xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2006, 2007 Eugene Konev
4  *
5  */
6 
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/moduleparam.h>
10 
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 
18 #include <linux/netdevice.h>
19 #include <linux/if_vlan.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/skbuff.h>
23 #include <linux/mii.h>
24 #include <linux/phy.h>
25 #include <linux/phy_fixed.h>
26 #include <linux/platform_device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/clk.h>
29 #include <linux/gpio.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/mach-ar7/ar7.h>
33 
34 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
35 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
36 MODULE_LICENSE("GPL");
37 MODULE_ALIAS("platform:cpmac");
38 
39 static int debug_level = 8;
40 static int dumb_switch;
41 
42 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
43 module_param(debug_level, int, 0444);
44 module_param(dumb_switch, int, 0444);
45 
46 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
47 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
48 
49 #define CPMAC_VERSION "0.5.2"
50 /* frame size + 802.1q tag + FCS size */
51 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
52 #define CPMAC_QUEUES	8
53 
54 /* Ethernet registers */
55 #define CPMAC_TX_CONTROL		0x0004
56 #define CPMAC_TX_TEARDOWN		0x0008
57 #define CPMAC_RX_CONTROL		0x0014
58 #define CPMAC_RX_TEARDOWN		0x0018
59 #define CPMAC_MBP			0x0100
60 #define MBP_RXPASSCRC			0x40000000
61 #define MBP_RXQOS			0x20000000
62 #define MBP_RXNOCHAIN			0x10000000
63 #define MBP_RXCMF			0x01000000
64 #define MBP_RXSHORT			0x00800000
65 #define MBP_RXCEF			0x00400000
66 #define MBP_RXPROMISC			0x00200000
67 #define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
68 #define MBP_RXBCAST			0x00002000
69 #define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
70 #define MBP_RXMCAST			0x00000020
71 #define MBP_MCASTCHAN(channel)		((channel) & 0x7)
72 #define CPMAC_UNICAST_ENABLE		0x0104
73 #define CPMAC_UNICAST_CLEAR		0x0108
74 #define CPMAC_MAX_LENGTH		0x010c
75 #define CPMAC_BUFFER_OFFSET		0x0110
76 #define CPMAC_MAC_CONTROL		0x0160
77 #define MAC_TXPTYPE			0x00000200
78 #define MAC_TXPACE			0x00000040
79 #define MAC_MII				0x00000020
80 #define MAC_TXFLOW			0x00000010
81 #define MAC_RXFLOW			0x00000008
82 #define MAC_MTEST			0x00000004
83 #define MAC_LOOPBACK			0x00000002
84 #define MAC_FDX				0x00000001
85 #define CPMAC_MAC_STATUS		0x0164
86 #define MAC_STATUS_QOS			0x00000004
87 #define MAC_STATUS_RXFLOW		0x00000002
88 #define MAC_STATUS_TXFLOW		0x00000001
89 #define CPMAC_TX_INT_ENABLE		0x0178
90 #define CPMAC_TX_INT_CLEAR		0x017c
91 #define CPMAC_MAC_INT_VECTOR		0x0180
92 #define MAC_INT_STATUS			0x00080000
93 #define MAC_INT_HOST			0x00040000
94 #define MAC_INT_RX			0x00020000
95 #define MAC_INT_TX			0x00010000
96 #define CPMAC_MAC_EOI_VECTOR		0x0184
97 #define CPMAC_RX_INT_ENABLE		0x0198
98 #define CPMAC_RX_INT_CLEAR		0x019c
99 #define CPMAC_MAC_INT_ENABLE		0x01a8
100 #define CPMAC_MAC_INT_CLEAR		0x01ac
101 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
102 #define CPMAC_MAC_ADDR_MID		0x01d0
103 #define CPMAC_MAC_ADDR_HI		0x01d4
104 #define CPMAC_MAC_HASH_LO		0x01d8
105 #define CPMAC_MAC_HASH_HI		0x01dc
106 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
107 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
108 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
109 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
110 #define CPMAC_REG_END			0x0680
111 
112 /* Rx/Tx statistics
113  * TODO: use some of them to fill stats in cpmac_stats()
114  */
115 #define CPMAC_STATS_RX_GOOD		0x0200
116 #define CPMAC_STATS_RX_BCAST		0x0204
117 #define CPMAC_STATS_RX_MCAST		0x0208
118 #define CPMAC_STATS_RX_PAUSE		0x020c
119 #define CPMAC_STATS_RX_CRC		0x0210
120 #define CPMAC_STATS_RX_ALIGN		0x0214
121 #define CPMAC_STATS_RX_OVER		0x0218
122 #define CPMAC_STATS_RX_JABBER		0x021c
123 #define CPMAC_STATS_RX_UNDER		0x0220
124 #define CPMAC_STATS_RX_FRAG		0x0224
125 #define CPMAC_STATS_RX_FILTER		0x0228
126 #define CPMAC_STATS_RX_QOSFILTER	0x022c
127 #define CPMAC_STATS_RX_OCTETS		0x0230
128 
129 #define CPMAC_STATS_TX_GOOD		0x0234
130 #define CPMAC_STATS_TX_BCAST		0x0238
131 #define CPMAC_STATS_TX_MCAST		0x023c
132 #define CPMAC_STATS_TX_PAUSE		0x0240
133 #define CPMAC_STATS_TX_DEFER		0x0244
134 #define CPMAC_STATS_TX_COLLISION	0x0248
