xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision 9cfc5c90)
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
22 
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
43 
44 #include <asm/mach-ar7/ar7.h>
45 
46 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
47 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
48 MODULE_LICENSE("GPL");
49 MODULE_ALIAS("platform:cpmac");
50 
51 static int debug_level = 8;
52 static int dumb_switch;
53 
54 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
55 module_param(debug_level, int, 0444);
56 module_param(dumb_switch, int, 0444);
57 
58 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
59 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
60 
61 #define CPMAC_VERSION "0.5.2"
62 /* frame size + 802.1q tag + FCS size */
63 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
64 #define CPMAC_QUEUES	8
65 
66 /* Ethernet registers */
67 #define CPMAC_TX_CONTROL		0x0004
68 #define CPMAC_TX_TEARDOWN		0x0008
69 #define CPMAC_RX_CONTROL		0x0014
70 #define CPMAC_RX_TEARDOWN		0x0018
71 #define CPMAC_MBP			0x0100
72 #define MBP_RXPASSCRC			0x40000000
73 #define MBP_RXQOS			0x20000000
74 #define MBP_RXNOCHAIN			0x10000000
75 #define MBP_RXCMF			0x01000000
76 #define MBP_RXSHORT			0x00800000
77 #define MBP_RXCEF			0x00400000
78 #define MBP_RXPROMISC			0x00200000
79 #define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
80 #define MBP_RXBCAST			0x00002000
81 #define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
82 #define MBP_RXMCAST			0x00000020
83 #define MBP_MCASTCHAN(channel)		((channel) & 0x7)
84 #define CPMAC_UNICAST_ENABLE		0x0104
85 #define CPMAC_UNICAST_CLEAR		0x0108
86 #define CPMAC_MAX_LENGTH		0x010c
87 #define CPMAC_BUFFER_OFFSET		0x0110
88 #define CPMAC_MAC_CONTROL		0x0160
89 #define MAC_TXPTYPE			0x00000200
90 #define MAC_TXPACE			0x00000040
91 #define MAC_MII				0x00000020
92 #define MAC_TXFLOW			0x00000010
93 #define MAC_RXFLOW			0x00000008
94 #define MAC_MTEST			0x00000004
95 #define MAC_LOOPBACK			0x00000002
96 #define MAC_FDX				0x00000001
97 #define CPMAC_MAC_STATUS		0x0164
98 #define MAC_STATUS_QOS			0x00000004
99 #define MAC_STATUS_RXFLOW		0x00000002
100 #define MAC_STATUS_TXFLOW		0x00000001
101 #define CPMAC_TX_INT_ENABLE		0x0178
102 #define CPMAC_TX_INT_CLEAR		0x017c
103 #define CPMAC_MAC_INT_VECTOR		0x0180
104 #define MAC_INT_STATUS			0x00080000
105 #define MAC_INT_HOST			0x00040000
106 #define MAC_INT_RX			0x00020000
107 #define MAC_INT_TX			0x00010000
108 #define CPMAC_MAC_EOI_VECTOR		0x0184
109 #define CPMAC_RX_INT_ENABLE		0x0198
110 #define CPMAC_RX_INT_CLEAR		0x019c
111 #define CPMAC_MAC_INT_ENABLE		0x01a8
112 #define CPMAC_MAC_INT_CLEAR		0x01ac
113 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
114 #define CPMAC_MAC_ADDR_MID		0x01d0
115 #define CPMAC_MAC_ADDR_HI		0x01d4
116 #define CPMAC_MAC_HASH_LO		0x01d8
117 #define CPMAC_MAC_HASH_HI		0x01dc
118 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
119 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
120 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
121 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
122 #define CPMAC_REG_END			0x0680
123 
124 /* Rx/Tx statistics
125  * TODO: use some of them to fill stats in cpmac_stats()
126  */
127 #define CPMAC_STATS_RX_GOOD		0x0200
128 #define CPMAC_STATS_RX_BCAST		0x0204
129 #define CPMAC_STATS_RX_MCAST		0x0208
130 #define CPMAC_STATS_RX_PAUSE		0x020c
131 #define CPMAC_STATS_RX_CRC		0x0210
132 #define CPMAC_STATS_RX_ALIGN		0x0214
133 #define CPMAC_STATS_RX_OVER		0x0218
134 #define CPMAC_STATS_RX_JABBER		0x021c
135 #define CPMAC_STATS_RX_UNDER		0x0220
