1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2006, 2007 Eugene Konev 4 * 5 */ 6 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/moduleparam.h> 10 11 #include <linux/sched.h> 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 18 #include <linux/netdevice.h> 19 #include <linux/if_vlan.h> 20 #include <linux/etherdevice.h> 21 #include <linux/ethtool.h> 22 #include <linux/skbuff.h> 23 #include <linux/mii.h> 24 #include <linux/phy.h> 25 #include <linux/phy_fixed.h> 26 #include <linux/platform_device.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/clk.h> 29 #include <linux/gpio.h> 30 #include <linux/atomic.h> 31 32 #include <asm/mach-ar7/ar7.h> 33 34 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>"); 35 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)"); 36 MODULE_LICENSE("GPL"); 37 MODULE_ALIAS("platform:cpmac"); 38 39 static int debug_level = 8; 40 static int dumb_switch; 41 42 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */ 43 module_param(debug_level, int, 0444); 44 module_param(dumb_switch, int, 0444); 45 46 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable"); 47 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus"); 48 49 #define CPMAC_VERSION "0.5.2" 50 /* frame size + 802.1q tag + FCS size */ 51 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN) 52 #define CPMAC_QUEUES 8 53 54 /* Ethernet registers */ 55 #define CPMAC_TX_CONTROL 0x0004 56 #define CPMAC_TX_TEARDOWN 0x0008 57 #define CPMAC_RX_CONTROL 0x0014 58 #define CPMAC_RX_TEARDOWN 0x0018 59 #define CPMAC_MBP 0x0100 60 #define MBP_RXPASSCRC 0x40000000 61 #define MBP_RXQOS 0x20000000 62 #define MBP_RXNOCHAIN 0x10000000 63 #define MBP_RXCMF 0x01000000 64 #define MBP_RXSHORT 0x00800000 65 #define MBP_RXCEF 0x00400000 66 #define MBP_RXPROMISC 0x00200000 67 #define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16) 68 #define MBP_RXBCAST 0x00002000 69 #define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8) 70 #define MBP_RXMCAST 0x00000020 71 #define MBP_MCASTCHAN(channel) ((channel) & 0x7) 72 #define CPMAC_UNICAST_ENABLE 0x0104 73 #define CPMAC_UNICAST_CLEAR 0x0108 74 #define CPMAC_MAX_LENGTH 0x010c 75 #define CPMAC_BUFFER_OFFSET 0x0110 76 #define CPMAC_MAC_CONTROL 0x0160 77 #define MAC_TXPTYPE 0x00000200 78 #define MAC_TXPACE 0x00000040 79 #define MAC_MII 0x00000020 80 #define MAC_TXFLOW 0x00000010 81 #define MAC_RXFLOW 0x00000008 82 #define MAC_MTEST 0x00000004 83 #define MAC_LOOPBACK 0x00000002 84 #define MAC_FDX 0x00000001 85 #define CPMAC_MAC_STATUS 0x0164 86 #define MAC_STATUS_QOS 0x00000004 87 #define MAC_STATUS_RXFLOW 0x00000002 88 #define MAC_STATUS_TXFLOW 0x00000001 89 #define CPMAC_TX_INT_ENABLE 0x0178 90 #define CPMAC_TX_INT_CLEAR 0x017c 91 #define CPMAC_MAC_INT_VECTOR 0x0180 92 #define MAC_INT_STATUS 0x00080000 93 #define MAC_INT_HOST 0x00040000 94 #define MAC_INT_RX 0x00020000 95 #define MAC_INT_TX 0x00010000 96 #define CPMAC_MAC_EOI_VECTOR 0x0184 97 #define CPMAC_RX_INT_ENABLE 0x0198 98 #define CPMAC_RX_INT_CLEAR 0x019c 99 #define CPMAC_MAC_INT_ENABLE 0x01a8 100 #define CPMAC_MAC_INT_CLEAR 0x01ac 101 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4) 102 #define CPMAC_MAC_ADDR_MID 0x01d0 103 #define CPMAC_MAC_ADDR_HI 0x01d4 104 #define CPMAC_MAC_HASH_LO 0x01d8 105 #define CPMAC_MAC_HASH_HI 0x01dc 106 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4) 107 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4) 108 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4) 109 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4) 110 #define CPMAC_REG_END 0x0680 111 112 /* Rx/Tx statistics 113 * TODO: use some of them to fill stats in cpmac_stats() 114 */ 115 #define CPMAC_STATS_RX_GOOD 0x0200 116 #define CPMAC_STATS_RX_BCAST 0x0204 117 #define CPMAC_STATS_RX_MCAST 0x0208 118 #define CPMAC_STATS_RX_PAUSE 0x020c 119 #define CPMAC_STATS_RX_CRC 0x0210 120 #define CPMAC_STATS_RX_ALIGN 0x0214 121 #define CPMAC_STATS_RX_OVER 0x0218 122 #define CPMAC_STATS_RX_JABBER 0x021c 123 #define CPMAC_STATS_RX_UNDER 0x0220 124 #define CPMAC_STATS_RX_FRAG 0x0224 125 #define CPMAC_STATS_RX_FILTER 0x0228 126 #define CPMAC_STATS_RX_QOSFILTER 0x022c 127 #define CPMAC_STATS_RX_OCTETS 0x0230 128 129 #define CPMAC_STATS_TX_GOOD 0x0234 130 #define CPMAC_STATS_TX_BCAST 0x0238 131 #define CPMAC_STATS_TX_MCAST 0x023c 132 #define CPMAC_STATS_TX_PAUSE 0x0240 133 #define CPMAC_STATS_TX_DEFER 0x0244 134 #define CPMAC_STATS_TX_COLLISION 0x0248 135 #define CPMAC_STATS_TX_SINGLECOLL 0x024c 136 #define CPMAC_STATS_TX_MULTICOLL 0x0250 137 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254 