1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 #include <linux/mfd/syscon.h> 37 #include <linux/regmap.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x76543210 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 15) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 15) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 15) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_enable_irq(priv) \ 144 do { \ 145 u32 i; \ 146 for (i = 0; i < priv->num_irqs; i++) \ 147 enable_irq(priv->irqs_table[i]); \ 148 } while (0) 149 #define cpsw_disable_irq(priv) \ 150 do { \ 151 u32 i; \ 152 for (i = 0; i < priv->num_irqs; i++) \ 153 disable_irq_nosync(priv->irqs_table[i]); \ 154 } while (0) 155 156 #define cpsw_slave_index(priv) \ 157 ((priv->data.dual_emac) ? priv->emac_port : \ 158 priv->data.active_slave) 159 160 static int debug_level; 161 module_param(debug_level, int, 0); 162 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 163 164 static int ale_ageout = 10; 165 module_param(ale_ageout, int, 0); 166 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 167 168 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 169 module_param(rx_packet_max, int, 0); 170 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 171 172 struct cpsw_wr_regs { 173 u32 id_ver; 174 u32 soft_reset; 175 u32 control; 176 u32 int_control; 177 u32 rx_thresh_en; 178 u32 rx_en; 179 u32 tx_en; 180 u32 misc_en; 181 u32 mem_allign1[8]; 182 u32 rx_thresh_stat; 183 u32 rx_stat; 184 u32 tx_stat; 185 u32 misc_stat; 186 u32 mem_allign2[8]; 187 u32 rx_imax; 188 u32 tx_imax; 189 190 }; 191 192 struct cpsw_ss_regs { 193 u32 id_ver; 194 u32 control; 195 u32 soft_reset; 196 u32 stat_port_en; 197 u32 ptype; 198 u32 soft_idle; 199 u32 thru_rate; 200 u32 gap_thresh; 201 u32 tx_start_wds; 202 u32 flow_control; 203 u32 vlan_ltype; 204 u32 ts_ltype; 205 u32 dlr_ltype; 206 }; 207 208 /* CPSW_PORT_V1 */ 209 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 210 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 211 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 212 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 213 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 214 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 215 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 216 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 217 218 /* CPSW_PORT_V2 */ 219 #define CPSW2_CONTROL 0x00 /* Control Register */ 220 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 221 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 222 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 223 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 224 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 225 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 226 227 /* CPSW_PORT_V1 and V2 */ 228 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 229 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 230 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 231 232 /* CPSW_PORT_V2 only */ 233 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 235 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 236 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 237 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 238 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 239 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 240 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 241 242 /* Bit definitions for the CPSW2_CONTROL register */ 243 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 244 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 245 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 246 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 247 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 248 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 249 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 250 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 251 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 252 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 253 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 254 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 255 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 256 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 257 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 258 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 259 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 260 261 #define CTRL_V2_TS_BITS \ 262 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 263 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 264 265 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 266 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 267 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 268 269 270 #define CTRL_V3_TS_BITS \ 271 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 272 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 273 TS_LTYPE1_EN) 274 275 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 276 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 277 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 278 279 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 280 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 281 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 282 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 283 #define TS_MSG_TYPE_EN_MASK (0xffff) 284 285 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 286 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 287 288 /* Bit definitions for the CPSW1_TS_CTL register */ 289 #define CPSW_V1_TS_RX_EN BIT(0) 290 #define CPSW_V1_TS_TX_EN BIT(4) 291 #define CPSW_V1_MSG_TYPE_OFS 16 292 293 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 294 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 295 296 struct cpsw_host_regs { 297 u32 max_blks; 298 u32 blk_cnt; 299 u32 tx_in_ctl; 300 u32 port_vlan; 301 u32 tx_pri_map; 302 u32 cpdma_tx_pri_map; 303 u32 cpdma_rx_chan_map; 304 }; 305 306 struct cpsw_sliver_regs { 307 u32 id_ver; 308 u32 mac_control; 309 u32 mac_status; 310 u32 soft_reset; 311 u32 rx_maxlen; 312 u32 __reserved_0; 313 u32 rx_pause; 314 u32 tx_pause; 315 u32 __reserved_1; 316 u32 rx_pri_map; 317 }; 318 319 struct cpsw_hw_stats { 320 u32 rxgoodframes; 321 u32 rxbroadcastframes; 322 u32 rxmulticastframes; 323 u32 rxpauseframes; 324 u32 rxcrcerrors; 325 u32 rxaligncodeerrors; 326 u32 rxoversizedframes; 327 u32 rxjabberframes; 328 u32 rxundersizedframes; 329 u32 rxfragments; 330 u32 __pad_0[2]; 331 u32 rxoctets; 332 u32 txgoodframes; 333 u32 txbroadcastframes; 334 u32 txmulticastframes; 335 u32 txpauseframes; 336 u32 txdeferredframes; 337 u32 txcollisionframes; 338 u32 txsinglecollframes; 339 u32 txmultcollframes; 340 u32 txexcessivecollisions; 341 u32 txlatecollisions; 342 u32 txunderrun; 343 u32 txcarriersenseerrors; 344 u32 txoctets; 345 u32 octetframes64; 346 u32 octetframes65t127; 347 u32 octetframes128t255; 348 u32 octetframes256t511; 349 u32 octetframes512t1023; 350 u32 octetframes1024tup; 351 u32 netoctets; 352 u32 rxsofoverruns; 353 u32 rxmofoverruns; 354 u32 rxdmaoverruns; 355 }; 356 357 struct cpsw_slave { 358 void __iomem *regs; 359 struct cpsw_sliver_regs __iomem *sliver; 360 int slave_num; 361 u32 mac_control; 362 struct cpsw_slave_data *data; 363 struct phy_device *phy; 364 struct net_device *ndev; 365 u32 port_vlan; 366 u32 open_stat; 367 }; 368 369 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 370 { 371 return __raw_readl(slave->regs + offset); 372 } 373 374 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 375 { 376 __raw_writel(val, slave->regs + offset); 377 } 378 379 struct cpsw_priv { 380 spinlock_t lock; 381 struct platform_device *pdev; 382 struct net_device *ndev; 383 struct napi_struct napi; 384 struct device *dev; 385 struct cpsw_platform_data data; 386 struct cpsw_ss_regs __iomem *regs; 387 struct cpsw_wr_regs __iomem *wr_regs; 388 u8 __iomem *hw_stats; 389 struct cpsw_host_regs __iomem *host_port_regs; 390 u32 msg_enable; 391 u32 version; 392 u32 coal_intvl; 393 u32 bus_freq_mhz; 394 int rx_packet_max; 395 int host_port; 396 struct clk *clk; 397 u8 mac_addr[ETH_ALEN]; 398 struct cpsw_slave *slaves; 399 struct cpdma_ctlr *dma; 400 struct cpdma_chan *txch, *rxch; 401 struct cpsw_ale *ale; 402 bool rx_pause; 403 bool tx_pause; 404 /* snapshot of IRQ numbers */ 405 u32 irqs_table[4]; 406 u32 num_irqs; 407 bool irq_enabled; 408 struct cpts *cpts; 409 u32 emac_port; 410 }; 411 412 struct cpsw_stats { 413 char stat_string[ETH_GSTRING_LEN]; 414 int type; 415 int sizeof_stat; 416 int stat_offset; 417 }; 418 419 enum { 420 CPSW_STATS, 421 CPDMA_RX_STATS, 422 CPDMA_TX_STATS, 423 }; 424 425 #define CPSW_STAT(m) CPSW_STATS, \ 426 sizeof(((struct cpsw_hw_stats *)0)->m), \ 427 offsetof(struct cpsw_hw_stats, m) 428 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 429 sizeof(((struct