135 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
136 #define CPMAC_STATS_TX_MULTICOLL	0x0250
137 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
138 #define CPMAC_STATS_TX_LATECOLL		0x0258
139 #define CPMAC_STATS_TX_UNDERRUN		0x025c
140 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
141 #define CPMAC_STATS_TX_OCTETS		0x0264
142 
143 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
144 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
145 						(reg)))
146 
147 /* MDIO bus */
148 #define CPMAC_MDIO_VERSION		0x0000
149 #define CPMAC_MDIO_CONTROL		0x0004
150 #define MDIOC_IDLE			0x80000000
151 #define MDIOC_ENABLE			0x40000000
152 #define MDIOC_PREAMBLE			0x00100000
153 #define MDIOC_FAULT			0x00080000
154 #define MDIOC_FAULTDETECT		0x00040000
155 #define MDIOC_INTTEST			0x00020000
156 #define MDIOC_CLKDIV(div)		((div) & 0xff)
157 #define CPMAC_MDIO_ALIVE		0x0008
158 #define CPMAC_MDIO_LINK			0x000c
159 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
160 #define MDIO_BUSY			0x80000000
161 #define MDIO_WRITE			0x40000000
162 #define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
163 #define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
164 #define MDIO_DATA(data)			((data) & 0xffff)
165 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
166 #define PHYSEL_LINKSEL			0x00000040
167 #define PHYSEL_LINKINT			0x00000020
168 
169 struct cpmac_desc {
170 	u32 hw_next;
171 	u32 hw_data;
172 	u16 buflen;
173 	u16 bufflags;
174 	u16 datalen;
175 	u16 dataflags;
176 #define CPMAC_SOP			0x8000
177 #define CPMAC_EOP			0x4000
178 #define CPMAC_OWN			0x2000
179 #define CPMAC_EOQ			0x1000
180 	struct sk_buff *skb;
181 	struct cpmac_desc *next;
182 	struct cpmac_desc *prev;
183 	dma_addr_t mapping;
184 	dma_addr_t data_mapping;
185 };
186 
187 struct cpmac_priv {
188 	spinlock_t lock;
189 	spinlock_t rx_lock;
190 	struct cpmac_desc *rx_head;
191 	int ring_size;
192 	struct cpmac_desc *desc_ring;
193 	dma_addr_t dma_ring;
194 	void __iomem *regs;
195 	struct mii_bus *mii_bus;
196 	char phy_name[MII_BUS_ID_SIZE + 3];
197 	int oldlink, oldspeed, oldduplex;
198 	u32 msg_enable;
199 	struct net_device *dev;
200 	struct work_struct reset_work;
201 	struct platform_device *pdev;
202 	struct napi_struct napi;
203 	atomic_t reset_pending;
204 };
205 
206 static irqreturn_t cpmac_irq(int, void *);
207 static void cpmac_hw_start(struct net_device *dev);
208 static void cpmac_hw_stop(struct net_device *dev);
209 static int cpmac_stop(struct net_device *dev);
210 static int cpmac_open(struct net_device *dev);
211 
212 static void cpmac_dump_regs(struct net_device *dev)
213 {
214 	int i;
215 	struct cpmac_priv *priv = netdev_priv(dev);
216 
217 	for (i = 0; i < CPMAC_REG_END; i += 4) {
218 		if (i % 16 == 0) {
219 			if (i)
220 				printk("\n");
221 			printk("%s: reg[%p]:", dev->name, priv->regs + i);
222 		}
223 		printk(" %08x", cpmac_read(priv->regs, i));
224 	}
225 	printk("\n");
226 }
227 
228 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
229 {
230 	int i;
231 
232 	printk("%s: desc[%p]:", dev->name, desc);
233 	for (i = 0; i < sizeof(*desc) / 4; i++)
234 		printk(" %08x", ((u32 *)desc)[i]);
235 	printk("\n");
236 }
237 
238 static void cpmac_dump_all_desc(struct net_device *dev)
239 {
240 	struct cpmac_priv *priv = netdev_priv(dev);
241 	struct cpmac_desc *dump = priv->rx_head;
242 
243 	do {
244 		cpmac_dump_desc(dev, dump);
245 		dump = dump->next;
246 	} while (dump != priv->rx_head);
247 }
248 
249 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
250 {
251 	int i;
252 
253 	printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
254 	for (i = 0; i < skb->len; i++) {
255 		if (i % 16 == 0) {
256 			if (i)
257 				printk("\n");
258 			printk("%s: data[%p]:", dev->name, skb->data + i);
259 		}
260 		printk(" %02x", ((u8 *)skb->data)[i]);
261 	}
262 	printk("\n");
263 }
264 
265 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
266 {
267 	u32 val;
268 
269 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
270 		cpu_relax();
271 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
272 		    MDIO_PHY(phy_id));
273 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
274 		cpu_relax();
275 
276 	return MDIO_DATA(val);
277 }
278 
279 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
280 			    int reg, u16 val)
281 {
282 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
283 		cpu_relax();
284 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
