xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 2c64e9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/clk.h>
12 #include <linux/timer.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/irqreturn.h>
16 #include <linux/interrupt.h>
17 #include <linux/if_ether.h>
18 #include <linux/etherdevice.h>
19 #include <linux/netdevice.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/phy.h>
22 #include <linux/phy/phy.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_device.h>
31 #include <linux/if_vlan.h>
32 #include <linux/kmemleak.h>
33 #include <linux/sys_soc.h>
34 
35 #include <linux/pinctrl/consumer.h>
36 #include <net/pkt_cls.h>
37 
38 #include "cpsw.h"
39 #include "cpsw_ale.h"
40 #include "cpsw_priv.h"
41 #include "cpsw_sl.h"
42 #include "cpts.h"
43 #include "davinci_cpdma.h"
44 
45 #include <net/pkt_sched.h>
46 
47 static int debug_level;
48 module_param(debug_level, int, 0);
49 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
50 
51 static int ale_ageout = 10;
52 module_param(ale_ageout, int, 0);
53 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
54 
55 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
56 module_param(rx_packet_max, int, 0);
57 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
58 
59 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
60 module_param(descs_pool_size, int, 0444);
61 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
62 
63 #define for_each_slave(priv, func, arg...)				\
64 	do {								\
65 		struct cpsw_slave *slave;				\
66 		struct cpsw_common *cpsw = (priv)->cpsw;		\
67 		int n;							\
68 		if (cpsw->data.dual_emac)				\
69 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
70 		else							\
71 			for (n = cpsw->data.slaves,			\
72 					slave = cpsw->slaves;		\
73 					n; n--)				\
74 				(func)(slave++, ##arg);			\
75 	} while (0)
76 
77 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
78 				    __be16 proto, u16 vid);
79 
80 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
81 {
82 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
83 	struct cpsw_ale *ale = cpsw->ale;
84 	int i;
85 
86 	if (cpsw->data.dual_emac) {
87 		bool flag = false;
88 
89 		/* Enabling promiscuous mode for one interface will be
90 		 * common for both the interface as the interface shares
91 		 * the same hardware resource.
92 		 */
93 		for (i = 0; i < cpsw->data.slaves; i++)
94 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
95 				flag = true;
96 
97 		if (!enable && flag) {
98 			enable = true;
99 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
100 		}
101 
102 		if (enable) {
103 			/* Enable Bypass */
104 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
105 
106 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
107 		} else {
108 			/* Disable Bypass */
109 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
110 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
111 		}
112 	} else {
113 		if (enable) {
114 			unsigned long timeout = jiffies + HZ;
115 
116 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
117 			for (i = 0; i <= cpsw->data.slaves; i++) {
118 				cpsw_ale_control_set(ale, i,
119 						     ALE_PORT_NOLEARN, 1);
120 				cpsw_ale_control_set(ale, i,
121 						     ALE_PORT_NO_SA_UPDATE, 1);
122 			}
123 
124 			/* Clear All Untouched entries */
125 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
126 			do {
127 				cpu_relax();
128 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
129 					break;
130 			} while (time_after(timeout, jiffies));
131 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
132 
133 			/* Clear all mcast from ALE */
134 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
135 			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
136 
137 			/* Flood All Unicast Packets to Host port */
138 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
139 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
140 		} else {
141 			/* Don't Flood All Unicast Packets to Host port */
142 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
143 
144 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
145 			for (i = 0; i <= cpsw->data.slaves; i++) {
146 				cpsw_ale_control_set(ale, i,
147 						     ALE_PORT_NOLEARN, 0);
148 				cpsw_ale_control_set(ale, i,
149 						     ALE_PORT_NO_SA_UPDATE, 0);
150 			}
151 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
152 		}
153 	}
154 }
155 
156 /**
157  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
158  * if it's not deleted
159  * @ndev: device to sync
160  * @addr: address to be added or deleted
161  * @vid: vlan id, if vid < 0 set/unset address for real device
162  * @add: add address if the flag is set or remove otherwise
163  */
164 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
165 		       int vid, int add)
166 {
167 	struct cpsw_priv *priv = netdev_priv(ndev);
168 	struct cpsw_common *cpsw = priv->cpsw;
169 	int mask, flags, ret;
170 
171 	if (vid < 0) {
172 		if (cpsw->data.dual_emac)
173 			vid = cpsw->slaves[priv->emac_port].port_vlan;
174 		else
175 			vid = 0;
176 	}
177 
178 	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
179 	flags = vid ? ALE_VLAN : 0;
180 
181 	if (add)
182 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
183 	else
184 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
185 
186 	return ret;
187 }
188 
189 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
190 {
191 	struct addr_sync_ctx *sync_ctx = ctx;
192 	struct netdev_hw_addr *ha;
193 	int found = 0, ret = 0;
194 
195 	if (!vdev || !(vdev->flags & IFF_UP))
196 		return 0;
197 
198 	/* vlan address is relevant if its sync_cnt != 0 */
199 	netdev_for_each_mc_addr(ha, vdev) {
200 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
201 			found = ha->sync_cnt;
202 			break;
203 		}
204 	}
205 
206 	if (found)
207 		sync_ctx->consumed++;
208 
209 	if (sync_ctx->flush) {
210 		if (!found)
211 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
212 		return 0;
213 	}
214 
215 	if (found)
216 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
217 
218 	return ret;
219 }
220 
221 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
222 {
223 	struct addr_sync_ctx sync_ctx;
224 	int ret;
225 
226 	sync_ctx.consumed = 0;
227 	sync_ctx.addr = addr;
228 	sync_ctx.ndev = ndev;
229 	sync_ctx.flush = 0;
230 
231 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
232 	if (sync_ctx.consumed < num && !ret)
233 		ret = cpsw_set_mc(ndev, addr, -1, 1);
234 
235 	return ret;
236 }
237 
238 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
239 {
240 	struct addr_sync_ctx sync_ctx;
241 
242 	sync_ctx.consumed = 0;
243 	sync_ctx.addr = addr;
244 	sync_ctx.ndev = ndev;
245 	sync_ctx.flush = 1;
246 
247 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
248 	if (sync_ctx.consumed == num)
249 		cpsw_set_mc(ndev, addr, -1, 0);
250 
251 	return 0;
252 }
253 
254 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
255 {
256 	struct addr_sync_ctx *sync_ctx = ctx;
257 	struct netdev_hw_addr *ha;
258 	int found = 0;
259 
260 	if (!vdev || !(vdev->flags & IFF_UP))
261 		return 0;
262 
263 	/* vlan address is relevant if its sync_cnt != 0 */
264 	netdev_for_each_mc_addr(ha, vdev) {
265 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
266 			found = ha->sync_cnt;
267 			break;
268 		}
269 	}
270 
271 	if (!found)
272 		return 0;
273 
274 	sync_ctx->consumed++;
275 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
276 	return 0;
277 }
278 
279 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
280 {
281 	struct addr_sync_ctx sync_ctx;
282 
283 	sync_ctx.addr = addr;
284 	sync_ctx.ndev = ndev;
285 	sync_ctx.consumed = 0;
286 
287 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
288 	if (sync_ctx.consumed < num)
289 		cpsw_set_mc(ndev, addr, -1, 0);
290 
291 	return 0;
292 }
293 
294 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
295 {
296 	struct cpsw_priv *priv = netdev_priv(ndev);
297 	struct cpsw_common *cpsw = priv->cpsw;
298 	int slave_port = -1;
299 
300 	if (cpsw->data.dual_emac)
301 		slave_port = priv->emac_port + 1;
302 
303 	if (ndev->flags & IFF_PROMISC) {
304 		/* Enable promiscuous mode */
305 		cpsw_set_promiscious(ndev, true);
306 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
307 		return;
308 	} else {
309 		/* Disable promiscuous mode */
310 		cpsw_set_promiscious(ndev, false);
311 	}
312 
313 	/* Restore allmulti on vlans if necessary */
314 	cpsw_ale_set_allmulti(cpsw->ale,
315 			      ndev->flags & IFF_ALLMULTI, slave_port);
316 
317 	/* add/remove mcast address either for real netdev or for vlan */
318 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
319 			       cpsw_del_mc_addr);
320 }
321 
322 void cpsw_intr_enable(struct cpsw_common *cpsw)
323 {
324 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
325 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
326 
327 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
328 	return;
329 }
330 
331 void cpsw_intr_disable(struct cpsw_common *cpsw)
332 {
333 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
334 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
335 
336 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
337 	return;
338 }
339 
340 void cpsw_tx_handler(void *token, int len, int status)
341 {
342 	struct netdev_queue	*txq;
343 	struct sk_buff		*skb = token;
344 	struct net_device	*ndev = skb->dev;
345 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
346 
347 	/* Check whether the queue is stopped due to stalled tx dma, if the
348 	 * queue is stopped then start the queue as we have free desc for tx
349 	 */
350 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
351 	if (unlikely(netif_tx_queue_stopped(txq)))
352 		netif_tx_wake_queue(txq);
353 
354 	cpts_tx_timestamp(cpsw->cpts, skb);
355 	ndev->stats.tx_packets++;
356 	ndev->stats.tx_bytes += len;
357 	dev_kfree_skb_any(skb);
358 }
359 
360 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
361 {
362 	struct cpsw_priv *priv = netdev_priv(skb->dev);
363 	struct cpsw_common *cpsw = priv->cpsw;
364 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
365 	u16 vtag, vid, prio, pkt_type;
366 
367 	/* Remove VLAN header encapsulation word */
368 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
369 
370 	pkt_type = (rx_vlan_encap_hdr >>
371 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
372 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
373 	/* Ignore unknown & Priority-tagged packets*/
374 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
375 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
376 		return;
377 
378 	vid = (rx_vlan_encap_hdr >>
379 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
380 	       VLAN_VID_MASK;
381 	/* Ignore vid 0 and pass packet as is */
382 	if (!vid)
383 		return;
384 	/* Ignore default vlans in dual mac mode */
385 	if (cpsw->data.dual_emac &&
386 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
387 		return;
388 
389 	prio = (rx_vlan_encap_hdr >>
390 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
391 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
392 
393 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
394 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
395 
396 	/* strip vlan tag for VLAN-tagged packet */
397 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
398 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
399 		skb_pull(skb, VLAN_HLEN);
400 	}
401 }
402 
403 static void cpsw_rx_handler(void *token, int len, int status)
404 {
405 	struct cpdma_chan	*ch;
406 	struct sk_buff		*skb = token;
407 	struct sk_buff		*new_skb;
408 	struct net_device	*ndev = skb->dev;
409 	int			ret = 0, port;
410 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
411 	struct cpsw_priv	*priv;
412 
413 	if (cpsw->data.dual_emac) {
414 		port = CPDMA_RX_SOURCE_PORT(status);
415 		if (port) {
416 			ndev = cpsw->slaves[--port].ndev;
417 			skb->dev = ndev;
418 		}
419 	}
420 
421 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
422 		/* In dual emac mode check for all interfaces */
423 		if (cpsw->data.dual_emac && cpsw->usage_count &&
424 		    (status >= 0)) {
425 			/* The packet received is for the interface which
426 			 * is already down and the other interface is up
427 			 * and running, instead of freeing which results
428 			 * in reducing of the number of rx descriptor in
429 			 * DMA engine, requeue skb back to cpdma.
