1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_net.h> 35 #include <linux/of_device.h> 36 #include <linux/if_vlan.h> 37 38 #include <linux/pinctrl/consumer.h> 39 40 #include "cpsw.h" 41 #include "cpsw_ale.h" 42 #include "cpts.h" 43 #include "davinci_cpdma.h" 44 45 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 46 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 47 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 48 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 49 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 50 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 51 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 52 NETIF_MSG_RX_STATUS) 53 54 #define cpsw_info(priv, type, format, ...) \ 55 do { \ 56 if (netif_msg_##type(priv) && net_ratelimit()) \ 57 dev_info(priv->dev, format, ## __VA_ARGS__); \ 58 } while (0) 59 60 #define cpsw_err(priv, type, format, ...) \ 61 do { \ 62 if (netif_msg_##type(priv) && net_ratelimit()) \ 63 dev_err(priv->dev, format, ## __VA_ARGS__); \ 64 } while (0) 65 66 #define cpsw_dbg(priv, type, format, ...) \ 67 do { \ 68 if (netif_msg_##type(priv) && net_ratelimit()) \ 69 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 70 } while (0) 71 72 #define cpsw_notice(priv, type, format, ...) \ 73 do { \ 74 if (netif_msg_##type(priv) && net_ratelimit()) \ 75 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 76 } while (0) 77 78 #define ALE_ALL_PORTS 0x7 79 80 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 81 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 82 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 83 84 #define CPSW_VERSION_1 0x19010a 85 #define CPSW_VERSION_2 0x19010c 86 #define CPSW_VERSION_3 0x19010f 87 #define CPSW_VERSION_4 0x190112 88 89 #define HOST_PORT_NUM 0 90 #define SLIVER_SIZE 0x40 91 92 #define CPSW1_HOST_PORT_OFFSET 0x028 93 #define CPSW1_SLAVE_OFFSET 0x050 94 #define CPSW1_SLAVE_SIZE 0x040 95 #define CPSW1_CPDMA_OFFSET 0x100 96 #define CPSW1_STATERAM_OFFSET 0x200 97 #define CPSW1_HW_STATS 0x400 98 #define CPSW1_CPTS_OFFSET 0x500 99 #define CPSW1_ALE_OFFSET 0x600 100 #define CPSW1_SLIVER_OFFSET 0x700 101 102 #define CPSW2_HOST_PORT_OFFSET 0x108 103 #define CPSW2_SLAVE_OFFSET 0x200 104 #define CPSW2_SLAVE_SIZE 0x100 105 #define CPSW2_CPDMA_OFFSET 0x800 106 #define CPSW2_HW_STATS 0x900 107 #define CPSW2_STATERAM_OFFSET 0xa00 108 #define CPSW2_CPTS_OFFSET 0xc00 109 #define CPSW2_ALE_OFFSET 0xd00 110 #define CPSW2_SLIVER_OFFSET 0xd80 111 #define CPSW2_BD_OFFSET 0x2000 112 113 #define CPDMA_RXTHRESH 0x0c0 114 #define CPDMA_RXFREE 0x0e0 115 #define CPDMA_TXHDP 0x00 116 #define CPDMA_RXHDP 0x20 117 #define CPDMA_TXCP 0x40 118 #define CPDMA_RXCP 0x60 119 120 #define CPSW_POLL_WEIGHT 64 121 #define CPSW_MIN_PACKET_SIZE 60 122 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 123 124 #define RX_PRIORITY_MAPPING 0x76543210 125 #define TX_PRIORITY_MAPPING 0x33221100 126 #define CPDMA_TX_PRIORITY_MAP 0x76543210 127 128 #define CPSW_VLAN_AWARE BIT(1) 129 #define CPSW_ALE_VLAN_AWARE 1 130 131 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 132 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 133 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 134 135 #define CPSW_INTPACEEN (0x3f << 16) 136 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 137 #define CPSW_CMINTMAX_CNT 63 138 #define CPSW_CMINTMIN_CNT 2 139 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 140 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 141 142 #define cpsw_slave_index(priv) \ 143 ((priv->data.dual_emac) ? priv->emac_port : \ 144 priv->data.active_slave) 145 146 static int debug_level; 147 module_param(debug_level, int, 0); 148 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 149 150 static int ale_ageout = 10; 151 module_param(ale_ageout, int, 0); 152 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 153 154 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 155 module_param(rx_packet_max, int, 0); 156 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 157 158 struct cpsw_wr_regs { 159 u32 id_ver; 160 u32 soft_reset; 161 u32 control; 162 u32 int_control; 163 u32 rx_thresh_en; 164 u32 rx_en; 165 u32 tx_en; 166 u32 misc_en; 167 u32 mem_allign1[8]; 168 u32 rx_thresh_stat; 169 u32 rx_stat; 170 u32 tx_stat; 171 u32 misc_stat; 172 u32 mem_allign2[8]; 173 u32 rx_imax; 174 u32 tx_imax; 175 176 }; 177 178 struct cpsw_ss_regs { 179 u32 id_ver; 180 u32 control; 181 u32 soft_reset; 182 u32 stat_port_en; 183 u32 ptype; 184 u32 soft_idle; 185 u32 thru_rate; 186 u32 gap_thresh; 187 u32 tx_start_wds; 188 u32 flow_control; 189 u32 vlan_ltype; 190 u32 ts_ltype; 191 u32 dlr_ltype; 192 }; 193 194 /* CPSW_PORT_V1 */ 195 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 196 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 197 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 198 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 199 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 200 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 201 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 202 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 203 204 /* CPSW_PORT_V2 */ 205 #define CPSW2_CONTROL 0x00 /* Control Register */ 206 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 207 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 208 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 209 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 210 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 211 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 212 213 /* CPSW_PORT_V1 and V2 */ 214 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 215 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 216 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 217 218 /* CPSW_PORT_V2 only */ 219 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 220 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 226 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 227 228 /* Bit definitions for the CPSW2_CONTROL register */ 229 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 230 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 231 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 232 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 233 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 234 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 235 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 236 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 237 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 238 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 239 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 240 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 241 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 242 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 243 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 244 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 245 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 246 247 #define CTRL_V2_TS_BITS \ 248 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 249 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 250 251 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 252 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 253 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 254 255 256 #define CTRL_V3_TS_BITS \ 257 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 258 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 259 TS_LTYPE1_EN) 260 261 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 262 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 263 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 264 265 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 266 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 267 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 268 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 269 #define TS_MSG_TYPE_EN_MASK (0xffff) 270 271 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 272 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 273 274 /* Bit definitions for the CPSW1_TS_CTL register */ 275 #define CPSW_V1_TS_RX_EN BIT(0) 276 #define CPSW_V1_TS_TX_EN BIT(4) 277 #define CPSW_V1_MSG_TYPE_OFS 16 278 279 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 280 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 281 282 struct cpsw_host_regs { 283 u32 max_blks; 284 u32 blk_cnt; 285 u32 tx_in_ctl; 286 u32 port_vlan; 287 u32 tx_pri_map; 288 u32 cpdma_tx_pri_map; 289 u32 cpdma_rx_chan_map; 290 }; 291 292 struct cpsw_sliver_regs { 293 u32 id_ver; 294 u32 mac_control; 295 u32 mac_status; 296 u32 soft_reset; 297 u32 rx_maxlen; 298 u32 __reserved_0; 299 u32 rx_pause; 300 u32 tx_pause; 301 u32 __reserved_1; 302 u32 rx_pri_map; 303 }; 304 305 struct cpsw_hw_stats { 306 u32 rxgoodframes; 307 u32 rxbroadcastframes; 308 u32 rxmulticastframes; 309 u32 rxpauseframes; 310 u32 rxcrcerrors; 311 u32 rxaligncodeerrors; 312 u32 rxoversizedframes; 313 u32 rxjabberframes; 314 u32 rxundersizedframes; 315 u32 rxfragments; 316 u32 __pad_0[2]; 317 u32 rxoctets; 318 u32 txgoodframes; 319 u32 txbroadcastframes; 320 u32 txmulticastframes; 321 u32 txpauseframes; 322 u32 txdeferredframes; 323 u32 txcollisionframes; 324 u32 txsinglecollframes; 325 u32 txmultcollframes; 326 u32 txexcessivecollisions; 327 u32 txlatecollisions; 328 u32 txunderrun; 329 u32 txcarriersenseerrors; 330 u32 txoctets; 331 u32 octetframes64; 332 u32 octetframes65t127; 333 u32 octetframes128t255; 334 u32 