xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 174cd4b1)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x01234567
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(cpsw, priv)				\
144 		((cpsw->data.dual_emac) ? priv->emac_port :	\
145 		cpsw->data.active_slave)
146 #define IRQ_NUM			2
147 #define CPSW_MAX_QUEUES		8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149 
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153 
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157 
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161 
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165 
166 struct cpsw_wr_regs {
167 	u32	id_ver;
168 	u32	soft_reset;
169 	u32	control;
170 	u32	int_control;
171 	u32	rx_thresh_en;
172 	u32	rx_en;
173 	u32	tx_en;
174 	u32	misc_en;
175 	u32	mem_allign1[8];
176 	u32	rx_thresh_stat;
177 	u32	rx_stat;
178 	u32	tx_stat;
179 	u32	misc_stat;
180 	u32	mem_allign2[8];
181 	u32	rx_imax;
182 	u32	tx_imax;
183 
184 };
185 
186 struct cpsw_ss_regs {
187 	u32	id_ver;
188 	u32	control;
189 	u32	soft_reset;
190 	u32	stat_port_en;
191 	u32	ptype;
192 	u32	soft_idle;
193 	u32	thru_rate;
194 	u32	gap_thresh;
195 	u32	tx_start_wds;
196 	u32	flow_control;
197 	u32	vlan_ltype;
198 	u32	ts_ltype;
199 	u32	dlr_ltype;
200 };
201 
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
211 
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL       0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
220 
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
225 
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235 
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
241 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
253 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
254 
255 #define CTRL_V2_TS_BITS \
256 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258 
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
262 
263 
264 #define CTRL_V3_TS_BITS \
265 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 	 TS_LTYPE1_EN)
268 
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK      (0xffff)
278 
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281 
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN		BIT(0)
284 #define CPSW_V1_TS_TX_EN		BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS		16
286 
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
289 
290 struct cpsw_host_regs {
291 	u32	max_blks;
292 	u32	blk_cnt;
293 	u32	tx_in_ctl;
294 	u32	port_vlan;
295 	u32	tx_pri_map;
296 	u32	cpdma_tx_pri_map;
297 	u32	cpdma_rx_chan_map;
298 };
299 
300 struct cpsw_sliver_regs {
301 	u32	id_ver;
302 	u32	mac_control;
303 	u32	mac_status;
304 	u32	soft_reset;
305 	u32	rx_maxlen;
306 	u32	__reserved_0;
307 	u32	rx_pause;
308 	u32	tx_pause;
309 	u32	__reserved_1;
310 	u32	rx_pri_map;
311 };
312 
313 struct cpsw_hw_stats {
314 	u32	rxgoodframes;
315 	u32	rxbroadcastframes;
316 	u32	rxmulticastframes;
317 	u32	rxpauseframes;
318 	u32	rxcrcerrors;
319 	u32	rxaligncodeerrors;
320 	u32	rxoversizedframes;
321 	u32	rxjabberframes;
322 	u32	rxundersizedframes;
323 	u32	rxfragments;
324 	u32	__pad_0[2];
325 	u32	rxoctets;
326 	u32	txgoodframes;
327 	u32	txbroadcastframes;
328 	u32	txmulticastframes;
329 	u32	txpauseframes;
330 	u32	txdeferredframes;
331 	u32	txcollisionframes;
332 	u32	txsinglecollframes;
333 	u32	txmultcollframes;
334 	u32	txexcessivecollisions;
335 	u32	txlatecollisions;
336 	u32	txunderrun;
337 	u32	txcarriersenseerrors;
338 	u32	txoctets;
339 	u32	octetframes64;
340 	u32	octetframes65t127;
341 	u32	octetframes128t255;
342 	u32	octetframes256t511;
343 	u32	octetframes512t1023;
344 	u32	octetframes1024tup;
345 	u32	netoctets;
346 	u32	rxsofoverruns;
347 	u32	rxmofoverruns;
348 	u32	rxdmaoverruns;
349 };
350 
351 struct cpsw_slave {
352 	void __iomem			*regs;
353 	struct cpsw_sliver_regs __iomem	*sliver;
354 	int				slave_num;
355 	u32				mac_control;
356 	struct cpsw_slave_data		*data;
357 	struct phy_device		*phy;
358 	struct net_device		*ndev;
359 	u32				port_vlan;
360 };
361 
362 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
363 {
364 	return __raw_readl(slave->regs + offset);
365 }
366 
367 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
368 {
369 	__raw_writel(val, slave->regs + offset);
370 }
371 
372 struct cpsw_vector {
373 	struct cpdma_chan *ch;
374 	int budget;
375 };
376 
377 struct cpsw_common {
378 	struct device			*dev;
379 	struct cpsw_platform_data	data;
380 	struct napi_struct		napi_rx;
381 	struct napi_struct		napi_tx;
382 	struct cpsw_ss_regs __iomem	*regs;
383 	struct cpsw_wr_regs __iomem	*wr_regs;
384 	u8 __iomem			*hw_stats;
385 	struct cpsw_host_regs __iomem	*host_port_regs;
386 	u32				version;
387 	u32				coal_intvl;
388 	u32				bus_freq_mhz;
389 	int				rx_packet_max;
390 	struct cpsw_slave		*slaves;
391 	struct cpdma_ctlr		*dma;
392 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
393 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
394 	struct cpsw_ale			*ale;
395 	bool				quirk_irq;
396 	bool				rx_irq_disabled;
397 	bool				tx_irq_disabled;
398 	u32 irqs_table[IRQ_NUM];
399 	struct cpts			*cpts;
400 	int				rx_ch_num, tx_ch_num;
401 	int				speed;
402 	int				usage_count;
403 };
404 
405 struct cpsw_priv {
406 	struct net_device		*ndev;
407 	struct device			*dev;
408 	u32				msg_enable;
409 	u8				mac_addr[ETH_ALEN];
410 	bool				rx_pause;
411 	bool				tx_pause;
412 	u32 emac_port;
413 	struct cpsw_common *cpsw;
414 };
415 
416 struct cpsw_stats {
417 	char stat_string[ETH_GSTRING_LEN];
418 	int type;
419 	int sizeof_stat;
420 	int stat_offset;
421 };
422 
423 enum {
424 	CPSW_STATS,
425 	CPDMA_RX_STATS,
426 	CPDMA_TX_STATS,
427 };
428 
429 #define CPSW_STAT(m)		CPSW_STATS,				\
430 				sizeof(((struct cpsw_hw_stats *)0)->m), \
431 				offsetof(struct cpsw_hw_stats, m)
432 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
433 				sizeof(((struct cpdma_chan_stats *)0)->m), \
434 				offsetof(struct cpdma_chan_stats, m)
435 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
436 				sizeof(((struct cpdma_chan_stats *)0)->m), \
437 				offsetof(struct cpdma_chan_stats, m)
438 
439 static const struct cpsw_stats cpsw_gstrings_stats[] = {
440 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
441 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
442 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
443 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
444 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
445 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
446 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
447 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
448 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
449 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
450 	{ "Rx Octets", CPSW_STAT(rxoctets) },
451 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
452 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
453 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
454 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
455 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
456 	{ "Collisions", CPSW_STAT(txcollisionframes) },
457 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
458 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
459 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
460 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
461 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
462 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
463 	{ "Tx Octets", CPSW_STAT(txoctets) },
464 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
465 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
466 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
467 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
468 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
469 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
470 	{ "Net Octets", CPSW_STAT(netoctets) },
471 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
472 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
473 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
474 };
475 
476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
477 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
478 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
479 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
480 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
481 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
482 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
483 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
484 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
485 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
486 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
487 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
488 	{ "requeue", CPDMA_RX_STAT(requeue) },
489 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
490 };
491 
492 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
493 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
494 
495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
497 #define for_each_slave(priv, func, arg...)				\
498 	do {								\
499 		struct cpsw_slave *slave;				\
500 		struct cpsw_common *cpsw = (priv)->cpsw;		\
501 		int n;							\
502 		if (cpsw->data.dual_emac)				\
503 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
504 		else							\
505 			for (n = cpsw->data.slaves,			\
506 					slave = cpsw->slaves;		\
507 					n; n--)				\
508 				(func)(slave++, ##arg);			\
509 	} while (0)
510 
511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
512 	do {								\
513 		if (!cpsw->data.dual_emac)				\
514 			break;						\
515 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
516 			ndev = cpsw->slaves[0].ndev;			\
517 			skb->dev = ndev;				\
518 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
519 			ndev = cpsw->slaves[1].ndev;			\
520 			skb->dev = ndev;				\
521 		}							\
522 	} while (0)
523 #define cpsw_add_mcast(cpsw, priv, addr)				\
524 	do {								\
525 		if (cpsw->data.dual_emac) {				\
526 			struct cpsw_slave *slave = cpsw->slaves +	\
527 						priv->emac_port;	\
528 			int slave_port = cpsw_get_slave_port(		\
529 						slave->slave_num);	\
530 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
531 				1 << slave_port | ALE_PORT_HOST,	\
532 				ALE_VLAN, slave->port_vlan, 0);		\
533 		} else {						\
534 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535 				ALE_ALL_PORTS,				\
536 				0, 0, 0);				\
537 		}							\
538 	} while (0)
539 
540 static inline int cpsw_get_slave_port(u32 slave_num)
541 {
542 	return slave_num + 1;
543 }
544 
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
548 	struct cpsw_ale *ale = cpsw->ale;
549 	int i;
550 
551 	if (cpsw->data.dual_emac) {
552 		bool flag = false;
553 
554 		/* Enabling promiscuous mode for one interface will be
555 		 * common for both the interface as the interface shares
556 		 * the same hardware resource.