430 			 */
431 			new_skb = skb;
432 			goto requeue;
433 		}
434 
435 		/* the interface is going down, skbs are purged */
436 		dev_kfree_skb_any(skb);
437 		return;
438 	}
439 
440 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
441 	if (new_skb) {
442 		skb_copy_queue_mapping(new_skb, skb);
443 		skb_put(skb, len);
444 		if (status & CPDMA_RX_VLAN_ENCAP)
445 			cpsw_rx_vlan_encap(skb);
446 		priv = netdev_priv(ndev);
447 		if (priv->rx_ts_enabled)
448 			cpts_rx_timestamp(cpsw->cpts, skb);
449 		skb->protocol = eth_type_trans(skb, ndev);
450 		netif_receive_skb(skb);
451 		ndev->stats.rx_bytes += len;
452 		ndev->stats.rx_packets++;
453 		kmemleak_not_leak(new_skb);
454 	} else {
455 		ndev->stats.rx_dropped++;
456 		new_skb = skb;
457 	}
458 
459 requeue:
460 	if (netif_dormant(ndev)) {
461 		dev_kfree_skb_any(new_skb);
462 		return;
463 	}
464 
465 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
466 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
467 				skb_tailroom(new_skb), 0);
468 	if (WARN_ON(ret < 0))
469 		dev_kfree_skb_any(new_skb);
470 }
471 
472 void cpsw_split_res(struct cpsw_common *cpsw)
473 {
474 	u32 consumed_rate = 0, bigest_rate = 0;
475 	struct cpsw_vector *txv = cpsw->txv;
476 	int i, ch_weight, rlim_ch_num = 0;
477 	int budget, bigest_rate_ch = 0;
478 	u32 ch_rate, max_rate;
479 	int ch_budget = 0;
480 
481 	for (i = 0; i < cpsw->tx_ch_num; i++) {
482 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
483 		if (!ch_rate)
484 			continue;
485 
486 		rlim_ch_num++;
487 		consumed_rate += ch_rate;
488 	}
489 
490 	if (cpsw->tx_ch_num == rlim_ch_num) {
491 		max_rate = consumed_rate;
492 	} else if (!rlim_ch_num) {
493 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
494 		bigest_rate = 0;
495 		max_rate = consumed_rate;
496 	} else {
497 		max_rate = cpsw->speed * 1000;
498 
499 		/* if max_rate is less then expected due to reduced link speed,
500 		 * split proportionally according next potential max speed
501 		 */
502 		if (max_rate < consumed_rate)
503 			max_rate *= 10;
504 
505 		if (max_rate < consumed_rate)
506 			max_rate *= 10;
507 
508 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
509 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
510 			    (cpsw->tx_ch_num - rlim_ch_num);
511 		bigest_rate = (max_rate - consumed_rate) /
512 			      (cpsw->tx_ch_num - rlim_ch_num);
513 	}
514 
515 	/* split tx weight/budget */
516 	budget = CPSW_POLL_WEIGHT;
517 	for (i = 0; i < cpsw->tx_ch_num; i++) {
518 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
519 		if (ch_rate) {
520 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
521 			if (!txv[i].budget)
522 				txv[i].budget++;
523 			if (ch_rate > bigest_rate) {
524 				bigest_rate_ch = i;
525 				bigest_rate = ch_rate;
526 			}
527 
528 			ch_weight = (ch_rate * 100) / max_rate;
529 			if (!ch_weight)
530 				ch_weight++;
531 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
532 		} else {
533 			txv[i].budget = ch_budget;
534 			if (!bigest_rate_ch)
535 				bigest_rate_ch = i;
536 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
537 		}
538 
539 		budget -= txv[i].budget;
540 	}
541 
542 	if (budget)
543 		txv[bigest_rate_ch].budget += budget;
544 
545 	/* split rx budget */
546 	budget = CPSW_POLL_WEIGHT;
547 	ch_budget = budget / cpsw->rx_ch_num;
548 	for (i = 0; i < cpsw->rx_ch_num; i++) {
549 		cpsw->rxv[i].budget = ch_budget;
550 		budget -= ch_budget;
551 	}
552 
553 	if (budget)
554 		cpsw->rxv[0].budget += budget;
555 }
556 
557 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
558 {
559 	struct cpsw_common *cpsw = dev_id;
560 
561 	writel(0, &cpsw->wr_regs->tx_en);
562 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
563 
564 	if (cpsw->quirk_irq) {
565 		disable_irq_nosync(cpsw->irqs_table[1]);
566 		cpsw->tx_irq_disabled = true;
567 	}
568 
569 	napi_schedule(&cpsw->napi_tx);
570 	return IRQ_HANDLED;
571 }
572 
573 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
574 {
575 	struct cpsw_common *cpsw = dev_id;
576 
577 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
578 	writel(0, &cpsw->wr_regs->rx_en);
579 
580 	if (cpsw->quirk_irq) {
581 		disable_irq_nosync(cpsw->irqs_table[0]);
582 		cpsw->rx_irq_disabled = true;
583 	}
584 
585 	napi_schedule(&cpsw->napi_rx);
586 	return IRQ_HANDLED;
587 }
588 
589 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
590 {
591 	u32			ch_map;
592 	int			num_tx, cur_budget, ch;
593 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
594 	struct cpsw_vector	*txv;
595 
596 	/* process every unprocessed channel */
597 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
598 	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
599 		if (!(ch_map & 0x80))
600 			continue;
601 
602 		txv = &cpsw->txv[ch];
603 		if (unlikely(txv->budget > budget - num_tx))
604 			cur_budget = budget - num_tx;
605 		else
606 			cur_budget = txv->budget;
607 
608 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
609 		if (num_tx >= budget)
610 			break;
611 	}
612 
613 	if (num_tx < budget) {
614 		napi_complete(napi_tx);
615 		writel(0xff, &cpsw->wr_regs->tx_en);
616 	}
617 
618 	return num_tx;
619 }
620 
621 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
622 {
623 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
624 	int num_tx;
625 
626 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
627 	if (num_tx < budget) {
628 		napi_complete(napi_tx);
629 		writel(0xff, &cpsw->wr_regs->tx_en);
630 		if (cpsw->tx_irq_disabled) {
631 			cpsw->tx_irq_disabled = false;
632 			enable_irq(cpsw->irqs_table[1]);
633 		}
634 	}
635 
636 	return num_tx;
637 }
638 
639 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
640 {
641 	u32			ch_map;
642 	int			num_rx, cur_budget, ch;
643 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
644 	struct cpsw_vector	*rxv;
645 
646 	/* process every unprocessed channel */
647 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
648 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
649 		if (!(ch_map & 0x01))
650 			continue;
651 
652 		rxv = &cpsw->rxv[ch];
653 		if (unlikely(rxv->budget > budget - num_rx))
654 			cur_budget = budget - num_rx;
655 		else
656 			cur_budget = rxv->budget;
657 
658 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
659 		if (num_rx >= budget)
660 			break;
661 	}
662 
663 	if (num_rx < budget) {
664 		napi_complete_done(napi_rx, num_rx);
665 		writel(0xff, &cpsw->wr_regs->rx_en);
666 	}
667 
668 	return num_rx;
669 }
670 
671 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
672 {
673 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
674 	int num_rx;
675 
676 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
677 	if (num_rx < budget) {
678 		napi_complete_done(napi_rx, num_rx);
679 		writel(0xff, &cpsw->wr_regs->rx_en);
680 		if (cpsw->rx_irq_disabled) {
681 			cpsw->rx_irq_disabled = false;
682 			enable_irq(cpsw->irqs_table[0]);
683 		}
684 	}
685 
686 	return num_rx;
687 }
688 
689 static inline void soft_reset(const char *module, void __iomem *reg)
690 {
691 	unsigned long timeout = jiffies + HZ;
692 
693 	writel_relaxed(1, reg);
694 	do {
695 		cpu_relax();
696 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
697 
698 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
699 }
700 
701 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
702 			       struct cpsw_priv *priv)
703 {
704 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
705 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
706 }
707 
708 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
709 {
710 	struct cpsw_common *cpsw = priv->cpsw;
711 	struct cpsw_slave *slave;
712 	u32 shift, mask, val;
713 
714 	val = readl_relaxed(&cpsw->regs->ptype);
715 
716 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
717 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
718 	mask = 7 << shift;
719 	val = val & mask;
720 
721 	return !val;
722 }
723 
724 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
725 {
726 	struct cpsw_common *cpsw = priv->cpsw;
727 	struct cpsw_slave *slave;
728 	u32 shift, mask, val;
729 
730 	val = readl_relaxed(&cpsw->regs->ptype);
731 
732 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
733 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
734 	mask = (1 << --fifo) << shift;
735 	val = on ? val | mask : val & ~mask;
736 
737 	writel_relaxed(val, &cpsw->regs->ptype);
738 }
739 
740 static void _cpsw_adjust_link(struct cpsw_slave *slave,
741 			      struct cpsw_priv *priv, bool *link)
742 {
743 	struct phy_device	*phy = slave->phy;
744 	u32			mac_control = 0;
745 	u32			slave_port;
746 	struct cpsw_common *cpsw = priv->cpsw;
747 
748 	if (!phy)
749 		return;
750 
751 	slave_port = cpsw_get_slave_port(slave->slave_num);
752 
753 	if (phy->link) {
754 		mac_control = CPSW_SL_CTL_GMII_EN;
755 
756 		if (phy->speed == 1000)
757 			mac_control |= CPSW_SL_CTL_GIG;
758 		if (phy->duplex)