138 #define CPMAC_STATS_TX_LATECOLL 0x0258 139 #define CPMAC_STATS_TX_UNDERRUN 0x025c 140 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260 141 #define CPMAC_STATS_TX_OCTETS 0x0264 142 143 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg))) 144 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \ 145 (reg))) 146 147 /* MDIO bus */ 148 #define CPMAC_MDIO_VERSION 0x0000 149 #define CPMAC_MDIO_CONTROL 0x0004 150 #define MDIOC_IDLE 0x80000000 151 #define MDIOC_ENABLE 0x40000000 152 #define MDIOC_PREAMBLE 0x00100000 153 #define MDIOC_FAULT 0x00080000 154 #define MDIOC_FAULTDETECT 0x00040000 155 #define MDIOC_INTTEST 0x00020000 156 #define MDIOC_CLKDIV(div) ((div) & 0xff) 157 #define CPMAC_MDIO_ALIVE 0x0008 158 #define CPMAC_MDIO_LINK 0x000c 159 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8) 160 #define MDIO_BUSY 0x80000000 161 #define MDIO_WRITE 0x40000000 162 #define MDIO_REG(reg) (((reg) & 0x1f) << 21) 163 #define MDIO_PHY(phy) (((phy) & 0x1f) << 16) 164 #define MDIO_DATA(data) ((data) & 0xffff) 165 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8) 166 #define PHYSEL_LINKSEL 0x00000040 167 #define PHYSEL_LINKINT 0x00000020 168 169 struct cpmac_desc { 170 u32 hw_next; 171 u32 hw_data; 172 u16 buflen; 173 u16 bufflags; 174 u16 datalen; 175 u16 dataflags; 176 #define CPMAC_SOP 0x8000 177 #define CPMAC_EOP 0x4000 178 #define CPMAC_OWN 0x2000 179 #define CPMAC_EOQ 0x1000 180 struct sk_buff *skb; 181 struct cpmac_desc *next; 182 struct cpmac_desc *prev; 183 dma_addr_t mapping; 184 dma_addr_t data_mapping; 185 }; 186 187 struct cpmac_priv { 188 spinlock_t lock; 189 spinlock_t rx_lock; 190 struct cpmac_desc *rx_head; 191 int ring_size; 192 struct cpmac_desc *desc_ring; 193 dma_addr_t dma_ring; 194 void __iomem *regs; 195 struct mii_bus *mii_bus; 196 char phy_name[MII_BUS_ID_SIZE + 3]; 197 int oldlink, oldspeed, oldduplex; 198 u32 msg_enable; 199 struct net_device *dev; 200 struct work_struct reset_work; 201 struct platform_device *pdev; 202 struct napi_struct napi; 203 atomic_t reset_pending; 204 }; 205 206 static irqreturn_t cpmac_irq(int, void *); 207 static void cpmac_hw_start(struct net_device *dev); 208 static void cpmac_hw_stop(struct net_device *dev); 209 static int cpmac_stop(struct net_device *dev); 210 static int cpmac_open(struct net_device *dev); 211 212 static void cpmac_dump_regs(struct net_device *dev) 213 { 214 int i; 215 struct cpmac_priv *priv = netdev_priv(dev); 216 217 for (i = 0; i < CPMAC_REG_END; i += 4) { 218 if (i % 16 == 0) { 219 if (i) 220 printk("\n"); 221 printk("%s: reg[%p]:", dev->name, priv->regs + i); 222 } 223 printk(" %08x", cpmac_read(priv->regs, i)); 224 } 225 printk("\n"); 226 } 227 228 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc) 229 { 230 int i; 231 232 printk("%s: desc[%p]:", dev->name, desc); 233 for (i = 0; i < sizeof(*desc) / 4; i++) 234 printk(" %08x", ((u32 *)desc)[i]); 235 printk("\n"); 236 } 237 238 static void cpmac_dump_all_desc(struct net_device *dev) 239 { 240 struct cpmac_priv *priv = netdev_priv(dev); 241 struct cpmac_desc *dump = priv->rx_head; 242 243 do { 244 cpmac_dump_desc(dev, dump); 245 dump = dump->next; 246 } while (dump != priv->rx_head); 247 } 248 249 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb) 250 { 251 int i; 252 253 printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len); 254 for (i = 0; i < skb->len; i++) { 255 if (i % 16 == 0) { 256 if (i) 257 printk("\n"); 258 printk("%s: data[%p]:", dev->name, skb->data + i); 259 } 260 printk(" %02x", ((u8 *)skb->data)[i]); 261 } 262 printk("\n"); 263 } 264 265 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg) 266 { 267 u32 val; 268 269 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) 270 cpu_relax(); 271 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) | 272 MDIO_PHY(phy_id)); 273 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY) 274 cpu_relax(); 275 276 return MDIO_DATA(val); 277 } 278 279 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, 280 int reg, u16 val) 281 { 282 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) 283 cpu_relax(); 284 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE | 285 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val)); 286 287 return 0; 288 } 289 290 static int cpmac_mdio_reset(struct mii_bus *bus) 291 { 292 struct clk *cpmac_clk; 293 294 cpmac_clk = clk_get(&bus->dev, "cpmac"); 295 if (IS_ERR(cpmac_clk)) { 296 pr_err("unable to get cpmac clock\n"); 297 return -1; 298 } 299 ar7_device_reset(AR7_RESET_BIT_MDIO); 300 