1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 #include <linux/kmemleak.h> 39 #include <linux/sys_soc.h> 40 41 #include <linux/pinctrl/consumer.h> 42 #include <net/pkt_cls.h> 43 44 #include "cpsw.h" 45 #include "cpsw_ale.h" 46 #include "cpts.h" 47 #include "davinci_cpdma.h" 48 49 #include <net/pkt_sched.h> 50 51 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 52 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 53 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 54 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 56 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 57 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 58 NETIF_MSG_RX_STATUS) 59 60 #define cpsw_info(priv, type, format, ...) \ 61 do { \ 62 if (netif_msg_##type(priv) && net_ratelimit()) \ 63 dev_info(priv->dev, format, ## __VA_ARGS__); \ 64 } while (0) 65 66 #define cpsw_err(priv, type, format, ...) \ 67 do { \ 68 if (netif_msg_##type(priv) && net_ratelimit()) \ 69 dev_err(priv->dev, format, ## __VA_ARGS__); \ 70 } while (0) 71 72 #define cpsw_dbg(priv, type, format, ...) \ 73 do { \ 74 if (netif_msg_##type(priv) && net_ratelimit()) \ 75 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 76 } while (0) 77 78 #define cpsw_notice(priv, type, format, ...) \ 79 do { \ 80 if (netif_msg_##type(priv) && net_ratelimit()) \ 81 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 82 } while (0) 83 84 #define ALE_ALL_PORTS 0x7 85 86 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 87 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 88 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 89 90 #define CPSW_VERSION_1 0x19010a 91 #define CPSW_VERSION_2 0x19010c 92 #define CPSW_VERSION_3 0x19010f 93 #define CPSW_VERSION_4 0x190112 94 95 #define HOST_PORT_NUM 0 96 #define CPSW_ALE_PORTS_NUM 3 97 #define SLIVER_SIZE 0x40 98 99 #define CPSW1_HOST_PORT_OFFSET 0x028 100 #define CPSW1_SLAVE_OFFSET 0x050 101 #define CPSW1_SLAVE_SIZE 0x040 102 #define CPSW1_CPDMA_OFFSET 0x100 103 #define CPSW1_STATERAM_OFFSET 0x200 104 #define CPSW1_HW_STATS 0x400 105 #define CPSW1_CPTS_OFFSET 0x500 106 #define CPSW1_ALE_OFFSET 0x600 107 #define CPSW1_SLIVER_OFFSET 0x700 108 109 #define CPSW2_HOST_PORT_OFFSET 0x108 110 #define CPSW2_SLAVE_OFFSET 0x200 111 #define CPSW2_SLAVE_SIZE 0x100 112 #define CPSW2_CPDMA_OFFSET 0x800 113 #define CPSW2_HW_STATS 0x900 114 #define CPSW2_STATERAM_OFFSET 0xa00 115 #define CPSW2_CPTS_OFFSET 0xc00 116 #define CPSW2_ALE_OFFSET 0xd00 117 #define CPSW2_SLIVER_OFFSET 0xd80 118 #define CPSW2_BD_OFFSET 0x2000 119 120 #define CPDMA_RXTHRESH 0x0c0 121 #define CPDMA_RXFREE 0x0e0 122 #define CPDMA_TXHDP 0x00 123 #define CPDMA_RXHDP 0x20 124 #define CPDMA_TXCP 0x40 125 #define CPDMA_RXCP 0x60 126 127 #define CPSW_POLL_WEIGHT 64 128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 129 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 130 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 131 ETH_FCS_LEN +\ 132 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 133 134 #define RX_PRIORITY_MAPPING 0x76543210 135 #define TX_PRIORITY_MAPPING 0x33221100 136 #define CPDMA_TX_PRIORITY_MAP 0x76543210 137 138 #define CPSW_VLAN_AWARE BIT(1) 139 #define CPSW_RX_VLAN_ENCAP BIT(2) 140 #define CPSW_ALE_VLAN_AWARE 1 141 142 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 143 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 144 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 145 146 #define CPSW_INTPACEEN (0x3f << 16) 147 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 148 #define CPSW_CMINTMAX_CNT 63 149 #define CPSW_CMINTMIN_CNT 2 150 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 151 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 152 153 #define cpsw_slave_index(cpsw, priv) \ 154 ((cpsw->data.dual_emac) ? priv->emac_port : \ 155 cpsw->data.active_slave) 156 #define IRQ_NUM 2 157 #define CPSW_MAX_QUEUES 8 158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16 160 #define CPSW_FIFO_SHAPE_EN_SHIFT 16 161 #define CPSW_FIFO_RATE_EN_SHIFT 20 162 #define CPSW_TC_NUM 4 163 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1) 164 #define CPSW_PCT_MASK 0x7f 165 166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 171 enum { 172 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 173 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 174 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 175 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 176 }; 177 178 static int debug_level; 179 module_param(debug_level, int, 0); 180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 181 182 static int ale_ageout = 10; 183 module_param(ale_ageout, int, 0); 184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 185 186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 187 module_param(rx_packet_max, int, 0); 188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 189 190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 191 module_param(descs_pool_size, int, 0444); 192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 193 194 struct cpsw_wr_regs { 195 u32 id_ver; 196 u32 soft_reset; 197 u32 control; 198 u32 int_control; 199 u32 rx_thresh_en; 200 u32 rx_en; 201 u32 tx_en; 202 u32 misc_en; 203 u32 mem_allign1[8]; 204 u32 rx_thresh_stat; 205 u32 rx_stat; 206 u32 tx_stat; 207 u32 misc_stat; 208 u32 mem_allign2[8]; 209 u32 rx_imax; 210 u32 tx_imax; 211 212 }; 213 214 struct cpsw_ss_regs { 215 u32 id_ver; 216 u32 control; 217 u32 soft_reset; 218 u32 stat_port_en; 219 u32 ptype; 220 u32 soft_idle; 221 u32 thru_rate; 222 u32 gap_thresh; 223 u32 tx_start_wds; 224 u32 flow_control; 225 u32 vlan_ltype; 226 u32 ts_ltype; 227 u32 dlr_ltype; 228 }; 229 230 /* CPSW_PORT_V1 */ 231 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 232 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 233 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 234 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 235 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 236 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 237 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 238 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 239 240 /* CPSW_PORT_V2 */ 241 #define CPSW2_CONTROL 0x00 /* Control Register */ 242 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 243 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 244 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 245 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 246 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 247 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 248 249 /* CPSW_PORT_V1 and V2 */ 250 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 251 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 252 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 253 254 /* CPSW_PORT_V2 only */ 255 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 256 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 257 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 258 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 259 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 260 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 261 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 262 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 263 264 /* Bit definitions for the CPSW2_CONTROL register */ 265 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */ 266 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */ 267 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */ 268 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */ 269 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */ 270 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */ 271 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */ 272 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */ 273 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */ 274 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */ 275 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */ 276 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */ 277 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */ 278 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */ 279 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */ 280 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */ 281 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */ 282 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */ 283 284 #define CTRL_V2_TS_BITS \ 285 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 286 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN | VLAN_LTYPE1_EN) 287 288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 289 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 290 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 291 292 293 #define CTRL_V3_TS_BITS \ 294 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 295 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 296 TS_LTYPE1_EN | VLAN_LTYPE1_EN) 297 298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 299 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 300 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 301 302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 303 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 304 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 305 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 306 #define TS_MSG_TYPE_EN_MASK (0xffff) 307 308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 310 311 /* Bit definitions for the CPSW1_TS_CTL register */ 312 #define CPSW_V1_TS_RX_EN BIT(0) 313 #define CPSW_V1_TS_TX_EN BIT(4) 314 #define CPSW_V1_MSG_TYPE_OFS 16 315 316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 317 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 318 319 #define CPSW_MAX_BLKS_TX 15 320 #define CPSW_MAX_BLKS_TX_SHIFT 4 321 #define CPSW_MAX_BLKS_RX 5 322 323 struct cpsw_host_regs { 324 u32 max_blks; 325 u32 blk_cnt; 326 u32 tx_in_ctl; 327 u32 port_vlan; 328 u32 tx_pri_map; 329 u32 cpdma_tx_pri_map; 330 u32 cpdma_rx_chan_map; 331 }; 332 333 struct cpsw_sliver_regs { 334 u32 id_ver; 335 u32 mac_control; 336 u32 mac_status; 337 u32 soft_reset; 338 u32 rx_maxlen; 339 u32 __reserved_0; 340 u32 rx_pause; 341 u32 tx_pause; 342 u32 __reserved_1; 343 u32 rx_pri_map; 344 }; 345 346 struct cpsw_hw_stats { 347 u32 rxgoodframes; 348 u32 rxbroadcastframes; 349 u32 rxmulticastframes; 350 u32 rxpauseframes; 351 u32 rxcrcerrors; 352 u32 rxaligncodeerrors; 353 u32 rxoversizedframes; 354 u32 rxjabberframes; 355 u32 rxundersizedframes; 356 u32 rxfragments; 357 u32 __pad_0[2]; 358 u32 rxoctets; 359 u32 txgoodframes; 360 u32 txbroadcastframes; 361 u32 txmulticastframes; 362 u32 txpauseframes; 363 u32 txdeferredframes; 364 u32 txcollisionframes; 365 u32 txsinglecollframes; 366 u32 txmultcollframes; 367 u32 txexcessivecollisions; 368 u32 txlatecollisions; 369 u32 txunderrun; 370 u32 txcarriersenseerrors; 371 u32 txoctets; 372 u32 octetframes64; 373 u32 octetframes65t127; 374 u32 octetframes128t255; 375 u32 octetframes256t511; 376 u32 octetframes512t1023; 377 u32 octetframes1024tup; 378 u32 netoctets; 379 u32 rxsofoverruns; 380 u32 rxmofoverruns; 381 u32 rxdmaoverruns; 382 }; 383 384 struct cpsw_slave_data { 385 struct device_node *phy_node; 386 char phy_id[MII_BUS_ID_SIZE]; 387 int phy_if; 388 u8 mac_addr[ETH_ALEN]; 389 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 390 }; 391 392 struct cpsw_platform_data { 393 struct cpsw_slave_data *slave_data; 394 u32 ss_reg_ofs; /* Subsystem control register offset */ 395 u32 channels; /* number of cpdma channels (symmetric) */ 396 u32 slaves; /* number of slave cpgmac ports */ 397 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 398 u32 ale_entries; /* ale table size */ 399 u32 bd_ram_size; /*buffer descriptor ram size */ 400 u32 mac_control; /* Mac control register */ 401 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 402 bool dual_emac; /* Enable Dual EMAC mode */ 403 }; 404 405 struct cpsw_slave { 406 void __iomem *regs; 407 struct cpsw_sliver_regs __iomem *sliver; 408 int slave_num; 409 u32 mac_control; 410 struct cpsw_slave_data *data; 411 struct phy_device *phy; 412 struct net_device *ndev; 413 u32 port_vlan; 414 }; 415 416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 417 { 418 return readl_relaxed(slave->regs + offset); 419 } 420 421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 422 { 423 writel_relaxed(val, slave->regs + offset); 424 } 425 426 struct cpsw_vector { 427 struct cpdma_chan *ch; 428 int budget; 429 }; 430 431 struct cpsw_common { 432 struct device *dev; 433 struct cpsw_platform_data data; 434 struct napi_struct napi_rx; 435 struct napi_struct napi_tx; 436 struct cpsw_ss_regs __iomem *regs; 437 struct cpsw_wr_regs __iomem *wr_regs; 438 u8 __iomem *hw_stats; 439 struct cpsw_host_regs __iomem *host_port_regs; 440 u32 version; 441 u32 coal_intvl; 442 u32 bus_freq_mhz; 443 int rx_packet_max; 444 struct cpsw_slave *slaves; 445 struct cpdma_ctlr *dma; 446 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 447 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 448 struct cpsw_ale *ale; 449 bool quirk_irq; 450 bool rx_irq_disabled; 451 bool tx_irq_disabled; 452 u32 irqs_table[IRQ_NUM]; 453 struct cpts *cpts; 454 int rx_ch_num, tx_ch_num; 455 int speed; 456 int usage_count; 457 }; 458 459 struct cpsw_priv { 460 struct net_device *ndev; 461 struct device *dev; 462 u32 msg_enable; 463 u8 mac_addr[ETH_ALEN]; 464 bool rx_pause; 465 bool tx_pause; 466 bool mqprio_hw; 467 int fifo_bw[CPSW_TC_NUM]; 468 int shp_cfg_speed; 469 int tx_ts_enabled; 470 int rx_ts_enabled; 471 u32 emac_port; 472 struct cpsw_common *cpsw; 473 }; 474 475 struct cpsw_stats { 476 char stat_string[ETH_GSTRING_LEN]; 477 int type; 478 int sizeof_stat; 479 int stat_offset; 480 }; 481 482 enum { 483 CPSW_STATS, 484 CPDMA_RX_STATS, 485 CPDMA_TX_STATS, 486 }; 487 488 #define CPSW_STAT(m) CPSW_STATS, \ 489 