xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
22 
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
43 
44 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
45 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:cpmac");
48 
49 static int debug_level = 8;
50 static int dumb_switch;
51 
52 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
53 module_param(debug_level, int, 0444);
54 module_param(dumb_switch, int, 0444);
55 
56 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
57 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
58 
59 #define CPMAC_VERSION "0.5.2"
60 /* frame size + 802.1q tag + FCS size */
61 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
62 #define CPMAC_QUEUES	8
63 
64 /* Ethernet registers */
65 #define CPMAC_TX_CONTROL		0x0004
66 #define CPMAC_TX_TEARDOWN		0x0008
67 #define CPMAC_RX_CONTROL		0x0014
68 #define CPMAC_RX_TEARDOWN		0x0018
69 #define CPMAC_MBP			0x0100
70 #define MBP_RXPASSCRC			0x40000000
71 #define MBP_RXQOS			0x20000000
72 #define MBP_RXNOCHAIN			0x10000000
73 #define MBP_RXCMF			0x01000000
74 #define MBP_RXSHORT			0x00800000
75 #define MBP_RXCEF			0x00400000
76 #define MBP_RXPROMISC			0x00200000
77 #define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
78 #define MBP_RXBCAST			0x00002000
79 #define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
80 #define MBP_RXMCAST			0x00000020
81 #define MBP_MCASTCHAN(channel)		((channel) & 0x7)
82 #define CPMAC_UNICAST_ENABLE		0x0104
83 #define CPMAC_UNICAST_CLEAR		0x0108
84 #define CPMAC_MAX_LENGTH		0x010c
85 #define CPMAC_BUFFER_OFFSET		0x0110
86 #define CPMAC_MAC_CONTROL		0x0160
87 #define MAC_TXPTYPE			0x00000200
88 #define MAC_TXPACE			0x00000040
89 #define MAC_MII				0x00000020
90 #define MAC_TXFLOW			0x00000010
91 #define MAC_RXFLOW			0x00000008
92 #define MAC_MTEST			0x00000004
93 #define MAC_LOOPBACK			0x00000002
94 #define MAC_FDX				0x00000001
95 #define CPMAC_MAC_STATUS		0x0164
96 #define MAC_STATUS_QOS			0x00000004
97 #define MAC_STATUS_RXFLOW		0x00000002
98 #define MAC_STATUS_TXFLOW		0x00000001
99 #define CPMAC_TX_INT_ENABLE		0x0178
100 #define CPMAC_TX_INT_CLEAR		0x017c
101 #define CPMAC_MAC_INT_VECTOR		0x0180
102 #define MAC_INT_STATUS			0x00080000
103 #define MAC_INT_HOST			0x00040000
104 #define MAC_INT_RX			0x00020000
105 #define MAC_INT_TX			0x00010000
106 #define CPMAC_MAC_EOI_VECTOR		0x0184
107 #define CPMAC_RX_INT_ENABLE		0x0198
108 #define CPMAC_RX_INT_CLEAR		0x019c
109 #define CPMAC_MAC_INT_ENABLE		0x01a8
110 #define CPMAC_MAC_INT_CLEAR		0x01ac
111 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
112 #define CPMAC_MAC_ADDR_MID		0x01d0
113 #define CPMAC_MAC_ADDR_HI		0x01d4
114 #define CPMAC_MAC_HASH_LO		0x01d8
115 #define CPMAC_MAC_HASH_HI		0x01dc
116 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
117 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
118 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
119 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
120 #define CPMAC_REG_END			0x0680
121 
122 /* Rx/Tx statistics
123  * TODO: use some of them to fill stats in cpmac_stats()
124  */
125 #define CPMAC_STATS_RX_GOOD		0x0200
126 #define CPMAC_STATS_RX_BCAST		0x0204
127 #define CPMAC_STATS_RX_MCAST		0x0208
128 #define CPMAC_STATS_RX_PAUSE		0x020c
129 #define CPMAC_STATS_RX_CRC		0x0210
130 #define CPMAC_STATS_RX_ALIGN		0x0214
131 #define CPMAC_STATS_RX_OVER		0x0218
132 #define CPMAC_STATS_RX_JABBER		0x021c
133 #define CPMAC_STATS_RX_UNDER		0x0220
134 #define CPMAC_STATS_RX_FRAG		0x0224
135 #define CPMAC_STATS_RX_FILTER		0x0228
136 #define CPMAC_STATS_RX_QOSFILTER	0x022c
137 #define CPMAC_STATS_RX_OCTETS		0x0230
138 
139 #define CPMAC_STATS_TX_GOOD		0x0234
140 #define CPMAC_STATS_TX_BCAST		0x0238
141 #define CPMAC_STATS_TX_MCAST		0x023c
142 #define CPMAC_STATS_TX_PAUSE		0x0240
143 #define CPMAC_STATS_TX_DEFER		0x0244
144 #define CPMAC_STATS_TX_COLLISION	0x0248
145 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
146 #define CPMAC_STATS_TX_MULTICOLL	0x0250
147 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
148 #define CPMAC_STATS_TX_LATECOLL		0x0258
149 #define CPMAC_STATS_TX_UNDERRUN		0x025c
150 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
151 #define CPMAC_STATS_TX_OCTETS		0x0264
152 
153 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
154 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
155 						(reg)))
156 
157 /* MDIO bus */
158 #define CPMAC_MDIO_VERSION		0x0000
159 #define CPMAC_MDIO_CONTROL		0x0004
160 #define MDIOC_IDLE			0x80000000
161 #define MDIOC_ENABLE			0x40000000
162 #define MDIOC_PREAMBLE			0x00100000
163 #define MDIOC_FAULT			0x00080000