557 		 */
558 		for (i = 0; i < cpsw->data.slaves; i++)
559 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 				flag = true;
561 
562 		if (!enable && flag) {
563 			enable = true;
564 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 		}
566 
567 		if (enable) {
568 			/* Enable Bypass */
569 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570 
571 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 		} else {
573 			/* Disable Bypass */
574 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 		}
577 	} else {
578 		if (enable) {
579 			unsigned long timeout = jiffies + HZ;
580 
581 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 			for (i = 0; i <= cpsw->data.slaves; i++) {
583 				cpsw_ale_control_set(ale, i,
584 						     ALE_PORT_NOLEARN, 1);
585 				cpsw_ale_control_set(ale, i,
586 						     ALE_PORT_NO_SA_UPDATE, 1);
587 			}
588 
589 			/* Clear All Untouched entries */
590 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 			do {
592 				cpu_relax();
593 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 					break;
595 			} while (time_after(timeout, jiffies));
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 
598 			/* Clear all mcast from ALE */
599 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 
601 			/* Flood All Unicast Packets to Host port */
602 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 		} else {
605 			/* Don't Flood All Unicast Packets to Host port */
606 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607 
608 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 			for (i = 0; i <= cpsw->data.slaves; i++) {
610 				cpsw_ale_control_set(ale, i,
611 						     ALE_PORT_NOLEARN, 0);
612 				cpsw_ale_control_set(ale, i,
613 						     ALE_PORT_NO_SA_UPDATE, 0);
614 			}
615 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 		}
617 	}
618 }
619 
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 	struct cpsw_priv *priv = netdev_priv(ndev);
623 	struct cpsw_common *cpsw = priv->cpsw;
624 	int vid;
625 
626 	if (cpsw->data.dual_emac)
627 		vid = cpsw->slaves[priv->emac_port].port_vlan;
628 	else
629 		vid = cpsw->data.default_vlan;
630 
631 	if (ndev->flags & IFF_PROMISC) {
632 		/* Enable promiscuous mode */
633 		cpsw_set_promiscious(ndev, true);
634 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635 		return;
636 	} else {
637 		/* Disable promiscuous mode */
638 		cpsw_set_promiscious(ndev, false);
639 	}
640 
641 	/* Restore allmulti on vlans if necessary */
642 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643 
644 	/* Clear all mcast from ALE */
645 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646 
647 	if (!netdev_mc_empty(ndev)) {
648 		struct netdev_hw_addr *ha;
649 
650 		/* program multicast address list into ALE register */
651 		netdev_for_each_mc_addr(ha, ndev) {
652 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 		}
654 	}
655 }
656 
657 static void cpsw_intr_enable(struct cpsw_common *cpsw)
658 {
659 	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
660 	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661 
662 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 	return;
664 }
665 
666 static void cpsw_intr_disable(struct cpsw_common *cpsw)
667 {
668 	__raw_writel(0, &cpsw->wr_regs->tx_en);
669 	__raw_writel(0, &cpsw->wr_regs->rx_en);
670 
671 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 	return;
673 }
674 
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677 	struct netdev_queue	*txq;
678 	struct sk_buff		*skb = token;
679 	struct net_device	*ndev = skb->dev;
680 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
681 
682 	/* Check whether the queue is stopped due to stalled tx dma, if the
683 	 * queue is stopped then start the queue as we have free desc for tx
684 	 */
685 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
686 	if (unlikely(netif_tx_queue_stopped(txq)))
687 		netif_tx_wake_queue(txq);
688 
689 	cpts_tx_timestamp(cpsw->cpts, skb);
690 	ndev->stats.tx_packets++;
691 	ndev->stats.tx_bytes += len;
692 	dev_kfree_skb_any(skb);
693 }
694 
695 static void cpsw_rx_handler(void *token, int len, int status)
696 {
697 	struct cpdma_chan	*ch;
698 	struct sk_buff		*skb = token;
699 	struct sk_buff		*new_skb;
700 	struct net_device	*ndev = skb->dev;
701 	int			ret = 0;
702 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
703 
704 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705 
706 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707 		/* In dual emac mode check for all interfaces */
708 		if (cpsw->data.dual_emac && cpsw->usage_count &&
709 		    (status >= 0)) {
710 			/* The packet received is for the interface which
711 			 * is already down and the other interface is up
712 			 * and running, instead of freeing which results
713 			 * in reducing of the number of rx descriptor in
714 			 * DMA engine, requeue skb back to cpdma.
715 			 */
716 			new_skb = skb;
717 			goto requeue;
718 		}
719 
720 		/* the interface is going down, skbs are purged */
721 		dev_kfree_skb_any(skb);
722 		return;
723 	}
724 
725 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
726 	if (new_skb) {
727 		skb_copy_queue_mapping(new_skb, skb);
728 		skb_put(skb, len);
729 		cpts_rx_timestamp(cpsw->cpts, skb);
730 		skb->protocol = eth_type_trans(skb, ndev);
731 		netif_receive_skb(skb);
732 		ndev->stats.rx_bytes += len;
733 		ndev->stats.rx_packets++;
734 		kmemleak_not_leak(new_skb);
735 	} else {
736 		ndev->stats.rx_dropped++;
737 		new_skb = skb;
738 	}
739 
740 requeue:
741 	if (netif_dormant(ndev)) {
742 		dev_kfree_skb_any(new_skb);
743 		return;
744 	}
745 
746 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
747 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
748 				skb_tailroom(new_skb), 0);
749 	if (WARN_ON(ret < 0))
750 		dev_kfree_skb_any(new_skb);
751 }
752 
753 static void cpsw_split_res(struct net_device *ndev)
754 {
755 	struct cpsw_priv *priv = netdev_priv(ndev);
756 	u32 consumed_rate = 0, bigest_rate = 0;
757 	struct cpsw_common *cpsw = priv->cpsw;
758 	struct cpsw_vector *txv = cpsw->txv;
759 	int i, ch_weight, rlim_ch_num = 0;
760 	int budget, bigest_rate_ch = 0;
761 	u32 ch_rate, max_rate;
762 	int ch_budget = 0;
763 
764 	for (i = 0; i < cpsw->tx_ch_num; i++) {
765 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
766 		if (!ch_rate)
767 			continue;
768 
769 		rlim_ch_num++;
770 		consumed_rate += ch_rate;
771 	}
772 
773 	if (cpsw->tx_ch_num == rlim_ch_num) {
774 		max_rate = consumed_rate;
775 	} else if (!rlim_ch_num) {
776 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
777 		bigest_rate = 0;
778 		max_rate = consumed_rate;
779 	} else {
780 		max_rate = cpsw->speed * 1000;
781 
782 		/* if max_rate is less then expected due to reduced link speed,
783 		 * split proportionally according next potential max speed
784 		 */
785 		if (max_rate < consumed_rate)
786 			max_rate *= 10;
787 
788 		if (max_rate < consumed_rate)
789 			max_rate *= 10;
790 
791 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
792 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
793 			    (cpsw->tx_ch_num - rlim_ch_num);
794 		bigest_rate = (max_rate - consumed_rate) /
795 			      (cpsw->tx_ch_num - rlim_ch_num);
796 	}
797 
798 	/* split tx weight/budget */
799 	budget = CPSW_POLL_WEIGHT;
800 	for (i = 0; i < cpsw->tx_ch_num; i++) {
801 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
802 		if (ch_rate) {
803 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
804 			if (!txv[i].budget)
805 				txv[i].budget++;
806 			if (ch_rate > bigest_rate) {
807 				bigest_rate_ch = i;
808 				bigest_rate = ch_rate;
809 			}
810 
811 			ch_weight = (ch_rate * 100) / max_rate;
812 			if (!ch_weight)
813 				ch_weight++;
814 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
815 		} else {
816 			txv[i].budget = ch_budget;
817 			if (!bigest_rate_ch)
818 				bigest_rate_ch = i;
819 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
820 		}
821 
822 		budget -= txv[i].budget;
823 	}
824 
825 	if (budget)
826 		txv[bigest_rate_ch].budget += budget;
827 
828 	/* split rx budget */
829 	budget = CPSW_POLL_WEIGHT;
830 	ch_budget = budget / cpsw->rx_ch_num;
831 	for (i = 0; i < cpsw->rx_ch_num; i++) {
832 		cpsw->rxv[i].budget = ch_budget;
833 		budget -= ch_budget;
834 	}
835 
836 	if (budget)
837 		cpsw->rxv[0].budget += budget;
838 }
839 
840 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
841 {
842 	struct cpsw_common *cpsw = dev_id;
843 
844 	writel(0, &cpsw->wr_regs->tx_en);
845 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
846 
847 	if (cpsw->quirk_irq) {
848 		disable_irq_nosync(cpsw->irqs_table[1]);
849 		cpsw->tx_irq_disabled = true;
850 	}
851 
852 	napi_schedule(&cpsw->napi_tx);
853 	return IRQ_HANDLED;
854 }
855 
856 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
857 {
858 	struct cpsw_common *cpsw = dev_id;
859 
860 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
861 	writel(0, &cpsw->wr_regs->rx_en);
862 
863 	if (cpsw->quirk_irq) {
864 		disable_irq_nosync(cpsw->irqs_table[0]);
865 		cpsw->rx_irq_disabled = true;
866 	}
867 
868 	napi_schedule(&cpsw->napi_rx);
869 	return IRQ_HANDLED;
870 }
871 
872 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
873 {
874 	u32			ch_map;
875 	int			num_tx, cur_budget, ch;
876 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
877 	struct cpsw_vector	*txv;
878 
879 	/* process every unprocessed channel */
880 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
881 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
882 		if (!(ch_map & 0x01))
883 			continue;
884 
885 		txv = &cpsw->txv[ch];
886 		if (unlikely(txv->budget > budget - num_tx))
887 			cur_budget = budget - num_tx;
888 		else
889 			cur_budget = txv->budget;
890 
891 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
892 		if (num_tx >= budget)
893 			break;
894 	}
895 
896 	if (num_tx < budget) {
897 		napi_complete(napi_tx);
898 		writel(0xff, &cpsw->wr_regs->tx_en);
899 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
900 			cpsw->tx_irq_disabled = false;
901 			enable_irq(cpsw->irqs_table[1]);
902 		}
903 	}
904 
905 	return num_tx;
906 }
907 
908 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
909 {
910 	u32			ch_map;
911 	int			num_rx, cur_budget, ch;
912 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
913 	struct cpsw_vector	*rxv;
914 
915 	/* process every unprocessed channel */
916 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
917 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
918 		if (!(ch_map & 0x01))
919 			continue;
920 
921 		rxv = &cpsw->rxv[ch];
922 		if (unlikely(rxv->budget > budget - num_rx))
923 			cur_budget = budget - num_rx;
924 		else
925 			cur_budget = rxv->budget;
926 
927 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
928 		if (num_rx >= budget)
929 			break;
930 	}
931 
932 	if (num_rx < budget) {
933 		napi_complete_done(napi_rx, num_rx);
934 		writel(0xff, &cpsw->wr_regs->rx_en);
935 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
936 			cpsw->rx_irq_disabled = false;
937 			enable_irq(cpsw->irqs_table[0]);
938 		}
939 	}
940 
941 	return num_rx;
942 }
943 
944 static inline void soft_reset(const char *module, void __iomem *reg)
945 {
946 	unsigned long timeout = jiffies + HZ;
947 
948 	__raw_writel(1, reg);
949 	do {
950 		cpu_relax();
951 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
952 
953 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
954 }
955 
956 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
957 			 ((mac)[2] << 16) | ((mac)[3] << 24))
958 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
959 
960 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
961 			       struct cpsw_priv *priv)
962 {
963 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
964 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
965 }
966 
967 static void _cpsw_adjust_link(struct cpsw_slave *slave,
968 			      struct cpsw_priv *priv, bool *link)
969 {
970 	struct phy_device	*phy = slave->phy;
971 	u32			mac_control = 0;
972 	u32			slave_port;
973 	struct cpsw_common *cpsw = priv->cpsw;
974 
975 	if (!phy)
976 		return;
977 
978 	slave_port = cpsw_get_slave_port(slave->slave_num);
979 
980 	if (phy->link) {
981 		mac_control = cpsw->data.mac_control;
982 
983 		/* enable forwarding */
984 		cpsw_ale_control_set(cpsw->ale, slave_port,
985 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
986 
987 		if (phy->speed == 1000)
988 			mac_control |= BIT(7);	/* GIGABITEN	*/
989 		if (phy->duplex)
990 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
991 
992 		/* set speed_in input in case RMII mode is used in 100Mbps */
993 		if (phy->speed == 100)
994 			mac_control |= BIT(15);
995 		else if (phy->speed == 10)
996 			mac_control |= BIT(18); /* In Band mode */
997 
998 		if (priv->rx_pause)
999 			mac_control |= BIT(3);
1000 
1001 		if (priv->tx_pause)
1002 			mac_control |= BIT(4);
1003 
1004 		*link = true;
1005 	} else {
1006 		mac_control = 0;
1007 		/* disable forwarding */
1008 		cpsw_ale_control_set(cpsw->ale, slave_port,
1009 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1010 	}
1011 
1012 	if (mac_control != slave->mac_control) {
1013 		phy_print_status(phy);
1014 		__raw_writel(mac_control, &slave->sliver->mac_control);
1015 	}
1016 
1017 	slave->mac_control = mac_control;
1018 }
1019 
1020 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1021 {
1022 	int i, speed;
1023 
1024 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1025 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1026 			speed += cpsw->slaves[i].phy->speed;
1027 
1028 	return speed;
1029 }
1030 
1031 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1032 {
1033 	int i, rlim_ch_num;
1034 	int speed, ch_rate;
1035 
1036 	/* re-split resources only in case speed was changed */
1037 	speed = cpsw_get_common_speed(cpsw);
1038 	if (speed == cpsw->speed || !speed)
1039 		return 0;
1040 
1041 	cpsw->speed = speed;
1042 
1043 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1044 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1045 		if (!ch_rate)
1046 			break;
1047 
1048 		rlim_ch_num++;
1049 	}
1050 
1051 	/* cases not dependent on speed */
1052 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1053 		return 0;
1054 
1055 	return 1;
1056 }
1057 
1058 static void cpsw_adjust_link(struct net_device *ndev)
1059 {
1060 	struct cpsw_priv	*priv = netdev_priv(ndev);
1061 	struct cpsw_common	*cpsw = priv->cpsw;
1062 	bool			link = false;
1063 
1064 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1065 
1066 	if (link) {
1067 		if (cpsw_need_resplit(cpsw))
1068 			cpsw_split_res(ndev);
1069 
1070 		netif_carrier_on(ndev);
1071 		if (netif_running(ndev))
1072 			netif_tx_wake_all_queues(ndev);
1073 	} else {
1074 		netif_carrier_off(ndev);
1075 		netif_tx_stop_all_queues(ndev);
1076 	}
1077 }
1078 
1079 static int cpsw_get_coalesce(struct net_device *ndev,
1080 				struct ethtool_coalesce *coal)
1081 {
1082 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1083 
1084 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1085 	return 0;
1086 }
1087 
1088 static int cpsw_set_coalesce(struct net_device *ndev,
1089 				struct ethtool_coalesce *coal)
1090 {
1091 	struct cpsw_priv *priv = netdev_priv(ndev);
1092 	u32 int_ctrl;
1093 	u32 num_interrupts = 0;
1094 	u32 prescale = 0;
1095 	u32 addnl_dvdr = 1;
1096 	u32 coal_intvl = 0;
1097 	struct cpsw_common *cpsw = priv->cpsw;
1098 
1099 	coal_intvl = coal->rx_coalesce_usecs;
1100 
1101 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1102 	prescale = cpsw->bus_freq_mhz * 4;
1103 
1104 	if (!coal->rx_coalesce_usecs) {
1105 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1106 		goto update_return;
1107 	}
1108 
1109 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1110 		coal_intvl = CPSW_CMINTMIN_INTVL;
1111 
1112 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1113 		/* Interrupt pacer works with 4us Pulse, we can
1114 		 * throttle further by dilating the 4us pulse.
