1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2012 Texas Instruments 6 * 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/io.h> 11 #include <linux/clk.h> 12 #include <linux/timer.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/irqreturn.h> 16 #include <linux/interrupt.h> 17 #include <linux/if_ether.h> 18 #include <linux/etherdevice.h> 19 #include <linux/netdevice.h> 20 #include <linux/net_tstamp.h> 21 #include <linux/phy.h> 22 #include <linux/phy/phy.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/of_device.h> 31 #include <linux/if_vlan.h> 32 #include <linux/kmemleak.h> 33 #include <linux/sys_soc.h> 34 #include <net/page_pool.h> 35 #include <linux/bpf.h> 36 #include <linux/bpf_trace.h> 37 38 #include <linux/pinctrl/consumer.h> 39 #include <net/pkt_cls.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpsw_priv.h" 44 #include "cpsw_sl.h" 45 #include "cpts.h" 46 #include "davinci_cpdma.h" 47 48 #include <net/pkt_sched.h> 49 50 static int debug_level; 51 module_param(debug_level, int, 0); 52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 53 54 static int ale_ageout = 10; 55 module_param(ale_ageout, int, 0); 56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 57 58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 59 module_param(rx_packet_max, int, 0); 60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 61 62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 63 module_param(descs_pool_size, int, 0444); 64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 65 66 #define for_each_slave(priv, func, arg...) \ 67 do { \ 68 struct cpsw_slave *slave; \ 69 struct cpsw_common *cpsw = (priv)->cpsw; \ 70 int n; \ 71 if (cpsw->data.dual_emac) \ 72 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 73 else \ 74 for (n = cpsw->data.slaves, \ 75 slave = cpsw->slaves; \ 76 n; n--) \ 77 (func)(slave++, ##arg); \ 78 } while (0) 79 80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 81 struct cpsw_priv *priv) 82 { 83 return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave; 84 } 85 86 static int cpsw_get_slave_port(u32 slave_num) 87 { 88 return slave_num + 1; 89 } 90 91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 92 __be16 proto, u16 vid); 93 94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 95 { 96 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 97 struct cpsw_ale *ale = cpsw->ale; 98 int i; 99 100 if (cpsw->data.dual_emac) { 101 bool flag = false; 102 103 /* Enabling promiscuous mode for one interface will be 104 * common for both the interface as the interface shares 105 * the same hardware resource. 106 */ 107 for (i = 0; i < cpsw->data.slaves; i++) 108 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 109 flag = true; 110 111 if (!enable && flag) { 112 enable = true; 113 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 114 } 115 116 if (enable) { 117 /* Enable Bypass */ 118 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 119 120 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 121 } else { 122 /* Disable Bypass */ 123 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 124 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 125 } 126 } else { 127 if (enable) { 128 unsigned long timeout = jiffies + HZ; 129 130 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 131 for (i = 0; i <= cpsw->data.slaves; i++) { 132 cpsw_ale_control_set(ale, i, 133 ALE_PORT_NOLEARN, 1); 134 cpsw_ale_control_set(ale, i, 135 ALE_PORT_NO_SA_UPDATE, 1); 136 } 137 138 /* Clear All Untouched entries */ 139 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 140 do { 141 cpu_relax(); 142 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 143 break; 144 } while (time_after(timeout, jiffies)); 145 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 146 147 /* Clear all mcast from ALE */ 148 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 149 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 150 151 /* Flood All Unicast Packets to Host port */ 152 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 153 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 154 } else { 155 /* Don't Flood All Unicast Packets to Host port */ 156 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 157 158 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 159 for (i = 0; i <= cpsw->data.slaves; i++) { 160 cpsw_ale_control_set(ale, i, 161 ALE_PORT_NOLEARN, 0); 162 cpsw_ale_control_set(ale, i, 163 ALE_PORT_NO_SA_UPDATE, 0); 164 } 165 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 166 } 167 } 168 } 169 170 /** 171 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 172 * if it's not deleted 173 * @ndev: device to sync 174 * @addr: address to be added or deleted 175 * @vid: vlan id, if vid < 0 set/unset address for real device 176 * @add: add address if the flag is set or remove otherwise 177 */ 178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 179 int vid, int add) 180 { 181 struct cpsw_priv *priv = netdev_priv(ndev); 182 struct cpsw_common *cpsw = priv->cpsw; 183 int mask, flags, ret; 184 185 if (vid < 0) { 186 if (cpsw->data.dual_emac) 187 vid = cpsw->slaves[priv->emac_port].port_vlan; 188 else 189 vid = 0; 190 } 191 192 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 193 flags = vid ? ALE_VLAN : 0; 194 195 if (add) 196 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 197 else 198 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 199 200 return ret; 201 } 202 203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 204 { 205 struct addr_sync_ctx *sync_ctx = ctx; 206 struct netdev_hw_addr *ha; 207 int found = 0, ret = 0; 208 209 if (!vdev || !