xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision d2ba09c1)
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
22 
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
43 
44 #include <asm/mach-ar7/ar7.h>
45 
46 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
47 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
48 MODULE_LICENSE("GPL");
49 MODULE_ALIAS("platform:cpmac");
50 
51 static int debug_level = 8;
52 static int dumb_switch;
53 
54 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
55 module_param(debug_level, int, 0444);
56 module_param(dumb_switch, int, 0444);
57 
58 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
59 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
60 
61 #define CPMAC_VERSION "0.5.2"
62 /* frame size + 802.1q tag + FCS size */
63 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
64 #define CPMAC_QUEUES	8
65 
66 /* Ethernet registers */
67 #define CPMAC_TX_CONTROL		0x0004
68 #define CPMAC_TX_TEARDOWN		0x0008
69 #define CPMAC_RX_CONTROL		0x0014
70 #define CPMAC_RX_TEARDOWN		0x0018
71 #define CPMAC_MBP			0x0100
72 #define MBP_RXPASSCRC			0x40000000
73 #define MBP_RXQOS			0x20000000
74 #define MBP_RXNOCHAIN			0x10000000
75 #define MBP_RXCMF			0x01000000
76 #define MBP_RXSHORT			0x00800000
77 #define MBP_RXCEF			0x00400000
78 #define MBP_RXPROMISC			0x00200000
79 #define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
80 #define MBP_RXBCAST			0x00002000
81 #define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
82 #define MBP_RXMCAST			0x00000020
83 #define MBP_MCASTCHAN(channel)		((channel) & 0x7)
84 #define CPMAC_UNICAST_ENABLE		0x0104
85 #define CPMAC_UNICAST_CLEAR		0x0108
86 #define CPMAC_MAX_LENGTH		0x010c
87 #define CPMAC_BUFFER_OFFSET		0x0110
88 #define CPMAC_MAC_CONTROL		0x0160
89 #define MAC_TXPTYPE			0x00000200
90 #define MAC_TXPACE			0x00000040
91 #define MAC_MII				0x00000020
92 #define MAC_TXFLOW			0x00000010
93 #define MAC_RXFLOW			0x00000008
94 #define MAC_MTEST			0x00000004
95 #define MAC_LOOPBACK			0x00000002
96 #define MAC_FDX				0x00000001
97 #define CPMAC_MAC_STATUS		0x0164
98 #define MAC_STATUS_QOS			0x00000004
99 #define MAC_STATUS_RXFLOW		0x00000002
100 #define MAC_STATUS_TXFLOW		0x00000001
101 #define CPMAC_TX_INT_ENABLE		0x0178
102 #define CPMAC_TX_INT_CLEAR		0x017c
103 #define CPMAC_MAC_INT_VECTOR		0x0180
104 #define MAC_INT_STATUS			0x00080000
105 #define MAC_INT_HOST			0x00040000
106 #define MAC_INT_RX			0x00020000
107 #define MAC_INT_TX			0x00010000
108 #define CPMAC_MAC_EOI_VECTOR		0x0184
109 #define CPMAC_RX_INT_ENABLE		0x0198
110 #define CPMAC_RX_INT_CLEAR		0x019c
111 #define CPMAC_MAC_INT_ENABLE		0x01a8
112 #define CPMAC_MAC_INT_CLEAR		0x01ac
113 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
114 #define CPMAC_MAC_ADDR_MID		0x01d0
115 #define CPMAC_MAC_ADDR_HI		0x01d4
116 #define CPMAC_MAC_HASH_LO		0x01d8
117 #define CPMAC_MAC_HASH_HI		0x01dc
118 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
119 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
120 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
121 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
122 #define CPMAC_REG_END			0x0680
123 
124 /* Rx/Tx statistics
125  * TODO: use some of them to fill stats in cpmac_stats()
126  */
127 #define CPMAC_STATS_RX_GOOD		0x0200
128 #define CPMAC_STATS_RX_BCAST		0x0204
129 #define CPMAC_STATS_RX_MCAST		0x0208
130 #define CPMAC_STATS_RX_PAUSE		0x020c
131 #define CPMAC_STATS_RX_CRC		0x0210
132 #define CPMAC_STATS_RX_ALIGN		0x0214
133 #define CPMAC_STATS_RX_OVER		0x0218
134 #define CPMAC_STATS_RX_JABBER		0x021c
135 #define CPMAC_STATS_RX_UNDER		0x0220
136 #define CPMAC_STATS_RX_FRAG		0x0224
137 #define CPMAC_STATS_RX_FILTER		0x0228
138 #define CPMAC_STATS_RX_QOSFILTER	0x022c
139 #define CPMAC_STATS_RX_OCTETS		0x0230
140 
141 #define CPMAC_STATS_TX_GOOD		0x0234
142 #define CPMAC_STATS_TX_BCAST		0x0238
143 #define CPMAC_STATS_TX_MCAST		0x023c
144 #define CPMAC_STATS_TX_PAUSE		0x0240
145 #define CPMAC_STATS_TX_DEFER		0x0244
146 #define CPMAC_STATS_TX_COLLISION	0x0248
147 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
148 #define CPMAC_STATS_TX_MULTICOLL	0x0250
149 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
150 #define CPMAC_STATS_TX_LATECOLL		0x0258
151 #define CPMAC_STATS_TX_UNDERRUN		0x025c
152 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
153 #define CPMAC_STATS_TX_OCTETS		0x0264
154 
155 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
156 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
157 						(reg)))
158 
159 /* MDIO bus */
160 #define CPMAC_MDIO_VERSION		0x0000