1115 		 */
1116 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1117 
1118 		if (addnl_dvdr > 1) {
1119 			prescale *= addnl_dvdr;
1120 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1121 				coal_intvl = (CPSW_CMINTMAX_INTVL
1122 						* addnl_dvdr);
1123 		} else {
1124 			addnl_dvdr = 1;
1125 			coal_intvl = CPSW_CMINTMAX_INTVL;
1126 		}
1127 	}
1128 
1129 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1130 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1131 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1132 
1133 	int_ctrl |= CPSW_INTPACEEN;
1134 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1135 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1136 
1137 update_return:
1138 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1139 
1140 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1141 	cpsw->coal_intvl = coal_intvl;
1142 
1143 	return 0;
1144 }
1145 
1146 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1147 {
1148 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1149 
1150 	switch (sset) {
1151 	case ETH_SS_STATS:
1152 		return (CPSW_STATS_COMMON_LEN +
1153 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1154 		       CPSW_STATS_CH_LEN);
1155 	default:
1156 		return -EOPNOTSUPP;
1157 	}
1158 }
1159 
1160 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1161 {
1162 	int ch_stats_len;
1163 	int line;
1164 	int i;
1165 
1166 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1167 	for (i = 0; i < ch_stats_len; i++) {
1168 		line = i % CPSW_STATS_CH_LEN;
1169 		snprintf(*p, ETH_GSTRING_LEN,
1170 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1171 			 i / CPSW_STATS_CH_LEN,
1172 			 cpsw_gstrings_ch_stats[line].stat_string);
1173 		*p += ETH_GSTRING_LEN;
1174 	}
1175 }
1176 
1177 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1178 {
1179 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1180 	u8 *p = data;
1181 	int i;
1182 
1183 	switch (stringset) {
1184 	case ETH_SS_STATS:
1185 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1186 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1187 			       ETH_GSTRING_LEN);
1188 			p += ETH_GSTRING_LEN;
1189 		}
1190 
1191 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1192 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1193 		break;
1194 	}
1195 }
1196 
1197 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1198 				    struct ethtool_stats *stats, u64 *data)
1199 {
1200 	u8 *p;
1201 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 	struct cpdma_chan_stats ch_stats;
1203 	int i, l, ch;
1204 
1205 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1206 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1207 		data[l] = readl(cpsw->hw_stats +
1208 				cpsw_gstrings_stats[l].stat_offset);
1209 
1210 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1211 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1212 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1213 			p = (u8 *)&ch_stats +
1214 				cpsw_gstrings_ch_stats[i].stat_offset;
1215 			data[l] = *(u32 *)p;
1216 		}
1217 	}
1218 
1219 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1220 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1221 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1222 			p = (u8 *)&ch_stats +
1223 				cpsw_gstrings_ch_stats[i].stat_offset;
1224 			data[l] = *(u32 *)p;
1225 		}
1226 	}
1227 }
1228 
1229 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1230 					struct sk_buff *skb,
1231 					struct cpdma_chan *txch)
1232 {
1233 	struct cpsw_common *cpsw = priv->cpsw;
1234 
1235 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1236 				 priv->emac_port + cpsw->data.dual_emac);
1237 }
1238 
1239 static inline void cpsw_add_dual_emac_def_ale_entries(
1240 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1241 		u32 slave_port)
1242 {
1243 	struct cpsw_common *cpsw = priv->cpsw;
1244 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1245 
1246 	if (cpsw->version == CPSW_VERSION_1)
1247 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1248 	else
1249 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1250 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1251 			  port_mask, port_mask, 0);
1252 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1253 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1254 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1255 			   HOST_PORT_NUM, ALE_VLAN |
1256 			   ALE_SECURE, slave->port_vlan);
1257 }
1258 
1259 static void soft_reset_slave(struct cpsw_slave *slave)
1260 {
1261 	char name[32];
1262 
1263 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1264 	soft_reset(name, &slave->sliver->soft_reset);
1265 }
1266 
1267 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1268 {
1269 	u32 slave_port;
1270 	struct cpsw_common *cpsw = priv->cpsw;
1271 
1272 	soft_reset_slave(slave);
1273 
1274 	/* setup priority mapping */
1275 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1276 
1277 	switch (cpsw->version) {
1278 	case CPSW_VERSION_1:
1279 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1280 		break;
1281 	case CPSW_VERSION_2:
1282 	case CPSW_VERSION_3:
1283 	case CPSW_VERSION_4:
1284 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1285 		break;
1286 	}
1287 
1288 	/* setup max packet size, and mac address */
1289 	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1290 	cpsw_set_slave_mac(slave, priv);
1291 
1292 	slave->mac_control = 0;	/* no link yet */
1293 
1294 	slave_port = cpsw_get_slave_port(slave->slave_num);
1295 
1296 	if (cpsw->data.dual_emac)
1297 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1298 	else
1299 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1300 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1301 
1302 	if (slave->data->phy_node) {
1303 		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1304 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1305 		if (!slave->phy) {
1306 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1307 				slave->data->phy_node->full_name,
1308 				slave->slave_num);
1309 			return;
1310 		}
1311 	} else {
1312 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1313 				 &cpsw_adjust_link, slave->data->phy_if);
1314 		if (IS_ERR(slave->phy)) {
1315 			dev_err(priv->dev,
1316 				"phy \"%s\" not found on slave %d, err %ld\n",
1317 				slave->data->phy_id, slave->slave_num,
1318 				PTR_ERR(slave->phy));
1319 			slave->phy = NULL;
1320 			return;
1321 		}
1322 	}
1323 
1324 	phy_attached_info(slave->phy);
1325 
1326 	phy_start(slave->phy);
1327 
1328 	/* Configure GMII_SEL register */
1329 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1330 }
1331 
1332 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1333 {
1334 	struct cpsw_common *cpsw = priv->cpsw;
1335 	const int vlan = cpsw->data.default_vlan;
1336 	u32 reg;
1337 	int i;
1338 	int unreg_mcast_mask;
1339 
1340 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1341 	       CPSW2_PORT_VLAN;
1342 
1343 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1344 
1345 	for (i = 0; i < cpsw->data.slaves; i++)
1346 		slave_write(cpsw->slaves + i, vlan, reg);
1347 
1348 	if (priv->ndev->flags & IFF_ALLMULTI)
1349 		unreg_mcast_mask = ALE_ALL_PORTS;
1350 	else
1351 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1352 
1353 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1354 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1355 			  unreg_mcast_mask);
1356 }
1357 
1358 static void cpsw_init_host_port(struct cpsw_priv *priv)
1359 {
1360 	u32 fifo_mode;
1361 	u32 control_reg;
1362 	struct cpsw_common *cpsw = priv->cpsw;
1363 
1364 	/* soft reset the controller and initialize ale */
1365 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1366 	cpsw_ale_start(cpsw->ale);
1367 
1368 	/* switch to vlan unaware mode */
1369 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1370 			     CPSW_ALE_VLAN_AWARE);
1371 	control_reg = readl(&cpsw->regs->control);
1372 	control_reg |= CPSW_VLAN_AWARE;
1373 	writel(control_reg, &cpsw->regs->control);
1374 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1375 		     CPSW_FIFO_NORMAL_MODE;
1376 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1377 
1378 	/* setup host port priority mapping */
1379 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1380 		     &cpsw->host_port_regs->cpdma_tx_pri_map);
1381 	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1382 
1383 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1384 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1385 
1386 	if (!cpsw->data.dual_emac) {
1387 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1388 				   0, 0);
1389 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1390 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1391 	}
1392 }
1393 
1394 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1395 {
1396 	struct cpsw_common *cpsw = priv->cpsw;
1397 	struct sk_buff *skb;
1398 	int ch_buf_num;
1399 	int ch, i, ret;
1400 
1401 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1402 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1403 		for (i = 0; i < ch_buf_num; i++) {
1404 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1405 							  cpsw->rx_packet_max,
1406 							  GFP_KERNEL);
1407 			if (!skb) {
1408 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1409 				return -ENOMEM;
1410 			}
1411 
1412 			skb_set_queue_mapping(skb, ch);
1413 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1414 						skb->data, skb_tailroom(skb),
1415 						0);
1416 			if (ret < 0) {
1417 				cpsw_err(priv, ifup,
1418 					 "cannot submit skb to channel %d rx, error %d\n",
1419 					 ch, ret);
1420 				kfree_skb(skb);
1421 				return ret;
1422 			}
1423 			kmemleak_not_leak(skb);
1424 		}
1425 
1426 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1427 			  ch, ch_buf_num);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1434 {
1435 	u32 slave_port;
1436 
1437 	slave_port = cpsw_get_slave_port(slave->slave_num);
1438 
1439 	if (!slave->phy)
1440 		return;
1441 	phy_stop(slave->phy);
1442 	phy_disconnect(slave->phy);
1443 	slave->phy = NULL;
1444 	cpsw_ale_control_set(cpsw->ale, slave_port,
1445 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1446 	soft_reset_slave(slave);
1447 }
1448 
1449 static int cpsw_ndo_open(struct net_device *ndev)
1450 {
1451 	struct cpsw_priv *priv = netdev_priv(ndev);
1452 	struct cpsw_common *cpsw = priv->cpsw;
1453 	int ret;
1454 	u32 reg;
1455 
1456 	ret = pm_runtime_get_sync(cpsw->dev);
1457 	if (ret < 0) {
1458 		pm_runtime_put_noidle(cpsw->dev);
1459 		return ret;
1460 	}
1461 
1462 	netif_carrier_off(ndev);
1463 
1464 	/* Notify the stack of the actual queue counts. */
1465 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1466 	if (ret) {
1467 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1468 		goto err_cleanup;
1469 	}
1470 
1471 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1472 	if (ret) {
1473 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1474 		goto err_cleanup;
1475 	}
1476 
1477 	reg = cpsw->version;
1478 
1479 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1480 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1481 		 CPSW_RTL_VERSION(reg));