(vdev->flags & IFF_UP)) 210 return 0; 211 212 /* vlan address is relevant if its sync_cnt != 0 */ 213 netdev_for_each_mc_addr(ha, vdev) { 214 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 215 found = ha->sync_cnt; 216 break; 217 } 218 } 219 220 if (found) 221 sync_ctx->consumed++; 222 223 if (sync_ctx->flush) { 224 if (!found) 225 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 226 return 0; 227 } 228 229 if (found) 230 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 231 232 return ret; 233 } 234 235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 236 { 237 struct addr_sync_ctx sync_ctx; 238 int ret; 239 240 sync_ctx.consumed = 0; 241 sync_ctx.addr = addr; 242 sync_ctx.ndev = ndev; 243 sync_ctx.flush = 0; 244 245 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 246 if (sync_ctx.consumed < num && !ret) 247 ret = cpsw_set_mc(ndev, addr, -1, 1); 248 249 return ret; 250 } 251 252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 253 { 254 struct addr_sync_ctx sync_ctx; 255 256 sync_ctx.consumed = 0; 257 sync_ctx.addr = addr; 258 sync_ctx.ndev = ndev; 259 sync_ctx.flush = 1; 260 261 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 262 if (sync_ctx.consumed == num) 263 cpsw_set_mc(ndev, addr, -1, 0); 264 265 return 0; 266 } 267 268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 269 { 270 struct addr_sync_ctx *sync_ctx = ctx; 271 struct netdev_hw_addr *ha; 272 int found = 0; 273 274 if (!vdev || !(vdev->flags & IFF_UP)) 275 return 0; 276 277 /* vlan address is relevant if its sync_cnt != 0 */ 278 netdev_for_each_mc_addr(ha, vdev) { 279 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 280 found = ha->sync_cnt; 281 break; 282 } 283 } 284 285 if (!found) 286 return 0; 287 288 sync_ctx->consumed++; 289 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 290 return 0; 291 } 292 293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 294 { 295 struct addr_sync_ctx sync_ctx; 296 297 sync_ctx.addr = addr; 298 sync_ctx.ndev = ndev; 299 sync_ctx.consumed = 0; 300 301 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 302 if (sync_ctx.consumed < num) 303 cpsw_set_mc(ndev, addr, -1, 0); 304 305 return 0; 306 } 307 308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 309 { 310 struct cpsw_priv *priv = netdev_priv(ndev); 311 struct cpsw_common *cpsw = priv->cpsw; 312 int slave_port = -1; 313 314 if (cpsw->data.dual_emac) 315 slave_port = priv->emac_port + 1; 316 317 if (ndev->flags & IFF_PROMISC) { 318 /* Enable promiscuous mode */ 319 cpsw_set_promiscious(ndev, true); 320 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port); 321 return; 322 } else { 323 /* Disable promiscuous mode */ 324 cpsw_set_promiscious(ndev, false); 325 } 326 327 /* Restore allmulti on vlans if necessary */ 328 cpsw_ale_set_allmulti(cpsw->ale, 329 ndev->flags & IFF_ALLMULTI, slave_port); 330 331 /* add/remove mcast address either for real netdev or for vlan */ 332 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 333 cpsw_del_mc_addr); 334 } 335 336 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 337 { 338 len += CPSW_HEADROOM_NA; 339 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 340 341 return SKB_DATA_ALIGN(len); 342 } 343 344 static void cpsw_rx_handler(void *token, int len, int status) 345 { 346 struct page *new_page, *page = token; 347 void *pa = page_address(page); 348 struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET; 349 struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev); 350 int pkt_size = cpsw->rx_packet_max; 351 int ret = 0, port, ch = xmeta->ch; 352 int headroom = CPSW_HEADROOM_NA; 353 struct net_device *ndev = xmeta->ndev; 354 struct cpsw_priv *priv; 355 struct page_pool *pool; 356 struct sk_buff *skb; 357 struct xdp_buff xdp; 358 dma_addr_t dma; 359 360 if (cpsw->data.dual_emac && status >= 0) { 361 port = CPDMA_RX_SOURCE_PORT(status); 362 if (port) 363 ndev = cpsw->slaves[--port].ndev; 364 } 365 366 priv = netdev_priv(ndev); 367 pool = cpsw->page_pool[ch]; 368 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 369 /* In dual emac mode check for all interfaces */ 370 if (cpsw->data.dual_emac && cpsw->usage_count && 371 (status >= 0)) { 372 /* The packet received is for the interface which 373 * is already down and the other interface is up 374 * and running, instead of freeing which results 375 * in reducing of the number of rx descriptor in 376 * DMA engine, requeue page back to cpdma. 377 */ 378 new_page = page; 379 goto requeue; 380 } 381 382 /* the interface is going down, pages are purged */ 383 page_pool_recycle_direct(pool, page); 384 return; 385 } 386 387 new_page = page_pool_dev_alloc_pages(pool); 388 if (unlikely(!new_page)) { 389 new_page = page; 390 ndev->stats.rx_dropped++; 391 goto requeue; 392 } 393 394 if (priv->xdp_prog) { 395 int size = len; 396 397 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 398 if (status & CPDMA_RX_VLAN_ENCAP) { 399 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 400 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 401 } 402 403 xdp_prepare_buff(&xdp, pa, headroom, size, false); 404 405 port = priv->emac_port + cpsw->data.dual_emac; 406 ret = cpsw_run_xdp(priv, ch, &xdp, page, port, &len); 407 if (ret != CPSW_XDP_PASS) 408 goto requeue; 409 410 headroom = xdp.data - xdp.data_hard_start; 411 412 /* XDP prog can modify vlan tag, so can't use encap header */ 413 status &= ~CPDMA_RX_VLAN_ENCAP; 414 } 415 416 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 417 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 418 if (!skb) { 419 ndev->stats.rx_dropped++; 420 page_pool_recycle_direct(pool, page); 421 goto requeue; 422 } 423 424 skb_reserve(skb, headroom); 425 skb_put(skb, len); 426 skb->dev = ndev; 427 if (status & CPDMA_RX_VLAN_ENCAP) 428 cpsw_rx_vlan_encap(skb); 429 if (priv->rx_ts_enabled) 430 cpts_rx_timestamp(cpsw->cpts, skb); 431 skb->protocol = eth_type_trans(skb, ndev); 432 433 /* mark skb for recycling */ 434 skb_mark_for_recycle(skb); 435 netif_receive_skb(skb); 436 437 ndev->stats.rx_bytes += len; 438 ndev->stats.rx_packets++; 439 440 requeue: 441 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 442 xmeta->ndev = ndev; 443 xmeta->ch = ch; 444 445 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA; 446 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 447 pkt_size, 0); 448 if (ret < 0) { 449 WARN_ON(ret == -ENOMEM); 450 page_pool_recycle_direct(pool, new_page); 451 } 452 } 453 454 static void _cpsw_adjust_link(struct cpsw_slave *slave, 455 struct cpsw_priv *priv, bool *link) 456 { 457 struct phy_device *phy = slave->phy; 458 u32 mac_control = 0; 459 u32 slave_port; 460 struct cpsw_common *cpsw = priv->cpsw; 461 462 if (!phy) 463 return; 464 465 slave_port = cpsw_get_slave_port(slave->slave_num); 466 467 if (phy->link) { 468 mac_control = CPSW_SL_CTL_GMII_EN; 469 470 if (phy->speed == 1000) 471 mac_control |= CPSW_SL_CTL_GIG; 472 if (phy->duplex) 473 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 474 475 /* set speed_in input in case RMII mode is used in 100Mbps */ 476 if (phy->speed == 100) 477 