 	 */
3014 	ret = pm_runtime_get_sync(&pdev->dev);
3015 	if (ret < 0) {
3016 		pm_runtime_put_noidle(&pdev->dev);
3017 		goto clean_runtime_disable_ret;
3018 	}
3019 
3020 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3021 	if (ret)
3022 		goto clean_dt_ret;
3023 
3024 	data = &cpsw->data;
3025 	cpsw->rx_ch_num = 1;
3026 	cpsw->tx_ch_num = 1;
3027 
3028 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3029 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3030 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3031 	} else {
3032 		eth_random_addr(priv->mac_addr);
3033 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3034 	}
3035 
3036 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3037 
3038 	cpsw->slaves = devm_kzalloc(&pdev->dev,
3039 				    sizeof(struct cpsw_slave) * data->slaves,
3040 				    GFP_KERNEL);
3041 	if (!cpsw->slaves) {
3042 		ret = -ENOMEM;
3043 		goto clean_dt_ret;
3044 	}
3045 	for (i = 0; i < data->slaves; i++)
3046 		cpsw->slaves[i].slave_num = i;
3047 
3048 	cpsw->slaves[0].ndev = ndev;
3049 	priv->emac_port = 0;
3050 
3051 	clk = devm_clk_get(&pdev->dev, "fck");
3052 	if (IS_ERR(clk)) {
3053 		dev_err(priv->dev, "fck is not found\n");
3054 		ret = -ENODEV;
3055 		goto clean_dt_ret;
3056 	}
3057 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3058 
3059 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3060 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3061 	if (IS_ERR(ss_regs)) {
3062 		ret = PTR_ERR(ss_regs);
3063 		goto clean_dt_ret;
3064 	}
3065 	cpsw->regs = ss_regs;
3066 
3067 	cpsw->version = readl(&cpsw->regs->id_ver);
3068 
3069 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3070 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3071 	if (IS_ERR(cpsw->wr_regs)) {
3072 		ret = PTR_ERR(cpsw->wr_regs);
3073 		goto clean_dt_ret;
3074 	}
3075 
3076 	memset(&dma_params, 0, sizeof(dma_params));
3077 	memset(&ale_params, 0, sizeof(ale_params));
3078 
3079 	switch (cpsw->version) {
3080 	case CPSW_VERSION_1:
3081 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3082 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3083 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3084 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3085 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3086 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3087 		slave_offset         = CPSW1_SLAVE_OFFSET;
3088 		slave_size           = CPSW1_SLAVE_SIZE;
3089 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3090 		dma_params.desc_mem_phys = 0;
3091 		break;
3092 	case CPSW_VERSION_2:
3093 	case CPSW_VERSION_3:
3094 	case CPSW_VERSION_4:
3095 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3096 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3097 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3098 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3099 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3100 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3101 		slave_offset         = CPSW2_SLAVE_OFFSET;
3102 		slave_size           = CPSW2_SLAVE_SIZE;
3103 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3104 		dma_params.desc_mem_phys =
3105 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3106 		break;
3107 	default:
3108 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3109 		ret = -ENODEV;
3110 		goto clean_dt_ret;
3111 	}
3112 	for (i = 0; i < cpsw->data.slaves; i++) {
3113 		struct cpsw_slave *slave = &cpsw->slaves[i];
3114 
3115 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3116 		slave_offset  += slave_size;