1482 
1483 	/* Initialize host and slave ports */
1484 	if (!cpsw->usage_count)
1485 		cpsw_init_host_port(priv);
1486 	for_each_slave(priv, cpsw_slave_open, priv);
1487 
1488 	/* Add default VLAN */
1489 	if (!cpsw->data.dual_emac)
1490 		cpsw_add_default_vlan(priv);
1491 	else
1492 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1493 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1494 
1495 	/* initialize shared resources for every ndev */
1496 	if (!cpsw->usage_count) {
1497 		/* disable priority elevation */
1498 		__raw_writel(0, &cpsw->regs->ptype);
1499 
1500 		/* enable statistics collection only on all ports */
1501 		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1502 
1503 		/* Enable internal fifo flow control */
1504 		writel(0x7, &cpsw->regs->flow_control);
1505 
1506 		napi_enable(&cpsw->napi_rx);
1507 		napi_enable(&cpsw->napi_tx);
1508 
1509 		if (cpsw->tx_irq_disabled) {
1510 			cpsw->tx_irq_disabled = false;
1511 			enable_irq(cpsw->irqs_table[1]);
1512 		}
1513 
1514 		if (cpsw->rx_irq_disabled) {
1515 			cpsw->rx_irq_disabled = false;
1516 			enable_irq(cpsw->irqs_table[0]);
1517 		}
1518 
1519 		ret = cpsw_fill_rx_channels(priv);
1520 		if (ret < 0)
1521 			goto err_cleanup;
1522 
1523 		if (cpts_register(cpsw->cpts))
1524 			dev_err(priv->dev, "error registering cpts device\n");
1525 
1526 	}
1527 
1528 	/* Enable Interrupt pacing if configured */
1529 	if (cpsw->coal_intvl != 0) {
1530 		struct ethtool_coalesce coal;
1531 
1532 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1533 		cpsw_set_coalesce(ndev, &coal);
1534 	}
1535 
1536 	cpdma_ctlr_start(cpsw->dma);
1537 	cpsw_intr_enable(cpsw);
1538 	cpsw->usage_count++;
1539 
1540 	return 0;
1541 
1542 err_cleanup:
1543 	cpdma_ctlr_stop(cpsw->dma);
1544 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1545 	pm_runtime_put_sync(cpsw->dev);
1546 	netif_carrier_off(priv->ndev);
1547 	return ret;
1548 }
1549 
1550 static int cpsw_ndo_stop(struct net_device *ndev)
1551 {
1552 	struct cpsw_priv *priv = netdev_priv(ndev);
1553 	struct cpsw_common *cpsw = priv->cpsw;
1554 
1555 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1556 	netif_tx_stop_all_queues(priv->ndev);
1557 	netif_carrier_off(priv->ndev);
1558 
1559 	if (cpsw->usage_count <= 1) {
1560 		napi_disable(&cpsw->napi_rx);
1561 		napi_disable(&cpsw->napi_tx);
1562 		cpts_unregister(cpsw->cpts);
1563 		cpsw_intr_disable(cpsw);
1564 		cpdma_ctlr_stop(cpsw->dma);
1565 		cpsw_ale_stop(cpsw->ale);
1566 	}
1567 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1568 
1569 	if (cpsw_need_resplit(cpsw))
1570 		cpsw_split_res(ndev);
1571 
1572 	cpsw->usage_count--;
1573 	pm_runtime_put_sync(cpsw->dev);
1574 	return 0;
1575 }
1576 
1577 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1578 				       struct net_device *ndev)
1579 {
1580 	struct cpsw_priv *priv = netdev_priv(ndev);
1581 	struct cpsw_common *cpsw = priv->cpsw;
1582 	struct netdev_queue *txq;
1583 	struct cpdma_chan *txch;
1584 	int ret, q_idx;
1585 
1586 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1587 		cpsw_err(priv, tx_err, "packet pad failed\n");
1588 		ndev->stats.tx_dropped++;
1589 		return NET_XMIT_DROP;
1590 	}
1591 
1592 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1593 	    cpts_is_tx_enabled(cpsw->cpts))
1594 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1595 
1596 	skb_tx_timestamp(skb);
1597 
1598 	q_idx = skb_get_queue_mapping(skb);
1599 	if (q_idx >= cpsw->tx_ch_num)
1600 		q_idx = q_idx % cpsw->tx_ch_num;
1601 
1602 	txch = cpsw->txv[q_idx].ch;
1603 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1604 	if (unlikely(ret != 0)) {
1605 		cpsw_err(priv, tx_err, "desc submit failed\n");
1606 		goto fail;
1607 	}
1608 
1609 	/* If there is no more tx desc left free then we need to
1610 	 * tell the kernel to stop sending us tx frames.
1611 	 */
1612 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1613 		txq = netdev_get_tx_queue(ndev, q_idx);
1614 		netif_tx_stop_queue(txq);
1615 	}
1616 
1617 	return NETDEV_TX_OK;
1618 fail:
1619 	ndev->stats.tx_dropped++;
1620 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1621 	netif_tx_stop_queue(txq);
1622 	return NETDEV_TX_BUSY;
1623 }
1624 
1625 #if IS_ENABLED(CONFIG_TI_CPTS)
1626 
1627 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1628 {
1629 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1630 	u32 ts_en, seq_id;
1631 
1632 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1633 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1634 		slave_write(slave, 0, CPSW1_TS_CTL);
1635 		return;
1636 	}
1637 
1638 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1639 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1640 
1641 	if (cpts_is_tx_enabled(cpsw->cpts))
1642 		ts_en |= CPSW_V1_TS_TX_EN;
1643 
1644 	if (cpts_is_rx_enabled(cpsw->cpts))
1645 		ts_en |= CPSW_V1_TS_RX_EN;
1646 
1647 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1648 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1649 }
1650 
1651 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1652 {
1653 	struct cpsw_slave *slave;
1654 	struct cpsw_common *cpsw = priv->cpsw;
1655 	u32 ctrl, mtype;
1656 
1657 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1658 
1659 	ctrl = slave_read(slave, CPSW2_CONTROL);
1660 	switch (cpsw->version) {
1661 	case CPSW_VERSION_2:
1662 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1663 
1664 		if (cpts_is_tx_enabled(cpsw->cpts))
1665 			ctrl |= CTRL_V2_TX_TS_BITS;
1666 
1667 		if (cpts_is_rx_enabled(cpsw->cpts))
1668 			ctrl |= CTRL_V2_RX_TS_BITS;
1669 		break;
1670 	case CPSW_VERSION_3:
1671 	default:
1672 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1673 
1674 		if (cpts_is_tx_enabled(cpsw->cpts))
1675 			ctrl |= CTRL_V3_TX_TS_BITS;
1676 
1677 		if (cpts_is_rx_enabled(cpsw->cpts))
1678 			ctrl |= CTRL_V3_RX_TS_BITS;
1679 		break;
1680 	}
1681 
1682 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1683 
1684 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1685 	slave_write(slave, ctrl, CPSW2_CONTROL);
1686 	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1687 }
1688 
1689 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1690 {
1691 	struct cpsw_priv *priv = netdev_priv(dev);
1692 	struct hwtstamp_config cfg;
1693 	struct cpsw_common *cpsw = priv->cpsw;
1694 	struct cpts *cpts = cpsw->cpts;
1695 
1696 	if (cpsw->version != CPSW_VERSION_1 &&
1697 	    cpsw->version != CPSW_VERSION_2 &&
1698 	    cpsw->version != CPSW_VERSION_3)
1699 		return -EOPNOTSUPP;
1700 
1701 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1702 		return -EFAULT;
1703 
1704 	/* reserved for future extensions */
1705 	if (cfg.flags)
1706 		return -EINVAL;
1707 
1708 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1709 		return -ERANGE;
1710 
1711 	switch (cfg.rx_filter) {
1712 	case HWTSTAMP_FILTER_NONE:
1713 		cpts_rx_enable(cpts, 0);
1714 		break;
1715 	case HWTSTAMP_FILTER_ALL:
1716 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1717 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1718 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1719 		return -ERANGE;
1720 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1721 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1722 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1723 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1724 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1725 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1726 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1727 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1728 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1729 		cpts_rx_enable(cpts, 1);
1730 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1731 		break;
1732 	default:
1733 		return -ERANGE;
1734 	}
1735 
1736 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1737 
1738 	switch (cpsw->version) {
1739 	case CPSW_VERSION_1:
1740 		cpsw_hwtstamp_v1(cpsw);
1741 		break;
1742 	case CPSW_VERSION_2:
1743 	case CPSW_VERSION_3:
1744 		cpsw_hwtstamp_v2(priv);
1745 		break;
1746 	default:
1747 		WARN_ON(1);
1748 	}
1749 
1750 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1751 }
1752 
1753 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1754 {
1755 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1756 	struct cpts *cpts = cpsw->cpts;
1757 	struct hwtstamp_config cfg;
1758 
1759 	if (cpsw->version != CPSW_VERSION_1 &&
1760 	    cpsw->version != CPSW_VERSION_2 &&
1761 	    cpsw->version != CPSW_VERSION_3)
1762 		return -EOPNOTSUPP;
1763 
1764 	cfg.flags = 0;
1765 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1766 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1767 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1768 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1769 
1770 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1771 }
1772 #else
1773 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1774 {
1775 	return -EOPNOTSUPP;
1776 }
1777 
1778 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1779 {
1780 	return -EOPNOTSUPP;
1781 }
1782 #endif /*CONFIG_TI_CPTS*/
1783 
1784 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1785 {
1786 	struct cpsw_priv *priv = netdev_priv(dev);
1787 	struct cpsw_common *cpsw = priv->cpsw;
1788 	int slave_no = cpsw_slave_index(cpsw, priv);
1789 
1790 	if (!netif_running(dev))
1791 		return -EINVAL;
1792 
1793 	switch (cmd) {
1794 	case SIOCSHWTSTAMP:
1795 		return cpsw_hwtstamp_set(dev, req);
1796 	case SIOCGHWTSTAMP:
1797 		return cpsw_hwtstamp_get(dev, req);
1798 	}
1799 
1800 	if (!cpsw->slaves[slave_no].phy)
1801 		return -EOPNOTSUPP;
1802 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1803 }
1804 
1805 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1806 {
1807 	struct cpsw_priv *priv = netdev_priv(ndev);
1808 	struct cpsw_common *cpsw = priv->cpsw;
1809 	int ch;
1810 
1811 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1812 	ndev->stats.tx_errors++;
1813 	cpsw_intr_disable(cpsw);
1814 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1815 		cpdma_chan_stop(cpsw->txv[ch].ch);
1816 		cpdma_chan_start(cpsw->txv[ch].ch);
1817 	}
1818 
1819 	cpsw_intr_enable(cpsw);
1820 }
1821 
1822 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1823 {
1824 	struct cpsw_priv *priv = netdev_priv(ndev);
1825 	struct sockaddr *addr = (struct sockaddr *)p;
1826 	struct cpsw_common *cpsw = priv->cpsw;
1827 	int flags = 0;
1828 	u16 vid = 0;
1829 	int ret;
1830 
1831 	if (!is_valid_ether_addr(addr->sa_data))
1832 		return -EADDRNOTAVAIL;
1833 
1834 	ret = pm_runtime_get_sync(cpsw->dev);
1835 	if (ret < 0) {
1836 		pm_runtime_put_noidle(cpsw->dev);
1837 		return ret;
1838 	}
1839 
1840 	if (cpsw->data.dual_emac) {
1841 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1842 		flags = ALE_VLAN;
1843 	}
1844 
1845 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1846 			   flags, vid);
1847 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1848 			   flags, vid);
1849 
1850 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1851 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1852 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1853 