mac_control |= CPSW_SL_CTL_IFCTL_A; 478 /* in band mode only works in 10Mbps RGMII mode */ 479 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 480 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 481 482 if (priv->rx_pause) 483 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 484 485 if (priv->tx_pause) 486 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 487 488 if (mac_control != slave->mac_control) 489 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 490 491 /* enable forwarding */ 492 cpsw_ale_control_set(cpsw->ale, slave_port, 493 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 494 495 *link = true; 496 497 if (priv->shp_cfg_speed && 498 priv->shp_cfg_speed != slave->phy->speed && 499 !cpsw_shp_is_off(priv)) 500 dev_warn(priv->dev, 501 "Speed was changed, CBS shaper speeds are changed!"); 502 } else { 503 mac_control = 0; 504 /* disable forwarding */ 505 cpsw_ale_control_set(cpsw->ale, slave_port, 506 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 507 508 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 509 510 cpsw_sl_ctl_reset(slave->mac_sl); 511 } 512 513 if (mac_control != slave->mac_control) 514 phy_print_status(phy); 515 516 slave->mac_control = mac_control; 517 } 518 519 static void cpsw_adjust_link(struct net_device *ndev) 520 { 521 struct cpsw_priv *priv = netdev_priv(ndev); 522 struct cpsw_common *cpsw = priv->cpsw; 523 bool link = false; 524 525 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 526 527 if (link) { 528 if (cpsw_need_resplit(cpsw)) 529 cpsw_split_res(cpsw); 530 531 netif_carrier_on(ndev); 532 if (netif_running(ndev)) 533 netif_tx_wake_all_queues(ndev); 534 } else { 535 netif_carrier_off(ndev); 536 netif_tx_stop_all_queues(ndev); 537 } 538 } 539 540 static inline void cpsw_add_dual_emac_def_ale_entries( 541 struct cpsw_priv *priv, struct cpsw_slave *slave, 542 u32 slave_port) 543 { 544 struct cpsw_common *cpsw = priv->cpsw; 545 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 546 547 if (cpsw->version == CPSW_VERSION_1) 548 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 549 else 550 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 551 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 552 port_mask, port_mask, 0); 553 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 554 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 555 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 556 HOST_PORT_NUM, ALE_VLAN | 557 ALE_SECURE, slave->port_vlan); 558 cpsw_ale_control_set(cpsw->ale, slave_port, 559 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 560 } 561 562 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 563 { 564 u32 slave_port; 565 struct phy_device *phy; 566 struct cpsw_common *cpsw = priv->cpsw; 567 568 cpsw_sl_reset(slave->mac_sl, 100); 569 cpsw_sl_ctl_reset(slave->mac_sl); 570 571 /* setup priority mapping */ 572 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 573 RX_PRIORITY_MAPPING); 574 575 switch (cpsw->version) { 576 case CPSW_VERSION_1: 577 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 578 /* Increase RX FIFO size to 5 for supporting fullduplex 579 * flow control mode 580 */ 581 slave_write(slave, 582 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 583 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 584 break; 585 case CPSW_VERSION_2: 586 case CPSW_VERSION_3: 587 case CPSW_VERSION_4: 588 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 589 /* Increase RX FIFO size to 5 for supporting fullduplex 590 * flow control mode 591 */ 592 slave_write(slave, 593 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 594 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 595 break; 596 } 597 598 /* setup max packet size, and mac address */ 599 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 600 cpsw->rx_packet_max); 601 cpsw_set_slave_mac(slave, priv); 602 603 slave->mac_control = 0; /* no link yet */ 604 605 slave_port = cpsw_get_slave_port(slave->slave_num); 606 607 if (cpsw->data.dual_emac) 608 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 609 else 610 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 611 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 612 613 if (slave->data->phy_node) { 614 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 615 &cpsw_adjust_link, 0, slave->data->phy_if); 616 if (!phy) { 617 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 618 slave->data->phy_node, 619 slave->slave_num); 620 return; 621 } 622 } else { 623 phy = phy_connect(priv->ndev, slave->data->phy_id, 624 &cpsw_adjust_link, slave->data->phy_if); 625 if (IS_ERR(phy)) { 626 dev_err(priv->dev, 627 "phy \"%s\" not found on slave %d, err %ld\n", 628 slave->data->phy_id, slave->slave_num, 629 PTR_ERR(phy)); 630 return; 631 } 632 } 633 634 slave->phy = phy; 635 636 phy_attached_info(slave->phy); 637 638 phy_start(slave->phy); 639 640 /* Configure GMII_SEL register */ 641 if (!IS_ERR(slave->data->ifphy)) 642 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 643 slave->data->phy_if); 644 else 645 cpsw_phy_sel(cpsw->dev, slave->phy->interface, 646 slave->slave_num); 647 } 648 649 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 650 { 651 struct cpsw_common *cpsw = priv->cpsw; 652 const int vlan = cpsw->data.default_vlan; 653 u32 reg; 654 int i; 655 int unreg_mcast_mask; 656 657 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 658 CPSW2_PORT_VLAN; 659 660 writel(vlan, &cpsw->host_port_regs->port_vlan); 661 662 for (i = 0; i < cpsw->data.slaves; i++) 663 slave_write(cpsw->slaves + i, vlan, reg); 664 665 if (priv->ndev->flags & IFF_ALLMULTI) 666 unreg_mcast_mask = ALE_ALL_PORTS; 667 else 668 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 669 670 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 671 ALE_ALL_PORTS, ALE_ALL_PORTS, 672 unreg_mcast_mask); 673 } 674 675 static void cpsw_init_host_port(struct cpsw_priv *priv) 676 { 677 u32 fifo_mode; 678 u32 control_reg; 679 struct cpsw_common *cpsw = priv->cpsw; 680 681 /* soft reset the controller and initialize ale */ 682 soft_reset("cpsw", &cpsw->regs->soft_reset); 683 cpsw_ale_start(cpsw->ale); 684 685 /* switch to vlan unaware mode */ 686 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 687 CPSW_ALE_VLAN_AWARE); 688 control_reg = readl(&cpsw->regs->control); 689 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 