161 #define CPMAC_MDIO_CONTROL		0x0004
162 #define MDIOC_IDLE			0x80000000
163 #define MDIOC_ENABLE			0x40000000
164 #define MDIOC_PREAMBLE			0x00100000
165 #define MDIOC_FAULT			0x00080000
166 #define MDIOC_FAULTDETECT		0x00040000
167 #define MDIOC_INTTEST			0x00020000
168 #define MDIOC_CLKDIV(div)		((div) & 0xff)
169 #define CPMAC_MDIO_ALIVE		0x0008
170 #define CPMAC_MDIO_LINK			0x000c
171 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
172 #define MDIO_BUSY			0x80000000
173 #define MDIO_WRITE			0x40000000
174 #define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
175 #define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
176 #define MDIO_DATA(data)			((data) & 0xffff)
177 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
178 #define PHYSEL_LINKSEL			0x00000040
179 #define PHYSEL_LINKINT			0x00000020
180 
181 struct cpmac_desc {
182 	u32 hw_next;
183 	u32 hw_data;
184 	u16 buflen;
185 	u16 bufflags;
186 	u16 datalen;
187 	u16 dataflags;
188 #define CPMAC_SOP			0x8000
189 #define CPMAC_EOP			0x4000
190 #define CPMAC_OWN			0x2000
191 #define CPMAC_EOQ			0x1000
192 	struct sk_buff *skb;
193 	struct cpmac_desc *next;
194 	struct cpmac_desc *prev;
195 	dma_addr_t mapping;
196 	dma_addr_t data_mapping;
197 };
198 
199 struct cpmac_priv {
200 	spinlock_t lock;
201 	spinlock_t rx_lock;
202 	struct cpmac_desc *rx_head;
203 	int ring_size;
204 	struct cpmac_desc *desc_ring;
205 	dma_addr_t dma_ring;
206 	void __iomem *regs;
207 	struct mii_bus *mii_bus;
208 	char phy_name[MII_BUS_ID_SIZE + 3];
209 	int oldlink, oldspeed, oldduplex;
210 	u32 msg_enable;
211 	struct net_device *dev;
212 	struct work_struct reset_work;
213 	struct platform_device *pdev;
214 	struct napi_struct napi;
215 	atomic_t reset_pending;
216 };
217 
218 static irqreturn_t cpmac_irq(int, void *);
219 static void cpmac_hw_start(struct net_device *dev);
220 static void cpmac_hw_stop(struct net_device *dev);
221 static int cpmac_stop(struct net_device *dev);
222 static int cpmac_open(struct net_device *dev);
223 
224 static void cpmac_dump_regs(struct net_device *dev)
225 {
226 	int i;
227 	struct cpmac_priv *priv = netdev_priv(dev);
228 
229 	for (i = 0; i < CPMAC_REG_END; i += 4) {
230 		if (i % 16 == 0) {
231 			if (i)
232 				printk("\n");
233 			printk("%s: reg[%p]:", dev->name, priv->regs + i);
234 		}
235 		printk(" %08x", cpmac_read(priv->regs, i));
236 	}
237 	printk("\n");
238 }
239 
240 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
241 {
242 	int i;
243 
244 	printk("%s: desc[%p]:", dev->name, desc);
245 	for (i = 0; i < sizeof(*desc) / 4; i++)
246 		printk(" %08x", ((u32 *)desc)[i]);
247 	printk("\n");
248 }
249 
250 static void cpmac_dump_all_desc(struct net_device *dev)
251 {
252 	struct cpmac_priv *priv = netdev_priv(dev);
253 	struct cpmac_desc *dump = priv->rx_head;
254 
255 	do {
256 		cpmac_dump_desc(dev, dump);
257 		dump = dump->next;
258 	} while (dump != priv->rx_head);
259 }
260 
261 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
262 {
263 	int i;
264 
265 	printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
266 	for (i = 0; i < skb->len; i++) {
267 		if (i % 16 == 0) {
268 			if (i)
269 				printk("\n");
270 			printk("%s: data[%p]:", dev->name, skb->data + i);
271 		}
272 		printk(" %02x", ((u8 *)skb->data)[i]);
273 	}
274 	printk("\n");
275 }
276 
277 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
278 {
279 	u32 val;
280 
281 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
282 		cpu_relax();
283 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
284 		    MDIO_PHY(phy_id));
285 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
286 		cpu_relax();
287 
288 	return MDIO_DATA(val);
289 }
290 
291 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
292 			    int reg, u16 val)
293 {
294 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
295 		cpu_relax();
296 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
297 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
298 
299 	return 0;
300 }
301 
302 static int cpmac_mdio_reset(struct mii_bus *bus)
303 {
304 	struct clk *cpmac_clk;
305 
306 	cpmac_clk = clk_get(&bus->dev, "cpmac");
307 	if (IS_ERR(cpmac_clk)) {
308 		pr_err("unable to get cpmac clock\n");
309 		return -1;
310 	}
311 	ar7_device_reset(AR7_RESET_BIT_MDIO);
312 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
313 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
314 
315 	return 0;
316 }
317 
318 static struct mii_bus *cpmac_mii;
319 
320 static void cpmac_set_multicast_list(struct net_device *dev)
321 {
322 	struct netdev_hw_addr *ha;
323 	u8 tmp;
324 	u32 mbp, bit, hash[2] = { 0, };