FIELD_SIZEOF(struct cpsw_hw_stats, m), \ 490 offsetof(struct cpsw_hw_stats, m) 491 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 492 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 493 offsetof(struct cpdma_chan_stats, m) 494 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 495 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 496 offsetof(struct cpdma_chan_stats, m) 497 498 static const struct cpsw_stats cpsw_gstrings_stats[] = { 499 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 500 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 501 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 502 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 503 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 504 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 505 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 506 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 507 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 508 { "Rx Fragments", CPSW_STAT(rxfragments) }, 509 { "Rx Octets", CPSW_STAT(rxoctets) }, 510 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 511 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 512 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 513 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 514 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 515 { "Collisions", CPSW_STAT(txcollisionframes) }, 516 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 517 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 518 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 519 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 520 { "Tx Underrun", CPSW_STAT(txunderrun) }, 521 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 522 { "Tx Octets", CPSW_STAT(txoctets) }, 523 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 524 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 525 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 526 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 527 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 528 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 529 { "Net Octets", CPSW_STAT(netoctets) }, 530 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 531 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 532 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 533 }; 534 535 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 536 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 537 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 538 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 539 { "misqueued", CPDMA_RX_STAT(misqueued) }, 540 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 541 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 542 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 543 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 544 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 545 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 546 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 547 { "requeue", CPDMA_RX_STAT(requeue) }, 548 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 549 }; 550 551 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 552 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 553 554 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 555 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 556 #define for_each_slave(priv, func, arg...) \ 557 do { \ 558 struct cpsw_slave *slave; \ 559 struct cpsw_common *cpsw = (priv)->cpsw; \ 560 int n; \ 561 if (cpsw->data.dual_emac) \ 562 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 563 else \ 564 for (n = cpsw->data.slaves, \ 565 slave = cpsw->slaves; \ 566 n; n--) \ 567 (func)(slave++, ##arg); \ 568 } while (0) 569 570 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 571 __be16 proto, u16 vid); 572 573 static inline int cpsw_get_slave_port(u32 slave_num) 574 { 575 return slave_num + 1; 576 } 577 578 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 579 { 580 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 581 struct cpsw_ale *ale = cpsw->ale; 582 int i; 583 584 if (cpsw->data.dual_emac) { 585 bool flag = false; 586 587 /* Enabling promiscuous mode for one interface will be 588 * common for both the interface as the interface shares 589 * the same hardware resource. 590 */ 591 for (i = 0; i < cpsw->data.slaves; i++) 592 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 593 flag = true; 594 595 if (!enable && flag) { 596 enable = true; 597 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 598 } 599 600 if (enable) { 601 /* Enable Bypass */ 602 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 603 604 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 605 } else { 606 /* Disable Bypass */ 607 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 608 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 609 } 610 } else { 611 if (enable) { 612 unsigned long timeout = jiffies + HZ; 613 614 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 615 for (i = 0; i <= cpsw->data.slaves; i++) { 616 cpsw_ale_control_set(ale, i, 617 ALE_PORT_NOLEARN, 1); 618 cpsw_ale_control_set(ale, i, 619 ALE_PORT_NO_SA_UPDATE, 1); 620 } 621 622 /* Clear All Untouched entries */ 623 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 624 do { 625 cpu_relax(); 626 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 627 break; 628 } while (time_after(timeout, jiffies)); 629 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 630 631 /* Clear all mcast from ALE */ 632 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 633 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 634 635 /* Flood All Unicast Packets to Host port */ 636 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 637 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 638 } else { 639 /* Don't Flood All Unicast Packets to Host port */ 640 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 641 642 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 643 for (i = 0; i <= cpsw->data.slaves; i++) { 644 cpsw_ale_control_set(ale, i, 645 ALE_PORT_NOLEARN, 0); 646 cpsw_ale_control_set(ale, i, 647 ALE_PORT_NO_SA_UPDATE, 0); 648 } 649 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 650 } 651 } 652 } 653 654 struct addr_sync_ctx { 655 struct net_device *ndev; 656 const u8 *addr; /* address to be synched */ 657 int consumed; /* number of address instances */ 658 int flush; /* flush flag */ 659 }; 660 661 /** 662 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 663 * if it's not deleted 664 * @ndev: device to sync 665 * @addr: address to be added or deleted 666 * @vid: vlan id, if vid < 0 set/unset address for real device 667 * @add: add address if the flag is set or remove otherwise 668 */ 669 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 670 int vid, int add) 671 { 672 struct cpsw_priv *priv = netdev_priv(ndev); 673 struct cpsw_common *cpsw = priv->cpsw; 674 int mask, flags, ret; 675 676 if (vid < 0) { 677 if (cpsw->data.dual_emac) 678 vid = cpsw->slaves[priv->emac_port].port_vlan; 679 else 680 vid = 0; 681 } 682 683 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 684 flags = vid ? ALE_VLAN : 0; 685 686 if (add) 687 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 688 else 689 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 690 691 return ret; 692 } 693 694 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 695 { 696 struct addr_sync_ctx *sync_ctx = ctx; 697 struct netdev_hw_addr *ha; 698 int found = 0, ret = 0; 699 700 if (!vdev || !(vdev->flags & IFF_UP)) 701 return 0; 702 703 /* vlan address is relevant if its sync_cnt != 0 */ 704 netdev_for_each_mc_addr(ha, vdev) { 705 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 706 found = ha->sync_cnt; 707 break; 708 } 709 } 710 711 if (found) 712 sync_ctx->consumed++; 713 714 if (sync_ctx->flush) { 715 if (!found) 716 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 717 return 0; 718 } 719 720 if (found) 721 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 722 723 return ret; 724 } 725 726 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 727 { 728 struct addr_sync_ctx sync_ctx; 729 int ret; 730 731 sync_ctx.consumed = 0; 732 sync_ctx.addr = addr; 733 sync_ctx.ndev = ndev; 734 sync_ctx.flush = 0; 735 736 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 737 if (sync_ctx.consumed < num && !ret) 738 ret = cpsw_set_mc(ndev, addr, -1, 1); 739 740 return ret; 741 } 742 743 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 744 { 745 struct addr_sync_ctx sync_ctx; 746 747 sync_ctx.consumed = 0; 748 sync_ctx.addr = addr; 749 sync_ctx.ndev = ndev; 750 sync_ctx.flush = 1; 751 752 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 753 if (sync_ctx.consumed == num) 754 cpsw_set_mc(ndev, addr, -1, 0); 755 756 return 0; 757 } 758 759 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 760 { 761 struct addr_sync_ctx *sync_ctx = ctx; 762 struct netdev_hw_addr *ha; 763 int found = 0; 764 765 if (!vdev || !(vdev->flags & IFF_UP)) 766 return 0; 767 768 /* vlan address is relevant if its sync_cnt != 0 */ 769 netdev_for_each_mc_addr(ha, vdev) { 770 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 771 found = ha->sync_cnt; 772 break; 773 } 774 } 775 776 if (!found) 777 return 0; 778 779 sync_ctx->consumed++; 780 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 781 return 0; 782 } 783 784 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 785 { 786 struct addr_sync_ctx sync_ctx; 787 788 sync_ctx.addr = addr; 789 sync_ctx.ndev = ndev; 790 sync_ctx.consumed = 0; 791 792 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 793 if (sync_ctx.consumed < num) 794 cpsw_set_mc(ndev, addr, -1, 0); 795 796 return 0; 797 } 798 799 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 800 { 801 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 802 803 if (ndev->flags & IFF_PROMISC) { 804 /* Enable promiscuous mode */ 805 cpsw_set_promiscious(ndev, true); 806 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 807 return; 808 } else { 809 /* Disable promiscuous mode */ 810 cpsw_set_promiscious(ndev, false); 811 } 812 813 /* Restore allmulti on vlans if necessary */ 814 cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI); 815 816 /* add/remove mcast address either for real netdev or for vlan */ 817 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 818 cpsw_del_mc_addr); 819 } 820 821 static void cpsw_intr_enable(struct cpsw_common *cpsw) 822 { 823 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 824 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 825 826 cpdma_ctlr_int_ctrl(cpsw->dma, true); 827 return; 828 } 829 830 static void cpsw_intr_disable(struct cpsw_common *cpsw) 831 { 832 writel_relaxed(0, &cpsw->wr_regs->tx_en); 833 writel_relaxed(0, &cpsw->wr_regs->rx_en); 834 835 cpdma_ctlr_int_ctrl(cpsw->dma, false); 836 return; 837 } 838 839 static void cpsw_tx_handler(void *token, int len, int status) 840 { 841 struct netdev_queue *txq; 842 struct sk_buff *skb = token; 843 struct net_device *ndev = skb->dev; 844 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 845 846 /* Check whether the queue is stopped due to stalled tx dma, if the 847 * queue is stopped then start the queue as we have free desc for tx 848 */ 849 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 850 if (unlikely(netif_tx_queue_stopped(txq))) 851 netif_tx_wake_queue(txq); 852 853 cpts_tx_timestamp(cpsw->cpts, skb); 854 ndev->stats.tx_packets++; 855 ndev->stats.tx_bytes += len; 856 dev_kfree_skb_any(skb); 857 } 858 859 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 860 { 861 struct cpsw_priv *priv = netdev_priv(skb->dev); 862 struct cpsw_common *cpsw = priv->cpsw; 863 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 864 u16 vtag, vid, prio, pkt_type; 865 866 /* Remove VLAN header encapsulation word */ 867 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 868 869 pkt_type = (rx_vlan_encap_hdr >> 870 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 871 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 872 /* Ignore unknown & Priority-tagged packets*/ 873 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 874 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 875 return; 876 877 vid = (rx_vlan_encap_hdr >> 878 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 879 VLAN_VID_MASK; 880 /* Ignore vid 0 and pass packet as is */ 881 if (!vid) 882 return; 883 /* Ignore default vlans in dual mac mode */ 884 if (cpsw->data.dual_emac && 885 vid == cpsw->slaves[priv->emac_port].port_vlan) 886 return; 887 888 prio = (rx_vlan_encap_hdr >> 889 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 890 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 891 892 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 893 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 894 895 /* strip vlan tag for VLAN-tagged packet */ 896 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 897 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 898 skb_pull(skb, VLAN_HLEN); 899 } 900 } 901 902 static void cpsw_rx_handler(void *token, int len, int status) 903 { 904 struct cpdma_chan *ch; 905 struct sk_buff *skb = token; 906 struct sk_buff *new_skb; 907 struct net_device *ndev = skb->dev; 908 int ret = 0, port; 909 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 910 struct cpsw_priv *priv; 911 912 if (cpsw->data.dual_emac) { 913 port = CPDMA_RX_SOURCE_PORT(status); 914 if (port) { 915 ndev = cpsw->slaves[--port].ndev; 916 skb->dev = ndev; 917 } 918 } 919 920 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 921 /* In dual emac mode check for all interfaces */ 922 if (cpsw->data.dual_emac && cpsw->usage_count && 923 (status >= 0)) { 924 /* The packet received is for the interface which 925 * is already down and the other interface is up 926 * and running, instead of freeing which results 927 * in reducing of the number of rx descriptor in 928 * DMA engine, requeue skb back to cpdma. 