690 writel(control_reg, &cpsw->regs->control); 691 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 692 CPSW_FIFO_NORMAL_MODE; 693 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 694 695 /* setup host port priority mapping */ 696 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 697 &cpsw->host_port_regs->cpdma_tx_pri_map); 698 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 699 700 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 701 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 702 703 if (!cpsw->data.dual_emac) { 704 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 705 0, 0); 706 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 707 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 708 } 709 } 710 711 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 712 { 713 u32 slave_port; 714 715 slave_port = cpsw_get_slave_port(slave->slave_num); 716 717 if (!slave->phy) 718 return; 719 phy_stop(slave->phy); 720 phy_disconnect(slave->phy); 721 slave->phy = NULL; 722 cpsw_ale_control_set(cpsw->ale, slave_port, 723 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 724 cpsw_sl_reset(slave->mac_sl, 100); 725 cpsw_sl_ctl_reset(slave->mac_sl); 726 } 727 728 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 729 { 730 struct cpsw_priv *priv = arg; 731 732 if (!vdev) 733 return 0; 734 735 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 736 return 0; 737 } 738 739 /* restore resources after port reset */ 740 static void cpsw_restore(struct cpsw_priv *priv) 741 { 742 /* restore vlan configurations */ 743 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 744 745 /* restore MQPRIO offload */ 746 for_each_slave(priv, cpsw_mqprio_resume, priv); 747 748 /* restore CBS offload */ 749 for_each_slave(priv, cpsw_cbs_resume, priv); 750 } 751 752 static int cpsw_ndo_open(struct net_device *ndev) 753 { 754 struct cpsw_priv *priv = netdev_priv(ndev); 755 struct cpsw_common *cpsw = priv->cpsw; 756 int ret; 757 u32 reg; 758 759 ret = pm_runtime_resume_and_get(cpsw->dev); 760 if (ret < 0) 761 return ret; 762 763 netif_carrier_off(ndev); 764 765 /* Notify the stack of the actual queue counts. */ 766 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 767 if (ret) { 768 dev_err(priv->dev, "cannot set real number of tx queues\n"); 769 goto err_cleanup; 770 } 771 772 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 773 if (ret) { 774 dev_err(priv->dev, "cannot set real number of rx queues\n"); 775 goto err_cleanup; 776 } 777 778 reg = cpsw->version; 779 780 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 781 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 782 CPSW_RTL_VERSION(reg)); 783 784 /* Initialize host and slave ports */ 785 if (!cpsw->usage_count) 786 cpsw_init_host_port(priv); 787 for_each_slave(priv, cpsw_slave_open, priv); 788 789 /* Add default VLAN */ 790 if (!cpsw->data.dual_emac) 791 cpsw_add_default_vlan(priv); 792 else 793 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 794 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 795 796 /* initialize shared resources for every ndev */ 797 if (!cpsw->usage_count) { 798 /* disable priority elevation */ 799 writel_relaxed(0, &cpsw->regs->ptype); 800 801 /* enable statistics collection only on all ports */ 802 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 803 804 /* Enable internal fifo flow control */ 805 writel(0x7, &cpsw->regs->flow_control); 806 807 napi_enable(&cpsw->napi_rx); 808 napi_enable(&cpsw->napi_tx); 809 810 if (cpsw->tx_irq_disabled) { 811 cpsw->tx_irq_disabled = false; 812 enable_irq(cpsw->irqs_table[1]); 813 } 814 815 if (cpsw->rx_irq_disabled) { 816 cpsw->rx_irq_disabled = false; 817 enable_irq(cpsw->irqs_table[0]); 818 } 819 820 /* create rxqs for both infs in dual mac as they use same pool 821 * and must be destroyed together when no users. 822 */ 823 ret = cpsw_create_xdp_rxqs(cpsw); 824 if (ret < 0) 825 goto err_cleanup; 826 827 ret = cpsw_fill_rx_channels(priv); 828 if (ret < 0) 829 goto err_cleanup; 830 831 if (cpsw->cpts) { 832 if (cpts_register(cpsw->cpts)) 833 dev_err(priv->dev, "error registering cpts device\n"); 834 else 835 writel(0x10, &cpsw->wr_regs->misc_en); 836 } 837 } 838 839 cpsw_restore(priv); 840 841 /* Enable Interrupt pacing if configured */ 842 if (cpsw->coal_intvl != 0) { 843 struct ethtool_coalesce coal; 844 845 coal.rx_coalesce_usecs = cpsw->coal_intvl; 846 cpsw_set_coalesce(ndev, &coal, NULL, NULL); 847 } 848 849 cpdma_ctlr_start(cpsw->dma); 850 cpsw_intr_enable(cpsw); 851 cpsw->usage_count++; 852 853 return 0; 854 855 err_cleanup: 856 if (!cpsw->usage_count) { 857 cpdma_ctlr_stop(cpsw->dma); 858 cpsw_destroy_xdp_rxqs(cpsw); 859 } 860 861 for_each_slave(priv, cpsw_slave_stop, cpsw); 862 pm_runtime_put_sync(cpsw->dev); 863 netif_carrier_off(priv->ndev); 864 return ret; 865 } 866 867 static int cpsw_ndo_stop(struct net_device *ndev) 868 { 869 struct cpsw_priv *priv = netdev_priv(ndev); 870 struct cpsw_common *cpsw = priv->cpsw; 871 872 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 873 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 874 netif_tx_stop_all_queues(priv->ndev); 875 netif_carrier_off(priv->ndev); 876 877 if (cpsw->usage_count <= 1) { 878 napi_disable(&cpsw->napi_rx); 879 napi_disable(&cpsw->napi_tx); 880 cpts_unregister(cpsw->cpts); 881 cpsw_intr_disable(cpsw); 882 cpdma_ctlr_stop(cpsw->dma); 883 cpsw_ale_stop(cpsw->ale); 884 cpsw_destroy_xdp_rxqs(cpsw); 885 } 886 for_each_slave(priv, cpsw_slave_stop, cpsw); 887 888 if (cpsw_need_resplit(cpsw)) 889 cpsw_split_res(cpsw); 890 891 cpsw->usage_count--; 892 pm_runtime_put_sync(cpsw->dev); 893 return 0; 894 } 895 896 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 897 struct net_device *ndev) 898 { 899 struct cpsw_priv *priv = netdev_priv(ndev); 900 struct cpsw_common *cpsw = priv->cpsw; 901 struct cpts *cpts = cpsw->cpts; 902 struct netdev_queue *txq; 903 struct cpdma_chan *txch; 904 int ret, q_idx; 905 906 if (skb_put_padto(skb, CPSW_MIN_PACKET_SIZE)) { 907 cpsw_err(priv, tx_err, "packet pad failed\n"); 908 ndev->stats.tx_dropped++; 909 return NET_XMIT_DROP; 910 } 911 912 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 913 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 914 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 915 916 q_idx = skb_get_queue_mapping(skb); 917 if (q_idx >= cpsw->tx_ch_num) 918 q_idx = q_idx % cpsw->tx_ch_num; 919 920 txch = cpsw->txv[q_idx].ch; 921 txq = netdev_get_tx_queue(ndev, q_idx); 922 skb_tx_timestamp(skb); 923 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 924 priv->emac_port + cpsw->data.dual_emac); 925 if (unlikely(ret != 0)) { 926 cpsw_err(priv, tx_err, "desc submit failed\n"); 927 goto fail; 928 } 929 930 /* If there is no more tx desc left free then we need to 931 * tell the kernel to stop sending us tx frames. 