325 	struct cpmac_priv *priv = netdev_priv(dev);
326 
327 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
328 	if (dev->flags & IFF_PROMISC) {
329 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
330 			    MBP_RXPROMISC);
331 	} else {
332 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
333 		if (dev->flags & IFF_ALLMULTI) {
334 			/* enable all multicast mode */
335 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
336 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
337 		} else {
338 			/* cpmac uses some strange mac address hashing
339 			 * (not crc32)
340 			 */
341 			netdev_for_each_mc_addr(ha, dev) {
342 				bit = 0;
343 				tmp = ha->addr[0];
344 				bit  ^= (tmp >> 2) ^ (tmp << 4);
345 				tmp = ha->addr[1];
346 				bit  ^= (tmp >> 4) ^ (tmp << 2);
347 				tmp = ha->addr[2];
348 				bit  ^= (tmp >> 6) ^ tmp;
349 				tmp = ha->addr[3];
350 				bit  ^= (tmp >> 2) ^ (tmp << 4);
351 				tmp = ha->addr[4];
352 				bit  ^= (tmp >> 4) ^ (tmp << 2);
353 				tmp = ha->addr[5];
354 				bit  ^= (tmp >> 6) ^ tmp;
355 				bit &= 0x3f;
356 				hash[bit / 32] |= 1 << (bit % 32);
357 			}
358 
359 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
360 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
361 		}
362 	}
363 }
364 
365 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
366 				    struct cpmac_desc *desc)
367 {
368 	struct sk_buff *skb, *result = NULL;
369 
370 	if (unlikely(netif_msg_hw(priv)))
371 		cpmac_dump_desc(priv->dev, desc);
372 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
373 	if (unlikely(!desc->datalen)) {
374 		if (netif_msg_rx_err(priv) && net_ratelimit())
375 			netdev_warn(priv->dev, "rx: spurious interrupt\n");
376 
377 		return NULL;
378 	}
379 
380 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
381 	if (likely(skb)) {
382 		skb_put(desc->skb, desc->datalen);
383 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
384 		skb_checksum_none_assert(desc->skb);
385 		priv->dev->stats.rx_packets++;
386 		priv->dev->stats.rx_bytes += desc->datalen;
387 		result = desc->skb;
388 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
389 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
390 		desc->skb = skb;
391 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
392 						    CPMAC_SKB_SIZE,
393 						    DMA_FROM_DEVICE);
394 		desc->hw_data = (u32)desc->data_mapping;
395 		if (unlikely(netif_msg_pktdata(priv))) {
396 			netdev_dbg(priv->dev, "received packet:\n");
397 			cpmac_dump_skb(priv->dev, result);
398 		}
399 	} else {
400 		if (netif_msg_rx_err(priv) && net_ratelimit())
401 			netdev_warn(priv->dev,
402 				    "low on skbs, dropping packet\n");
403 
404 		priv->dev->stats.rx_dropped++;
405 	}
406 
407 	desc->buflen = CPMAC_SKB_SIZE;
408 	desc->dataflags = CPMAC_OWN;
409 
410 	return result;
411 }
412 
413 static int cpmac_poll(struct napi_struct *napi, int budget)
414 {
415 	struct sk_buff *skb;
416 	struct cpmac_desc *desc, *restart;
417 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
418 	int received = 0, processed = 0;
419 
420 	spin_lock(&priv->rx_lock);
421 	if (unlikely(!priv->rx_head)) {
422 		if (netif_msg_rx_err(priv) && net_ratelimit())
423 			netdev_warn(priv->dev, "rx: polling, but no queue\n");
424 
425 		spin_unlock(&priv->rx_lock);
426 		napi_complete(napi);
427 		return 0;
428 	}
429 
430 	desc = priv->rx_head;
431 	restart = NULL;
432 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
433 		processed++;
434 
435 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
436 			/* The last update to eoq->hw_next didn't happen
437 			 * soon enough, and the receiver stopped here.
438 			 * Remember this descriptor so we can restart
439 			 * the receiver after freeing some space.
440 			 */
441 			if (unlikely(restart)) {
442 				if (netif_msg_rx_err(priv))
443 					netdev_err(priv->dev, "poll found a"
444 						   " duplicate EOQ: %p and %p\n",
445 						   restart, desc);
446 				goto fatal_error;
447 			}
448 
449 			restart = desc->next;
450 		}
451 
452 		skb = cpmac_rx_one(priv, desc);
453 		if (likely(skb)) {
454 			netif_receive_skb(skb);
455 			received++;
456 		}
457 		desc = desc->next;
458 	}
459 
460 	if (desc != priv->rx_head) {
461 		/* We freed some buffers, but not the whole ring,
462 		 * add what we did free to the rx list
463 		 */
464 		desc->prev->hw_next = (u32)0;
465 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
466 	}
467 
468 	/* Optimization: If we did not actually process an EOQ (perhaps because
469 	 * of quota limits), check to see if the tail of the queue has EOQ set.