octetframes256t511; 335 u32 octetframes512t1023; 336 u32 octetframes1024tup; 337 u32 netoctets; 338 u32 rxsofoverruns; 339 u32 rxmofoverruns; 340 u32 rxdmaoverruns; 341 }; 342 343 struct cpsw_slave { 344 void __iomem *regs; 345 struct cpsw_sliver_regs __iomem *sliver; 346 int slave_num; 347 u32 mac_control; 348 struct cpsw_slave_data *data; 349 struct phy_device *phy; 350 struct net_device *ndev; 351 u32 port_vlan; 352 u32 open_stat; 353 }; 354 355 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 356 { 357 return __raw_readl(slave->regs + offset); 358 } 359 360 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 361 { 362 __raw_writel(val, slave->regs + offset); 363 } 364 365 struct cpsw_priv { 366 spinlock_t lock; 367 struct platform_device *pdev; 368 struct net_device *ndev; 369 struct napi_struct napi_rx; 370 struct napi_struct napi_tx; 371 struct device *dev; 372 struct cpsw_platform_data data; 373 struct cpsw_ss_regs __iomem *regs; 374 struct cpsw_wr_regs __iomem *wr_regs; 375 u8 __iomem *hw_stats; 376 struct cpsw_host_regs __iomem *host_port_regs; 377 u32 msg_enable; 378 u32 version; 379 u32 coal_intvl; 380 u32 bus_freq_mhz; 381 int rx_packet_max; 382 int host_port; 383 struct clk *clk; 384 u8 mac_addr[ETH_ALEN]; 385 struct cpsw_slave *slaves; 386 struct cpdma_ctlr *dma; 387 struct cpdma_chan *txch, *rxch; 388 struct cpsw_ale *ale; 389 bool rx_pause; 390 bool tx_pause; 391 bool quirk_irq; 392 bool rx_irq_disabled; 393 bool tx_irq_disabled; 394 /* snapshot of IRQ numbers */ 395 u32 irqs_table[4]; 396 u32 num_irqs; 397 struct cpts *cpts; 398 u32 emac_port; 399 }; 400 401 struct cpsw_stats { 402 char stat_string[ETH_GSTRING_LEN]; 403 int type; 404 int sizeof_stat; 405 int stat_offset; 406 }; 407 408 enum { 409 CPSW_STATS, 410 CPDMA_RX_STATS, 411 CPDMA_TX_STATS, 412 }; 413 414 #define CPSW_STAT(m) CPSW_STATS, \ 415 sizeof(((struct cpsw_hw_stats *)0)->m), \ 416 offsetof(struct cpsw_hw_stats, m) 417 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 418 sizeof(((struct cpdma_chan_stats *)0)->m), \ 419 offsetof(struct cpdma_chan_stats, m) 420 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 421 sizeof(((struct cpdma_chan_stats *)0)->m), \ 422 offsetof(struct cpdma_chan_stats, m) 423 424 static const struct cpsw_stats cpsw_gstrings_stats[] = { 425 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 426 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 427 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 428 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 429 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 430 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 431 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 432 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 433 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 434 { "Rx Fragments", CPSW_STAT(rxfragments) }, 435 { "Rx Octets", CPSW_STAT(rxoctets) }, 436 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 437 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 438 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 439 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 440 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 441 { "Collisions", CPSW_STAT(txcollisionframes) }, 442 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 443 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 444 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 445 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 446 { "Tx Underrun", CPSW_STAT(txunderrun) }, 447 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 448 { "Tx Octets", CPSW_STAT(txoctets) }, 449 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 450 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 451 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 452 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 453 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 454 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 455 { "Net Octets", CPSW_STAT(netoctets) }, 456 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 457 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 458 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 459 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 460 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 461 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 462 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 463 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 464 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 465 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 466 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 467 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 468 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 469 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 470 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 471 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 472 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 473 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 474 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 475 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 476 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 477 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 478 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 479 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 480 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 481 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 482 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 483 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 484 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 485 }; 486 487 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 488 489 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 490 #define for_each_slave(priv, func, arg...) \ 491 do { \ 492 struct cpsw_slave *slave; \ 493 int n; \ 494 if (priv->data.dual_emac) \ 495 (func)((priv)->slaves + priv->emac_port, ##arg);\ 496 else \ 497 for (n = (priv)->data.slaves, \ 498 slave = (priv)->slaves; \ 499 n; n--) \ 500 (func)(slave++, ##arg); \ 501 } while (0) 502 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 503 ((__slave_no__ < priv->data.slaves) ? \ 504 priv->slaves[__slave_no__].ndev : NULL) 505 #define cpsw_get_slave_priv(priv, __slave_no__) \ 506 (((__slave_no__ < priv->data.slaves) && \ 507 (priv->slaves[__slave_no__].ndev)) ? \ 508 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 509 510 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 511 do { \ 512 if (!priv->data.dual_emac) \ 513 break; \ 514 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 515 ndev = cpsw_get_slave_ndev(priv, 0); \ 516 priv = netdev_priv(ndev); \ 517 skb->dev = ndev; \ 518 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 519 ndev = cpsw_get_slave_ndev(priv, 1); \ 520 priv = netdev_priv(ndev); \ 521 skb->dev = ndev; \ 522 } \ 523 } while (0) 524 #define cpsw_add_mcast(priv, addr) \ 525 do { \ 526 if (priv->data.dual_emac) { \ 527 struct cpsw_slave *slave = priv->slaves + \ 528 priv->emac_port; \ 529 int slave_port = cpsw_get_slave_port(priv, \ 530 slave->slave_num); \ 531 cpsw_ale_add_mcast(priv->ale, addr, \ 532 1 << slave_port | 1 << priv->host_port, \ 533 ALE_VLAN, slave->port_vlan, 0); \ 534 } else { \ 535 cpsw_ale_add_mcast(priv->ale, addr, \ 536 ALE_ALL_PORTS << priv->host_port, \ 537 0, 0, 0); \ 538 } \ 539 } while (0) 540 541 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 542 { 543 if (priv->host_port == 0) 544 return slave_num + 1; 545 else 546 return slave_num; 547 } 548 549 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 550 { 551 struct cpsw_priv *priv = netdev_priv(ndev); 552 struct cpsw_ale *ale = priv->ale; 553 int i; 554 555 if (priv->data.dual_emac) { 556 bool flag = false; 557 558 /* Enabling promiscuous mode for one interface will be 559 * common for both the interface as the interface shares 560 * the same hardware resource. 561 */ 562 for (i = 0; i < priv->data.slaves; i++) 563 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 564 flag = true; 565 566 if (!enable && flag) { 567 enable = true; 568 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 569 } 570 571 if (enable) { 572 /* Enable Bypass */ 573 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 574 575 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 576 } else { 577 /* Disable Bypass */ 578 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 579 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 580 } 581 } else { 582 if (enable) { 583 unsigned long timeout = jiffies + HZ; 584 585 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 586 for (i = 0; i <= priv->data.slaves; i++) { 587 cpsw_ale_control_set(ale, i, 588 ALE_PORT_NOLEARN, 1); 589 cpsw_ale_control_set(ale, i, 590 ALE_PORT_NO_SA_UPDATE, 1); 591 } 592 593 /* Clear All Untouched entries */ 594 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 595 do { 596 cpu_relax(); 597 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 598 break; 599 } while (time_after(timeout, jiffies)); 600 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 601 602 /* Clear all mcast from ALE */ 603 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 604 priv->host_port, -1); 605 606 /* Flood All Unicast Packets to Host port */ 607 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 608 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 609 } else { 610 /* Don't Flood All Unicast Packets to Host port */ 611 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 