cpdma_chan_stats *)0)->m), \ 430 offsetof(struct cpdma_chan_stats, m) 431 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 432 sizeof(((struct cpdma_chan_stats *)0)->m), \ 433 offsetof(struct cpdma_chan_stats, m) 434 435 static const struct cpsw_stats cpsw_gstrings_stats[] = { 436 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 437 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 438 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 439 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 440 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 441 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 442 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 443 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 444 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 445 { "Rx Fragments", CPSW_STAT(rxfragments) }, 446 { "Rx Octets", CPSW_STAT(rxoctets) }, 447 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 448 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 449 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 450 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 451 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 452 { "Collisions", CPSW_STAT(txcollisionframes) }, 453 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 454 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 455 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 456 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 457 { "Tx Underrun", CPSW_STAT(txunderrun) }, 458 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 459 { "Tx Octets", CPSW_STAT(txoctets) }, 460 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 461 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 462 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 463 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 464 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 465 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 466 { "Net Octets", CPSW_STAT(netoctets) }, 467 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 468 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 469 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 470 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 471 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 472 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 473 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 474 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 475 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 476 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 477 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 478 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 479 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 480 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 481 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 482 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 483 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 484 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 485 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 486 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 487 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 488 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 489 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 490 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 491 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 492 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 493 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 494 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 495 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 496 }; 497 498 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 499 500 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 501 #define for_each_slave(priv, func, arg...) \ 502 do { \ 503 struct cpsw_slave *slave; \ 504 int n; \ 505 if (priv->data.dual_emac) \ 506 (func)((priv)->slaves + priv->emac_port, ##arg);\ 507 else \ 508 for (n = (priv)->data.slaves, \ 509 slave = (priv)->slaves; \ 510 n; n--) \ 511 (func)(slave++, ##arg); \ 512 } while (0) 513 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 514 (priv->slaves[__slave_no__].ndev) 515 #define cpsw_get_slave_priv(priv, __slave_no__) \ 516 ((priv->slaves[__slave_no__].ndev) ? \ 517 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 518 519 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 520 do { \ 521 if (!priv->data.dual_emac) \ 522 break; \ 523 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 524 ndev = cpsw_get_slave_ndev(priv, 0); \ 525 priv = netdev_priv(ndev); \ 526 skb->dev = ndev; \ 527 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 528 ndev = cpsw_get_slave_ndev(priv, 1); \ 529 priv = netdev_priv(ndev); \ 530 skb->dev = ndev; \ 531 } \ 532 } while (0) 533 #define cpsw_add_mcast(priv, addr) \ 534 do { \ 535 if (priv->data.dual_emac) { \ 536 struct cpsw_slave *slave = priv->slaves + \ 537 priv->emac_port; \ 538 int slave_port = cpsw_get_slave_port(priv, \ 539 slave->slave_num); \ 540 cpsw_ale_add_mcast(priv->ale, addr, \ 541 1 << slave_port | 1 << priv->host_port, \ 542 ALE_VLAN, slave->port_vlan, 0); \ 543 } else { \ 544 cpsw_ale_add_mcast(priv->ale, addr, \ 545 ALE_ALL_PORTS << priv->host_port, \ 546 0, 0, 0); \ 547 } \ 548 } while (0) 549 550 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 551 { 552 if (priv->host_port == 0) 553 return slave_num + 1; 554 else 555 return slave_num; 556 } 557 558 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 559 { 560 struct cpsw_priv *priv = netdev_priv(ndev); 561 struct cpsw_ale *ale = priv->ale; 562 int i; 563 564 if (priv->data.dual_emac) { 565 bool flag = false; 566 567 /* Enabling promiscuous mode for one interface will be 568 * common for both the interface as the interface shares 569 * the same hardware resource. 570 */ 571 for (i = 0; i < priv->data.slaves; i++) 572 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 573 flag = true; 574 575 if (!enable && flag) { 576 enable = true; 577 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 578 } 579 580 if (enable) { 581 /* Enable Bypass */ 582 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 583 584 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 585 } else { 586 /* Disable Bypass */ 587 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 588 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 589 } 590 } else { 591 if (enable) { 592 unsigned long timeout = jiffies + HZ; 593 594 /* Disable Learn for all ports */ 595 for (i = 0; i < priv->data.slaves; i++) { 596 cpsw_ale_control_set(ale, i, 597 ALE_PORT_NOLEARN, 1); 598 cpsw_ale_control_set(ale, i, 599 ALE_PORT_NO_SA_UPDATE, 1); 600 } 601 602 /* Clear All Untouched entries */ 603 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 604 do { 605 cpu_relax(); 606 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 607 break; 608 } while (time_after(timeout, jiffies)); 609 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 610 611 /* Clear all mcast from ALE */ 612 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 613 priv->host_port); 614 615 /* Flood All Unicast Packets to Host port */ 616 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 617 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 618 } else { 619 /* Flood All Unicast Packets to Host port */ 620 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 621 622 /* Enable Learn for all ports */ 623 for (i = 0; i < priv->data.slaves; i++) { 624 cpsw_ale_control_set(ale, i, 625 ALE_PORT_NOLEARN, 0); 626 cpsw_ale_control_set(ale, i, 627 ALE_PORT_NO_SA_UPDATE, 0); 628 } 629 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 630 } 631 } 632 } 633 634 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 635 { 636 struct cpsw_priv *priv = netdev_priv(ndev); 637 638 if (ndev->flags & IFF_PROMISC) { 639 /* Enable promiscuous mode */ 640 cpsw_set_promiscious(ndev, true); 641 return; 642 } else { 643 /* Disable promiscuous mode */ 644 cpsw_set_promiscious(ndev, false); 645 } 646 647 /* Clear all mcast from ALE */ 648 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port); 649 650 if (!netdev_mc_empty(ndev)) { 651 struct netdev_hw_addr *ha; 652 653 /* program multicast address list into ALE register */ 654 netdev_for_each_mc_addr(ha, ndev) { 655 cpsw_add_mcast(priv, (u8 *)ha->addr); 656 } 657 } 658 } 659 660 static void cpsw_intr_enable(struct cpsw_priv *priv) 661 { 662 __raw_writel(0xFF, &priv->wr_regs->tx_en); 663 __raw_writel(0xFF, &priv->wr_regs->rx_en); 664 665 cpdma_ctlr_int_ctrl(priv->dma, true); 666 return; 667 } 668 669 static void cpsw_intr_disable(struct cpsw_priv *priv) 670 { 671 __raw_writel(0, &priv->wr_regs->tx_en); 672 __raw_writel(0, &priv->wr_regs->rx_en); 673 674 cpdma_ctlr_int_ctrl(priv->dma, false); 675 return; 676 } 677 678 static void cpsw_tx_handler(void *token, int len, int