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE | 301 MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1)); 302 303 return 0; 304 } 305 306 static struct mii_bus *cpmac_mii; 307 308 static void cpmac_set_multicast_list(struct net_device *dev) 309 { 310 struct netdev_hw_addr *ha; 311 u8 tmp; 312 u32 mbp, bit, hash[2] = { 0, }; 313 struct cpmac_priv *priv = netdev_priv(dev); 314 315 mbp = cpmac_read(priv->regs, CPMAC_MBP); 316 if (dev->flags & IFF_PROMISC) { 317 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) | 318 MBP_RXPROMISC); 319 } else { 320 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC); 321 if (dev->flags & IFF_ALLMULTI) { 322 /* enable all multicast mode */ 323 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff); 324 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff); 325 } else { 326 /* cpmac uses some strange mac address hashing 327 * (not crc32) 328 */ 329 netdev_for_each_mc_addr(ha, dev) { 330 bit = 0; 331 tmp = ha->addr[0]; 332 bit ^= (tmp >> 2) ^ (tmp << 4); 333 tmp = ha->addr[1]; 334 bit ^= (tmp >> 4) ^ (tmp << 2); 335 tmp = ha->addr[2]; 336 bit ^= (tmp >> 6) ^ tmp; 337 tmp = ha->addr[3]; 338 bit ^= (tmp >> 2) ^ (tmp << 4); 339 tmp = ha->addr[4]; 340 bit ^= (tmp >> 4) ^ (tmp << 2); 341 tmp = ha->addr[5]; 342 bit ^= (tmp >> 6) ^ tmp; 343 bit &= 0x3f; 344 hash[bit / 32] |= 1 << (bit % 32); 345 } 346 347 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]); 348 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]); 349 } 350 } 351 } 352 353 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv, 354 struct cpmac_desc *desc) 355 { 356 struct sk_buff *skb, *result = NULL; 357 358 if (unlikely(netif_msg_hw(priv))) 359 cpmac_dump_desc(priv->dev, desc); 360 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping); 361 if (unlikely(!desc->datalen)) { 362 if (netif_msg_rx_err(priv) && net_ratelimit()) 363 netdev_warn(priv->dev, "rx: spurious interrupt\n"); 364 365 return NULL; 366 } 367 368 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE); 369 if (likely(skb)) { 370 skb_put(desc->skb, desc->datalen); 371 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev); 372 skb_checksum_none_assert(desc->skb); 373 priv->dev->stats.rx_packets++; 374 priv->dev->stats.rx_bytes += desc->datalen; 375 result = desc->skb; 376 dma_unmap_single(&priv->dev->dev, desc->data_mapping, 377 CPMAC_SKB_SIZE, DMA_FROM_DEVICE); 378 desc->skb = skb; 379 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data, 380 CPMAC_SKB_SIZE, 381 DMA_FROM_DEVICE); 382 desc->hw_data = (u32)desc->data_mapping; 383 if (unlikely(netif_msg_pktdata(priv))) { 384 netdev_dbg(priv->dev, "received packet:\n"); 385 cpmac_dump_skb(priv->dev, result); 386 } 387 } else { 388 if (netif_msg_rx_err(priv) && net_ratelimit()) 389 netdev_warn(priv->dev, 390 "low on skbs, dropping packet\n"); 391 392 priv->dev->stats.rx_dropped++; 393 } 394 395 desc->buflen = CPMAC_SKB_SIZE; 396 desc->dataflags = CPMAC_OWN; 397 398 return result; 399 } 400 401 static int cpmac_poll(struct napi_struct *napi, int budget) 402 { 403 struct sk_buff *skb; 404 struct cpmac_desc *desc, *restart; 405 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi); 406 int received = 0, processed = 0; 407 408 spin_lock(&priv->rx_lock); 409 if (unlikely(!priv->rx_head)) { 410 if (netif_msg_rx_err(priv) && net_ratelimit()) 411 netdev_warn(priv->dev, "rx: polling, but no queue\n"); 412 413 spin_unlock(&priv->rx_lock); 414 napi_complete(napi); 415 return 0; 416 } 417 418 desc = priv->rx_head; 419 restart = NULL; 420 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) { 421 processed++; 422 423 if ((desc->dataflags & CPMAC_EOQ) != 0) { 424 /* The last update to eoq->hw_next didn't happen 425 * soon enough, and the receiver stopped here. 426 * Remember this descriptor so we can restart 427 * the receiver after freeing some space. 428 */ 429 if (unlikely(restart)) { 430 if (netif_msg_rx_err(priv)) 431 netdev_err(priv->dev, "poll found a" 432 " duplicate EOQ: %p and %p\n", 433 restart, desc); 434 goto fatal_error; 435 } 436 437 restart = desc->next; 438 } 439 440 skb = cpmac_rx_one(priv, desc); 441 if (likely(skb)) { 442 netif_receive_skb(skb); 443 received++; 444 } 445 desc = desc->next; 446 } 447 448 if (desc != priv->rx_head) { 449 /* We freed some buffers, but not the whole ring, 450 * add what we did free to the rx list 451 */ 452 desc->prev->hw_next = (u32)0; 453 priv->rx_head->prev->hw_next = priv->rx_head->mapping; 454 } 455 456 /* Optimization: If we did not actually process an EOQ (perhaps because 457 * of quota limits), check to see if the tail of the queue has EOQ set. 458 * We should immediately restart in that case so that the receiver can 459 * restart and run in parallel with more packet processing. 