612 613 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 614 for (i = 0; i <= priv->data.slaves; i++) { 615 cpsw_ale_control_set(ale, i, 616 ALE_PORT_NOLEARN, 0); 617 cpsw_ale_control_set(ale, i, 618 ALE_PORT_NO_SA_UPDATE, 0); 619 } 620 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 621 } 622 } 623 } 624 625 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 626 { 627 struct cpsw_priv *priv = netdev_priv(ndev); 628 int vid; 629 630 if (priv->data.dual_emac) 631 vid = priv->slaves[priv->emac_port].port_vlan; 632 else 633 vid = priv->data.default_vlan; 634 635 if (ndev->flags & IFF_PROMISC) { 636 /* Enable promiscuous mode */ 637 cpsw_set_promiscious(ndev, true); 638 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 639 return; 640 } else { 641 /* Disable promiscuous mode */ 642 cpsw_set_promiscious(ndev, false); 643 } 644 645 /* Restore allmulti on vlans if necessary */ 646 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 647 648 /* Clear all mcast from ALE */ 649 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 650 vid); 651 652 if (!netdev_mc_empty(ndev)) { 653 struct netdev_hw_addr *ha; 654 655 /* program multicast address list into ALE register */ 656 netdev_for_each_mc_addr(ha, ndev) { 657 cpsw_add_mcast(priv, (u8 *)ha->addr); 658 } 659 } 660 } 661 662 static void cpsw_intr_enable(struct cpsw_priv *priv) 663 { 664 __raw_writel(0xFF, &priv->wr_regs->tx_en); 665 __raw_writel(0xFF, &priv->wr_regs->rx_en); 666 667 cpdma_ctlr_int_ctrl(priv->dma, true); 668 return; 669 } 670 671 static void cpsw_intr_disable(struct cpsw_priv *priv) 672 { 673 __raw_writel(0, &priv->wr_regs->tx_en); 674 __raw_writel(0, &priv->wr_regs->rx_en); 675 676 cpdma_ctlr_int_ctrl(priv->dma, false); 677 return; 678 } 679 680 static void cpsw_tx_handler(void *token, int len, int status) 681 { 682 struct sk_buff *skb = token; 683 struct net_device *ndev = skb->dev; 684 struct cpsw_priv *priv = netdev_priv(ndev); 685 686 /* Check whether the queue is stopped due to stalled tx dma, if the 687 * queue is stopped then start the queue as we have free desc for tx 688 */ 689 if (unlikely(netif_queue_stopped(ndev))) 690 netif_wake_queue(ndev); 691 cpts_tx_timestamp(priv->cpts, skb); 692 ndev->stats.tx_packets++; 693 ndev->stats.tx_bytes += len; 694 dev_kfree_skb_any(skb); 695 } 696 697 static void cpsw_rx_handler(void *token, int len, int status) 698 { 699 struct sk_buff *skb = token; 700 struct sk_buff *new_skb; 701 struct net_device *ndev = skb->dev; 702 struct cpsw_priv *priv = netdev_priv(ndev); 703 int ret = 0; 704 705 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 706 707 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 708 bool ndev_status = false; 709 struct cpsw_slave *slave = priv->slaves; 710 int n; 711 712 if (priv->data.dual_emac) { 713 /* In dual emac mode check for all interfaces */ 714 for (n = priv->data.slaves; n; n--, slave++) 715 if (netif_running(slave->ndev)) 716 ndev_status = true; 717 } 718 719 if (ndev_status && (status >= 0)) { 720 /* The packet received is for the interface which 721 * is already down and the other interface is up 722 * and running, instead of freeing which results 723 * in reducing of the number of rx descriptor in 724 * DMA engine, requeue skb back to cpdma. 725 */ 726 new_skb = skb; 727 goto requeue; 728 } 729 730 /* the interface is going down, skbs are purged */ 731 dev_kfree_skb_any(skb); 732 return; 733 } 734 735 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 736 if (new_skb) { 737 skb_put(skb, len); 738 cpts_rx_timestamp(priv->cpts, skb); 739 skb->protocol = eth_type_trans(skb, ndev); 740 netif_receive_skb(skb); 741 ndev->stats.rx_bytes += len; 742 ndev->stats.rx_packets++; 743 } else { 744 ndev->stats.rx_dropped++; 745 new_skb = skb; 746 } 747 748 requeue: 749 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 750 skb_tailroom(new_skb), 0); 751 if (WARN_ON(ret < 0)) 752 dev_kfree_skb_any(new_skb); 753 } 754 755 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 756 { 757 struct cpsw_priv *priv = dev_id; 758 759 writel(0, &priv->wr_regs->tx_en); 760 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 761 762 if (priv->quirk_irq) { 763 disable_irq_nosync(priv->irqs_table[1]); 764 priv->tx_irq_disabled = true; 765 } 766 767 napi_schedule(&priv->napi_tx); 768 return IRQ_HANDLED; 769 } 770 771 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 772 { 773 struct cpsw_priv *priv = dev_id; 774 775 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 776 writel(0, &priv->wr_regs->rx_en); 777 778 if (priv->quirk_irq) { 779 disable_irq_nosync(priv->irqs_table[0]); 780 priv->rx_irq_disabled = true; 781 } 782 783 napi_schedule(&priv->napi_rx); 784 return IRQ_HANDLED; 785 } 786 787 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 788 { 789 struct cpsw_priv *priv = napi_to_priv(napi_tx); 790 int num_tx; 791 792 num_tx = cpdma_chan_process(priv->txch, budget); 793 if (num_tx < budget) { 794 napi_complete(napi_tx); 795 writel(0xff, &priv->wr_regs->tx_en); 796 if (priv->quirk_irq && priv->tx_irq_disabled) { 797 priv->tx_irq_disabled = false; 798 enable_irq(priv->irqs_table[1]); 799 } 800 } 801 802 if (num_tx) 803 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 804 805 return num_tx; 806 } 807 808 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 809 { 810 struct cpsw_priv *priv = napi_to_priv(napi_rx); 811 int num_rx; 812 813 num_rx = cpdma_chan_process(priv->rxch, budget); 814 if (num_rx < budget) { 815 napi_complete(napi_rx); 816 writel(0xff, &priv->wr_regs->rx_en); 817 if (priv->quirk_irq && priv->rx_irq_disabled) { 818 priv->rx_irq_disabled = false; 819 enable_irq(priv->irqs_table[0]); 820 } 821 } 822 823 if (num_rx) 824 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 825 826 return num_rx; 827 } 828 829 static inline void soft_reset(const char *module, void __iomem *reg) 830 { 831 unsigned long timeout = jiffies + HZ; 832 833 __raw_writel(1, reg); 834 do { 835 cpu_relax(); 836 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 837 838 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 839 } 840 841 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 842 ((mac)[2] << 16) | ((mac)[3] << 24)) 843 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 844 845 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 846 struct cpsw_priv *priv) 847 { 848 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 849 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 850 } 851 852 static void _cpsw_adjust_link(struct cpsw_slave *slave, 853 struct cpsw_priv *priv, bool *link) 854 { 855 struct phy_device *phy = slave->phy; 856 u32 mac_control = 0; 857 u32 slave_port; 858 859 if (!phy) 860 return; 861 862 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 863 864 if (phy->link) { 865 mac_control = priv->data.mac_control; 866 867 /* enable forwarding */ 868 cpsw_ale_control_set(priv->ale, slave_port, 869 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 870 871 if (phy->speed == 1000) 872 mac_control |= BIT(7); /* GIGABITEN */ 873 if (phy->duplex) 874 mac_control |= BIT(0); /* FULLDUPLEXEN */ 875 876 /* set speed_in input in case RMII mode is used in 100Mbps */ 877 if (phy->speed == 100) 878 mac_control |= BIT(15); 879 else if (phy->speed == 10) 880 mac_control |= BIT(18); /* In Band mode */ 881 882 if (priv->rx_pause) 883 mac_control |= BIT(3); 884 885 if (priv->tx_pause) 886 mac_control |= BIT(4); 887 888 *link = true; 889 } else { 890 mac_control = 0; 891 /* disable forwarding */ 892 cpsw_ale_control_set(priv->ale, slave_port, 893 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 894 } 895 896 if (mac_control != slave->mac_control) { 897 phy_print_status(phy); 898 __raw_writel(mac_control, &slave->sliver->mac_control); 899 } 900 901 slave->mac_control = mac_control; 902 } 903 904 static void cpsw_adjust_link(struct net_device *ndev) 905 { 906 struct cpsw_priv *priv = netdev_priv(ndev); 907 bool link = false; 908 909 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 910 911 if (link) { 912 netif_carrier_on(ndev); 913 if (netif_running(ndev)) 914 netif_wake_queue(ndev); 915 } else { 916 netif_carrier_off(ndev); 917 netif_stop_queue(ndev); 918 } 919 } 920 921 static int cpsw_get_coalesce(struct net_device *ndev, 922 struct ethtool_coalesce *coal) 923 { 924 struct cpsw_priv *priv = netdev_priv(ndev); 925 926 coal->rx_coalesce_usecs = priv->coal_intvl; 927 return 0; 928 } 929 930 static int cpsw_set_coalesce(struct net_device *ndev, 931 struct ethtool_coalesce *coal) 932 { 933 struct cpsw_priv *priv = netdev_priv(ndev); 934 u32 int_ctrl; 935 u32 num_interrupts = 0; 936 u32 prescale = 0; 937 u32 addnl_dvdr = 1; 938 u32 coal_intvl = 0; 939 940 coal_intvl = coal->rx_coalesce_usecs; 941 942 int_ctrl = readl(&priv->wr_regs->int_control); 943 prescale = priv->bus_freq_mhz * 4; 944 945 if (!coal->rx_coalesce_usecs) { 946 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 947 goto update_return; 948 } 949 950 if (coal_intvl < CPSW_CMINTMIN_INTVL) 951 coal_intvl = CPSW_CMINTMIN_INTVL; 952 953 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 954 /* Interrupt pacer works with 4us Pulse, we can 955 * throttle further by dilating the 4us pulse. 