1854 	pm_runtime_put(cpsw->dev);
1855 
1856 	return 0;
1857 }
1858 
1859 #ifdef CONFIG_NET_POLL_CONTROLLER
1860 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1861 {
1862 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1863 
1864 	cpsw_intr_disable(cpsw);
1865 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1866 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1867 	cpsw_intr_enable(cpsw);
1868 }
1869 #endif
1870 
1871 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1872 				unsigned short vid)
1873 {
1874 	int ret;
1875 	int unreg_mcast_mask = 0;
1876 	u32 port_mask;
1877 	struct cpsw_common *cpsw = priv->cpsw;
1878 
1879 	if (cpsw->data.dual_emac) {
1880 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1881 
1882 		if (priv->ndev->flags & IFF_ALLMULTI)
1883 			unreg_mcast_mask = port_mask;
1884 	} else {
1885 		port_mask = ALE_ALL_PORTS;
1886 
1887 		if (priv->ndev->flags & IFF_ALLMULTI)
1888 			unreg_mcast_mask = ALE_ALL_PORTS;
1889 		else
1890 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1891 	}
1892 
1893 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1894 				unreg_mcast_mask);
1895 	if (ret != 0)
1896 		return ret;
1897 
1898 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1899 				 HOST_PORT_NUM, ALE_VLAN, vid);
1900 	if (ret != 0)
1901 		goto clean_vid;
1902 
1903 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1904 				 port_mask, ALE_VLAN, vid, 0);
1905 	if (ret != 0)
1906 		goto clean_vlan_ucast;
1907 	return 0;
1908 
1909 clean_vlan_ucast:
1910 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1911 			   HOST_PORT_NUM, ALE_VLAN, vid);
1912 clean_vid:
1913 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1914 	return ret;
1915 }
1916 
1917 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1918 				    __be16 proto, u16 vid)
1919 {
1920 	struct cpsw_priv *priv = netdev_priv(ndev);
1921 	struct cpsw_common *cpsw = priv->cpsw;
1922 	int ret;
1923 
1924 	if (vid == cpsw->data.default_vlan)
1925 		return 0;
1926 
1927 	ret = pm_runtime_get_sync(cpsw->dev);
1928 	if (ret < 0) {
1929 		pm_runtime_put_noidle(cpsw->dev);
1930 		return ret;
1931 	}
1932 
1933 	if (cpsw->data.dual_emac) {
1934 		/* In dual EMAC, reserved VLAN id should not be used for
1935 		 * creating VLAN interfaces as this can break the dual
1936 		 * EMAC port separation
1937 		 */
1938 		int i;
1939 
1940 		for (i = 0; i < cpsw->data.slaves; i++) {
1941 			if (vid == cpsw->slaves[i].port_vlan)
1942 				return -EINVAL;
1943 		}
1944 	}
1945 
1946 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1947 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1948 
1949 	pm_runtime_put(cpsw->dev);
1950 	return ret;
1951 }
1952 
1953 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1954 				     __be16 proto, u16 vid)
1955 {
1956 	struct cpsw_priv *priv = netdev_priv(ndev);
1957 	struct cpsw_common *cpsw = priv->cpsw;
1958 	int ret;
1959 
1960 	if (vid == cpsw->data.default_vlan)
1961 		return 0;
1962 
1963 	ret = pm_runtime_get_sync(cpsw->dev);
1964 	if (ret < 0) {
1965 		pm_runtime_put_noidle(cpsw->dev);
1966 		return ret;
1967 	}
1968 
1969 	if (cpsw->data.dual_emac) {
1970 		int i;
1971 
1972 		for (i = 0; i < cpsw->data.slaves; i++) {
1973 			if (vid == cpsw->slaves[i].port_vlan)
1974 				return -EINVAL;
1975 		}
1976 	}
1977 
1978 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1979 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1980 	if (ret != 0)
1981 		return ret;
1982 
1983 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1984 				 HOST_PORT_NUM, ALE_VLAN, vid);
1985 	if (ret != 0)
1986 		return ret;
1987 
1988 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1989 				 0, ALE_VLAN, vid);
1990 	pm_runtime_put(cpsw->dev);
1991 	return ret;
1992 }
1993 
1994 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
1995 {
1996 	struct cpsw_priv *priv = netdev_priv(ndev);
1997 	struct cpsw_common *cpsw = priv->cpsw;
1998 	struct cpsw_slave *slave;
1999 	u32 min_rate;
2000 	u32 ch_rate;
2001 	int i, ret;
2002 
2003 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2004 	if (ch_rate == rate)
2005 		return 0;
2006 
2007 	ch_rate = rate * 1000;
2008 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2009 	if ((ch_rate < min_rate && ch_rate)) {
2010 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2011 			min_rate);
2012 		return -EINVAL;
2013 	}
2014 
2015 	if (rate > cpsw->speed) {
2016 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2017 		return -EINVAL;
2018 	}
2019 
2020 	ret = pm_runtime_get_sync(cpsw->dev);
2021 	if (ret < 0) {
2022 		pm_runtime_put_noidle(cpsw->dev);
2023 		return ret;
2024 	}
2025 
2026 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2027 	pm_runtime_put(cpsw->dev);
2028 
2029 	if (ret)
2030 		return ret;
2031 
2032 	/* update rates for slaves tx queues */
2033 	for (i = 0; i < cpsw->data.slaves; i++) {
2034 		slave = &cpsw->slaves[i];
2035 		if (!slave->ndev)
2036 			continue;
2037 
2038 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2039 	}
2040 
2041 	cpsw_split_res(ndev);
2042 	return ret;
2043 }
2044 
2045 static const struct net_device_ops cpsw_netdev_ops = {
2046 	.ndo_open		= cpsw_ndo_open,
2047 	.ndo_stop		= cpsw_ndo_stop,
2048 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2049 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2050 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2051 	.ndo_validate_addr	= eth_validate_addr,
2052 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2053 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2054 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2055 #ifdef CONFIG_NET_POLL_CONTROLLER
2056 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2057 #endif
2058 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2059 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2060 };
2061 
2062 static int cpsw_get_regs_len(struct net_device *ndev)
2063 {
2064 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2065 
2066 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2067 }
2068 
2069 static void cpsw_get_regs(struct net_device *ndev,
2070 			  struct ethtool_regs *regs, void *p)
2071 {
2072 	u32 *reg = p;
2073 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2074 
2075 	/* update CPSW IP version */
2076 	regs->version = cpsw->version;
2077 
2078 	cpsw_ale_dump(cpsw->ale, reg);
2079 }
2080 
2081 static void cpsw_get_drvinfo(struct net_device *ndev,
2082 			     struct ethtool_drvinfo *info)
2083 {
2084 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2085 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2086 
2087 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2088 	strlcpy(info->version, "1.0", sizeof(info->version));
2089 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2090 }
2091 
2092 static u32 cpsw_get_msglevel(struct net_device *ndev)
2093 {
2094 	struct cpsw_priv *priv = netdev_priv(ndev);
2095 	return priv->msg_enable;
2096 }
2097 
2098 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2099 {
2100 	struct cpsw_priv *priv = netdev_priv(ndev);
2101 	priv->msg_enable = value;
2102 }
2103 
2104 #if IS_ENABLED(CONFIG_TI_CPTS)
2105 static int cpsw_get_ts_info(struct net_device *ndev,
2106 			    struct ethtool_ts_info *info)
2107 {
2108 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2109 
2110 	info->so_timestamping =
2111 		SOF_TIMESTAMPING_TX_HARDWARE |
2112 		SOF_TIMESTAMPING_TX_SOFTWARE |
2113 		SOF_TIMESTAMPING_RX_HARDWARE |
2114 		SOF_TIMESTAMPING_RX_SOFTWARE |
2115 		SOF_TIMESTAMPING_SOFTWARE |
2116 		SOF_TIMESTAMPING_RAW_HARDWARE;
2117 	info->phc_index = cpsw->cpts->phc_index;
2118 	info->tx_types =
2119 		(1 << HWTSTAMP_TX_OFF) |
2120 		(1 << HWTSTAMP_TX_ON);
2121 	info->rx_filters =
2122 		(1 << HWTSTAMP_FILTER_NONE) |
2123 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2124 	return 0;
2125 }
2126 #else
2127 static int cpsw_get_ts_info(struct net_device *ndev,
2128 			    struct ethtool_ts_info *info)
2129 {
2130 	info->so_timestamping =
2131 		SOF_TIMESTAMPING_TX_SOFTWARE |
2132 		SOF_TIMESTAMPING_RX_SOFTWARE |
2133 		SOF_TIMESTAMPING_SOFTWARE;
2134 	info->phc_index = -1;
2135 	info->tx_types = 0;
2136 	info->rx_filters = 0;
2137 	return 0;
2138 }
2139 #endif
2140 
2141 static int cpsw_get_link_ksettings(struct net_device *ndev,
2142 				   struct ethtool_link_ksettings *ecmd)
2143 {
2144 	struct cpsw_priv *priv = netdev_priv(ndev);
2145 	struct cpsw_common *cpsw = priv->cpsw;
2146 	int slave_no = cpsw_slave_index(cpsw, priv);
2147 
2148 	if (cpsw->slaves[slave_no].phy)
2149 		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2150 						 ecmd);
2151 	else
2152 		return -EOPNOTSUPP;
2153 }
2154 
2155 static int cpsw_set_link_ksettings(struct net_device *ndev,
2156 				   const struct ethtool_link_ksettings *ecmd)
2157 {
2158 	struct cpsw_priv *priv = netdev_priv(ndev);
2159 	struct cpsw_common *cpsw = priv->cpsw;
2160 	int slave_no = cpsw_slave_index(cpsw, priv);
2161 
2162 	if (cpsw->slaves[slave_no].phy)
2163 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2164 						 ecmd);
2165 	else
2166 		return -EOPNOTSUPP;
2167 }
2168 
2169 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2170 {
2171 	struct cpsw_priv *priv = netdev_priv(ndev);
2172 	struct cpsw_common *cpsw = priv->cpsw;
2173 	int slave_no = cpsw_slave_index(cpsw, priv);
2174 
2175 	wol->supported = 0;
2176 	wol->wolopts = 0;
2177 
2178 	if (cpsw->slaves[slave_no].phy)
2179 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2180 }
2181 
2182 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2183 {
2184 	struct cpsw_priv *priv = netdev_priv(ndev);
2185 	struct cpsw_common *cpsw = priv->cpsw;
2186 	int slave_no = cpsw_slave_index(cpsw, priv);
2187 
2188 	if (cpsw->slaves[slave_no].phy)
2189 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2190 	else
2191 		return -EOPNOTSUPP;
2192 }
2193 
2194 static void cpsw_get_pauseparam(struct net_device *ndev,
2195 				struct ethtool_pauseparam *pause)
2196 {
2197 	struct cpsw_priv *priv = netdev_priv(ndev);
2198 
2199 	pause->autoneg = AUTONEG_DISABLE;
2200 	pause->rx_pause = priv->rx_pause ? true : false;
2201 	pause->tx_pause = priv->tx_pause ? true : false;
2202 }
2203 
2204 static int cpsw_set_pauseparam(struct net_device *ndev,
2205 			       struct ethtool_pauseparam *pause)
2206 {
2207 	struct cpsw_priv *priv = netdev_priv(ndev);
2208 	bool link;
2209 
2210 	priv->rx_pause = pause->rx_pause ? true : false;
2211 	priv->tx_pause = pause->tx_pause ? true : false;
2212 
2213 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2214 	return 0;
2215 }
2216 
2217 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2218 {
2219 	struct cpsw_priv *priv = netdev_priv(ndev);
2220 	struct cpsw_common *cpsw = priv->cpsw;
2221 	int ret;
2222 
2223 	ret = pm_runtime_get_sync(cpsw->dev);
2224 	if (ret < 0) {
2225 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2226 		pm_runtime_put_noidle(cpsw->dev);
2227 	}
2228 
2229 	return ret;
2230 }
2231 
2232 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2233 {
2234 	struct cpsw_priv *priv = netdev_priv(ndev);
2235 	int ret;
2236 
2237 	ret = pm_runtime_put(priv->cpsw->dev);
2238 	if (ret < 0)
2239 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2240 }