3117 		sliver_offset += SLIVER_SIZE;
3118 	}
3119 
3120 	dma_params.dev		= &pdev->dev;
3121 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3122 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3123 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3124 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3125 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3126 
3127 	dma_params.num_chan		= data->channels;
3128 	dma_params.has_soft_reset	= true;
3129 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3130 	dma_params.desc_mem_size	= data->bd_ram_size;
3131 	dma_params.desc_align		= 16;
3132 	dma_params.has_ext_regs		= true;
3133 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3134 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3135 	dma_params.descs_pool_size	= descs_pool_size;
3136 
3137 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3138 	if (!cpsw->dma) {
3139 		dev_err(priv->dev, "error initializing dma\n");
3140 		ret = -ENOMEM;
3141 		goto clean_dt_ret;
3142 	}
3143 
3144 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3145 	if (IS_ERR(cpsw->txv[0].ch)) {
3146 		dev_err(priv->dev, "error initializing tx dma channel\n");
3147 		ret = PTR_ERR(cpsw->txv[0].ch);
3148 		goto clean_dma_ret;
3149 	}
3150 
3151 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3152 	if (IS_ERR(cpsw->rxv[0].ch)) {
3153 		dev_err(priv->dev, "error initializing rx dma channel\n");
3154 		ret = PTR_ERR(cpsw->rxv[0].ch);
3155 		goto clean_dma_ret;
3156 	}
3157 
3158 	ale_params.dev			= &pdev->dev;
3159 	ale_params.ale_ageout		= ale_ageout;
3160 	ale_params.ale_entries		= data->ale_entries;
3161 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3162 
3163 	cpsw->ale = cpsw_ale_create(&ale_params);
3164 	if (!cpsw->ale) {
3165 		dev_err(priv->dev, "error initializing ale engine\n");
3166 		ret = -ENODEV;
3167 		goto clean_dma_ret;
3168 	}
3169 
3170 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3171 	if (IS_ERR(cpsw->cpts)) {
3172 		ret = PTR_ERR(cpsw->cpts);
3173 		goto clean_dma_ret;
3174 	}
3175 
3176 	ndev->irq = platform_get_irq(pdev, 1);
3177 	if (ndev->irq < 0) {
3178 		dev_err(priv->dev, "error getting irq resource\n");
3179 		ret = ndev->irq;
3180 		goto clean_dma_ret;
3181 	}
3182 
3183 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3184 	if (of_id) {
3185 		pdev->id_entry = of_id->data;
3186 		if (pdev->id_entry->driver_data)
3187 			cpsw->quirk_irq = true;
3188 	}
3189 
3190 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3191 
3192 	ndev->netdev_ops = &cpsw_netdev_ops;
3193 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3194 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3195 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3196 	cpsw_split_res(ndev);
3197 
3198 	/* register the network device */
3199 	SET_NETDEV_DEV(ndev, &pdev->dev);
3200 	ret = register_netdev(ndev);
3201 	if (ret) {
3202 		dev_err(priv->dev, "error registering net device\n");
3203 		ret = -ENODEV;
3204 		goto clean_dma_ret;
3205 	}
3206 
3207 	if (cpsw->data.dual_emac) {
3208 		ret = cpsw_probe_dual_emac(priv);
3209 		if (ret) {
3210 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3211 			goto clean_unregister_netdev_ret;
3212 		}
3213 	}
3214 
3215 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3216 	 * MISC IRQs which are always kept disabled with this driver so
3217 	 * we will not request them.
3218 	 *
3219 	 * If anyone wants to implement support for those, make sure to
3220 	 * first request and append them to irqs_table array.