470 	 * We should immediately restart in that case so that the receiver can
471 	 * restart and run in parallel with more packet processing.
472 	 * This lets us handle slightly larger bursts before running
473 	 * out of ring space (assuming dev->weight < ring_size)
474 	 */
475 
476 	if (!restart &&
477 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
478 		    == CPMAC_EOQ &&
479 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
480 		/* reset EOQ so the poll loop (above) doesn't try to
481 		 * restart this when it eventually gets to this descriptor.
482 		 */
483 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
484 		restart = priv->rx_head;
485 	}
486 
487 	if (restart) {
488 		priv->dev->stats.rx_errors++;
489 		priv->dev->stats.rx_fifo_errors++;
490 		if (netif_msg_rx_err(priv) && net_ratelimit())
491 			netdev_warn(priv->dev, "rx dma ring overrun\n");
492 
493 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
494 			if (netif_msg_drv(priv))
495 				netdev_err(priv->dev, "cpmac_poll is trying "
496 					"to restart rx from a descriptor "
497 					"that's not free: %p\n", restart);
498 			goto fatal_error;
499 		}
500 
501 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
502 	}
503 
504 	priv->rx_head = desc;
505 	spin_unlock(&priv->rx_lock);
506 	if (unlikely(netif_msg_rx_status(priv)))
507 		netdev_dbg(priv->dev, "poll processed %d packets\n", received);
508 
509 	if (processed == 0) {
510 		/* we ran out of packets to read,
511 		 * revert to interrupt-driven mode
512 		 */
513 		napi_complete(napi);
514 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
515 		return 0;
516 	}
517 
518 	return 1;
519 
520 fatal_error:
521 	/* Something went horribly wrong.
522 	 * Reset hardware to try to recover rather than wedging.
523 	 */
524 	if (netif_msg_drv(priv)) {
525 		netdev_err(priv->dev, "cpmac_poll is confused. "
526 			   "Resetting hardware\n");
527 		cpmac_dump_all_desc(priv->dev);
528 		netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
529 			   cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
530 			   cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
531 	}
532 
533 	spin_unlock(&priv->rx_lock);
534 	napi_complete(napi);
535 	netif_tx_stop_all_queues(priv->dev);
536 	napi_disable(&priv->napi);
537 
538 	atomic_inc(&priv->reset_pending);
539 	cpmac_hw_stop(priv->dev);
540 	if (!schedule_work(&priv->reset_work))
541 		atomic_dec(&priv->reset_pending);
542 
543 	return 0;
544 
545 }
546 
547 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
548 {
549 	int queue;
550 	unsigned int len;
551 	struct cpmac_desc *desc;
552 	struct cpmac_priv *priv = netdev_priv(dev);
553 
554 	if (unlikely(atomic_read(&priv->reset_pending)))
555 		return NETDEV_TX_BUSY;
556 
557 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
558 		return NETDEV_TX_OK;
559 
560 	len = max_t(unsigned int, skb->len, ETH_ZLEN);
561 	queue = skb_get_queue_mapping(skb);
562 	netif_stop_subqueue(dev, queue);
563 
564 	desc = &priv->desc_ring[queue];
565 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
566 		if (netif_msg_tx_err(priv) && net_ratelimit())
567 			netdev_warn(dev, "tx dma ring full\n");
568 
569 		return NETDEV_TX_BUSY;
570 	}
571 
572 	spin_lock(&priv->lock);
573 	spin_unlock(&priv->lock);
574 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
575 	desc->skb = skb;
576 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
577 					    DMA_TO_DEVICE);
578 	desc->hw_data = (u32)desc->data_mapping;
579 	desc->datalen = len;
580 	desc->buflen = len;
581 	if (unlikely(netif_msg_tx_queued(priv)))
582 		netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
583 	if (unlikely(netif_msg_hw(priv)))
584 		cpmac_dump_desc(dev, desc);
585 	if (unlikely(netif_msg_pktdata(priv)))
586 		cpmac_dump_skb(dev, skb);
587 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
588 
589 	return NETDEV_TX_OK;
590 }
591 
592 static void cpmac_end_xmit(struct net_device *dev, int queue)
593 {
594 	struct cpmac_desc *desc;
595 	struct cpmac_priv *priv = netdev_priv(dev);
596 
597 	desc = &priv->desc_ring[queue];
598 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
599 	if (likely(desc->skb)) {
600 		spin_lock(&priv->lock);
601 		dev->stats.tx_packets++;
602 		dev->stats.tx_bytes += desc->skb->len;
603 		spin_unlock(&priv->lock);
604 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
605 				 DMA_TO_DEVICE);
606 
607 		if (unlikely(netif_msg_tx_done(priv)))
608 			netdev_dbg(dev, "sent 0x%p, len=%d\n",
609 				   desc->skb, desc->skb->len);
610 
611 		dev_kfree_skb_irq(desc->skb);
612 		desc->skb = NULL;
613 		if (__netif_subqueue_stopped(dev, queue))
614 			netif_wake_subqueue(dev, queue);
615 	} else {
616 		if (netif_msg_tx_err(priv) && net_ratelimit())
617 			netdev_warn(dev, "end_xmit: spurious interrupt\n");
618 		if (__netif_subqueue_stopped(dev, queue))
619 			netif_wake_subqueue(dev, queue);
620 	}
621 }