460 * This lets us handle slightly larger bursts before running 461 * out of ring space (assuming dev->weight < ring_size) 462 */ 463 464 if (!restart && 465 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ)) 466 == CPMAC_EOQ && 467 (priv->rx_head->dataflags & CPMAC_OWN) != 0) { 468 /* reset EOQ so the poll loop (above) doesn't try to 469 * restart this when it eventually gets to this descriptor. 470 */ 471 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ; 472 restart = priv->rx_head; 473 } 474 475 if (restart) { 476 priv->dev->stats.rx_errors++; 477 priv->dev->stats.rx_fifo_errors++; 478 if (netif_msg_rx_err(priv) && net_ratelimit()) 479 netdev_warn(priv->dev, "rx dma ring overrun\n"); 480 481 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) { 482 if (netif_msg_drv(priv)) 483 netdev_err(priv->dev, "cpmac_poll is trying " 484 "to restart rx from a descriptor " 485 "that's not free: %p\n", restart); 486 goto fatal_error; 487 } 488 489 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping); 490 } 491 492 priv->rx_head = desc; 493 spin_unlock(&priv->rx_lock); 494 if (unlikely(netif_msg_rx_status(priv))) 495 netdev_dbg(priv->dev, "poll processed %d packets\n", received); 496 497 if (processed == 0) { 498 /* we ran out of packets to read, 499 * revert to interrupt-driven mode 500 */ 501 napi_complete(napi); 502 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); 503 return 0; 504 } 505 506 return 1; 507 508 fatal_error: 509 /* Something went horribly wrong. 510 * Reset hardware to try to recover rather than wedging. 511 */ 512 if (netif_msg_drv(priv)) { 513 netdev_err(priv->dev, "cpmac_poll is confused. " 514 "Resetting hardware\n"); 515 cpmac_dump_all_desc(priv->dev); 516 netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n", 517 cpmac_read(priv->regs, CPMAC_RX_PTR(0)), 518 cpmac_read(priv->regs, CPMAC_RX_ACK(0))); 519 } 520 521 spin_unlock(&priv->rx_lock); 522 napi_complete(napi); 523 netif_tx_stop_all_queues(priv->dev); 524 napi_disable(&priv->napi); 525 526 atomic_inc(&priv->reset_pending); 527 cpmac_hw_stop(priv->dev); 528 if (!schedule_work(&priv->reset_work)) 529 atomic_dec(&priv->reset_pending); 530 531 return 0; 532 533 } 534 535 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev) 536 { 537 int queue; 538 unsigned int len; 539 struct cpmac_desc *desc; 540 struct cpmac_priv *priv = netdev_priv(dev); 541 542 if (unlikely(atomic_read(&priv->reset_pending))) 543 return NETDEV_TX_BUSY; 544 545 if (unlikely(skb_padto(skb, ETH_ZLEN))) 546 return NETDEV_TX_OK; 547 548 len = max_t(unsigned int, skb->len, ETH_ZLEN); 549 queue = skb_get_queue_mapping(skb); 550 netif_stop_subqueue(dev, queue); 551 552 desc = &priv->desc_ring[queue]; 553 if (unlikely(desc->dataflags & CPMAC_OWN)) { 554 if (netif_msg_tx_err(priv) && net_ratelimit()) 555 netdev_warn(dev, "tx dma ring full\n"); 556 557 return NETDEV_TX_BUSY; 558 } 559 560 spin_lock(&priv->lock); 561 spin_unlock(&priv->lock); 562 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN; 563 desc->skb = skb; 564 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len, 565 DMA_TO_DEVICE); 566 desc->hw_data = (u32)desc->data_mapping; 567 desc->datalen = len; 568 desc->buflen = len; 569 if (unlikely(netif_msg_tx_queued(priv))) 570 netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len); 571 if (unlikely(netif_msg_hw(priv))) 572 cpmac_dump_desc(dev, desc); 573 if (unlikely(netif_msg_pktdata(priv))) 574 cpmac_dump_skb(dev, skb); 575 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping); 576 577 return NETDEV_TX_OK; 578 } 579 580 static void cpmac_end_xmit(struct net_device *dev, int queue) 581 { 582 struct cpmac_desc *desc; 583 struct cpmac_priv *priv = netdev_priv(dev); 584 585 desc = &priv->desc_ring[queue]; 586 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping); 587 if (likely(desc->skb)) { 588 spin_lock(&priv->lock); 589 dev->stats.tx_packets++; 590 dev->stats.tx_bytes += desc->skb->len; 591 spin_unlock(&priv->lock); 592 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len, 593 DMA_TO_DEVICE); 594 595 if (unlikely(netif_msg_tx_done(priv))) 596 netdev_dbg(dev, "sent 0x%p, len=%d\n", 597 desc->skb, desc->skb->len); 598 599 dev_consume_skb_irq(desc->skb); 600 desc->skb = NULL; 601 if (__netif_subqueue_stopped(dev, queue)) 602 netif_wake_subqueue(dev, queue); 603 } else { 604 if (netif_msg_tx_err(priv) && net_ratelimit()) 605 netdev_warn(dev, "end_xmit: spurious interrupt\n"); 606 if (__netif_subqueue_stopped(dev, queue)) 607 netif_wake_subqueue(dev, queue); 608 } 609 } 610 611 static void cpmac_hw_stop(struct net_device *dev) 612 { 613 int i; 614 struct cpmac_priv *priv = netdev_priv(dev); 615 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev); 616 617 ar7_device_reset(pdata->reset_bit); 618 cpmac_write(priv->regs, CPMAC_RX_CONTROL, 619 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1); 620 cpmac_write(priv->regs, CPMAC_TX_CONTROL, 621 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1); 622 for (i = 0; i < 8; i++) { 623 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); 624 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); 625 } 626 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); 627 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); 628 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); 629 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); 630 cpmac_write(priv->regs, CPMAC_MAC_CONTROL, 631 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII); 632 } 633 634 static void cpmac_hw_start(struct net_device *dev) 635 { 636 int i; 637 struct cpmac_priv *priv = netdev_priv(dev); 638 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev); 639 640 ar7_device_reset(pdata->reset_bit); 641 for (i = 0; i < 8; i++) { 642 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); 643 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); 644 } 645 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping); 646 647 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST | 648 MBP_RXMCAST); 649 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0); 650 for (i = 0; i < 8; i++) 651 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]); 652 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]); 653 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] | 654 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | 655 (dev->dev_addr[3] << 24)); 656 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE); 657 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); 658 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); 659 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); 660 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); 661 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1); 662 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); 663 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff); 664 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3); 665 666 cpmac_write(priv->regs, CPMAC_RX_CONTROL, 667 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1); 668 cpmac_write(priv->regs, CPMAC_TX_CONTROL, 669 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1); 670 cpmac_write(priv->regs, CPMAC_MAC_CONTROL, 671 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII | 672 MAC_FDX); 673 } 674 675 static void cpmac_clear_rx(struct net_device *dev) 676 { 677 struct cpmac_priv *priv = netdev_priv(dev); 678 struct cpmac_desc *desc; 679 int i; 680 681 if (unlikely(!priv->rx_head)) 682 return; 683 desc = priv->rx_head; 684 for (i = 0; i < priv->ring_size; i++) { 685 if ((desc->dataflags & CPMAC_OWN) == 0) { 686 if (netif_msg_rx_err(priv) && net_ratelimit()) 687 netdev_warn(dev, "packet dropped\n"); 688 if (unlikely(netif_msg_hw(priv))) 689 cpmac_dump_desc(dev, desc); 690 desc->dataflags = CPMAC_OWN; 691 dev->stats.rx_dropped++; 692 } 693 desc->hw_next = desc->next->mapping; 694 desc = desc->next; 695 } 696 priv->rx_head->prev->hw_next = 0; 697 } 698 699 static void cpmac_clear_tx(struct net_device *dev) 700 { 701 struct cpmac_priv *priv = netdev_priv(dev); 702 int i; 703 704 if (unlikely(!priv->desc_ring)) 705 return; 706 for (i = 0; i < CPMAC_QUEUES; i++) { 707 priv->desc_ring[i].dataflags = 0; 708 if (priv->desc_ring[i].skb) { 709 dev_kfree_skb_any(priv->desc_ring[i].skb); 710 priv->desc_ring[i].skb = NULL; 711 } 712 } 713 } 714 715 static void cpmac_hw_error(struct work_struct *work) 716 { 717 struct cpmac_priv *priv = 718 container_of(work, struct cpmac_priv, reset_work); 719 720 spin_lock(&priv->rx_lock); 721 cpmac_clear_rx(priv->dev); 722 spin_unlock(&priv->rx_lock); 723 cpmac_clear_tx(priv->dev); 724 cpmac_hw_start(priv->dev); 725 barrier(); 726 atomic_dec(&priv->reset_pending); 727 728 netif_tx_wake_all_queues(priv->dev); 729 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3); 730 } 731 732 static void cpmac_check_status(struct net_device *dev) 733 { 734 struct cpmac_priv *priv = netdev_priv(dev); 