759 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
760 
761 		/* set speed_in input in case RMII mode is used in 100Mbps */
762 		if (phy->speed == 100)
763 			mac_control |= CPSW_SL_CTL_IFCTL_A;
764 		/* in band mode only works in 10Mbps RGMII mode */
765 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
766 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
767 
768 		if (priv->rx_pause)
769 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
770 
771 		if (priv->tx_pause)
772 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
773 
774 		if (mac_control != slave->mac_control)
775 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
776 
777 		/* enable forwarding */
778 		cpsw_ale_control_set(cpsw->ale, slave_port,
779 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
780 
781 		*link = true;
782 
783 		if (priv->shp_cfg_speed &&
784 		    priv->shp_cfg_speed != slave->phy->speed &&
785 		    !cpsw_shp_is_off(priv))
786 			dev_warn(priv->dev,
787 				 "Speed was changed, CBS shaper speeds are changed!");
788 	} else {
789 		mac_control = 0;
790 		/* disable forwarding */
791 		cpsw_ale_control_set(cpsw->ale, slave_port,
792 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
793 
794 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
795 
796 		cpsw_sl_ctl_reset(slave->mac_sl);
797 	}
798 
799 	if (mac_control != slave->mac_control)
800 		phy_print_status(phy);
801 
802 	slave->mac_control = mac_control;
803 }
804 
805 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
806 {
807 	int i, speed;
808 
809 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
810 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
811 			speed += cpsw->slaves[i].phy->speed;
812 
813 	return speed;
814 }
815 
816 static int cpsw_need_resplit(struct cpsw_common *cpsw)
817 {
818 	int i, rlim_ch_num;
819 	int speed, ch_rate;
820 
821 	/* re-split resources only in case speed was changed */
822 	speed = cpsw_get_common_speed(cpsw);
823 	if (speed == cpsw->speed || !speed)
824 		return 0;
825 
826 	cpsw->speed = speed;
827 
828 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
829 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
830 		if (!ch_rate)
831 			break;
832 
833 		rlim_ch_num++;
834 	}
835 
836 	/* cases not dependent on speed */
837 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
838 		return 0;
839 
840 	return 1;
841 }
842 
843 static void cpsw_adjust_link(struct net_device *ndev)
844 {
845 	struct cpsw_priv	*priv = netdev_priv(ndev);
846 	struct cpsw_common	*cpsw = priv->cpsw;
847 	bool			link = false;
848 
849 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
850 
851 	if (link) {
852 		if (cpsw_need_resplit(cpsw))
853 			cpsw_split_res(cpsw);
854 
855 		netif_carrier_on(ndev);
856 		if (netif_running(ndev))
857 			netif_tx_wake_all_queues(ndev);
858 	} else {
859 		netif_carrier_off(ndev);
860 		netif_tx_stop_all_queues(ndev);
861 	}
862 }
863 
864 static inline void cpsw_add_dual_emac_def_ale_entries(
865 		struct cpsw_priv *priv, struct cpsw_slave *slave,
866 		u32 slave_port)
867 {
868 	struct cpsw_common *cpsw = priv->cpsw;
869 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
870 
871 	if (cpsw->version == CPSW_VERSION_1)
872 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
873 	else
874 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
875 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
876 			  port_mask, port_mask, 0);
877 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
878 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
879 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
880 			   HOST_PORT_NUM, ALE_VLAN |
881 			   ALE_SECURE, slave->port_vlan);
882 	cpsw_ale_control_set(cpsw->ale, slave_port,
883 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
884 }
885 
886 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
887 {
888 	u32 slave_port;
889 	struct phy_device *phy;
890 	struct cpsw_common *cpsw = priv->cpsw;
891 
892 	cpsw_sl_reset(slave->mac_sl, 100);
893 	cpsw_sl_ctl_reset(slave->mac_sl);
894 
895 	/* setup priority mapping */
896 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
897 			  RX_PRIORITY_MAPPING);
898 
899 	switch (cpsw->version) {
900 	case CPSW_VERSION_1:
901 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
902 		/* Increase RX FIFO size to 5 for supporting fullduplex
903 		 * flow control mode
904 		 */
905 		slave_write(slave,
906 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
907 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
908 		break;
909 	case CPSW_VERSION_2:
910 	case CPSW_VERSION_3:
911 	case CPSW_VERSION_4:
912 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
913 		/* Increase RX FIFO size to 5 for supporting fullduplex
914 		 * flow control mode
915 		 */
916 		slave_write(slave,
917 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
918 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
919 		break;
920 	}
921 
922 	/* setup max packet size, and mac address */
923 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
924 			  cpsw->rx_packet_max);
925 	cpsw_set_slave_mac(slave, priv);
926 
927 	slave->mac_control = 0;	/* no link yet */
928 
929 	slave_port = cpsw_get_slave_port(slave->slave_num);
930 
931 	if (cpsw->data.dual_emac)
932 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
933 	else
934 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
935 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
936 
937 	if (slave->data->phy_node) {
938 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
939 				 &cpsw_adjust_link, 0, slave->data->phy_if);
940 		if (!phy) {
941 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
942 				slave->data->phy_node,
943 				slave->slave_num);
944 			return;
945 		}
946 	} else {
947 		phy = phy_connect(priv->ndev, slave->data->phy_id,
948 				 &cpsw_adjust_link, slave->data->phy_if);
949 		if (IS_ERR(phy)) {
950 			dev_err(priv->dev,
951 				"phy \"%s\" not found on slave %d, err %ld\n",
952 				slave->data->phy_id, slave->slave_num,
953 				PTR_ERR(phy));
954 			return;
955 		}
956 	}
957 
958 	slave->phy = phy;
959 
960 	phy_attached_info(slave->phy);
961 
962 	phy_start(slave->phy);
963 
964 	/* Configure GMII_SEL register */
965 	if (!IS_ERR(slave->data->ifphy))
966 		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
967 				 slave->data->phy_if);
968 	else
969 		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
970 			     slave->slave_num);
971 }
972 
973 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
974 {
975 	struct cpsw_common *cpsw = priv->cpsw;
976 	const int vlan = cpsw->data.default_vlan;
977 	u32 reg;
978 	int i;
979 	int unreg_mcast_mask;
980 
981 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
982 	       CPSW2_PORT_VLAN;
983 
984 	writel(vlan, &cpsw->host_port_regs->port_vlan);
985 
986 	for (i = 0; i < cpsw->data.slaves; i++)
987 		slave_write(cpsw->slaves + i, vlan, reg);
988 
989 	if (priv->ndev->flags & IFF_ALLMULTI)
990 		unreg_mcast_mask = ALE_ALL_PORTS;
991 	else
992 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
993 
994 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
995 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
996 			  unreg_mcast_mask);
997 }
998 
999 static void cpsw_init_host_port(struct cpsw_priv *priv)
1000 {
1001 	u32 fifo_mode;
1002 	u32 control_reg;
1003 	struct cpsw_common *cpsw = priv->cpsw;
1004 
1005 	/* soft reset the controller and initialize ale */
1006 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1007 	cpsw_ale_start(cpsw->ale);
1008 
1009 	/* switch to vlan unaware mode */
1010 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1011 			     CPSW_ALE_VLAN_AWARE);
1012 	control_reg = readl(&cpsw->regs->control);
1013 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1014 	writel(control_reg, &cpsw->regs->control);
1015 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1016 		     CPSW_FIFO_NORMAL_MODE;
1017 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1018 
1019 	/* setup host port priority mapping */
1020 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1021 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1022 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1023 
1024 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1025 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1026 
1027 	if (!cpsw->data.dual_emac) {
1028 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1029 				   0, 0);
1030 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1031 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1032 	}
1033 }
1034 
1035 int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1036 {
1037 	struct cpsw_common *cpsw = priv->cpsw;
1038 	struct sk_buff *skb;
1039 	int ch_buf_num;
1040 	int ch, i, ret;
1041 
1042 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1043 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1044 		for (i = 0; i < ch_buf_num; i++) {