622 
623 static void cpmac_hw_stop(struct net_device *dev)
624 {
625 	int i;
626 	struct cpmac_priv *priv = netdev_priv(dev);
627 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
628 
629 	ar7_device_reset(pdata->reset_bit);
630 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
631 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
632 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
633 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
634 	for (i = 0; i < 8; i++) {
635 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
636 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
637 	}
638 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
639 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
640 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
641 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
642 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
643 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
644 }
645 
646 static void cpmac_hw_start(struct net_device *dev)
647 {
648 	int i;
649 	struct cpmac_priv *priv = netdev_priv(dev);
650 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
651 
652 	ar7_device_reset(pdata->reset_bit);
653 	for (i = 0; i < 8; i++) {
654 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
655 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
656 	}
657 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
658 
659 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
660 		    MBP_RXMCAST);
661 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
662 	for (i = 0; i < 8; i++)
663 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
664 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
665 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
666 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
667 		    (dev->dev_addr[3] << 24));
668 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
669 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
670 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
671 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
672 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
673 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
674 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
675 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
676 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
677 
678 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
679 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
680 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
681 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
682 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
683 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
684 		    MAC_FDX);
685 }
686 
687 static void cpmac_clear_rx(struct net_device *dev)
688 {
689 	struct cpmac_priv *priv = netdev_priv(dev);
690 	struct cpmac_desc *desc;
691 	int i;
692 
693 	if (unlikely(!priv->rx_head))
694 		return;
695 	desc = priv->rx_head;
696 	for (i = 0; i < priv->ring_size; i++) {
697 		if ((desc->dataflags & CPMAC_OWN) == 0) {
698 			if (netif_msg_rx_err(priv) && net_ratelimit())
699 				netdev_warn(dev, "packet dropped\n");
700 			if (unlikely(netif_msg_hw(priv)))
701 				cpmac_dump_desc(dev, desc);
702 			desc->dataflags = CPMAC_OWN;
703 			dev->stats.rx_dropped++;
704 		}
705 		desc->hw_next = desc->next->mapping;
706 		desc = desc->next;
707 	}
708 	priv->rx_head->prev->hw_next = 0;
709 }
710 
711 static void cpmac_clear_tx(struct net_device *dev)
712 {
713 	struct cpmac_priv *priv = netdev_priv(dev);
714 	int i;
715 
716 	if (unlikely(!priv->desc_ring))
717 		return;
718 	for (i = 0; i < CPMAC_QUEUES; i++) {
719 		priv->desc_ring[i].dataflags = 0;
720 		if (priv->desc_ring[i].skb) {
721 			dev_kfree_skb_any(priv->desc_ring[i].skb);
722 			priv->desc_ring[i].skb = NULL;
723 		}
724 	}
725 }
726 
727 static void cpmac_hw_error(struct work_struct *work)
728 {
729 	struct cpmac_priv *priv =
730 		container_of(work, struct cpmac_priv, reset_work);
731 
732 	spin_lock(&priv->rx_lock);
733 	cpmac_clear_rx(priv->dev);
734 	spin_unlock(&priv->rx_lock);
735 	cpmac_clear_tx(priv->dev);
736 	cpmac_hw_start(priv->dev);
737 	barrier();
738 	atomic_dec(&priv->reset_pending);
739 
740 	netif_tx_wake_all_queues(priv->dev);
741 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
742 }
743 
744 static void cpmac_check_status(struct net_device *dev)
745 {
746 	struct cpmac_priv *priv = netdev_priv(dev);
747 
748 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
749 	int rx_channel = (macstatus >> 8) & 7;
750 	int rx_code = (macstatus >> 12) & 15;
751 	int tx_channel = (macstatus >> 16) & 7;
752 	int tx_code = (macstatus >> 20) & 15;
753 
754 	if (rx_code || tx_code) {
755 		if (netif_msg_drv(priv) && net_ratelimit()) {
756 			/* Can't find any documentation on what these
757 			 * error codes actually are. So just log them and hope..
