xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
22 
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
43 
44 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
45 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:cpmac");
48 
49 static int debug_level = 8;
50 static int dumb_switch;
51 
52 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
53 module_param(debug_level, int, 0444);
54 module_param(dumb_switch, int, 0444);
55 
56 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
57 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
58 
59 #define CPMAC_VERSION "0.5.2"
60 /* frame size + 802.1q tag + FCS size */
61 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
62 #define CPMAC_QUEUES	8
63 
64 /* Ethernet registers */
65 #define CPMAC_TX_CONTROL		0x0004
66 #define CPMAC_TX_TEARDOWN		0x0008
67 #define CPMAC_RX_CONTROL		0x0014
68 #define CPMAC_RX_TEARDOWN		0x0018
69 #define CPMAC_MBP			0x0100
70 # define MBP_RXPASSCRC			0x40000000
71 # define MBP_RXQOS			0x20000000
72 # define MBP_RXNOCHAIN			0x10000000
73 # define MBP_RXCMF			0x01000000
74 # define MBP_RXSHORT			0x00800000
75 # define MBP_RXCEF			0x00400000
76 # define MBP_RXPROMISC			0x00200000
77 # define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
78 # define MBP_RXBCAST			0x00002000
79 # define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
80 # define MBP_RXMCAST			0x00000020
81 # define MBP_MCASTCHAN(channel)		((channel) & 0x7)
82 #define CPMAC_UNICAST_ENABLE		0x0104
83 #define CPMAC_UNICAST_CLEAR		0x0108
84 #define CPMAC_MAX_LENGTH		0x010c
85 #define CPMAC_BUFFER_OFFSET		0x0110
86 #define CPMAC_MAC_CONTROL		0x0160
87 # define MAC_TXPTYPE			0x00000200
88 # define MAC_TXPACE			0x00000040
89 # define MAC_MII			0x00000020
90 # define MAC_TXFLOW			0x00000010
91 # define MAC_RXFLOW			0x00000008
92 # define MAC_MTEST			0x00000004
93 # define MAC_LOOPBACK			0x00000002
94 # define MAC_FDX			0x00000001
95 #define CPMAC_MAC_STATUS		0x0164
96 # define MAC_STATUS_QOS			0x00000004
97 # define MAC_STATUS_RXFLOW		0x00000002
98 # define MAC_STATUS_TXFLOW		0x00000001
99 #define CPMAC_TX_INT_ENABLE		0x0178
100 #define CPMAC_TX_INT_CLEAR		0x017c
101 #define CPMAC_MAC_INT_VECTOR		0x0180
102 # define MAC_INT_STATUS			0x00080000
103 # define MAC_INT_HOST			0x00040000
104 # define MAC_INT_RX			0x00020000
105 # define MAC_INT_TX			0x00010000
106 #define CPMAC_MAC_EOI_VECTOR		0x0184
107 #define CPMAC_RX_INT_ENABLE		0x0198
108 #define CPMAC_RX_INT_CLEAR		0x019c
109 #define CPMAC_MAC_INT_ENABLE		0x01a8
110 #define CPMAC_MAC_INT_CLEAR		0x01ac
111 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
112 #define CPMAC_MAC_ADDR_MID		0x01d0
113 #define CPMAC_MAC_ADDR_HI		0x01d4
114 #define CPMAC_MAC_HASH_LO		0x01d8
115 #define CPMAC_MAC_HASH_HI		0x01dc
116 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
117 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
118 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
119 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
120 #define CPMAC_REG_END			0x0680
121 /*
122  * Rx/Tx statistics
123  * TODO: use some of them to fill stats in cpmac_stats()
124  */
125 #define CPMAC_STATS_RX_GOOD		0x0200
126 #define CPMAC_STATS_RX_BCAST		0x0204
127 #define CPMAC_STATS_RX_MCAST		0x0208
128 #define CPMAC_STATS_RX_PAUSE		0x020c
129 #define CPMAC_STATS_RX_CRC		0x0210
130 #define CPMAC_STATS_RX_ALIGN		0x0214
131 #define CPMAC_STATS_RX_OVER		0x0218
132 #define CPMAC_STATS_RX_JABBER		0x021c
133 #define CPMAC_STATS_RX_UNDER		0x0220
134 #define CPMAC_STATS_RX_FRAG		0x0224
135 #define CPMAC_STATS_RX_FILTER		0x0228
136 #define CPMAC_STATS_RX_QOSFILTER	0x022c
137 #define CPMAC_STATS_RX_OCTETS		0x0230
138 
139 #define CPMAC_STATS_TX_GOOD		0x0234
140 #define CPMAC_STATS_TX_BCAST		0x0238
141 #define CPMAC_STATS_TX_MCAST		0x023c
142 #define CPMAC_STATS_TX_PAUSE		0x0240
143 #define CPMAC_STATS_TX_DEFER		0x0244
144 #define CPMAC_STATS_TX_COLLISION	0x0248
145 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
146 #define CPMAC_STATS_TX_MULTICOLL	0x0250
147 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
148 #define CPMAC_STATS_TX_LATECOLL		0x0258
149 #define CPMAC_STATS_TX_UNDERRUN		0x025c
150 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
151 #define CPMAC_STATS_TX_OCTETS		0x0264
152 
153 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
154 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
155 						(reg)))
156 
157 /* MDIO bus */
158 #define CPMAC_MDIO_VERSION		0x0000
159 #define CPMAC_MDIO_CONTROL		0x0004
160 # define MDIOC_IDLE			0x80000000
161 # define MDIOC_ENABLE			0x40000000
162 # define MDIOC_PREAMBLE			0x00100000
163 # define MDIOC_FAULT			0x00080000
164 # define MDIOC_FAULTDETECT		0x00040000
165 # define MDIOC_INTTEST			0x00020000