285 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
286 
287 	return 0;
288 }
289 
290 static int cpmac_mdio_reset(struct mii_bus *bus)
291 {
292 	struct clk *cpmac_clk;
293 
294 	cpmac_clk = clk_get(&bus->dev, "cpmac");
295 	if (IS_ERR(cpmac_clk)) {
296 		pr_err("unable to get cpmac clock\n");
297 		return -1;
298 	}
299 	ar7_device_reset(AR7_RESET_BIT_MDIO);
300 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
301 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
302 
303 	return 0;
304 }
305 
306 static struct mii_bus *cpmac_mii;
307 
308 static void cpmac_set_multicast_list(struct net_device *dev)
309 {
310 	struct netdev_hw_addr *ha;
311 	u8 tmp;
312 	u32 mbp, bit, hash[2] = { 0, };
313 	struct cpmac_priv *priv = netdev_priv(dev);
314 
315 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
316 	if (dev->flags & IFF_PROMISC) {
317 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
318 			    MBP_RXPROMISC);
319 	} else {
320 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
321 		if (dev->flags & IFF_ALLMULTI) {
322 			/* enable all multicast mode */
323 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
324 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
325 		} else {
326 			/* cpmac uses some strange mac address hashing
327 			 * (not crc32)
328 			 */
329 			netdev_for_each_mc_addr(ha, dev) {
330 				bit = 0;
331 				tmp = ha->addr[0];
332 				bit  ^= (tmp >> 2) ^ (tmp << 4);
333 				tmp = ha->addr[1];
334 				bit  ^= (tmp >> 4) ^ (tmp << 2);
335 				tmp = ha->addr[2];
336 				bit  ^= (tmp >> 6) ^ tmp;
337 				tmp = ha->addr[3];
338 				bit  ^= (tmp >> 2) ^ (tmp << 4);
339 				tmp = ha->addr[4];
340 				bit  ^= (tmp >> 4) ^ (tmp << 2);
341 				tmp = ha->addr[5];
342 				bit  ^= (tmp >> 6) ^ tmp;
343 				bit &= 0x3f;
344 				hash[bit / 32] |= 1 << (bit % 32);
345 			}
346 
347 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
348 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
349 		}
350 	}
351 }
352 
353 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
354 				    struct cpmac_desc *desc)
355 {
356 	struct sk_buff *skb, *result = NULL;
357 
358 	if (unlikely(netif_msg_hw(priv)))
359 		cpmac_dump_desc(priv->dev, desc);
360 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
361 	if (unlikely(!desc->datalen)) {
362 		if (netif_msg_rx_err(priv) && net_ratelimit())
363 			netdev_warn(priv->dev, "rx: spurious interrupt\n");
364 
365 		return NULL;
366 	}
367 
368 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
369 	if (likely(skb)) {
370 		skb_put(desc->skb, desc->datalen);
371 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
372 		skb_checksum_none_assert(desc->skb);
373 		priv->dev->stats.rx_packets++;
374 		priv->dev->stats.rx_bytes += desc->datalen;
375 		result = desc->skb;
376 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
377 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
378 		desc->skb = skb;
379 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
380 						    CPMAC_SKB_SIZE,
381 						    DMA_FROM_DEVICE);
382 		desc->hw_data = (u32)desc->data_mapping;
383 		if (unlikely(netif_msg_pktdata(priv))) {
384 			netdev_dbg(priv->dev, "received packet:\n");
385 			cpmac_dump_skb(priv->dev, result);
386 		}
387 	} else {
388 		if (netif_msg_rx_err(priv) && net_ratelimit())
389 			netdev_warn(priv->dev,
390 				    "low on skbs, dropping packet\n");
391 
392 		priv->dev->stats.rx_dropped++;
393 	}
394 
395 	desc->buflen = CPMAC_SKB_SIZE;
396 	desc->dataflags = CPMAC_OWN;
397 
398 	return result;
399 }
400 
401 static int cpmac_poll(struct napi_struct *napi, int budget)
402 {
403 	struct sk_buff *skb;
404 	struct cpmac_desc *desc, *restart;
405 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
406 	int received = 0, processed = 0;
407 
408 	spin_lock(&priv->rx_lock);
409 	if (unlikely(!priv->rx_head)) {
410 		if (netif_msg_rx_err(priv) && net_ratelimit())
411 			netdev_warn(priv->dev, "rx: polling, but no queue\n");
412 
413 		spin_unlock(&priv->rx_lock);
414 		napi_complete(napi);
415 		return 0;
416 	}
417 
418 	desc = priv->rx_head;
419 	restart = NULL;
420 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
421 		processed++;
422 
423 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
424 			/* The last update to eoq->hw_next didn't happen
425 			 * soon enough, and the receiver stopped here.
426 			 * Remember this descriptor so we can restart
427 			 * the receiver after freeing some space.