164 #define MDIOC_FAULTDETECT		0x00040000
165 #define MDIOC_INTTEST			0x00020000
166 #define MDIOC_CLKDIV(div)		((div) & 0xff)
167 #define CPMAC_MDIO_ALIVE		0x0008
168 #define CPMAC_MDIO_LINK			0x000c
169 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
170 #define MDIO_BUSY			0x80000000
171 #define MDIO_WRITE			0x40000000
172 #define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
173 #define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
174 #define MDIO_DATA(data)			((data) & 0xffff)
175 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
176 #define PHYSEL_LINKSEL			0x00000040
177 #define PHYSEL_LINKINT			0x00000020
178 
179 struct cpmac_desc {
180 	u32 hw_next;
181 	u32 hw_data;
182 	u16 buflen;
183 	u16 bufflags;
184 	u16 datalen;
185 	u16 dataflags;
186 #define CPMAC_SOP			0x8000
187 #define CPMAC_EOP			0x4000
188 #define CPMAC_OWN			0x2000
189 #define CPMAC_EOQ			0x1000
190 	struct sk_buff *skb;
191 	struct cpmac_desc *next;
192 	struct cpmac_desc *prev;
193 	dma_addr_t mapping;
194 	dma_addr_t data_mapping;
195 };
196 
197 struct cpmac_priv {
198 	spinlock_t lock;
199 	spinlock_t rx_lock;
200 	struct cpmac_desc *rx_head;
201 	int ring_size;
202 	struct cpmac_desc *desc_ring;
203 	dma_addr_t dma_ring;
204 	void __iomem *regs;
205 	struct mii_bus *mii_bus;
206 	struct phy_device *phy;
207 	char phy_name[MII_BUS_ID_SIZE + 3];
208 	int oldlink, oldspeed, oldduplex;
209 	u32 msg_enable;
210 	struct net_device *dev;
211 	struct work_struct reset_work;
212 	struct platform_device *pdev;
213 	struct napi_struct napi;
214 	atomic_t reset_pending;
215 };
216 
217 static irqreturn_t cpmac_irq(int, void *);
218 static void cpmac_hw_start(struct net_device *dev);
219 static void cpmac_hw_stop(struct net_device *dev);
220 static int cpmac_stop(struct net_device *dev);
221 static int cpmac_open(struct net_device *dev);
222 
223 static void cpmac_dump_regs(struct net_device *dev)
224 {
225 	int i;
226 	struct cpmac_priv *priv = netdev_priv(dev);
227 
228 	for (i = 0; i < CPMAC_REG_END; i += 4) {
229 		if (i % 16 == 0) {
230 			if (i)
231 				printk("\n");
232 			printk("%s: reg[%p]:", dev->name, priv->regs + i);
233 		}
234 		printk(" %08x", cpmac_read(priv->regs, i));
235 	}
236 	printk("\n");
237 }
238 
239 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
240 {
241 	int i;
242 
243 	printk("%s: desc[%p]:", dev->name, desc);
244 	for (i = 0; i < sizeof(*desc) / 4; i++)
245 		printk(" %08x", ((u32 *)desc)[i]);
246 	printk("\n");
247 }
248 
249 static void cpmac_dump_all_desc(struct net_device *dev)
250 {
251 	struct cpmac_priv *priv = netdev_priv(dev);
252 	struct cpmac_desc *dump = priv->rx_head;
253 
254 	do {
255 		cpmac_dump_desc(dev, dump);
256 		dump = dump->next;
257 	} while (dump != priv->rx_head);
258 }
259 
260 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
261 {
262 	int i;
263 
264 	printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
265 	for (i = 0; i < skb->len; i++) {
266 		if (i % 16 == 0) {
267 			if (i)
268 				printk("\n");
269 			printk("%s: data[%p]:", dev->name, skb->data + i);
270 		}
271 		printk(" %02x", ((u8 *)skb->data)[i]);
272 	}
273 	printk("\n");
274 }
275 
276 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
277 {
278 	u32 val;
279 
280 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
281 		cpu_relax();
282 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
283 		    MDIO_PHY(phy_id));
284 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
285 		cpu_relax();
286 
287 	return MDIO_DATA(val);
288 }
289 
290 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
291 			    int reg, u16 val)
292 {
293 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
294 		cpu_relax();
295 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
296 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
297 
298 	return 0;
299 }
300 
301 static int cpmac_mdio_reset(struct mii_bus *bus)
302 {
303 	struct clk *cpmac_clk;
304 
305 	cpmac_clk = clk_get(&bus->dev, "cpmac");
306 	if (IS_ERR(cpmac_clk)) {
307 		pr_err("unable to get cpmac clock\n");
308 		return -1;
309 	}
310 	ar7_device_reset(AR7_RESET_BIT_MDIO);
311 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
312 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
313 
314 	return 0;
315 }
316 
317 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
318 
319 static struct mii_bus *cpmac_mii;
320 
321 static void cpmac_set_multicast_list(struct net_device *dev)
322 {
323 	struct netdev_hw_addr *ha;
324 	u8 tmp;
325 	u32 mbp, bit, hash[2] = { 0, };
326 	struct cpmac_priv *priv = netdev_priv(dev);
327 
328 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