status) 679 { 680 struct sk_buff *skb = token; 681 struct net_device *ndev = skb->dev; 682 struct cpsw_priv *priv = netdev_priv(ndev); 683 684 /* Check whether the queue is stopped due to stalled tx dma, if the 685 * queue is stopped then start the queue as we have free desc for tx 686 */ 687 if (unlikely(netif_queue_stopped(ndev))) 688 netif_wake_queue(ndev); 689 cpts_tx_timestamp(priv->cpts, skb); 690 ndev->stats.tx_packets++; 691 ndev->stats.tx_bytes += len; 692 dev_kfree_skb_any(skb); 693 } 694 695 static void cpsw_rx_handler(void *token, int len, int status) 696 { 697 struct sk_buff *skb = token; 698 struct sk_buff *new_skb; 699 struct net_device *ndev = skb->dev; 700 struct cpsw_priv *priv = netdev_priv(ndev); 701 int ret = 0; 702 703 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 704 705 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 706 bool ndev_status = false; 707 struct cpsw_slave *slave = priv->slaves; 708 int n; 709 710 if (priv->data.dual_emac) { 711 /* In dual emac mode check for all interfaces */ 712 for (n = priv->data.slaves; n; n--, slave++) 713 if (netif_running(slave->ndev)) 714 ndev_status = true; 715 } 716 717 if (ndev_status && (status >= 0)) { 718 /* The packet received is for the interface which 719 * is already down and the other interface is up 720 * and running, intead of freeing which results 721 * in reducing of the number of rx descriptor in 722 * DMA engine, requeue skb back to cpdma. 723 */ 724 new_skb = skb; 725 goto requeue; 726 } 727 728 /* the interface is going down, skbs are purged */ 729 dev_kfree_skb_any(skb); 730 return; 731 } 732 733 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 734 if (new_skb) { 735 skb_put(skb, len); 736 cpts_rx_timestamp(priv->cpts, skb); 737 skb->protocol = eth_type_trans(skb, ndev); 738 netif_receive_skb(skb); 739 ndev->stats.rx_bytes += len; 740 ndev->stats.rx_packets++; 741 } else { 742 ndev->stats.rx_dropped++; 743 new_skb = skb; 744 } 745 746 requeue: 747 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 748 skb_tailroom(new_skb), 0); 749 if (WARN_ON(ret < 0)) 750 dev_kfree_skb_any(new_skb); 751 } 752 753 static irqreturn_t cpsw_interrupt(int irq, void *dev_id) 754 { 755 struct cpsw_priv *priv = dev_id; 756 757 cpsw_intr_disable(priv); 758 if (priv->irq_enabled == true) { 759 cpsw_disable_irq(priv); 760 priv->irq_enabled = false; 761 } 762 763 if (netif_running(priv->ndev)) { 764 napi_schedule(&priv->napi); 765 return IRQ_HANDLED; 766 } 767 768 priv = cpsw_get_slave_priv(priv, 1); 769 if (!priv) 770 return IRQ_NONE; 771 772 if (netif_running(priv->ndev)) { 773 napi_schedule(&priv->napi); 774 return IRQ_HANDLED; 775 } 776 return IRQ_NONE; 777 } 778 779 static int cpsw_poll(struct napi_struct *napi, int budget) 780 { 781 struct cpsw_priv *priv = napi_to_priv(napi); 782 int num_tx, num_rx; 783 784 num_tx = cpdma_chan_process(priv->txch, 128); 785 if (num_tx) 786 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 787 788 num_rx = cpdma_chan_process(priv->rxch, budget); 789 if (num_rx < budget) { 790 struct cpsw_priv *prim_cpsw; 791 792 napi_complete(napi); 793 cpsw_intr_enable(priv); 794 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 795 prim_cpsw = cpsw_get_slave_priv(priv, 0); 796 if (prim_cpsw->irq_enabled == false) { 797 prim_cpsw->irq_enabled = true; 798 cpsw_enable_irq(priv); 799 } 800 } 801 802 if (num_rx || num_tx) 803 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", 804 num_rx, num_tx); 805 806 return num_rx; 807 } 808 809 static inline void soft_reset(const char *module, void __iomem *reg) 810 { 811 unsigned long timeout = jiffies + HZ; 812 813 __raw_writel(1, reg); 814 do { 815 cpu_relax(); 816 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 817 818 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 819 } 820 821 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 822 ((mac)[2] << 16) | ((mac)[3] << 24)) 823 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 824 825 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 826 struct cpsw_priv *priv) 827 { 828 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 829 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 830 } 831 832 static void _cpsw_adjust_link(struct cpsw_slave *slave, 833 struct cpsw_priv *priv, bool *link) 834 { 835 struct phy_device *phy = slave->phy; 836 u32 mac_control = 0; 837 u32 slave_port; 838 839 if (!phy) 840 return; 841 842 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 843 844 if (phy->link) { 845 mac_control = priv->data.mac_control; 846 847 /* enable forwarding */ 848 cpsw_ale_control_set(priv->ale, slave_port, 849 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 850 851 if (phy->speed == 1000) 852 mac_control |= BIT(7); /* GIGABITEN */ 853 if (phy->duplex) 854 mac_control |= BIT(0); /* FULLDUPLEXEN */ 855 856 /* set speed_in input in case RMII mode is used in 100Mbps */ 857 if (phy->speed == 100) 858 mac_control |= BIT(15); 859 else if (phy->speed == 10) 860 mac_control |= BIT(18); /* In Band mode */ 861 862 if (priv->rx_pause) 863 mac_control |= BIT(3); 864 865 if (priv->tx_pause) 866 mac_control |= BIT(4); 867 868 *link = true; 869 } else { 870 mac_control = 0; 871 /* disable forwarding */ 872 cpsw_ale_control_set(priv->ale, slave_port, 873 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 874 } 875 876 if (mac_control != slave->mac_control) { 877 phy_print_status(phy); 878 __raw_writel(mac_control, &slave->sliver->mac_control); 879 } 880 881 slave->mac_control = mac_control; 882 } 883 884 static void cpsw_adjust_link(struct net_device *ndev) 885 { 886 struct cpsw_priv *priv = netdev_priv(ndev); 887 bool link = false; 888 889 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 890 891 if (link) { 892 netif_carrier_on(ndev); 893 if (netif_running(ndev)) 894 netif_wake_queue(ndev); 895 } else { 896 netif_carrier_off(ndev); 897 netif_stop_queue(ndev); 898 } 899 } 900 901 static int cpsw_get_coalesce(struct net_device *ndev, 902 struct ethtool_coalesce *coal) 903 { 904 struct cpsw_priv *priv = netdev_priv(ndev); 905 906 coal->rx_coalesce_usecs = priv->coal_intvl; 907 return 0; 908 } 909 910 static int cpsw_set_coalesce(struct net_device *ndev, 911 struct ethtool_coalesce *coal) 912 { 913 struct cpsw_priv *priv = netdev_priv(ndev); 914 u32 int_ctrl; 915 u32 num_interrupts = 0; 916 u32 prescale = 0; 917 u32 addnl_dvdr = 1; 918 u32 coal_intvl = 0; 919 920 coal_intvl = coal->rx_coalesce_usecs; 921 922 int_ctrl = readl(&priv->wr_regs->int_control); 923 prescale = priv->bus_freq_mhz * 4; 924 925 if (!coal->rx_coalesce_usecs) { 926 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 927 goto update_return; 928 } 929 930 if (coal_intvl < CPSW_CMINTMIN_INTVL) 931 coal_intvl = CPSW_CMINTMIN_INTVL; 932 933 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 934 /* Interrupt pacer works with 4us Pulse, we can 935 * throttle further by dilating the 4us pulse. 936 */ 937 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 938 939 if (addnl_dvdr > 1) { 940 prescale *= addnl_dvdr; 941 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 942 coal_intvl = (CPSW_CMINTMAX_INTVL 943 * addnl_dvdr); 944 } else { 945 addnl_dvdr = 1; 946 coal_intvl = CPSW_CMINTMAX_INTVL; 947 } 948 } 949 950 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 951 writel(num_interrupts, &priv->wr_regs->rx_imax); 952 writel(num_interrupts, &priv->wr_regs->tx_imax); 953 954 int_ctrl |= CPSW_INTPACEEN; 955 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 956 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 957 958 update_return: 959 writel(int_ctrl, &priv->wr_regs->int_control); 960 961 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 962 if (priv->data.dual_emac) { 963 int i; 964 965 for (i = 0; i < priv->data.slaves; i++) { 966 priv = netdev_priv(priv->slaves[i].ndev); 967 priv->coal_intvl = coal_intvl; 968 } 969 } else { 970 priv->coal_intvl = coal_intvl; 971 } 972 973 return 0; 974 } 975 976 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 977 { 978 switch (sset) { 979 case ETH_SS_STATS: 980 return CPSW_STATS_LEN; 981 default: 982 return -EOPNOTSUPP; 983 } 984 } 985 986 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 987 { 988 u8 *p = data; 989 int i; 990 991 switch (stringset) { 992 case ETH_SS_STATS: 993 for (i = 0; i < CPSW_STATS_LEN; i++) { 994 memcpy(p, cpsw_gstrings_stats[i].stat_string, 995 ETH_GSTRING_LEN); 996 p += ETH_GSTRING_LEN; 997 } 998 break; 999 } 1000 } 1001 1002 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1003 struct ethtool_stats *stats, u64 *data) 1004 { 1005 struct cpsw_priv *priv = netdev_priv(ndev); 1006 struct cpdma_chan_stats rx_stats; 1007 struct cpdma_chan_stats tx_stats; 1008 u32 val; 1009 u8 *p; 1010 int i; 1011 1012 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1013 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1014 cpdma_chan_get_stats(priv->txch, &tx_stats); 1015 1016 for (i = 0; i < CPSW_STATS_LEN; i++) { 1017 switch (cpsw_gstrings_stats[i].type) { 1018 case CPSW_STATS: 1019 val = readl(priv->hw_stats + 1020 cpsw_gstrings_stats[i].stat_offset); 1021 data[i] = val; 1022 break; 1023 1024 case CPDMA_RX_STATS: 1025 p = (u8 *)&rx_stats + 1026 cpsw_gstrings_stats[i].stat_offset; 1027 data[i] = *(u32 *)p; 1028 break; 1029 1030 case CPDMA_TX_STATS: 1031 p = (u8 *)&tx_stats + 1032 cpsw_gstrings_stats[i].stat_offset; 1033 data[i] = *(u32 *)p; 1034 break; 1035 } 1036 } 1037 } 1038 1039 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1040 { 1041 u32 i; 1042 u32 usage_count = 0; 1043 1044 if (!priv->data.dual_emac) 1045 return 0; 1046 1047 for (i = 0; i < priv->data.slaves; i++) 1048 if (priv->slaves[i].open_stat) 1049 usage_count++; 1050 1051 return usage_count; 1052 } 1053 1054 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1055 struct cpsw_priv *priv, struct sk_buff *skb) 1056 { 1057 if (!priv->data.dual_emac) 1058 return cpdma_chan_submit(priv->txch, skb, skb->data, 1059 skb->len, 0); 1060 1061 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1062 return cpdma_chan_submit(priv->txch, skb, skb->data, 1063 skb->len, 1); 1064 else 1065 return cpdma_chan_submit(priv->txch, skb, skb->data, 1066 skb->len, 2); 1067 } 1068 1069 static inline void cpsw_add_dual_emac_def_ale_entries( 1070 struct cpsw_priv *priv, struct cpsw_slave *slave, 1071 u32 slave_port) 1072 { 1073 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1074 1075 if (priv->version == CPSW_VERSION_1) 1076 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1077 else 1078 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1079 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1080 port_mask, port_mask, 0); 1081 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1082 port_mask, ALE_VLAN, slave->port_vlan, 0); 1083 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1084 priv->host_port, ALE_VLAN, slave->port_vlan); 1085 } 1086 1087 static void soft_reset_slave(struct cpsw_slave *slave) 1088 { 1089 char name[32]; 1090 1091 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1092 soft_reset(name, &slave->sliver->soft_reset); 1093 } 1094 1095 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1096 { 1097 u32 slave_port; 1098 1099 soft_reset_slave(slave); 1100 1101 /* setup priority mapping */ 1102 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1103 1104 switch (priv->version) { 1105 case CPSW_VERSION_1: 1106 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1107 break; 1108 case CPSW_VERSION_2: 1109 case CPSW_VERSION_3: 1110 case CPSW_VERSION_4: 1111 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1112 break; 1113 } 1114 1115 /* setup max packet size, and mac address */ 1116 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1117 cpsw_set_slave_mac(slave, priv); 1118 1119 slave->mac_control = 0; /* no link yet */ 1120 1121 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1122 1123 if (priv->data.dual_emac) 1124 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1125 else 1126 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1127 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1128 1129 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1130 &cpsw_adjust_link, slave->data->phy_if); 1131 if (IS_ERR(slave->phy)) { 1132 dev_err(priv->dev, "phy %s not found on slave %d\n", 1133 slave->data->phy_id, slave->slave_num); 1134 slave->phy = NULL; 1135 } else { 1136 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1137 slave->phy->phy_id); 1138 phy_start(slave->phy); 1139 1140 /* Configure GMII_SEL register */ 1141 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1142 slave->slave_num); 1143 } 1144 } 1145 1146 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1147 { 1148 const int vlan = priv->data.default_vlan; 1149 const int port = priv->host_port; 1150 u32 reg; 1151 int i; 1152 1153 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1154 CPSW2_PORT_VLAN; 1155 1156 writel(vlan, &priv->host_port_regs->port_vlan); 1157 1158 for (i = 0; i < priv->data.slaves; i++) 1159 slave_write(priv->slaves + i, vlan, reg); 1160 1161 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1162 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1163 (ALE_PORT_1 | ALE_PORT_2) << port); 1164 } 1165 1166 static void cpsw_init_host_port(struct cpsw_priv *priv) 1167 { 1168 u32 control_reg; 1169 u32 fifo_mode; 1170 1171 /* soft reset the controller and initialize ale */ 1172 soft_reset("cpsw", &priv->regs->soft_reset); 1173 cpsw_ale_start(priv->ale); 1174 1175 /* switch to vlan unaware mode */ 1176 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1177 CPSW_ALE_VLAN_AWARE); 1178 control_reg = readl(&priv->regs->control); 1179 control_reg |= CPSW_VLAN_AWARE; 1180 writel(control_reg, &priv->regs->control); 1181 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1182 CPSW_FIFO_NORMAL_MODE; 1183 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1184 1185 /* setup host port priority mapping */ 1186 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1187 &priv->host_port_regs->cpdma_tx_pri_map); 1188 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1189 1190 cpsw_ale_control_set(priv->ale, priv->host_port, 1191 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1192 1193 if (!priv->data.dual_emac) { 1194 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1195 0, 0); 1196 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1197 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1198 } 1199 } 1200 1201 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1202 { 1203 u32 slave_port; 1204 1205 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1206 1207 if (!slave->phy) 1208 return; 1209 phy_stop(slave->phy); 1210 phy_disconnect(slave->phy); 1211 slave->phy = NULL; 1212 cpsw_ale_control_set(priv->ale, slave_port, 1213 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1214 } 1215 1216 static int cpsw_ndo_open(struct net_device *ndev) 1217 { 1218 struct cpsw_priv *priv = netdev_priv(ndev); 1219 struct cpsw_priv *prim_cpsw; 1220 int i, ret; 1221 u32 reg; 1222 1223 if (!cpsw_common_res_usage_state(priv)) 1224 cpsw_intr_disable(priv); 1225 netif_carrier_off(ndev); 1226 1227 pm_runtime_get_sync(&priv->pdev->dev); 1228 1229 reg = priv->version; 1230 1231 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1232 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1233 CPSW_RTL_VERSION(reg)); 1234 1235 /* initialize host and slave ports */ 1236 if (!cpsw_common_res_usage_state(priv)) 1237 cpsw_init_host_port(priv); 1238 for_each_slave(priv, cpsw_slave_open, priv); 1239 1240 /* Add default VLAN */ 1241 if (!priv->data.dual_emac) 1242 cpsw_add_default_vlan(priv); 1243 else 1244 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1245 ALE_ALL_PORTS << priv->host_port, 1246 ALE_ALL_PORTS << priv->host_port, 0, 0); 1247 1248 if (!cpsw_common_res_usage_state(priv)) { 1249 /* setup tx dma to fixed prio and zero offset */ 1250 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1251 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1252 1253 /* disable priority elevation */ 1254 __raw_writel(0, &priv->regs->ptype); 1255 1256 /* enable statistics collection only on all ports */ 1257 __raw_writel(0x7, &priv->regs->stat_port_en); 1258 1259 /* Enable internal fifo flow control */ 1260 writel(0x7, &priv->regs->flow_control); 1261 1262 if (WARN_ON(!priv->data.rx_descs)) 1263 priv->data.rx_descs = 128; 1264 1265 for (i = 0; i < priv->data.rx_descs; i++) { 1266 struct sk_buff *skb; 1267 1268 ret = -ENOMEM; 1269 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1270 priv->rx_packet_max, GFP_KERNEL); 1271 if (!skb) 1272 goto err_cleanup; 1273 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1274 skb_tailroom(skb), 0); 1275 if (ret < 0) { 1276 kfree_skb(skb); 1277 goto err_cleanup; 1278 } 1279 } 1280 /* continue even if we didn't manage to submit all 1281 * receive descs 1282 */ 1283 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1284 1285 if (cpts_register(&priv->pdev->dev, priv->cpts, 1286 priv->data.cpts_clock_mult, 1287 priv->data.cpts_clock_shift)) 1288 dev_err(priv->dev, "error registering cpts device\n"); 1289 1290 } 1291 1292 /* Enable Interrupt pacing if configured */ 1293 if (priv->coal_intvl != 0) { 1294 struct ethtool_coalesce coal; 1295 1296 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1297 cpsw_set_coalesce(ndev, &coal); 1298 } 1299 1300 napi_enable(&priv->napi); 1301 cpdma_ctlr_start(priv->dma); 1302 cpsw_intr_enable(priv); 1303 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1304 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1305 1306 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1307 if (prim_cpsw->irq_enabled == false) { 1308 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1309 prim_cpsw->irq_enabled = true; 1310 cpsw_enable_irq(prim_cpsw); 1311 } 1312 } 1313 1314 if (priv->data.dual_emac) 1315 