166 # define MDIOC_CLKDIV(div)		((div) & 0xff)
167 #define CPMAC_MDIO_ALIVE		0x0008
168 #define CPMAC_MDIO_LINK			0x000c
169 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
170 # define MDIO_BUSY			0x80000000
171 # define MDIO_WRITE			0x40000000
172 # define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
173 # define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
174 # define MDIO_DATA(data)		((data) & 0xffff)
175 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
176 # define PHYSEL_LINKSEL			0x00000040
177 # define PHYSEL_LINKINT			0x00000020
178 
179 struct cpmac_desc {
180 	u32 hw_next;
181 	u32 hw_data;
182 	u16 buflen;
183 	u16 bufflags;
184 	u16 datalen;
185 	u16 dataflags;
186 #define CPMAC_SOP			0x8000
187 #define CPMAC_EOP			0x4000
188 #define CPMAC_OWN			0x2000
189 #define CPMAC_EOQ			0x1000
190 	struct sk_buff *skb;
191 	struct cpmac_desc *next;
192 	struct cpmac_desc *prev;
193 	dma_addr_t mapping;
194 	dma_addr_t data_mapping;
195 };
196 
197 struct cpmac_priv {
198 	spinlock_t lock;
199 	spinlock_t rx_lock;
200 	struct cpmac_desc *rx_head;
201 	int ring_size;
202 	struct cpmac_desc *desc_ring;
203 	dma_addr_t dma_ring;
204 	void __iomem *regs;
205 	struct mii_bus *mii_bus;
206 	struct phy_device *phy;
207 	char phy_name[MII_BUS_ID_SIZE + 3];
208 	int oldlink, oldspeed, oldduplex;
209 	u32 msg_enable;
210 	struct net_device *dev;
211 	struct work_struct reset_work;
212 	struct platform_device *pdev;
213 	struct napi_struct napi;
214 	atomic_t reset_pending;
215 };
216 
217 static irqreturn_t cpmac_irq(int, void *);
218 static void cpmac_hw_start(struct net_device *dev);
219 static void cpmac_hw_stop(struct net_device *dev);
220 static int cpmac_stop(struct net_device *dev);
221 static int cpmac_open(struct net_device *dev);
222 
223 static void cpmac_dump_regs(struct net_device *dev)
224 {
225 	int i;
226 	struct cpmac_priv *priv = netdev_priv(dev);
227 	for (i = 0; i < CPMAC_REG_END; i += 4) {
228 		if (i % 16 == 0) {
229 			if (i)
230 				pr_cont("\n");
231 			printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
232 			       priv->regs + i);
233 		}
234 		printk(" %08x", cpmac_read(priv->regs, i));
235 	}
236 	printk("\n");
237 }
238 
239 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
240 {
241 	int i;
242 	printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
243 	for (i = 0; i < sizeof(*desc) / 4; i++)
244 		printk(" %08x", ((u32 *)desc)[i]);
245 	printk("\n");
246 }
247 
248 static void cpmac_dump_all_desc(struct net_device *dev)
249 {
250 	struct cpmac_priv *priv = netdev_priv(dev);
251 	struct cpmac_desc *dump = priv->rx_head;
252 	do {
253 		cpmac_dump_desc(dev, dump);
254 		dump = dump->next;
255 	} while (dump != priv->rx_head);
256 }
257 
258 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
259 {
260 	int i;
261 	printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
262 	for (i = 0; i < skb->len; i++) {
263 		if (i % 16 == 0) {
264 			if (i)
265 				pr_cont("\n");
266 			printk(KERN_DEBUG "%s: data[%p]:", dev->name,
267 			       skb->data + i);
268 		}
269 		printk(" %02x", ((u8 *)skb->data)[i]);
270 	}
271 	printk("\n");
272 }
273 
274 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
275 {
276 	u32 val;
277 
278 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
279 		cpu_relax();
280 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
281 		    MDIO_PHY(phy_id));
282 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
283 		cpu_relax();
284 	return MDIO_DATA(val);
285 }
286 
287 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
288 			    int reg, u16 val)
289 {
290 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
291 		cpu_relax();
292 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
293 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
294 	return 0;
295 }
296 
297 static int cpmac_mdio_reset(struct mii_bus *bus)
298 {
299 	struct clk *cpmac_clk;
300 
301 	cpmac_clk = clk_get(&bus->dev, "cpmac");
302 	if (IS_ERR(cpmac_clk)) {
303 		printk(KERN_ERR "unable to get cpmac clock\n");
304 		return -1;
305 	}
306 	ar7_device_reset(AR7_RESET_BIT_MDIO);
307 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
308 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
309 	return 0;
310 }
311 
312 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
313 
314 static struct mii_bus *cpmac_mii;
315 
316 static int cpmac_config(struct net_device *dev, struct ifmap *map)
317 {
318 	if (dev->flags & IFF_UP)
319 		return -EBUSY;
320 
321 	/* Don't allow changing the I/O address */
322 	if (map->base_addr != dev->base_addr)
323 		return -EOPNOTSUPP;
324 
325 	/* ignore other fields */
326 	return 0;
327 }
328 
329 static void cpmac_set_multicast_list(struct net_device *dev)
330 {
331 	struct netdev_hw_addr *ha;