329 	if (dev->flags & IFF_PROMISC) {
330 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
331 			    MBP_RXPROMISC);
332 	} else {
333 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
334 		if (dev->flags & IFF_ALLMULTI) {
335 			/* enable all multicast mode */
336 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
337 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
338 		} else {
339 			/* cpmac uses some strange mac address hashing
340 			 * (not crc32)
341 			 */
342 			netdev_for_each_mc_addr(ha, dev) {
343 				bit = 0;
344 				tmp = ha->addr[0];
345 				bit  ^= (tmp >> 2) ^ (tmp << 4);
346 				tmp = ha->addr[1];
347 				bit  ^= (tmp >> 4) ^ (tmp << 2);
348 				tmp = ha->addr[2];
349 				bit  ^= (tmp >> 6) ^ tmp;
350 				tmp = ha->addr[3];
351 				bit  ^= (tmp >> 2) ^ (tmp << 4);
352 				tmp = ha->addr[4];
353 				bit  ^= (tmp >> 4) ^ (tmp << 2);
354 				tmp = ha->addr[5];
355 				bit  ^= (tmp >> 6) ^ tmp;
356 				bit &= 0x3f;
357 				hash[bit / 32] |= 1 << (bit % 32);
358 			}
359 
360 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
361 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
362 		}
363 	}
364 }
365 
366 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
367 				    struct cpmac_desc *desc)
368 {
369 	struct sk_buff *skb, *result = NULL;
370 
371 	if (unlikely(netif_msg_hw(priv)))
372 		cpmac_dump_desc(priv->dev, desc);
373 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
374 	if (unlikely(!desc->datalen)) {
375 		if (netif_msg_rx_err(priv) && net_ratelimit())
376 			netdev_warn(priv->dev, "rx: spurious interrupt\n");
377 
378 		return NULL;
379 	}
380 
381 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
382 	if (likely(skb)) {
383 		skb_put(desc->skb, desc->datalen);
384 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
385 		skb_checksum_none_assert(desc->skb);
386 		priv->dev->stats.rx_packets++;
387 		priv->dev->stats.rx_bytes += desc->datalen;
388 		result = desc->skb;
389 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
390 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
391 		desc->skb = skb;
392 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
393 						    CPMAC_SKB_SIZE,
394 						    DMA_FROM_DEVICE);
395 		desc->hw_data = (u32)desc->data_mapping;
396 		if (unlikely(netif_msg_pktdata(priv))) {
397 			netdev_dbg(priv->dev, "received packet:\n");
398 			cpmac_dump_skb(priv->dev, result);
399 		}
400 	} else {
401 		if (netif_msg_rx_err(priv) && net_ratelimit())
402 			netdev_warn(priv->dev,
403 				    "low on skbs, dropping packet\n");
404 
405 		priv->dev->stats.rx_dropped++;
406 	}
407 
408 	desc->buflen = CPMAC_SKB_SIZE;
409 	desc->dataflags = CPMAC_OWN;
410 
411 	return result;
412 }
413 
414 static int cpmac_poll(struct napi_struct *napi, int budget)
415 {
416 	struct sk_buff *skb;
417 	struct cpmac_desc *desc, *restart;
418 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
419 	int received = 0, processed = 0;
420 
421 	spin_lock(&priv->rx_lock);
422 	if (unlikely(!priv->rx_head)) {
423 		if (netif_msg_rx_err(priv) && net_ratelimit())
424 			netdev_warn(priv->dev, "rx: polling, but no queue\n");
425 
426 		spin_unlock(&priv->rx_lock);
427 		napi_complete(napi);
428 		return 0;
429 	}
430 
431 	desc = priv->rx_head;
432 	restart = NULL;
433 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
434 		processed++;
435 
436 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
437 			/* The last update to eoq->hw_next didn't happen
438 			 * soon enough, and the receiver stopped here.
439 			 * Remember this descriptor so we can restart
440 			 * the receiver after freeing some space.
441 			 */
442 			if (unlikely(restart)) {
443 				if (netif_msg_rx_err(priv))
444 					netdev_err(priv->dev, "poll found a"
445 						   " duplicate EOQ: %p and %p\n",
446 						   restart, desc);
447 				goto fatal_error;
448 			}
449 
450 			restart = desc->next;
451 		}
452 
453 		skb = cpmac_rx_one(priv, desc);
454 		if (likely(skb)) {
455 			netif_receive_skb(skb);
456 			received++;
457 		}
458 		desc = desc->next;
459 	}
460 
461 	if (desc != priv->rx_head) {
462 		/* We freed some buffers, but not the whole ring,
463 		 * add what we did free to the rx list
464 		 */
465 		desc->prev->hw_next = (u32)0;
466 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
467 	}
468 
469 	/* Optimization: If we did not actually process an EOQ (perhaps because
470 	 * of quota limits), check to see if the tail of the queue has EOQ set.
471 	 * We should immediately restart in that case so that the receiver can
472 	 * restart and run in parallel with more packet processing.