136 #define CPMAC_STATS_RX_FRAG		0x0224
137 #define CPMAC_STATS_RX_FILTER		0x0228
138 #define CPMAC_STATS_RX_QOSFILTER	0x022c
139 #define CPMAC_STATS_RX_OCTETS		0x0230
140 
141 #define CPMAC_STATS_TX_GOOD		0x0234
142 #define CPMAC_STATS_TX_BCAST		0x0238
143 #define CPMAC_STATS_TX_MCAST		0x023c
144 #define CPMAC_STATS_TX_PAUSE		0x0240
145 #define CPMAC_STATS_TX_DEFER		0x0244
146 #define CPMAC_STATS_TX_COLLISION	0x0248
147 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
148 #define CPMAC_STATS_TX_MULTICOLL	0x0250
149 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
150 #define CPMAC_STATS_TX_LATECOLL		0x0258
151 #define CPMAC_STATS_TX_UNDERRUN		0x025c
152 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
153 #define CPMAC_STATS_TX_OCTETS		0x0264
154 
155 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
156 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
157 						(reg)))
158 
159 /* MDIO bus */
160 #define CPMAC_MDIO_VERSION		0x0000
161 #define CPMAC_MDIO_CONTROL		0x0004
162 #define MDIOC_IDLE			0x80000000
163 #define MDIOC_ENABLE			0x40000000
164 #define MDIOC_PREAMBLE			0x00100000
165 #define MDIOC_FAULT			0x00080000
166 #define MDIOC_FAULTDETECT		0x00040000
167 #define MDIOC_INTTEST			0x00020000
168 #define MDIOC_CLKDIV(div)		((div) & 0xff)
169 #define CPMAC_MDIO_ALIVE		0x0008
170 #define CPMAC_MDIO_LINK			0x000c
171 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
172 #define MDIO_BUSY			0x80000000
173 #define MDIO_WRITE			0x40000000
174 #define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
175 #define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
176 #define MDIO_DATA(data)			((data) & 0xffff)
177 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
178 #define PHYSEL_LINKSEL			0x00000040
179 #define PHYSEL_LINKINT			0x00000020
180 
181 struct cpmac_desc {
182 	u32 hw_next;
183 	u32 hw_data;
184 	u16 buflen;
185 	u16 bufflags;
186 	u16 datalen;
187 	u16 dataflags;
188 #define CPMAC_SOP			0x8000
189 #define CPMAC_EOP			0x4000
190 #define CPMAC_OWN			0x2000
191 #define CPMAC_EOQ			0x1000
192 	struct sk_buff *skb;
193 	struct cpmac_desc *next;
194 	struct cpmac_desc *prev;
195 	dma_addr_t mapping;
196 	dma_addr_t data_mapping;
197 };
198 
199 struct cpmac_priv {
200 	spinlock_t lock;
201 	spinlock_t rx_lock;
202 	struct cpmac_desc *rx_head;
203 	int ring_size;
204 	struct cpmac_desc *desc_ring;
205 	dma_addr_t dma_ring;
206 	void __iomem *regs;
207 	struct mii_bus *mii_bus;
208 	struct phy_device *phy;
209 	char phy_name[MII_BUS_ID_SIZE + 3];
210 	int oldlink, oldspeed, oldduplex;
211 	u32 msg_enable;
212 	struct net_device *dev;
213 	struct work_struct reset_work;
214 	struct platform_device *pdev;
215 	struct napi_struct napi;
216 	atomic_t reset_pending;
217 };
218 
219 static irqreturn_t cpmac_irq(int, void *);
220 static void cpmac_hw_start(struct net_device *dev);
221 static void cpmac_hw_stop(struct net_device *dev);
222 static int cpmac_stop(struct net_device *dev);
223 static int cpmac_open(struct net_device *dev);
224 
225 static void cpmac_dump_regs(struct net_device *dev)
226 {
227 	int i;
228 	struct cpmac_priv *priv = netdev_priv(dev);
229 
230 	for (i = 0; i < CPMAC_REG_END; i += 4) {
231 		if (i % 16 == 0) {
232 			if (i)
233 				printk("\n");
234 			printk("%s: reg[%p]:", dev->name, priv->regs + i);
235 		}
236 		printk(" %08x", cpmac_read(priv->regs, i));
237 	}
238 	printk("\n");
239 }
240 
241 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
242 {
243 	int i;
244 
245 	printk("%s: desc[%p]:", dev->name, desc);
246 	for (i = 0; i < sizeof(*desc) / 4; i++)
247 		printk(" %08x", ((u32 *)desc)[i]);