1045 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1046 							  cpsw->rx_packet_max,
1047 							  GFP_KERNEL);
1048 			if (!skb) {
1049 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1050 				return -ENOMEM;
1051 			}
1052 
1053 			skb_set_queue_mapping(skb, ch);
1054 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1055 						skb->data, skb_tailroom(skb),
1056 						0);
1057 			if (ret < 0) {
1058 				cpsw_err(priv, ifup,
1059 					 "cannot submit skb to channel %d rx, error %d\n",
1060 					 ch, ret);
1061 				kfree_skb(skb);
1062 				return ret;
1063 			}
1064 			kmemleak_not_leak(skb);
1065 		}
1066 
1067 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1068 			  ch, ch_buf_num);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1075 {
1076 	u32 slave_port;
1077 
1078 	slave_port = cpsw_get_slave_port(slave->slave_num);
1079 
1080 	if (!slave->phy)
1081 		return;
1082 	phy_stop(slave->phy);
1083 	phy_disconnect(slave->phy);
1084 	slave->phy = NULL;
1085 	cpsw_ale_control_set(cpsw->ale, slave_port,
1086 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1087 	cpsw_sl_reset(slave->mac_sl, 100);
1088 	cpsw_sl_ctl_reset(slave->mac_sl);
1089 }
1090 
1091 static int cpsw_tc_to_fifo(int tc, int num_tc)
1092 {
1093 	if (tc == num_tc - 1)
1094 		return 0;
1095 
1096 	return CPSW_FIFO_SHAPERS_NUM - tc;
1097 }
1098 
1099 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1100 {
1101 	struct cpsw_common *cpsw = priv->cpsw;
1102 	u32 val = 0, send_pct, shift;
1103 	struct cpsw_slave *slave;
1104 	int pct = 0, i;
1105 
1106 	if (bw > priv->shp_cfg_speed * 1000)
1107 		goto err;
1108 
1109 	/* shaping has to stay enabled for highest fifos linearly
1110 	 * and fifo bw no more then interface can allow
1111 	 */
1112 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1113 	send_pct = slave_read(slave, SEND_PERCENT);
1114 	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1115 		if (!bw) {
1116 			if (i >= fifo || !priv->fifo_bw[i])
1117 				continue;
1118 
1119 			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1120 			continue;
1121 		}
1122 
1123 		if (!priv->fifo_bw[i] && i > fifo) {
1124 			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1125 			return -EINVAL;
1126 		}
1127 
1128 		shift = (i - 1) * 8;
1129 		if (i == fifo) {
1130 			send_pct &= ~(CPSW_PCT_MASK << shift);
1131 			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1132 			if (!val)
1133 				val = 1;
1134 
1135 			send_pct |= val << shift;
1136 			pct += val;
1137 			continue;
1138 		}
1139 
1140 		if (priv->fifo_bw[i])
1141 			pct += (send_pct >> shift) & CPSW_PCT_MASK;
1142 	}
1143 
1144 	if (pct >= 100)
1145 		goto err;
1146 
1147 	slave_write(slave, send_pct, SEND_PERCENT);
1148 	priv->fifo_bw[fifo] = bw;
1149 
1150 	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1151 		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1152 
1153 	return 0;
1154 err:
1155 	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1156 	return -EINVAL;
1157 }
1158 
1159 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1160 {
1161 	struct cpsw_common *cpsw = priv->cpsw;
1162 	struct cpsw_slave *slave;
1163 	u32 tx_in_ctl_rg, val;
1164 	int ret;
1165 
1166 	ret = cpsw_set_fifo_bw(priv, fifo, bw);
1167 	if (ret)
1168 		return ret;
1169 
1170 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1171 	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1172 		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1173 
1174 	if (!bw)
1175 		cpsw_fifo_shp_on(priv, fifo, bw);
1176 
1177 	val = slave_read(slave, tx_in_ctl_rg);
1178 	if (cpsw_shp_is_off(priv)) {
1179 		/* disable FIFOs rate limited queues */
1180 		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1181 
1182 		/* set type of FIFO queues to normal priority mode */
1183 		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1184 
1185 		/* set type of FIFO queues to be rate limited */
1186 		if (bw)
1187 			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1188 		else
1189 			priv->shp_cfg_speed = 0;
1190 	}
1191 
1192 	/* toggle a FIFO rate limited queue */
1193 	if (bw)
1194 		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1195 	else
1196 		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1197 	slave_write(slave, val, tx_in_ctl_rg);
1198 
1199 	/* FIFO transmit shape enable */
1200 	cpsw_fifo_shp_on(priv, fifo, bw);
1201 	return 0;
1202 }
1203 
1204 /* Defaults:
1205  * class A - prio 3
1206  * class B - prio 2
1207  * shaping for class A should be set first
1208  */
1209 static int cpsw_set_cbs(struct net_device *ndev,
1210 			struct tc_cbs_qopt_offload *qopt)
1211 {
1212 	struct cpsw_priv *priv = netdev_priv(ndev);
1213 	struct cpsw_common *cpsw = priv->cpsw;
1214 	struct cpsw_slave *slave;
1215 	int prev_speed = 0;
1216 	int tc, ret, fifo;
1217 	u32 bw = 0;
1218 
1219 	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1220 
1221 	/* enable channels in backward order, as highest FIFOs must be rate
1222 	 * limited first and for compliance with CPDMA rate limited channels
1223 	 * that also used in bacward order. FIFO0 cannot be rate limited.
1224 	 */
1225 	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1226 	if (!fifo) {
1227 		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1228 		return -EINVAL;
1229 	}
1230 
1231 	/* do nothing, it's disabled anyway */
1232 	if (!qopt->enable && !priv->fifo_bw[fifo])
1233 		return 0;
1234 
1235 	/* shapers can be set if link speed is known */
1236 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1237 	if (slave->phy && slave->phy->link) {
1238 		if (priv->shp_cfg_speed &&
1239 		    priv->shp_cfg_speed != slave->phy->speed)
1240 			prev_speed = priv->shp_cfg_speed;
1241 
1242 		priv->shp_cfg_speed = slave->phy->speed;
1243 	}
1244 
1245 	if (!priv->shp_cfg_speed) {
1246 		dev_err(priv->dev, "Link speed is not known");
1247 		return -1;
1248 	}
1249 
1250 	ret = pm_runtime_get_sync(cpsw->dev);
1251 	if (ret < 0) {
1252 		pm_runtime_put_noidle(cpsw->dev);
1253 		return ret;
1254 	}
1255 
1256 	bw = qopt->enable ? qopt->idleslope : 0;
1257 	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1258 	if (ret) {
1259 		priv->shp_cfg_speed = prev_speed;
1260 		prev_speed = 0;
1261 	}
1262 
1263 	if (bw && prev_speed)
1264 		dev_warn(priv->dev,
1265 			 "Speed was changed, CBS shaper speeds are changed!");
1266 
1267 	pm_runtime_put_sync(cpsw->dev);
1268 	return ret;
1269 }
1270 
1271 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1272 {
1273 	int fifo, bw;
1274 
1275 	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1276 		bw = priv->fifo_bw[fifo];
1277 		if (!bw)
1278 			continue;
1279 
1280 		cpsw_set_fifo_rlimit(priv, fifo, bw);
1281 	}
1282 }
1283 
1284 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1285 {
1286 	struct cpsw_common *cpsw = priv->cpsw;
1287 	u32 tx_prio_map = 0;
1288 	int i, tc, fifo;
1289 	u32 tx_prio_rg;
1290 
1291 	if (!priv->mqprio_hw)
1292 		return;
1293 
1294 	for (i = 0; i < 8; i++) {
1295 		tc = netdev_get_prio_tc_map(priv->ndev, i);
1296 		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1297 		tx_prio_map |= fifo << (4 * i);
1298 	}
1299 
1300 	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1301 		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1302 
1303 	slave_write(slave, tx_prio_map, tx_prio_rg);
1304 }
1305 
1306 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
1307 {
1308 	struct cpsw_priv *priv = arg;
1309 
1310 	if (!vdev)
1311 		return 0;
1312 
1313 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
1314 	return 0;
1315 }
1316 
1317 /* restore resources after port reset */
1318 static void cpsw_restore(struct cpsw_priv *priv)
1319 {
1320 	/* restore vlan configurations */
1321 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
1322 
1323 	/* restore MQPRIO offload */
1324 	for_each_slave(priv, cpsw_mqprio_resume, priv);
1325 
1326 	/* restore CBS offload */
1327 	for_each_slave(priv, cpsw_cbs_resume, priv);
1328 }
1329 
1330 static int cpsw_ndo_open(struct net_device *ndev)
1331 {
1332 	struct cpsw_priv *priv = netdev_priv(ndev);
1333 	struct cpsw_common *cpsw = priv->cpsw;
1334 	int ret;
1335 	u32 reg;
1336 
1337 	ret = pm_runtime_get_sync(cpsw->dev);
1338 	if (ret < 0) {
1339 		pm_runtime_put_noidle(cpsw->dev);
1340 		return ret;
1341 	}
1342 
1343 	netif_carrier_off(ndev);
1344 
1345 	/* Notify the stack of the actual queue counts. */
1346 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1347 	if (ret) {
1348 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1349 		goto err_cleanup;
1350 	}
1351 
1352 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1353 	if (ret) {
1354 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1355 		goto err_cleanup;
1356 	}
1357 
1358 	reg = cpsw->version;
1359 
1360 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1361 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1362 		 CPSW_RTL_VERSION(reg));
1363 
1364 	/* Initialize host and slave ports */
1365 	if (!cpsw->usage_count)