332 	u8 tmp;
333 	u32 mbp, bit, hash[2] = { 0, };
334 	struct cpmac_priv *priv = netdev_priv(dev);
335 
336 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
337 	if (dev->flags & IFF_PROMISC) {
338 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
339 			    MBP_RXPROMISC);
340 	} else {
341 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
342 		if (dev->flags & IFF_ALLMULTI) {
343 			/* enable all multicast mode */
344 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
345 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
346 		} else {
347 			/*
348 			 * cpmac uses some strange mac address hashing
349 			 * (not crc32)
350 			 */
351 			netdev_for_each_mc_addr(ha, dev) {
352 				bit = 0;
353 				tmp = ha->addr[0];
354 				bit  ^= (tmp >> 2) ^ (tmp << 4);
355 				tmp = ha->addr[1];
356 				bit  ^= (tmp >> 4) ^ (tmp << 2);
357 				tmp = ha->addr[2];
358 				bit  ^= (tmp >> 6) ^ tmp;
359 				tmp = ha->addr[3];
360 				bit  ^= (tmp >> 2) ^ (tmp << 4);
361 				tmp = ha->addr[4];
362 				bit  ^= (tmp >> 4) ^ (tmp << 2);
363 				tmp = ha->addr[5];
364 				bit  ^= (tmp >> 6) ^ tmp;
365 				bit &= 0x3f;
366 				hash[bit / 32] |= 1 << (bit % 32);
367 			}
368 
369 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
370 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
371 		}
372 	}
373 }
374 
375 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
376 				    struct cpmac_desc *desc)
377 {
378 	struct sk_buff *skb, *result = NULL;
379 
380 	if (unlikely(netif_msg_hw(priv)))
381 		cpmac_dump_desc(priv->dev, desc);
382 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
383 	if (unlikely(!desc->datalen)) {
384 		if (netif_msg_rx_err(priv) && net_ratelimit())
385 			printk(KERN_WARNING "%s: rx: spurious interrupt\n",
386 			       priv->dev->name);
387 		return NULL;
388 	}
389 
390 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
391 	if (likely(skb)) {
392 		skb_put(desc->skb, desc->datalen);
393 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
394 		skb_checksum_none_assert(desc->skb);
395 		priv->dev->stats.rx_packets++;
396 		priv->dev->stats.rx_bytes += desc->datalen;
397 		result = desc->skb;
398 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
399 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
400 		desc->skb = skb;
401 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
402 						    CPMAC_SKB_SIZE,
403 						    DMA_FROM_DEVICE);
404 		desc->hw_data = (u32)desc->data_mapping;
405 		if (unlikely(netif_msg_pktdata(priv))) {
406 			printk(KERN_DEBUG "%s: received packet:\n",
407 			       priv->dev->name);
408 			cpmac_dump_skb(priv->dev, result);
409 		}
410 	} else {
411 		if (netif_msg_rx_err(priv) && net_ratelimit())
412 			printk(KERN_WARNING
413 			       "%s: low on skbs, dropping packet\n",
414 			       priv->dev->name);
415 		priv->dev->stats.rx_dropped++;
416 	}
417 
418 	desc->buflen = CPMAC_SKB_SIZE;
419 	desc->dataflags = CPMAC_OWN;
420 
421 	return result;
422 }
423 
424 static int cpmac_poll(struct napi_struct *napi, int budget)
425 {
426 	struct sk_buff *skb;
427 	struct cpmac_desc *desc, *restart;
428 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
429 	int received = 0, processed = 0;
430 
431 	spin_lock(&priv->rx_lock);
432 	if (unlikely(!priv->rx_head)) {
433 		if (netif_msg_rx_err(priv) && net_ratelimit())
434 			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
435 			       priv->dev->name);
436 		spin_unlock(&priv->rx_lock);
437 		napi_complete(napi);
438 		return 0;
439 	}
440 
441 	desc = priv->rx_head;
442 	restart = NULL;
443 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
444 		processed++;
445 
446 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
447 			/* The last update to eoq->hw_next didn't happen
448 			* soon enough, and the receiver stopped here.
449 			*Remember this descriptor so we can restart
450 			* the receiver after freeing some space.
451 			*/
452 			if (unlikely(restart)) {
453 				if (netif_msg_rx_err(priv))
454 					printk(KERN_ERR "%s: poll found a"
455 						" duplicate EOQ: %p and %p\n",
456 						priv->dev->name, restart, desc);
457 				goto fatal_error;
458 			}
459 
460 			restart = desc->next;
461 		}
462 
463 		skb = cpmac_rx_one(priv, desc);
464 		if (likely(skb)) {
465 			netif_receive_skb(skb);
466 			received++;
467 		}
468 		desc = desc->next;
469 	}
470 
471 	if (desc != priv->rx_head) {
472 		/* We freed some buffers, but not the whole ring,
473 		 * add what we did free to the rx list */
474 		desc->prev->hw_next = (u32)0;
475 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
476 	}
477 
478 	/* Optimization: If we did not actually process an EOQ (perhaps because
479 	 * of quota limits), check to see if the tail of the queue has EOQ set.