2241 
2242 static void cpsw_get_channels(struct net_device *ndev,
2243 			      struct ethtool_channels *ch)
2244 {
2245 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2246 
2247 	ch->max_combined = 0;
2248 	ch->max_rx = CPSW_MAX_QUEUES;
2249 	ch->max_tx = CPSW_MAX_QUEUES;
2250 	ch->max_other = 0;
2251 	ch->other_count = 0;
2252 	ch->rx_count = cpsw->rx_ch_num;
2253 	ch->tx_count = cpsw->tx_ch_num;
2254 	ch->combined_count = 0;
2255 }
2256 
2257 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2258 				  struct ethtool_channels *ch)
2259 {
2260 	if (ch->combined_count)
2261 		return -EINVAL;
2262 
2263 	/* verify we have at least one channel in each direction */
2264 	if (!ch->rx_count || !ch->tx_count)
2265 		return -EINVAL;
2266 
2267 	if (ch->rx_count > cpsw->data.channels ||
2268 	    ch->tx_count > cpsw->data.channels)
2269 		return -EINVAL;
2270 
2271 	return 0;
2272 }
2273 
2274 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2275 {
2276 	int (*poll)(struct napi_struct *, int);
2277 	struct cpsw_common *cpsw = priv->cpsw;
2278 	void (*handler)(void *, int, int);
2279 	struct netdev_queue *queue;
2280 	struct cpsw_vector *vec;
2281 	int ret, *ch;
2282 
2283 	if (rx) {
2284 		ch = &cpsw->rx_ch_num;
2285 		vec = cpsw->rxv;
2286 		handler = cpsw_rx_handler;
2287 		poll = cpsw_rx_poll;
2288 	} else {
2289 		ch = &cpsw->tx_ch_num;
2290 		vec = cpsw->txv;
2291 		handler = cpsw_tx_handler;
2292 		poll = cpsw_tx_poll;
2293 	}
2294 
2295 	while (*ch < ch_num) {
2296 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2297 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2298 		queue->tx_maxrate = 0;
2299 
2300 		if (IS_ERR(vec[*ch].ch))
2301 			return PTR_ERR(vec[*ch].ch);
2302 
2303 		if (!vec[*ch].ch)
2304 			return -EINVAL;
2305 
2306 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2307 			  (rx ? "rx" : "tx"));
2308 		(*ch)++;
2309 	}
2310 
2311 	while (*ch > ch_num) {
2312 		(*ch)--;
2313 
2314 		ret = cpdma_chan_destroy(vec[*ch].ch);
2315 		if (ret)
2316 			return ret;
2317 
2318 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2319 			  (rx ? "rx" : "tx"));
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 static int cpsw_update_channels(struct cpsw_priv *priv,
2326 				struct ethtool_channels *ch)
2327 {
2328 	int ret;
2329 
2330 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2335 	if (ret)
2336 		return ret;
2337 
2338 	return 0;
2339 }
2340 
2341 static void cpsw_suspend_data_pass(struct net_device *ndev)
2342 {
2343 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2344 	struct cpsw_slave *slave;
2345 	int i;
2346 
2347 	/* Disable NAPI scheduling */
2348 	cpsw_intr_disable(cpsw);
2349 
2350 	/* Stop all transmit queues for every network device.
2351 	 * Disable re-using rx descriptors with dormant_on.
2352 	 */
2353 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2354 		if (!(slave->ndev && netif_running(slave->ndev)))
2355 			continue;
2356 
2357 		netif_tx_stop_all_queues(slave->ndev);
2358 		netif_dormant_on(slave->ndev);
2359 	}
2360 
2361 	/* Handle rest of tx packets and stop cpdma channels */
2362 	cpdma_ctlr_stop(cpsw->dma);
2363 }
2364 
2365 static int cpsw_resume_data_pass(struct net_device *ndev)
2366 {
2367 	struct cpsw_priv *priv = netdev_priv(ndev);
2368 	struct cpsw_common *cpsw = priv->cpsw;
2369 	struct cpsw_slave *slave;
2370 	int i, ret;
2371 
2372 	/* Allow rx packets handling */
2373 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2374 		if (slave->ndev && netif_running(slave->ndev))
2375 			netif_dormant_off(slave->ndev);
2376 
2377 	/* After this receive is started */
2378 	if (cpsw->usage_count) {
2379 		ret = cpsw_fill_rx_channels(priv);
2380 		if (ret)
2381 			return ret;
2382 
2383 		cpdma_ctlr_start(cpsw->dma);
2384 		cpsw_intr_enable(cpsw);
2385 	}
2386 
2387 	/* Resume transmit for every affected interface */
2388 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2389 		if (slave->ndev && netif_running(slave->ndev))
2390 			netif_tx_start_all_queues(slave->ndev);
2391 
2392 	return 0;
2393 }
2394 
2395 static int cpsw_set_channels(struct net_device *ndev,
2396 			     struct ethtool_channels *chs)
2397 {
2398 	struct cpsw_priv *priv = netdev_priv(ndev);
2399 	struct cpsw_common *cpsw = priv->cpsw;
2400 	struct cpsw_slave *slave;
2401 	int i, ret;
2402 
2403 	ret = cpsw_check_ch_settings(cpsw, chs);
2404 	if (ret < 0)
2405 		return ret;
2406 
2407 	cpsw_suspend_data_pass(ndev);
2408 	ret = cpsw_update_channels(priv, chs);
2409 	if (ret)
2410 		goto err;
2411 
2412 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2413 		if (!(slave->ndev && netif_running(slave->ndev)))
2414 			continue;
2415 
2416 		/* Inform stack about new count of queues */
2417 		ret = netif_set_real_num_tx_queues(slave->ndev,
2418 						   cpsw->tx_ch_num);
2419 		if (ret) {
2420 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2421 			goto err;
2422 		}
2423 
2424 		ret = netif_set_real_num_rx_queues(slave->ndev,
2425 						   cpsw->rx_ch_num);
2426 		if (ret) {
2427 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2428 			goto err;
2429 		}
2430 	}
2431 
2432 	if (cpsw->usage_count)
2433 		cpsw_split_res(ndev);
2434 
2435 	ret = cpsw_resume_data_pass(ndev);
2436 	if (!ret)
2437 		return 0;
2438 err:
2439 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2440 	dev_close(ndev);
2441 	return ret;
2442 }
2443 
2444 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2445 {
2446 	struct cpsw_priv *priv = netdev_priv(ndev);
2447 	struct cpsw_common *cpsw = priv->cpsw;
2448 	int slave_no = cpsw_slave_index(cpsw, priv);
2449 
2450 	if (cpsw->slaves[slave_no].phy)
2451 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2452 	else
2453 		return -EOPNOTSUPP;
2454 }
2455 
2456 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2457 {
2458 	struct cpsw_priv *priv = netdev_priv(ndev);
2459 	struct cpsw_common *cpsw = priv->cpsw;
2460 	int slave_no = cpsw_slave_index(cpsw, priv);
2461 
2462 	if (cpsw->slaves[slave_no].phy)
2463 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2464 	else
2465 		return -EOPNOTSUPP;
2466 }
2467 
2468 static int cpsw_nway_reset(struct net_device *ndev)
2469 {
2470 	struct cpsw_priv *priv = netdev_priv(ndev);
2471 	struct cpsw_common *cpsw = priv->cpsw;
2472 	int slave_no = cpsw_slave_index(cpsw, priv);
2473 
2474 	if (cpsw->slaves[slave_no].phy)
2475 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2476 	else
2477 		return -EOPNOTSUPP;
2478 }
2479 
2480 static void cpsw_get_ringparam(struct net_device *ndev,
2481 			       struct ethtool_ringparam *ering)
2482 {
2483 	struct cpsw_priv *priv = netdev_priv(ndev);
2484 	struct cpsw_common *cpsw = priv->cpsw;
2485 
2486 	/* not supported */
2487 	ering->tx_max_pending = 0;
2488 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2489 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2490 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2491 }
2492 
2493 static int cpsw_set_ringparam(struct net_device *ndev,
2494 			      struct ethtool_ringparam *ering)
2495 {
2496 	struct cpsw_priv *priv = netdev_priv(ndev);
2497 	struct cpsw_common *cpsw = priv->cpsw;
2498 	int ret;
2499 
2500 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2501 
2502 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2503 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2504 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2505 		return -EINVAL;
2506 
2507 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2508 		return 0;
2509 
2510 	cpsw_suspend_data_pass(ndev);
2511 
2512 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2513 
2514 	if (cpsw->usage_count)
2515 		cpdma_chan_split_pool(cpsw->dma);
2516 
2517 	ret = cpsw_resume_data_pass(ndev);
2518 	if (!ret)
2519 		return 0;
2520 
2521 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2522 	dev_close(ndev);
2523 	return ret;
2524 }
2525 
2526 static const struct ethtool_ops cpsw_ethtool_ops = {
2527 	.get_drvinfo	= cpsw_get_drvinfo,
2528 	.get_msglevel	= cpsw_get_msglevel,
2529 	.set_msglevel	= cpsw_set_msglevel,
2530 	.get_link	= ethtool_op_get_link,
2531 	.get_ts_info	= cpsw_get_ts_info,
2532 	.get_coalesce	= cpsw_get_coalesce,
2533 	.set_coalesce	= cpsw_set_coalesce,
2534 	.get_sset_count		= cpsw_get_sset_count,
2535 	.get_strings		= cpsw_get_strings,
2536 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2537 	.get_pauseparam		= cpsw_get_pauseparam,
2538 	.set_pauseparam		= cpsw_set_pauseparam,
2539 	.get_wol	= cpsw_get_wol,
2540 	.set_wol	= cpsw_set_wol,
2541 	.get_regs_len	= cpsw_get_regs_len,
2542 	.get_regs	= cpsw_get_regs,
2543 	.begin		= cpsw_ethtool_op_begin,
2544 	.complete	= cpsw_ethtool_op_complete,
2545 	.get_channels	= cpsw_get_channels,
2546 	.set_channels	= cpsw_set_channels,
2547 	.get_link_ksettings	= cpsw_get_link_ksettings,
2548 	.set_link_ksettings	= cpsw_set_link_ksettings,
2549 	.get_eee	= cpsw_get_eee,
2550 	.set_eee	= cpsw_set_eee,
2551 	.nway_reset	= cpsw_nway_reset,
2552 	.get_ringparam = cpsw_get_ringparam,
2553 	.set_ringparam = cpsw_set_ringparam,
2554 };
2555 
2556 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2557 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2558 {
2559 	void __iomem		*regs = cpsw->regs;
2560 	int			slave_num = slave->slave_num;
2561 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2562 
2563 	slave->data	= data;
2564 	slave->regs	= regs + slave_reg_ofs;
2565 	slave->sliver	= regs + sliver_reg_ofs;
2566 	slave->port_vlan = data->dual_emac_res_vlan;
2567 }
2568 
2569 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2570 			 struct platform_device *pdev)
2571 {
2572 	struct device_node *node = pdev->dev.of_node;
2573 	struct device_node *slave_node;
2574 	int i = 0, ret;
2575 	u32 prop;
2576 
2577 	if (!node)
2578 		return -EINVAL;
2579 
2580 	if (of_property_read_u32(node, "slaves", &prop)) {
2581 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2582 		return -EINVAL;
2583 	}
2584 	data->slaves = prop;
2585 
2586 	if (of_property_read_u32(node, "active_slave", &prop)) {
2587 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2588 		return -EINVAL;
2589 	}
2590 	data->active_slave = prop;
2591 
2592 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2593 					* sizeof(struct cpsw_slave_data),
2594 					GFP_KERNEL);
2595 	if (!data->slave_data)
2596 		return -ENOMEM;
2597 
2598 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2599 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2600 		return -EINVAL;
2601 	}
2602 	data->channels = prop;
2603 
2604 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2605 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2606 		return -EINVAL;
2607 	}
2608 	data->ale_entries = prop;
2609 
2610 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2611 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2612 		return -EINVAL;
2613 	}
2614 	data->bd_ram_size = prop;
2615 
2616 	if (of_property_read_u32(node, "mac_control", &prop)) {
2617 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2618 		return -EINVAL;
2619 	}
2620 	data->mac_control = prop;
2621 
2622 	if (of_property_read_bool(node, "dual_emac"))
2623 		data->dual_emac = 1;
2624 
2625 	/*
2626 	 * Populate all the child nodes here...