473 	 * This lets us handle slightly larger bursts before running
474 	 * out of ring space (assuming dev->weight < ring_size)
475 	 */
476 
477 	if (!restart &&
478 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
479 		    == CPMAC_EOQ &&
480 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
481 		/* reset EOQ so the poll loop (above) doesn't try to
482 		 * restart this when it eventually gets to this descriptor.
483 		 */
484 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
485 		restart = priv->rx_head;
486 	}
487 
488 	if (restart) {
489 		priv->dev->stats.rx_errors++;
490 		priv->dev->stats.rx_fifo_errors++;
491 		if (netif_msg_rx_err(priv) && net_ratelimit())
492 			netdev_warn(priv->dev, "rx dma ring overrun\n");
493 
494 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
495 			if (netif_msg_drv(priv))
496 				netdev_err(priv->dev, "cpmac_poll is trying "
497 					"to restart rx from a descriptor "
498 					"that's not free: %p\n", restart);
499 			goto fatal_error;
500 		}
501 
502 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
503 	}
504 
505 	priv->rx_head = desc;
506 	spin_unlock(&priv->rx_lock);
507 	if (unlikely(netif_msg_rx_status(priv)))
508 		netdev_dbg(priv->dev, "poll processed %d packets\n", received);
509 
510 	if (processed == 0) {
511 		/* we ran out of packets to read,
512 		 * revert to interrupt-driven mode
513 		 */
514 		napi_complete(napi);
515 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
516 		return 0;
517 	}
518 
519 	return 1;
520 
521 fatal_error:
522 	/* Something went horribly wrong.
523 	 * Reset hardware to try to recover rather than wedging.
524 	 */
525 	if (netif_msg_drv(priv)) {
526 		netdev_err(priv->dev, "cpmac_poll is confused. "
527 			   "Resetting hardware\n");
528 		cpmac_dump_all_desc(priv->dev);
529 		netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
530 			   cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
531 			   cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
532 	}
533 
534 	spin_unlock(&priv->rx_lock);
535 	napi_complete(napi);
536 	netif_tx_stop_all_queues(priv->dev);
537 	napi_disable(&priv->napi);
538 
539 	atomic_inc(&priv->reset_pending);
540 	cpmac_hw_stop(priv->dev);
541 	if (!schedule_work(&priv->reset_work))
542 		atomic_dec(&priv->reset_pending);
543 
544 	return 0;
545 
546 }
547 
548 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
549 {
550 	int queue, len;
551 	struct cpmac_desc *desc;
552 	struct cpmac_priv *priv = netdev_priv(dev);
553 
554 	if (unlikely(atomic_read(&priv->reset_pending)))
555 		return NETDEV_TX_BUSY;
556 
557 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
558 		return NETDEV_TX_OK;
559 
560 	len = max(skb->len, ETH_ZLEN);
561 	queue = skb_get_queue_mapping(skb);
562 	netif_stop_subqueue(dev, queue);
563 
564 	desc = &priv->desc_ring[queue];
565 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
566 		if (netif_msg_tx_err(priv) && net_ratelimit())
567 			netdev_warn(dev, "tx dma ring full\n");
568 
569 		return NETDEV_TX_BUSY;
570 	}
571 
572 	spin_lock(&priv->lock);
573 	spin_unlock(&priv->lock);
574 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
575 	desc->skb = skb;
576 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
577 					    DMA_TO_DEVICE);
578 	desc->hw_data = (u32)desc->data_mapping;
579 	desc->datalen = len;
580 	desc->buflen = len;
581 	if (unlikely(netif_msg_tx_queued(priv)))
582 		netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
583 	if (unlikely(netif_msg_hw(priv)))
584 		cpmac_dump_desc(dev, desc);
585 	if (unlikely(netif_msg_pktdata(priv)))
586 		cpmac_dump_skb(dev, skb);
587 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
588 
589 	return NETDEV_TX_OK;
590 }
591 
592 static void cpmac_end_xmit(struct net_device *dev, int queue)
593 {
594 	struct cpmac_desc *desc;
595 	struct cpmac_priv *priv = netdev_priv(dev);
596 
597 	desc = &priv->desc_ring[queue];
598 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
599 	if (likely(desc->skb)) {
600 		spin_lock(&priv->lock);
601 		dev->stats.tx_packets++;
602 		dev->stats.tx_bytes += desc->skb->len;
603 		spin_unlock(&priv->lock);
604 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
605 				 DMA_TO_DEVICE);
606 
607 		if (unlikely(netif_msg_tx_done(priv)))
608 			netdev_dbg(dev, "sent 0x%p, len=%d\n",
609 				   desc->skb, desc->skb->len);
610 
611 		dev_kfree_skb_irq(desc->skb);
612 		desc->skb = NULL;
613 		if (__netif_subqueue_stopped(dev, queue))
614 			netif_wake_subqueue(dev, queue);
615 	} else {
616 		if (netif_msg_tx_err(priv) && net_ratelimit())
617 			netdev_warn(dev, "end_xmit: spurious interrupt\n");
618 		if (__netif_subqueue_stopped(dev, queue))
619 			netif_wake_subqueue(dev, queue);
620 	}
621 }
622 
623 static void cpmac_hw_stop(struct net_device *dev)
624 {
625 	int i;