758 			 */
759 			if (rx_code)
760 				netdev_warn(dev, "host error %d on rx "
761 					"channel %d (macstatus %08x), resetting\n",
762 					rx_code, rx_channel, macstatus);
763 			if (tx_code)
764 				netdev_warn(dev, "host error %d on tx "
765 					"channel %d (macstatus %08x), resetting\n",
766 					tx_code, tx_channel, macstatus);
767 		}
768 
769 		netif_tx_stop_all_queues(dev);
770 		cpmac_hw_stop(dev);
771 		if (schedule_work(&priv->reset_work))
772 			atomic_inc(&priv->reset_pending);
773 		if (unlikely(netif_msg_hw(priv)))
774 			cpmac_dump_regs(dev);
775 	}
776 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
777 }
778 
779 static irqreturn_t cpmac_irq(int irq, void *dev_id)
780 {
781 	struct net_device *dev = dev_id;
782 	struct cpmac_priv *priv;
783 	int queue;
784 	u32 status;
785 
786 	priv = netdev_priv(dev);
787 
788 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
789 
790 	if (unlikely(netif_msg_intr(priv)))
791 		netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
792 
793 	if (status & MAC_INT_TX)
794 		cpmac_end_xmit(dev, (status & 7));
795 
796 	if (status & MAC_INT_RX) {
797 		queue = (status >> 8) & 7;
798 		if (napi_schedule_prep(&priv->napi)) {
799 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
800 			__napi_schedule(&priv->napi);
801 		}
802 	}
803 
804 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
805 
806 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
807 		cpmac_check_status(dev);
808 
809 	return IRQ_HANDLED;
810 }
811 
812 static void cpmac_tx_timeout(struct net_device *dev)
813 {
814 	struct cpmac_priv *priv = netdev_priv(dev);
815 
816 	spin_lock(&priv->lock);
817 	dev->stats.tx_errors++;
818 	spin_unlock(&priv->lock);
819 	if (netif_msg_tx_err(priv) && net_ratelimit())
820 		netdev_warn(dev, "transmit timeout\n");
821 
822 	atomic_inc(&priv->reset_pending);
823 	barrier();
824 	cpmac_clear_tx(dev);
825 	barrier();
826 	atomic_dec(&priv->reset_pending);
827 
828 	netif_tx_wake_all_queues(priv->dev);
829 }
830 
831 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
832 {
833 	if (!(netif_running(dev)))
834 		return -EINVAL;
835 	if (!dev->phydev)
836 		return -EINVAL;
837 
838 	return phy_mii_ioctl(dev->phydev, ifr, cmd);
839 }
840 
841 static void cpmac_get_ringparam(struct net_device *dev,
842 						struct ethtool_ringparam *ring)
843 {
844 	struct cpmac_priv *priv = netdev_priv(dev);
845 
846 	ring->rx_max_pending = 1024;
847 	ring->rx_mini_max_pending = 1;
848 	ring->rx_jumbo_max_pending = 1;
849 	ring->tx_max_pending = 1;
850 
851 	ring->rx_pending = priv->ring_size;
852 	ring->rx_mini_pending = 1;
853 	ring->rx_jumbo_pending = 1;
854 	ring->tx_pending = 1;
855 }
856 
857 static int cpmac_set_ringparam(struct net_device *dev,
858 						struct ethtool_ringparam *ring)
859 {
860 	struct cpmac_priv *priv = netdev_priv(dev);
861 
862 	if (netif_running(dev))
863 		return -EBUSY;
864 	priv->ring_size = ring->rx_pending;
865 
866 	return 0;
867 }
868 
869 static void cpmac_get_drvinfo(struct net_device *dev,
870 			      struct ethtool_drvinfo *info)
871 {
872 	strlcpy(info->driver, "cpmac", sizeof(info->driver));
873 	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
874 	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
875 }
876 
877 static const struct ethtool_ops cpmac_ethtool_ops = {
878 	.get_drvinfo = cpmac_get_drvinfo,
879 	.get_link = ethtool_op_get_link,
880 	.get_ringparam = cpmac_get_ringparam,
881 	.set_ringparam = cpmac_set_ringparam,
882 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
883 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
884 };
885 
886 static void cpmac_adjust_link(struct net_device *dev)
887 {
888 	struct cpmac_priv *priv = netdev_priv(dev);
889 	int new_state = 0;
890 
891 	spin_lock(&priv->lock);
892 	if (dev->phydev->link) {
893 		netif_tx_start_all_queues(dev);
894 		if (dev->phydev->duplex != priv->oldduplex) {
895 			new_state = 1;
896 			priv->oldduplex = dev->phydev->duplex;
897 		}
898 
899 		if (dev->phydev->speed != priv->oldspeed) {
900 			new_state = 1;
901 			priv->oldspeed = dev->phydev->speed;
902 		}
903 
904 		if (!priv->oldlink) {
905 			new_state = 1;
906 			priv->oldlink = 1;
907 		}
908 	} else if (priv->oldlink) {
909 		new_state = 1;
910 		priv->oldlink = 0;
911 		priv->oldspeed = 0;
912 		priv->oldduplex = -1;
913 	}
914 
915 	if (new_state && netif_msg_link(priv) && net_ratelimit())
916 		phy_print_status(dev->phydev);
917 
918 	spin_unlock(&priv->lock);
919 }
920 
921 static int cpmac_open(struct net_device *dev)
922 {
923 	int i, size, res;
924 	struct cpmac_priv *priv = netdev_priv(dev);
925 	struct resource *mem;
926 	struct cpmac_desc *desc;
927 	struct sk_buff *skb;