929 */ 930 new_skb = skb; 931 goto requeue; 932 } 933 934 /* the interface is going down, skbs are purged */ 935 dev_kfree_skb_any(skb); 936 return; 937 } 938 939 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 940 if (new_skb) { 941 skb_copy_queue_mapping(new_skb, skb); 942 skb_put(skb, len); 943 if (status & CPDMA_RX_VLAN_ENCAP) 944 cpsw_rx_vlan_encap(skb); 945 priv = netdev_priv(ndev); 946 if (priv->rx_ts_enabled) 947 cpts_rx_timestamp(cpsw->cpts, skb); 948 skb->protocol = eth_type_trans(skb, ndev); 949 netif_receive_skb(skb); 950 ndev->stats.rx_bytes += len; 951 ndev->stats.rx_packets++; 952 kmemleak_not_leak(new_skb); 953 } else { 954 ndev->stats.rx_dropped++; 955 new_skb = skb; 956 } 957 958 requeue: 959 if (netif_dormant(ndev)) { 960 dev_kfree_skb_any(new_skb); 961 return; 962 } 963 964 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 965 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 966 skb_tailroom(new_skb), 0); 967 if (WARN_ON(ret < 0)) 968 dev_kfree_skb_any(new_skb); 969 } 970 971 static void cpsw_split_res(struct net_device *ndev) 972 { 973 struct cpsw_priv *priv = netdev_priv(ndev); 974 u32 consumed_rate = 0, bigest_rate = 0; 975 struct cpsw_common *cpsw = priv->cpsw; 976 struct cpsw_vector *txv = cpsw->txv; 977 int i, ch_weight, rlim_ch_num = 0; 978 int budget, bigest_rate_ch = 0; 979 u32 ch_rate, max_rate; 980 int ch_budget = 0; 981 982 for (i = 0; i < cpsw->tx_ch_num; i++) { 983 ch_rate = cpdma_chan_get_rate(txv[i].ch); 984 if (!ch_rate) 985 continue; 986 987 rlim_ch_num++; 988 consumed_rate += ch_rate; 989 } 990 991 if (cpsw->tx_ch_num == rlim_ch_num) { 992 max_rate = consumed_rate; 993 } else if (!rlim_ch_num) { 994 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 995 bigest_rate = 0; 996 max_rate = consumed_rate; 997 } else { 998 max_rate = cpsw->speed * 1000; 999 1000 /* if max_rate is less then expected due to reduced link speed, 1001 * split proportionally according next potential max speed 1002 */ 1003 if (max_rate < consumed_rate) 1004 max_rate *= 10; 1005 1006 if (max_rate < consumed_rate) 1007 max_rate *= 10; 1008 1009 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 1010 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 1011 (cpsw->tx_ch_num - rlim_ch_num); 1012 bigest_rate = (max_rate - consumed_rate) / 1013 (cpsw->tx_ch_num - rlim_ch_num); 1014 } 1015 1016 /* split tx weight/budget */ 1017 budget = CPSW_POLL_WEIGHT; 1018 for (i = 0; i < cpsw->tx_ch_num; i++) { 1019 ch_rate = cpdma_chan_get_rate(txv[i].ch); 1020 if (ch_rate) { 1021 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 1022 if (!txv[i].budget) 1023 txv[i].budget++; 1024 if (ch_rate > bigest_rate) { 1025 bigest_rate_ch = i; 1026 bigest_rate = ch_rate; 1027 } 1028 1029 ch_weight = (ch_rate * 100) / max_rate; 1030 if (!ch_weight) 1031 ch_weight++; 1032 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 1033 } else { 1034 txv[i].budget = ch_budget; 1035 if (!bigest_rate_ch) 1036 bigest_rate_ch = i; 1037 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 1038 } 1039 1040 budget -= txv[i].budget; 1041 } 1042 1043 if (budget) 1044 txv[bigest_rate_ch].budget += budget; 1045 1046 /* split rx budget */ 1047 budget = CPSW_POLL_WEIGHT; 1048 ch_budget = budget / cpsw->rx_ch_num; 1049 for (i = 0; i < cpsw->rx_ch_num; i++) { 1050 cpsw->rxv[i].budget = ch_budget; 1051 budget -= ch_budget; 1052 } 1053 1054 if (budget) 1055 cpsw->rxv[0].budget += budget; 1056 } 1057 1058 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 1059 { 1060 struct cpsw_common *cpsw = dev_id; 1061 1062 writel(0, &cpsw->wr_regs->tx_en); 1063 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 1064 1065 if (cpsw->quirk_irq) { 1066 disable_irq_nosync(cpsw->irqs_table[1]); 1067 cpsw->tx_irq_disabled = true; 1068 } 1069 1070 napi_schedule(&cpsw->napi_tx); 1071 return IRQ_HANDLED; 1072 } 1073 1074 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 1075 { 1076 struct cpsw_common *cpsw = dev_id; 1077 1078 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 1079 writel(0, &cpsw->wr_regs->rx_en); 1080 1081 if (cpsw->quirk_irq) { 1082 disable_irq_nosync(cpsw->irqs_table[0]); 1083 cpsw->rx_irq_disabled = true; 1084 } 1085 1086 napi_schedule(&cpsw->napi_rx); 1087 return IRQ_HANDLED; 1088 } 1089 1090 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 1091 { 1092 u32 ch_map; 1093 int num_tx, cur_budget, ch; 1094 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1095 struct cpsw_vector *txv; 1096 1097 /* process every unprocessed channel */ 1098 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 1099 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 1100 if (!(ch_map & 0x80)) 1101 continue; 1102 1103 txv = &cpsw->txv[ch]; 1104 if (unlikely(txv->budget > budget - num_tx)) 1105 cur_budget = budget - num_tx; 1106 else 1107 cur_budget = txv->budget; 1108 1109 num_tx += cpdma_chan_process(txv->ch, cur_budget); 1110 if (num_tx >= budget) 1111 break; 1112 } 1113 1114 if (num_tx < budget) { 1115 napi_complete(napi_tx); 1116 writel(0xff, &cpsw->wr_regs->tx_en); 1117 } 1118 1119 return num_tx; 1120 } 1121 1122 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 1123 { 1124 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1125 int num_tx; 1126 1127 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 1128 if (num_tx < budget) { 1129 napi_complete(napi_tx); 1130 writel(0xff, &cpsw->wr_regs->tx_en); 1131 if (cpsw->tx_irq_disabled) { 1132 cpsw->tx_irq_disabled = false; 1133 enable_irq(cpsw->irqs_table[1]); 1134 } 1135 } 1136 1137 return num_tx; 1138 } 1139 1140 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 1141 { 1142 u32 ch_map; 1143 int num_rx, cur_budget, ch; 1144 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1145 struct cpsw_vector *rxv; 1146 1147 /* process every unprocessed channel */ 1148 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1149 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1150 if (!(ch_map & 0x01)) 1151 continue; 1152 1153 rxv = &cpsw->rxv[ch]; 1154 if (unlikely(rxv->budget > budget - num_rx)) 1155 cur_budget = budget - num_rx; 1156 else 1157 cur_budget = rxv->budget; 1158 1159 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1160 if (num_rx >= budget) 1161 break; 1162 } 1163 1164 if (num_rx < budget) { 1165 napi_complete_done(napi_rx, num_rx); 1166 writel(0xff, &cpsw->wr_regs->rx_en); 1167 } 1168 1169 return num_rx; 1170 } 1171 1172 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 1173 { 1174 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1175 int num_rx; 1176 1177 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 1178 if (num_rx < budget) { 1179 napi_complete_done(napi_rx, num_rx); 1180 writel(0xff, &cpsw->wr_regs->rx_en); 1181 if (cpsw->rx_irq_disabled) { 1182 cpsw->rx_irq_disabled = false; 1183 enable_irq(cpsw->irqs_table[0]); 1184 } 1185 } 1186 1187 return num_rx; 1188 } 1189 1190 static inline void soft_reset(const char *module, void __iomem *reg) 1191 { 1192 unsigned long timeout = jiffies + HZ; 1193 1194 writel_relaxed(1, reg); 1195 do { 1196 cpu_relax(); 1197 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1198 1199 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1200 } 1201 1202 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1203 struct cpsw_priv *priv) 1204 { 1205 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1206 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1207 } 1208 1209 static bool cpsw_shp_is_off(struct cpsw_priv *priv) 1210 { 1211 struct cpsw_common *cpsw = priv->cpsw; 1212 struct cpsw_slave *slave; 1213 u32 shift, mask, val; 1214 1215 val = readl_relaxed(&cpsw->regs->ptype); 1216 1217 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1218 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1219 mask = 7 << shift; 1220 val = val & mask; 1221 1222 return !val; 1223 } 1224 1225 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 1226 { 1227 struct cpsw_common *cpsw = priv->cpsw; 1228 struct cpsw_slave *slave; 1229 u32 shift, mask, val; 1230 1231 val = readl_relaxed(&cpsw->regs->ptype); 1232 1233 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1234 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1235 mask = (1 << --fifo) << shift; 1236 val = on ? val | mask : val & ~mask; 1237 1238 writel_relaxed(val, &cpsw->regs->ptype); 1239 } 1240 1241 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1242 struct cpsw_priv *priv, bool *link) 1243 { 1244 struct phy_device *phy = slave->phy; 1245 u32 mac_control = 0; 1246 u32 slave_port; 1247 struct cpsw_common *cpsw = priv->cpsw; 1248 1249 if (!phy) 1250 return; 1251 1252 slave_port = cpsw_get_slave_port(slave->slave_num); 1253 1254 if (phy->link) { 1255 mac_control = cpsw->data.mac_control; 1256 1257 /* enable forwarding */ 1258 cpsw_ale_control_set(cpsw->ale, slave_port, 1259 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1260 1261 if (phy->speed == 1000) 1262 mac_control |= BIT(7); /* GIGABITEN */ 1263 if (phy->duplex) 1264 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1265 1266 /* set speed_in input in case RMII mode is used in 100Mbps */ 1267 if (phy->speed == 100) 1268 mac_control |= BIT(15); 1269 /* in band mode only works in 10Mbps RGMII mode */ 1270 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1271 mac_control |= BIT(18); /* In Band mode */ 1272 1273 if (priv->rx_pause) 1274 mac_control |= BIT(3); 1275 1276 if (priv->tx_pause) 1277 mac_control |= BIT(4); 1278 1279 *link = true; 1280 1281 if (priv->shp_cfg_speed && 1282 priv->shp_cfg_speed != slave->phy->speed && 1283 !cpsw_shp_is_off(priv)) 1284 dev_warn(priv->dev, 1285 "Speed was changed, CBS shaper speeds are changed!"); 1286 } else { 1287 mac_control = 0; 1288 /* disable forwarding */ 1289 cpsw_ale_control_set(cpsw->ale, slave_port, 1290 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1291 } 1292 1293 if (mac_control != slave->mac_control) { 1294 phy_print_status(phy); 1295 writel_relaxed(mac_control, &slave->sliver->mac_control); 1296 } 1297 1298 slave->mac_control = mac_control; 1299 } 1300 1301 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1302 { 1303 int i, speed; 1304 1305 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1306 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1307 speed += cpsw->slaves[i].phy->speed; 1308 1309 return speed; 1310 } 1311 1312 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1313 { 1314 int i, rlim_ch_num; 1315 int speed, ch_rate; 1316 1317 /* re-split resources only in case speed was changed */ 1318 speed = cpsw_get_common_speed(cpsw); 1319 if (speed == cpsw->speed || !speed) 1320 return 0; 1321 1322 cpsw->speed = speed; 1323 1324 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1325 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1326 if (!ch_rate) 1327 break; 1328 1329 rlim_ch_num++; 1330 } 1331 1332 /* cases not dependent on speed */ 1333 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1334 return 0; 1335 1336 return 1; 1337 } 1338 1339 static void cpsw_adjust_link(struct net_device *ndev) 1340 { 1341 struct cpsw_priv *priv = netdev_priv(ndev); 1342 struct cpsw_common *cpsw = priv->cpsw; 1343 bool link = false; 1344 1345 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1346 1347 if (link) { 1348 if (cpsw_need_resplit(cpsw)) 1349 cpsw_split_res(ndev); 1350 1351 netif_carrier_on(ndev); 1352 if (netif_running(ndev)) 1353 netif_tx_wake_all_queues(ndev); 1354 } else { 1355 netif_carrier_off(ndev); 1356 netif_tx_stop_all_queues(ndev); 1357 } 1358 } 1359 1360 static int cpsw_get_coalesce(struct net_device *ndev, 1361 struct ethtool_coalesce *coal) 1362 { 1363 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1364 1365 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1366 return 0; 1367 } 1368 1369 static int cpsw_set_coalesce(struct net_device *ndev, 1370 struct ethtool_coalesce *coal) 1371 { 1372 struct cpsw_priv *priv = netdev_priv(ndev); 1373 u32 int_ctrl; 1374 u32 num_interrupts = 0; 1375 u32 prescale = 0; 1376 u32 addnl_dvdr = 1; 1377 u32 coal_intvl = 0; 1378 struct cpsw_common *cpsw = priv->cpsw; 1379 1380 coal_intvl = coal->rx_coalesce_usecs; 1381 1382 int_ctrl = readl(&cpsw->wr_regs->int_control); 1383 prescale = cpsw->bus_freq_mhz * 4; 1384 1385 if (!coal->rx_coalesce_usecs) { 1386 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1387 goto update_return; 1388 } 1389 1390 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1391 coal_intvl = CPSW_CMINTMIN_INTVL; 1392 1393 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1394 /* Interrupt pacer works with 4us Pulse, we can 1395 * throttle further by dilating the 4us pulse. 