626 	struct cpmac_priv *priv = netdev_priv(dev);
627 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
628 
629 	ar7_device_reset(pdata->reset_bit);
630 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
631 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
632 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
633 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
634 	for (i = 0; i < 8; i++) {
635 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
636 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
637 	}
638 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
639 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
640 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
641 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
642 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
643 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
644 }
645 
646 static void cpmac_hw_start(struct net_device *dev)
647 {
648 	int i;
649 	struct cpmac_priv *priv = netdev_priv(dev);
650 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
651 
652 	ar7_device_reset(pdata->reset_bit);
653 	for (i = 0; i < 8; i++) {
654 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
655 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
656 	}
657 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
658 
659 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
660 		    MBP_RXMCAST);
661 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
662 	for (i = 0; i < 8; i++)
663 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
664 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
665 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
666 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
667 		    (dev->dev_addr[3] << 24));
668 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
669 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
670 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
671 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
672 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
673 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
674 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
675 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
676 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
677 
678 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
679 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
680 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
681 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
682 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
683 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
684 		    MAC_FDX);
685 }
686 
687 static void cpmac_clear_rx(struct net_device *dev)
688 {
689 	struct cpmac_priv *priv = netdev_priv(dev);
690 	struct cpmac_desc *desc;
691 	int i;
692 
693 	if (unlikely(!priv->rx_head))
694 		return;
695 	desc = priv->rx_head;
696 	for (i = 0; i < priv->ring_size; i++) {
697 		if ((desc->dataflags & CPMAC_OWN) == 0) {
698 			if (netif_msg_rx_err(priv) && net_ratelimit())
699 				netdev_warn(dev, "packet dropped\n");
700 			if (unlikely(netif_msg_hw(priv)))
701 				cpmac_dump_desc(dev, desc);
702 			desc->dataflags = CPMAC_OWN;
703 			dev->stats.rx_dropped++;
704 		}
705 		desc->hw_next = desc->next->mapping;
706 		desc = desc->next;
707 	}
708 	priv->rx_head->prev->hw_next = 0;
709 }
710 
711 static void cpmac_clear_tx(struct net_device *dev)
712 {
713 	struct cpmac_priv *priv = netdev_priv(dev);
714 	int i;
715 
716 	if (unlikely(!priv->desc_ring))
717 		return;
718 	for (i = 0; i < CPMAC_QUEUES; i++) {
719 		priv->desc_ring[i].dataflags = 0;
720 		if (priv->desc_ring[i].skb) {
721 			dev_kfree_skb_any(priv->desc_ring[i].skb);
722 			priv->desc_ring[i].skb = NULL;
723 		}
724 	}
725 }
726 
727 static void cpmac_hw_error(struct work_struct *work)
728 {
729 	struct cpmac_priv *priv =
730 		container_of(work, struct cpmac_priv, reset_work);
731 
732 	spin_lock(&priv->rx_lock);
733 	cpmac_clear_rx(priv->dev);
734 	spin_unlock(&priv->rx_lock);
735 	cpmac_clear_tx(priv->dev);
736 	cpmac_hw_start(priv->dev);
737 	barrier();
738 	atomic_dec(&priv->reset_pending);
739 
740 	netif_tx_wake_all_queues(priv->dev);
741 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
742 }
743 
744 static void cpmac_check_status(struct net_device *dev)
745 {
746 	struct cpmac_priv *priv = netdev_priv(dev);
747 
748 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
749 	int rx_channel = (macstatus >> 8) & 7;
750 	int rx_code = (macstatus >> 12) & 15;
751 	int tx_channel = (macstatus >> 16) & 7;
752 	int tx_code = (macstatus >> 20) & 15;
753 
754 	if (rx_code || tx_code) {
755 		if (netif_msg_drv(priv) && net_ratelimit()) {
756 			/* Can't find any documentation on what these
757 			 * error codes actually are. So just log them and hope..