248 	printk("\n");
249 }
250 
251 static void cpmac_dump_all_desc(struct net_device *dev)
252 {
253 	struct cpmac_priv *priv = netdev_priv(dev);
254 	struct cpmac_desc *dump = priv->rx_head;
255 
256 	do {
257 		cpmac_dump_desc(dev, dump);
258 		dump = dump->next;
259 	} while (dump != priv->rx_head);
260 }
261 
262 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
263 {
264 	int i;
265 
266 	printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
267 	for (i = 0; i < skb->len; i++) {
268 		if (i % 16 == 0) {
269 			if (i)
270 				printk("\n");
271 			printk("%s: data[%p]:", dev->name, skb->data + i);
272 		}
273 		printk(" %02x", ((u8 *)skb->data)[i]);
274 	}
275 	printk("\n");
276 }
277 
278 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
279 {
280 	u32 val;
281 
282 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
283 		cpu_relax();
284 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
285 		    MDIO_PHY(phy_id));
286 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
287 		cpu_relax();
288 
289 	return MDIO_DATA(val);
290 }
291 
292 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
293 			    int reg, u16 val)
294 {
295 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
296 		cpu_relax();
297 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
298 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
299 
300 	return 0;
301 }
302 
303 static int cpmac_mdio_reset(struct mii_bus *bus)
304 {
305 	struct clk *cpmac_clk;
306 
307 	cpmac_clk = clk_get(&bus->dev, "cpmac");
308 	if (IS_ERR(cpmac_clk)) {
309 		pr_err("unable to get cpmac clock\n");
310 		return -1;
311 	}
312 	ar7_device_reset(AR7_RESET_BIT_MDIO);
313 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
314 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
315 
316 	return 0;
317 }
318 
319 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
320 
321 static struct mii_bus *cpmac_mii;
322 
323 static void cpmac_set_multicast_list(struct net_device *dev)
324 {
325 	struct netdev_hw_addr *ha;
326 	u8 tmp;
327 	u32 mbp, bit, hash[2] = { 0, };
328 	struct cpmac_priv *priv = netdev_priv(dev);
329 
330 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
331 	if (dev->flags & IFF_PROMISC) {
332 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
333 			    MBP_RXPROMISC);
334 	} else {
335 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
336 		if (dev->flags & IFF_ALLMULTI) {
337 			/* enable all multicast mode */
338 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
339 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
340 		} else {
341 			/* cpmac uses some strange mac address hashing
342 			 * (not crc32)
343 			 */
344 			netdev_for_each_mc_addr(ha, dev) {
345 				bit = 0;
346 				tmp = ha->addr[0];
347 				bit  ^= (tmp >> 2) ^ (tmp << 4);
348 				tmp = ha->addr[1];
349 				bit  ^= (tmp >> 4) ^ (tmp << 2);
350 				tmp = ha->addr[2];
351 				bit  ^= (tmp >> 6) ^ tmp;
352 				tmp = ha->addr[3];
353 				bit  ^= (tmp >> 2) ^ (tmp << 4);
354 				tmp = ha->addr[4];
355 				bit  ^= (tmp >> 4) ^ (tmp << 2);
356 				tmp = ha->addr[5];
357 				bit  ^= (tmp >> 6) ^ tmp;
358 				bit &= 0x3f;
359 				hash[bit / 32] |= 1 << (bit % 32);
360 			}
361 
362 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
363 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
364 		}
365 	}
366 }
367 
368 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
369 				    struct cpmac_desc *desc)
370 {
371 	struct sk_buff *skb, *result = NULL;
372 
373 	if (unlikely(netif_msg_hw(priv)))
374 		cpmac_dump_desc(priv->dev, desc);
375 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