1396 */ 1397 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1398 1399 if (addnl_dvdr > 1) { 1400 prescale *= addnl_dvdr; 1401 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1402 coal_intvl = (CPSW_CMINTMAX_INTVL 1403 * addnl_dvdr); 1404 } else { 1405 addnl_dvdr = 1; 1406 coal_intvl = CPSW_CMINTMAX_INTVL; 1407 } 1408 } 1409 1410 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1411 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1412 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1413 1414 int_ctrl |= CPSW_INTPACEEN; 1415 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1416 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1417 1418 update_return: 1419 writel(int_ctrl, &cpsw->wr_regs->int_control); 1420 1421 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1422 cpsw->coal_intvl = coal_intvl; 1423 1424 return 0; 1425 } 1426 1427 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1428 { 1429 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1430 1431 switch (sset) { 1432 case ETH_SS_STATS: 1433 return (CPSW_STATS_COMMON_LEN + 1434 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1435 CPSW_STATS_CH_LEN); 1436 default: 1437 return -EOPNOTSUPP; 1438 } 1439 } 1440 1441 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1442 { 1443 int ch_stats_len; 1444 int line; 1445 int i; 1446 1447 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1448 for (i = 0; i < ch_stats_len; i++) { 1449 line = i % CPSW_STATS_CH_LEN; 1450 snprintf(*p, ETH_GSTRING_LEN, 1451 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", 1452 (long)(i / CPSW_STATS_CH_LEN), 1453 cpsw_gstrings_ch_stats[line].stat_string); 1454 *p += ETH_GSTRING_LEN; 1455 } 1456 } 1457 1458 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1459 { 1460 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1461 u8 *p = data; 1462 int i; 1463 1464 switch (stringset) { 1465 case ETH_SS_STATS: 1466 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1467 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1468 ETH_GSTRING_LEN); 1469 p += ETH_GSTRING_LEN; 1470 } 1471 1472 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1473 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1474 break; 1475 } 1476 } 1477 1478 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1479 struct ethtool_stats *stats, u64 *data) 1480 { 1481 u8 *p; 1482 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1483 struct cpdma_chan_stats ch_stats; 1484 int i, l, ch; 1485 1486 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1487 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1488 data[l] = readl(cpsw->hw_stats + 1489 cpsw_gstrings_stats[l].stat_offset); 1490 1491 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1492 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1493 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1494 p = (u8 *)&ch_stats + 1495 cpsw_gstrings_ch_stats[i].stat_offset; 1496 data[l] = *(u32 *)p; 1497 } 1498 } 1499 1500 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1501 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1502 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1503 p = (u8 *)&ch_stats + 1504 cpsw_gstrings_ch_stats[i].stat_offset; 1505 data[l] = *(u32 *)p; 1506 } 1507 } 1508 } 1509 1510 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1511 struct sk_buff *skb, 1512 struct cpdma_chan *txch) 1513 { 1514 struct cpsw_common *cpsw = priv->cpsw; 1515 1516 skb_tx_timestamp(skb); 1517 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1518 priv->emac_port + cpsw->data.dual_emac); 1519 } 1520 1521 static inline void cpsw_add_dual_emac_def_ale_entries( 1522 struct cpsw_priv *priv, struct cpsw_slave *slave, 1523 u32 slave_port) 1524 { 1525 struct cpsw_common *cpsw = priv->cpsw; 1526 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1527 1528 if (cpsw->version == CPSW_VERSION_1) 1529 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1530 else 1531 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1532 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1533 port_mask, port_mask, 0); 1534 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1535 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 1536 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1537 HOST_PORT_NUM, ALE_VLAN | 1538 ALE_SECURE, slave->port_vlan); 1539 cpsw_ale_control_set(cpsw->ale, slave_port, 1540 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1541 } 1542 1543 static void soft_reset_slave(struct cpsw_slave *slave) 1544 { 1545 char name[32]; 1546 1547 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1548 soft_reset(name, &slave->sliver->soft_reset); 1549 } 1550 1551 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1552 { 1553 u32 slave_port; 1554 struct phy_device *phy; 1555 struct cpsw_common *cpsw = priv->cpsw; 1556 1557 soft_reset_slave(slave); 1558 1559 /* setup priority mapping */ 1560 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1561 1562 switch (cpsw->version) { 1563 case CPSW_VERSION_1: 1564 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1565 /* Increase RX FIFO size to 5 for supporting fullduplex 1566 * flow control mode 1567 */ 1568 slave_write(slave, 1569 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1570 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1571 break; 1572 case CPSW_VERSION_2: 1573 case CPSW_VERSION_3: 1574 case CPSW_VERSION_4: 1575 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1576 /* Increase RX FIFO size to 5 for supporting fullduplex 1577 * flow control mode 1578 */ 1579 slave_write(slave, 1580 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1581 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1582 break; 1583 } 1584 1585 /* setup max packet size, and mac address */ 1586 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1587 cpsw_set_slave_mac(slave, priv); 1588 1589 slave->mac_control = 0; /* no link yet */ 1590 1591 slave_port = cpsw_get_slave_port(slave->slave_num); 1592 1593 if (cpsw->data.dual_emac) 1594 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1595 else 1596 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1597 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1598 1599 if (slave->data->phy_node) { 1600 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1601 &cpsw_adjust_link, 0, slave->data->phy_if); 1602 if (!phy) { 1603 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1604 slave->data->phy_node, 1605 slave->slave_num); 1606 return; 1607 } 1608 } else { 1609 phy = phy_connect(priv->ndev, slave->data->phy_id, 1610 &cpsw_adjust_link, slave->data->phy_if); 1611 if (IS_ERR(phy)) { 1612 dev_err(priv->dev, 1613 "phy \"%s\" not found on slave %d, err %ld\n", 1614 slave->data->phy_id, slave->slave_num, 1615 PTR_ERR(phy)); 1616 return; 1617 } 1618 } 1619 1620 slave->phy = phy; 1621 1622 phy_attached_info(slave->phy); 1623 1624 phy_start(slave->phy); 1625 1626 /* Configure GMII_SEL register */ 1627 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1628 } 1629 1630 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1631 { 1632 struct cpsw_common *cpsw = priv->cpsw; 1633 const int vlan = cpsw->data.default_vlan; 1634 u32 reg; 1635 int i; 1636 int unreg_mcast_mask; 1637 1638 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1639 CPSW2_PORT_VLAN; 1640 1641 writel(vlan, &cpsw->host_port_regs->port_vlan); 1642 1643 for (i = 0; i < cpsw->data.slaves; i++) 1644 slave_write(cpsw->slaves + i, vlan, reg); 1645 1646 if (priv->ndev->flags & IFF_ALLMULTI) 1647 unreg_mcast_mask = ALE_ALL_PORTS; 1648 else 1649 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1650 1651 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1652 ALE_ALL_PORTS, ALE_ALL_PORTS, 1653 unreg_mcast_mask); 1654 } 1655 1656 static void cpsw_init_host_port(struct cpsw_priv *priv) 1657 { 1658 u32 fifo_mode; 1659 u32 control_reg; 1660 struct cpsw_common *cpsw = priv->cpsw; 1661 1662 /* soft reset the controller and initialize ale */ 1663 soft_reset("cpsw", &cpsw->regs->soft_reset); 1664 cpsw_ale_start(cpsw->ale); 1665 1666 /* switch to vlan unaware mode */ 1667 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1668 CPSW_ALE_VLAN_AWARE); 1669 control_reg = readl(&cpsw->regs->control); 1670 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1671 writel(control_reg, &cpsw->regs->control); 1672 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1673 CPSW_FIFO_NORMAL_MODE; 1674 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1675 1676 /* setup host port priority mapping */ 1677 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1678 &cpsw->host_port_regs->cpdma_tx_pri_map); 1679 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1680 1681 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1682 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1683 1684 if (!cpsw->data.dual_emac) { 1685 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1686 0, 0); 1687 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1688 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1689 } 1690 } 1691 1692 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1693 { 1694 struct cpsw_common *cpsw = priv->cpsw; 1695 struct sk_buff *skb; 1696 int ch_buf_num; 1697 int ch, i, ret; 1698 1699 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1700 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1701 for (i = 0; i < ch_buf_num; i++) { 1702 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1703 cpsw->rx_packet_max, 1704 GFP_KERNEL); 1705 if (!skb) { 1706 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1707 return -ENOMEM; 1708 } 1709 1710 skb_set_queue_mapping(skb, ch); 1711 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1712 skb->data, skb_tailroom(skb), 1713 0); 1714 if (ret < 0) { 1715 cpsw_err(priv, ifup, 1716 "cannot submit skb to channel %d rx, error %d\n", 1717 ch, ret); 1718 kfree_skb(skb); 1719 return ret; 1720 } 1721 kmemleak_not_leak(skb); 1722 } 1723 1724 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1725 ch, ch_buf_num); 1726 } 1727 1728 return 0; 1729 } 1730 1731 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1732 { 1733 u32 slave_port; 1734 1735 slave_port = cpsw_get_slave_port(slave->slave_num); 1736 1737 if (!slave->phy) 1738 return; 1739 phy_stop(slave->phy); 1740 phy_disconnect(slave->phy); 1741 slave->phy = NULL; 1742 cpsw_ale_control_set(cpsw->ale, slave_port, 1743 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1744 soft_reset_slave(slave); 1745 } 1746 1747 static int cpsw_tc_to_fifo(int tc, int num_tc) 1748 { 1749 if (tc == num_tc - 1) 1750 return 0; 1751 1752 return CPSW_FIFO_SHAPERS_NUM - tc; 1753 } 1754 1755 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 1756 { 1757 struct cpsw_common *cpsw = priv->cpsw; 1758 u32 val = 0, send_pct, shift; 1759 struct cpsw_slave *slave; 1760 int pct = 0, i; 1761 1762 if (bw > priv->shp_cfg_speed * 1000) 1763 goto err; 1764 1765 /* shaping has to stay enabled for highest fifos linearly 1766 * and fifo bw no more then interface can allow 1767 */ 1768 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1769 send_pct = slave_read(slave, SEND_PERCENT); 1770 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 1771 if (!bw) { 1772 if (i >= fifo || !priv->fifo_bw[i]) 1773 continue; 1774 1775 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 1776 continue; 1777 } 1778 1779 if (!priv->fifo_bw[i] && i > fifo) { 1780 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 1781 return -EINVAL; 1782 } 1783 1784 shift = (i - 1) * 8; 1785 if (i == fifo) { 1786 send_pct &= ~(CPSW_PCT_MASK << shift); 1787 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 1788 if (!val) 1789 val = 1; 1790 1791 send_pct |= val << shift; 1792 pct += val; 1793 continue; 1794 } 1795 1796 if (priv->fifo_bw[i]) 1797 pct += (send_pct >> shift) & CPSW_PCT_MASK; 1798 } 1799 1800 if (pct >= 100) 1801 goto err; 1802 1803 slave_write(slave, send_pct, SEND_PERCENT); 1804 priv->fifo_bw[fifo] = bw; 1805 1806 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 1807 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 1808 1809 return 0; 1810 err: 1811 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 1812 return -EINVAL; 1813 } 1814 1815 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 1816 { 1817 struct cpsw_common *cpsw = priv->cpsw; 1818 struct cpsw_slave *slave; 1819 u32 tx_in_ctl_rg, val; 1820 int ret; 1821 1822 ret = cpsw_set_fifo_bw(priv, fifo, bw); 1823 if (ret) 1824 return ret; 1825 1826 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1827 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 1828 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 1829 1830 if (!bw) 1831 cpsw_fifo_shp_on(priv, fifo, bw); 1832 1833 val = slave_read(slave, tx_in_ctl_rg); 1834 if (cpsw_shp_is_off(priv)) { 1835 /* disable FIFOs rate limited queues */ 1836 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 1837 1838 /* set type of FIFO queues to normal priority mode */ 1839 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 1840 1841 /* set type of FIFO queues to be rate limited */ 1842 if (bw) 1843 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 1844 else 1845 priv->shp_cfg_speed = 0; 1846 } 1847 1848 /* toggle a FIFO rate limited queue */ 1849 if (bw) 1850 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1851 else 1852 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1853 slave_write(slave, val, tx_in_ctl_rg); 1854 1855 /* FIFO transmit shape enable */ 1856 cpsw_fifo_shp_on(priv, fifo, bw); 1857 return 0; 1858 } 1859 1860 /* Defaults: 1861 * class A - prio 3 1862 * class B - prio 2 1863 * shaping for class A should be set first 1864 */ 1865 static int cpsw_set_cbs(struct net_device *ndev, 1866 struct tc_cbs_qopt_offload *qopt) 1867 { 1868 struct cpsw_priv *priv = netdev_priv(ndev); 1869 struct cpsw_common *cpsw = priv->cpsw; 1870 struct cpsw_slave *slave; 1871 int prev_speed = 0; 1872 int tc, ret, fifo; 1873 u32 bw = 0; 1874 1875 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 1876 1877 /* enable channels in backward order, as highest FIFOs must be rate 1878 * limited first and for compliance with CPDMA rate limited channels 1879 * that also used in bacward order. FIFO0 cannot be rate limited. 