758 			 */
759 			if (rx_code)
760 				netdev_warn(dev, "host error %d on rx "
761 					"channel %d (macstatus %08x), resetting\n",
762 					rx_code, rx_channel, macstatus);
763 			if (tx_code)
764 				netdev_warn(dev, "host error %d on tx "
765 					"channel %d (macstatus %08x), resetting\n",
766 					tx_code, tx_channel, macstatus);
767 		}
768 
769 		netif_tx_stop_all_queues(dev);
770 		cpmac_hw_stop(dev);
771 		if (schedule_work(&priv->reset_work))
772 			atomic_inc(&priv->reset_pending);
773 		if (unlikely(netif_msg_hw(priv)))
774 			cpmac_dump_regs(dev);
775 	}
776 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
777 }
778 
779 static irqreturn_t cpmac_irq(int irq, void *dev_id)
780 {
781 	struct net_device *dev = dev_id;
782 	struct cpmac_priv *priv;
783 	int queue;
784 	u32 status;
785 
786 	priv = netdev_priv(dev);
787 
788 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
789 
790 	if (unlikely(netif_msg_intr(priv)))
791 		netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
792 
793 	if (status & MAC_INT_TX)
794 		cpmac_end_xmit(dev, (status & 7));
795 
796 	if (status & MAC_INT_RX) {
797 		queue = (status >> 8) & 7;
798 		if (napi_schedule_prep(&priv->napi)) {
799 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
800 			__napi_schedule(&priv->napi);
801 		}
802 	}
803 
804 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
805 
806 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
807 		cpmac_check_status(dev);
808 
809 	return IRQ_HANDLED;
810 }
811 
812 static void cpmac_tx_timeout(struct net_device *dev)
813 {
814 	struct cpmac_priv *priv = netdev_priv(dev);
815 
816 	spin_lock(&priv->lock);
817 	dev->stats.tx_errors++;
818 	spin_unlock(&priv->lock);
819 	if (netif_msg_tx_err(priv) && net_ratelimit())
820 		netdev_warn(dev, "transmit timeout\n");
821 
822 	atomic_inc(&priv->reset_pending);
823 	barrier();
824 	cpmac_clear_tx(dev);
825 	barrier();
826 	atomic_dec(&priv->reset_pending);
827 
828 	netif_tx_wake_all_queues(priv->dev);
829 }
830 
831 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
832 {
833 	struct cpmac_priv *priv = netdev_priv(dev);
834 
835 	if (!(netif_running(dev)))
836 		return -EINVAL;
837 	if (!priv->phy)
838 		return -EINVAL;
839 
840 	return phy_mii_ioctl(priv->phy, ifr, cmd);
841 }
842 
843 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
844 {
845 	struct cpmac_priv *priv = netdev_priv(dev);
846 
847 	if (priv->phy)
848 		return phy_ethtool_gset(priv->phy, cmd);
849 
850 	return -EINVAL;
851 }
852 
853 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
854 {
855 	struct cpmac_priv *priv = netdev_priv(dev);
856 
857 	if (!capable(CAP_NET_ADMIN))
858 		return -EPERM;
859 
860 	if (priv->phy)
861 		return phy_ethtool_sset(priv->phy, cmd);
862 
863 	return -EINVAL;
864 }
865 
866 static void cpmac_get_ringparam(struct net_device *dev,
867 						struct ethtool_ringparam *ring)
868 {
869 	struct cpmac_priv *priv = netdev_priv(dev);
870 
871 	ring->rx_max_pending = 1024;
872 	ring->rx_mini_max_pending = 1;
873 	ring->rx_jumbo_max_pending = 1;
874 	ring->tx_max_pending = 1;
875 
876 	ring->rx_pending = priv->ring_size;
877 	ring->rx_mini_pending = 1;
878 	ring->rx_jumbo_pending = 1;
879 	ring->tx_pending = 1;
880 }
881 
882 static int cpmac_set_ringparam(struct net_device *dev,
883 						struct ethtool_ringparam *ring)
884 {
885 	struct cpmac_priv *priv = netdev_priv(dev);
886 
887 	if (netif_running(dev))
888 		return -EBUSY;
889 	priv->ring_size = ring->rx_pending;
890 
891 	return 0;
892 }
893 
894 static void cpmac_get_drvinfo(struct net_device *dev,
895 			      struct ethtool_drvinfo *info)
896 {
897 	strlcpy(info->driver, "cpmac", sizeof(info->driver));
898 	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
899 	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
900 	info->regdump_len = 0;
901 }
902 
903 static const struct ethtool_ops cpmac_ethtool_ops = {
904 	.get_settings = cpmac_get_settings,
905 	.set_settings = cpmac_set_settings,
906 	.get_drvinfo = cpmac_get_drvinfo,
907 	.get_link = ethtool_op_get_link,
908 	.get_ringparam = cpmac_get_ringparam,
909 	.set_ringparam = cpmac_set_ringparam,
910 };
911 
912 static void cpmac_adjust_link(struct net_device *dev)
913 {
914 	struct cpmac_priv *priv = netdev_priv(dev);
915 	int new_state = 0;
916 
917 	spin_lock(&priv->lock);
918 	if (priv->phy->link) {
919 		netif_tx_start_all_queues(dev);
920 		if (priv->phy->duplex != priv->oldduplex) {
921 			new_state = 1;
922 			priv->oldduplex = priv->phy->duplex;
923 		}
924 
925 		if (priv->phy->speed != priv->oldspeed) {
926 			new_state = 1;
927 			priv->oldspeed = priv->phy->speed;
928 		}
929 
930 		if (!priv->oldlink) {
931 			new_state = 1;
932 			priv->oldlink = 1;
933 		}
934 	} else if (priv->oldlink) {
935 		new_state = 1;
936 		priv->oldlink = 0;
937 		priv->oldspeed = 0;