376 	if (unlikely(!desc->datalen)) {
377 		if (netif_msg_rx_err(priv) && net_ratelimit())
378 			netdev_warn(priv->dev, "rx: spurious interrupt\n");
379 
380 		return NULL;
381 	}
382 
383 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
384 	if (likely(skb)) {
385 		skb_put(desc->skb, desc->datalen);
386 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
387 		skb_checksum_none_assert(desc->skb);
388 		priv->dev->stats.rx_packets++;
389 		priv->dev->stats.rx_bytes += desc->datalen;
390 		result = desc->skb;
391 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
392 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
393 		desc->skb = skb;
394 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
395 						    CPMAC_SKB_SIZE,
396 						    DMA_FROM_DEVICE);
397 		desc->hw_data = (u32)desc->data_mapping;
398 		if (unlikely(netif_msg_pktdata(priv))) {
399 			netdev_dbg(priv->dev, "received packet:\n");
400 			cpmac_dump_skb(priv->dev, result);
401 		}
402 	} else {
403 		if (netif_msg_rx_err(priv) && net_ratelimit())
404 			netdev_warn(priv->dev,
405 				    "low on skbs, dropping packet\n");
406 
407 		priv->dev->stats.rx_dropped++;
408 	}
409 
410 	desc->buflen = CPMAC_SKB_SIZE;
411 	desc->dataflags = CPMAC_OWN;
412 
413 	return result;
414 }
415 
416 static int cpmac_poll(struct napi_struct *napi, int budget)
417 {
418 	struct sk_buff *skb;
419 	struct cpmac_desc *desc, *restart;
420 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
421 	int received = 0, processed = 0;
422 
423 	spin_lock(&priv->rx_lock);
424 	if (unlikely(!priv->rx_head)) {
425 		if (netif_msg_rx_err(priv) && net_ratelimit())
426 			netdev_warn(priv->dev, "rx: polling, but no queue\n");
427 
428 		spin_unlock(&priv->rx_lock);
429 		napi_complete(napi);
430 		return 0;
431 	}
432 
433 	desc = priv->rx_head;
434 	restart = NULL;
435 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
436 		processed++;
437 
438 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
439 			/* The last update to eoq->hw_next didn't happen
440 			 * soon enough, and the receiver stopped here.
441 			 * Remember this descriptor so we can restart
442 			 * the receiver after freeing some space.
443 			 */
444 			if (unlikely(restart)) {
445 				if (netif_msg_rx_err(priv))
446 					netdev_err(priv->dev, "poll found a"
447 						   " duplicate EOQ: %p and %p\n",
448 						   restart, desc);
449 				goto fatal_error;
450 			}
451 
452 			restart = desc->next;
453 		}
454 
455 		skb = cpmac_rx_one(priv, desc);
456 		if (likely(skb)) {
457 			netif_receive_skb(skb);
458 			received++;
459 		}
460 		desc = desc->next;
461 	}
462 
463 	if (desc != priv->rx_head) {
464 		/* We freed some buffers, but not the whole ring,
465 		 * add what we did free to the rx list
466 		 */
467 		desc->prev->hw_next = (u32)0;
468 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
469 	}
470 
471 	/* Optimization: If we did not actually process an EOQ (perhaps because
472 	 * of quota limits), check to see if the tail of the queue has EOQ set.
473 	 * We should immediately restart in that case so that the receiver can
474 	 * restart and run in parallel with more packet processing.
475 	 * This lets us handle slightly larger bursts before running
476 	 * out of ring space (assuming dev->weight < ring_size)
477 	 */
478 
479 	if (!restart &&
480 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
481 		    == CPMAC_EOQ &&
482 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
483 		/* reset EOQ so the poll loop (above) doesn't try to
484 		 * restart this when it eventually gets to this descriptor.