928 
929 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
930 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
931 		if (netif_msg_drv(priv))
932 			netdev_err(dev, "failed to request registers\n");
933 
934 		res = -ENXIO;
935 		goto fail_reserve;
936 	}
937 
938 	priv->regs = ioremap(mem->start, resource_size(mem));
939 	if (!priv->regs) {
940 		if (netif_msg_drv(priv))
941 			netdev_err(dev, "failed to remap registers\n");
942 
943 		res = -ENXIO;
944 		goto fail_remap;
945 	}
946 
947 	size = priv->ring_size + CPMAC_QUEUES;
948 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
949 					     sizeof(struct cpmac_desc) * size,
950 					     &priv->dma_ring,
951 					     GFP_KERNEL);
952 	if (!priv->desc_ring) {
953 		res = -ENOMEM;
954 		goto fail_alloc;
955 	}
956 
957 	for (i = 0; i < size; i++)
958 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
959 
960 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
961 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
962 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
963 		if (unlikely(!skb)) {
964 			res = -ENOMEM;
965 			goto fail_desc;
966 		}
967 		desc->skb = skb;
968 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
969 						    CPMAC_SKB_SIZE,
970 						    DMA_FROM_DEVICE);
971 		desc->hw_data = (u32)desc->data_mapping;
972 		desc->buflen = CPMAC_SKB_SIZE;
973 		desc->dataflags = CPMAC_OWN;
974 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
975 		desc->next->prev = desc;
976 		desc->hw_next = (u32)desc->next->mapping;
977 	}
978 
979 	priv->rx_head->prev->hw_next = (u32)0;
980 
981 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
982 	if (res) {
983 		if (netif_msg_drv(priv))
984 			netdev_err(dev, "failed to obtain irq\n");
985 
986 		goto fail_irq;
987 	}
988 
989 	atomic_set(&priv->reset_pending, 0);
990 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
991 	cpmac_hw_start(dev);
992 
993 	napi_enable(&priv->napi);
994 	dev->phydev->state = PHY_CHANGELINK;
995 	phy_start(dev->phydev);
996 
997 	return 0;
998 
999 fail_irq:
1000 fail_desc:
1001 	for (i = 0; i < priv->ring_size; i++) {
1002 		if (priv->rx_head[i].skb) {
1003 			dma_unmap_single(&dev->dev,
1004 					 priv->rx_head[i].data_mapping,
1005 					 CPMAC_SKB_SIZE,
1006 					 DMA_FROM_DEVICE);
1007 			kfree_skb(priv->rx_head[i].skb);
1008 		}
1009 	}
1010 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * size,
1011 			  priv->desc_ring, priv->dma_ring);
1012 
1013 fail_alloc:
1014 	iounmap(priv->regs);
1015 
1016 fail_remap:
1017 	release_mem_region(mem->start, resource_size(mem));
1018 
1019 fail_reserve:
1020 	return res;
1021 }
1022 
1023 static int cpmac_stop(struct net_device *dev)
1024 {
1025 	int i;
1026 	struct cpmac_priv *priv = netdev_priv(dev);
1027 	struct resource *mem;
1028 
1029 	netif_tx_stop_all_queues(dev);
1030 
1031 	cancel_work_sync(&priv->reset_work);
1032 	napi_disable(&priv->napi);
1033 	phy_stop(dev->phydev);
1034 
1035 	cpmac_hw_stop(dev);
1036 
1037 	for (i = 0; i < 8; i++)
1038 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1039 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1040 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1041 
1042 	free_irq(dev->irq, dev);
1043 	iounmap(priv->regs);
1044 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1045 	release_mem_region(mem->start, resource_size(mem));
1046 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1047 	for (i = 0; i < priv->ring_size; i++) {
1048 		if (priv->rx_head[i].skb) {
1049 			dma_unmap_single(&dev->dev,
1050 					 priv->rx_head[i].data_mapping,
1051 					 CPMAC_SKB_SIZE,
1052 					 DMA_FROM_DEVICE);
1053 			kfree_skb(priv->rx_head[i].skb);
1054 		}
1055 	}
1056 
1057 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1058 			  (CPMAC_QUEUES + priv->ring_size),
1059 			  priv->desc_ring, priv->dma_ring);
1060 
1061 	return 0;
1062 }
1063 
1064 static const struct net_device_ops cpmac_netdev_ops = {
1065 	.ndo_open		= cpmac_open,
1066 	.ndo_stop		= cpmac_stop,
1067 	.ndo_start_xmit		= cpmac_start_xmit,
1068 	.ndo_tx_timeout		= cpmac_tx_timeout,
1069 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1070 	.ndo_do_ioctl		= cpmac_ioctl,
1071 	.ndo_validate_addr	= eth_validate_addr,
1072 	.ndo_set_mac_address	= eth_mac_addr,
1073 };
1074 
1075 static int external_switch;
1076 
1077 static int cpmac_probe(struct platform_device *pdev)
1078 {
1079 	int rc, phy_id;
1080 	char mdio_bus_id[MII_BUS_ID_SIZE];
1081 	struct resource *mem;
1082 	struct cpmac_priv *priv;
1083 	struct net_device *dev;
1084 	struct plat_cpmac_data *pdata;
1085 	struct phy_device *phydev = NULL;
1086 
1087 	pdata = dev_get_platdata(&pdev->dev);
1088 