480 	* We should immediately restart in that case so that the receiver can
481 	* restart and run in parallel with more packet processing.
482 	* This lets us handle slightly larger bursts before running
483 	* out of ring space (assuming dev->weight < ring_size) */
484 
485 	if (!restart &&
486 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
487 		    == CPMAC_EOQ &&
488 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
489 		/* reset EOQ so the poll loop (above) doesn't try to
490 		* restart this when it eventually gets to this descriptor.
491 		*/
492 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
493 		restart = priv->rx_head;
494 	}
495 
496 	if (restart) {
497 		priv->dev->stats.rx_errors++;
498 		priv->dev->stats.rx_fifo_errors++;
499 		if (netif_msg_rx_err(priv) && net_ratelimit())
500 			printk(KERN_WARNING "%s: rx dma ring overrun\n",
501 			       priv->dev->name);
502 
503 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
504 			if (netif_msg_drv(priv))
505 				printk(KERN_ERR "%s: cpmac_poll is trying to "
506 					"restart rx from a descriptor that's "
507 					"not free: %p\n",
508 					priv->dev->name, restart);
509 			goto fatal_error;
510 		}
511 
512 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
513 	}
514 
515 	priv->rx_head = desc;
516 	spin_unlock(&priv->rx_lock);
517 	if (unlikely(netif_msg_rx_status(priv)))
518 		printk(KERN_DEBUG "%s: poll processed %d packets\n",
519 		       priv->dev->name, received);
520 	if (processed == 0) {
521 		/* we ran out of packets to read,
522 		 * revert to interrupt-driven mode */
523 		napi_complete(napi);
524 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
525 		return 0;
526 	}
527 
528 	return 1;
529 
530 fatal_error:
531 	/* Something went horribly wrong.
532 	 * Reset hardware to try to recover rather than wedging. */
533 
534 	if (netif_msg_drv(priv)) {
535 		printk(KERN_ERR "%s: cpmac_poll is confused. "
536 				"Resetting hardware\n", priv->dev->name);
537 		cpmac_dump_all_desc(priv->dev);
538 		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
539 			priv->dev->name,
540 			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
541 			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
542 	}
543 
544 	spin_unlock(&priv->rx_lock);
545 	napi_complete(napi);
546 	netif_tx_stop_all_queues(priv->dev);
547 	napi_disable(&priv->napi);
548 
549 	atomic_inc(&priv->reset_pending);
550 	cpmac_hw_stop(priv->dev);
551 	if (!schedule_work(&priv->reset_work))
552 		atomic_dec(&priv->reset_pending);
553 	return 0;
554 
555 }
556 
557 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
558 {
559 	int queue, len;
560 	struct cpmac_desc *desc;
561 	struct cpmac_priv *priv = netdev_priv(dev);
562 
563 	if (unlikely(atomic_read(&priv->reset_pending)))
564 		return NETDEV_TX_BUSY;
565 
566 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
567 		return NETDEV_TX_OK;
568 
569 	len = max(skb->len, ETH_ZLEN);
570 	queue = skb_get_queue_mapping(skb);
571 	netif_stop_subqueue(dev, queue);
572 
573 	desc = &priv->desc_ring[queue];
574 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
575 		if (netif_msg_tx_err(priv) && net_ratelimit())
576 			printk(KERN_WARNING "%s: tx dma ring full\n",
577 			       dev->name);
578 		return NETDEV_TX_BUSY;
579 	}
580 
581 	spin_lock(&priv->lock);
582 	spin_unlock(&priv->lock);
583 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
584 	desc->skb = skb;
585 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
586 					    DMA_TO_DEVICE);
587 	desc->hw_data = (u32)desc->data_mapping;
588 	desc->datalen = len;
589 	desc->buflen = len;
590 	if (unlikely(netif_msg_tx_queued(priv)))
591 		printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
592 		       skb->len);
593 	if (unlikely(netif_msg_hw(priv)))
594 		cpmac_dump_desc(dev, desc);
595 	if (unlikely(netif_msg_pktdata(priv)))
596 		cpmac_dump_skb(dev, skb);
597 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
598 
599 	return NETDEV_TX_OK;
600 }
601 
602 static void cpmac_end_xmit(struct net_device *dev, int queue)
603 {
604 	struct cpmac_desc *desc;
605 	struct cpmac_priv *priv = netdev_priv(dev);
606 
607 	desc = &priv->desc_ring[queue];
608 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
609 	if (likely(desc->skb)) {
610 		spin_lock(&priv->lock);
611 		dev->stats.tx_packets++;
612 		dev->stats.tx_bytes += desc->skb->len;
613 		spin_unlock(&priv->lock);
614 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
615 				 DMA_TO_DEVICE);
616 
617 		if (unlikely(netif_msg_tx_done(priv)))
618 			printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
619 			       desc->skb, desc->skb->len);
620 
621 		dev_kfree_skb_irq(desc->skb);
622 		desc->skb = NULL;
623 		if (__netif_subqueue_stopped(dev, queue))
624 			netif_wake_subqueue(dev, queue);
625 	} else {
626 		if (netif_msg_tx_err(priv) && net_ratelimit())
627 			printk(KERN_WARNING
628 			       "%s: end_xmit: spurious interrupt\n", dev->name);
629 		if (__netif_subqueue_stopped(dev, queue))