1880 */ 1881 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 1882 if (!fifo) { 1883 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 1884 return -EINVAL; 1885 } 1886 1887 /* do nothing, it's disabled anyway */ 1888 if (!qopt->enable && !priv->fifo_bw[fifo]) 1889 return 0; 1890 1891 /* shapers can be set if link speed is known */ 1892 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1893 if (slave->phy && slave->phy->link) { 1894 if (priv->shp_cfg_speed && 1895 priv->shp_cfg_speed != slave->phy->speed) 1896 prev_speed = priv->shp_cfg_speed; 1897 1898 priv->shp_cfg_speed = slave->phy->speed; 1899 } 1900 1901 if (!priv->shp_cfg_speed) { 1902 dev_err(priv->dev, "Link speed is not known"); 1903 return -1; 1904 } 1905 1906 ret = pm_runtime_get_sync(cpsw->dev); 1907 if (ret < 0) { 1908 pm_runtime_put_noidle(cpsw->dev); 1909 return ret; 1910 } 1911 1912 bw = qopt->enable ? qopt->idleslope : 0; 1913 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 1914 if (ret) { 1915 priv->shp_cfg_speed = prev_speed; 1916 prev_speed = 0; 1917 } 1918 1919 if (bw && prev_speed) 1920 dev_warn(priv->dev, 1921 "Speed was changed, CBS shaper speeds are changed!"); 1922 1923 pm_runtime_put_sync(cpsw->dev); 1924 return ret; 1925 } 1926 1927 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1928 { 1929 int fifo, bw; 1930 1931 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1932 bw = priv->fifo_bw[fifo]; 1933 if (!bw) 1934 continue; 1935 1936 cpsw_set_fifo_rlimit(priv, fifo, bw); 1937 } 1938 } 1939 1940 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1941 { 1942 struct cpsw_common *cpsw = priv->cpsw; 1943 u32 tx_prio_map = 0; 1944 int i, tc, fifo; 1945 u32 tx_prio_rg; 1946 1947 if (!priv->mqprio_hw) 1948 return; 1949 1950 for (i = 0; i < 8; i++) { 1951 tc = netdev_get_prio_tc_map(priv->ndev, i); 1952 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1953 tx_prio_map |= fifo << (4 * i); 1954 } 1955 1956 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1957 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1958 1959 slave_write(slave, tx_prio_map, tx_prio_rg); 1960 } 1961 1962 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 1963 { 1964 struct cpsw_priv *priv = arg; 1965 1966 if (!vdev) 1967 return 0; 1968 1969 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 1970 return 0; 1971 } 1972 1973 /* restore resources after port reset */ 1974 static void cpsw_restore(struct cpsw_priv *priv) 1975 { 1976 /* restore vlan configurations */ 1977 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 1978 1979 /* restore MQPRIO offload */ 1980 for_each_slave(priv, cpsw_mqprio_resume, priv); 1981 1982 /* restore CBS offload */ 1983 for_each_slave(priv, cpsw_cbs_resume, priv); 1984 } 1985 1986 static int cpsw_ndo_open(struct net_device *ndev) 1987 { 1988 struct cpsw_priv *priv = netdev_priv(ndev); 1989 struct cpsw_common *cpsw = priv->cpsw; 1990 int ret; 1991 u32 reg; 1992 1993 ret = pm_runtime_get_sync(cpsw->dev); 1994 if (ret < 0) { 1995 pm_runtime_put_noidle(cpsw->dev); 1996 return ret; 1997 } 1998 1999 netif_carrier_off(ndev); 2000 2001 /* Notify the stack of the actual queue counts. */ 2002 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 2003 if (ret) { 2004 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2005 goto err_cleanup; 2006 } 2007 2008 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 2009 if (ret) { 2010 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2011 goto err_cleanup; 2012 } 2013 2014 reg = cpsw->version; 2015 2016 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 2017 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 2018 CPSW_RTL_VERSION(reg)); 2019 2020 /* Initialize host and slave ports */ 2021 if (!cpsw->usage_count) 2022 cpsw_init_host_port(priv); 2023 for_each_slave(priv, cpsw_slave_open, priv); 2024 2025 /* Add default VLAN */ 2026 if (!cpsw->data.dual_emac) 2027 cpsw_add_default_vlan(priv); 2028 else 2029 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 2030 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 2031 2032 /* initialize shared resources for every ndev */ 2033 if (!cpsw->usage_count) { 2034 /* disable priority elevation */ 2035 writel_relaxed(0, &cpsw->regs->ptype); 2036 2037 /* enable statistics collection only on all ports */ 2038 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 2039 2040 /* Enable internal fifo flow control */ 2041 writel(0x7, &cpsw->regs->flow_control); 2042 2043 napi_enable(&cpsw->napi_rx); 2044 napi_enable(&cpsw->napi_tx); 2045 2046 if (cpsw->tx_irq_disabled) { 2047 cpsw->tx_irq_disabled = false; 2048 enable_irq(cpsw->irqs_table[1]); 2049 } 2050 2051 if (cpsw->rx_irq_disabled) { 2052 cpsw->rx_irq_disabled = false; 2053 enable_irq(cpsw->irqs_table[0]); 2054 } 2055 2056 ret = cpsw_fill_rx_channels(priv); 2057 if (ret < 0) 2058 goto err_cleanup; 2059 2060 if (cpts_register(cpsw->cpts)) 2061 dev_err(priv->dev, "error registering cpts device\n"); 2062 2063 } 2064 2065 cpsw_restore(priv); 2066 2067 /* Enable Interrupt pacing if configured */ 2068 if (cpsw->coal_intvl != 0) { 2069 struct ethtool_coalesce coal; 2070 2071 coal.rx_coalesce_usecs = cpsw->coal_intvl; 2072 cpsw_set_coalesce(ndev, &coal); 2073 } 2074 2075 cpdma_ctlr_start(cpsw->dma); 2076 cpsw_intr_enable(cpsw); 2077 cpsw->usage_count++; 2078 2079 return 0; 2080 2081 err_cleanup: 2082 cpdma_ctlr_stop(cpsw->dma); 2083 for_each_slave(priv, cpsw_slave_stop, cpsw); 2084 pm_runtime_put_sync(cpsw->dev); 2085 netif_carrier_off(priv->ndev); 2086 return ret; 2087 } 2088 2089 static int cpsw_ndo_stop(struct net_device *ndev) 2090 { 2091 struct cpsw_priv *priv = netdev_priv(ndev); 2092 struct cpsw_common *cpsw = priv->cpsw; 2093 2094 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 2095 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 2096 netif_tx_stop_all_queues(priv->ndev); 2097 netif_carrier_off(priv->ndev); 2098 2099 if (cpsw->usage_count <= 1) { 2100 napi_disable(&cpsw->napi_rx); 2101 napi_disable(&cpsw->napi_tx); 2102 cpts_unregister(cpsw->cpts); 2103 cpsw_intr_disable(cpsw); 2104 cpdma_ctlr_stop(cpsw->dma); 2105 cpsw_ale_stop(cpsw->ale); 2106 } 2107 for_each_slave(priv, cpsw_slave_stop, cpsw); 2108 2109 if (cpsw_need_resplit(cpsw)) 2110 cpsw_split_res(ndev); 2111 2112 cpsw->usage_count--; 2113 pm_runtime_put_sync(cpsw->dev); 2114 return 0; 2115 } 2116 2117 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 2118 struct net_device *ndev) 2119 { 2120 struct cpsw_priv *priv = netdev_priv(ndev); 2121 struct cpsw_common *cpsw = priv->cpsw; 2122 struct cpts *cpts = cpsw->cpts; 2123 struct netdev_queue *txq; 2124 struct cpdma_chan *txch; 2125 int ret, q_idx; 2126 2127 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 2128 cpsw_err(priv, tx_err, "packet pad failed\n"); 2129 ndev->stats.tx_dropped++; 2130 return NET_XMIT_DROP; 2131 } 2132 2133 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 2134 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 2135 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2136 2137 q_idx = skb_get_queue_mapping(skb); 2138 if (q_idx >= cpsw->tx_ch_num) 2139 q_idx = q_idx % cpsw->tx_ch_num; 2140 2141 txch = cpsw->txv[q_idx].ch; 2142 txq = netdev_get_tx_queue(ndev, q_idx); 2143 ret = cpsw_tx_packet_submit(priv, skb, txch); 2144 if (unlikely(ret != 0)) { 2145 cpsw_err(priv, tx_err, "desc submit failed\n"); 2146 goto fail; 2147 } 2148 2149 /* If there is no more tx desc left free then we need to 2150 * tell the kernel to stop sending us tx frames. 2151 */ 2152 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 2153 netif_tx_stop_queue(txq); 2154 2155 /* Barrier, so that stop_queue visible to other cpus */ 2156 smp_mb__after_atomic(); 2157 2158 if (cpdma_check_free_tx_desc(txch)) 2159 netif_tx_wake_queue(txq); 2160 } 2161 2162 return NETDEV_TX_OK; 2163 fail: 2164 ndev->stats.tx_dropped++; 2165 netif_tx_stop_queue(txq); 2166 2167 /* Barrier, so that stop_queue visible to other cpus */ 2168 smp_mb__after_atomic(); 2169 2170 if (cpdma_check_free_tx_desc(txch)) 2171 netif_tx_wake_queue(txq); 2172 2173 return NETDEV_TX_BUSY; 2174 } 2175 2176 #if IS_ENABLED(CONFIG_TI_CPTS) 2177 2178 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 2179 { 2180 struct cpsw_common *cpsw = priv->cpsw; 2181 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 2182 u32 ts_en, seq_id; 2183 2184 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 2185 slave_write(slave, 0, CPSW1_TS_CTL); 2186 return; 2187 } 2188 2189 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 2190 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 2191 2192 if (priv->tx_ts_enabled) 2193 ts_en |= CPSW_V1_TS_TX_EN; 2194 2195 if (priv->rx_ts_enabled) 2196 ts_en |= CPSW_V1_TS_RX_EN; 2197 2198 slave_write(slave, ts_en, CPSW1_TS_CTL); 2199 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 2200 } 2201 2202 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 2203 { 2204 struct cpsw_slave *slave; 2205 struct cpsw_common *cpsw = priv->cpsw; 2206 u32 ctrl, mtype; 2207 2208 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2209 2210 ctrl = slave_read(slave, CPSW2_CONTROL); 2211 switch (cpsw->version) { 2212 case CPSW_VERSION_2: 2213 ctrl &= ~CTRL_V2_ALL_TS_MASK; 2214 2215 if (priv->tx_ts_enabled) 2216 ctrl |= CTRL_V2_TX_TS_BITS; 2217 2218 if (priv->rx_ts_enabled) 2219 ctrl |= CTRL_V2_RX_TS_BITS; 2220 break; 2221 case CPSW_VERSION_3: 2222 default: 2223 ctrl &= ~CTRL_V3_ALL_TS_MASK; 2224 2225 if (priv->tx_ts_enabled) 2226 ctrl |= CTRL_V3_TX_TS_BITS; 2227 2228 if (priv->rx_ts_enabled) 2229 ctrl |= CTRL_V3_RX_TS_BITS; 2230 break; 2231 } 2232 2233 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 2234 2235 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 2236 slave_write(slave, ctrl, CPSW2_CONTROL); 2237 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 2238 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 2239 } 2240 2241 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2242 { 2243 struct cpsw_priv *priv = netdev_priv(dev); 2244 struct hwtstamp_config cfg; 2245 struct cpsw_common *cpsw = priv->cpsw; 2246 2247 if (cpsw->version != CPSW_VERSION_1 && 2248 cpsw->version != CPSW_VERSION_2 && 2249 cpsw->version != CPSW_VERSION_3) 2250 return -EOPNOTSUPP; 2251 2252 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 2253 return -EFAULT; 2254 2255 /* reserved for future extensions */ 2256 if (cfg.flags) 2257 return -EINVAL; 2258 2259 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 2260 return -ERANGE; 2261 2262 switch (cfg.rx_filter) { 2263 case HWTSTAMP_FILTER_NONE: 2264 priv->rx_ts_enabled = 0; 2265 break; 2266 case HWTSTAMP_FILTER_ALL: 2267 case HWTSTAMP_FILTER_NTP_ALL: 2268 return -ERANGE; 2269 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2270 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2271 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2272 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2273 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2274 break; 2275 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2276 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2277 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2278 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2279 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2280 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2281 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2282 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2283 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2284 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 2285 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 2286 break; 2287 default: 2288 return -ERANGE; 2289 } 2290 2291 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 2292 2293 switch (cpsw->version) { 2294 case CPSW_VERSION_1: 2295 cpsw_hwtstamp_v1(priv); 2296 break; 2297 case CPSW_VERSION_2: 2298 case CPSW_VERSION_3: 2299 cpsw_hwtstamp_v2(priv); 2300 break; 2301 default: 2302 WARN_ON(1); 2303 } 2304 2305 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2306 } 2307 2308 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2309 { 2310 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 2311 struct cpsw_priv *priv = netdev_priv(dev); 2312 struct hwtstamp_config cfg; 2313 2314 if (cpsw->version != CPSW_VERSION_1 && 2315 cpsw->version != CPSW_VERSION_2 && 2316 cpsw->version != CPSW_VERSION_3) 2317 return -EOPNOTSUPP; 2318 2319 cfg.flags = 0; 2320 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2321 cfg.rx_filter = priv->rx_ts_enabled; 2322 2323 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2324 } 2325 #else 2326 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2327 { 2328 return -EOPNOTSUPP; 2329 } 2330 2331 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2332 { 2333 return -EOPNOTSUPP; 2334 } 2335 #endif /*CONFIG_TI_CPTS*/ 2336 2337 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2338 { 2339 struct cpsw_priv *priv = netdev_priv(dev); 2340 struct cpsw_common *cpsw = priv->cpsw; 2341 int slave_no = cpsw_slave_index(cpsw, priv); 2342 2343 if (!netif_running(dev)) 2344 return -EINVAL; 2345 2346 switch (cmd) { 2347 case SIOCSHWTSTAMP: 2348 return cpsw_hwtstamp_set(dev, req); 2349 case SIOCGHWTSTAMP: 2350 return cpsw_hwtstamp_get(dev, req); 2351 } 2352 2353 if (!cpsw->slaves[slave_no].phy) 2354 return -EOPNOTSUPP; 2355 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 2356 } 2357 2358 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 2359 { 2360 struct cpsw_priv *priv = netdev_priv(ndev); 2361 struct cpsw_common *cpsw = priv->cpsw; 2362 int ch; 2363 2364 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 2365 ndev->stats.tx_errors++; 2366 cpsw_intr_disable(cpsw); 2367 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 2368 cpdma_chan_stop(cpsw->txv[ch].ch); 2369 cpdma_chan_start(cpsw->txv[ch].ch); 2370 } 2371 2372 cpsw_intr_enable(cpsw); 2373 netif_trans_update(ndev); 2374 netif_tx_wake_all_queues(ndev); 2375 } 2376 2377 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 2378 { 2379 struct cpsw_priv *priv = netdev_priv(ndev); 2380 struct sockaddr *addr = (struct sockaddr *)p; 2381 struct cpsw_common *cpsw = priv->cpsw; 2382 int flags = 0; 2383 u16 vid = 0; 2384 int ret; 2385 2386 if (!is_valid_ether_addr(addr->sa_data)) 2387 return -EADDRNOTAVAIL; 2388 2389 ret = pm_runtime_get_sync(cpsw->dev); 2390 if (ret < 0) { 2391 pm_runtime_put_noidle(cpsw->dev); 2392 return ret; 2393 } 2394 2395 if (cpsw->data.dual_emac) { 2396 vid = cpsw->slaves[priv->emac_port].port_vlan; 2397 flags = ALE_VLAN; 2398 } 2399 2400 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 2401 flags, vid); 2402 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 2403 flags, vid); 2404 2405 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 2406 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2407 for_each_slave(priv, cpsw_set_slave_mac, priv); 2408 2409 pm_runtime_put(cpsw->dev); 2410 2411 return 