735 736 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS); 737 int rx_channel = (macstatus >> 8) & 7; 738 int rx_code = (macstatus >> 12) & 15; 739 int tx_channel = (macstatus >> 16) & 7; 740 int tx_code = (macstatus >> 20) & 15; 741 742 if (rx_code || tx_code) { 743 if (netif_msg_drv(priv) && net_ratelimit()) { 744 /* Can't find any documentation on what these 745 * error codes actually are. So just log them and hope.. 746 */ 747 if (rx_code) 748 netdev_warn(dev, "host error %d on rx " 749 "channel %d (macstatus %08x), resetting\n", 750 rx_code, rx_channel, macstatus); 751 if (tx_code) 752 netdev_warn(dev, "host error %d on tx " 753 "channel %d (macstatus %08x), resetting\n", 754 tx_code, tx_channel, macstatus); 755 } 756 757 netif_tx_stop_all_queues(dev); 758 cpmac_hw_stop(dev); 759 if (schedule_work(&priv->reset_work)) 760 atomic_inc(&priv->reset_pending); 761 if (unlikely(netif_msg_hw(priv))) 762 cpmac_dump_regs(dev); 763 } 764 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); 765 } 766 767 static irqreturn_t cpmac_irq(int irq, void *dev_id) 768 { 769 struct net_device *dev = dev_id; 770 struct cpmac_priv *priv; 771 int queue; 772 u32 status; 773 774 priv = netdev_priv(dev); 775 776 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR); 777 778 if (unlikely(netif_msg_intr(priv))) 779 netdev_dbg(dev, "interrupt status: 0x%08x\n", status); 780 781 if (status & MAC_INT_TX) 782 cpmac_end_xmit(dev, (status & 7)); 783 784 if (status & MAC_INT_RX) { 785 queue = (status >> 8) & 7; 786 if (napi_schedule_prep(&priv->napi)) { 787 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue); 788 __napi_schedule(&priv->napi); 789 } 790 } 791 792 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0); 793 794 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) 795 cpmac_check_status(dev); 796 797 return IRQ_HANDLED; 798 } 799 800 static void cpmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 801 { 802 struct cpmac_priv *priv = netdev_priv(dev); 803 804 spin_lock(&priv->lock); 805 dev->stats.tx_errors++; 806 spin_unlock(&priv->lock); 807 if (netif_msg_tx_err(priv) && net_ratelimit()) 808 netdev_warn(dev, "transmit timeout\n"); 809 810 atomic_inc(&priv->reset_pending); 811 barrier(); 812 cpmac_clear_tx(dev); 813 barrier(); 814 atomic_dec(&priv->reset_pending); 815 816 netif_tx_wake_all_queues(priv->dev); 817 } 818 819 static void cpmac_get_ringparam(struct net_device *dev, 820 struct ethtool_ringparam *ring) 821 { 822 struct cpmac_priv *priv = netdev_priv(dev); 823 824 ring->rx_max_pending = 1024; 825 ring->rx_mini_max_pending = 1; 826 ring->rx_jumbo_max_pending = 1; 827 ring->tx_max_pending = 1; 828 829 ring->rx_pending = priv->ring_size; 830 ring->rx_mini_pending = 1; 831 ring->rx_jumbo_pending = 1; 832 ring->tx_pending = 1; 833 } 834 835 static int cpmac_set_ringparam(struct net_device *dev, 836 struct ethtool_ringparam *ring) 837 { 838 struct cpmac_priv *priv = netdev_priv(dev); 839 840 if (netif_running(dev)) 841 return -EBUSY; 842 priv->ring_size = ring->rx_pending; 843 844 return 0; 845 } 846 847 static void cpmac_get_drvinfo(struct net_device *dev, 848 struct ethtool_drvinfo *info) 849 { 850 strlcpy(info->driver, "cpmac", sizeof(info->driver)); 851 strlcpy(info->version, CPMAC_VERSION, sizeof(info->version)); 852 snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac"); 853 } 854 855 static const struct ethtool_ops cpmac_ethtool_ops = { 856 .get_drvinfo = cpmac_get_drvinfo, 857 .get_link = ethtool_op_get_link, 858 .get_ringparam = cpmac_get_ringparam, 859 .set_ringparam = cpmac_set_ringparam, 860 .get_link_ksettings = phy_ethtool_get_link_ksettings, 861 .set_link_ksettings = phy_ethtool_set_link_ksettings, 862 }; 863 864 static void cpmac_adjust_link(struct net_device *dev) 865 { 866 struct cpmac_priv *priv = netdev_priv(dev); 867 int new_state = 0; 868 869 spin_lock(&priv->lock); 870 if (dev->phydev->link) { 871 netif_tx_start_all_queues(dev); 872 if (dev->phydev->duplex != priv->oldduplex) { 873 new_state = 1; 874 priv->oldduplex = dev->phydev->duplex; 875 } 876 877 if (dev->phydev->speed != priv->oldspeed) { 878 new_state = 1; 879 priv->oldspeed = dev->phydev->speed; 880 } 881 882 if (!priv->oldlink) { 883 new_state = 1; 884 priv->oldlink = 1; 885 } 886 } else if (priv->oldlink) { 887 new_state = 1; 888 priv->oldlink = 0; 889 priv->oldspeed = 0; 890 priv->oldduplex = -1; 891 } 892 893 if (new_state && netif_msg_link(priv) && net_ratelimit()) 894 phy_print_status(dev->phydev); 895 896 spin_unlock(&priv->lock); 897 } 898 899 static int cpmac_open(struct