630 			netif_wake_subqueue(dev, queue);
631 	}
632 }
633 
634 static void cpmac_hw_stop(struct net_device *dev)
635 {
636 	int i;
637 	struct cpmac_priv *priv = netdev_priv(dev);
638 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
639 
640 	ar7_device_reset(pdata->reset_bit);
641 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
642 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
643 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
644 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
645 	for (i = 0; i < 8; i++) {
646 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
647 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
648 	}
649 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
650 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
651 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
652 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
653 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
654 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
655 }
656 
657 static void cpmac_hw_start(struct net_device *dev)
658 {
659 	int i;
660 	struct cpmac_priv *priv = netdev_priv(dev);
661 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
662 
663 	ar7_device_reset(pdata->reset_bit);
664 	for (i = 0; i < 8; i++) {
665 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
666 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
667 	}
668 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
669 
670 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
671 		    MBP_RXMCAST);
672 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
673 	for (i = 0; i < 8; i++)
674 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
675 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
676 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
677 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
678 		    (dev->dev_addr[3] << 24));
679 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
680 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
681 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
682 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
683 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
684 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
685 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
686 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
687 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
688 
689 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
690 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
691 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
692 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
693 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
694 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
695 		    MAC_FDX);
696 }
697 
698 static void cpmac_clear_rx(struct net_device *dev)
699 {
700 	struct cpmac_priv *priv = netdev_priv(dev);
701 	struct cpmac_desc *desc;
702 	int i;
703 	if (unlikely(!priv->rx_head))
704 		return;
705 	desc = priv->rx_head;
706 	for (i = 0; i < priv->ring_size; i++) {
707 		if ((desc->dataflags & CPMAC_OWN) == 0) {
708 			if (netif_msg_rx_err(priv) && net_ratelimit())
709 				printk(KERN_WARNING "%s: packet dropped\n",
710 				       dev->name);
711 			if (unlikely(netif_msg_hw(priv)))
712 				cpmac_dump_desc(dev, desc);
713 			desc->dataflags = CPMAC_OWN;
714 			dev->stats.rx_dropped++;
715 		}
716 		desc->hw_next = desc->next->mapping;
717 		desc = desc->next;
718 	}
719 	priv->rx_head->prev->hw_next = 0;
720 }
721 
722 static void cpmac_clear_tx(struct net_device *dev)
723 {
724 	struct cpmac_priv *priv = netdev_priv(dev);
725 	int i;
726 	if (unlikely(!priv->desc_ring))
727 		return;
728 	for (i = 0; i < CPMAC_QUEUES; i++) {
729 		priv->desc_ring[i].dataflags = 0;
730 		if (priv->desc_ring[i].skb) {
731 			dev_kfree_skb_any(priv->desc_ring[i].skb);
732 			priv->desc_ring[i].skb = NULL;
733 		}
734 	}
735 }
736 
737 static void cpmac_hw_error(struct work_struct *work)
738 {
739 	struct cpmac_priv *priv =
740 		container_of(work, struct cpmac_priv, reset_work);
741 
742 	spin_lock(&priv->rx_lock);
743 	cpmac_clear_rx(priv->dev);
744 	spin_unlock(&priv->rx_lock);
745 	cpmac_clear_tx(priv->dev);
746 	cpmac_hw_start(priv->dev);
747 	barrier();
748 	atomic_dec(&priv->reset_pending);
749 
750 	netif_tx_wake_all_queues(priv->dev);
751 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
752 }
753 
754 static void cpmac_check_status(struct net_device *dev)
755 {
756 	struct cpmac_priv *priv = netdev_priv(dev);
757 
758 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
759 	int rx_channel = (macstatus >> 8) & 7;
760 	int rx_code = (macstatus >> 12) & 15;
761 	int tx_channel = (macstatus >> 16) & 7;
762 	int tx_code = (macstatus >> 20) & 15;
763 
764 	if (rx_code || tx_code) {
765 		if (netif_msg_drv(priv) && net_ratelimit()) {
766 			/* Can't find any documentation on what these
767 			 *error codes actually are. So just log them and hope..