1366 		cpsw_init_host_port(priv);
1367 	for_each_slave(priv, cpsw_slave_open, priv);
1368 
1369 	/* Add default VLAN */
1370 	if (!cpsw->data.dual_emac)
1371 		cpsw_add_default_vlan(priv);
1372 	else
1373 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1374 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1375 
1376 	/* initialize shared resources for every ndev */
1377 	if (!cpsw->usage_count) {
1378 		/* disable priority elevation */
1379 		writel_relaxed(0, &cpsw->regs->ptype);
1380 
1381 		/* enable statistics collection only on all ports */
1382 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1383 
1384 		/* Enable internal fifo flow control */
1385 		writel(0x7, &cpsw->regs->flow_control);
1386 
1387 		napi_enable(&cpsw->napi_rx);
1388 		napi_enable(&cpsw->napi_tx);
1389 
1390 		if (cpsw->tx_irq_disabled) {
1391 			cpsw->tx_irq_disabled = false;
1392 			enable_irq(cpsw->irqs_table[1]);
1393 		}
1394 
1395 		if (cpsw->rx_irq_disabled) {
1396 			cpsw->rx_irq_disabled = false;
1397 			enable_irq(cpsw->irqs_table[0]);
1398 		}
1399 
1400 		ret = cpsw_fill_rx_channels(priv);
1401 		if (ret < 0)
1402 			goto err_cleanup;
1403 
1404 		if (cpts_register(cpsw->cpts))
1405 			dev_err(priv->dev, "error registering cpts device\n");
1406 
1407 	}
1408 
1409 	cpsw_restore(priv);
1410 
1411 	/* Enable Interrupt pacing if configured */
1412 	if (cpsw->coal_intvl != 0) {
1413 		struct ethtool_coalesce coal;
1414 
1415 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1416 		cpsw_set_coalesce(ndev, &coal);
1417 	}
1418 
1419 	cpdma_ctlr_start(cpsw->dma);
1420 	cpsw_intr_enable(cpsw);
1421 	cpsw->usage_count++;
1422 
1423 	return 0;
1424 
1425 err_cleanup:
1426 	cpdma_ctlr_stop(cpsw->dma);
1427 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1428 	pm_runtime_put_sync(cpsw->dev);
1429 	netif_carrier_off(priv->ndev);
1430 	return ret;
1431 }
1432 
1433 static int cpsw_ndo_stop(struct net_device *ndev)
1434 {
1435 	struct cpsw_priv *priv = netdev_priv(ndev);
1436 	struct cpsw_common *cpsw = priv->cpsw;
1437 
1438 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1439 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
1440 	netif_tx_stop_all_queues(priv->ndev);
1441 	netif_carrier_off(priv->ndev);
1442 
1443 	if (cpsw->usage_count <= 1) {
1444 		napi_disable(&cpsw->napi_rx);
1445 		napi_disable(&cpsw->napi_tx);
1446 		cpts_unregister(cpsw->cpts);
1447 		cpsw_intr_disable(cpsw);
1448 		cpdma_ctlr_stop(cpsw->dma);
1449 		cpsw_ale_stop(cpsw->ale);
1450 	}
1451 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1452 
1453 	if (cpsw_need_resplit(cpsw))
1454 		cpsw_split_res(cpsw);
1455 
1456 	cpsw->usage_count--;
1457 	pm_runtime_put_sync(cpsw->dev);
1458 	return 0;
1459 }
1460 
1461 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1462 				       struct net_device *ndev)
1463 {
1464 	struct cpsw_priv *priv = netdev_priv(ndev);
1465 	struct cpsw_common *cpsw = priv->cpsw;
1466 	struct cpts *cpts = cpsw->cpts;
1467 	struct netdev_queue *txq;
1468 	struct cpdma_chan *txch;
1469 	int ret, q_idx;
1470 
1471 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1472 		cpsw_err(priv, tx_err, "packet pad failed\n");
1473 		ndev->stats.tx_dropped++;
1474 		return NET_XMIT_DROP;
1475 	}
1476 
1477 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1478 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
1479 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1480 
1481 	q_idx = skb_get_queue_mapping(skb);
1482 	if (q_idx >= cpsw->tx_ch_num)
1483 		q_idx = q_idx % cpsw->tx_ch_num;
1484 
1485 	txch = cpsw->txv[q_idx].ch;
1486 	txq = netdev_get_tx_queue(ndev, q_idx);
1487 	skb_tx_timestamp(skb);
1488 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
1489 				priv->emac_port + cpsw->data.dual_emac);
1490 	if (unlikely(ret != 0)) {
1491 		cpsw_err(priv, tx_err, "desc submit failed\n");
1492 		goto fail;
1493 	}
1494 
1495 	/* If there is no more tx desc left free then we need to
1496 	 * tell the kernel to stop sending us tx frames.
1497 	 */
1498 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1499 		netif_tx_stop_queue(txq);
1500 
1501 		/* Barrier, so that stop_queue visible to other cpus */
1502 		smp_mb__after_atomic();
1503 
1504 		if (cpdma_check_free_tx_desc(txch))
1505 			netif_tx_wake_queue(txq);
1506 	}
1507 
1508 	return NETDEV_TX_OK;
1509 fail:
1510 	ndev->stats.tx_dropped++;
1511 	netif_tx_stop_queue(txq);
1512 
1513 	/* Barrier, so that stop_queue visible to other cpus */
1514 	smp_mb__after_atomic();
1515 
1516 	if (cpdma_check_free_tx_desc(txch))
1517 		netif_tx_wake_queue(txq);
1518 
1519 	return NETDEV_TX_BUSY;
1520 }
1521 
1522 #if IS_ENABLED(CONFIG_TI_CPTS)
1523 
1524 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1525 {
1526 	struct cpsw_common *cpsw = priv->cpsw;
1527 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1528 	u32 ts_en, seq_id;
1529 
1530 	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
1531 		slave_write(slave, 0, CPSW1_TS_CTL);
1532 		return;
1533 	}
1534 
1535 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1536 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1537 
1538 	if (priv->tx_ts_enabled)
1539 		ts_en |= CPSW_V1_TS_TX_EN;
1540 
1541 	if (priv->rx_ts_enabled)
1542 		ts_en |= CPSW_V1_TS_RX_EN;
1543 
1544 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1545 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1546 }
1547 
1548 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1549 {
1550 	struct cpsw_slave *slave;
1551 	struct cpsw_common *cpsw = priv->cpsw;
1552 	u32 ctrl, mtype;
1553 
1554 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1555 
1556 	ctrl = slave_read(slave, CPSW2_CONTROL);
1557 	switch (cpsw->version) {
1558 	case CPSW_VERSION_2:
1559 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1560 
1561 		if (priv->tx_ts_enabled)
1562 			ctrl |= CTRL_V2_TX_TS_BITS;
1563 
1564 		if (priv->rx_ts_enabled)
1565 			ctrl |= CTRL_V2_RX_TS_BITS;
1566 		break;
1567 	case CPSW_VERSION_3:
1568 	default:
1569 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1570 
1571 		if (priv->tx_ts_enabled)
1572 			ctrl |= CTRL_V3_TX_TS_BITS;
1573 
1574 		if (priv->rx_ts_enabled)
1575 			ctrl |= CTRL_V3_RX_TS_BITS;
1576 		break;
1577 	}
1578 
1579 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1580 
1581 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1582 	slave_write(slave, ctrl, CPSW2_CONTROL);
1583 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1584 	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
1585 }
1586 
1587 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1588 {
1589 	struct cpsw_priv *priv = netdev_priv(dev);
1590 	struct hwtstamp_config cfg;
1591 	struct cpsw_common *cpsw = priv->cpsw;
1592 
1593 	if (cpsw->version != CPSW_VERSION_1 &&
1594 	    cpsw->version != CPSW_VERSION_2 &&
1595 	    cpsw->version != CPSW_VERSION_3)
1596 		return -EOPNOTSUPP;
1597 
1598 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1599 		return -EFAULT;
1600 
1601 	/* reserved for future extensions */
1602 	if (cfg.flags)
1603 		return -EINVAL;
1604 
1605 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1606 		return -ERANGE;
1607 
1608 	switch (cfg.rx_filter) {
1609 	case HWTSTAMP_FILTER_NONE:
1610 		priv->rx_ts_enabled = 0;
1611 		break;
1612 	case HWTSTAMP_FILTER_ALL:
1613 	case HWTSTAMP_FILTER_NTP_ALL:
1614 		return -ERANGE;
1615 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1616 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1617 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1618 		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1619 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1620 		break;
1621 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1622 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1623 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1624 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1625 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1626 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1627 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1628 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1629 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1630 		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
1631 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1632 		break;
1633 	default:
1634 		return -ERANGE;
1635 	}
1636 
1637 	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
1638 
1639 	switch (cpsw->version) {
1640 	case CPSW_VERSION_1:
1641 		cpsw_hwtstamp_v1(priv);
1642 		break;
1643 	case CPSW_VERSION_2:
1644 	case CPSW_VERSION_3:
1645 		cpsw_hwtstamp_v2(priv);
1646 		break;
1647 	default:
1648 		WARN_ON(1);
1649 	}
1650 
1651 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1652 }
1653 
1654 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1655 {
1656 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1657 	struct cpsw_priv *priv = netdev_priv(dev);