priv->slaves[priv->emac_port].open_stat = true; 1316 return 0; 1317 1318 err_cleanup: 1319 cpdma_ctlr_stop(priv->dma); 1320 for_each_slave(priv, cpsw_slave_stop, priv); 1321 pm_runtime_put_sync(&priv->pdev->dev); 1322 netif_carrier_off(priv->ndev); 1323 return ret; 1324 } 1325 1326 static int cpsw_ndo_stop(struct net_device *ndev) 1327 { 1328 struct cpsw_priv *priv = netdev_priv(ndev); 1329 1330 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1331 netif_stop_queue(priv->ndev); 1332 napi_disable(&priv->napi); 1333 netif_carrier_off(priv->ndev); 1334 1335 if (cpsw_common_res_usage_state(priv) <= 1) { 1336 cpts_unregister(priv->cpts); 1337 cpsw_intr_disable(priv); 1338 cpdma_ctlr_int_ctrl(priv->dma, false); 1339 cpdma_ctlr_stop(priv->dma); 1340 cpsw_ale_stop(priv->ale); 1341 } 1342 for_each_slave(priv, cpsw_slave_stop, priv); 1343 pm_runtime_put_sync(&priv->pdev->dev); 1344 if (priv->data.dual_emac) 1345 priv->slaves[priv->emac_port].open_stat = false; 1346 return 0; 1347 } 1348 1349 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1350 struct net_device *ndev) 1351 { 1352 struct cpsw_priv *priv = netdev_priv(ndev); 1353 int ret; 1354 1355 ndev->trans_start = jiffies; 1356 1357 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1358 cpsw_err(priv, tx_err, "packet pad failed\n"); 1359 ndev->stats.tx_dropped++; 1360 return NETDEV_TX_OK; 1361 } 1362 1363 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1364 priv->cpts->tx_enable) 1365 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1366 1367 skb_tx_timestamp(skb); 1368 1369 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1370 if (unlikely(ret != 0)) { 1371 cpsw_err(priv, tx_err, "desc submit failed\n"); 1372 goto fail; 1373 } 1374 1375 /* If there is no more tx desc left free then we need to 1376 * tell the kernel to stop sending us tx frames. 1377 */ 1378 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1379 netif_stop_queue(ndev); 1380 1381 return NETDEV_TX_OK; 1382 fail: 1383 ndev->stats.tx_dropped++; 1384 netif_stop_queue(ndev); 1385 return NETDEV_TX_BUSY; 1386 } 1387 1388 #ifdef CONFIG_TI_CPTS 1389 1390 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1391 { 1392 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1393 u32 ts_en, seq_id; 1394 1395 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1396 slave_write(slave, 0, CPSW1_TS_CTL); 1397 return; 1398 } 1399 1400 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1401 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1402 1403 if (priv->cpts->tx_enable) 1404 ts_en |= CPSW_V1_TS_TX_EN; 1405 1406 if (priv->cpts->rx_enable) 1407 ts_en |= CPSW_V1_TS_RX_EN; 1408 1409 slave_write(slave, ts_en, CPSW1_TS_CTL); 1410 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1411 } 1412 1413 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1414 { 1415 struct cpsw_slave *slave; 1416 u32 ctrl, mtype; 1417 1418 if (priv->data.dual_emac) 1419 slave = &priv->slaves[priv->emac_port]; 1420 else 1421 slave = &priv->slaves[priv->data.active_slave]; 1422 1423 ctrl = slave_read(slave, CPSW2_CONTROL); 1424 switch (priv->version) { 1425 case CPSW_VERSION_2: 1426 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1427 1428 if (priv->cpts->tx_enable) 1429 ctrl |= CTRL_V2_TX_TS_BITS; 1430 1431 if (priv->cpts->rx_enable) 1432 ctrl |= CTRL_V2_RX_TS_BITS; 1433 break; 1434 case CPSW_VERSION_3: 1435 default: 1436 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1437 1438 if (priv->cpts->tx_enable) 1439 ctrl |= CTRL_V3_TX_TS_BITS; 1440 1441 if (priv->cpts->rx_enable) 1442 ctrl |= CTRL_V3_RX_TS_BITS; 1443 break; 1444 } 1445 1446 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1447 1448 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1449 slave_write(slave, ctrl, CPSW2_CONTROL); 1450 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1451 } 1452 1453 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1454 { 1455 struct cpsw_priv *priv = netdev_priv(dev); 1456 struct cpts *cpts = priv->cpts; 1457 struct hwtstamp_config cfg; 1458 1459 if (priv->version != CPSW_VERSION_1 && 1460 priv->version != CPSW_VERSION_2 && 1461 priv->version != CPSW_VERSION_3) 1462 return -EOPNOTSUPP; 1463 1464 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1465 return -EFAULT; 1466 1467 /* reserved for future extensions */ 1468 if (cfg.flags) 1469 return -EINVAL; 1470 1471 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1472 return -ERANGE; 1473 1474 switch (cfg.rx_filter) { 1475 case HWTSTAMP_FILTER_NONE: 1476 cpts->rx_enable = 0; 1477 break; 1478 case HWTSTAMP_FILTER_ALL: 1479 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1480 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1481 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1482 return -ERANGE; 1483 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1484 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1485 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1486 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1487 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1488 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1489 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1490 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1491 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1492 cpts->rx_enable = 1; 1493 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1494 break; 1495 default: 1496 return -ERANGE; 1497 } 1498 1499 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1500 1501 switch (priv->version) { 1502 case CPSW_VERSION_1: 1503 cpsw_hwtstamp_v1(priv); 1504 break; 1505 case CPSW_VERSION_2: 1506 case CPSW_VERSION_3: 1507 cpsw_hwtstamp_v2(priv); 1508 break; 1509 default: 1510 WARN_ON(1); 1511 } 1512 1513 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1514 } 1515 1516 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1517 { 1518 struct cpsw_priv *priv = netdev_priv(dev); 1519 struct cpts *cpts = priv->cpts; 1520 struct hwtstamp_config cfg; 1521 1522 if (priv->version != CPSW_VERSION_1 && 1523 priv->version != CPSW_VERSION_2 && 1524 priv->version != CPSW_VERSION_3) 1525 return -EOPNOTSUPP; 1526 1527 cfg.flags = 0; 1528 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1529 cfg.rx_filter = (cpts->rx_enable ? 1530 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1531 1532 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1533 } 1534 1535 #endif /*CONFIG_TI_CPTS*/ 1536 1537 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1538 { 1539 struct cpsw_priv *priv = netdev_priv(dev); 1540 int slave_no = cpsw_slave_index(priv); 1541 1542 if (!netif_running(dev)) 1543 return -EINVAL; 1544 1545 switch (cmd) { 1546 #ifdef CONFIG_TI_CPTS 1547 case SIOCSHWTSTAMP: 1548 return cpsw_hwtstamp_set(dev, req); 1549 case SIOCGHWTSTAMP: 1550 return cpsw_hwtstamp_get(dev, req); 1551 #endif 1552 } 1553 1554 if (!priv->slaves[slave_no].phy) 1555 return -EOPNOTSUPP; 1556 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1557 } 1558 1559 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1560 { 1561 struct cpsw_priv *priv = netdev_priv(ndev); 1562 1563 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1564 ndev->stats.tx_errors++; 1565 cpsw_intr_disable(priv); 1566 cpdma_ctlr_int_ctrl(priv->dma, false); 1567 cpdma_chan_stop(priv->txch); 1568 cpdma_chan_start(priv->txch); 1569 cpdma_ctlr_int_ctrl(priv->dma, true); 1570 cpsw_intr_enable(priv); 1571 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1572 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1573 1574 } 1575 1576 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1577 { 1578 struct cpsw_priv *priv = netdev_priv(ndev); 1579 struct sockaddr *addr = (struct sockaddr *)p; 1580 int flags = 0; 1581 u16 vid = 0; 1582 1583 if (!is_valid_ether_addr(addr->sa_data)) 1584 return -EADDRNOTAVAIL; 1585 1586 if (priv->data.dual_emac) { 1587 vid = priv->slaves[priv->emac_port].port_vlan; 1588 flags = ALE_VLAN; 1589 } 1590 1591 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1592 flags, vid); 1593 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1594 flags, vid); 1595 1596 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1597 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1598 for_each_slave(priv, cpsw_set_slave_mac, priv); 1599 1600 return 0; 1601 } 1602 1603 #ifdef CONFIG_NET_POLL_CONTROLLER 1604 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1605 { 1606 struct cpsw_priv *priv = netdev_priv(ndev); 1607 1608 cpsw_intr_disable(priv); 1609 cpdma_ctlr_int_ctrl(priv->dma, false); 1610 cpsw_interrupt(ndev->irq, priv); 1611 cpdma_ctlr_int_ctrl(priv->dma, true); 1612 cpsw_intr_enable(priv); 1613 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1614 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1615 1616 } 1617 #endif 1618 1619 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1620 unsigned short vid) 1621 { 1622 int ret; 1623 1624 ret = cpsw_ale_add_vlan(priv->ale, vid, 1625 