0; 2412 } 2413 2414 #ifdef CONFIG_NET_POLL_CONTROLLER 2415 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2416 { 2417 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2418 2419 cpsw_intr_disable(cpsw); 2420 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2421 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2422 cpsw_intr_enable(cpsw); 2423 } 2424 #endif 2425 2426 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2427 unsigned short vid) 2428 { 2429 int ret; 2430 int unreg_mcast_mask = 0; 2431 int mcast_mask; 2432 u32 port_mask; 2433 struct cpsw_common *cpsw = priv->cpsw; 2434 2435 if (cpsw->data.dual_emac) { 2436 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2437 2438 mcast_mask = ALE_PORT_HOST; 2439 if (priv->ndev->flags & IFF_ALLMULTI) 2440 unreg_mcast_mask = mcast_mask; 2441 } else { 2442 port_mask = ALE_ALL_PORTS; 2443 mcast_mask = port_mask; 2444 2445 if (priv->ndev->flags & IFF_ALLMULTI) 2446 unreg_mcast_mask = ALE_ALL_PORTS; 2447 else 2448 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2449 } 2450 2451 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2452 unreg_mcast_mask); 2453 if (ret != 0) 2454 return ret; 2455 2456 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2457 HOST_PORT_NUM, ALE_VLAN, vid); 2458 if (ret != 0) 2459 goto clean_vid; 2460 2461 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2462 mcast_mask, ALE_VLAN, vid, 0); 2463 if (ret != 0) 2464 goto clean_vlan_ucast; 2465 return 0; 2466 2467 clean_vlan_ucast: 2468 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2469 HOST_PORT_NUM, ALE_VLAN, vid); 2470 clean_vid: 2471 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2472 return ret; 2473 } 2474 2475 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2476 __be16 proto, u16 vid) 2477 { 2478 struct cpsw_priv *priv = netdev_priv(ndev); 2479 struct cpsw_common *cpsw = priv->cpsw; 2480 int ret; 2481 2482 if (vid == cpsw->data.default_vlan) 2483 return 0; 2484 2485 ret = pm_runtime_get_sync(cpsw->dev); 2486 if (ret < 0) { 2487 pm_runtime_put_noidle(cpsw->dev); 2488 return ret; 2489 } 2490 2491 if (cpsw->data.dual_emac) { 2492 /* In dual EMAC, reserved VLAN id should not be used for 2493 * creating VLAN interfaces as this can break the dual 2494 * EMAC port separation 2495 */ 2496 int i; 2497 2498 for (i = 0; i < cpsw->data.slaves; i++) { 2499 if (vid == cpsw->slaves[i].port_vlan) { 2500 ret = -EINVAL; 2501 goto err; 2502 } 2503 } 2504 } 2505 2506 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2507 ret = cpsw_add_vlan_ale_entry(priv, vid); 2508 err: 2509 pm_runtime_put(cpsw->dev); 2510 return ret; 2511 } 2512 2513 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2514 __be16 proto, u16 vid) 2515 { 2516 struct cpsw_priv *priv = netdev_priv(ndev); 2517 struct cpsw_common *cpsw = priv->cpsw; 2518 int ret; 2519 2520 if (vid == cpsw->data.default_vlan) 2521 return 0; 2522 2523 ret = pm_runtime_get_sync(cpsw->dev); 2524 if (ret < 0) { 2525 pm_runtime_put_noidle(cpsw->dev); 2526 return ret; 2527 } 2528 2529 if (cpsw->data.dual_emac) { 2530 int i; 2531 2532 for (i = 0; i < cpsw->data.slaves; i++) { 2533 if (vid == cpsw->slaves[i].port_vlan) 2534 goto err; 2535 } 2536 } 2537 2538 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2539 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2540 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2541 HOST_PORT_NUM, ALE_VLAN, vid); 2542 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2543 0, ALE_VLAN, vid); 2544 ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid); 2545 err: 2546 pm_runtime_put(cpsw->dev); 2547 return ret; 2548 } 2549 2550 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2551 { 2552 struct cpsw_priv *priv = netdev_priv(ndev); 2553 struct cpsw_common *cpsw = priv->cpsw; 2554 struct cpsw_slave *slave; 2555 u32 min_rate; 2556 u32 ch_rate; 2557 int i, ret; 2558 2559 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2560 if (ch_rate == rate) 2561 return 0; 2562 2563 ch_rate = rate * 1000; 2564 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2565 if ((ch_rate < min_rate && ch_rate)) { 2566 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2567 min_rate); 2568 return -EINVAL; 2569 } 2570 2571 if (rate > cpsw->speed) { 2572 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2573 return -EINVAL; 2574 } 2575 2576 ret = pm_runtime_get_sync(cpsw->dev); 2577 if (ret < 0) { 2578 pm_runtime_put_noidle(cpsw->dev); 2579 return ret; 2580 } 2581 2582 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2583 pm_runtime_put(cpsw->dev); 2584 2585 if (ret) 2586 return ret; 2587 2588 /* update rates for slaves tx queues */ 2589 for (i = 0; i < cpsw->data.slaves; i++) { 2590 slave = &cpsw->slaves[i]; 2591 if (!slave->ndev) 2592 continue; 2593 2594 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2595 } 2596 2597 cpsw_split_res(ndev); 2598 return ret; 2599 } 2600 2601 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 2602 { 2603 struct tc_mqprio_qopt_offload *mqprio = type_data; 2604 struct cpsw_priv *priv = netdev_priv(ndev); 2605 struct cpsw_common *cpsw = priv->cpsw; 2606 int fifo, num_tc, count, offset; 2607 struct cpsw_slave *slave; 2608 u32 tx_prio_map = 0; 2609 int i, tc, ret; 2610 2611 num_tc = mqprio->qopt.num_tc; 2612 if (num_tc > CPSW_TC_NUM) 2613 return -EINVAL; 2614 2615 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 2616 return -EINVAL; 2617 2618 ret = pm_runtime_get_sync(cpsw->dev); 2619 if (ret < 0) { 2620 pm_runtime_put_noidle(cpsw->dev); 2621 return ret; 2622 } 2623 2624 if (num_tc) { 2625 for (i = 0; i < 8; i++) { 2626 tc = mqprio->qopt.prio_tc_map[i]; 2627 fifo = cpsw_tc_to_fifo(tc, num_tc); 2628 tx_prio_map |= fifo << (4 * i); 2629 } 2630 2631 netdev_set_num_tc(ndev, num_tc); 2632 for (i = 0; i < num_tc; i++) { 2633 count = mqprio->qopt.count[i]; 2634 offset = mqprio->qopt.offset[i]; 2635 netdev_set_tc_queue(ndev, i, count, offset); 2636 } 2637 } 2638 2639 if (!mqprio->qopt.hw) { 2640 /* restore default configuration */ 2641 netdev_reset_tc(ndev); 2642 tx_prio_map = TX_PRIORITY_MAPPING; 2643 } 2644 2645 priv->mqprio_hw = mqprio->qopt.hw; 2646 2647 offset = cpsw->version == CPSW_VERSION_1 ? 2648 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 2649 2650 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2651 slave_write(slave, tx_prio_map, offset); 2652 2653 pm_runtime_put_sync(cpsw->dev); 2654 2655 return 0; 2656 } 2657 2658 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2659 void *type_data) 2660 { 2661 switch (type) { 2662 case TC_SETUP_QDISC_CBS: 2663 return cpsw_set_cbs(ndev, type_data); 2664 2665 case TC_SETUP_QDISC_MQPRIO: 2666 return cpsw_set_mqprio(ndev, type_data); 2667 2668 default: 2669 return -EOPNOTSUPP; 2670 } 2671 } 2672 2673 static const struct net_device_ops cpsw_netdev_ops = { 2674 .ndo_open = cpsw_ndo_open, 2675 .ndo_stop = cpsw_ndo_stop, 2676 .ndo_start_xmit = cpsw_ndo_start_xmit, 2677 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2678 .ndo_do_ioctl = cpsw_ndo_ioctl, 2679 .ndo_validate_addr = eth_validate_addr, 2680 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2681 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2682 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2683 #ifdef CONFIG_NET_POLL_CONTROLLER 2684 .ndo_poll_controller = cpsw_ndo_poll_controller, 2685 #endif 2686 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2687 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2688 .ndo_setup_tc = cpsw_ndo_setup_tc, 2689 }; 2690 2691 static int cpsw_get_regs_len(struct net_device *ndev) 2692 { 2693 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2694 2695 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2696 } 2697 2698 static void cpsw_get_regs(struct net_device *ndev, 2699 struct ethtool_regs *regs, void *p) 2700 { 2701 u32 *reg = p; 2702 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2703 2704 /* update CPSW IP version */ 2705 regs->version = cpsw->version; 2706 2707 cpsw_ale_dump(cpsw->ale, reg); 2708 } 2709 2710 static void cpsw_get_drvinfo(struct net_device *ndev, 2711 struct ethtool_drvinfo *info) 2712 { 2713 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2714 struct platform_device *pdev = to_platform_device(cpsw->dev); 2715 2716 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2717 strlcpy(info->version, "1.0", sizeof(info->version)); 2718 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2719 } 2720 2721 static u32 cpsw_get_msglevel(struct net_device *ndev) 2722 { 2723 struct cpsw_priv *priv = netdev_priv(ndev); 2724 return priv->msg_enable; 2725 } 2726 2727 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2728 { 2729 struct cpsw_priv *priv = netdev_priv(ndev); 2730 priv->msg_enable = value; 2731 } 2732 2733 #if IS_ENABLED(CONFIG_TI_CPTS) 2734 static int cpsw_get_ts_info(struct net_device *ndev, 2735 struct ethtool_ts_info *info) 2736 { 2737 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2738 2739 info->so_timestamping = 2740 SOF_TIMESTAMPING_TX_HARDWARE | 2741 SOF_TIMESTAMPING_TX_SOFTWARE | 2742 SOF_TIMESTAMPING_RX_HARDWARE | 2743 SOF_TIMESTAMPING_RX_SOFTWARE | 2744 SOF_TIMESTAMPING_SOFTWARE | 2745 SOF_TIMESTAMPING_RAW_HARDWARE; 2746 info->phc_index = cpsw->cpts->phc_index; 2747 info->tx_types = 2748 (1 << HWTSTAMP_TX_OFF) | 2749 (1 << HWTSTAMP_TX_ON); 2750 info->rx_filters = 2751 (1 << HWTSTAMP_FILTER_NONE) | 2752 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2753 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2754 return 0; 2755 } 2756 #else 2757 static int cpsw_get_ts_info(struct net_device *ndev, 2758 struct ethtool_ts_info *info) 2759 { 2760 info->so_timestamping = 2761 SOF_TIMESTAMPING_TX_SOFTWARE | 2762 SOF_TIMESTAMPING_RX_SOFTWARE | 2763 SOF_TIMESTAMPING_SOFTWARE; 2764 info->phc_index = -1; 2765 info->tx_types = 0; 2766 info->rx_filters = 0; 2767 return 0; 2768 } 2769 #endif 2770 2771 static int cpsw_get_link_ksettings(struct net_device *ndev, 2772 struct ethtool_link_ksettings *ecmd) 2773 { 2774 struct cpsw_priv *priv = netdev_priv(ndev); 2775 struct cpsw_common *cpsw = priv->cpsw; 2776 int slave_no = cpsw_slave_index(cpsw, priv); 2777 2778 if (!cpsw->slaves[slave_no].phy) 2779 return -EOPNOTSUPP; 2780 2781 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2782 return 0; 2783 } 2784 2785 static int cpsw_set_link_ksettings(struct net_device *ndev, 2786 const struct ethtool_link_ksettings *ecmd) 2787 { 2788 struct cpsw_priv *priv = netdev_priv(ndev); 2789 struct cpsw_common *cpsw = priv->cpsw; 2790 int slave_no = cpsw_slave_index(cpsw, priv); 2791 2792 if (cpsw->slaves[slave_no].phy) 2793 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2794 ecmd); 2795 else 2796 return -EOPNOTSUPP; 2797 } 2798 2799 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2800 { 2801 struct cpsw_priv *priv = netdev_priv(ndev); 2802 struct cpsw_common *cpsw = priv->cpsw; 2803 int slave_no = cpsw_slave_index(cpsw, priv); 2804 2805 wol->supported = 0; 2806 wol->wolopts = 0; 2807 2808 if (cpsw->slaves[slave_no].phy) 2809 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2810 } 2811 2812 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2813 { 2814 struct cpsw_priv *priv = netdev_priv(ndev); 2815 struct cpsw_common *cpsw = priv->cpsw; 2816 int slave_no = cpsw_slave_index(cpsw, priv); 2817 2818 if (cpsw->slaves[slave_no].phy) 2819 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2820 else 2821 return -EOPNOTSUPP; 2822 } 2823 2824 static void cpsw_get_pauseparam(struct net_device *ndev, 2825 struct ethtool_pauseparam *pause) 2826 { 2827 struct cpsw_priv *priv = netdev_priv(ndev); 2828 2829 pause->autoneg = AUTONEG_DISABLE; 2830 pause->rx_pause = priv->rx_pause ? true : false; 2831 pause->tx_pause = priv->tx_pause ? true : false; 2832 } 2833 2834 static int cpsw_set_pauseparam(struct net_device *ndev, 2835 struct ethtool_pauseparam *pause) 2836 { 2837 struct cpsw_priv *priv = netdev_priv(ndev); 2838 bool link; 2839 2840 priv->rx_pause = pause->rx_pause ? true : false; 2841 priv->tx_pause = pause->tx_pause ? true : false; 2842 2843 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2844 return 0; 2845 } 2846 2847 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2848 { 2849 struct cpsw_priv *priv = netdev_priv(ndev); 2850 struct cpsw_common *cpsw = priv->cpsw; 2851 int ret; 2852 2853 ret = pm_runtime_get_sync(cpsw->dev); 2854 if (ret < 0) { 2855 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2856 pm_runtime_put_noidle(cpsw->dev); 2857 } 2858 2859 return ret; 2860 } 2861 2862 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2863 { 2864 struct cpsw_priv *priv = netdev_priv(ndev); 2865 int ret; 2866 2867 ret = pm_runtime_put(priv->cpsw->dev); 2868 if (ret < 0) 2869 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2870 } 2871 2872 static void cpsw_get_channels(struct net_device *ndev, 2873 struct ethtool_channels *ch) 2874 { 2875 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2876 2877 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2878 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2879 ch->max_combined = 0; 2880 ch->max_other = 0; 2881 ch->other_count = 0; 2882 ch->rx_count = cpsw->rx_ch_num; 2883 ch->tx_count = cpsw->tx_ch_num; 2884 ch->combined_count = 0; 2885 } 2886 2887 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2888 struct ethtool_channels *ch) 2889 { 2890 if (cpsw->quirk_irq) { 2891 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); 2892 return -EOPNOTSUPP; 2893 } 2894 2895 if (ch->combined_count) 2896 return -EINVAL; 2897 2898 /* verify we have at least one channel in each direction */ 2899 if (!ch->rx_count || !ch->tx_count) 2900 return -EINVAL; 2901 2902 if (ch->rx_count > cpsw->data.channels || 2903 ch->tx_count > cpsw->data.channels) 2904 return -EINVAL; 2905 2906 return 0; 2907 } 2908 2909 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2910 { 2911 struct cpsw_common *cpsw = priv->cpsw; 2912 void (*handler)(void *, int, int); 2913 struct netdev_queue *queue; 2914 struct cpsw_vector *vec; 2915 int ret, *ch, vch; 2916 2917 if (rx) { 2918 ch = &cpsw->rx_ch_num; 2919 vec = cpsw->rxv; 2920 handler = cpsw_rx_handler; 2921 } else { 2922 ch = &cpsw->tx_ch_num; 2923 vec = cpsw->txv; 2924 handler = cpsw_tx_handler; 2925 } 2926 2927 while (*ch < ch_num) { 2928 vch = rx ? *ch : 7 - *ch; 2929 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx); 2930 queue = netdev_get_tx_queue(priv->ndev, *ch); 2931 queue->tx_maxrate = 0; 2932 2933 if (IS_ERR(vec[*ch].ch)) 2934 return PTR_ERR(vec[*ch].ch); 2935 2936 if (!vec[*ch].ch) 2937 return -EINVAL; 2938 2939 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2940 (rx ? "rx" : "tx")); 2941 (*ch)++; 2942 } 2943 2944 while (*ch > ch_num) { 2945 (*ch)--; 2946 2947 ret = cpdma_chan_destroy(vec[*ch].ch); 2948 if (ret) 2949 return ret; 2950 2951 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2952 (rx ? "rx" : "tx")); 2953 } 2954 2955 return 0; 2956 } 2957 2958 static int cpsw_update_channels(struct cpsw_priv *priv, 2959 struct ethtool_channels *ch) 2960 { 2961 int ret; 2962 2963 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2964 if (ret) 2965 return ret; 2966 2967 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2968 if (ret) 2969 return ret; 2970 2971 return 0; 2972 } 2973 2974 static void cpsw_suspend_data_pass(struct net_device *ndev) 2975 { 2976 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2977 struct cpsw_slave *slave; 2978 int i; 2979 2980 /* Disable NAPI scheduling */ 2981 cpsw_intr_disable(cpsw); 2982 2983 /* Stop all transmit queues for every network device. 