956 */ 957 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 958 959 if (addnl_dvdr > 1) { 960 prescale *= addnl_dvdr; 961 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 962 coal_intvl = (CPSW_CMINTMAX_INTVL 963 * addnl_dvdr); 964 } else { 965 addnl_dvdr = 1; 966 coal_intvl = CPSW_CMINTMAX_INTVL; 967 } 968 } 969 970 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 971 writel(num_interrupts, &priv->wr_regs->rx_imax); 972 writel(num_interrupts, &priv->wr_regs->tx_imax); 973 974 int_ctrl |= CPSW_INTPACEEN; 975 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 976 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 977 978 update_return: 979 writel(int_ctrl, &priv->wr_regs->int_control); 980 981 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 982 if (priv->data.dual_emac) { 983 int i; 984 985 for (i = 0; i < priv->data.slaves; i++) { 986 priv = netdev_priv(priv->slaves[i].ndev); 987 priv->coal_intvl = coal_intvl; 988 } 989 } else { 990 priv->coal_intvl = coal_intvl; 991 } 992 993 return 0; 994 } 995 996 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 997 { 998 switch (sset) { 999 case ETH_SS_STATS: 1000 return CPSW_STATS_LEN; 1001 default: 1002 return -EOPNOTSUPP; 1003 } 1004 } 1005 1006 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1007 { 1008 u8 *p = data; 1009 int i; 1010 1011 switch (stringset) { 1012 case ETH_SS_STATS: 1013 for (i = 0; i < CPSW_STATS_LEN; i++) { 1014 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1015 ETH_GSTRING_LEN); 1016 p += ETH_GSTRING_LEN; 1017 } 1018 break; 1019 } 1020 } 1021 1022 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1023 struct ethtool_stats *stats, u64 *data) 1024 { 1025 struct cpsw_priv *priv = netdev_priv(ndev); 1026 struct cpdma_chan_stats rx_stats; 1027 struct cpdma_chan_stats tx_stats; 1028 u32 val; 1029 u8 *p; 1030 int i; 1031 1032 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1033 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1034 cpdma_chan_get_stats(priv->txch, &tx_stats); 1035 1036 for (i = 0; i < CPSW_STATS_LEN; i++) { 1037 switch (cpsw_gstrings_stats[i].type) { 1038 case CPSW_STATS: 1039 val = readl(priv->hw_stats + 1040 cpsw_gstrings_stats[i].stat_offset); 1041 data[i] = val; 1042 break; 1043 1044 case CPDMA_RX_STATS: 1045 p = (u8 *)&rx_stats + 1046 cpsw_gstrings_stats[i].stat_offset; 1047 data[i] = *(u32 *)p; 1048 break; 1049 1050 case CPDMA_TX_STATS: 1051 p = (u8 *)&tx_stats + 1052 cpsw_gstrings_stats[i].stat_offset; 1053 data[i] = *(u32 *)p; 1054 break; 1055 } 1056 } 1057 } 1058 1059 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1060 { 1061 u32 i; 1062 u32 usage_count = 0; 1063 1064 if (!priv->data.dual_emac) 1065 return 0; 1066 1067 for (i = 0; i < priv->data.slaves; i++) 1068 if (priv->slaves[i].open_stat) 1069 usage_count++; 1070 1071 return usage_count; 1072 } 1073 1074 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1075 struct cpsw_priv *priv, struct sk_buff *skb) 1076 { 1077 if (!priv->data.dual_emac) 1078 return cpdma_chan_submit(priv->txch, skb, skb->data, 1079 skb->len, 0); 1080 1081 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1082 return cpdma_chan_submit(priv->txch, skb, skb->data, 1083 skb->len, 1); 1084 else 1085 return cpdma_chan_submit(priv->txch, skb, skb->data, 1086 skb->len, 2); 1087 } 1088 1089 static inline void cpsw_add_dual_emac_def_ale_entries( 1090 struct cpsw_priv *priv, struct cpsw_slave *slave, 1091 u32 slave_port) 1092 { 1093 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1094 1095 if (priv->version == CPSW_VERSION_1) 1096 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1097 else 1098 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1099 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1100 port_mask, port_mask, 0); 1101 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1102 port_mask, ALE_VLAN, slave->port_vlan, 0); 1103 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1104 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1105 } 1106 1107 static void soft_reset_slave(struct cpsw_slave *slave) 1108 { 1109 char name[32]; 1110 1111 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1112 soft_reset(name, &slave->sliver->soft_reset); 1113 } 1114 1115 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1116 { 1117 u32 slave_port; 1118 1119 soft_reset_slave(slave); 1120 1121 /* setup priority mapping */ 1122 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1123 1124 switch (priv->version) { 1125 case CPSW_VERSION_1: 1126 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1127 break; 1128 case CPSW_VERSION_2: 1129 case CPSW_VERSION_3: 1130 case CPSW_VERSION_4: 1131 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1132 break; 1133 } 1134 1135 /* setup max packet size, and mac address */ 1136 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1137 cpsw_set_slave_mac(slave, priv); 1138 1139 slave->mac_control = 0; /* no link yet */ 1140 1141 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1142 1143 if (priv->data.dual_emac) 1144 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1145 else 1146 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1147 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1148 1149 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1150 &cpsw_adjust_link, slave->data->phy_if); 1151 if (IS_ERR(slave->phy)) { 1152 dev_err(priv->dev, "phy %s not found on slave %d\n", 1153 slave->data->phy_id, slave->slave_num); 1154 slave->phy = NULL; 1155 } else { 1156 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1157 slave->phy->phy_id); 1158 phy_start(slave->phy); 1159 1160 /* Configure GMII_SEL register */ 1161 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1162 slave->slave_num); 1163 } 1164 } 1165 1166 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1167 { 1168 const int vlan = priv->data.default_vlan; 1169 const int port = priv->host_port; 1170 u32 reg; 1171 int i; 1172 int unreg_mcast_mask; 1173 1174 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1175 CPSW2_PORT_VLAN; 1176 1177 writel(vlan, &priv->host_port_regs->port_vlan); 1178 1179 for (i = 0; i < priv->data.slaves; i++) 1180 slave_write(priv->slaves + i, vlan, reg); 1181 1182 if (priv->ndev->flags & IFF_ALLMULTI) 1183 unreg_mcast_mask = ALE_ALL_PORTS; 1184 else 1185 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1186 1187 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1188 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1189 unreg_mcast_mask << port); 1190 } 1191 1192 static void cpsw_init_host_port(struct cpsw_priv *priv) 1193 { 1194 u32 control_reg; 1195 u32 fifo_mode; 1196 1197 /* soft reset the controller and initialize ale */ 1198 soft_reset("cpsw", &priv->regs->soft_reset); 1199 cpsw_ale_start(priv->ale); 1200 1201 /* switch to vlan unaware mode */ 1202 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1203 CPSW_ALE_VLAN_AWARE); 1204 control_reg = readl(&priv->regs->control); 1205 control_reg |= CPSW_VLAN_AWARE; 1206 writel(control_reg, &priv->regs->control); 1207 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1208 CPSW_FIFO_NORMAL_MODE; 1209 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1210 1211 /* setup host port priority mapping */ 1212 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1213 &priv->host_port_regs->cpdma_tx_pri_map); 1214 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1215 1216 cpsw_ale_control_set(priv->ale, priv->host_port, 1217 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1218 1219 if (!priv->data.dual_emac) { 1220 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1221 0, 0); 1222 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1223 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1224 } 1225 } 1226 1227 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1228 { 1229 u32 slave_port; 1230 1231 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1232 1233 if (!slave->phy) 1234 return; 1235 phy_stop(slave->phy); 1236 phy_disconnect(slave->phy); 1237 slave->phy = NULL; 1238 cpsw_ale_control_set(priv->ale, slave_port, 1239 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1240 } 1241 1242 static int cpsw_ndo_open(struct net_device *ndev) 1243 { 1244 struct cpsw_priv *priv = netdev_priv(ndev); 1245 int i, ret; 1246 u32 reg; 1247 1248 if (!cpsw_common_res_usage_state(priv)) 1249 cpsw_intr_disable(priv); 1250 netif_carrier_off(ndev); 1251 1252 pm_runtime_get_sync(&priv->pdev->dev); 1253 1254 reg = priv->version; 1255 1256 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1257 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1258 CPSW_RTL_VERSION(reg)); 1259 1260 /* initialize host and slave ports */ 1261 if (!cpsw_common_res_usage_state(priv)) 1262 cpsw_init_host_port(priv); 1263 for_each_slave(priv, cpsw_slave_open, priv); 1264 1265 /* Add default VLAN */ 1266 if (!priv->data.dual_emac) 1267 cpsw_add_default_vlan(priv); 1268 else 1269 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1270 ALE_ALL_PORTS << priv->host_port, 1271 ALE_ALL_PORTS << priv->host_port, 0, 0); 1272 1273 if (!cpsw_common_res_usage_state(priv)) { 1274 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1275 1276 /* setup tx dma to fixed prio and zero offset */ 1277 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1278 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1279 1280 /* disable priority elevation */ 1281 __raw_writel(0, &priv->regs->ptype); 1282 1283 /* enable statistics collection only on all ports */ 1284 __raw_writel(0x7, &priv->regs->stat_port_en); 1285 1286 /* Enable internal fifo flow control */ 1287 writel(0x7, &priv->regs->flow_control); 1288 1289 napi_enable(&priv_sl0->napi_rx); 1290 napi_enable(&priv_sl0->napi_tx); 1291 1292 if (priv_sl0->tx_irq_disabled) { 1293 priv_sl0->tx_irq_disabled = false; 1294 enable_irq(priv->irqs_table[1]); 1295 } 1296 1297 if (priv_sl0->rx_irq_disabled) { 1298 priv_sl0->rx_irq_disabled = false; 1299 enable_irq(priv->irqs_table[0]); 1300 } 1301 1302 if (WARN_ON(!priv->data.rx_descs)) 1303 priv->data.rx_descs = 128; 1304 1305 for (i = 0; i < priv->data.rx_descs; i++) { 1306 struct sk_buff *skb; 1307 1308 ret = -ENOMEM; 1309 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1310 priv->rx_packet_max, GFP_KERNEL); 1311 if (!skb) 1312 goto err_cleanup; 1313 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1314 skb_tailroom(skb), 0); 1315 if (ret < 0) { 1316 kfree_skb(skb); 1317 goto err_cleanup; 1318 } 1319 } 1320 /* continue even if we didn't manage to submit all 1321 * receive descs 1322 */ 1323 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1324 1325 if (cpts_register(&priv->pdev->dev, priv->cpts, 1326 priv->data.cpts_clock_mult, 1327 priv->data.cpts_clock_shift)) 1328 dev_err(priv->dev, "error registering cpts device\n"); 1329 1330 } 1331 1332 /* Enable Interrupt pacing if configured */ 1333 if (priv->coal_intvl != 0) { 1334 struct ethtool_coalesce coal; 1335 1336 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1337 cpsw_set_coalesce(ndev, &coal); 1338 } 1339 1340 cpdma_ctlr_start(priv->dma); 1341 cpsw_intr_enable(priv); 1342 1343 if (priv->data.dual_emac) 1344 priv->slaves[priv->emac_port].open_stat = true; 1345 return 0; 1346 1347 err_cleanup: 1348 cpdma_ctlr_stop(priv->dma); 1349 for_each_slave(priv, cpsw_slave_stop, priv); 1350 pm_runtime_put_sync(&priv->pdev->dev); 1351 netif_carrier_off(priv->ndev); 1352 return ret; 1353 } 1354 1355 static int cpsw_ndo_stop(struct net_device *ndev) 1356 { 1357 struct cpsw_priv *priv = netdev_priv(ndev); 1358 1359 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1360 netif_stop_queue(priv->ndev); 1361 netif_carrier_off(priv->ndev); 1362 1363 if (cpsw_common_res_usage_state(priv) <= 1) { 1364 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1365 1366 napi_disable(&priv_sl0->napi_rx); 1367 napi_disable(&priv_sl0->napi_tx); 1368 cpts_unregister(priv->cpts); 1369 cpsw_intr_disable(priv); 1370 cpdma_ctlr_stop(priv->dma); 1371 cpsw_ale_stop(priv->ale); 1372 } 1373 for_each_slave(priv, cpsw_slave_stop, priv); 1374 pm_runtime_put_sync(&priv->pdev->dev); 1375 if (priv->data.dual_emac) 1376 priv->slaves[priv->emac_port].open_stat = false; 1377 return 0; 1378 } 1379 1380 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1381 struct net_device *ndev) 1382 { 1383 struct cpsw_priv *priv = netdev_priv(ndev); 1384 int ret; 1385 1386 ndev->trans_start = jiffies; 1387 1388 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1389 cpsw_err(priv, tx_err, "packet pad failed\n"); 1390 ndev->stats.tx_dropped++; 1391 return NETDEV_TX_OK; 1392 } 1393 1394 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1395 priv->cpts->tx_enable) 1396 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1397 1398 skb_tx_timestamp(skb); 1399 1400 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1401 if (unlikely(ret != 0)) { 1402 cpsw_err(priv, tx_err, "desc submit failed\n"); 1403 goto fail; 1404 } 1405 1406 /* If there is no more tx desc left free then we need to 1407 * tell the kernel to stop sending us tx frames. 1408 */ 1409 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1410 netif_stop_queue(ndev); 1411 1412 return NETDEV_TX_OK; 1413 fail: 1414 ndev->stats.tx_dropped++; 1415 netif_stop_queue(ndev); 1416 return NETDEV_TX_BUSY; 1417 } 1418 1419 #ifdef CONFIG_TI_CPTS 1420 1421 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1422 { 1423 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1424 u32 ts_en, seq_id; 1425 1426 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1427 slave_write(slave, 0, CPSW1_TS_CTL); 1428 return; 1429 } 1430 1431 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1432 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1433 1434 if (priv->cpts->tx_enable) 1435 ts_en |= CPSW_V1_TS_TX_EN; 1436 1437 if (priv->cpts->rx_enable) 1438 ts_en |= CPSW_V1_TS_RX_EN; 1439 1440 slave_write(slave, ts_en, CPSW1_TS_CTL); 1441 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1442 } 1443 1444 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1445 { 1446 struct cpsw_slave *slave; 1447 u32 ctrl, mtype; 1448 1449 if (priv->data.dual_emac) 1450 slave = &priv->slaves[priv->emac_port]; 1451 else 1452 slave = &priv->slaves[priv->data.active_slave]; 1453 1454 ctrl = slave_read(slave, CPSW2_CONTROL); 1455 switch (priv->version) { 1456 case CPSW_VERSION_2: 1457 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1458 1459 if (priv->cpts->tx_enable) 1460 ctrl |= CTRL_V2_TX_TS_BITS; 1461 1462 if (priv->cpts->rx_enable) 1463 ctrl |= CTRL_V2_RX_TS_BITS; 1464 break; 1465 case CPSW_VERSION_3: 1466 default: 1467 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1468 1469 if (priv->cpts->tx_enable) 1470 ctrl |= CTRL_V3_TX_TS_BITS; 1471 1472 if (priv->cpts->rx_enable) 1473 ctrl |= CTRL_V3_RX_TS_BITS; 1474 break; 1475 } 1476 1477 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1478 1479 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1480 slave_write(slave, ctrl, CPSW2_CONTROL); 1481 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1482 } 1483 1484 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1485 { 1486 struct cpsw_priv *priv = netdev_priv(dev); 1487 struct cpts *cpts = priv->cpts; 1488 struct hwtstamp_config cfg; 1489 1490 if (priv->version != CPSW_VERSION_1 && 1491 priv->version != CPSW_VERSION_2 && 1492 priv->version != CPSW_VERSION_3) 1493 return -EOPNOTSUPP; 1494 1495 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1496 return -EFAULT; 1497 1498 /* reserved for future extensions */ 1499 if (cfg.flags) 1500 return -EINVAL; 1501 1502 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1503 return -ERANGE; 1504 1505 switch (cfg.rx_filter) { 1506 case HWTSTAMP_FILTER_NONE: 1507 cpts->rx_enable = 0; 1508 break; 1509 case HWTSTAMP_FILTER_ALL: 1510 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1511 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1512 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1513 return -ERANGE; 1514 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1515 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1516 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1517 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1518 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1519 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1520 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1521 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1522 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1523 cpts->rx_enable = 1; 1524 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1525 break; 1526 default: 1527 return -ERANGE; 1528 } 1529 1530 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1531 1532 switch (priv->version) { 1533 case CPSW_VERSION_1: 1534 cpsw_hwtstamp_v1(priv); 1535 break; 1536 case CPSW_VERSION_2: 1537 case CPSW_VERSION_3: 1538 cpsw_hwtstamp_v2(priv); 1539 break; 1540 default: 1541 WARN_ON(1); 1542 } 1543 1544 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1545 } 1546 1547 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1548 { 1549 struct cpsw_priv *priv = netdev_priv(dev); 1550 struct cpts *cpts = priv->cpts; 1551 struct hwtstamp_config cfg; 1552 1553 if (priv->version != CPSW_VERSION_1 && 1554 priv->version != CPSW_VERSION_2 && 1555 priv->version != CPSW_VERSION_3) 1556 return -EOPNOTSUPP; 1557 1558 cfg.flags = 0; 1559 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1560 cfg.rx_filter = (cpts->rx_enable ? 1561 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1562 1563 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1564 } 1565 1566 #endif /*CONFIG_TI_CPTS*/ 1567 1568 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1569 { 1570 struct cpsw_priv *priv = netdev_priv(dev); 1571 int slave_no = cpsw_slave_index(priv); 1572 1573 if (!netif_running(dev)) 1574 return -EINVAL; 1575 1576 switch (cmd) { 1577 #ifdef CONFIG_TI_CPTS 1578 case SIOCSHWTSTAMP: 1579 return cpsw_hwtstamp_set(dev, req); 1580 case SIOCGHWTSTAMP: 1581 return cpsw_hwtstamp_get(dev, req); 1582 #endif 1583 } 1584 1585 if (!priv->slaves[slave_no].phy) 1586 return -EOPNOTSUPP; 1587 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1588 } 1589 1590 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1591 { 1592 struct cpsw_priv *priv = netdev_priv(ndev); 1593 1594 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1595 ndev->stats.tx_errors++; 1596 cpsw_intr_disable(priv); 1597 cpdma_chan_stop(priv->txch); 1598 cpdma_chan_start(priv->txch); 1599 cpsw_intr_enable(priv); 1600 } 1601 1602 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1603 { 1604 struct cpsw_priv *priv = netdev_priv(ndev); 1605 struct sockaddr *addr = (struct sockaddr *)p; 1606 int flags = 0; 1607 u16 vid = 0; 1608 1609 if (!is_valid_ether_addr(addr->sa_data)) 1610 return -EADDRNOTAVAIL; 1611 1612 if (priv->data.dual_emac) { 1613 vid = priv->slaves[priv->emac_port].port_vlan; 1614 flags = ALE_VLAN; 1615 } 1616 1617 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1618 flags, vid); 1619 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1620 flags, vid); 1621 1622 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1623 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1624 for_each_slave(priv, cpsw_set_slave_mac, priv); 1625 1626 return 0; 1627 } 1628 1629 #ifdef CONFIG_NET_POLL_CONTROLLER 1630 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1631 { 1632 struct cpsw_priv *priv = netdev_priv(ndev); 1633 1634 cpsw_intr_disable(priv); 1635 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1636 