768 			 */
769 			if (rx_code)
770 				printk(KERN_WARNING "%s: host error %d on rx "
771 				     "channel %d (macstatus %08x), resetting\n",
772 				     dev->name, rx_code, rx_channel, macstatus);
773 			if (tx_code)
774 				printk(KERN_WARNING "%s: host error %d on tx "
775 				     "channel %d (macstatus %08x), resetting\n",
776 				     dev->name, tx_code, tx_channel, macstatus);
777 		}
778 
779 		netif_tx_stop_all_queues(dev);
780 		cpmac_hw_stop(dev);
781 		if (schedule_work(&priv->reset_work))
782 			atomic_inc(&priv->reset_pending);
783 		if (unlikely(netif_msg_hw(priv)))
784 			cpmac_dump_regs(dev);
785 	}
786 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
787 }
788 
789 static irqreturn_t cpmac_irq(int irq, void *dev_id)
790 {
791 	struct net_device *dev = dev_id;
792 	struct cpmac_priv *priv;
793 	int queue;
794 	u32 status;
795 
796 	priv = netdev_priv(dev);
797 
798 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
799 
800 	if (unlikely(netif_msg_intr(priv)))
801 		printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
802 		       status);
803 
804 	if (status & MAC_INT_TX)
805 		cpmac_end_xmit(dev, (status & 7));
806 
807 	if (status & MAC_INT_RX) {
808 		queue = (status >> 8) & 7;
809 		if (napi_schedule_prep(&priv->napi)) {
810 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
811 			__napi_schedule(&priv->napi);
812 		}
813 	}
814 
815 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
816 
817 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
818 		cpmac_check_status(dev);
819 
820 	return IRQ_HANDLED;
821 }
822 
823 static void cpmac_tx_timeout(struct net_device *dev)
824 {
825 	struct cpmac_priv *priv = netdev_priv(dev);
826 
827 	spin_lock(&priv->lock);
828 	dev->stats.tx_errors++;
829 	spin_unlock(&priv->lock);
830 	if (netif_msg_tx_err(priv) && net_ratelimit())
831 		printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
832 
833 	atomic_inc(&priv->reset_pending);
834 	barrier();
835 	cpmac_clear_tx(dev);
836 	barrier();
837 	atomic_dec(&priv->reset_pending);
838 
839 	netif_tx_wake_all_queues(priv->dev);
840 }
841 
842 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
843 {
844 	struct cpmac_priv *priv = netdev_priv(dev);
845 	if (!(netif_running(dev)))
846 		return -EINVAL;
847 	if (!priv->phy)
848 		return -EINVAL;
849 
850 	return phy_mii_ioctl(priv->phy, ifr, cmd);
851 }
852 
853 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
854 {
855 	struct cpmac_priv *priv = netdev_priv(dev);
856 
857 	if (priv->phy)
858 		return phy_ethtool_gset(priv->phy, cmd);
859 
860 	return -EINVAL;
861 }
862 
863 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
864 {
865 	struct cpmac_priv *priv = netdev_priv(dev);
866 
867 	if (!capable(CAP_NET_ADMIN))
868 		return -EPERM;
869 
870 	if (priv->phy)
871 		return phy_ethtool_sset(priv->phy, cmd);
872 
873 	return -EINVAL;
874 }
875 
876 static void cpmac_get_ringparam(struct net_device *dev,
877 						struct ethtool_ringparam *ring)
878 {
879 	struct cpmac_priv *priv = netdev_priv(dev);
880 
881 	ring->rx_max_pending = 1024;
882 	ring->rx_mini_max_pending = 1;
883 	ring->rx_jumbo_max_pending = 1;
884 	ring->tx_max_pending = 1;
885 
886 	ring->rx_pending = priv->ring_size;
887 	ring->rx_mini_pending = 1;
888 	ring->rx_jumbo_pending = 1;
889 	ring->tx_pending = 1;
890 }
891 
892 static int cpmac_set_ringparam(struct net_device *dev,
893 						struct ethtool_ringparam *ring)
894 {
895 	struct cpmac_priv *priv = netdev_priv(dev);
896 
897 	if (netif_running(dev))
898 		return -EBUSY;
899 	priv->ring_size = ring->rx_pending;
900 	return 0;
901 }
902 
903 static void cpmac_get_drvinfo(struct net_device *dev,
904 			      struct ethtool_drvinfo *info)
905 {
906 	strlcpy(info->driver, "cpmac", sizeof(info->driver));
907 	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
908 	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
909 	info->regdump_len = 0;
910 }
911 
912 static const struct ethtool_ops cpmac_ethtool_ops = {
913 	.get_settings = cpmac_get_settings,
914 	.set_settings = cpmac_set_settings,
915 	.get_drvinfo = cpmac_get_drvinfo,
916 	.get_link = ethtool_op_get_link,
917 	.get_ringparam = cpmac_get_ringparam,
918 	.set_ringparam = cpmac_set_ringparam,
919 };
920 
921 static void cpmac_adjust_link(struct net_device *dev)
922 {
923 	struct cpmac_priv *priv = netdev_priv(dev);
924 	int new_state = 0;
925 
926 	spin_lock(&priv->lock);
927 	if (priv->phy->link) {
928 		netif_tx_start_all_queues(dev);
929 		if (priv->phy->duplex != priv->oldduplex) {
930 			new_state = 1;
931 			priv->oldduplex = priv->phy->duplex;
932 		}
933 
934 		if (priv->phy->speed != priv->oldspeed) {
935 			new_state = 1;
936 			priv->oldspeed = priv->phy->speed;
937 		}
938 
939 		if (!priv->oldlink) {
940 			new_state = 1;
941 			priv->oldlink = 1;
942 		}
943 	} else if (priv->oldlink) {
944 		new_state = 1;
945 		priv->oldlink = 0;
946 		priv->oldspeed = 0;