ALE_ALL_PORTS << priv->host_port, 1626 0, ALE_ALL_PORTS << priv->host_port, 1627 (ALE_PORT_1 | ALE_PORT_2) << priv->host_port); 1628 if (ret != 0) 1629 return ret; 1630 1631 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1632 priv->host_port, ALE_VLAN, vid); 1633 if (ret != 0) 1634 goto clean_vid; 1635 1636 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1637 ALE_ALL_PORTS << priv->host_port, 1638 ALE_VLAN, vid, 0); 1639 if (ret != 0) 1640 goto clean_vlan_ucast; 1641 return 0; 1642 1643 clean_vlan_ucast: 1644 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1645 priv->host_port, ALE_VLAN, vid); 1646 clean_vid: 1647 cpsw_ale_del_vlan(priv->ale, vid, 0); 1648 return ret; 1649 } 1650 1651 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1652 __be16 proto, u16 vid) 1653 { 1654 struct cpsw_priv *priv = netdev_priv(ndev); 1655 1656 if (vid == priv->data.default_vlan) 1657 return 0; 1658 1659 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1660 return cpsw_add_vlan_ale_entry(priv, vid); 1661 } 1662 1663 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1664 __be16 proto, u16 vid) 1665 { 1666 struct cpsw_priv *priv = netdev_priv(ndev); 1667 int ret; 1668 1669 if (vid == priv->data.default_vlan) 1670 return 0; 1671 1672 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1673 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1674 if (ret != 0) 1675 return ret; 1676 1677 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1678 priv->host_port, ALE_VLAN, vid); 1679 if (ret != 0) 1680 return ret; 1681 1682 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1683 0, ALE_VLAN, vid); 1684 } 1685 1686 static const struct net_device_ops cpsw_netdev_ops = { 1687 .ndo_open = cpsw_ndo_open, 1688 .ndo_stop = cpsw_ndo_stop, 1689 .ndo_start_xmit = cpsw_ndo_start_xmit, 1690 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1691 .ndo_do_ioctl = cpsw_ndo_ioctl, 1692 .ndo_validate_addr = eth_validate_addr, 1693 .ndo_change_mtu = eth_change_mtu, 1694 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1695 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1696 #ifdef CONFIG_NET_POLL_CONTROLLER 1697 .ndo_poll_controller = cpsw_ndo_poll_controller, 1698 #endif 1699 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1700 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1701 }; 1702 1703 static int cpsw_get_regs_len(struct net_device *ndev) 1704 { 1705 struct cpsw_priv *priv = netdev_priv(ndev); 1706 1707 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1708 } 1709 1710 static void cpsw_get_regs(struct net_device *ndev, 1711 struct ethtool_regs *regs, void *p) 1712 { 1713 struct cpsw_priv *priv = netdev_priv(ndev); 1714 u32 *reg = p; 1715 1716 /* update CPSW IP version */ 1717 regs->version = priv->version; 1718 1719 cpsw_ale_dump(priv->ale, reg); 1720 } 1721 1722 static void cpsw_get_drvinfo(struct net_device *ndev, 1723 struct ethtool_drvinfo *info) 1724 { 1725 struct cpsw_priv *priv = netdev_priv(ndev); 1726 1727 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1728 strlcpy(info->version, "1.0", sizeof(info->version)); 1729 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1730 info->regdump_len = cpsw_get_regs_len(ndev); 1731 } 1732 1733 static u32 cpsw_get_msglevel(struct net_device *ndev) 1734 { 1735 struct cpsw_priv *priv = netdev_priv(ndev); 1736 return priv->msg_enable; 1737 } 1738 1739 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1740 { 1741 struct cpsw_priv *priv = netdev_priv(ndev); 1742 priv->msg_enable = value; 1743 } 1744 1745 static int cpsw_get_ts_info(struct net_device *ndev, 1746 struct ethtool_ts_info *info) 1747 { 1748 #ifdef CONFIG_TI_CPTS 1749 struct cpsw_priv *priv = netdev_priv(ndev); 1750 1751 info->so_timestamping = 1752 SOF_TIMESTAMPING_TX_HARDWARE | 1753 SOF_TIMESTAMPING_TX_SOFTWARE | 1754 SOF_TIMESTAMPING_RX_HARDWARE | 1755 SOF_TIMESTAMPING_RX_SOFTWARE | 1756 SOF_TIMESTAMPING_SOFTWARE | 1757 SOF_TIMESTAMPING_RAW_HARDWARE; 1758 info->phc_index = priv->cpts->phc_index; 1759 info->tx_types = 1760 (1 << HWTSTAMP_TX_OFF) | 1761 (1 << HWTSTAMP_TX_ON); 1762 info->rx_filters = 1763 (1 << HWTSTAMP_FILTER_NONE) | 1764 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1765 #else 1766 info->so_timestamping = 1767 SOF_TIMESTAMPING_TX_SOFTWARE | 1768 SOF_TIMESTAMPING_RX_SOFTWARE | 1769 SOF_TIMESTAMPING_SOFTWARE; 1770 info->phc_index = -1; 1771 info->tx_types = 0; 1772 info->rx_filters = 0; 1773 #endif 1774 return 0; 1775 } 1776 1777 static int cpsw_get_settings(struct net_device *ndev, 1778 struct ethtool_cmd *ecmd) 1779 { 1780 struct cpsw_priv *priv = netdev_priv(ndev); 1781 int slave_no = cpsw_slave_index(priv); 1782 1783 if (priv->slaves[slave_no].phy) 1784 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1785 else 1786 return -EOPNOTSUPP; 1787 } 1788 1789 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1790 { 1791 struct cpsw_priv *priv = netdev_priv(ndev); 1792 int slave_no = cpsw_slave_index(priv); 1793 1794 if (priv->slaves[slave_no].phy) 1795 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1796 else 1797 return -EOPNOTSUPP; 1798 } 1799 1800 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1801 { 1802 struct cpsw_priv *priv = netdev_priv(ndev); 1803 int slave_no = cpsw_slave_index(priv); 1804 1805 wol->supported = 0; 1806 wol->wolopts = 0; 1807 1808 if (priv->slaves[slave_no].phy) 1809 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1810 } 1811 1812 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1813 { 1814 struct cpsw_priv *priv = netdev_priv(ndev); 1815 int slave_no = cpsw_slave_index(priv); 1816 1817 if (priv->slaves[slave_no].phy) 1818 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1819 else 1820 return -EOPNOTSUPP; 1821 } 1822 1823 static void cpsw_get_pauseparam(struct net_device *ndev, 1824 struct ethtool_pauseparam *pause) 1825 { 1826 struct cpsw_priv *priv = netdev_priv(ndev); 1827 1828 pause->autoneg = AUTONEG_DISABLE; 1829 pause->rx_pause = priv->rx_pause ? true : false; 1830 pause->tx_pause = priv->tx_pause ? true : false; 1831 } 1832 1833 static int cpsw_set_pauseparam(struct net_device *ndev, 1834 struct ethtool_pauseparam *pause) 1835 { 1836 struct cpsw_priv *priv = netdev_priv(ndev); 1837 bool link; 1838 1839 priv->rx_pause = pause->rx_pause ? true : false; 1840 priv->tx_pause = pause->tx_pause ? true : false; 1841 1842 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1843 1844 return 0; 1845 } 1846 1847 static const struct ethtool_ops cpsw_ethtool_ops = { 1848 .get_drvinfo = cpsw_get_drvinfo, 1849 .get_msglevel = cpsw_get_msglevel, 1850 .set_msglevel = cpsw_set_msglevel, 1851 .get_link = ethtool_op_get_link, 1852 .get_ts_info = cpsw_get_ts_info, 1853 .get_settings = cpsw_get_settings, 1854 .set_settings = cpsw_set_settings, 1855 .get_coalesce = cpsw_get_coalesce, 1856 .set_coalesce = cpsw_set_coalesce, 1857 .get_sset_count = cpsw_get_sset_count, 1858 .get_strings = cpsw_get_strings, 1859 .get_ethtool_stats = cpsw_get_ethtool_stats, 1860 .get_pauseparam = cpsw_get_pauseparam, 1861 .set_pauseparam = cpsw_set_pauseparam, 1862 .get_wol = cpsw_get_wol, 1863 .set_wol = cpsw_set_wol, 1864 .get_regs_len = cpsw_get_regs_len, 1865 .get_regs = cpsw_get_regs, 1866 }; 1867 1868 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1869 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1870 { 1871 void __iomem *regs = priv->regs; 1872 int slave_num = slave->slave_num; 1873 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1874 1875 slave->data = data; 1876 slave->regs = regs + slave_reg_ofs; 1877 slave->sliver = regs + sliver_reg_ofs; 1878 slave->port_vlan = data->dual_emac_res_vlan; 1879 } 1880 1881 #define AM33XX_CTRL_MAC_LO_REG(id) (0x630 + 0x8 * id) 1882 #define AM33XX_CTRL_MAC_HI_REG(id) (0x630 + 0x8 * id + 0x4) 1883 1884 static int cpsw_am33xx_cm_get_macid(struct device *dev, int slave, 1885 u8 *mac_addr) 1886 { 1887 u32 macid_lo; 1888 u32 macid_hi; 1889 struct regmap *syscon; 1890 1891 syscon = syscon_regmap_lookup_by_phandle(dev->of_node, "syscon"); 1892 if (IS_ERR(syscon)) { 1893 if (PTR_ERR(syscon) == -ENODEV) 1894 return 0; 1895 return PTR_ERR(syscon); 1896 } 1897 1898 regmap_read(syscon, AM33XX_CTRL_MAC_LO_REG(slave), &macid_lo); 1899 regmap_read(syscon, AM33XX_CTRL_MAC_HI_REG(slave), &macid_hi); 1900 1901 mac_addr[5] = (macid_lo >> 8) & 0xff; 1902 mac_addr[4] = macid_lo & 0xff; 1903 mac_addr[3] = (macid_hi >> 24) & 0xff; 1904 mac_addr[2] = (macid_hi >> 16) & 0xff; 1905 mac_addr[1] = (macid_hi >> 8) & 0xff; 1906 mac_addr[0] = macid_hi & 0xff; 1907 1908 return 0; 1909 } 1910 1911 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1912 struct platform_device *pdev) 1913 { 1914 struct device_node *node = pdev->dev.of_node; 1915 struct device_node *slave_node; 1916 int i = 0, ret; 1917 u32 prop; 1918 1919 if (!node) 1920 return -EINVAL; 1921 1922 if (of_property_read_u32(node, "slaves", &prop)) { 1923 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1924 