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1637 cpsw_intr_enable(priv); 1638 } 1639 #endif 1640 1641 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1642 unsigned short vid) 1643 { 1644 int ret; 1645 int unreg_mcast_mask = 0; 1646 u32 port_mask; 1647 1648 if (priv->data.dual_emac) { 1649 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1650 1651 if (priv->ndev->flags & IFF_ALLMULTI) 1652 unreg_mcast_mask = port_mask; 1653 } else { 1654 port_mask = ALE_ALL_PORTS; 1655 1656 if (priv->ndev->flags & IFF_ALLMULTI) 1657 unreg_mcast_mask = ALE_ALL_PORTS; 1658 else 1659 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1660 } 1661 1662 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1663 unreg_mcast_mask << priv->host_port); 1664 if (ret != 0) 1665 return ret; 1666 1667 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1668 priv->host_port, ALE_VLAN, vid); 1669 if (ret != 0) 1670 goto clean_vid; 1671 1672 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1673 port_mask, ALE_VLAN, vid, 0); 1674 if (ret != 0) 1675 goto clean_vlan_ucast; 1676 return 0; 1677 1678 clean_vlan_ucast: 1679 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1680 priv->host_port, ALE_VLAN, vid); 1681 clean_vid: 1682 cpsw_ale_del_vlan(priv->ale, vid, 0); 1683 return ret; 1684 } 1685 1686 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1687 __be16 proto, u16 vid) 1688 { 1689 struct cpsw_priv *priv = netdev_priv(ndev); 1690 1691 if (vid == priv->data.default_vlan) 1692 return 0; 1693 1694 if (priv->data.dual_emac) { 1695 /* In dual EMAC, reserved VLAN id should not be used for 1696 * creating VLAN interfaces as this can break the dual 1697 * EMAC port separation 1698 */ 1699 int i; 1700 1701 for (i = 0; i < priv->data.slaves; i++) { 1702 if (vid == priv->slaves[i].port_vlan) 1703 return -EINVAL; 1704 } 1705 } 1706 1707 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1708 return cpsw_add_vlan_ale_entry(priv, vid); 1709 } 1710 1711 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1712 __be16 proto, u16 vid) 1713 { 1714 struct cpsw_priv *priv = netdev_priv(ndev); 1715 int ret; 1716 1717 if (vid == priv->data.default_vlan) 1718 return 0; 1719 1720 if (priv->data.dual_emac) { 1721 int i; 1722 1723 for (i = 0; i < priv->data.slaves; i++) { 1724 if (vid == priv->slaves[i].port_vlan) 1725 return -EINVAL; 1726 } 1727 } 1728 1729 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1730 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1731 if (ret != 0) 1732 return ret; 1733 1734 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1735 priv->host_port, ALE_VLAN, vid); 1736 if (ret != 0) 1737 return ret; 1738 1739 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1740 0, ALE_VLAN, vid); 1741 } 1742 1743 static const struct net_device_ops cpsw_netdev_ops = { 1744 .ndo_open = cpsw_ndo_open, 1745 .ndo_stop = cpsw_ndo_stop, 1746 .ndo_start_xmit = cpsw_ndo_start_xmit, 1747 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1748 .ndo_do_ioctl = cpsw_ndo_ioctl, 1749 .ndo_validate_addr = eth_validate_addr, 1750 .ndo_change_mtu = eth_change_mtu, 1751 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1752 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1753 #ifdef CONFIG_NET_POLL_CONTROLLER 1754 .ndo_poll_controller = cpsw_ndo_poll_controller, 1755 #endif 1756 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1757 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1758 }; 1759 1760 static int cpsw_get_regs_len(struct net_device *ndev) 1761 { 1762 struct cpsw_priv *priv = netdev_priv(ndev); 1763 1764 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1765 } 1766 1767 static void cpsw_get_regs(struct net_device *ndev, 1768 struct ethtool_regs *regs, void *p) 1769 { 1770 struct cpsw_priv *priv = netdev_priv(ndev); 1771 u32 *reg = p; 1772 1773 /* update CPSW IP version */ 1774 regs->version = priv->version; 1775 1776 cpsw_ale_dump(priv->ale, reg); 1777 } 1778 1779 static void cpsw_get_drvinfo(struct net_device *ndev, 1780 struct ethtool_drvinfo *info) 1781 { 1782 struct cpsw_priv *priv = netdev_priv(ndev); 1783 1784 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1785 strlcpy(info->version, "1.0", sizeof(info->version)); 1786 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1787 info->regdump_len = cpsw_get_regs_len(ndev); 1788 } 1789 1790 static u32 cpsw_get_msglevel(struct net_device *ndev) 1791 { 1792 struct cpsw_priv *priv = netdev_priv(ndev); 1793 return priv->msg_enable; 1794 } 1795 1796 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1797 { 1798 struct cpsw_priv *priv = netdev_priv(ndev); 1799 priv->msg_enable = value; 1800 } 1801 1802 static int cpsw_get_ts_info(struct net_device *ndev, 1803 struct ethtool_ts_info *info) 1804 { 1805 #ifdef CONFIG_TI_CPTS 1806 struct cpsw_priv *priv = netdev_priv(ndev); 1807 1808 info->so_timestamping = 1809 SOF_TIMESTAMPING_TX_HARDWARE | 1810 SOF_TIMESTAMPING_TX_SOFTWARE | 1811 SOF_TIMESTAMPING_RX_HARDWARE | 1812 SOF_TIMESTAMPING_RX_SOFTWARE | 1813 SOF_TIMESTAMPING_SOFTWARE | 1814 SOF_TIMESTAMPING_RAW_HARDWARE; 1815 info->phc_index = priv->cpts->phc_index; 1816 info->tx_types = 1817 (1 << HWTSTAMP_TX_OFF) | 1818 (1 << HWTSTAMP_TX_ON); 1819 info->rx_filters = 1820 (1 << HWTSTAMP_FILTER_NONE) | 1821 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1822 #else 1823 info->so_timestamping = 1824 SOF_TIMESTAMPING_TX_SOFTWARE | 1825 SOF_TIMESTAMPING_RX_SOFTWARE | 1826 SOF_TIMESTAMPING_SOFTWARE; 1827 info->phc_index = -1; 1828 info->tx_types = 0; 1829 info->rx_filters = 0; 1830 #endif 1831 return 0; 1832 } 1833 1834 static int cpsw_get_settings(struct net_device *ndev, 1835 struct ethtool_cmd *ecmd) 1836 { 1837 struct cpsw_priv *priv = netdev_priv(ndev); 1838 int slave_no = cpsw_slave_index(priv); 1839 1840 if (priv->slaves[slave_no].phy) 1841 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1842 else 1843 return -EOPNOTSUPP; 1844 } 1845 1846 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1847 { 1848 struct cpsw_priv *priv = netdev_priv(ndev); 1849 int slave_no = cpsw_slave_index(priv); 1850 1851 if (priv->slaves[slave_no].phy) 1852 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1853 else 1854 return -EOPNOTSUPP; 1855 } 1856 1857 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1858 { 1859 struct cpsw_priv *priv = netdev_priv(ndev); 1860 int slave_no = cpsw_slave_index(priv); 1861 1862 wol->supported = 0; 1863 wol->wolopts = 0; 1864 1865 if (priv->slaves[slave_no].phy) 1866 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1867 } 1868 1869 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1870 { 1871 struct cpsw_priv *priv = netdev_priv(ndev); 1872 int slave_no = cpsw_slave_index(priv); 1873 1874 if (priv->slaves[slave_no].phy) 1875 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1876 else 1877 return -EOPNOTSUPP; 1878 } 1879 1880 static void cpsw_get_pauseparam(struct net_device *ndev, 1881 struct ethtool_pauseparam *pause) 1882 { 1883 struct cpsw_priv *priv = netdev_priv(ndev); 1884 1885 pause->autoneg = AUTONEG_DISABLE; 1886 pause->rx_pause = priv->rx_pause ? true : false; 1887 pause->tx_pause = priv->tx_pause ? true : false; 1888 } 1889 1890 static int cpsw_set_pauseparam(struct net_device *ndev, 1891 struct ethtool_pauseparam *pause) 1892 { 1893 struct cpsw_priv *priv = netdev_priv(ndev); 1894 bool link; 1895 1896 priv->rx_pause = pause->rx_pause ? true : false; 1897 priv->tx_pause = pause->tx_pause ? true : false; 1898 1899 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1900 1901 return 0; 1902 } 1903 1904 static const struct ethtool_ops cpsw_ethtool_ops = { 1905 .get_drvinfo = cpsw_get_drvinfo, 1906 .get_msglevel = cpsw_get_msglevel, 1907 .set_msglevel = cpsw_set_msglevel, 1908 .get_link = ethtool_op_get_link, 1909 .get_ts_info = cpsw_get_ts_info, 1910 .get_settings = cpsw_get_settings, 1911 .set_settings = cpsw_set_settings, 1912 .get_coalesce = cpsw_get_coalesce, 1913 .set_coalesce = cpsw_set_coalesce, 1914 .get_sset_count = cpsw_get_sset_count, 1915 .get_strings = cpsw_get_strings, 1916 .get_ethtool_stats = cpsw_get_ethtool_stats, 1917 .get_pauseparam = cpsw_get_pauseparam, 1918 .set_pauseparam = cpsw_set_pauseparam, 1919 .get_wol = cpsw_get_wol, 1920 .set_wol = cpsw_set_wol, 1921 .get_regs_len = cpsw_get_regs_len, 1922 .get_regs = cpsw_get_regs, 1923 }; 1924 1925 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1926 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1927 { 1928 void __iomem *regs = priv->regs; 1929 int slave_num = slave->slave_num; 1930 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1931 1932 slave->data = data; 1933 slave->regs = regs + slave_reg_ofs; 1934 slave->sliver = regs + sliver_reg_ofs; 1935 slave->port_vlan = data->dual_emac_res_vlan; 1936 } 1937 1938 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1939 struct platform_device *pdev) 1940 { 1941 struct device_node *node = pdev->dev.of_node; 1942 struct device_node *slave_node; 1943 int i = 0, ret; 1944 u32 prop; 1945 1946 if (!node) 1947 return -EINVAL; 1948 1949 if (of_property_read_u32(node, "slaves", &prop)) { 1950 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1951 return -EINVAL; 1952 } 1953 data->slaves = prop; 1954 1955 if (of_property_read_u32(node, "active_slave", &prop)) { 1956 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1957 return -EINVAL; 1958 } 1959 data->active_slave = prop; 1960 1961 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1962 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1963 return -EINVAL; 1964 } 1965 data->cpts_clock_mult = prop; 1966 1967 