947 		priv->oldduplex = -1;
948 	}
949 
950 	if (new_state && netif_msg_link(priv) && net_ratelimit())
951 		phy_print_status(priv->phy);
952 
953 	spin_unlock(&priv->lock);
954 }
955 
956 static int cpmac_open(struct net_device *dev)
957 {
958 	int i, size, res;
959 	struct cpmac_priv *priv = netdev_priv(dev);
960 	struct resource *mem;
961 	struct cpmac_desc *desc;
962 	struct sk_buff *skb;
963 
964 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
965 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
966 		if (netif_msg_drv(priv))
967 			printk(KERN_ERR "%s: failed to request registers\n",
968 			       dev->name);
969 		res = -ENXIO;
970 		goto fail_reserve;
971 	}
972 
973 	priv->regs = ioremap(mem->start, resource_size(mem));
974 	if (!priv->regs) {
975 		if (netif_msg_drv(priv))
976 			printk(KERN_ERR "%s: failed to remap registers\n",
977 			       dev->name);
978 		res = -ENXIO;
979 		goto fail_remap;
980 	}
981 
982 	size = priv->ring_size + CPMAC_QUEUES;
983 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
984 					     sizeof(struct cpmac_desc) * size,
985 					     &priv->dma_ring,
986 					     GFP_KERNEL);
987 	if (!priv->desc_ring) {
988 		res = -ENOMEM;
989 		goto fail_alloc;
990 	}
991 
992 	for (i = 0; i < size; i++)
993 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
994 
995 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
996 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
997 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
998 		if (unlikely(!skb)) {
999 			res = -ENOMEM;
1000 			goto fail_desc;
1001 		}
1002 		desc->skb = skb;
1003 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1004 						    CPMAC_SKB_SIZE,
1005 						    DMA_FROM_DEVICE);
1006 		desc->hw_data = (u32)desc->data_mapping;
1007 		desc->buflen = CPMAC_SKB_SIZE;
1008 		desc->dataflags = CPMAC_OWN;
1009 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1010 		desc->next->prev = desc;
1011 		desc->hw_next = (u32)desc->next->mapping;
1012 	}
1013 
1014 	priv->rx_head->prev->hw_next = (u32)0;
1015 
1016 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1017 	if (res) {
1018 		if (netif_msg_drv(priv))
1019 			printk(KERN_ERR "%s: failed to obtain irq\n",
1020 			       dev->name);
1021 		goto fail_irq;
1022 	}
1023 
1024 	atomic_set(&priv->reset_pending, 0);
1025 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1026 	cpmac_hw_start(dev);
1027 
1028 	napi_enable(&priv->napi);
1029 	priv->phy->state = PHY_CHANGELINK;
1030 	phy_start(priv->phy);
1031 
1032 	return 0;
1033 
1034 fail_irq:
1035 fail_desc:
1036 	for (i = 0; i < priv->ring_size; i++) {
1037 		if (priv->rx_head[i].skb) {
1038 			dma_unmap_single(&dev->dev,
1039 					 priv->rx_head[i].data_mapping,
1040 					 CPMAC_SKB_SIZE,
1041 					 DMA_FROM_DEVICE);
1042 			kfree_skb(priv->rx_head[i].skb);
1043 		}
1044 	}
1045 fail_alloc:
1046 	kfree(priv->desc_ring);
1047 	iounmap(priv->regs);
1048 
1049 fail_remap:
1050 	release_mem_region(mem->start, resource_size(mem));
1051 
1052 fail_reserve:
1053 	return res;
1054 }
1055 
1056 static int cpmac_stop(struct net_device *dev)
1057 {
1058 	int i;
1059 	struct cpmac_priv *priv = netdev_priv(dev);
1060 	struct resource *mem;
1061 
1062 	netif_tx_stop_all_queues(dev);
1063 
1064 	cancel_work_sync(&priv->reset_work);
1065 	napi_disable(&priv->napi);
1066 	phy_stop(priv->phy);
1067 
1068 	cpmac_hw_stop(dev);
1069 
1070 	for (i = 0; i < 8; i++)
1071 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1072 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1073 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1074 
1075 	free_irq(dev->irq, dev);
1076 	iounmap(priv->regs);
1077 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1078 	release_mem_region(mem->start, resource_size(mem));
1079 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1080 	for (i = 0; i < priv->ring_size; i++) {
1081 		if (priv->rx_head[i].skb) {
1082 			dma_unmap_single(&dev->dev,
1083 					 priv->rx_head[i].data_mapping,
1084 					 CPMAC_SKB_SIZE,
1085 					 DMA_FROM_DEVICE);
1086 			kfree_skb(priv->rx_head[i].skb);
1087 		}
1088 	}
1089 
1090 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1091 			  (CPMAC_QUEUES + priv->ring_size),
1092 			  priv->desc_ring, priv->dma_ring);
1093 	return 0;
1094 }
1095 
1096 static const struct net_device_ops cpmac_netdev_ops = {
1097 	.ndo_open		= cpmac_open,
1098 	.ndo_stop		= cpmac_stop,
1099 	.ndo_start_xmit		= cpmac_start_xmit,
1100 	.ndo_tx_timeout		= cpmac_tx_timeout,
1101 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1102 	.ndo_do_ioctl		= cpmac_ioctl,
1103 	.ndo_set_config		= cpmac_config,
1104 	.ndo_change_mtu		= eth_change_mtu,
1105 	.ndo_validate_addr	= eth_validate_addr,
1106 	.ndo_set_mac_address	= eth_mac_addr,
1107 };
1108 
1109 static int external_switch;
1110 
1111 static int cpmac_probe(struct platform_device *pdev)
1112 {
1113 	int rc, phy_id;