net_device *dev) 900 { 901 int i, size, res; 902 struct cpmac_priv *priv = netdev_priv(dev); 903 struct resource *mem; 904 struct cpmac_desc *desc; 905 struct sk_buff *skb; 906 907 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); 908 if (!request_mem_region(mem->start, resource_size(mem), dev->name)) { 909 if (netif_msg_drv(priv)) 910 netdev_err(dev, "failed to request registers\n"); 911 912 res = -ENXIO; 913 goto fail_reserve; 914 } 915 916 priv->regs = ioremap(mem->start, resource_size(mem)); 917 if (!priv->regs) { 918 if (netif_msg_drv(priv)) 919 netdev_err(dev, "failed to remap registers\n"); 920 921 res = -ENXIO; 922 goto fail_remap; 923 } 924 925 size = priv->ring_size + CPMAC_QUEUES; 926 priv->desc_ring = dma_alloc_coherent(&dev->dev, 927 sizeof(struct cpmac_desc) * size, 928 &priv->dma_ring, 929 GFP_KERNEL); 930 if (!priv->desc_ring) { 931 res = -ENOMEM; 932 goto fail_alloc; 933 } 934 935 for (i = 0; i < size; i++) 936 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i; 937 938 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; 939 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) { 940 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE); 941 if (unlikely(!skb)) { 942 res = -ENOMEM; 943 goto fail_desc; 944 } 945 desc->skb = skb; 946 desc->data_mapping = dma_map_single(&dev->dev, skb->data, 947 CPMAC_SKB_SIZE, 948 DMA_FROM_DEVICE); 949 desc->hw_data = (u32)desc->data_mapping; 950 desc->buflen = CPMAC_SKB_SIZE; 951 desc->dataflags = CPMAC_OWN; 952 desc->next = &priv->rx_head[(i + 1) % priv->ring_size]; 953 desc->next->prev = desc; 954 desc->hw_next = (u32)desc->next->mapping; 955 } 956 957 priv->rx_head->prev->hw_next = (u32)0; 958 959 res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev); 960 if (res) { 961 if (netif_msg_drv(priv)) 962 netdev_err(dev, "failed to obtain irq\n"); 963 964 goto fail_irq; 965 } 966 967 atomic_set(&priv->reset_pending, 0); 968 INIT_WORK(&priv->reset_work, cpmac_hw_error); 969 cpmac_hw_start(dev); 970 971 napi_enable(&priv->napi); 972 phy_start(dev->phydev); 973 974 return 0; 975 976 fail_irq: 977 fail_desc: 978 for (i = 0; i < priv->ring_size; i++) { 979 if (priv->rx_head[i].skb) { 980 dma_unmap_single(&dev->dev, 981 priv->rx_head[i].data_mapping, 982 CPMAC_SKB_SIZE, 983 DMA_FROM_DEVICE); 984 kfree_skb(priv->rx_head[i].skb); 985 } 986 } 987 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * size, 988 priv->desc_ring, priv->dma_ring); 989 990 fail_alloc: 991 iounmap(priv->regs); 992 993 fail_remap: 994 release_mem_region(mem->start, resource_size(mem)); 995 996 fail_reserve: 997 return res; 998 } 999 1000 static int cpmac_stop(struct net_device *dev) 1001 { 1002 int i; 1003 struct cpmac_priv *priv = netdev_priv(dev); 1004 struct resource *mem; 1005 1006 netif_tx_stop_all_queues(dev); 1007 1008 cancel_work_sync(&priv->reset_work); 1009 napi_disable(&priv->napi); 1010 phy_stop(dev->phydev); 1011 1012 cpmac_hw_stop(dev); 1013 1014 for (i = 0; i < 8; i++) 1015 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); 1016 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0); 1017 cpmac_write(priv->regs, CPMAC_MBP, 0); 1018 1019 free_irq(dev->irq, dev); 1020 iounmap(priv->regs); 1021 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); 1022 release_mem_region(mem->start, resource_size(mem)); 1023 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; 1024 for (i = 0; i < priv->ring_size; i++) { 1025 if (priv->rx_head[i].skb) { 1026 dma_unmap_single(&dev->dev, 1027 priv->rx_head[i].data_mapping, 1028 CPMAC_SKB_SIZE, 1029 DMA_FROM_DEVICE); 1030 kfree_skb(priv->rx_head[i].skb); 1031 } 1032 } 1033 1034 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * 1035 (CPMAC_QUEUES + priv->ring_size), 1036 priv->desc_ring, priv->dma_ring); 1037 1038 return 0; 1039 } 1040 1041 static const struct net_device_ops cpmac_netdev_ops = { 1042 .ndo_open = cpmac_open, 1043 .ndo_stop = cpmac_stop, 1044 .ndo_start_xmit = cpmac_start_xmit, 1045 .ndo_tx_timeout = cpmac_tx_timeout, 1046 .ndo_set_rx_mode = cpmac_set_multicast_list, 1047 .ndo_do_ioctl = phy_do_ioctl_running, 1048 .ndo_validate_addr = eth_validate_addr, 1049 .ndo_set_mac_address = eth_mac_addr, 1050 }; 1051 1052 static int external_switch; 1053 1054 static int cpmac_probe(struct platform_device *pdev) 1055 { 1056 int rc, phy_id; 1057 char mdio_bus_id[MII_BUS_ID_SIZE]; 1058 struct resource *mem; 1059 struct cpmac_priv *priv; 1060 struct net_device *dev; 1061 struct plat_cpmac_data *pdata; 1062 struct phy_device *phydev = NULL; 1063 1064 pdata = dev_get_platdata(&pdev->dev); 1065 1066 if (external_switch || dumb_switch) { 1067 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */ 1068 phy_id = pdev->id; 1069 } else { 1070 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) { 1071 if (!