485 		 */
486 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
487 		restart = priv->rx_head;
488 	}
489 
490 	if (restart) {
491 		priv->dev->stats.rx_errors++;
492 		priv->dev->stats.rx_fifo_errors++;
493 		if (netif_msg_rx_err(priv) && net_ratelimit())
494 			netdev_warn(priv->dev, "rx dma ring overrun\n");
495 
496 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
497 			if (netif_msg_drv(priv))
498 				netdev_err(priv->dev, "cpmac_poll is trying "
499 					"to restart rx from a descriptor "
500 					"that's not free: %p\n", restart);
501 			goto fatal_error;
502 		}
503 
504 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
505 	}
506 
507 	priv->rx_head = desc;
508 	spin_unlock(&priv->rx_lock);
509 	if (unlikely(netif_msg_rx_status(priv)))
510 		netdev_dbg(priv->dev, "poll processed %d packets\n", received);
511 
512 	if (processed == 0) {
513 		/* we ran out of packets to read,
514 		 * revert to interrupt-driven mode
515 		 */
516 		napi_complete(napi);
517 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
518 		return 0;
519 	}
520 
521 	return 1;
522 
523 fatal_error:
524 	/* Something went horribly wrong.
525 	 * Reset hardware to try to recover rather than wedging.
526 	 */
527 	if (netif_msg_drv(priv)) {
528 		netdev_err(priv->dev, "cpmac_poll is confused. "
529 			   "Resetting hardware\n");
530 		cpmac_dump_all_desc(priv->dev);
531 		netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
532 			   cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
533 			   cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
534 	}
535 
536 	spin_unlock(&priv->rx_lock);
537 	napi_complete(napi);
538 	netif_tx_stop_all_queues(priv->dev);
539 	napi_disable(&priv->napi);
540 
541 	atomic_inc(&priv->reset_pending);
542 	cpmac_hw_stop(priv->dev);
543 	if (!schedule_work(&priv->reset_work))
544 		atomic_dec(&priv->reset_pending);
545 
546 	return 0;
547 
548 }
549 
550 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
551 {
552 	int queue, len;
553 	struct cpmac_desc *desc;
554 	struct cpmac_priv *priv = netdev_priv(dev);
555 
556 	if (unlikely(atomic_read(&priv->reset_pending)))
557 		return NETDEV_TX_BUSY;
558 
559 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
560 		return NETDEV_TX_OK;
561 
562 	len = max(skb->len, ETH_ZLEN);
563 	queue = skb_get_queue_mapping(skb);
564 	netif_stop_subqueue(dev, queue);
565 
566 	desc = &priv->desc_ring[queue];
567 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
568 		if (netif_msg_tx_err(priv) && net_ratelimit())
569 			netdev_warn(dev, "tx dma ring full\n");
570 
571 		return NETDEV_TX_BUSY;
572 	}
573 
574 	spin_lock(&priv->lock);
575 	spin_unlock(&priv->lock);
576 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
577 	desc->skb = skb;
578 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
579 					    DMA_TO_DEVICE);
580 	desc->hw_data = (u32)desc->data_mapping;
581 	desc->datalen = len;
582 	desc->buflen = len;
583 	if (unlikely(netif_msg_tx_queued(priv)))
584 		netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
585 	if (unlikely(netif_msg_hw(priv)))
586 		cpmac_dump_desc(dev, desc);
587 	if (unlikely(netif_msg_pktdata(priv)))
588 		cpmac_dump_skb(dev, skb);
589 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
590 
591 	return NETDEV_TX_OK;
592 }
593 
594 static void cpmac_end_xmit(struct net_device *dev, int queue)
595 {
596 	struct cpmac_desc *desc;
597 	struct cpmac_priv *priv = netdev_priv(dev);
598 
599 	desc = &priv->desc_ring[queue];
600 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
601 	if (likely(desc->skb)) {
602 		spin_lock(&priv->lock);
603 		dev->stats.tx_packets++;
604 		dev->stats.tx_bytes += desc->skb->len;
605 		spin_unlock(&priv->lock);
606 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
607 				 DMA_TO_DEVICE);
608 
609 		if (unlikely(netif_msg_tx_done(priv)))
610 			netdev_dbg(dev, "sent 0x%p, len=%d\n",
611 				   desc->skb, desc->skb->len);
612 
613 		dev_kfree_skb_irq(desc->skb);
614 		desc->skb = NULL;
615 		if (__netif_subqueue_stopped(dev, queue))
616 			netif_wake_subqueue(dev, queue);
617 	} else {
618 		if (netif_msg_tx_err(priv) && net_ratelimit())
619 			netdev_warn(dev, "end_xmit: spurious interrupt\n");
620 		if (__netif_subqueue_stopped(dev, queue))
621 			netif_wake_subqueue(dev, queue);
622 	}
623 }
624 
625 static void cpmac_hw_stop(struct net_device *dev)
626 {
627 	int i;
628 	struct cpmac_priv *priv = netdev_priv(dev);
629 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
630 
631 	ar7_device_reset(pdata->reset_bit);
632 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