428 			 */
429 			if (unlikely(restart)) {
430 				if (netif_msg_rx_err(priv))
431 					netdev_err(priv->dev, "poll found a"
432 						   " duplicate EOQ: %p and %p\n",
433 						   restart, desc);
434 				goto fatal_error;
435 			}
436 
437 			restart = desc->next;
438 		}
439 
440 		skb = cpmac_rx_one(priv, desc);
441 		if (likely(skb)) {
442 			netif_receive_skb(skb);
443 			received++;
444 		}
445 		desc = desc->next;
446 	}
447 
448 	if (desc != priv->rx_head) {
449 		/* We freed some buffers, but not the whole ring,
450 		 * add what we did free to the rx list
451 		 */
452 		desc->prev->hw_next = (u32)0;
453 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
454 	}
455 
456 	/* Optimization: If we did not actually process an EOQ (perhaps because
457 	 * of quota limits), check to see if the tail of the queue has EOQ set.
458 	 * We should immediately restart in that case so that the receiver can
459 	 * restart and run in parallel with more packet processing.
460 	 * This lets us handle slightly larger bursts before running
461 	 * out of ring space (assuming dev->weight < ring_size)
462 	 */
463 
464 	if (!restart &&
465 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
466 		    == CPMAC_EOQ &&
467 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
468 		/* reset EOQ so the poll loop (above) doesn't try to
469 		 * restart this when it eventually gets to this descriptor.
470 		 */
471 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
472 		restart = priv->rx_head;
473 	}
474 
475 	if (restart) {
476 		priv->dev->stats.rx_errors++;
477 		priv->dev->stats.rx_fifo_errors++;
478 		if (netif_msg_rx_err(priv) && net_ratelimit())
479 			netdev_warn(priv->dev, "rx dma ring overrun\n");
480 
481 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
482 			if (netif_msg_drv(priv))
483 				netdev_err(priv->dev, "cpmac_poll is trying "
484 					"to restart rx from a descriptor "
485 					"that's not free: %p\n", restart);
486 			goto fatal_error;
487 		}
488 
489 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
490 	}
491 
492 	priv->rx_head = desc;
493 	spin_unlock(&priv->rx_lock);
494 	if (unlikely(netif_msg_rx_status(priv)))
495 		netdev_dbg(priv->dev, "poll processed %d packets\n", received);
496 
497 	if (processed == 0) {
498 		/* we ran out of packets to read,
499 		 * revert to interrupt-driven mode
500 		 */
501 		napi_complete(napi);
502 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
503 		return 0;
504 	}
505 
506 	return 1;
507 
508 fatal_error:
509 	/* Something went horribly wrong.
510 	 * Reset hardware to try to recover rather than wedging.
511 	 */
512 	if (netif_msg_drv(priv)) {
513 		netdev_err(priv->dev, "cpmac_poll is confused. "
514 			   "Resetting hardware\n");
515 		cpmac_dump_all_desc(priv->dev);
516 		netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
517 			   cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
518 			   cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
519 	}
520 
521 	spin_unlock(&priv->rx_lock);
522 	napi_complete(napi);
523 	netif_tx_stop_all_queues(priv->dev);
524 	napi_disable(&priv->napi);
525 
526 	atomic_inc(&priv->reset_pending);
527 	cpmac_hw_stop(priv->dev);
528 	if (!schedule_work(&priv->reset_work))
529 		atomic_dec(&priv->reset_pending);
530 
531 	return 0;
532 
533 }
534 
535 static netdev_tx_t cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
536 {
537 	int queue;
538 	unsigned int len;
539 	struct cpmac_desc *desc;
540 	struct cpmac_priv *priv = netdev_priv(dev);
541 
542 	if (unlikely(atomic_read(&priv->reset_pending)))
543 		return NETDEV_TX_BUSY;
544 
545 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
546 		return NETDEV_TX_OK;
547 
548 	len = max_t(unsigned int, skb->len, ETH_ZLEN);
549 	queue = skb_get_queue_mapping(skb);
550 	netif_stop_subqueue(dev, queue);
551 
552 	desc = &priv->desc_ring[queue];
553 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
554 		if (netif_msg_tx_err(priv) && net_ratelimit())
555 			netdev_warn(dev, "tx dma ring full\n");
556 
557 		return NETDEV_TX_BUSY;
558 	}
559 
560 	spin_lock(&priv->lock);
561 	spin_unlock(&priv->lock);
562 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
563 	desc->skb = skb;
564 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
565 					    DMA_TO_DEVICE);
566 	desc->hw_data = (u32)desc->data_mapping;
567 	desc->datalen = len;
568 	desc->buflen = len;
569 	if (unlikely(netif_msg_tx_queued(priv)))
570 		netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
571 	if (unlikely(netif_msg_hw(priv)))
572 		cpmac_dump_desc(dev, desc);
573 	if (unlikely(netif_msg_pktdata(priv)))
574 		cpmac_dump_skb(dev, skb);
575 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
576 
577 	return NETDEV_TX_OK;
578 }
579 
580 static void cpmac_end_xmit(struct net_device *dev, int queue)
581 {
582 	struct cpmac_desc *desc;
583 	struct cpmac_priv *priv = netdev_priv(dev);
584 
585 	desc = &priv->desc_ring[queue];
586 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
587 	if (likely(desc->skb)) {
588 		spin_lock(&priv->lock);
589 		dev->stats.tx_packets++;
590 		dev->stats.tx_bytes += desc->skb->len;
591 		spin_unlock(&priv->lock);
592 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
593 				 DMA_TO_DEVICE);
594 
595 		if (unlikely(netif_msg_tx_done(priv)))
596 			netdev_dbg(dev, "sent 0x%p, len=%d\n",