1114 	char mdio_bus_id[MII_BUS_ID_SIZE];
1115 	struct resource *mem;
1116 	struct cpmac_priv *priv;
1117 	struct net_device *dev;
1118 	struct plat_cpmac_data *pdata;
1119 
1120 	pdata = dev_get_platdata(&pdev->dev);
1121 
1122 	if (external_switch || dumb_switch) {
1123 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1124 		phy_id = pdev->id;
1125 	} else {
1126 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1127 			if (!(pdata->phy_mask & (1 << phy_id)))
1128 				continue;
1129 			if (!cpmac_mii->phy_map[phy_id])
1130 				continue;
1131 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (phy_id == PHY_MAX_ADDR) {
1137 		dev_err(&pdev->dev, "no PHY present, falling back "
1138 					"to switch on MDIO bus 0\n");
1139 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1140 		phy_id = pdev->id;
1141 	}
1142 
1143 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1144 	if (!dev)
1145 		return -ENOMEM;
1146 
1147 	platform_set_drvdata(pdev, dev);
1148 	priv = netdev_priv(dev);
1149 
1150 	priv->pdev = pdev;
1151 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1152 	if (!mem) {
1153 		rc = -ENODEV;
1154 		goto fail;
1155 	}
1156 
1157 	dev->irq = platform_get_irq_byname(pdev, "irq");
1158 
1159 	dev->netdev_ops = &cpmac_netdev_ops;
1160 	dev->ethtool_ops = &cpmac_ethtool_ops;
1161 
1162 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1163 
1164 	spin_lock_init(&priv->lock);
1165 	spin_lock_init(&priv->rx_lock);
1166 	priv->dev = dev;
1167 	priv->ring_size = 64;
1168 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1169 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1170 
1171 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1172 						mdio_bus_id, phy_id);
1173 
1174 	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1175 				PHY_INTERFACE_MODE_MII);
1176 
1177 	if (IS_ERR(priv->phy)) {
1178 		if (netif_msg_drv(priv))
1179 			printk(KERN_ERR "%s: Could not attach to PHY\n",
1180 			       dev->name);
1181 		rc = PTR_ERR(priv->phy);
1182 		goto fail;
1183 	}
1184 
1185 	rc = register_netdev(dev);
1186 	if (rc) {
1187 		printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1188 		       dev->name);
1189 		goto fail;
1190 	}
1191 
1192 	if (netif_msg_probe(priv)) {
1193 		printk(KERN_INFO
1194 		       "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1195 		       "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1196 		       priv->phy_name, dev->dev_addr);
1197 	}
1198 	return 0;
1199 
1200 fail:
1201 	free_netdev(dev);
1202 	return rc;
1203 }
1204 
1205 static int cpmac_remove(struct platform_device *pdev)
1206 {
1207 	struct net_device *dev = platform_get_drvdata(pdev);
1208 	unregister_netdev(dev);
1209 	free_netdev(dev);
1210 	return 0;
1211 }
1212 
1213 static struct platform_driver cpmac_driver = {
1214 	.driver.name = "cpmac",
1215 	.driver.owner = THIS_MODULE,
1216 	.probe = cpmac_probe,
1217 	.remove = cpmac_remove,
1218 };
1219 
1220 int cpmac_init(void)
1221 {
1222 	u32 mask;
1223 	int i, res;
1224 
1225 	cpmac_mii = mdiobus_alloc();
1226 	if (cpmac_mii == NULL)
1227 		return -ENOMEM;
1228 
1229 	cpmac_mii->name = "cpmac-mii";
1230 	cpmac_mii->read = cpmac_mdio_read;
1231 	cpmac_mii->write = cpmac_mdio_write;
1232 	cpmac_mii->reset = cpmac_mdio_reset;
1233 	cpmac_mii->irq = mii_irqs;
1234 
1235 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1236 
1237 	if (!cpmac_mii->priv) {
1238 		printk(KERN_ERR "Can't ioremap mdio registers\n");
1239 		res = -ENXIO;
1240 		goto fail_alloc;
1241 	}
1242 
1243 #warning FIXME: unhardcode gpio&reset bits
1244 	ar7_gpio_disable(26);
1245 	ar7_gpio_disable(27);
1246 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1247 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1248 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1249 
1250 	cpmac_mii->reset(cpmac_mii);
1251 
1252 	for (i = 0; i < 300; i++) {
1253 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1254 		if (mask)
1255 			break;
1256 		else
1257 			msleep(10);
1258 	}
1259 
1260 	mask &= 0x7fffffff;
1261 	if (mask & (mask - 1)) {
1262 		external_switch = 1;
1263 		mask = 0;
1264 	}
1265 
1266 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1267 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1268 
1269 	res = mdiobus_register(cpmac_mii);
1270 	if (res)
1271 		goto fail_mii;
1272 
1273 	res = platform_driver_register(&cpmac_driver);
1274 	if (res)
1275 		goto fail_cpmac;
1276 
1277 	return 0;
1278 
1279 fail_cpmac:
1280 	mdiobus_unregister(cpmac_mii);
1281 
1282 fail_mii:
1283 	iounmap(cpmac_mii->priv);
1284 
1285 fail_alloc:
1286 	mdiobus_free(cpmac_mii);
1287 
1288 	return res;
1289 }
1290 
1291 void cpmac_exit(void)
1292 {
1293 	platform_driver_unregister(&cpmac_driver);
1294 	mdiobus_unregister(cpmac_mii);
1295 	iounmap(cpmac_mii->priv);
1296 	mdiobus_free(cpmac_mii);
1297 }
1298 
1299 module_init(cpmac_init);
1300 module_exit(cpmac_exit);
1301