2627 	 */
2628 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2629 	/* We do not want to force this, as in some cases may not have child */
2630 	if (ret)
2631 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2632 
2633 	for_each_available_child_of_node(node, slave_node) {
2634 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2635 		const void *mac_addr = NULL;
2636 		int lenp;
2637 		const __be32 *parp;
2638 
2639 		/* This is no slave child node, continue */
2640 		if (strcmp(slave_node->name, "slave"))
2641 			continue;
2642 
2643 		slave_data->phy_node = of_parse_phandle(slave_node,
2644 							"phy-handle", 0);
2645 		parp = of_get_property(slave_node, "phy_id", &lenp);
2646 		if (slave_data->phy_node) {
2647 			dev_dbg(&pdev->dev,
2648 				"slave[%d] using phy-handle=\"%s\"\n",
2649 				i, slave_data->phy_node->full_name);
2650 		} else if (of_phy_is_fixed_link(slave_node)) {
2651 			/* In the case of a fixed PHY, the DT node associated
2652 			 * to the PHY is the Ethernet MAC DT node.
2653 			 */
2654 			ret = of_phy_register_fixed_link(slave_node);
2655 			if (ret) {
2656 				if (ret != -EPROBE_DEFER)
2657 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2658 				return ret;
2659 			}
2660 			slave_data->phy_node = of_node_get(slave_node);
2661 		} else if (parp) {
2662 			u32 phyid;
2663 			struct device_node *mdio_node;
2664 			struct platform_device *mdio;
2665 
2666 			if (lenp != (sizeof(__be32) * 2)) {
2667 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2668 				goto no_phy_slave;
2669 			}
2670 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2671 			phyid = be32_to_cpup(parp+1);
2672 			mdio = of_find_device_by_node(mdio_node);
2673 			of_node_put(mdio_node);
2674 			if (!mdio) {
2675 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2676 				return -EINVAL;
2677 			}
2678 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2679 				 PHY_ID_FMT, mdio->name, phyid);
2680 			put_device(&mdio->dev);
2681 		} else {
2682 			dev_err(&pdev->dev,
2683 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2684 				i);
2685 			goto no_phy_slave;
2686 		}
2687 		slave_data->phy_if = of_get_phy_mode(slave_node);
2688 		if (slave_data->phy_if < 0) {
2689 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2690 				i);
2691 			return slave_data->phy_if;
2692 		}
2693 
2694 no_phy_slave:
2695 		mac_addr = of_get_mac_address(slave_node);
2696 		if (mac_addr) {
2697 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2698 		} else {
2699 			ret = ti_cm_get_macid(&pdev->dev, i,
2700 					      slave_data->mac_addr);
2701 			if (ret)
2702 				return ret;
2703 		}
2704 		if (data->dual_emac) {
2705 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2706 						 &prop)) {
2707 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2708 				slave_data->dual_emac_res_vlan = i+1;
2709 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2710 					slave_data->dual_emac_res_vlan, i);
2711 			} else {
2712 				slave_data->dual_emac_res_vlan = prop;
2713 			}
2714 		}
2715 
2716 		i++;
2717 		if (i == data->slaves)
2718 			break;
2719 	}
2720 
2721 	return 0;
2722 }
2723 
2724 static void cpsw_remove_dt(struct platform_device *pdev)
2725 {
2726 	struct net_device *ndev = platform_get_drvdata(pdev);
2727 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2728 	struct cpsw_platform_data *data = &cpsw->data;
2729 	struct device_node *node = pdev->dev.of_node;
2730 	struct device_node *slave_node;
2731 	int i = 0;
2732 
2733 	for_each_available_child_of_node(node, slave_node) {
2734 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2735 
2736 		if (strcmp(slave_node->name, "slave"))
2737 			continue;
2738 
2739 		if (of_phy_is_fixed_link(slave_node))
2740 			of_phy_deregister_fixed_link(slave_node);
2741 
2742 		of_node_put(slave_data->phy_node);
2743 
2744 		i++;
2745 		if (i == data->slaves)
2746 			break;
2747 	}
2748 
2749 	of_platform_depopulate(&pdev->dev);
2750 }
2751 
2752 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2753 {
2754 	struct cpsw_common		*cpsw = priv->cpsw;
2755 	struct cpsw_platform_data	*data = &cpsw->data;
2756 	struct net_device		*ndev;
2757 	struct cpsw_priv		*priv_sl2;
2758 	int ret = 0;
2759 
2760 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2761 	if (!ndev) {
2762 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2763 		return -ENOMEM;
2764 	}
2765 
2766 	priv_sl2 = netdev_priv(ndev);
2767 	priv_sl2->cpsw = cpsw;
2768 	priv_sl2->ndev = ndev;
2769 	priv_sl2->dev  = &ndev->dev;
2770 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2771 
2772 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2773 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2774 			ETH_ALEN);
2775 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2776 			 priv_sl2->mac_addr);
2777 	} else {
2778 		random_ether_addr(priv_sl2->mac_addr);
2779 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2780 			 priv_sl2->mac_addr);
2781 	}
2782 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2783 
2784 	priv_sl2->emac_port = 1;
2785 	cpsw->slaves[1].ndev = ndev;
2786 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2787 
2788 	ndev->netdev_ops = &cpsw_netdev_ops;
2789 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2790 
2791 	/* register the network device */
2792 	SET_NETDEV_DEV(ndev, cpsw->dev);
2793 	ret = register_netdev(ndev);
2794 	if (ret) {
2795 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2796 		free_netdev(ndev);
2797 		ret = -ENODEV;
2798 	}
2799 
2800 	return ret;
2801 }
2802 
2803 #define CPSW_QUIRK_IRQ		BIT(0)
2804 
2805 static struct platform_device_id cpsw_devtype[] = {
2806 	{
2807 		/* keep it for existing comaptibles */
2808 		.name = "cpsw",
2809 		.driver_data = CPSW_QUIRK_IRQ,
2810 	}, {
2811 		.name = "am335x-cpsw",
2812 		.driver_data = CPSW_QUIRK_IRQ,
2813 	}, {
2814 		.name = "am4372-cpsw",
2815 		.driver_data = 0,
2816 	}, {
2817 		.name = "dra7-cpsw",
2818 		.driver_data = 0,
2819 	}, {
2820 		/* sentinel */
2821 	}
2822 };
2823 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2824 
2825 enum ti_cpsw_type {
2826 	CPSW = 0,
2827 	AM335X_CPSW,
2828 	AM4372_CPSW,
2829 	DRA7_CPSW,
2830 };
2831 
2832 static const struct of_device_id cpsw_of_mtable[] = {
2833 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2834 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2835 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2836 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2837 	{ /* sentinel */ },
2838 };
2839 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2840 
2841 static int cpsw_probe(struct platform_device *pdev)
2842 {
2843 	struct clk			*clk;
2844 	struct cpsw_platform_data	*data;
2845 	struct net_device		*ndev;
2846 	struct cpsw_priv		*priv;
2847 	struct cpdma_params		dma_params;
2848 	struct cpsw_ale_params		ale_params;
2849 	void __iomem			*ss_regs;
2850 	void __iomem			*cpts_regs;
2851 	struct resource			*res, *ss_res;
2852 	const struct of_device_id	*of_id;
2853 	struct gpio_descs		*mode;
2854 	u32 slave_offset, sliver_offset, slave_size;
2855 	struct cpsw_common		*cpsw;
2856 	int ret = 0, i;
2857 	int irq;
2858 
2859 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2860 	if (!cpsw)
2861 		return -ENOMEM;
2862 
2863 	cpsw->dev = &pdev->dev;
2864 
2865 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2866 	if (!ndev) {
2867 		dev_err(&pdev->dev, "error allocating net_device\n");
2868 		return -ENOMEM;
2869 	}
2870 
2871 	platform_set_drvdata(pdev, ndev);
2872 	priv = netdev_priv(ndev);
2873 	priv->cpsw = cpsw;
2874 	priv->ndev = ndev;
2875 	priv->dev  = &ndev->dev;
2876 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2877 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2878 
2879 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2880 	if (IS_ERR(mode)) {
2881 		ret = PTR_ERR(mode);
2882 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2883 		goto clean_ndev_ret;
2884 	}
2885 
2886 	/*
2887 	 * This may be required here for child devices.