633 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
634 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
635 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
636 	for (i = 0; i < 8; i++) {
637 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
638 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
639 	}
640 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
641 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
642 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
643 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
644 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
645 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
646 }
647 
648 static void cpmac_hw_start(struct net_device *dev)
649 {
650 	int i;
651 	struct cpmac_priv *priv = netdev_priv(dev);
652 	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
653 
654 	ar7_device_reset(pdata->reset_bit);
655 	for (i = 0; i < 8; i++) {
656 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
657 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
658 	}
659 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
660 
661 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
662 		    MBP_RXMCAST);
663 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
664 	for (i = 0; i < 8; i++)
665 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
666 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
667 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
668 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
669 		    (dev->dev_addr[3] << 24));
670 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
671 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
672 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
673 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
674 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
675 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
676 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
677 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
678 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
679 
680 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
681 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
682 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
683 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
684 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
685 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
686 		    MAC_FDX);
687 }
688 
689 static void cpmac_clear_rx(struct net_device *dev)
690 {
691 	struct cpmac_priv *priv = netdev_priv(dev);
692 	struct cpmac_desc *desc;
693 	int i;
694 
695 	if (unlikely(!priv->rx_head))
696 		return;
697 	desc = priv->rx_head;
698 	for (i = 0; i < priv->ring_size; i++) {
699 		if ((desc->dataflags & CPMAC_OWN) == 0) {
700 			if (netif_msg_rx_err(priv) && net_ratelimit())
701 				netdev_warn(dev, "packet dropped\n");
702 			if (unlikely(netif_msg_hw(priv)))
703 				cpmac_dump_desc(dev, desc);
704 			desc->dataflags = CPMAC_OWN;
705 			dev->stats.rx_dropped++;
706 		}
707 		desc->hw_next = desc->next->mapping;
708 		desc = desc->next;
709 	}
710 	priv->rx_head->prev->hw_next = 0;
711 }
712 
713 static void cpmac_clear_tx(struct net_device *dev)
714 {
715 	struct cpmac_priv *priv = netdev_priv(dev);
716 	int i;
717 
718 	if (unlikely(!priv->desc_ring))
719 		return;
720 	for (i = 0; i < CPMAC_QUEUES; i++) {
721 		priv->desc_ring[i].dataflags = 0;
722 		if (priv->desc_ring[i].skb) {
723 			dev_kfree_skb_any(priv->desc_ring[i].skb);
724 			priv->desc_ring[i].skb = NULL;
725 		}
726 	}
727 }
728 
729 static void cpmac_hw_error(struct work_struct *work)
730 {
731 	struct cpmac_priv *priv =
732 		container_of(work, struct cpmac_priv, reset_work);
733 
734 	spin_lock(&priv->rx_lock);
735 	cpmac_clear_rx(priv->dev);
736 	spin_unlock(&priv->rx_lock);
737 	cpmac_clear_tx(priv->dev);
738 	cpmac_hw_start(priv->dev);
739 	barrier();
740 	atomic_dec(&priv->reset_pending);
741 
742 	netif_tx_wake_all_queues(priv->dev);
743 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
744 }
745 
746 static void cpmac_check_status(struct net_device *dev)
747 {
748 	struct cpmac_priv *priv = netdev_priv(dev);
749 
750 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
751 	int rx_channel = (macstatus >> 8) & 7;
752 	int rx_code = (macstatus >> 12) & 15;
753 	int tx_channel = (macstatus >> 16) & 7;
754 	int tx_code = (macstatus >> 20) & 15;
755 
756 	if (rx_code || tx_code) {
757 		if (netif_msg_drv(priv) && net_ratelimit()) {
758 			/* Can't find any documentation on what these
759 			 * error codes actually are. So just log them and hope..