932 */ 933 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 934 netif_tx_stop_queue(txq); 935 936 /* Barrier, so that stop_queue visible to other cpus */ 937 smp_mb__after_atomic(); 938 939 if (cpdma_check_free_tx_desc(txch)) 940 netif_tx_wake_queue(txq); 941 } 942 943 return NETDEV_TX_OK; 944 fail: 945 ndev->stats.tx_dropped++; 946 netif_tx_stop_queue(txq); 947 948 /* Barrier, so that stop_queue visible to other cpus */ 949 smp_mb__after_atomic(); 950 951 if (cpdma_check_free_tx_desc(txch)) 952 netif_tx_wake_queue(txq); 953 954 return NETDEV_TX_BUSY; 955 } 956 957 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 958 { 959 struct cpsw_priv *priv = netdev_priv(ndev); 960 struct sockaddr *addr = (struct sockaddr *)p; 961 struct cpsw_common *cpsw = priv->cpsw; 962 int flags = 0; 963 u16 vid = 0; 964 int ret; 965 966 if (!is_valid_ether_addr(addr->sa_data)) 967 return -EADDRNOTAVAIL; 968 969 ret = pm_runtime_resume_and_get(cpsw->dev); 970 if (ret < 0) 971 return ret; 972 973 if (cpsw->data.dual_emac) { 974 vid = cpsw->slaves[priv->emac_port].port_vlan; 975 flags = ALE_VLAN; 976 } 977 978 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 979 flags, vid); 980 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 981 flags, vid); 982 983 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 984 eth_hw_addr_set(ndev, priv->mac_addr); 985 for_each_slave(priv, cpsw_set_slave_mac, priv); 986 987 pm_runtime_put(cpsw->dev); 988 989 return 0; 990 } 991 992 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 993 unsigned short vid) 994 { 995 int ret; 996 int unreg_mcast_mask = 0; 997 int mcast_mask; 998 u32 port_mask; 999 struct cpsw_common *cpsw = priv->cpsw; 1000 1001 if (cpsw->data.dual_emac) { 1002 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1003 1004 mcast_mask = ALE_PORT_HOST; 1005 if (priv->ndev->flags & IFF_ALLMULTI) 1006 unreg_mcast_mask = mcast_mask; 1007 } else { 1008 port_mask = ALE_ALL_PORTS; 1009 mcast_mask = port_mask; 1010 1011 if (priv->ndev->flags & IFF_ALLMULTI) 1012 unreg_mcast_mask = ALE_ALL_PORTS; 1013 else 1014 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1015 } 1016 1017 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1018 unreg_mcast_mask); 1019 if (ret != 0) 1020 return ret; 1021 1022 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1023 HOST_PORT_NUM, ALE_VLAN, vid); 1024 if (ret != 0) 1025 goto clean_vid; 1026 1027 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1028 mcast_mask, ALE_VLAN, vid, 0); 1029 if (ret != 0) 1030 goto clean_vlan_ucast; 1031 return 0; 1032 1033 clean_vlan_ucast: 1034 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1035 HOST_PORT_NUM, ALE_VLAN, vid); 1036 clean_vid: 1037 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1038 return ret; 1039 } 1040 1041 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1042 __be16 proto, u16 vid) 1043 { 1044 struct cpsw_priv *priv = netdev_priv(ndev); 1045 struct cpsw_common *cpsw = priv->cpsw; 1046 int ret; 1047 1048 if (vid == cpsw->data.default_vlan) 1049 return 0; 1050 1051 ret = pm_runtime_resume_and_get(cpsw->dev); 1052 if (ret < 0) 1053 return ret; 1054 1055 if (cpsw->data.dual_emac) { 1056 /* In dual EMAC, reserved VLAN id should not be used for 1057 * creating VLAN interfaces as this can break the dual 1058 * EMAC port separation 1059 */ 1060 int i; 1061 1062 for (i = 0; i < cpsw->data.slaves; i++) { 1063 if (vid == cpsw->slaves[i].port_vlan) { 1064 ret = -EINVAL; 1065 goto err; 1066 } 1067 } 1068 } 1069 1070 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1071 ret = cpsw_add_vlan_ale_entry(priv, vid); 1072 err: 1073 pm_runtime_put(cpsw->dev); 1074 return ret; 1075 } 1076 1077 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1078 __be16 proto, u16 vid) 1079 { 1080 struct cpsw_priv *priv = netdev_priv(ndev); 1081 struct cpsw_common *cpsw = priv->cpsw; 1082 int ret; 1083 1084 if (vid == cpsw->data.default_vlan) 1085 return 0; 1086 1087 ret = pm_runtime_resume_and_get(cpsw->dev); 1088 if (ret < 0) 1089 return ret; 1090 1091 if (cpsw->data.dual_emac) { 1092 int i; 1093 1094 for (i = 0; i < cpsw->data.slaves; i++) { 1095 if (vid == cpsw->slaves[i].port_vlan) 1096 goto err; 1097 } 1098 } 1099 1100 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1101 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1102 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1103 HOST_PORT_NUM, ALE_VLAN, vid); 1104 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1105 0, ALE_VLAN, vid); 1106 ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1107 err: 1108 pm_runtime_put(cpsw->dev); 1109 return ret; 1110 } 1111 1112 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1113 struct xdp_frame **frames, u32 flags) 1114 { 1115 struct cpsw_priv *priv = netdev_priv(ndev); 1116 struct cpsw_common *cpsw = priv->cpsw; 1117 struct xdp_frame *xdpf; 1118 int i, nxmit = 0, port; 1119 1120 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1121 return -EINVAL; 1122 1123 for (i = 0; i < n; i++) { 1124 xdpf = frames[i]; 1125 if (xdpf->len < CPSW_MIN_PACKET_SIZE) 1126 break; 1127 1128 port = priv->emac_port + cpsw->data.dual_emac; 1129 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port)) 1130 break; 1131 nxmit++; 1132 } 1133 1134 return nxmit; 1135 } 1136 1137 #ifdef CONFIG_NET_POLL_CONTROLLER 1138 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1139 { 1140 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1141 1142 cpsw_intr_disable(cpsw); 1143 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1144 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1145 cpsw_intr_enable(cpsw); 1146 } 1147 #endif 1148 1149 static const struct net_device_ops cpsw_netdev_ops = { 1150 .ndo_open = cpsw_ndo_open, 1151 .ndo_stop = cpsw_ndo_stop, 1152 .ndo_start_xmit = cpsw_ndo_start_xmit, 1153 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1154 .ndo_eth_ioctl = cpsw_ndo_ioctl, 1155 .ndo_validate_addr = eth_validate_addr, 1156 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1157 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1158 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1159 #ifdef CONFIG_NET_POLL_CONTROLLER 1160 .ndo_poll_controller = cpsw_ndo_poll_controller, 1161 #endif 1162 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1163 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1164 .ndo_setup_tc = cpsw_ndo_setup_tc, 1165 .ndo_bpf = cpsw_ndo_bpf, 1166 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1167 }; 1168 1169 static void cpsw_get_drvinfo(struct net_device *ndev, 1170 struct ethtool_drvinfo *info) 1171 { 1172 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1173 struct platform_device *pdev = to_platform_device(cpsw->dev); 1174 1175 strscpy(info->driver, "cpsw", sizeof(info->driver)); 1176 strscpy(info->version, "1.0", sizeof(info->version)); 1177 strscpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1178 } 1179 1180 static int cpsw_set_pauseparam(struct net_device *ndev, 1181 struct ethtool_pauseparam *pause) 1182 { 1183 struct cpsw_priv *priv = netdev_priv(ndev); 1184 bool link; 1185 1186 priv->rx_pause = pause->rx_pause ? true : false; 1187 priv->tx_pause = pause->tx_pause ? true : false; 1188 1189 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1190 return 0; 1191 } 1192 1193 static int cpsw_set_channels(struct net_device *ndev, 1194 struct ethtool_channels *chs) 1195 { 1196 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1197 } 1198 1199 static const struct ethtool_ops cpsw_ethtool_ops = { 1200 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1201 .get_drvinfo = cpsw_get_drvinfo, 1202 .get_msglevel = cpsw_get_msglevel, 1203 .set_msglevel = cpsw_set_msglevel, 1204 .get_link = ethtool_op_get_link, 1205 .get_ts_info = cpsw_get_ts_info, 1206 .get_coalesce = cpsw_get_coalesce, 1207 .set_coalesce = cpsw_set_coalesce, 1208 .get_sset_count = cpsw_get_sset_count, 1209 .get_strings = cpsw_get_strings, 1210 .get_ethtool_stats = cpsw_get_ethtool_stats, 1211 .get_pauseparam = cpsw_get_pauseparam, 1212 .set_pauseparam = cpsw_set_pauseparam, 1213 .get_wol = cpsw_get_wol, 1214 .set_wol = cpsw_set_wol, 1215 .get_regs_len = cpsw_get_regs_len, 1216 .get_regs = cpsw_get_regs, 1217 .begin = cpsw_ethtool_op_begin, 1218 .complete = cpsw_ethtool_op_complete, 1219 .get_channels = cpsw_get_channels, 1220 .set_channels = cpsw_set_channels, 1221 .get_link_ksettings = cpsw_get_link_ksettings, 1222 .set_link_ksettings = cpsw_set_link_ksettings, 1223 .get_eee = cpsw_get_eee, 1224 .set_eee = cpsw_set_eee, 1225 .nway_reset = cpsw_nway_reset, 1226 .get_ringparam = cpsw_get_ringparam, 1227 .set_ringparam = cpsw_set_ringparam, 1228 }; 1229 1230 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1231 struct platform_device *pdev) 1232 { 1233 struct device_node *node = pdev->dev.of_node; 1234 struct device_node *slave_node; 1235 int i = 0, ret; 1236 u32 prop; 1237 1238 if (!node) 1239 return -EINVAL; 1240 1241 if (of_property_read_u32(node, "slaves", &prop)) { 1242 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1243 return -EINVAL; 1244 } 1245 data->slaves = prop; 1246 1247 if (of_property_read_u32(node, "active_slave", &prop)) { 1248 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1249 return -EINVAL; 1250 } 1251 data->active_slave = prop; 1252 1253 data->slave_data = devm_kcalloc(&pdev->dev, 1254 data->slaves, 1255 sizeof(struct cpsw_slave_data), 1256 GFP_KERNEL); 1257 if (!data->slave_data) 1258 return -ENOMEM; 1259 1260 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1261 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1262 return -EINVAL; 1263 } 1264 data->channels = prop; 1265 1266 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1267 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1268 return -EINVAL; 1269 } 1270 data->bd_ram_size = prop; 1271 1272 if (of_property_read_u32(node, "mac_control", &prop)) { 1273 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1274 return -EINVAL; 1275 } 1276 data->mac_control = prop; 1277 1278 if (of_property_read_bool(node, "dual_emac")) 1279 data->dual_emac = true; 1280 1281 /* 1282 * Populate all the child nodes here... 1283 */ 1284 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1285 /* We do not want to force this, as in some cases may not have child */ 1286 if (ret) 1287 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1288 1289 for_each_available_child_of_node(node, slave_node) { 1290 struct cpsw_slave_data *slave_data = data->slave_data + i; 1291 int lenp; 1292 const __be32 *parp; 1293 1294 /* This is no slave child node, continue */ 1295 if (!of_node_name_eq(slave_node, "slave")) 1296 continue; 1297 1298 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, 1299 NULL); 1300 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && 1301 IS_ERR(slave_data->ifphy)) { 1302 ret = PTR_ERR(slave_data->ifphy); 1303 dev_err(&pdev->dev, 1304 "%d: Error retrieving port phy: %d\n", i, ret); 1305 goto err_node_put; 1306 } 1307 1308 slave_data->slave_node = slave_node; 1309 slave_data->phy_node = of_parse_phandle(slave_node, 1310 "phy-handle", 0); 1311 parp = of_get_property(slave_node, "phy_id", &lenp); 1312 if (slave_data->phy_node) { 1313 dev_dbg(&pdev->dev, 1314 "slave[%d] using phy-handle=\"%pOF\"\n", 1315 i, slave_data->phy_node); 1316 } else if (of_phy_is_fixed_link(slave_node)) { 1317 /* In the case of a fixed PHY, the DT node associated 1318 * to the PHY is the Ethernet MAC DT node. 1319 */ 1320 ret = of_phy_register_fixed_link(slave_node); 1321 if (ret) { 1322 if (ret != -EPROBE_DEFER) 1323 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 1324 goto err_node_put; 1325 } 1326 slave_data->phy_node = of_node_get(slave_node); 1327 } else if (parp) { 1328 u32 phyid; 1329 struct device_node *mdio_node; 1330 struct platform_device *mdio; 1331 1332 if (lenp != (sizeof(__be32) * 2)) { 1333 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 1334 goto no_phy_slave; 1335 } 1336 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 1337 phyid = be32_to_cpup(parp+1); 1338 mdio = of_find_device_by_node(mdio_node); 1339 of_node_put(mdio_node); 1340 if (!mdio) { 1341 dev_err(&pdev->dev, "Missing mdio platform device\n"); 1342 ret = -EINVAL; 1343 goto err_node_put; 1344 } 1345 