return -EINVAL; 1925 } 1926 data->slaves = prop; 1927 1928 if (of_property_read_u32(node, "active_slave", &prop)) { 1929 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1930 return -EINVAL; 1931 } 1932 data->active_slave = prop; 1933 1934 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1935 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1936 return -EINVAL; 1937 } 1938 data->cpts_clock_mult = prop; 1939 1940 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1941 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1942 return -EINVAL; 1943 } 1944 data->cpts_clock_shift = prop; 1945 1946 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1947 * sizeof(struct cpsw_slave_data), 1948 GFP_KERNEL); 1949 if (!data->slave_data) 1950 return -ENOMEM; 1951 1952 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1953 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1954 return -EINVAL; 1955 } 1956 data->channels = prop; 1957 1958 if (of_property_read_u32(node, "ale_entries", &prop)) { 1959 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1960 return -EINVAL; 1961 } 1962 data->ale_entries = prop; 1963 1964 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1965 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1966 return -EINVAL; 1967 } 1968 data->bd_ram_size = prop; 1969 1970 if (of_property_read_u32(node, "rx_descs", &prop)) { 1971 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1972 return -EINVAL; 1973 } 1974 data->rx_descs = prop; 1975 1976 if (of_property_read_u32(node, "mac_control", &prop)) { 1977 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1978 return -EINVAL; 1979 } 1980 data->mac_control = prop; 1981 1982 if (of_property_read_bool(node, "dual_emac")) 1983 data->dual_emac = 1; 1984 1985 /* 1986 * Populate all the child nodes here... 1987 */ 1988 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1989 /* We do not want to force this, as in some cases may not have child */ 1990 if (ret) 1991 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1992 1993 for_each_child_of_node(node, slave_node) { 1994 struct cpsw_slave_data *slave_data = data->slave_data + i; 1995 const void *mac_addr = NULL; 1996 u32 phyid; 1997 int lenp; 1998 const __be32 *parp; 1999 struct device_node *mdio_node; 2000 struct platform_device *mdio; 2001 2002 /* This is no slave child node, continue */ 2003 if (strcmp(slave_node->name, "slave")) 2004 continue; 2005 2006 parp = of_get_property(slave_node, "phy_id", &lenp); 2007 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2008 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2009 return -EINVAL; 2010 } 2011 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2012 phyid = be32_to_cpup(parp+1); 2013 mdio = of_find_device_by_node(mdio_node); 2014 of_node_put(mdio_node); 2015 if (!mdio) { 2016 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2017 return -EINVAL; 2018 } 2019 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2020 PHY_ID_FMT, mdio->name, phyid); 2021 2022 mac_addr = of_get_mac_address(slave_node); 2023 if (mac_addr) { 2024 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2025 } else { 2026 if (of_machine_is_compatible("ti,am33xx")) { 2027 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, i, 2028 slave_data->mac_addr); 2029 if (ret) 2030 return ret; 2031 } 2032 } 2033 2034 slave_data->phy_if = of_get_phy_mode(slave_node); 2035 if (slave_data->phy_if < 0) { 2036 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2037 i); 2038 return slave_data->phy_if; 2039 } 2040 2041 if (data->dual_emac) { 2042 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2043 &prop)) { 2044 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2045 slave_data->dual_emac_res_vlan = i+1; 2046 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2047 slave_data->dual_emac_res_vlan, i); 2048 } else { 2049 slave_data->dual_emac_res_vlan = prop; 2050 } 2051 } 2052 2053 i++; 2054 if (i == data->slaves) 2055 break; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2062 struct cpsw_priv *priv) 2063 { 2064 struct cpsw_platform_data *data = &priv->data; 2065 struct net_device *ndev; 2066 struct cpsw_priv *priv_sl2; 2067 int ret = 0, i; 2068 2069 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2070 if (!ndev) { 2071 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2072 return -ENOMEM; 2073 } 2074 2075 priv_sl2 = netdev_priv(ndev); 2076 spin_lock_init(&priv_sl2->lock); 2077 priv_sl2->data = *data; 2078 priv_sl2->pdev = pdev; 2079 priv_sl2->ndev = ndev; 2080 priv_sl2->dev = &ndev->dev; 2081 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2082 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2083 2084 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2085 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2086 ETH_ALEN); 2087 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2088 } else { 2089 random_ether_addr(priv_sl2->mac_addr); 2090 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2091 } 2092 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2093 2094 priv_sl2->slaves = priv->slaves; 2095 priv_sl2->clk = priv->clk; 2096 2097 priv_sl2->coal_intvl = 0; 2098 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2099 2100 priv_sl2->regs = priv->regs; 2101 priv_sl2->host_port = priv->host_port; 2102 priv_sl2->host_port_regs = priv->host_port_regs; 2103 priv_sl2->wr_regs = priv->wr_regs; 2104 priv_sl2->hw_stats = priv->hw_stats; 2105 priv_sl2->dma = priv->dma; 2106 priv_sl2->txch = priv->txch; 2107 priv_sl2->rxch = priv->rxch; 2108 priv_sl2->ale = priv->ale; 2109 priv_sl2->emac_port = 1; 2110 priv->slaves[1].ndev = ndev; 2111 priv_sl2->cpts = priv->cpts; 2112 priv_sl2->version = priv->version; 2113 2114 for (i = 0; i < priv->num_irqs; i++) { 2115 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2116 priv_sl2->num_irqs = priv->num_irqs; 2117 } 2118 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2119 2120 ndev->netdev_ops = &cpsw_netdev_ops; 2121 ndev->ethtool_ops = &cpsw_ethtool_ops; 2122 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2123 2124 /* register the network device */ 2125 SET_NETDEV_DEV(ndev, &pdev->dev); 2126 ret = register_netdev(ndev); 2127 if (ret) { 2128 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2129 free_netdev(ndev); 2130 ret = -ENODEV; 2131 } 2132 2133 return ret; 2134 } 2135 2136 static int cpsw_probe(struct platform_device *pdev) 2137 { 2138 struct cpsw_platform_data *data; 2139 struct net_device *ndev; 2140 struct cpsw_priv *priv; 2141 struct cpdma_params dma_params; 2142 struct cpsw_ale_params ale_params; 2143 void __iomem *ss_regs; 2144 struct resource *res, *ss_res; 2145 u32 slave_offset, sliver_offset, slave_size; 2146 int ret = 0, i, k = 0; 2147 2148 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2149 if (!ndev) { 2150 dev_err(&pdev->dev, "error allocating net_device\n"); 2151 return -ENOMEM; 2152 } 2153 2154 platform_set_drvdata(pdev, ndev); 2155 priv = netdev_priv(ndev); 2156 spin_lock_init(&priv->lock); 2157 priv->pdev = pdev; 2158 priv->ndev = ndev; 2159 priv->dev = &ndev->dev; 2160 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2161 priv->rx_packet_max = max(rx_packet_max, 128); 2162 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2163 priv->irq_enabled = true; 2164 if (!priv->cpts) { 2165 dev_err(&pdev->dev, "error allocating cpts\n"); 2166 ret = -ENOMEM; 2167 goto clean_ndev_ret; 2168 } 2169 2170 /* 2171 * This may be required here for child devices. 2172 */ 2173 pm_runtime_enable(&pdev->dev); 2174 2175 /* Select default pin state */ 2176 pinctrl_pm_select_default_state(&pdev->dev); 2177 2178 if (cpsw_probe_dt(&priv->data, pdev)) { 2179 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2180 ret = -ENODEV; 2181 goto clean_runtime_disable_ret; 2182 } 2183 data = &priv->data; 2184 2185 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2186 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2187 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2188 } else { 2189 eth_random_addr(priv->mac_addr); 2190 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2191 } 2192 2193 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2194 2195 priv->slaves = devm_kzalloc(&pdev->dev, 2196 sizeof(struct cpsw_slave) * data->slaves, 2197 GFP_KERNEL); 2198 if (!priv->slaves) { 2199 ret = -ENOMEM; 2200 goto clean_runtime_disable_ret; 2201 } 2202 for (i = 0; i < data->slaves; i++) 2203 priv->slaves[i].slave_num = i; 2204 2205 priv->slaves[0].ndev = ndev; 2206 priv->emac_port = 0; 2207 2208 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2209 if (IS_ERR(priv->clk)) { 2210 dev_err(priv->dev, "fck is not found\n"); 2211 ret = -ENODEV; 2212 goto clean_runtime_disable_ret; 2213 } 2214 priv->coal_intvl = 0; 2215 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2216 2217 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2218 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2219 if (IS_ERR(ss_regs)) { 2220 ret = PTR_ERR(ss_regs); 2221 goto clean_runtime_disable_ret; 2222 } 2223 priv->regs = ss_regs; 2224 priv->host_port = HOST_PORT_NUM; 2225 2226 /* Need to enable clocks with runtime PM api to access module 2227 * registers 2228 */ 2229 pm_runtime_get_sync(&pdev->dev); 2230 priv->version = readl(&priv->regs->id_ver); 2231 pm_runtime_put_sync(&pdev->dev); 2232 2233 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2234 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2235 if (IS_ERR(priv->wr_regs)) { 2236 ret = PTR_ERR(priv->wr_regs); 2237 goto clean_runtime_disable_ret; 2238 } 2239 2240 memset(&dma_params, 0, sizeof(dma_params)); 2241 memset(&ale_params, 0, sizeof(ale_params)); 2242 2243 switch (priv->version) { 2244 case CPSW_VERSION_1: 2245 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2246 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2247 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2248 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2249 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2250 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2251 slave_offset = CPSW1_SLAVE_OFFSET; 2252 slave_size = CPSW1_SLAVE_SIZE; 2253 sliver_offset = CPSW1_SLIVER_OFFSET; 2254 dma_params.desc_mem_phys = 0; 2255 break; 2256 case CPSW_VERSION_2: 2257 case CPSW_VERSION_3: 2258 case CPSW_VERSION_4: 2259 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2260 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2261 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2262 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2263 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2264 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2265 slave_offset = CPSW2_SLAVE_OFFSET; 2266 slave_size = CPSW2_SLAVE_SIZE; 2267 sliver_offset = CPSW2_SLIVER_OFFSET; 2268 dma_params.desc_mem_phys = 2269 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2270 break; 2271 default: 2272 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2273 ret = -ENODEV; 2274 goto clean_runtime_disable_ret; 2275 } 2276 for (i = 0; i < priv->data.slaves; i++) { 2277 struct cpsw_slave *slave = &priv->slaves[i]; 2278 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2279 slave_offset += slave_size; 2280 sliver_offset += SLIVER_SIZE; 2281 } 2282 2283 dma_params.dev = &pdev->dev; 2284 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2285 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2286 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2287 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2288 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2289 2290 dma_params.num_chan = data->channels; 2291 dma_params.has_soft_reset = true; 2292 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2293 dma_params.desc_mem_size = data->bd_ram_size; 2294 dma_params.desc_align = 16; 2295 dma_params.has_ext_regs = true; 2296 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2297 2298 priv->dma = cpdma_ctlr_create(&dma_params); 2299 if (!priv->dma) { 2300 dev_err(priv->dev, "error initializing dma\n"); 2301 ret = -ENOMEM; 2302 goto clean_runtime_disable_ret; 2303 } 2304 2305 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2306 cpsw_tx_handler); 2307 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2308 cpsw_rx_handler); 2309 2310 if (WARN_ON(!priv->txch || !priv->rxch)) { 2311 dev_err(priv->dev, "error initializing dma channels\n"); 2312 ret = -ENOMEM; 2313 goto clean_dma_ret; 2314 } 2315 2316 ale_params.dev = &ndev->dev; 2317 ale_params.ale_ageout = ale_ageout; 2318 ale_params.ale_entries = data->ale_entries; 2319 ale_params.ale_ports = data->slaves; 2320 2321 priv->ale = cpsw_ale_create(&ale_params); 2322 if (!priv->ale) { 2323 dev_err(priv->dev, "error initializing ale engine\n"); 2324 ret = -ENODEV; 2325 goto clean_dma_ret; 2326 } 2327 2328 ndev->irq = platform_get_irq(pdev, 0); 2329 if (ndev->irq < 0) { 2330 dev_err(priv->dev, "error getting irq resource\n"); 2331 ret = -ENOENT; 2332 goto clean_ale_ret; 2333 } 2334 2335 while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) { 2336 if (k >= ARRAY_SIZE(priv->irqs_table)) { 2337 ret = -EINVAL; 2338 goto clean_ale_ret; 2339 } 2340 2341 ret = devm_request_irq(&pdev->dev, res->start, cpsw_interrupt, 2342 0, dev_name(&pdev->dev), priv); 2343 if (ret < 0) { 2344 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2345 goto clean_ale_ret; 2346 } 2347 2348 priv->irqs_table[k] = res->start; 2349 k++; 2350 } 2351 2352 priv->num_irqs = k; 2353 2354 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2355 2356 ndev->netdev_ops = &cpsw_netdev_ops; 2357 ndev->ethtool_ops = &cpsw_ethtool_ops; 2358 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2359 2360 /* register the network device */ 2361 SET_NETDEV_DEV(ndev, &pdev->dev); 2362 ret = register_netdev(ndev); 2363 if (ret) { 2364 dev_err(priv->dev, "error registering net device\n"); 2365 ret = -ENODEV; 2366 goto clean_ale_ret; 2367 } 2368 2369 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2370 &ss_res->start, ndev->irq); 2371 2372 if (priv->data.dual_emac) { 2373 ret = cpsw_probe_dual_emac(pdev, priv); 2374 if (ret) { 2375 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2376 goto clean_ale_ret; 2377 } 2378 } 2379 2380 return 0; 2381 2382 clean_ale_ret: 2383 cpsw_ale_destroy(priv->ale); 2384 clean_dma_ret: 2385 cpdma_chan_destroy(priv->txch); 2386 cpdma_chan_destroy(priv->rxch); 2387 cpdma_ctlr_destroy(priv->dma); 2388 clean_runtime_disable_ret: 2389 pm_runtime_disable(&pdev->dev); 2390 clean_ndev_ret: 2391 free_netdev(priv->ndev); 2392 return ret; 2393 } 2394 2395 static int cpsw_remove_child_device(struct device *dev, void *c) 2396 { 2397 struct platform_device *pdev = to_platform_device(dev); 2398 2399 of_device_unregister(pdev); 2400 2401 return 0; 2402 } 2403 2404 static int cpsw_remove(struct platform_device *pdev) 2405 { 2406 struct net_device *ndev = platform_get_drvdata(pdev); 2407 struct cpsw_priv *priv = netdev_priv(ndev); 2408 2409 if (priv->data.dual_emac) 2410 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2411 unregister_netdev(ndev); 2412 2413 cpsw_ale_destroy(priv->ale); 2414 cpdma_chan_destroy(priv->txch); 2415 cpdma_chan_destroy(priv->rxch); 2416 cpdma_ctlr_destroy(priv->dma); 2417 pm_runtime_disable(&pdev->dev); 2418 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2419 if (priv->data.dual_emac) 2420 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2421 free_netdev(ndev); 2422 return 0; 2423 } 2424 2425 static int cpsw_suspend(struct device *dev) 2426 { 2427 struct platform_device *pdev = to_platform_device(dev); 2428 struct net_device *ndev = platform_get_drvdata(pdev); 2429 struct cpsw_priv *priv = netdev_priv(ndev); 2430 2431 if (priv->data.dual_emac) { 2432 int i; 2433 2434 for (i = 0; i < priv->data.slaves; i++) { 2435 if (netif_running(priv->slaves[i].ndev)) 2436 cpsw_ndo_stop(priv->slaves[i].ndev); 2437 soft_reset_slave(priv->slaves + i); 2438 } 2439 } else { 2440 if (netif_running(ndev)) 2441 cpsw_ndo_stop(ndev); 2442 for_each_slave(priv, soft_reset_slave); 2443 } 2444 2445 pm_runtime_put_sync(&pdev->dev); 2446 2447 /* Select sleep pin state */ 2448 pinctrl_pm_select_sleep_state(&pdev->dev); 2449 2450 return 0; 2451 } 2452 2453 static int cpsw_resume(struct device *dev) 2454 { 2455 struct platform_device *pdev = to_platform_device(dev); 2456 struct net_device *ndev = platform_get_drvdata(pdev); 2457 struct cpsw_priv *priv = netdev_priv(ndev); 2458 2459 pm_runtime_get_sync(&pdev->dev); 2460 2461 /* Select default pin state */ 2462 pinctrl_pm_select_default_state(&pdev->dev); 2463 2464 if (priv->data.dual_emac) { 2465 int i; 2466 2467 for (i = 0; i < priv->data.slaves; i++) { 2468 if (netif_running(priv->slaves[i].ndev)) 2469 cpsw_ndo_open(priv->slaves[i].ndev); 2470 } 2471 } else { 2472 if (netif_running(ndev)) 2473 cpsw_ndo_open(ndev); 2474 } 2475 return 0; 2476 } 2477 2478 static const struct dev_pm_ops cpsw_pm_ops = { 2479 .suspend = cpsw_suspend, 2480 .resume = cpsw_resume, 2481 }; 2482 2483 static const struct of_device_id cpsw_of_mtable[] = { 2484 { .compatible = "ti,cpsw", }, 2485 { /* sentinel */ }, 2486 }; 2487 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2488 2489 static struct platform_driver cpsw_driver = { 2490 .driver = { 2491 .name = "cpsw", 2492 .pm = &cpsw_pm_ops, 2493 .of_match_table = cpsw_of_mtable, 2494 }, 2495 .probe = cpsw_probe, 2496 .remove = cpsw_remove, 2497 }; 2498 2499 static int __init cpsw_init(void) 2500 { 2501 return platform_driver_register(&cpsw_driver); 2502 } 2503 late_initcall(cpsw_init); 2504 2505 static void __exit cpsw_exit(void) 2506 { 2507 platform_driver_unregister(&cpsw_driver); 2508 } 2509 module_exit(cpsw_exit); 2510 2511 MODULE_LICENSE("GPL"); 2512 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2513 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2514 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2515