2888 	 */
2889 	pm_runtime_enable(&pdev->dev);
2890 
2891 	/* Select default pin state */
2892 	pinctrl_pm_select_default_state(&pdev->dev);
2893 
2894 	/* Need to enable clocks with runtime PM api to access module
2895 	 * registers
2896 	 */
2897 	ret = pm_runtime_get_sync(&pdev->dev);
2898 	if (ret < 0) {
2899 		pm_runtime_put_noidle(&pdev->dev);
2900 		goto clean_runtime_disable_ret;
2901 	}
2902 
2903 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2904 	if (ret)
2905 		goto clean_dt_ret;
2906 
2907 	data = &cpsw->data;
2908 	cpsw->rx_ch_num = 1;
2909 	cpsw->tx_ch_num = 1;
2910 
2911 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2912 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2913 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2914 	} else {
2915 		eth_random_addr(priv->mac_addr);
2916 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2917 	}
2918 
2919 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2920 
2921 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2922 				    sizeof(struct cpsw_slave) * data->slaves,
2923 				    GFP_KERNEL);
2924 	if (!cpsw->slaves) {
2925 		ret = -ENOMEM;
2926 		goto clean_dt_ret;
2927 	}
2928 	for (i = 0; i < data->slaves; i++)
2929 		cpsw->slaves[i].slave_num = i;
2930 
2931 	cpsw->slaves[0].ndev = ndev;
2932 	priv->emac_port = 0;
2933 
2934 	clk = devm_clk_get(&pdev->dev, "fck");
2935 	if (IS_ERR(clk)) {
2936 		dev_err(priv->dev, "fck is not found\n");
2937 		ret = -ENODEV;
2938 		goto clean_dt_ret;
2939 	}
2940 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2941 
2942 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2943 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2944 	if (IS_ERR(ss_regs)) {
2945 		ret = PTR_ERR(ss_regs);
2946 		goto clean_dt_ret;
2947 	}
2948 	cpsw->regs = ss_regs;
2949 
2950 	cpsw->version = readl(&cpsw->regs->id_ver);
2951 
2952 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2953 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2954 	if (IS_ERR(cpsw->wr_regs)) {
2955 		ret = PTR_ERR(cpsw->wr_regs);
2956 		goto clean_dt_ret;
2957 	}
2958 
2959 	memset(&dma_params, 0, sizeof(dma_params));
2960 	memset(&ale_params, 0, sizeof(ale_params));
2961 
2962 	switch (cpsw->version) {
2963 	case CPSW_VERSION_1:
2964 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2965 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2966 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2967 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2968 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2969 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2970 		slave_offset         = CPSW1_SLAVE_OFFSET;
2971 		slave_size           = CPSW1_SLAVE_SIZE;
2972 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2973 		dma_params.desc_mem_phys = 0;
2974 		break;
2975 	case CPSW_VERSION_2:
2976 	case CPSW_VERSION_3:
2977 	case CPSW_VERSION_4:
2978 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2979 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
2980 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2981 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2982 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2983 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2984 		slave_offset         = CPSW2_SLAVE_OFFSET;
2985 		slave_size           = CPSW2_SLAVE_SIZE;
2986 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2987 		dma_params.desc_mem_phys =
2988 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2989 		break;
2990 	default:
2991 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2992 		ret = -ENODEV;
2993 		goto clean_dt_ret;
2994 	}
2995 	for (i = 0; i < cpsw->data.slaves; i++) {
2996 		struct cpsw_slave *slave = &cpsw->slaves[i];
2997 
2998 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2999 		slave_offset  += slave_size;
3000 		sliver_offset += SLIVER_SIZE;
3001 	}
3002 
3003 	dma_params.dev		= &pdev->dev;
3004 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3005 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3006 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3007 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3008 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3009 
3010 	dma_params.num_chan		= data->channels;
3011 	dma_params.has_soft_reset	= true;
3012 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3013 	dma_params.desc_mem_size	= data->bd_ram_size;
3014 	dma_params.desc_align		= 16;
3015 	dma_params.has_ext_regs		= true;
3016 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3017 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3018 	dma_params.descs_pool_size	= descs_pool_size;
3019 
3020 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3021 	if (!cpsw->dma) {
3022 		dev_err(priv->dev, "error initializing dma\n");
3023 		ret = -ENOMEM;
3024 		goto clean_dt_ret;
3025 	}
3026 
3027 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3028 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3029 	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3030 		dev_err(priv->dev, "error initializing dma channels\n");
3031 		ret = -ENOMEM;
3032 		goto clean_dma_ret;
3033 	}
3034 
3035 	ale_params.dev			= &pdev->dev;
3036 	ale_params.ale_ageout		= ale_ageout;
3037 	ale_params.ale_entries		= data->ale_entries;
3038 	ale_params.ale_ports		= data->slaves;
3039 
3040 	cpsw->ale = cpsw_ale_create(&ale_params);
3041 	if (!cpsw->ale) {
3042 		dev_err(priv->dev, "error initializing ale engine\n");
3043 		ret = -ENODEV;
3044 		goto clean_dma_ret;
3045 	}
3046 
3047 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3048 	if (IS_ERR(cpsw->cpts)) {
3049 		ret = PTR_ERR(cpsw->cpts);
3050 		goto clean_ale_ret;
3051 	}
3052 
3053 	ndev->irq = platform_get_irq(pdev, 1);
3054 	if (ndev->irq < 0) {
3055 		dev_err(priv->dev, "error getting irq resource\n");
3056 		ret = ndev->irq;
3057 		goto clean_ale_ret;
3058 	}
3059 
3060 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3061 	if (of_id) {
3062 		pdev->id_entry = of_id->data;
3063 		if (pdev->id_entry->driver_data)
3064 			cpsw->quirk_irq = true;
3065 	}
3066 
3067 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3068 	 * MISC IRQs which are always kept disabled with this driver so
3069 	 * we will not request them.
3070 	 *
3071 	 * If anyone wants to implement support for those, make sure to
3072 	 * first request and append them to irqs_table array.
3073 	 */
3074 
3075 	/* RX IRQ */
3076 	irq = platform_get_irq(pdev, 1);
3077 	if (irq < 0) {
3078 		ret = irq;
3079 		goto clean_ale_ret;
3080 	}
3081 
3082 	cpsw->irqs_table[0] = irq;
3083 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3084 			       0, dev_name(&pdev->dev), cpsw);
3085 	if (ret < 0) {
3086 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3087 		goto clean_ale_ret;
3088 	}
3089 
3090 	/* TX IRQ */
3091 	irq = platform_get_irq(pdev, 2);
3092 	if (irq < 0) {
3093 		ret = irq;
3094 		goto clean_ale_ret;
3095 	}
3096 
3097 	cpsw->irqs_table[1] = irq;
3098 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3099 			       0, dev_name(&pdev->dev), cpsw);
3100 	if (ret < 0) {
3101 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3102 		goto clean_ale_ret;
3103 	}
3104 
3105 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3106 
3107 	ndev->netdev_ops = &cpsw_netdev_ops;
3108 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3109 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3110 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3111 	cpsw_split_res(ndev);
3112 
3113 	/* register the network device */
3114 	SET_NETDEV_DEV(ndev, &pdev->dev);
3115 	ret = register_netdev(ndev);
3116 	if (ret) {
3117 		dev_err(priv->dev, "error registering net device\n");
3118 		ret = -ENODEV;
3119 		goto clean_ale_ret;
3120 	}
3121 
3122 	cpsw_notice(priv, probe,
3123 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3124 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3125 	if (cpsw->data.dual_emac) {
3126 		ret = cpsw_probe_dual_emac(priv);
3127 		if (ret) {
3128 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3129 			goto clean_unregister_netdev_ret;
3130 		}
3131 	}
3132 
3133 	pm_runtime_put(&pdev->dev);
3134 
3135 	return 0;
3136 
3137 clean_unregister_netdev_ret:
3138 	unregister_netdev(ndev);
3139 clean_ale_ret:
3140 	cpsw_ale_destroy(cpsw->ale);
3141 clean_dma_ret:
3142 	cpdma_ctlr_destroy(cpsw->dma);
3143 clean_dt_ret:
3144 	cpsw_remove_dt(pdev);
3145 	pm_runtime_put_sync(&pdev->dev);
3146 clean_runtime_disable_ret:
3147 	pm_runtime_disable(&pdev->dev);
3148 clean_ndev_ret:
3149 	free_netdev(priv->ndev);
3150 	return ret;
3151 }
3152 
3153 static int cpsw_remove(struct platform_device *pdev)
3154 {
3155 	struct net_device *ndev = platform_get_drvdata(pdev);
3156 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3157 	int ret;
3158 
3159 	ret = pm_runtime_get_sync(&pdev->dev);
3160 	if (ret < 0) {
3161 		pm_runtime_put_noidle(&pdev->dev);
3162 		return ret;
3163 	}
3164 
3165 	if (cpsw->data.dual_emac)
3166 		unregister_netdev(cpsw->slaves[1].ndev);
3167 	unregister_netdev(ndev);
3168 
3169 	cpts_release(cpsw->cpts);
3170 	cpsw_ale_destroy(cpsw->ale);
3171 	cpdma_ctlr_destroy(cpsw->dma);
3172 	cpsw_remove_dt(pdev);
3173 	pm_runtime_put_sync(&pdev->dev);
3174 	pm_runtime_disable(&pdev->dev);
3175 	if (cpsw->data.dual_emac)
3176 		free_netdev(cpsw->slaves[1].ndev);
3177 	free_netdev(ndev);
3178 	return 0;
3179 }
3180 
3181 #ifdef CONFIG_PM_SLEEP
3182 static int cpsw_suspend(struct device *dev)
3183 {
3184 	struct platform_device	*pdev = to_platform_device(dev);
3185 	struct net_device	*ndev = platform_get_drvdata(pdev);
3186 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3187 
3188 	if (cpsw->data.dual_emac) {
3189 		int i;
3190 
3191 		for (i = 0; i < cpsw->data.slaves; i++) {
3192 			if (netif_running(cpsw->slaves[i].ndev))
3193 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3194 		}
3195 	} else {
3196 		if (netif_running(ndev))
3197 			cpsw_ndo_stop(ndev);
3198 	}
3199 
3200 	/* Select sleep pin state */
3201 	pinctrl_pm_select_sleep_state(dev);
3202 
3203 	return 0;
3204 }
3205 
3206 static int cpsw_resume(struct device *dev)
3207 {
3208 	struct platform_device	*pdev = to_platform_device(dev);
3209 	struct net_device	*ndev = platform_get_drvdata(pdev);
3210 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3211 
3212 	/* Select default pin state */
3213 	pinctrl_pm_select_default_state(dev);
3214 
3215 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3216 	rtnl_lock();
3217 	if (cpsw->data.dual_emac) {
3218 		int i;
3219 
3220 		for (i = 0; i < cpsw->data.slaves; i++) {
3221 			if (netif_running(cpsw->slaves[i].ndev))
3222 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3223 		}
3224 	} else {
3225 		if (netif_running(ndev))
3226 			cpsw_ndo_open(ndev);
3227 	}
3228 	rtnl_unlock();
3229 
3230 	return 0;
3231 }
3232 #endif
3233 
3234 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3235 
3236 static struct platform_driver cpsw_driver = {
3237 	.driver = {
3238 		.name	 = "cpsw",
3239 		.pm	 = &cpsw_pm_ops,
3240 		.of_match_table = cpsw_of_mtable,
3241 	},
3242 	.probe = cpsw_probe,
3243 	.remove = cpsw_remove,
3244 };
3245 
3246 module_platform_driver(cpsw_driver);
3247 
3248 MODULE_LICENSE("GPL");
3249 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3250 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3251 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3252