597 				   desc->skb, desc->skb->len);
598 
599 		dev_consume_skb_irq(desc->skb);
600 		desc->skb = NULL;
601 		if (__netif_subqueue_stopped(dev, queue))
602 			netif_wake_subqueue(dev, queue);
603 	} else {
604 		if (netif_msg_tx_err(priv) && net_ratelimit())
605 			netdev_warn(dev, "end_xmit: spurious interrupt\n");
606 		if (__netif_subqueue_stopped(dev, queue))
607 			netif_wake_subqueue(dev, queue);
608 	}
609 }
610 
611 static void cpmac_hw_stop(struct net_device *dev)
612 {
613 	int i;
614 	struct cpmac_priv *priv = netdev_priv(dev);
615 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
616 
617 	ar7_device_reset(pdata->reset_bit);
618 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
619 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
620 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
621 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
622 	for (i = 0; i < 8; i++) {
623 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
624 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
625 	}
626 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
627 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
628 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
629 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
630 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
631 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
632 }
633 
634 static void cpmac_hw_start(struct net_device *dev)
635 {
636 	int i;
637 	struct cpmac_priv *priv = netdev_priv(dev);
638 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
639 
640 	ar7_device_reset(pdata->reset_bit);
641 	for (i = 0; i < 8; i++) {
642 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
643 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
644 	}
645 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
646 
647 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
648 		    MBP_RXMCAST);
649 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
650 	for (i = 0; i < 8; i++)
651 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
652 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
653 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
654 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
655 		    (dev->dev_addr[3] << 24));
656 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
657 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
658 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
659 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
660 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
661 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
662 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
663 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
664 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
665 
666 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
667 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
668 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
669 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
670 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
671 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
672 		    MAC_FDX);
673 }
674 
675 static void cpmac_clear_rx(struct net_device *dev)
676 {
677 	struct cpmac_priv *priv = netdev_priv(dev);
678 	struct cpmac_desc *desc;
679 	int i;
680 
681 	if (unlikely(!priv->rx_head))
682 		return;
683 	desc = priv->rx_head;
684 	for (i = 0; i < priv->ring_size; i++) {
685 		if ((desc->dataflags & CPMAC_OWN) == 0) {
686 			if (netif_msg_rx_err(priv) && net_ratelimit())
687 				netdev_warn(dev, "packet dropped\n");
688 			if (unlikely(netif_msg_hw(priv)))
689 				cpmac_dump_desc(dev, desc);
690 			desc->dataflags = CPMAC_OWN;
691 			dev->stats.rx_dropped++;
692 		}
693 		desc->hw_next = desc->next->mapping;
694 		desc = desc->next;
695 	}
696 	priv->rx_head->prev->hw_next = 0;
697 }
698 
699 static void cpmac_clear_tx(struct net_device *dev)
700 {
701 	struct cpmac_priv *priv = netdev_priv(dev);
702 	int i;
703 
704 	if (unlikely(!priv->desc_ring))
705 		return;
706 	for (i = 0; i < CPMAC_QUEUES; i++) {
707 		priv->desc_ring[i].dataflags = 0;
708 		if (priv->desc_ring[i].skb) {
709 			dev_kfree_skb_any(priv->desc_ring[i].skb);
710 			priv->desc_ring[i].skb = NULL;
711 		}
712 	}
713 }
714 
715 static void cpmac_hw_error(struct work_struct *work)
716 {
717 	struct cpmac_priv *priv =
718 		container_of(work, struct cpmac_priv, reset_work);
719 
720 	spin_lock(&priv->rx_lock);
721 	cpmac_clear_rx(priv->dev);
722 	spin_unlock(&priv->rx_lock);
723 	cpmac_clear_tx(priv->dev);
724 	cpmac_hw_start(priv->dev);
725 	barrier();
726 	atomic_dec(&priv->reset_pending);
727 
728 	netif_tx_wake_all_queues(priv->dev);
729 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
730 }
731 
732 static void cpmac_check_status(struct net_device *dev)
733 {
734 	struct cpmac_priv *priv = netdev_priv(dev);
735 
736 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
737 	int rx_channel = (macstatus >> 8) & 7;
738 	int rx_code = (macstatus >> 12) & 15;
739 	int tx_channel = (macstatus >> 16) & 7;
740 	int tx_code = (macstatus >> 20) & 15;
741 
742 	if (rx_code || tx_code) {
743 		if (netif_msg_drv(priv) && net_ratelimit()) {
744 			/* Can't find any documentation on what these
745 			 * error codes actually are. So just log them and hope..