1658 	struct hwtstamp_config cfg;
1659 
1660 	if (cpsw->version != CPSW_VERSION_1 &&
1661 	    cpsw->version != CPSW_VERSION_2 &&
1662 	    cpsw->version != CPSW_VERSION_3)
1663 		return -EOPNOTSUPP;
1664 
1665 	cfg.flags = 0;
1666 	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1667 	cfg.rx_filter = priv->rx_ts_enabled;
1668 
1669 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1670 }
1671 #else
1672 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1673 {
1674 	return -EOPNOTSUPP;
1675 }
1676 
1677 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1678 {
1679 	return -EOPNOTSUPP;
1680 }
1681 #endif /*CONFIG_TI_CPTS*/
1682 
1683 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1684 {
1685 	struct cpsw_priv *priv = netdev_priv(dev);
1686 	struct cpsw_common *cpsw = priv->cpsw;
1687 	int slave_no = cpsw_slave_index(cpsw, priv);
1688 
1689 	if (!netif_running(dev))
1690 		return -EINVAL;
1691 
1692 	switch (cmd) {
1693 	case SIOCSHWTSTAMP:
1694 		return cpsw_hwtstamp_set(dev, req);
1695 	case SIOCGHWTSTAMP:
1696 		return cpsw_hwtstamp_get(dev, req);
1697 	}
1698 
1699 	if (!cpsw->slaves[slave_no].phy)
1700 		return -EOPNOTSUPP;
1701 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1702 }
1703 
1704 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1705 {
1706 	struct cpsw_priv *priv = netdev_priv(ndev);
1707 	struct cpsw_common *cpsw = priv->cpsw;
1708 	int ch;
1709 
1710 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1711 	ndev->stats.tx_errors++;
1712 	cpsw_intr_disable(cpsw);
1713 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1714 		cpdma_chan_stop(cpsw->txv[ch].ch);
1715 		cpdma_chan_start(cpsw->txv[ch].ch);
1716 	}
1717 
1718 	cpsw_intr_enable(cpsw);
1719 	netif_trans_update(ndev);
1720 	netif_tx_wake_all_queues(ndev);
1721 }
1722 
1723 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1724 {
1725 	struct cpsw_priv *priv = netdev_priv(ndev);
1726 	struct sockaddr *addr = (struct sockaddr *)p;
1727 	struct cpsw_common *cpsw = priv->cpsw;
1728 	int flags = 0;
1729 	u16 vid = 0;
1730 	int ret;
1731 
1732 	if (!is_valid_ether_addr(addr->sa_data))
1733 		return -EADDRNOTAVAIL;
1734 
1735 	ret = pm_runtime_get_sync(cpsw->dev);
1736 	if (ret < 0) {
1737 		pm_runtime_put_noidle(cpsw->dev);
1738 		return ret;
1739 	}
1740 
1741 	if (cpsw->data.dual_emac) {
1742 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1743 		flags = ALE_VLAN;
1744 	}
1745 
1746 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1747 			   flags, vid);
1748 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1749 			   flags, vid);
1750 
1751 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1752 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1753 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1754 
1755 	pm_runtime_put(cpsw->dev);
1756 
1757 	return 0;
1758 }
1759 
1760 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1761 				unsigned short vid)
1762 {
1763 	int ret;
1764 	int unreg_mcast_mask = 0;
1765 	int mcast_mask;
1766 	u32 port_mask;
1767 	struct cpsw_common *cpsw = priv->cpsw;
1768 
1769 	if (cpsw->data.dual_emac) {
1770 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1771 
1772 		mcast_mask = ALE_PORT_HOST;
1773 		if (priv->ndev->flags & IFF_ALLMULTI)
1774 			unreg_mcast_mask = mcast_mask;
1775 	} else {
1776 		port_mask = ALE_ALL_PORTS;
1777 		mcast_mask = port_mask;
1778 
1779 		if (priv->ndev->flags & IFF_ALLMULTI)
1780 			unreg_mcast_mask = ALE_ALL_PORTS;
1781 		else
1782 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1783 	}
1784 
1785 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1786 				unreg_mcast_mask);
1787 	if (ret != 0)
1788 		return ret;
1789 
1790 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1791 				 HOST_PORT_NUM, ALE_VLAN, vid);
1792 	if (ret != 0)
1793 		goto clean_vid;
1794 
1795 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1796 				 mcast_mask, ALE_VLAN, vid, 0);
1797 	if (ret != 0)
1798 		goto clean_vlan_ucast;
1799 	return 0;
1800 
1801 clean_vlan_ucast:
1802 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1803 			   HOST_PORT_NUM, ALE_VLAN, vid);
1804 clean_vid:
1805 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1806 	return ret;
1807 }
1808 
1809 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1810 				    __be16 proto, u16 vid)
1811 {
1812 	struct cpsw_priv *priv = netdev_priv(ndev);
1813 	struct cpsw_common *cpsw = priv->cpsw;
1814 	int ret;
1815 
1816 	if (vid == cpsw->data.default_vlan)
1817 		return 0;
1818 
1819 	ret = pm_runtime_get_sync(cpsw->dev);
1820 	if (ret < 0) {
1821 		pm_runtime_put_noidle(cpsw->dev);
1822 		return ret;
1823 	}
1824 
1825 	if (cpsw->data.dual_emac) {
1826 		/* In dual EMAC, reserved VLAN id should not be used for
1827 		 * creating VLAN interfaces as this can break the dual
1828 		 * EMAC port separation
1829 		 */
1830 		int i;
1831 
1832 		for (i = 0; i < cpsw->data.slaves; i++) {
1833 			if (vid == cpsw->slaves[i].port_vlan) {
1834 				ret = -EINVAL;
1835 				goto err;
1836 			}
1837 		}
1838 	}
1839 
1840 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1841 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1842 err:
1843 	pm_runtime_put(cpsw->dev);
1844 	return ret;
1845 }
1846 
1847 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1848 				     __be16 proto, u16 vid)
1849 {
1850 	struct cpsw_priv *priv = netdev_priv(ndev);
1851 	struct cpsw_common *cpsw = priv->cpsw;
1852 	int ret;
1853 
1854 	if (vid == cpsw->data.default_vlan)
1855 		return 0;
1856 
1857 	ret = pm_runtime_get_sync(cpsw->dev);
1858 	if (ret < 0) {
1859 		pm_runtime_put_noidle(cpsw->dev);
1860 		return ret;
1861 	}
1862 
1863 	if (cpsw->data.dual_emac) {
1864 		int i;
1865 
1866 		for (i = 0; i < cpsw->data.slaves; i++) {
1867 			if (vid == cpsw->slaves[i].port_vlan)
1868 				goto err;
1869 		}
1870 	}
1871 
1872 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1873 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1874 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1875 				  HOST_PORT_NUM, ALE_VLAN, vid);
1876 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1877 				  0, ALE_VLAN, vid);
1878 	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
1879 err:
1880 	pm_runtime_put(cpsw->dev);
1881 	return ret;
1882 }
1883 
1884 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
1885 {
1886 	struct cpsw_priv *priv = netdev_priv(ndev);
1887 	struct cpsw_common *cpsw = priv->cpsw;
1888 	struct cpsw_slave *slave;
1889 	u32 min_rate;
1890 	u32 ch_rate;
1891 	int i, ret;
1892 
1893 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
1894 	if (ch_rate == rate)
1895 		return 0;
1896 
1897 	ch_rate = rate * 1000;
1898 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
1899 	if ((ch_rate < min_rate && ch_rate)) {
1900 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
1901 			min_rate);
1902 		return -EINVAL;
1903 	}
1904 
1905 	if (rate > cpsw->speed) {
1906 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
1907 		return -EINVAL;
1908 	}
1909 
1910 	ret = pm_runtime_get_sync(cpsw->dev);
1911 	if (ret < 0) {
1912 		pm_runtime_put_noidle(cpsw->dev);
1913 		return ret;
1914 	}
1915 
1916 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
1917 	pm_runtime_put(cpsw->dev);
1918 
1919 	if (ret)
1920 		return ret;
1921 
1922 	/* update rates for slaves tx queues */
1923 	for (i = 0; i < cpsw->data.slaves; i++) {
1924 		slave = &cpsw->slaves[i];
1925 		if (!slave->ndev)
1926 			continue;
1927 
1928 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
1929 	}
1930 
1931 	cpsw_split_res(cpsw);
1932 	return ret;
1933 }
1934 
1935 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
1936 {
1937 	struct tc_mqprio_qopt_offload *mqprio = type_data;
1938 	struct cpsw_priv *priv = netdev_priv(ndev);
1939 	struct cpsw_common *cpsw = priv->cpsw;
1940 	int fifo, num_tc, count, offset;
1941 	struct cpsw_slave *slave;
1942 	u32 tx_prio_map = 0;
1943 	int i, tc, ret;
1944 
1945 	num_tc = mqprio->qopt.num_tc;
1946 	if (num_tc > CPSW_TC_NUM)
1947 		return -EINVAL;
1948 
1949 	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
1950 		return -EINVAL;
1951 
1952 	ret = pm_runtime_get_sync(cpsw->dev);
1953 	if (ret < 0) {
1954 		pm_runtime_put_noidle(cpsw->dev);
1955 		return ret;
1956 	}
1957 
1958 	if (num_tc) {
1959 		for (i = 0; i < 8; i++) {
1960 			tc = mqprio->qopt.prio_tc_map[i];
1961 			fifo = cpsw_tc_to_fifo(tc, num_tc);
1962 			tx_prio_map |= fifo << (4 * i);
1963 		}
1964 
1965 		netdev_set_num_tc(ndev, num_tc);
1966 		for (i = 0; i < num_tc; i++) {
1967 			count = mqprio->qopt.count[i];
1968 			offset = mqprio->qopt.offset[i];
1969 			netdev_set_tc_queue(ndev, i, count, offset);
1970 		}
1971 	}
1972 
1973 	if (!mqprio->qopt.hw) {
1974 		/* restore default configuration */
1975 		netdev_reset_tc(ndev);
1976 		tx_prio_map = TX_PRIORITY_MAPPING;
1977 	}
1978 
1979 	priv->mqprio_hw = mqprio->qopt.hw;
1980 
1981 	offset = cpsw->version == CPSW_VERSION_1 ?