938 		priv->oldduplex = -1;
939 	}
940 
941 	if (new_state && netif_msg_link(priv) && net_ratelimit())
942 		phy_print_status(priv->phy);
943 
944 	spin_unlock(&priv->lock);
945 }
946 
947 static int cpmac_open(struct net_device *dev)
948 {
949 	int i, size, res;
950 	struct cpmac_priv *priv = netdev_priv(dev);
951 	struct resource *mem;
952 	struct cpmac_desc *desc;
953 	struct sk_buff *skb;
954 
955 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
956 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
957 		if (netif_msg_drv(priv))
958 			netdev_err(dev, "failed to request registers\n");
959 
960 		res = -ENXIO;
961 		goto fail_reserve;
962 	}
963 
964 	priv->regs = ioremap(mem->start, resource_size(mem));
965 	if (!priv->regs) {
966 		if (netif_msg_drv(priv))
967 			netdev_err(dev, "failed to remap registers\n");
968 
969 		res = -ENXIO;
970 		goto fail_remap;
971 	}
972 
973 	size = priv->ring_size + CPMAC_QUEUES;
974 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
975 					     sizeof(struct cpmac_desc) * size,
976 					     &priv->dma_ring,
977 					     GFP_KERNEL);
978 	if (!priv->desc_ring) {
979 		res = -ENOMEM;
980 		goto fail_alloc;
981 	}
982 
983 	for (i = 0; i < size; i++)
984 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
985 
986 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
987 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
988 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
989 		if (unlikely(!skb)) {
990 			res = -ENOMEM;
991 			goto fail_desc;
992 		}
993 		desc->skb = skb;
994 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
995 						    CPMAC_SKB_SIZE,
996 						    DMA_FROM_DEVICE);
997 		desc->hw_data = (u32)desc->data_mapping;
998 		desc->buflen = CPMAC_SKB_SIZE;
999 		desc->dataflags = CPMAC_OWN;
1000 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1001 		desc->next->prev = desc;
1002 		desc->hw_next = (u32)desc->next->mapping;
1003 	}
1004 
1005 	priv->rx_head->prev->hw_next = (u32)0;
1006 
1007 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1008 	if (res) {
1009 		if (netif_msg_drv(priv))
1010 			netdev_err(dev, "failed to obtain irq\n");
1011 
1012 		goto fail_irq;
1013 	}
1014 
1015 	atomic_set(&priv->reset_pending, 0);
1016 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1017 	cpmac_hw_start(dev);
1018 
1019 	napi_enable(&priv->napi);
1020 	priv->phy->state = PHY_CHANGELINK;
1021 	phy_start(priv->phy);
1022 
1023 	return 0;
1024 
1025 fail_irq:
1026 fail_desc:
1027 	for (i = 0; i < priv->ring_size; i++) {
1028 		if (priv->rx_head[i].skb) {
1029 			dma_unmap_single(&dev->dev,
1030 					 priv->rx_head[i].data_mapping,
1031 					 CPMAC_SKB_SIZE,
1032 					 DMA_FROM_DEVICE);
1033 			kfree_skb(priv->rx_head[i].skb);
1034 		}
1035 	}
1036 fail_alloc:
1037 	kfree(priv->desc_ring);
1038 	iounmap(priv->regs);
1039 
1040 fail_remap:
1041 	release_mem_region(mem->start, resource_size(mem));
1042 
1043 fail_reserve:
1044 	return res;
1045 }
1046 
1047 static int cpmac_stop(struct net_device *dev)
1048 {
1049 	int i;
1050 	struct cpmac_priv *priv = netdev_priv(dev);
1051 	struct resource *mem;
1052 
1053 	netif_tx_stop_all_queues(dev);
1054 
1055 	cancel_work_sync(&priv->reset_work);
1056 	napi_disable(&priv->napi);
1057 	phy_stop(priv->phy);
1058 
1059 	cpmac_hw_stop(dev);
1060 
1061 	for (i = 0; i < 8; i++)
1062 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1063 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1064 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1065 
1066 	free_irq(dev->irq, dev);
1067 	iounmap(priv->regs);
1068 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1069 	release_mem_region(mem->start, resource_size(mem));
1070 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1071 	for (i = 0; i < priv->ring_size; i++) {
1072 		if (priv->rx_head[i].skb) {
1073 			dma_unmap_single(&dev->dev,
1074 					 priv->rx_head[i].data_mapping,
1075 					 CPMAC_SKB_SIZE,
1076 					 DMA_FROM_DEVICE);
1077 			kfree_skb(priv->rx_head[i].skb);
1078 		}
1079 	}
1080 
1081 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1082 			  (CPMAC_QUEUES + priv->ring_size),
1083 			  priv->desc_ring, priv->dma_ring);
1084 
1085 	return 0;
1086 }
1087 
1088 static const struct net_device_ops cpmac_netdev_ops = {
1089 	.ndo_open		= cpmac_open,
1090 	.ndo_stop		= cpmac_stop,
1091 	.ndo_start_xmit		= cpmac_start_xmit,
1092 	.ndo_tx_timeout		= cpmac_tx_timeout,
1093 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1094 	.ndo_do_ioctl		= cpmac_ioctl,
1095 	.ndo_change_mtu		= eth_change_mtu,
1096 	.ndo_validate_addr	= eth_validate_addr,
1097 	.ndo_set_mac_address	= eth_mac_addr,
1098 };
1099 
1100 static int external_switch;
1101 
1102 static int cpmac_probe(struct platform_device *pdev)
1103 {
1104 	int rc, phy_id;
1105 	char mdio_bus_id[MII_BUS_ID_SIZE];
1106 	struct resource *mem;