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 1346 PHY_ID_FMT, mdio->name, phyid); 1347 put_device(&mdio->dev); 1348 } else { 1349 dev_err(&pdev->dev, 1350 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 1351 i); 1352 goto no_phy_slave; 1353 } 1354 ret = of_get_phy_mode(slave_node, &slave_data->phy_if); 1355 if (ret) { 1356 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 1357 i); 1358 goto err_node_put; 1359 } 1360 1361 no_phy_slave: 1362 ret = of_get_mac_address(slave_node, slave_data->mac_addr); 1363 if (ret) { 1364 ret = ti_cm_get_macid(&pdev->dev, i, 1365 slave_data->mac_addr); 1366 if (ret) 1367 goto err_node_put; 1368 } 1369 if (data->dual_emac) { 1370 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 1371 &prop)) { 1372 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 1373 slave_data->dual_emac_res_vlan = i+1; 1374 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 1375 slave_data->dual_emac_res_vlan, i); 1376 } else { 1377 slave_data->dual_emac_res_vlan = prop; 1378 } 1379 } 1380 1381 i++; 1382 if (i == data->slaves) { 1383 ret = 0; 1384 goto err_node_put; 1385 } 1386 } 1387 1388 return 0; 1389 1390 err_node_put: 1391 of_node_put(slave_node); 1392 return ret; 1393 } 1394 1395 static void cpsw_remove_dt(struct platform_device *pdev) 1396 { 1397 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1398 struct cpsw_platform_data *data = &cpsw->data; 1399 struct device_node *node = pdev->dev.of_node; 1400 struct device_node *slave_node; 1401 int i = 0; 1402 1403 for_each_available_child_of_node(node, slave_node) { 1404 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1405 1406 if (!of_node_name_eq(slave_node, "slave")) 1407 continue; 1408 1409 if (of_phy_is_fixed_link(slave_node)) 1410 of_phy_deregister_fixed_link(slave_node); 1411 1412 of_node_put(slave_data->phy_node); 1413 1414 i++; 1415 if (i == data->slaves) { 1416 of_node_put(slave_node); 1417 break; 1418 } 1419 } 1420 1421 of_platform_depopulate(&pdev->dev); 1422 } 1423 1424 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 1425 { 1426 struct cpsw_common *cpsw = priv->cpsw; 1427 struct cpsw_platform_data *data = &cpsw->data; 1428 struct net_device *ndev; 1429 struct cpsw_priv *priv_sl2; 1430 int ret = 0; 1431 1432 ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv), 1433 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1434 if (!ndev) { 1435 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 1436 return -ENOMEM; 1437 } 1438 1439 priv_sl2 = netdev_priv(ndev); 1440 priv_sl2->cpsw = cpsw; 1441 priv_sl2->ndev = ndev; 1442 priv_sl2->dev = &ndev->dev; 1443 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1444 1445 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 1446 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 1447 ETH_ALEN); 1448 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 1449 priv_sl2->mac_addr); 1450 } else { 1451 eth_random_addr(priv_sl2->mac_addr); 1452 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 1453 priv_sl2->mac_addr); 1454 } 1455 eth_hw_addr_set(ndev, priv_sl2->mac_addr); 1456 1457 priv_sl2->emac_port = 1; 1458 cpsw->slaves[1].ndev = ndev; 1459 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1460 1461 ndev->netdev_ops = &cpsw_netdev_ops; 1462 ndev->ethtool_ops = &cpsw_ethtool_ops; 1463 1464 /* register the network device */ 1465 SET_NETDEV_DEV(ndev, cpsw->dev); 1466 ndev->dev.of_node = cpsw->slaves[1].data->slave_node; 1467 ret = register_netdev(ndev); 1468 if (ret) 1469 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 1470 1471 return ret; 1472 } 1473 1474 static const struct of_device_id cpsw_of_mtable[] = { 1475 { .compatible = "ti,cpsw"}, 1476 { .compatible = "ti,am335x-cpsw"}, 1477 { .compatible = "ti,am4372-cpsw"}, 1478 { .compatible = "ti,dra7-cpsw"}, 1479 { /* sentinel */ }, 1480 }; 1481 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1482 1483 static const struct soc_device_attribute cpsw_soc_devices[] = { 1484 { .family = "AM33xx", .revision = "ES1.0"}, 1485 { /* sentinel */ } 1486 }; 1487 1488 static int cpsw_probe(struct platform_device *pdev) 1489 { 1490 struct device *dev = &pdev->dev; 1491 struct clk *clk; 1492 struct cpsw_platform_data *data; 1493 struct net_device *ndev; 1494 struct cpsw_priv *priv; 1495 void __iomem *ss_regs; 1496 struct resource *ss_res; 1497 struct gpio_descs *mode; 1498 const struct soc_device_attribute *soc; 1499 struct cpsw_common *cpsw; 1500 int ret = 0, ch; 1501 int irq; 1502 1503 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1504 if (!cpsw) 1505 return -ENOMEM; 1506 1507 platform_set_drvdata(pdev, cpsw); 1508 cpsw_slave_index = cpsw_slave_index_priv; 1509 1510 cpsw->dev = dev; 1511 1512 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1513 if (IS_ERR(mode)) { 1514 ret = PTR_ERR(mode); 1515 dev_err(dev, "gpio request failed, ret %d\n", ret); 1516 return ret; 1517 } 1518 1519 clk = devm_clk_get(dev, "fck"); 1520 if (IS_ERR(clk)) { 1521 ret = PTR_ERR(clk); 1522 dev_err(dev, "fck is not found %d\n", ret); 1523 return ret; 1524 } 1525 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1526 1527 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1528 if (IS_ERR(ss_regs)) 1529 return PTR_ERR(ss_regs); 1530 cpsw->regs = ss_regs; 1531 1532 cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1); 1533 if (IS_ERR(cpsw->wr_regs)) 1534 return PTR_ERR(cpsw->wr_regs); 1535 1536 /* RX IRQ */ 1537 irq = platform_get_irq(pdev, 1); 1538 if (irq < 0) 1539 return irq; 1540 cpsw->irqs_table[0] = irq; 1541 1542 /* TX IRQ */ 1543 irq = platform_get_irq(pdev, 2); 1544 if (irq < 0) 1545 return irq; 1546 cpsw->irqs_table[1] = irq; 1547 1548 /* get misc irq*/ 1549 irq = platform_get_irq(pdev, 3); 1550 if (irq <= 0) 1551 return irq; 1552 cpsw->misc_irq = irq; 1553 1554 /* 1555 * This may be required here for child devices. 1556 */ 1557 pm_runtime_enable(dev); 1558 1559 /* Need to enable clocks with runtime PM api to access module 1560 * registers 1561 */ 1562 ret = pm_runtime_resume_and_get(dev); 1563 if (ret < 0) 1564 goto clean_runtime_disable_ret; 1565 1566 ret = cpsw_probe_dt(&cpsw->data, pdev); 1567 if (ret) 1568 goto clean_dt_ret; 1569 1570 soc = soc_device_match(cpsw_soc_devices); 1571 if (soc) 1572 cpsw->quirk_irq = true; 1573 1574 data = &cpsw->data; 1575 cpsw->slaves = devm_kcalloc(dev, 1576 data->slaves, sizeof(struct cpsw_slave), 1577 GFP_KERNEL); 1578 if (!cpsw->slaves) { 1579 ret = -ENOMEM; 1580 goto clean_dt_ret; 1581 } 1582 1583 cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE); 1584 cpsw->descs_pool_size = descs_pool_size; 1585 1586 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1587 ss_res->start + CPSW2_BD_OFFSET, 1588 descs_pool_size); 1589 if (ret) 1590 goto clean_dt_ret; 1591 1592 ch = cpsw->quirk_irq ? 