1982 		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1983 
1984 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1985 	slave_write(slave, tx_prio_map, offset);
1986 
1987 	pm_runtime_put_sync(cpsw->dev);
1988 
1989 	return 0;
1990 }
1991 
1992 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1993 			     void *type_data)
1994 {
1995 	switch (type) {
1996 	case TC_SETUP_QDISC_CBS:
1997 		return cpsw_set_cbs(ndev, type_data);
1998 
1999 	case TC_SETUP_QDISC_MQPRIO:
2000 		return cpsw_set_mqprio(ndev, type_data);
2001 
2002 	default:
2003 		return -EOPNOTSUPP;
2004 	}
2005 }
2006 
2007 #ifdef CONFIG_NET_POLL_CONTROLLER
2008 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2009 {
2010 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2011 
2012 	cpsw_intr_disable(cpsw);
2013 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2014 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2015 	cpsw_intr_enable(cpsw);
2016 }
2017 #endif
2018 
2019 static const struct net_device_ops cpsw_netdev_ops = {
2020 	.ndo_open		= cpsw_ndo_open,
2021 	.ndo_stop		= cpsw_ndo_stop,
2022 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2023 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2024 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2025 	.ndo_validate_addr	= eth_validate_addr,
2026 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2027 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2028 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2029 #ifdef CONFIG_NET_POLL_CONTROLLER
2030 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2031 #endif
2032 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2033 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2034 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2035 };
2036 
2037 static void cpsw_get_drvinfo(struct net_device *ndev,
2038 			     struct ethtool_drvinfo *info)
2039 {
2040 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2041 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2042 
2043 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2044 	strlcpy(info->version, "1.0", sizeof(info->version));
2045 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2046 }
2047 
2048 static int cpsw_set_pauseparam(struct net_device *ndev,
2049 			       struct ethtool_pauseparam *pause)
2050 {
2051 	struct cpsw_priv *priv = netdev_priv(ndev);
2052 	bool link;
2053 
2054 	priv->rx_pause = pause->rx_pause ? true : false;
2055 	priv->tx_pause = pause->tx_pause ? true : false;
2056 
2057 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2058 	return 0;
2059 }
2060 
2061 static int cpsw_set_channels(struct net_device *ndev,
2062 			     struct ethtool_channels *chs)
2063 {
2064 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
2065 }
2066 
2067 static const struct ethtool_ops cpsw_ethtool_ops = {
2068 	.get_drvinfo	= cpsw_get_drvinfo,
2069 	.get_msglevel	= cpsw_get_msglevel,
2070 	.set_msglevel	= cpsw_set_msglevel,
2071 	.get_link	= ethtool_op_get_link,
2072 	.get_ts_info	= cpsw_get_ts_info,
2073 	.get_coalesce	= cpsw_get_coalesce,
2074 	.set_coalesce	= cpsw_set_coalesce,
2075 	.get_sset_count		= cpsw_get_sset_count,
2076 	.get_strings		= cpsw_get_strings,
2077 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2078 	.get_pauseparam		= cpsw_get_pauseparam,
2079 	.set_pauseparam		= cpsw_set_pauseparam,
2080 	.get_wol	= cpsw_get_wol,
2081 	.set_wol	= cpsw_set_wol,
2082 	.get_regs_len	= cpsw_get_regs_len,
2083 	.get_regs	= cpsw_get_regs,
2084 	.begin		= cpsw_ethtool_op_begin,
2085 	.complete	= cpsw_ethtool_op_complete,
2086 	.get_channels	= cpsw_get_channels,
2087 	.set_channels	= cpsw_set_channels,
2088 	.get_link_ksettings	= cpsw_get_link_ksettings,
2089 	.set_link_ksettings	= cpsw_set_link_ksettings,
2090 	.get_eee	= cpsw_get_eee,
2091 	.set_eee	= cpsw_set_eee,
2092 	.nway_reset	= cpsw_nway_reset,
2093 	.get_ringparam = cpsw_get_ringparam,
2094 	.set_ringparam = cpsw_set_ringparam,
2095 };
2096 
2097 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2098 			 struct platform_device *pdev)
2099 {
2100 	struct device_node *node = pdev->dev.of_node;
2101 	struct device_node *slave_node;
2102 	int i = 0, ret;
2103 	u32 prop;
2104 
2105 	if (!node)
2106 		return -EINVAL;
2107 
2108 	if (of_property_read_u32(node, "slaves", &prop)) {
2109 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2110 		return -EINVAL;
2111 	}
2112 	data->slaves = prop;
2113 
2114 	if (of_property_read_u32(node, "active_slave", &prop)) {
2115 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2116 		return -EINVAL;
2117 	}
2118 	data->active_slave = prop;
2119 
2120 	data->slave_data = devm_kcalloc(&pdev->dev,
2121 					data->slaves,
2122 					sizeof(struct cpsw_slave_data),
2123 					GFP_KERNEL);
2124 	if (!data->slave_data)
2125 		return -ENOMEM;
2126 
2127 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2128 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2129 		return -EINVAL;
2130 	}
2131 	data->channels = prop;
2132 
2133 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2134 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2135 		return -EINVAL;
2136 	}
2137 	data->ale_entries = prop;
2138 
2139 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2140 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2141 		return -EINVAL;
2142 	}
2143 	data->bd_ram_size = prop;
2144 
2145 	if (of_property_read_u32(node, "mac_control", &prop)) {
2146 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2147 		return -EINVAL;
2148 	}
2149 	data->mac_control = prop;
2150 
2151 	if (of_property_read_bool(node, "dual_emac"))
2152 		data->dual_emac = 1;
2153 
2154 	/*
2155 	 * Populate all the child nodes here...
2156 	 */
2157 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2158 	/* We do not want to force this, as in some cases may not have child */
2159 	if (ret)
2160 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2161 
2162 	for_each_available_child_of_node(node, slave_node) {
2163 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2164 		const void *mac_addr = NULL;
2165 		int lenp;
2166 		const __be32 *parp;
2167 
2168 		/* This is no slave child node, continue */
2169 		if (!of_node_name_eq(slave_node, "slave"))
2170 			continue;
2171 
2172 		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
2173 						    NULL);
2174 		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
2175 		    IS_ERR(slave_data->ifphy)) {
2176 			ret = PTR_ERR(slave_data->ifphy);
2177 			dev_err(&pdev->dev,
2178 				"%d: Error retrieving port phy: %d\n", i, ret);
2179 			return ret;
2180 		}
2181 
2182 		slave_data->phy_node = of_parse_phandle(slave_node,
2183 							"phy-handle", 0);
2184 		parp = of_get_property(slave_node, "phy_id", &lenp);
2185 		if (slave_data->phy_node) {
2186 			dev_dbg(&pdev->dev,
2187 				"slave[%d] using phy-handle=\"%pOF\"\n",
2188 				i, slave_data->phy_node);
2189 		} else if (of_phy_is_fixed_link(slave_node)) {
2190 			/* In the case of a fixed PHY, the DT node associated
2191 			 * to the PHY is the Ethernet MAC DT node.
2192 			 */
2193 			ret = of_phy_register_fixed_link(slave_node);
2194 			if (ret) {
2195 				if (ret != -EPROBE_DEFER)
2196 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2197 				return ret;
2198 			}
2199 			slave_data->phy_node = of_node_get(slave_node);
2200 		} else if (parp) {
2201 			u32 phyid;
2202 			struct device_node *mdio_node;
2203 			struct platform_device *mdio;
2204 
2205 			if (lenp != (sizeof(__be32) * 2)) {
2206 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2207 				goto no_phy_slave;
2208 			}
2209 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2210 			phyid = be32_to_cpup(parp+1);
2211 			mdio = of_find_device_by_node(mdio_node);
2212 			of_node_put(mdio_node);
2213 			if (!mdio) {
2214 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2215 				return -EINVAL;
2216 			}
2217 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2218 				 PHY_ID_FMT, mdio->name, phyid);
2219 			put_device(&mdio->dev);
2220 		} else {
2221 			dev_err(&pdev->dev,
2222 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2223 				i);
2224 			goto no_phy_slave;
2225 		}
2226 		slave_data->phy_if = of_get_phy_mode(slave_node);
2227 		if (slave_data->phy_if < 0) {
2228 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2229 				i);
2230 			return slave_data->phy_if;
2231 		}
2232 
2233 no_phy_slave:
2234 		mac_addr = of_get_mac_address(slave_node);
2235 		if (!IS_ERR(mac_addr)) {
2236 			ether_addr_copy(slave_data->mac_addr, mac_addr);
2237 		} else {
2238 			ret = ti_cm_get_macid(&pdev->dev, i,
2239 					      slave_data->mac_addr);
2240 			if (ret)
2241 				return ret;
2242 		}
2243 		if (data->dual_emac) {
2244 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2245 						 &prop)) {
2246 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2247 				slave_data->dual_emac_res_vlan = i+1;
2248 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2249 					slave_data->dual_emac_res_vlan, i);
2250 			} else {
2251 				slave_data->dual_emac_res_vlan = prop;
2252 			}
2253 		}
2254 
2255 		i++;
2256 		if (i == data->slaves)
2257 			break;
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static void cpsw_remove_dt(struct platform_device *pdev)
2264 {
2265 	struct net_device *ndev = platform_get_drvdata(pdev);
2266 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2267 	struct cpsw_platform_data *data = &cpsw->data;
2268 	struct device_node *node = pdev->dev.of_node;
2269 	struct device_node *slave_node;
2270 	int i = 0;
2271 
2272 	for_each_available_child_of_node(node, slave_node) {
2273 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2274 
2275 		if (!of_node_name_eq(slave_node, "slave"))
2276 			continue;
2277 
2278 		if (of_phy_is_fixed_link(slave_node))
2279 			of_phy_deregister_fixed_link(slave_node);
2280 
2281 		of_node_put(slave_data->phy_node);
2282 
2283 		i++;
2284 		if (i == data->slaves)
2285 			break;
2286 	}
2287 
2288 	of_platform_depopulate(&pdev->dev);
2289 }
2290 
2291 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2292 {
2293 	struct cpsw_common		*cpsw = priv->cpsw;
2294 	struct cpsw_platform_data	*data = &cpsw->data;
2295 	struct net_device		*ndev;
2296 	struct cpsw_priv		*priv_sl2;
2297 	int ret = 0;
2298 
2299 	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
2300 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2301 	if (!ndev) {
2302 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2303 		return -ENOMEM;
2304 	}
2305 
2306 	priv_sl2 = netdev_priv(ndev);
2307 	priv_sl2->cpsw = cpsw;
2308 	priv_sl2->ndev = ndev;
2309 	priv_sl2->dev  = &ndev->dev;
2310 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2311 
2312 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2313 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2314 			ETH_ALEN);
2315 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2316 			 priv_sl2->mac_addr);
2317 	} else {
2318 		eth_random_addr(priv_sl2->mac_addr);
2319 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2320 			 priv_sl2->mac_addr);
2321 	}
2322 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2323 
2324 	priv_sl2->emac_port = 1;
2325 	cpsw->slaves[1].ndev = ndev;
2326 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2327 
2328 	ndev->netdev_ops = &cpsw_netdev_ops;
2329 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2330 
2331 	/* register the network device */
2332 	SET_NETDEV_DEV(ndev, cpsw->dev);
2333 	ret = register_netdev(ndev);
2334 	if (ret)
2335 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2336 
2337 	return ret;
2338 }
2339 
2340 static const struct of_device_id cpsw_of_mtable[] = {
2341 	{ .compatible = "ti,cpsw"},
2342 	{ .compatible = "ti,am335x-cpsw"},
2343 	{ .compatible = "ti,am4372-cpsw"},
2344 	{ .compatible = "ti,dra7-cpsw"},
2345 	{ /* sentinel */ },
2346 };
2347 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2348 
2349 static const struct soc_device_attribute cpsw_soc_devices[] = {
2350 	{ .family = "AM33xx", .revision = "ES1.0"},
2351 	{ /* sentinel */ }
2352 };
2353 
2354 static int cpsw_probe(struct platform_device *pdev)
2355 {
2356 	struct device			*dev = &pdev->dev;
2357 	struct clk			*clk;
2358 	struct cpsw_platform_data	*data;
2359 	struct net_device		*ndev;
2360 	struct cpsw_priv		*priv;
2361 	void __iomem			*ss_regs;
2362 	struct resource			*res, *ss_res;
2363 	struct gpio_descs		*mode;
2364 	const struct soc_device_attribute *soc;
2365 	struct cpsw_common		*cpsw;
2366 	int ret = 0, ch;
2367 	int irq;
2368 
2369 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
2370 	if (!cpsw)
2371 		return -ENOMEM;
2372 
2373 	cpsw->dev = dev;
2374 
2375 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
2376 	if (IS_ERR(mode)) {
2377 		ret = PTR_ERR(mode);
2378 		dev_err(dev, "gpio request failed, ret %d\n", ret);
2379 		return ret;
2380 	}
2381 
2382 	clk = devm_clk_get(dev, "fck");
2383 	if (IS_ERR(clk)) {
2384 		ret = PTR_ERR(clk);
2385 		dev_err(dev, "fck is not found %d\n", ret);
2386 		return ret;
2387 	}
2388 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2389 
2390 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2391 	ss_regs = devm_ioremap_resource(dev, ss_res);
2392 	if (IS_ERR(ss_regs))
2393 		return PTR_ERR(ss_regs);
2394 	cpsw->regs = ss_regs;
2395 
2396 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2397 	cpsw->wr_regs = devm_ioremap_resource(dev, res);
2398 	if (IS_ERR(cpsw->wr_regs))
2399 		return PTR_ERR(cpsw->wr_regs);
2400 
2401 	/* RX IRQ */
2402 	irq = platform_get_irq(pdev, 1);
2403 	if (irq < 0)
2404 		return irq;
2405 	cpsw->irqs_table[0] = irq;
2406 
2407 	/* TX IRQ */
2408 	irq = platform_get_irq(pdev, 2);
2409 	if (irq < 0)
2410 		return irq;
2411 	cpsw->irqs_table[1] = irq;
2412 
2413 	/*
2414 	 * This may be required here for child devices.