746 			 */
747 			if (rx_code)
748 				netdev_warn(dev, "host error %d on rx "
749 					"channel %d (macstatus %08x), resetting\n",
750 					rx_code, rx_channel, macstatus);
751 			if (tx_code)
752 				netdev_warn(dev, "host error %d on tx "
753 					"channel %d (macstatus %08x), resetting\n",
754 					tx_code, tx_channel, macstatus);
755 		}
756 
757 		netif_tx_stop_all_queues(dev);
758 		cpmac_hw_stop(dev);
759 		if (schedule_work(&priv->reset_work))
760 			atomic_inc(&priv->reset_pending);
761 		if (unlikely(netif_msg_hw(priv)))
762 			cpmac_dump_regs(dev);
763 	}
764 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
765 }
766 
767 static irqreturn_t cpmac_irq(int irq, void *dev_id)
768 {
769 	struct net_device *dev = dev_id;
770 	struct cpmac_priv *priv;
771 	int queue;
772 	u32 status;
773 
774 	priv = netdev_priv(dev);
775 
776 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
777 
778 	if (unlikely(netif_msg_intr(priv)))
779 		netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
780 
781 	if (status & MAC_INT_TX)
782 		cpmac_end_xmit(dev, (status & 7));
783 
784 	if (status & MAC_INT_RX) {
785 		queue = (status >> 8) & 7;
786 		if (napi_schedule_prep(&priv->napi)) {
787 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
788 			__napi_schedule(&priv->napi);
789 		}
790 	}
791 
792 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
793 
794 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
795 		cpmac_check_status(dev);
796 
797 	return IRQ_HANDLED;
798 }
799 
800 static void cpmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
801 {
802 	struct cpmac_priv *priv = netdev_priv(dev);
803 
804 	spin_lock(&priv->lock);
805 	dev->stats.tx_errors++;
806 	spin_unlock(&priv->lock);
807 	if (netif_msg_tx_err(priv) && net_ratelimit())
808 		netdev_warn(dev, "transmit timeout\n");
809 
810 	atomic_inc(&priv->reset_pending);
811 	barrier();
812 	cpmac_clear_tx(dev);
813 	barrier();
814 	atomic_dec(&priv->reset_pending);
815 
816 	netif_tx_wake_all_queues(priv->dev);
817 }
818 
819 static void cpmac_get_ringparam(struct net_device *dev,
820 						struct ethtool_ringparam *ring)
821 {
822 	struct cpmac_priv *priv = netdev_priv(dev);
823 
824 	ring->rx_max_pending = 1024;
825 	ring->rx_mini_max_pending = 1;
826 	ring->rx_jumbo_max_pending = 1;
827 	ring->tx_max_pending = 1;
828 
829 	ring->rx_pending = priv->ring_size;
830 	ring->rx_mini_pending = 1;
831 	ring->rx_jumbo_pending = 1;
832 	ring->tx_pending = 1;
833 }
834 
835 static int cpmac_set_ringparam(struct net_device *dev,
836 						struct ethtool_ringparam *ring)
837 {
838 	struct cpmac_priv *priv = netdev_priv(dev);
839 
840 	if (netif_running(dev))
841 		return -EBUSY;
842 	priv->ring_size = ring->rx_pending;
843 
844 	return 0;
845 }
846 
847 static void cpmac_get_drvinfo(struct net_device *dev,
848 			      struct ethtool_drvinfo *info)
849 {
850 	strlcpy(info->driver, "cpmac", sizeof(info->driver));
851 	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
852 	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
853 }
854 
855 static const struct ethtool_ops cpmac_ethtool_ops = {
856 	.get_drvinfo = cpmac_get_drvinfo,
857 	.get_link = ethtool_op_get_link,
858 	.get_ringparam = cpmac_get_ringparam,
859 	.set_ringparam = cpmac_set_ringparam,
860 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
861 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
862 };
863 
864 static void cpmac_adjust_link(struct net_device *dev)
865 {
866 	struct cpmac_priv *priv = netdev_priv(dev);
867 	int new_state = 0;
868 
869 	spin_lock(&priv->lock);
870 	if (dev->phydev->link) {
871 		netif_tx_start_all_queues(dev);
872 		if (dev->phydev->duplex != priv->oldduplex) {
873 			new_state = 1;
874 			priv->oldduplex = dev->phydev->duplex;
875 		}
876 
877 		if (dev->phydev->speed != priv->oldspeed) {
878 			new_state = 1;
879 			priv->oldspeed = dev->phydev->speed;
880 		}
881 
882 		if (!priv->oldlink) {
883 			new_state = 1;
884 			priv->oldlink = 1;
885 		}
886 	} else if (priv->oldlink) {
887 		new_state = 1;
888 		priv->oldlink = 0;
889 		priv->oldspeed = 0;
890 		priv->oldduplex = -1;
891 	}
892 
893 	if (new_state && netif_msg_link(priv) && net_ratelimit())
894 		phy_print_status(dev->phydev);
895 
896 	spin_unlock(&priv->lock);
897 }
898 
899 static int cpmac_open(struct net_device *dev)
900 {
901 	int i, size, res;
902 	struct cpmac_priv *priv = netdev_priv(dev);
903 	struct resource *mem;
904 	struct cpmac_desc *desc;
905 	struct sk_buff *skb;
906 
907 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
908 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