760 			 */
761 			if (rx_code)
762 				netdev_warn(dev, "host error %d on rx "
763 					"channel %d (macstatus %08x), resetting\n",
764 					rx_code, rx_channel, macstatus);
765 			if (tx_code)
766 				netdev_warn(dev, "host error %d on tx "
767 					"channel %d (macstatus %08x), resetting\n",
768 					tx_code, tx_channel, macstatus);
769 		}
770 
771 		netif_tx_stop_all_queues(dev);
772 		cpmac_hw_stop(dev);
773 		if (schedule_work(&priv->reset_work))
774 			atomic_inc(&priv->reset_pending);
775 		if (unlikely(netif_msg_hw(priv)))
776 			cpmac_dump_regs(dev);
777 	}
778 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
779 }
780 
781 static irqreturn_t cpmac_irq(int irq, void *dev_id)
782 {
783 	struct net_device *dev = dev_id;
784 	struct cpmac_priv *priv;
785 	int queue;
786 	u32 status;
787 
788 	priv = netdev_priv(dev);
789 
790 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
791 
792 	if (unlikely(netif_msg_intr(priv)))
793 		netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
794 
795 	if (status & MAC_INT_TX)
796 		cpmac_end_xmit(dev, (status & 7));
797 
798 	if (status & MAC_INT_RX) {
799 		queue = (status >> 8) & 7;
800 		if (napi_schedule_prep(&priv->napi)) {
801 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
802 			__napi_schedule(&priv->napi);
803 		}
804 	}
805 
806 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
807 
808 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
809 		cpmac_check_status(dev);
810 
811 	return IRQ_HANDLED;
812 }
813 
814 static void cpmac_tx_timeout(struct net_device *dev)
815 {
816 	struct cpmac_priv *priv = netdev_priv(dev);
817 
818 	spin_lock(&priv->lock);
819 	dev->stats.tx_errors++;
820 	spin_unlock(&priv->lock);
821 	if (netif_msg_tx_err(priv) && net_ratelimit())
822 		netdev_warn(dev, "transmit timeout\n");
823 
824 	atomic_inc(&priv->reset_pending);
825 	barrier();
826 	cpmac_clear_tx(dev);
827 	barrier();
828 	atomic_dec(&priv->reset_pending);
829 
830 	netif_tx_wake_all_queues(priv->dev);
831 }
832 
833 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
834 {
835 	struct cpmac_priv *priv = netdev_priv(dev);
836 
837 	if (!(netif_running(dev)))
838 		return -EINVAL;
839 	if (!priv->phy)
840 		return -EINVAL;
841 
842 	return phy_mii_ioctl(priv->phy, ifr, cmd);
843 }
844 
845 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
846 {
847 	struct cpmac_priv *priv = netdev_priv(dev);
848 
849 	if (priv->phy)
850 		return phy_ethtool_gset(priv->phy, cmd);
851 
852 	return -EINVAL;
853 }
854 
855 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
856 {
857 	struct cpmac_priv *priv = netdev_priv(dev);
858 
859 	if (!capable(CAP_NET_ADMIN))
860 		return -EPERM;
861 
862 	if (priv->phy)
863 		return phy_ethtool_sset(priv->phy, cmd);
864 
865 	return -EINVAL;
866 }
867 
868 static void cpmac_get_ringparam(struct net_device *dev,
869 						struct ethtool_ringparam *ring)
870 {
871 	struct cpmac_priv *priv = netdev_priv(dev);
872 
873 	ring->rx_max_pending = 1024;
874 	ring->rx_mini_max_pending = 1;
875 	ring->rx_jumbo_max_pending = 1;
876 	ring->tx_max_pending = 1;
877 
878 	ring->rx_pending = priv->ring_size;
879 	ring->rx_mini_pending = 1;
880 	ring->rx_jumbo_pending = 1;
881 	ring->tx_pending = 1;
882 }
883 
884 static int cpmac_set_ringparam(struct net_device *dev,
885 						struct ethtool_ringparam *ring)
886 {
887 	struct cpmac_priv *priv = netdev_priv(dev);
888 
889 	if (netif_running(dev))
890 		return -EBUSY;
891 	priv->ring_size = ring->rx_pending;