(pdata->phy_mask & (1 << phy_id))) 1072 continue; 1073 if (!mdiobus_get_phy(cpmac_mii, phy_id)) 1074 continue; 1075 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE); 1076 break; 1077 } 1078 } 1079 1080 if (phy_id == PHY_MAX_ADDR) { 1081 dev_err(&pdev->dev, "no PHY present, falling back " 1082 "to switch on MDIO bus 0\n"); 1083 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */ 1084 phy_id = pdev->id; 1085 } 1086 mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0'; 1087 1088 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES); 1089 if (!dev) 1090 return -ENOMEM; 1091 1092 SET_NETDEV_DEV(dev, &pdev->dev); 1093 platform_set_drvdata(pdev, dev); 1094 priv = netdev_priv(dev); 1095 1096 priv->pdev = pdev; 1097 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); 1098 if (!mem) { 1099 rc = -ENODEV; 1100 goto fail; 1101 } 1102 1103 dev->irq = platform_get_irq_byname(pdev, "irq"); 1104 1105 dev->netdev_ops = &cpmac_netdev_ops; 1106 dev->ethtool_ops = &cpmac_ethtool_ops; 1107 1108 netif_napi_add(dev, &priv->napi, cpmac_poll, 64); 1109 1110 spin_lock_init(&priv->lock); 1111 spin_lock_init(&priv->rx_lock); 1112 priv->dev = dev; 1113 priv->ring_size = 64; 1114 priv->msg_enable = netif_msg_init(debug_level, 0xff); 1115 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr)); 1116 1117 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, 1118 mdio_bus_id, phy_id); 1119 1120 phydev = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 1121 PHY_INTERFACE_MODE_MII); 1122 1123 if (IS_ERR(phydev)) { 1124 if (netif_msg_drv(priv)) 1125 dev_err(&pdev->dev, "Could not attach to PHY\n"); 1126 1127 rc = PTR_ERR(phydev); 1128 goto fail; 1129 } 1130 1131 rc = register_netdev(dev); 1132 if (rc) { 1133 dev_err(&pdev->dev, "Could not register net device\n"); 1134 goto fail; 1135 } 1136 1137 if (netif_msg_probe(priv)) { 1138 dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, " 1139 "mac: %pM\n", (void *)mem->start, dev->irq, 1140 priv->phy_name, dev->dev_addr); 1141 } 1142 1143 return 0; 1144 1145 fail: 1146 free_netdev(dev); 1147 return rc; 1148 } 1149 1150 static int cpmac_remove(struct platform_device *pdev) 1151 { 1152 struct net_device *dev = platform_get_drvdata(pdev); 1153 1154 unregister_netdev(dev); 1155 free_netdev(dev); 1156 1157 return 0; 1158 } 1159 1160 static struct platform_driver cpmac_driver = { 1161 .driver = { 1162 .name = "cpmac", 1163 }, 1164 .probe = cpmac_probe, 1165 .remove = cpmac_remove, 1166 }; 1167 1168 int cpmac_init(void) 1169 { 1170 u32 mask; 1171 int i, res; 1172 1173 cpmac_mii = mdiobus_alloc(); 1174 if (cpmac_mii == NULL) 1175 return -ENOMEM; 1176 1177 cpmac_mii->name = "cpmac-mii"; 1178 cpmac_mii->read = cpmac_mdio_read; 1179 cpmac_mii->write = cpmac_mdio_write; 1180 cpmac_mii->reset = cpmac_mdio_reset; 1181 1182 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256); 1183 1184 if (!cpmac_mii->priv) { 1185 pr_err("Can't ioremap mdio registers\n"); 1186 res = -ENXIO; 1187 goto fail_alloc; 1188 } 1189 1190 /* FIXME: unhardcode gpio&reset bits */ 1191 ar7_gpio_disable(26); 1192 ar7_gpio_disable(27); 1193 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO); 1194 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI); 1195 ar7_device_reset(AR7_RESET_BIT_EPHY); 1196 1197 cpmac_mii->reset(cpmac_mii); 1198 1199 for (i = 0; i < 300; i++) { 1200 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE); 1201 if (mask) 1202 break; 1203 else 1204 msleep(10); 1205 } 1206 1207 mask &= 0x7fffffff; 1208 if (mask & (mask - 1)) { 1209 external_switch = 1; 1210 mask = 0; 1211 } 1212 1213 cpmac_mii->phy_mask = ~(mask | 0x80000000); 1214 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1"); 1215 1216 res = mdiobus_register(cpmac_mii); 1217 if (res) 1218 goto fail_mii; 1219 1220 res = platform_driver_register(&cpmac_driver); 1221 if (res) 1222 goto fail_cpmac; 1223 1224 return 0; 1225 1226 fail_cpmac: 1227 mdiobus_unregister(cpmac_mii); 1228 1229 fail_mii: 1230 iounmap(cpmac_mii->priv); 1231 1232 fail_alloc: 1233 mdiobus_free(cpmac_mii); 1234 1235 return res; 1236 } 1237 1238 void cpmac_exit(void) 1239 { 1240 platform_driver_unregister(&cpmac_driver); 1241 mdiobus_unregister(cpmac_mii); 1242 iounmap(cpmac_mii->priv); 1243 mdiobus_free(cpmac_mii); 1244 } 1245 1246 module_init(cpmac_init); 1247 module_exit(cpmac_exit); 1248