1089 	if (external_switch || dumb_switch) {
1090 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1091 		phy_id = pdev->id;
1092 	} else {
1093 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1094 			if (!(pdata->phy_mask & (1 << phy_id)))
1095 				continue;
1096 			if (!mdiobus_get_phy(cpmac_mii, phy_id))
1097 				continue;
1098 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1099 			break;
1100 		}
1101 	}
1102 
1103 	if (phy_id == PHY_MAX_ADDR) {
1104 		dev_err(&pdev->dev, "no PHY present, falling back "
1105 			"to switch on MDIO bus 0\n");
1106 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1107 		phy_id = pdev->id;
1108 	}
1109 	mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1110 
1111 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1112 	if (!dev)
1113 		return -ENOMEM;
1114 
1115 	SET_NETDEV_DEV(dev, &pdev->dev);
1116 	platform_set_drvdata(pdev, dev);
1117 	priv = netdev_priv(dev);
1118 
1119 	priv->pdev = pdev;
1120 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1121 	if (!mem) {
1122 		rc = -ENODEV;
1123 		goto fail;
1124 	}
1125 
1126 	dev->irq = platform_get_irq_byname(pdev, "irq");
1127 
1128 	dev->netdev_ops = &cpmac_netdev_ops;
1129 	dev->ethtool_ops = &cpmac_ethtool_ops;
1130 
1131 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1132 
1133 	spin_lock_init(&priv->lock);
1134 	spin_lock_init(&priv->rx_lock);
1135 	priv->dev = dev;
1136 	priv->ring_size = 64;
1137 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1138 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1139 
1140 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1141 						mdio_bus_id, phy_id);
1142 
1143 	phydev = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1144 			     PHY_INTERFACE_MODE_MII);
1145 
1146 	if (IS_ERR(phydev)) {
1147 		if (netif_msg_drv(priv))
1148 			dev_err(&pdev->dev, "Could not attach to PHY\n");
1149 
1150 		rc = PTR_ERR(phydev);
1151 		goto fail;
1152 	}
1153 
1154 	rc = register_netdev(dev);
1155 	if (rc) {
1156 		dev_err(&pdev->dev, "Could not register net device\n");
1157 		goto fail;
1158 	}
1159 
1160 	if (netif_msg_probe(priv)) {
1161 		dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1162 			 "mac: %pM\n", (void *)mem->start, dev->irq,
1163 			 priv->phy_name, dev->dev_addr);
1164 	}
1165 
1166 	return 0;
1167 
1168 fail:
1169 	free_netdev(dev);
1170 	return rc;
1171 }
1172 
1173 static int cpmac_remove(struct platform_device *pdev)
1174 {
1175 	struct net_device *dev = platform_get_drvdata(pdev);
1176 
1177 	unregister_netdev(dev);
1178 	free_netdev(dev);
1179 
1180 	return 0;
1181 }
1182 
1183 static struct platform_driver cpmac_driver = {
1184 	.driver = {
1185 		.name 	= "cpmac",
1186 	},
1187 	.probe 	= cpmac_probe,
1188 	.remove = cpmac_remove,
1189 };
1190 
1191 int cpmac_init(void)
1192 {
1193 	u32 mask;
1194 	int i, res;
1195 
1196 	cpmac_mii = mdiobus_alloc();
1197 	if (cpmac_mii == NULL)
1198 		return -ENOMEM;
1199 
1200 	cpmac_mii->name = "cpmac-mii";
1201 	cpmac_mii->read = cpmac_mdio_read;
1202 	cpmac_mii->write = cpmac_mdio_write;
1203 	cpmac_mii->reset = cpmac_mdio_reset;
1204 
1205 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1206 
1207 	if (!cpmac_mii->priv) {
1208 		pr_err("Can't ioremap mdio registers\n");
1209 		res = -ENXIO;
1210 		goto fail_alloc;
1211 	}
1212 
1213 	/* FIXME: unhardcode gpio&reset bits */
1214 	ar7_gpio_disable(26);
1215 	ar7_gpio_disable(27);
1216 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1217 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1218 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1219 
1220 	cpmac_mii->reset(cpmac_mii);
1221 
1222 	for (i = 0; i < 300; i++) {
1223 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1224 		if (mask)
1225 			break;
1226 		else
1227 			msleep(10);
1228 	}
1229 
1230 	mask &= 0x7fffffff;
1231 	if (mask & (mask - 1)) {
1232 		external_switch = 1;
1233 		mask = 0;
1234 	}
1235 
1236 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1237 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1238 
1239 	res = mdiobus_register(cpmac_mii);
1240 	if (res)
1241 		goto fail_mii;
1242 
1243 	res = platform_driver_register(&cpmac_driver);
1244 	if (res)
1245 		goto fail_cpmac;
1246 
1247 	return 0;
1248 
1249 fail_cpmac:
1250 	mdiobus_unregister(cpmac_mii);
1251 
1252 fail_mii:
1253 	iounmap(cpmac_mii->priv);
1254 
1255 fail_alloc:
1256 	mdiobus_free(cpmac_mii);
1257 
1258 	return res;
1259 }
1260 
1261 void cpmac_exit(void)
1262 {
1263 	platform_driver_unregister(&cpmac_driver);
1264 	mdiobus_unregister(cpmac_mii);
1265 	iounmap(cpmac_mii->priv);
1266 	mdiobus_free(cpmac_mii);
1267 }
1268 
1269 module_init(cpmac_init);
1270 module_exit(cpmac_exit);
1271