0 : 7; 1593 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1594 if (IS_ERR(cpsw->txv[0].ch)) { 1595 dev_err(dev, "error initializing tx dma channel\n"); 1596 ret = PTR_ERR(cpsw->txv[0].ch); 1597 goto clean_cpts; 1598 } 1599 1600 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1601 if (IS_ERR(cpsw->rxv[0].ch)) { 1602 dev_err(dev, "error initializing rx dma channel\n"); 1603 ret = PTR_ERR(cpsw->rxv[0].ch); 1604 goto clean_cpts; 1605 } 1606 cpsw_split_res(cpsw); 1607 1608 /* setup netdev */ 1609 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1610 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1611 if (!ndev) { 1612 dev_err(dev, "error allocating net_device\n"); 1613 ret = -ENOMEM; 1614 goto clean_cpts; 1615 } 1616 1617 priv = netdev_priv(ndev); 1618 priv->cpsw = cpsw; 1619 priv->ndev = ndev; 1620 priv->dev = dev; 1621 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1622 priv->emac_port = 0; 1623 1624 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 1625 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 1626 dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr); 1627 } else { 1628 eth_random_addr(priv->mac_addr); 1629 dev_info(dev, "Random MACID = %pM\n", priv->mac_addr); 1630 } 1631 1632 eth_hw_addr_set(ndev, priv->mac_addr); 1633 1634 cpsw->slaves[0].ndev = ndev; 1635 1636 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1637 1638 ndev->netdev_ops = &cpsw_netdev_ops; 1639 ndev->ethtool_ops = &cpsw_ethtool_ops; 1640 netif_napi_add(ndev, &cpsw->napi_rx, 1641 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 1642 NAPI_POLL_WEIGHT); 1643 netif_napi_add_tx(ndev, &cpsw->napi_tx, 1644 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll); 1645 1646 /* register the network device */ 1647 SET_NETDEV_DEV(ndev, dev); 1648 ndev->dev.of_node = cpsw->slaves[0].data->slave_node; 1649 ret = register_netdev(ndev); 1650 if (ret) { 1651 dev_err(dev, "error registering net device\n"); 1652 ret = -ENODEV; 1653 goto clean_cpts; 1654 } 1655 1656 if (cpsw->data.dual_emac) { 1657 ret = cpsw_probe_dual_emac(priv); 1658 if (ret) { 1659 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 1660 goto clean_unregister_netdev_ret; 1661 } 1662 } 1663 1664 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1665 * MISC IRQs which are always kept disabled with this driver so 1666 * we will not request them. 1667 * 1668 * If anyone wants to implement support for those, make sure to 1669 * first request and append them to irqs_table array. 1670 */ 1671 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1672 0, dev_name(dev), cpsw); 1673 if (ret < 0) { 1674 dev_err(dev, "error attaching irq (%d)\n", ret); 1675 goto clean_unregister_netdev_ret; 1676 } 1677 1678 1679 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1680 0, dev_name(&pdev->dev), cpsw); 1681 if (ret < 0) { 1682 dev_err(dev, "error attaching irq (%d)\n", ret); 1683 goto clean_unregister_netdev_ret; 1684 } 1685 1686 if (!cpsw->cpts) 1687 goto skip_cpts; 1688 1689 ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt, 1690 0, dev_name(&pdev->dev), cpsw); 1691 if (ret < 0) { 1692 dev_err(dev, "error attaching misc irq (%d)\n", ret); 1693 goto clean_unregister_netdev_ret; 1694 } 1695 1696 /* Enable misc CPTS evnt_pend IRQ */ 1697 cpts_set_irqpoll(cpsw->cpts, false); 1698 1699 skip_cpts: 1700 cpsw_notice(priv, probe, 1701 "initialized device (regs %pa, irq %d, pool size %d)\n", 1702 &ss_res->start, cpsw->irqs_table[0], descs_pool_size); 1703 1704 pm_runtime_put(&pdev->dev); 1705 1706 return 0; 1707 1708 clean_unregister_netdev_ret: 1709 unregister_netdev(ndev); 1710 clean_cpts: 1711 cpts_release(cpsw->cpts); 1712 cpdma_ctlr_destroy(cpsw->dma); 1713 clean_dt_ret: 1714 cpsw_remove_dt(pdev); 1715 pm_runtime_put_sync(&pdev->dev); 1716 clean_runtime_disable_ret: 1717 pm_runtime_disable(&pdev->dev); 1718 return ret; 1719 } 1720 1721 static int cpsw_remove(struct platform_device *pdev) 1722 { 1723 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1724 int i, ret; 1725 1726 ret = pm_runtime_resume_and_get(&pdev->dev); 1727 if (ret < 0) 1728 return ret; 1729 1730 for (i = 0; i < cpsw->data.slaves; i++) 1731 if (cpsw->slaves[i].ndev) 1732 unregister_netdev(cpsw->slaves[i].ndev); 1733 1734 cpts_release(cpsw->cpts); 1735 cpdma_ctlr_destroy(cpsw->dma); 1736 cpsw_remove_dt(pdev); 1737 pm_runtime_put_sync(&pdev->dev); 1738 pm_runtime_disable(&pdev->dev); 1739 return 0; 1740 } 1741 1742 #ifdef CONFIG_PM_SLEEP 1743 static int cpsw_suspend(struct device *dev) 1744 { 1745 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1746 int i; 1747 1748 rtnl_lock(); 1749 1750 for (i = 0; i < cpsw->data.slaves; i++) 1751 if (cpsw->slaves[i].ndev) 1752 if (netif_running(cpsw->slaves[i].ndev)) 1753 cpsw_ndo_stop(cpsw->slaves[i].ndev); 1754 1755 rtnl_unlock(); 1756 1757 /* Select sleep pin state */ 1758 pinctrl_pm_select_sleep_state(dev); 1759 1760 return 0; 1761 } 1762 1763 static int cpsw_resume(struct device *dev) 1764 { 1765 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1766 int i; 1767 1768 /* Select default pin state */ 1769 pinctrl_pm_select_default_state(dev); 1770 1771 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 1772 rtnl_lock(); 1773 1774 for (i = 0; i < cpsw->data.slaves; i++) 1775 if (cpsw->slaves[i].ndev) 1776 if (netif_running(cpsw->slaves[i].ndev)) 1777 cpsw_ndo_open(cpsw->slaves[i].ndev); 1778 1779 rtnl_unlock(); 1780 1781 return 0; 1782 } 1783 #endif 1784 1785 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 1786 1787 static struct platform_driver cpsw_driver = { 1788 .driver = { 1789 .name = "cpsw", 1790 .pm = &cpsw_pm_ops, 1791 .of_match_table = cpsw_of_mtable, 1792 }, 1793 .probe = cpsw_probe, 1794 .remove = cpsw_remove, 1795 }; 1796 1797 module_platform_driver(cpsw_driver); 1798 1799 MODULE_LICENSE("GPL"); 1800 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 1801 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 1802 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 1803