909 		if (netif_msg_drv(priv))
910 			netdev_err(dev, "failed to request registers\n");
911 
912 		res = -ENXIO;
913 		goto fail_reserve;
914 	}
915 
916 	priv->regs = ioremap(mem->start, resource_size(mem));
917 	if (!priv->regs) {
918 		if (netif_msg_drv(priv))
919 			netdev_err(dev, "failed to remap registers\n");
920 
921 		res = -ENXIO;
922 		goto fail_remap;
923 	}
924 
925 	size = priv->ring_size + CPMAC_QUEUES;
926 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
927 					     sizeof(struct cpmac_desc) * size,
928 					     &priv->dma_ring,
929 					     GFP_KERNEL);
930 	if (!priv->desc_ring) {
931 		res = -ENOMEM;
932 		goto fail_alloc;
933 	}
934 
935 	for (i = 0; i < size; i++)
936 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
937 
938 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
939 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
940 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
941 		if (unlikely(!skb)) {
942 			res = -ENOMEM;
943 			goto fail_desc;
944 		}
945 		desc->skb = skb;
946 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
947 						    CPMAC_SKB_SIZE,
948 						    DMA_FROM_DEVICE);
949 		desc->hw_data = (u32)desc->data_mapping;
950 		desc->buflen = CPMAC_SKB_SIZE;
951 		desc->dataflags = CPMAC_OWN;
952 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
953 		desc->next->prev = desc;
954 		desc->hw_next = (u32)desc->next->mapping;
955 	}
956 
957 	priv->rx_head->prev->hw_next = (u32)0;
958 
959 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
960 	if (res) {
961 		if (netif_msg_drv(priv))
962 			netdev_err(dev, "failed to obtain irq\n");
963 
964 		goto fail_irq;
965 	}
966 
967 	atomic_set(&priv->reset_pending, 0);
968 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
969 	cpmac_hw_start(dev);
970 
971 	napi_enable(&priv->napi);
972 	phy_start(dev->phydev);
973 
974 	return 0;
975 
976 fail_irq:
977 fail_desc:
978 	for (i = 0; i < priv->ring_size; i++) {
979 		if (priv->rx_head[i].skb) {
980 			dma_unmap_single(&dev->dev,
981 					 priv->rx_head[i].data_mapping,
982 					 CPMAC_SKB_SIZE,
983 					 DMA_FROM_DEVICE);
984 			kfree_skb(priv->rx_head[i].skb);
985 		}
986 	}
987 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * size,
988 			  priv->desc_ring, priv->dma_ring);
989 
990 fail_alloc:
991 	iounmap(priv->regs);
992 
993 fail_remap:
994 	release_mem_region(mem->start, resource_size(mem));
995 
996 fail_reserve:
997 	return res;
998 }
999 
1000 static int cpmac_stop(struct net_device *dev)
1001 {
1002 	int i;
1003 	struct cpmac_priv *priv = netdev_priv(dev);
1004 	struct resource *mem;
1005 
1006 	netif_tx_stop_all_queues(dev);
1007 
1008 	cancel_work_sync(&priv->reset_work);
1009 	napi_disable(&priv->napi);
1010 	phy_stop(dev->phydev);
1011 
1012 	cpmac_hw_stop(dev);
1013 
1014 	for (i = 0; i < 8; i++)
1015 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1016 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1017 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1018 
1019 	free_irq(dev->irq, dev);
1020 	iounmap(priv->regs);
1021 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1022 	release_mem_region(mem->start, resource_size(mem));
1023 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1024 	for (i = 0; i < priv->ring_size; i++) {
1025 		if (priv->rx_head[i].skb) {
1026 			dma_unmap_single(&dev->dev,
1027 					 priv->rx_head[i].data_mapping,
1028 					 CPMAC_SKB_SIZE,
1029 					 DMA_FROM_DEVICE);
1030 			kfree_skb(priv->rx_head[i].skb);
1031 		}
1032 	}
1033 
1034 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1035 			  (CPMAC_QUEUES + priv->ring_size),
1036 			  priv->desc_ring, priv->dma_ring);
1037 
1038 	return 0;
1039 }
1040 
1041 static const struct net_device_ops cpmac_netdev_ops = {
1042 	.ndo_open		= cpmac_open,
1043 	.ndo_stop		= cpmac_stop,
1044 	.ndo_start_xmit		= cpmac_start_xmit,
1045 	.ndo_tx_timeout		= cpmac_tx_timeout,
1046 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1047 	.ndo_do_ioctl		= phy_do_ioctl_running,
1048 	.ndo_validate_addr	= eth_validate_addr,
1049 	.ndo_set_mac_address	= eth_mac_addr,
1050 };
1051 
1052 static int external_switch;
1053 
1054 static int cpmac_probe(struct platform_device *pdev)
1055 {
1056 	int rc, phy_id;
1057 	char mdio_bus_id[MII_BUS_ID_SIZE];
1058 	struct resource *mem;
1059 	struct cpmac_priv *priv;
1060 	struct net_device *dev;
1061 	struct plat_cpmac_data *pdata;
1062 	struct phy_device *phydev = NULL;
1063 
1064 	pdata = dev_get_platdata(&pdev->dev);
1065 
1066 	if (external_switch || dumb_switch) {
1067 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1068 		phy_id = pdev->id;