2415 	 */
2416 	pm_runtime_enable(dev);
2417 
2418 	/* Need to enable clocks with runtime PM api to access module
2419 	 * registers
2420 	 */
2421 	ret = pm_runtime_get_sync(dev);
2422 	if (ret < 0) {
2423 		pm_runtime_put_noidle(dev);
2424 		goto clean_runtime_disable_ret;
2425 	}
2426 
2427 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2428 	if (ret)
2429 		goto clean_dt_ret;
2430 
2431 	soc = soc_device_match(cpsw_soc_devices);
2432 	if (soc)
2433 		cpsw->quirk_irq = 1;
2434 
2435 	data = &cpsw->data;
2436 	cpsw->slaves = devm_kcalloc(dev,
2437 				    data->slaves, sizeof(struct cpsw_slave),
2438 				    GFP_KERNEL);
2439 	if (!cpsw->slaves) {
2440 		ret = -ENOMEM;
2441 		goto clean_dt_ret;
2442 	}
2443 
2444 	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
2445 	cpsw->descs_pool_size = descs_pool_size;
2446 
2447 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
2448 			       ss_res->start + CPSW2_BD_OFFSET,
2449 			       descs_pool_size);
2450 	if (ret)
2451 		goto clean_dt_ret;
2452 
2453 	ch = cpsw->quirk_irq ? 0 : 7;
2454 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
2455 	if (IS_ERR(cpsw->txv[0].ch)) {
2456 		dev_err(dev, "error initializing tx dma channel\n");
2457 		ret = PTR_ERR(cpsw->txv[0].ch);
2458 		goto clean_cpts;
2459 	}
2460 
2461 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2462 	if (IS_ERR(cpsw->rxv[0].ch)) {
2463 		dev_err(dev, "error initializing rx dma channel\n");
2464 		ret = PTR_ERR(cpsw->rxv[0].ch);
2465 		goto clean_cpts;
2466 	}
2467 	cpsw_split_res(cpsw);
2468 
2469 	/* setup netdev */
2470 	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
2471 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2472 	if (!ndev) {
2473 		dev_err(dev, "error allocating net_device\n");
2474 		goto clean_cpts;
2475 	}
2476 
2477 	platform_set_drvdata(pdev, ndev);
2478 	priv = netdev_priv(ndev);
2479 	priv->cpsw = cpsw;
2480 	priv->ndev = ndev;
2481 	priv->dev  = dev;
2482 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2483 	priv->emac_port = 0;
2484 
2485 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2486 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2487 		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
2488 	} else {
2489 		eth_random_addr(priv->mac_addr);
2490 		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
2491 	}
2492 
2493 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2494 
2495 	cpsw->slaves[0].ndev = ndev;
2496 
2497 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2498 
2499 	ndev->netdev_ops = &cpsw_netdev_ops;
2500 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2501 	netif_napi_add(ndev, &cpsw->napi_rx,
2502 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
2503 		       CPSW_POLL_WEIGHT);
2504 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
2505 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
2506 			  CPSW_POLL_WEIGHT);
2507 
2508 	/* register the network device */
2509 	SET_NETDEV_DEV(ndev, dev);
2510 	ret = register_netdev(ndev);
2511 	if (ret) {
2512 		dev_err(dev, "error registering net device\n");
2513 		ret = -ENODEV;
2514 		goto clean_cpts;
2515 	}
2516 
2517 	if (cpsw->data.dual_emac) {
2518 		ret = cpsw_probe_dual_emac(priv);
2519 		if (ret) {
2520 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2521 			goto clean_unregister_netdev_ret;
2522 		}
2523 	}
2524 
2525 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2526 	 * MISC IRQs which are always kept disabled with this driver so
2527 	 * we will not request them.
2528 	 *
2529 	 * If anyone wants to implement support for those, make sure to
2530 	 * first request and append them to irqs_table array.
2531 	 */
2532 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
2533 			       0, dev_name(dev), cpsw);
2534 	if (ret < 0) {
2535 		dev_err(dev, "error attaching irq (%d)\n", ret);
2536 		goto clean_unregister_netdev_ret;
2537 	}
2538 
2539 
2540 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
2541 			       0, dev_name(&pdev->dev), cpsw);
2542 	if (ret < 0) {
2543 		dev_err(dev, "error attaching irq (%d)\n", ret);
2544 		goto clean_unregister_netdev_ret;
2545 	}
2546 
2547 	cpsw_notice(priv, probe,
2548 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
2549 		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
2550 
2551 	pm_runtime_put(&pdev->dev);
2552 
2553 	return 0;
2554 
2555 clean_unregister_netdev_ret:
2556 	unregister_netdev(ndev);
2557 clean_cpts:
2558 	cpts_release(cpsw->cpts);
2559 	cpdma_ctlr_destroy(cpsw->dma);
2560 clean_dt_ret:
2561 	cpsw_remove_dt(pdev);
2562 	pm_runtime_put_sync(&pdev->dev);
2563 clean_runtime_disable_ret:
2564 	pm_runtime_disable(&pdev->dev);
2565 	return ret;
2566 }
2567 
2568 static int cpsw_remove(struct platform_device *pdev)
2569 {
2570 	struct net_device *ndev = platform_get_drvdata(pdev);
2571 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2572 	int ret;
2573 
2574 	ret = pm_runtime_get_sync(&pdev->dev);
2575 	if (ret < 0) {
2576 		pm_runtime_put_noidle(&pdev->dev);
2577 		return ret;
2578 	}
2579 
2580 	if (cpsw->data.dual_emac)
2581 		unregister_netdev(cpsw->slaves[1].ndev);
2582 	unregister_netdev(ndev);
2583 
2584 	cpts_release(cpsw->cpts);
2585 	cpdma_ctlr_destroy(cpsw->dma);
2586 	cpsw_remove_dt(pdev);
2587 	pm_runtime_put_sync(&pdev->dev);
2588 	pm_runtime_disable(&pdev->dev);
2589 	return 0;
2590 }
2591 
2592 #ifdef CONFIG_PM_SLEEP
2593 static int cpsw_suspend(struct device *dev)
2594 {
2595 	struct net_device	*ndev = dev_get_drvdata(dev);
2596 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2597 
2598 	if (cpsw->data.dual_emac) {
2599 		int i;
2600 
2601 		for (i = 0; i < cpsw->data.slaves; i++) {
2602 			if (netif_running(cpsw->slaves[i].ndev))
2603 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2604 		}
2605 	} else {
2606 		if (netif_running(ndev))
2607 			cpsw_ndo_stop(ndev);
2608 	}
2609 
2610 	/* Select sleep pin state */
2611 	pinctrl_pm_select_sleep_state(dev);
2612 
2613 	return 0;
2614 }
2615 
2616 static int cpsw_resume(struct device *dev)
2617 {
2618 	struct net_device	*ndev = dev_get_drvdata(dev);
2619 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2620 
2621 	/* Select default pin state */
2622 	pinctrl_pm_select_default_state(dev);
2623 
2624 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
2625 	rtnl_lock();
2626 	if (cpsw->data.dual_emac) {
2627 		int i;
2628 
2629 		for (i = 0; i < cpsw->data.slaves; i++) {
2630 			if (netif_running(cpsw->slaves[i].ndev))
2631 				cpsw_ndo_open(cpsw->slaves[i].ndev);
2632 		}
2633 	} else {
2634 		if (netif_running(ndev))
2635 			cpsw_ndo_open(ndev);
2636 	}
2637 	rtnl_unlock();
2638 
2639 	return 0;
2640 }
2641 #endif
2642 
2643 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2644 
2645 static struct platform_driver cpsw_driver = {
2646 	.driver = {
2647 		.name	 = "cpsw",
2648 		.pm	 = &cpsw_pm_ops,
2649 		.of_match_table = cpsw_of_mtable,
2650 	},
2651 	.probe = cpsw_probe,
2652 	.remove = cpsw_remove,
2653 };
2654 
2655 module_platform_driver(cpsw_driver);
2656 
2657 MODULE_LICENSE("GPL");
2658 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2659 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2660 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2661