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1968 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1969 return -EINVAL; 1970 } 1971 data->cpts_clock_shift = prop; 1972 1973 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1974 * sizeof(struct cpsw_slave_data), 1975 GFP_KERNEL); 1976 if (!data->slave_data) 1977 return -ENOMEM; 1978 1979 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1980 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1981 return -EINVAL; 1982 } 1983 data->channels = prop; 1984 1985 if (of_property_read_u32(node, "ale_entries", &prop)) { 1986 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1987 return -EINVAL; 1988 } 1989 data->ale_entries = prop; 1990 1991 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1992 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1993 return -EINVAL; 1994 } 1995 data->bd_ram_size = prop; 1996 1997 if (of_property_read_u32(node, "rx_descs", &prop)) { 1998 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1999 return -EINVAL; 2000 } 2001 data->rx_descs = prop; 2002 2003 if (of_property_read_u32(node, "mac_control", &prop)) { 2004 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2005 return -EINVAL; 2006 } 2007 data->mac_control = prop; 2008 2009 if (of_property_read_bool(node, "dual_emac")) 2010 data->dual_emac = 1; 2011 2012 /* 2013 * Populate all the child nodes here... 2014 */ 2015 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2016 /* We do not want to force this, as in some cases may not have child */ 2017 if (ret) 2018 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2019 2020 for_each_child_of_node(node, slave_node) { 2021 struct cpsw_slave_data *slave_data = data->slave_data + i; 2022 const void *mac_addr = NULL; 2023 u32 phyid; 2024 int lenp; 2025 const __be32 *parp; 2026 struct device_node *mdio_node; 2027 struct platform_device *mdio; 2028 2029 /* This is no slave child node, continue */ 2030 if (strcmp(slave_node->name, "slave")) 2031 continue; 2032 2033 parp = of_get_property(slave_node, "phy_id", &lenp); 2034 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2035 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2036 goto no_phy_slave; 2037 } 2038 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2039 phyid = be32_to_cpup(parp+1); 2040 mdio = of_find_device_by_node(mdio_node); 2041 of_node_put(mdio_node); 2042 if (!mdio) { 2043 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2044 return -EINVAL; 2045 } 2046 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2047 PHY_ID_FMT, mdio->name, phyid); 2048 2049 slave_data->phy_if = of_get_phy_mode(slave_node); 2050 if (slave_data->phy_if < 0) { 2051 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2052 i); 2053 return slave_data->phy_if; 2054 } 2055 2056 no_phy_slave: 2057 mac_addr = of_get_mac_address(slave_node); 2058 if (mac_addr) { 2059 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2060 } else { 2061 ret = ti_cm_get_macid(&pdev->dev, i, 2062 slave_data->mac_addr); 2063 if (ret) 2064 return ret; 2065 } 2066 if (data->dual_emac) { 2067 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2068 &prop)) { 2069 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2070 slave_data->dual_emac_res_vlan = i+1; 2071 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2072 slave_data->dual_emac_res_vlan, i); 2073 } else { 2074 slave_data->dual_emac_res_vlan = prop; 2075 } 2076 } 2077 2078 i++; 2079 if (i == data->slaves) 2080 break; 2081 } 2082 2083 return 0; 2084 } 2085 2086 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2087 struct cpsw_priv *priv) 2088 { 2089 struct cpsw_platform_data *data = &priv->data; 2090 struct net_device *ndev; 2091 struct cpsw_priv *priv_sl2; 2092 int ret = 0, i; 2093 2094 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2095 if (!ndev) { 2096 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2097 return -ENOMEM; 2098 } 2099 2100 priv_sl2 = netdev_priv(ndev); 2101 spin_lock_init(&priv_sl2->lock); 2102 priv_sl2->data = *data; 2103 priv_sl2->pdev = pdev; 2104 priv_sl2->ndev = ndev; 2105 priv_sl2->dev = &ndev->dev; 2106 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2107 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2108 2109 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2110 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2111 ETH_ALEN); 2112 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2113 } else { 2114 random_ether_addr(priv_sl2->mac_addr); 2115 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2116 } 2117 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2118 2119 priv_sl2->slaves = priv->slaves; 2120 priv_sl2->clk = priv->clk; 2121 2122 priv_sl2->coal_intvl = 0; 2123 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2124 2125 priv_sl2->regs = priv->regs; 2126 priv_sl2->host_port = priv->host_port; 2127 priv_sl2->host_port_regs = priv->host_port_regs; 2128 priv_sl2->wr_regs = priv->wr_regs; 2129 priv_sl2->hw_stats = priv->hw_stats; 2130 priv_sl2->dma = priv->dma; 2131 priv_sl2->txch = priv->txch; 2132 priv_sl2->rxch = priv->rxch; 2133 priv_sl2->ale = priv->ale; 2134 priv_sl2->emac_port = 1; 2135 priv->slaves[1].ndev = ndev; 2136 priv_sl2->cpts = priv->cpts; 2137 priv_sl2->version = priv->version; 2138 2139 for (i = 0; i < priv->num_irqs; i++) { 2140 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2141 priv_sl2->num_irqs = priv->num_irqs; 2142 } 2143 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2144 2145 ndev->netdev_ops = &cpsw_netdev_ops; 2146 ndev->ethtool_ops = &cpsw_ethtool_ops; 2147 2148 /* register the network device */ 2149 SET_NETDEV_DEV(ndev, &pdev->dev); 2150 ret = register_netdev(ndev); 2151 if (ret) { 2152 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2153 free_netdev(ndev); 2154 ret = -ENODEV; 2155 } 2156 2157 return ret; 2158 } 2159 2160 #define CPSW_QUIRK_IRQ BIT(0) 2161 2162 static struct platform_device_id cpsw_devtype[] = { 2163 { 2164 /* keep it for existing comaptibles */ 2165 .name = "cpsw", 2166 .driver_data = CPSW_QUIRK_IRQ, 2167 }, { 2168 .name = "am335x-cpsw", 2169 .driver_data = CPSW_QUIRK_IRQ, 2170 }, { 2171 .name = "am4372-cpsw", 2172 .driver_data = 0, 2173 }, { 2174 .name = "dra7-cpsw", 2175 .driver_data = 0, 2176 }, { 2177 /* sentinel */ 2178 } 2179 }; 2180 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2181 2182 enum ti_cpsw_type { 2183 CPSW = 0, 2184 AM335X_CPSW, 2185 AM4372_CPSW, 2186 DRA7_CPSW, 2187 }; 2188 2189 static const struct of_device_id cpsw_of_mtable[] = { 2190 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2191 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2192 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2193 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2194 { /* sentinel */ }, 2195 }; 2196 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2197 2198 static int cpsw_probe(struct platform_device *pdev) 2199 { 2200 struct cpsw_platform_data *data; 2201 struct net_device *ndev; 2202 struct cpsw_priv *priv; 2203 struct cpdma_params dma_params; 2204 struct cpsw_ale_params ale_params; 2205 void __iomem *ss_regs; 2206 struct resource *res, *ss_res; 2207 const struct of_device_id *of_id; 2208 struct gpio_descs *mode; 2209 u32 slave_offset, sliver_offset, slave_size; 2210 int ret = 0, i; 2211 int irq; 2212 2213 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2214 if (!ndev) { 2215 dev_err(&pdev->dev, "error allocating net_device\n"); 2216 return -ENOMEM; 2217 } 2218 2219 platform_set_drvdata(pdev, ndev); 2220 priv = netdev_priv(ndev); 2221 spin_lock_init(&priv->lock); 2222 priv->pdev = pdev; 2223 priv->ndev = ndev; 2224 priv->dev = &ndev->dev; 2225 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2226 priv->rx_packet_max = max(rx_packet_max, 128); 2227 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2228 if (!priv->cpts) { 2229 dev_err(&pdev->dev, "error allocating cpts\n"); 2230 ret = -ENOMEM; 2231 goto clean_ndev_ret; 2232 } 2233 2234 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2235 if (IS_ERR(mode)) { 2236 ret = PTR_ERR(mode); 2237 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2238 goto clean_ndev_ret; 2239 } 2240 2241 /* 2242 * This may be required here for child devices. 