2984 * Disable re-using rx descriptors with dormant_on. 2985 */ 2986 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2987 if (!(slave->ndev && netif_running(slave->ndev))) 2988 continue; 2989 2990 netif_tx_stop_all_queues(slave->ndev); 2991 netif_dormant_on(slave->ndev); 2992 } 2993 2994 /* Handle rest of tx packets and stop cpdma channels */ 2995 cpdma_ctlr_stop(cpsw->dma); 2996 } 2997 2998 static int cpsw_resume_data_pass(struct net_device *ndev) 2999 { 3000 struct cpsw_priv *priv = netdev_priv(ndev); 3001 struct cpsw_common *cpsw = priv->cpsw; 3002 struct cpsw_slave *slave; 3003 int i, ret; 3004 3005 /* Allow rx packets handling */ 3006 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 3007 if (slave->ndev && netif_running(slave->ndev)) 3008 netif_dormant_off(slave->ndev); 3009 3010 /* After this receive is started */ 3011 if (cpsw->usage_count) { 3012 ret = cpsw_fill_rx_channels(priv); 3013 if (ret) 3014 return ret; 3015 3016 cpdma_ctlr_start(cpsw->dma); 3017 cpsw_intr_enable(cpsw); 3018 } 3019 3020 /* Resume transmit for every affected interface */ 3021 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 3022 if (slave->ndev && netif_running(slave->ndev)) 3023 netif_tx_start_all_queues(slave->ndev); 3024 3025 return 0; 3026 } 3027 3028 static int cpsw_set_channels(struct net_device *ndev, 3029 struct ethtool_channels *chs) 3030 { 3031 struct cpsw_priv *priv = netdev_priv(ndev); 3032 struct cpsw_common *cpsw = priv->cpsw; 3033 struct cpsw_slave *slave; 3034 int i, ret; 3035 3036 ret = cpsw_check_ch_settings(cpsw, chs); 3037 if (ret < 0) 3038 return ret; 3039 3040 cpsw_suspend_data_pass(ndev); 3041 ret = cpsw_update_channels(priv, chs); 3042 if (ret) 3043 goto err; 3044 3045 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 3046 if (!(slave->ndev && netif_running(slave->ndev))) 3047 continue; 3048 3049 /* Inform stack about new count of queues */ 3050 ret = netif_set_real_num_tx_queues(slave->ndev, 3051 cpsw->tx_ch_num); 3052 if (ret) { 3053 dev_err(priv->dev, "cannot set real number of tx queues\n"); 3054 goto err; 3055 } 3056 3057 ret = netif_set_real_num_rx_queues(slave->ndev, 3058 cpsw->rx_ch_num); 3059 if (ret) { 3060 dev_err(priv->dev, "cannot set real number of rx queues\n"); 3061 goto err; 3062 } 3063 } 3064 3065 if (cpsw->usage_count) 3066 cpsw_split_res(ndev); 3067 3068 ret = cpsw_resume_data_pass(ndev); 3069 if (!ret) 3070 return 0; 3071 err: 3072 dev_err(priv->dev, "cannot update channels number, closing device\n"); 3073 dev_close(ndev); 3074 return ret; 3075 } 3076 3077 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3078 { 3079 struct cpsw_priv *priv = netdev_priv(ndev); 3080 struct cpsw_common *cpsw = priv->cpsw; 3081 int slave_no = cpsw_slave_index(cpsw, priv); 3082 3083 if (cpsw->slaves[slave_no].phy) 3084 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 3085 else 3086 return -EOPNOTSUPP; 3087 } 3088 3089 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3090 { 3091 struct cpsw_priv *priv = netdev_priv(ndev); 3092 struct cpsw_common *cpsw = priv->cpsw; 3093 int slave_no = cpsw_slave_index(cpsw, priv); 3094 3095 if (cpsw->slaves[slave_no].phy) 3096 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 3097 else 3098 return -EOPNOTSUPP; 3099 } 3100 3101 static int cpsw_nway_reset(struct net_device *ndev) 3102 { 3103 struct cpsw_priv *priv = netdev_priv(ndev); 3104 struct cpsw_common *cpsw = priv->cpsw; 3105 int slave_no = cpsw_slave_index(cpsw, priv); 3106 3107 if (cpsw->slaves[slave_no].phy) 3108 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 3109 else 3110 return -EOPNOTSUPP; 3111 } 3112 3113 static void cpsw_get_ringparam(struct net_device *ndev, 3114 struct ethtool_ringparam *ering) 3115 { 3116 struct cpsw_priv *priv = netdev_priv(ndev); 3117 struct cpsw_common *cpsw = priv->cpsw; 3118 3119 /* not supported */ 3120 ering->tx_max_pending = 0; 3121 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 3122 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 3123 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 3124 } 3125 3126 static int cpsw_set_ringparam(struct net_device *ndev, 3127 struct ethtool_ringparam *ering) 3128 { 3129 struct cpsw_priv *priv = netdev_priv(ndev); 3130 struct cpsw_common *cpsw = priv->cpsw; 3131 int ret; 3132 3133 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 3134 3135 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 3136 ering->rx_pending < CPSW_MAX_QUEUES || 3137 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 3138 return -EINVAL; 3139 3140 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 3141 return 0; 3142 3143 cpsw_suspend_data_pass(ndev); 3144 3145 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 3146 3147 if (cpsw->usage_count) 3148 cpdma_chan_split_pool(cpsw->dma); 3149 3150 ret = cpsw_resume_data_pass(ndev); 3151 if (!ret) 3152 return 0; 3153 3154 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 3155 dev_close(ndev); 3156 return ret; 3157 } 3158 3159 static const struct ethtool_ops cpsw_ethtool_ops = { 3160 .get_drvinfo = cpsw_get_drvinfo, 3161 .get_msglevel = cpsw_get_msglevel, 3162 .set_msglevel = cpsw_set_msglevel, 3163 .get_link = ethtool_op_get_link, 3164 .get_ts_info = cpsw_get_ts_info, 3165 .get_coalesce = cpsw_get_coalesce, 3166 .set_coalesce = cpsw_set_coalesce, 3167 .get_sset_count = cpsw_get_sset_count, 3168 .get_strings = cpsw_get_strings, 3169 .get_ethtool_stats = cpsw_get_ethtool_stats, 3170 .get_pauseparam = cpsw_get_pauseparam, 3171 .set_pauseparam = cpsw_set_pauseparam, 3172 .get_wol = cpsw_get_wol, 3173 .set_wol = cpsw_set_wol, 3174 .get_regs_len = cpsw_get_regs_len, 3175 .get_regs = cpsw_get_regs, 3176 .begin = cpsw_ethtool_op_begin, 3177 .complete = cpsw_ethtool_op_complete, 3178 .get_channels = cpsw_get_channels, 3179 .set_channels = cpsw_set_channels, 3180 .get_link_ksettings = cpsw_get_link_ksettings, 3181 .set_link_ksettings = cpsw_set_link_ksettings, 3182 .get_eee = cpsw_get_eee, 3183 .set_eee = cpsw_set_eee, 3184 .nway_reset = cpsw_nway_reset, 3185 .get_ringparam = cpsw_get_ringparam, 3186 .set_ringparam = cpsw_set_ringparam, 3187 }; 3188 3189 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 3190 u32 slave_reg_ofs, u32 sliver_reg_ofs) 3191 { 3192 void __iomem *regs = cpsw->regs; 3193 int slave_num = slave->slave_num; 3194 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 3195 3196 slave->data = data; 3197 slave->regs = regs + slave_reg_ofs; 3198 slave->sliver = regs + sliver_reg_ofs; 3199 slave->port_vlan = data->dual_emac_res_vlan; 3200 } 3201 3202 static int cpsw_probe_dt(struct cpsw_platform_data *data, 3203 struct platform_device *pdev) 3204 { 3205 struct device_node *node = pdev->dev.of_node; 3206 struct device_node *slave_node; 3207 int i = 0, ret; 3208 u32 prop; 3209 3210 if (!node) 3211 return -EINVAL; 3212 3213 if (of_property_read_u32(node, "slaves", &prop)) { 3214 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 3215 return -EINVAL; 3216 } 3217 data->slaves = prop; 3218 3219 if (of_property_read_u32(node, "active_slave", &prop)) { 3220 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 3221 return -EINVAL; 3222 } 3223 data->active_slave = prop; 3224 3225 data->slave_data = devm_kcalloc(&pdev->dev, 3226 data->slaves, 3227 sizeof(struct cpsw_slave_data), 3228 GFP_KERNEL); 3229 if (!data->slave_data) 3230 return -ENOMEM; 3231 3232 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 3233 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 3234 return -EINVAL; 3235 } 3236 data->channels = prop; 3237 3238 if (of_property_read_u32(node, "ale_entries", &prop)) { 3239 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 3240 return -EINVAL; 3241 } 3242 data->ale_entries = prop; 3243 3244 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 3245 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 3246 return -EINVAL; 3247 } 3248 data->bd_ram_size = prop; 3249 3250 if (of_property_read_u32(node, "mac_control", &prop)) { 3251 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 3252 return -EINVAL; 3253 } 3254 data->mac_control = prop; 3255 3256 if (of_property_read_bool(node, "dual_emac")) 3257 data->dual_emac = 1; 3258 3259 /* 3260 * Populate all the child nodes here... 3261 */ 3262 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 3263 /* We do not want to force this, as in some cases may not have child */ 3264 if (ret) 3265 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 3266 3267 for_each_available_child_of_node(node, slave_node) { 3268 struct cpsw_slave_data *slave_data = data->slave_data + i; 3269 const void *mac_addr = NULL; 3270 int lenp; 3271 const __be32 *parp; 3272 3273 /* This is no slave child node, continue */ 3274 if (!of_node_name_eq(slave_node, "slave")) 3275 continue; 3276 3277 slave_data->phy_node = of_parse_phandle(slave_node, 3278 "phy-handle", 0); 3279 parp = of_get_property(slave_node, "phy_id", &lenp); 3280 if (slave_data->phy_node) { 3281 dev_dbg(&pdev->dev, 3282 "slave[%d] using phy-handle=\"%pOF\"\n", 3283 i, slave_data->phy_node); 3284 } else if (of_phy_is_fixed_link(slave_node)) { 3285 /* In the case of a fixed PHY, the DT node associated 3286 * to the PHY is the Ethernet MAC DT node. 3287 */ 3288 ret = of_phy_register_fixed_link(slave_node); 3289 if (ret) { 3290 if (ret != -EPROBE_DEFER) 3291 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 3292 return ret; 3293 } 3294 slave_data->phy_node = of_node_get(slave_node); 3295 } else if (parp) { 3296 u32 phyid; 3297 struct device_node *mdio_node; 3298 struct platform_device *mdio; 3299 3300 if (lenp != (sizeof(__be32) * 2)) { 3301 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 3302 goto no_phy_slave; 3303 } 3304 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 3305 phyid = be32_to_cpup(parp+1); 3306 mdio = of_find_device_by_node(mdio_node); 3307 of_node_put(mdio_node); 3308 if (!mdio) { 3309 dev_err(&pdev->dev, "Missing mdio platform device\n"); 3310 return -EINVAL; 3311 } 3312 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 3313 PHY_ID_FMT, mdio->name, phyid); 3314 put_device(&mdio->dev); 3315 } else { 3316 dev_err(&pdev->dev, 3317 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 3318 i); 3319 goto no_phy_slave; 3320 } 3321 slave_data->phy_if = of_get_phy_mode(slave_node); 3322 if (slave_data->phy_if < 0) { 3323 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 3324 i); 3325 return slave_data->phy_if; 3326 } 3327 3328 no_phy_slave: 3329 mac_addr = of_get_mac_address(slave_node); 3330 if (mac_addr) { 3331 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 3332 } else { 3333 ret = ti_cm_get_macid(&pdev->dev, i, 3334 slave_data->mac_addr); 3335 if (ret) 3336 return ret; 3337 } 3338 if (data->dual_emac) { 3339 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 3340 &prop)) { 3341 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 3342 slave_data->dual_emac_res_vlan = i+1; 3343 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 3344 slave_data->dual_emac_res_vlan, i); 3345 } else { 3346 slave_data->dual_emac_res_vlan = prop; 3347 } 3348 } 3349 3350 i++; 3351 if (i == data->slaves) 3352 break; 3353 } 3354 3355 return 0; 3356 } 3357 3358 static void cpsw_remove_dt(struct platform_device *pdev) 3359 { 3360 struct net_device *ndev = platform_get_drvdata(pdev); 3361 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3362 struct cpsw_platform_data *data = &cpsw->data; 3363 struct device_node *node = pdev->dev.of_node; 3364 struct device_node *slave_node; 3365 int i = 0; 3366 3367 for_each_available_child_of_node(node, slave_node) { 3368 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 3369 3370 if (!of_node_name_eq(slave_node, "slave")) 3371 continue; 3372 3373 if (of_phy_is_fixed_link(slave_node)) 3374 of_phy_deregister_fixed_link(slave_node); 3375 3376 of_node_put(slave_data->phy_node); 3377 3378 i++; 3379 if (i == data->slaves) 3380 break; 3381 } 3382 3383 of_platform_depopulate(&pdev->dev); 3384 } 3385 3386 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 3387 { 3388 struct cpsw_common *cpsw = priv->cpsw; 3389 struct cpsw_platform_data *data = &cpsw->data; 3390 struct net_device *ndev; 3391 struct cpsw_priv *priv_sl2; 3392 int ret = 0; 3393 3394 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3395 if (!ndev) { 3396 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 