1107 	struct cpmac_priv *priv;
1108 	struct net_device *dev;
1109 	struct plat_cpmac_data *pdata;
1110 
1111 	pdata = dev_get_platdata(&pdev->dev);
1112 
1113 	if (external_switch || dumb_switch) {
1114 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1115 		phy_id = pdev->id;
1116 	} else {
1117 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1118 			if (!(pdata->phy_mask & (1 << phy_id)))
1119 				continue;
1120 			if (!cpmac_mii->phy_map[phy_id])
1121 				continue;
1122 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1123 			break;
1124 		}
1125 	}
1126 
1127 	if (phy_id == PHY_MAX_ADDR) {
1128 		dev_err(&pdev->dev, "no PHY present, falling back "
1129 			"to switch on MDIO bus 0\n");
1130 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1131 		phy_id = pdev->id;
1132 	}
1133 	mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1134 
1135 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1136 	if (!dev)
1137 		return -ENOMEM;
1138 
1139 	platform_set_drvdata(pdev, dev);
1140 	priv = netdev_priv(dev);
1141 
1142 	priv->pdev = pdev;
1143 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1144 	if (!mem) {
1145 		rc = -ENODEV;
1146 		goto out;
1147 	}
1148 
1149 	dev->irq = platform_get_irq_byname(pdev, "irq");
1150 
1151 	dev->netdev_ops = &cpmac_netdev_ops;
1152 	dev->ethtool_ops = &cpmac_ethtool_ops;
1153 
1154 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1155 
1156 	spin_lock_init(&priv->lock);
1157 	spin_lock_init(&priv->rx_lock);
1158 	priv->dev = dev;
1159 	priv->ring_size = 64;
1160 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1161 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1162 
1163 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1164 						mdio_bus_id, phy_id);
1165 
1166 	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1167 				PHY_INTERFACE_MODE_MII);
1168 
1169 	if (IS_ERR(priv->phy)) {
1170 		if (netif_msg_drv(priv))
1171 			dev_err(&pdev->dev, "Could not attach to PHY\n");
1172 
1173 		rc = PTR_ERR(priv->phy);
1174 		goto out;
1175 	}
1176 
1177 	rc = register_netdev(dev);
1178 	if (rc) {
1179 		dev_err(&pdev->dev, "Could not register net device\n");
1180 		goto fail;
1181 	}
1182 
1183 	if (netif_msg_probe(priv)) {
1184 		dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1185 			 "mac: %pM\n", (void *)mem->start, dev->irq,
1186 			 priv->phy_name, dev->dev_addr);
1187 	}
1188 
1189 	return 0;
1190 
1191 fail:
1192 	free_netdev(dev);
1193 out:
1194 	return rc;
1195 }
1196 
1197 static int cpmac_remove(struct platform_device *pdev)
1198 {
1199 	struct net_device *dev = platform_get_drvdata(pdev);
1200 
1201 	unregister_netdev(dev);
1202 	free_netdev(dev);
1203 
1204 	return 0;
1205 }
1206 
1207 static struct platform_driver cpmac_driver = {
1208 	.driver = {
1209 		.name 	= "cpmac",
1210 	},
1211 	.probe 	= cpmac_probe,
1212 	.remove = cpmac_remove,
1213 };
1214 
1215 int cpmac_init(void)
1216 {
1217 	u32 mask;
1218 	int i, res;
1219 
1220 	cpmac_mii = mdiobus_alloc();
1221 	if (cpmac_mii == NULL)
1222 		return -ENOMEM;
1223 
1224 	cpmac_mii->name = "cpmac-mii";
1225 	cpmac_mii->read = cpmac_mdio_read;
1226 	cpmac_mii->write = cpmac_mdio_write;
1227 	cpmac_mii->reset = cpmac_mdio_reset;
1228 	cpmac_mii->irq = mii_irqs;
1229 
1230 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1231 
1232 	if (!cpmac_mii->priv) {
1233 		pr_err("Can't ioremap mdio registers\n");
1234 		res = -ENXIO;
1235 		goto fail_alloc;
1236 	}
1237 
1238 #warning FIXME: unhardcode gpio&reset bits
1239 	ar7_gpio_disable(26);
1240 	ar7_gpio_disable(27);
1241 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1242 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1243 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1244 
1245 	cpmac_mii->reset(cpmac_mii);
1246 
1247 	for (i = 0; i < 300; i++) {
1248 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1249 		if (mask)
1250 			break;
1251 		else
1252 			msleep(10);
1253 	}
1254 
1255 	mask &= 0x7fffffff;
1256 	if (mask & (mask - 1)) {
1257 		external_switch = 1;
1258 		mask = 0;
1259 	}
1260 
1261 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1262 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1263 
1264 	res = mdiobus_register(cpmac_mii);
1265 	if (res)
1266 		goto fail_mii;
1267 
1268 	res = platform_driver_register(&cpmac_driver);
1269 	if (res)
1270 		goto fail_cpmac;
1271 
1272 	return 0;
1273 
1274 fail_cpmac:
1275 	mdiobus_unregister(cpmac_mii);
1276 
1277 fail_mii:
1278 	iounmap(cpmac_mii->priv);
1279 
1280 fail_alloc:
1281 	mdiobus_free(cpmac_mii);
1282 
1283 	return res;
1284 }
1285 
1286 void cpmac_exit(void)
1287 {
1288 	platform_driver_unregister(&cpmac_driver);
1289 	mdiobus_unregister(cpmac_mii);
1290 	iounmap(cpmac_mii->priv);
1291 	mdiobus_free(cpmac_mii);
1292 }
1293 
1294 module_init(cpmac_init);
1295 module_exit(cpmac_exit);
1296