2243 */ 2244 pm_runtime_enable(&pdev->dev); 2245 2246 /* Select default pin state */ 2247 pinctrl_pm_select_default_state(&pdev->dev); 2248 2249 if (cpsw_probe_dt(&priv->data, pdev)) { 2250 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2251 ret = -ENODEV; 2252 goto clean_runtime_disable_ret; 2253 } 2254 data = &priv->data; 2255 2256 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2257 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2258 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2259 } else { 2260 eth_random_addr(priv->mac_addr); 2261 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2262 } 2263 2264 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2265 2266 priv->slaves = devm_kzalloc(&pdev->dev, 2267 sizeof(struct cpsw_slave) * data->slaves, 2268 GFP_KERNEL); 2269 if (!priv->slaves) { 2270 ret = -ENOMEM; 2271 goto clean_runtime_disable_ret; 2272 } 2273 for (i = 0; i < data->slaves; i++) 2274 priv->slaves[i].slave_num = i; 2275 2276 priv->slaves[0].ndev = ndev; 2277 priv->emac_port = 0; 2278 2279 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2280 if (IS_ERR(priv->clk)) { 2281 dev_err(priv->dev, "fck is not found\n"); 2282 ret = -ENODEV; 2283 goto clean_runtime_disable_ret; 2284 } 2285 priv->coal_intvl = 0; 2286 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2287 2288 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2289 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2290 if (IS_ERR(ss_regs)) { 2291 ret = PTR_ERR(ss_regs); 2292 goto clean_runtime_disable_ret; 2293 } 2294 priv->regs = ss_regs; 2295 priv->host_port = HOST_PORT_NUM; 2296 2297 /* Need to enable clocks with runtime PM api to access module 2298 * registers 2299 */ 2300 pm_runtime_get_sync(&pdev->dev); 2301 priv->version = readl(&priv->regs->id_ver); 2302 pm_runtime_put_sync(&pdev->dev); 2303 2304 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2305 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2306 if (IS_ERR(priv->wr_regs)) { 2307 ret = PTR_ERR(priv->wr_regs); 2308 goto clean_runtime_disable_ret; 2309 } 2310 2311 memset(&dma_params, 0, sizeof(dma_params)); 2312 memset(&ale_params, 0, sizeof(ale_params)); 2313 2314 switch (priv->version) { 2315 case CPSW_VERSION_1: 2316 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2317 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2318 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2319 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2320 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2321 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2322 slave_offset = CPSW1_SLAVE_OFFSET; 2323 slave_size = CPSW1_SLAVE_SIZE; 2324 sliver_offset = CPSW1_SLIVER_OFFSET; 2325 dma_params.desc_mem_phys = 0; 2326 break; 2327 case CPSW_VERSION_2: 2328 case CPSW_VERSION_3: 2329 case CPSW_VERSION_4: 2330 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2331 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2332 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2333 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2334 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2335 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2336 slave_offset = CPSW2_SLAVE_OFFSET; 2337 slave_size = CPSW2_SLAVE_SIZE; 2338 sliver_offset = CPSW2_SLIVER_OFFSET; 2339 dma_params.desc_mem_phys = 2340 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2341 break; 2342 default: 2343 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2344 ret = -ENODEV; 2345 goto clean_runtime_disable_ret; 2346 } 2347 for (i = 0; i < priv->data.slaves; i++) { 2348 struct cpsw_slave *slave = &priv->slaves[i]; 2349 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2350 slave_offset += slave_size; 2351 sliver_offset += SLIVER_SIZE; 2352 } 2353 2354 dma_params.dev = &pdev->dev; 2355 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2356 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2357 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2358 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2359 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2360 2361 dma_params.num_chan = data->channels; 2362 dma_params.has_soft_reset = true; 2363 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2364 dma_params.desc_mem_size = data->bd_ram_size; 2365 dma_params.desc_align = 16; 2366 dma_params.has_ext_regs = true; 2367 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2368 2369 priv->dma = cpdma_ctlr_create(&dma_params); 2370 if (!priv->dma) { 2371 dev_err(priv->dev, "error initializing dma\n"); 2372 ret = -ENOMEM; 2373 goto clean_runtime_disable_ret; 2374 } 2375 2376 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2377 cpsw_tx_handler); 2378 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2379 cpsw_rx_handler); 2380 2381 if (WARN_ON(!priv->txch || !priv->rxch)) { 2382 dev_err(priv->dev, "error initializing dma channels\n"); 2383 ret = -ENOMEM; 2384 goto clean_dma_ret; 2385 } 2386 2387 ale_params.dev = &ndev->dev; 2388 ale_params.ale_ageout = ale_ageout; 2389 ale_params.ale_entries = data->ale_entries; 2390 ale_params.ale_ports = data->slaves; 2391 2392 priv->ale = cpsw_ale_create(&ale_params); 2393 if (!priv->ale) { 2394 dev_err(priv->dev, "error initializing ale engine\n"); 2395 ret = -ENODEV; 2396 goto clean_dma_ret; 2397 } 2398 2399 ndev->irq = platform_get_irq(pdev, 1); 2400 if (ndev->irq < 0) { 2401 dev_err(priv->dev, "error getting irq resource\n"); 2402 ret = -ENOENT; 2403 goto clean_ale_ret; 2404 } 2405 2406 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2407 if (of_id) { 2408 pdev->id_entry = of_id->data; 2409 if (pdev->id_entry->driver_data) 2410 priv->quirk_irq = true; 2411 } 2412 2413 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2414 * MISC IRQs which are always kept disabled with this driver so 2415 * we will not request them. 2416 * 2417 * If anyone wants to implement support for those, make sure to 2418 * first request and append them to irqs_table array. 2419 */ 2420 2421 /* RX IRQ */ 2422 irq = platform_get_irq(pdev, 1); 2423 if (irq < 0) 2424 goto clean_ale_ret; 2425 2426 priv->irqs_table[0] = irq; 2427 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2428 0, dev_name(&pdev->dev), priv); 2429 if (ret < 0) { 2430 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2431 goto clean_ale_ret; 2432 } 2433 2434 /* TX IRQ */ 2435 irq = platform_get_irq(pdev, 2); 2436 if (irq < 0) 2437 goto clean_ale_ret; 2438 2439 priv->irqs_table[1] = irq; 2440 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2441 0, dev_name(&pdev->dev), priv); 2442 if (ret < 0) { 2443 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2444 goto clean_ale_ret; 2445 } 2446 priv->num_irqs = 2; 2447 2448 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2449 2450 ndev->netdev_ops = &cpsw_netdev_ops; 2451 ndev->ethtool_ops = &cpsw_ethtool_ops; 2452 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2453 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2454 2455 /* register the network device */ 2456 SET_NETDEV_DEV(ndev, &pdev->dev); 2457 ret = register_netdev(ndev); 2458 if (ret) { 2459 dev_err(priv->dev, "error registering net device\n"); 2460 ret = -ENODEV; 2461 goto clean_ale_ret; 2462 } 2463 2464 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2465 &ss_res->start, ndev->irq); 2466 2467 if (priv->data.dual_emac) { 2468 ret = cpsw_probe_dual_emac(pdev, priv); 2469 if (ret) { 2470 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2471 goto clean_ale_ret; 2472 } 2473 } 2474 2475 return 0; 2476 2477 clean_ale_ret: 2478 cpsw_ale_destroy(priv->ale); 2479 clean_dma_ret: 2480 cpdma_chan_destroy(priv->txch); 2481 cpdma_chan_destroy(priv->rxch); 2482 cpdma_ctlr_destroy(priv->dma); 2483 clean_runtime_disable_ret: 2484 pm_runtime_disable(&pdev->dev); 2485 clean_ndev_ret: 2486 free_netdev(priv->ndev); 2487 return ret; 2488 } 2489 2490 static int cpsw_remove_child_device(struct device *dev, void *c) 2491 { 2492 struct platform_device *pdev = to_platform_device(dev); 2493 2494 of_device_unregister(pdev); 2495 2496 return 0; 2497 } 2498 2499 static int cpsw_remove(struct platform_device *pdev) 2500 { 2501 struct net_device *ndev = platform_get_drvdata(pdev); 2502 struct cpsw_priv *priv = netdev_priv(ndev); 2503 2504 if (priv->data.dual_emac) 2505 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2506 unregister_netdev(ndev); 2507 2508 cpsw_ale_destroy(priv->ale); 2509 cpdma_chan_destroy(priv->txch); 2510 cpdma_chan_destroy(priv->rxch); 2511 cpdma_ctlr_destroy(priv->dma); 2512 pm_runtime_disable(&pdev->dev); 2513 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2514 if (priv->data.dual_emac) 2515 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2516 free_netdev(ndev); 2517 return 0; 2518 } 2519 2520 #ifdef CONFIG_PM_SLEEP 2521 static int cpsw_suspend(struct device *dev) 2522 { 2523 struct platform_device *pdev = to_platform_device(dev); 2524 struct net_device *ndev = platform_get_drvdata(pdev); 2525 struct cpsw_priv *priv = netdev_priv(ndev); 2526 2527 if (priv->data.dual_emac) { 2528 int i; 2529 2530 for (i = 0; i < priv->data.slaves; i++) { 2531 if (netif_running(priv->slaves[i].ndev)) 2532 cpsw_ndo_stop(priv->slaves[i].ndev); 2533 soft_reset_slave(priv->slaves + i); 2534 } 2535 } else { 2536 if (netif_running(ndev)) 2537 cpsw_ndo_stop(ndev); 2538 for_each_slave(priv, soft_reset_slave); 2539 } 2540 2541 pm_runtime_put_sync(&pdev->dev); 2542 2543 /* Select sleep pin state */ 2544 pinctrl_pm_select_sleep_state(&pdev->dev); 2545 2546 return 0; 2547 } 2548 2549 static int cpsw_resume(struct device *dev) 2550 { 2551 struct platform_device *pdev = to_platform_device(dev); 2552 struct net_device *ndev = platform_get_drvdata(pdev); 2553 struct cpsw_priv *priv = netdev_priv(ndev); 2554 2555 pm_runtime_get_sync(&pdev->dev); 2556 2557 /* Select default pin state */ 2558 pinctrl_pm_select_default_state(&pdev->dev); 2559 2560 if (priv->data.dual_emac) { 2561 int i; 2562 2563 for (i = 0; i < priv->data.slaves; i++) { 2564 if (netif_running(priv->slaves[i].ndev)) 2565 cpsw_ndo_open(priv->slaves[i].ndev); 2566 } 2567 } else { 2568 if (netif_running(ndev)) 2569 cpsw_ndo_open(ndev); 2570 } 2571 return 0; 2572 } 2573 #endif 2574 2575 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2576 2577 static struct platform_driver cpsw_driver = { 2578 .driver = { 2579 .name = "cpsw", 2580 .pm = &cpsw_pm_ops, 2581 .of_match_table = cpsw_of_mtable, 2582 }, 2583 .probe = cpsw_probe, 2584 .remove = cpsw_remove, 2585 }; 2586 2587 static int __init cpsw_init(void) 2588 { 2589 return platform_driver_register(&cpsw_driver); 2590 } 2591 late_initcall(cpsw_init); 2592 2593 static void __exit cpsw_exit(void) 2594 { 2595 platform_driver_unregister(&cpsw_driver); 2596 } 2597 module_exit(cpsw_exit); 2598 2599 MODULE_LICENSE("GPL"); 2600 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2601 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2602 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2603