3397 return -ENOMEM; 3398 } 3399 3400 priv_sl2 = netdev_priv(ndev); 3401 priv_sl2->cpsw = cpsw; 3402 priv_sl2->ndev = ndev; 3403 priv_sl2->dev = &ndev->dev; 3404 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3405 3406 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 3407 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 3408 ETH_ALEN); 3409 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 3410 priv_sl2->mac_addr); 3411 } else { 3412 eth_random_addr(priv_sl2->mac_addr); 3413 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 3414 priv_sl2->mac_addr); 3415 } 3416 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 3417 3418 priv_sl2->emac_port = 1; 3419 cpsw->slaves[1].ndev = ndev; 3420 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3421 3422 ndev->netdev_ops = &cpsw_netdev_ops; 3423 ndev->ethtool_ops = &cpsw_ethtool_ops; 3424 3425 /* register the network device */ 3426 SET_NETDEV_DEV(ndev, cpsw->dev); 3427 ret = register_netdev(ndev); 3428 if (ret) { 3429 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 3430 free_netdev(ndev); 3431 ret = -ENODEV; 3432 } 3433 3434 return ret; 3435 } 3436 3437 static const struct of_device_id cpsw_of_mtable[] = { 3438 { .compatible = "ti,cpsw"}, 3439 { .compatible = "ti,am335x-cpsw"}, 3440 { .compatible = "ti,am4372-cpsw"}, 3441 { .compatible = "ti,dra7-cpsw"}, 3442 { /* sentinel */ }, 3443 }; 3444 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 3445 3446 static const struct soc_device_attribute cpsw_soc_devices[] = { 3447 { .family = "AM33xx", .revision = "ES1.0"}, 3448 { /* sentinel */ } 3449 }; 3450 3451 static int cpsw_probe(struct platform_device *pdev) 3452 { 3453 struct clk *clk; 3454 struct cpsw_platform_data *data; 3455 struct net_device *ndev; 3456 struct cpsw_priv *priv; 3457 struct cpdma_params dma_params; 3458 struct cpsw_ale_params ale_params; 3459 void __iomem *ss_regs; 3460 void __iomem *cpts_regs; 3461 struct resource *res, *ss_res; 3462 struct gpio_descs *mode; 3463 u32 slave_offset, sliver_offset, slave_size; 3464 const struct soc_device_attribute *soc; 3465 struct cpsw_common *cpsw; 3466 int ret = 0, i, ch; 3467 int irq; 3468 3469 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 3470 if (!cpsw) 3471 return -ENOMEM; 3472 3473 cpsw->dev = &pdev->dev; 3474 3475 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3476 if (!ndev) { 3477 dev_err(&pdev->dev, "error allocating net_device\n"); 3478 return -ENOMEM; 3479 } 3480 3481 platform_set_drvdata(pdev, ndev); 3482 priv = netdev_priv(ndev); 3483 priv->cpsw = cpsw; 3484 priv->ndev = ndev; 3485 priv->dev = &ndev->dev; 3486 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3487 cpsw->rx_packet_max = max(rx_packet_max, 128); 3488 3489 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 3490 if (IS_ERR(mode)) { 3491 ret = PTR_ERR(mode); 3492 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 3493 goto clean_ndev_ret; 3494 } 3495 3496 /* 3497 * This may be required here for child devices. 3498 */ 3499 pm_runtime_enable(&pdev->dev); 3500 3501 /* Select default pin state */ 3502 pinctrl_pm_select_default_state(&pdev->dev); 3503 3504 /* Need to enable clocks with runtime PM api to access module 3505 * registers 3506 */ 3507 ret = pm_runtime_get_sync(&pdev->dev); 3508 if (ret < 0) { 3509 pm_runtime_put_noidle(&pdev->dev); 3510 goto clean_runtime_disable_ret; 3511 } 3512 3513 ret = cpsw_probe_dt(&cpsw->data, pdev); 3514 if (ret) 3515 goto clean_dt_ret; 3516 3517 data = &cpsw->data; 3518 cpsw->rx_ch_num = 1; 3519 cpsw->tx_ch_num = 1; 3520 3521 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3522 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3523 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3524 } else { 3525 eth_random_addr(priv->mac_addr); 3526 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3527 } 3528 3529 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3530 3531 cpsw->slaves = devm_kcalloc(&pdev->dev, 3532 data->slaves, sizeof(struct cpsw_slave), 3533 GFP_KERNEL); 3534 if (!cpsw->slaves) { 3535 ret = -ENOMEM; 3536 goto clean_dt_ret; 3537 } 3538 for (i = 0; i < data->slaves; i++) 3539 cpsw->slaves[i].slave_num = i; 3540 3541 cpsw->slaves[0].ndev = ndev; 3542 priv->emac_port = 0; 3543 3544 clk = devm_clk_get(&pdev->dev, "fck"); 3545 if (IS_ERR(clk)) { 3546 dev_err(priv->dev, "fck is not found\n"); 3547 ret = -ENODEV; 3548 goto clean_dt_ret; 3549 } 3550 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3551 3552 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3553 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3554 if (IS_ERR(ss_regs)) { 3555 ret = PTR_ERR(ss_regs); 3556 goto clean_dt_ret; 3557 } 3558 cpsw->regs = ss_regs; 3559 3560 cpsw->version = readl(&cpsw->regs->id_ver); 3561 3562 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3563 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3564 if (IS_ERR(cpsw->wr_regs)) { 3565 ret = PTR_ERR(cpsw->wr_regs); 3566 goto clean_dt_ret; 3567 } 3568 3569 memset(&dma_params, 0, sizeof(dma_params)); 3570 memset(&ale_params, 0, sizeof(ale_params)); 3571 3572 switch (cpsw->version) { 3573 case CPSW_VERSION_1: 3574 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3575 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3576 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3577 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3578 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3579 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3580 slave_offset = CPSW1_SLAVE_OFFSET; 3581 slave_size = CPSW1_SLAVE_SIZE; 3582 sliver_offset = CPSW1_SLIVER_OFFSET; 3583 dma_params.desc_mem_phys = 0; 3584 break; 3585 case CPSW_VERSION_2: 3586 case CPSW_VERSION_3: 3587 case CPSW_VERSION_4: 3588 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3589 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3590 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3591 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3592 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3593 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3594 slave_offset = CPSW2_SLAVE_OFFSET; 3595 slave_size = CPSW2_SLAVE_SIZE; 3596 sliver_offset = CPSW2_SLIVER_OFFSET; 3597 dma_params.desc_mem_phys = 3598 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3599 break; 3600 default: 3601 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3602 ret = -ENODEV; 3603 goto clean_dt_ret; 3604 } 3605 for (i = 0; i < cpsw->data.slaves; i++) { 3606 struct cpsw_slave *slave = &cpsw->slaves[i]; 3607 3608 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3609 slave_offset += slave_size; 3610 sliver_offset += SLIVER_SIZE; 3611 } 3612 3613 dma_params.dev = &pdev->dev; 3614 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3615 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3616 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3617 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3618 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3619 3620 dma_params.num_chan = data->channels; 3621 dma_params.has_soft_reset = true; 3622 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3623 dma_params.desc_mem_size = data->bd_ram_size; 3624 dma_params.desc_align = 16; 3625 dma_params.has_ext_regs = true; 3626 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3627 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3628 dma_params.descs_pool_size = descs_pool_size; 3629 3630 cpsw->dma = cpdma_ctlr_create(&dma_params); 3631 if (!cpsw->dma) { 3632 dev_err(priv->dev, "error initializing dma\n"); 3633 ret = -ENOMEM; 3634 goto clean_dt_ret; 3635 } 3636 3637 soc = soc_device_match(cpsw_soc_devices); 3638 if (soc) 3639 cpsw->quirk_irq = 1; 3640 3641 ch = cpsw->quirk_irq ? 0 : 7; 3642 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 3643 if (IS_ERR(cpsw->txv[0].ch)) { 3644 dev_err(priv->dev, "error initializing tx dma channel\n"); 3645 ret = PTR_ERR(cpsw->txv[0].ch); 3646 goto clean_dma_ret; 3647 } 3648 3649 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3650 if (IS_ERR(cpsw->rxv[0].ch)) { 3651 dev_err(priv->dev, "error initializing rx dma channel\n"); 3652 ret = PTR_ERR(cpsw->rxv[0].ch); 3653 goto clean_dma_ret; 3654 } 3655 3656 ale_params.dev = &pdev->dev; 3657 ale_params.ale_ageout = ale_ageout; 3658 ale_params.ale_entries = data->ale_entries; 3659 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3660 3661 cpsw->ale = cpsw_ale_create(&ale_params); 3662 if (!cpsw->ale) { 3663 dev_err(priv->dev, "error initializing ale engine\n"); 3664 ret = -ENODEV; 3665 goto clean_dma_ret; 3666 } 3667 3668 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3669 if (IS_ERR(cpsw->cpts)) { 3670 ret = PTR_ERR(cpsw->cpts); 3671 goto clean_dma_ret; 3672 } 3673 3674 ndev->irq = platform_get_irq(pdev, 1); 3675 if (ndev->irq < 0) { 3676 dev_err(priv->dev, "error getting irq resource\n"); 3677 ret = ndev->irq; 3678 goto clean_dma_ret; 3679 } 3680 3681 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3682 3683 ndev->netdev_ops = &cpsw_netdev_ops; 3684 ndev->ethtool_ops = &cpsw_ethtool_ops; 3685 netif_napi_add(ndev, &cpsw->napi_rx, 3686 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 3687 CPSW_POLL_WEIGHT); 3688 netif_tx_napi_add(ndev, &cpsw->napi_tx, 3689 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 3690 CPSW_POLL_WEIGHT); 3691 cpsw_split_res(ndev); 3692 3693 /* register the network device */ 3694 SET_NETDEV_DEV(ndev, &pdev->dev); 3695 ret = register_netdev(ndev); 3696 if (ret) { 3697 dev_err(priv->dev, "error registering net device\n"); 3698 ret = -ENODEV; 3699 goto clean_dma_ret; 3700 } 3701 3702 if (cpsw->data.dual_emac) { 3703 ret = cpsw_probe_dual_emac(priv); 3704 if (ret) { 3705 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3706 goto clean_unregister_netdev_ret; 3707 } 3708 } 3709 3710 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3711 * MISC IRQs which are always kept disabled with this driver so 3712 * we will not request them. 3713 * 3714 * If anyone wants to implement support for those, make sure to 3715 * first request and append them to irqs_table array. 3716 */ 3717 3718 /* RX IRQ */ 3719 irq = platform_get_irq(pdev, 1); 3720 if (irq < 0) { 3721 ret = irq; 3722 goto clean_dma_ret; 3723 } 3724 3725 cpsw->irqs_table[0] = irq; 3726 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3727 0, dev_name(&pdev->dev), cpsw); 3728 if (ret < 0) { 3729 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3730 goto clean_dma_ret; 3731 } 3732 3733 /* TX IRQ */ 3734 irq = platform_get_irq(pdev, 2); 3735 if (irq < 0) { 3736 ret = irq; 3737 goto clean_dma_ret; 3738 } 3739 3740 cpsw->irqs_table[1] = irq; 3741 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3742 0, dev_name(&pdev->dev), cpsw); 3743 if (ret < 0) { 3744 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3745 goto clean_dma_ret; 3746 } 3747 3748 cpsw_notice(priv, probe, 3749 "initialized device (regs %pa, irq %d, pool size %d)\n", 3750 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3751 3752 pm_runtime_put(&pdev->dev); 3753 3754 return 0; 3755 3756 clean_unregister_netdev_ret: 3757 unregister_netdev(ndev); 3758 clean_dma_ret: 3759 cpdma_ctlr_destroy(cpsw->dma); 3760 clean_dt_ret: 3761 cpsw_remove_dt(pdev); 3762 pm_runtime_put_sync(&pdev->dev); 3763 clean_runtime_disable_ret: 3764 pm_runtime_disable(&pdev->dev); 3765 clean_ndev_ret: 3766 free_netdev(priv->ndev); 3767 return ret; 3768 } 3769 3770 static int cpsw_remove(struct platform_device *pdev) 3771 { 3772 struct net_device *ndev = platform_get_drvdata(pdev); 3773 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3774 int ret; 3775 3776 ret = pm_runtime_get_sync(&pdev->dev); 3777 if (ret < 0) { 3778 pm_runtime_put_noidle(&pdev->dev); 3779 return ret; 3780 } 3781 3782 if (cpsw->data.dual_emac) 3783 unregister_netdev(cpsw->slaves[1].ndev); 3784 unregister_netdev(ndev); 3785 3786 cpts_release(cpsw->cpts); 3787 cpdma_ctlr_destroy(cpsw->dma); 3788 cpsw_remove_dt(pdev); 3789 pm_runtime_put_sync(&pdev->dev); 3790 pm_runtime_disable(&pdev->dev); 3791 if (cpsw->data.dual_emac) 3792 free_netdev(cpsw->slaves[1].ndev); 3793 free_netdev(ndev); 3794 return 0; 3795 } 3796 3797 #ifdef CONFIG_PM_SLEEP 3798 static int cpsw_suspend(struct device *dev) 3799 { 3800 struct net_device *ndev = dev_get_drvdata(dev); 3801 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3802 3803 if (cpsw->data.dual_emac) { 3804 int i; 3805 3806 for (i = 0; i < cpsw->data.slaves; i++) { 3807 if (netif_running(cpsw->slaves[i].ndev)) 3808 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3809 } 3810 } else { 3811 if (netif_running(ndev)) 3812 cpsw_ndo_stop(ndev); 3813 } 3814 3815 /* Select sleep pin state */ 3816 pinctrl_pm_select_sleep_state(dev); 3817 3818 return 0; 3819 } 3820 3821 static int cpsw_resume(struct device *dev) 3822 { 3823 struct net_device *ndev = dev_get_drvdata(dev); 3824 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3825 3826 /* Select default pin state */ 3827 pinctrl_pm_select_default_state(dev); 3828 3829 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3830 rtnl_lock(); 3831 if (cpsw->data.dual_emac) { 3832 int i; 3833 3834 for (i = 0; i < cpsw->data.slaves; i++) { 3835 if (netif_running(cpsw->slaves[i].ndev)) 3836 cpsw_ndo_open(cpsw->slaves[i].ndev); 3837 } 3838 } else { 3839 if (netif_running(ndev)) 3840 cpsw_ndo_open(ndev); 3841 } 3842 rtnl_unlock(); 3843 3844 return 0; 3845 } 3846 #endif 3847 3848 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3849 3850 static struct platform_driver cpsw_driver = { 3851 .driver = { 3852 .name = "cpsw", 3853 .pm = &cpsw_pm_ops, 3854 .of_match_table = cpsw_of_mtable, 3855 }, 3856 .probe = cpsw_probe, 3857 .remove = cpsw_remove, 3858 }; 3859 3860 module_platform_driver(cpsw_driver); 3861 3862 MODULE_LICENSE("GPL"); 3863 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3864 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3865 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3866