1069 	} else {
1070 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1071 			if (!(pdata->phy_mask & (1 << phy_id)))
1072 				continue;
1073 			if (!mdiobus_get_phy(cpmac_mii, phy_id))
1074 				continue;
1075 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1076 			break;
1077 		}
1078 	}
1079 
1080 	if (phy_id == PHY_MAX_ADDR) {
1081 		dev_err(&pdev->dev, "no PHY present, falling back "
1082 			"to switch on MDIO bus 0\n");
1083 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1084 		phy_id = pdev->id;
1085 	}
1086 	mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1087 
1088 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1089 	if (!dev)
1090 		return -ENOMEM;
1091 
1092 	SET_NETDEV_DEV(dev, &pdev->dev);
1093 	platform_set_drvdata(pdev, dev);
1094 	priv = netdev_priv(dev);
1095 
1096 	priv->pdev = pdev;
1097 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1098 	if (!mem) {
1099 		rc = -ENODEV;
1100 		goto fail;
1101 	}
1102 
1103 	dev->irq = platform_get_irq_byname(pdev, "irq");
1104 
1105 	dev->netdev_ops = &cpmac_netdev_ops;
1106 	dev->ethtool_ops = &cpmac_ethtool_ops;
1107 
1108 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1109 
1110 	spin_lock_init(&priv->lock);
1111 	spin_lock_init(&priv->rx_lock);
1112 	priv->dev = dev;
1113 	priv->ring_size = 64;
1114 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1115 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1116 
1117 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1118 						mdio_bus_id, phy_id);
1119 
1120 	phydev = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1121 			     PHY_INTERFACE_MODE_MII);
1122 
1123 	if (IS_ERR(phydev)) {
1124 		if (netif_msg_drv(priv))
1125 			dev_err(&pdev->dev, "Could not attach to PHY\n");
1126 
1127 		rc = PTR_ERR(phydev);
1128 		goto fail;
1129 	}
1130 
1131 	rc = register_netdev(dev);
1132 	if (rc) {
1133 		dev_err(&pdev->dev, "Could not register net device\n");
1134 		goto fail;
1135 	}
1136 
1137 	if (netif_msg_probe(priv)) {
1138 		dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1139 			 "mac: %pM\n", (void *)mem->start, dev->irq,
1140 			 priv->phy_name, dev->dev_addr);
1141 	}
1142 
1143 	return 0;
1144 
1145 fail:
1146 	free_netdev(dev);
1147 	return rc;
1148 }
1149 
1150 static int cpmac_remove(struct platform_device *pdev)
1151 {
1152 	struct net_device *dev = platform_get_drvdata(pdev);
1153 
1154 	unregister_netdev(dev);
1155 	free_netdev(dev);
1156 
1157 	return 0;
1158 }
1159 
1160 static struct platform_driver cpmac_driver = {
1161 	.driver = {
1162 		.name 	= "cpmac",
1163 	},
1164 	.probe 	= cpmac_probe,
1165 	.remove = cpmac_remove,
1166 };
1167 
1168 int cpmac_init(void)
1169 {
1170 	u32 mask;
1171 	int i, res;
1172 
1173 	cpmac_mii = mdiobus_alloc();
1174 	if (cpmac_mii == NULL)
1175 		return -ENOMEM;
1176 
1177 	cpmac_mii->name = "cpmac-mii";
1178 	cpmac_mii->read = cpmac_mdio_read;
1179 	cpmac_mii->write = cpmac_mdio_write;
1180 	cpmac_mii->reset = cpmac_mdio_reset;
1181 
1182 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1183 
1184 	if (!cpmac_mii->priv) {
1185 		pr_err("Can't ioremap mdio registers\n");
1186 		res = -ENXIO;
1187 		goto fail_alloc;
1188 	}
1189 
1190 	/* FIXME: unhardcode gpio&reset bits */
1191 	ar7_gpio_disable(26);
1192 	ar7_gpio_disable(27);
1193 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1194 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1195 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1196 
1197 	cpmac_mii->reset(cpmac_mii);
1198 
1199 	for (i = 0; i < 300; i++) {
1200 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1201 		if (mask)
1202 			break;
1203 		else
1204 			msleep(10);
1205 	}
1206 
1207 	mask &= 0x7fffffff;
1208 	if (mask & (mask - 1)) {
1209 		external_switch = 1;
1210 		mask = 0;
1211 	}
1212 
1213 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1214 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1215 
1216 	res = mdiobus_register(cpmac_mii);
1217 	if (res)
1218 		goto fail_mii;
1219 
1220 	res = platform_driver_register(&cpmac_driver);
1221 	if (res)
1222 		goto fail_cpmac;
1223 
1224 	return 0;
1225 
1226 fail_cpmac:
1227 	mdiobus_unregister(cpmac_mii);
1228 
1229 fail_mii:
1230 	iounmap(cpmac_mii->priv);
1231 
1232 fail_alloc:
1233 	mdiobus_free(cpmac_mii);
1234 
1235 	return res;
1236 }
1237 
1238 void cpmac_exit(void)
1239 {
1240 	platform_driver_unregister(&cpmac_driver);
1241 	mdiobus_unregister(cpmac_mii);
1242 	iounmap(cpmac_mii->priv);
1243 	mdiobus_free(cpmac_mii);
1244 }
1245 
1246 module_init(cpmac_init);
1247 module_exit(cpmac_exit);
1248