3221 	 */
3222 
3223 	/* RX IRQ */
3224 	irq = platform_get_irq(pdev, 1);
3225 	if (irq < 0) {
3226 		ret = irq;
3227 		goto clean_dma_ret;
3228 	}
3229 
3230 	cpsw->irqs_table[0] = irq;
3231 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3232 			       0, dev_name(&pdev->dev), cpsw);
3233 	if (ret < 0) {
3234 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3235 		goto clean_dma_ret;
3236 	}
3237 
3238 	/* TX IRQ */
3239 	irq = platform_get_irq(pdev, 2);
3240 	if (irq < 0) {
3241 		ret = irq;
3242 		goto clean_dma_ret;
3243 	}
3244 
3245 	cpsw->irqs_table[1] = irq;
3246 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3247 			       0, dev_name(&pdev->dev), cpsw);
3248 	if (ret < 0) {
3249 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3250 		goto clean_dma_ret;
3251 	}
3252 
3253 	cpsw_notice(priv, probe,
3254 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3255 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3256 
3257 	pm_runtime_put(&pdev->dev);
3258 
3259 	return 0;
3260 
3261 clean_unregister_netdev_ret:
3262 	unregister_netdev(ndev);
3263 clean_dma_ret:
3264 	cpdma_ctlr_destroy(cpsw->dma);
3265 clean_dt_ret:
3266 	cpsw_remove_dt(pdev);
3267 	pm_runtime_put_sync(&pdev->dev);
3268 clean_runtime_disable_ret:
3269 	pm_runtime_disable(&pdev->dev);
3270 clean_ndev_ret:
3271 	free_netdev(priv->ndev);
3272 	return ret;
3273 }
3274 
3275 static int cpsw_remove(struct platform_device *pdev)
3276 {
3277 	struct net_device *ndev = platform_get_drvdata(pdev);
3278 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3279 	int ret;
3280 
3281 	ret = pm_runtime_get_sync(&pdev->dev);
3282 	if (ret < 0) {
3283 		pm_runtime_put_noidle(&pdev->dev);
3284 		return ret;
3285 	}
3286 
3287 	if (cpsw->data.dual_emac)
3288 		unregister_netdev(cpsw->slaves[1].ndev);
3289 	unregister_netdev(ndev);
3290 
3291 	cpts_release(cpsw->cpts);
3292 	cpdma_ctlr_destroy(cpsw->dma);
3293 	cpsw_remove_dt(pdev);
3294 	pm_runtime_put_sync(&pdev->dev);
3295 	pm_runtime_disable(&pdev->dev);
3296 	if (cpsw->data.dual_emac)
3297 		free_netdev(cpsw->slaves[1].ndev);
3298 	free_netdev(ndev);
3299 	return 0;
3300 }
3301 
3302 #ifdef CONFIG_PM_SLEEP
3303 static int cpsw_suspend(struct device *dev)
3304 {
3305 	struct platform_device	*pdev = to_platform_device(dev);
3306 	struct net_device	*ndev = platform_get_drvdata(pdev);
3307 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3308 
3309 	if (cpsw->data.dual_emac) {
3310 		int i;
3311 
3312 		for (i = 0; i < cpsw->data.slaves; i++) {
3313 			if (netif_running(cpsw->slaves[i].ndev))
3314 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3315 		}
3316 	} else {
3317 		if (netif_running(ndev))
3318 			cpsw_ndo_stop(ndev);
3319 	}
3320 
3321 	/* Select sleep pin state */
3322 	pinctrl_pm_select_sleep_state(dev);
3323 
3324 	return 0;
3325 }
3326 
3327 static int cpsw_resume(struct device *dev)
3328 {
3329 	struct platform_device	*pdev = to_platform_device(dev);
3330 	struct net_device	*ndev = platform_get_drvdata(pdev);
3331 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3332 
3333 	/* Select default pin state */
3334 	pinctrl_pm_select_default_state(dev);
3335 
3336 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3337 	rtnl_lock();
3338 	if (cpsw->data.dual_emac) {
3339 		int i;
3340 
3341 		for (i = 0; i < cpsw->data.slaves; i++) {
3342 			if (netif_running(cpsw->slaves[i].ndev))
3343 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3344 		}
3345 	} else {
3346 		if (netif_running(ndev))
3347 			cpsw_ndo_open(ndev);
3348 	}
3349 	rtnl_unlock();
3350 
3351 	return 0;
3352 }
3353 #endif
3354 
3355 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3356 
3357 static struct platform_driver cpsw_driver = {
3358 	.driver = {
3359 		.name	 = "cpsw",
3360 		.pm	 = &cpsw_pm_ops,
3361 		.of_match_table = cpsw_of_mtable,
3362 	},
3363 	.probe = cpsw_probe,
3364 	.remove = cpsw_remove,
3365 };
3366 
3367 module_platform_driver(cpsw_driver);
3368 
3369 MODULE_LICENSE("GPL");
3370 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3371 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3372 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3373