892 
893 	return 0;
894 }
895 
896 static void cpmac_get_drvinfo(struct net_device *dev,
897 			      struct ethtool_drvinfo *info)
898 {
899 	strlcpy(info->driver, "cpmac", sizeof(info->driver));
900 	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
901 	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
902 }
903 
904 static const struct ethtool_ops cpmac_ethtool_ops = {
905 	.get_settings = cpmac_get_settings,
906 	.set_settings = cpmac_set_settings,
907 	.get_drvinfo = cpmac_get_drvinfo,
908 	.get_link = ethtool_op_get_link,
909 	.get_ringparam = cpmac_get_ringparam,
910 	.set_ringparam = cpmac_set_ringparam,
911 };
912 
913 static void cpmac_adjust_link(struct net_device *dev)
914 {
915 	struct cpmac_priv *priv = netdev_priv(dev);
916 	int new_state = 0;
917 
918 	spin_lock(&priv->lock);
919 	if (priv->phy->link) {
920 		netif_tx_start_all_queues(dev);
921 		if (priv->phy->duplex != priv->oldduplex) {
922 			new_state = 1;
923 			priv->oldduplex = priv->phy->duplex;
924 		}
925 
926 		if (priv->phy->speed != priv->oldspeed) {
927 			new_state = 1;
928 			priv->oldspeed = priv->phy->speed;
929 		}
930 
931 		if (!priv->oldlink) {
932 			new_state = 1;
933 			priv->oldlink = 1;
934 		}
935 	} else if (priv->oldlink) {
936 		new_state = 1;
937 		priv->oldlink = 0;
938 		priv->oldspeed = 0;
939 		priv->oldduplex = -1;
940 	}
941 
942 	if (new_state && netif_msg_link(priv) && net_ratelimit())
943 		phy_print_status(priv->phy);
944 
945 	spin_unlock(&priv->lock);
946 }
947 
948 static int cpmac_open(struct net_device *dev)
949 {
950 	int i, size, res;
951 	struct cpmac_priv *priv = netdev_priv(dev);
952 	struct resource *mem;
953 	struct cpmac_desc *desc;
954 	struct sk_buff *skb;
955 
956 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
957 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
958 		if (netif_msg_drv(priv))
959 			netdev_err(dev, "failed to request registers\n");
960 
961 		res = -ENXIO;
962 		goto fail_reserve;
963 	}
964 
965 	priv->regs = ioremap(mem->start, resource_size(mem));
966 	if (!priv->regs) {
967 		if (netif_msg_drv(priv))
968 			netdev_err(dev, "failed to remap registers\n");
969 
970 		res = -ENXIO;
971 		goto fail_remap;
972 	}
973 
974 	size = priv->ring_size + CPMAC_QUEUES;
975 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
976 					     sizeof(struct cpmac_desc) * size,
977 					     &priv->dma_ring,
978 					     GFP_KERNEL);
979 	if (!priv->desc_ring) {
980 		res = -ENOMEM;
981 		goto fail_alloc;
982 	}
983 
984 	for (i = 0; i < size; i++)
985 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
986 
987 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
988 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
989 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
990 		if (unlikely(!skb)) {
991 			res = -ENOMEM;
992 			goto fail_desc;
993 		}
994 		desc->skb = skb;
995 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
996 						    CPMAC_SKB_SIZE,
997 						    DMA_FROM_DEVICE);
998 		desc->hw_data = (u32)desc->data_mapping;
999 		desc->buflen = CPMAC_SKB_SIZE;
1000 		desc->dataflags = CPMAC_OWN;
1001 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1002 		desc->next->prev = desc;
1003 		desc->hw_next = (u32)desc->next->mapping;
1004 	}
1005 
1006 	priv->rx_head->prev->hw_next = (u32)0;
1007 
1008 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1009 	if (res) {
1010 		if (netif_msg_drv(priv))
1011 			netdev_err(dev, "failed to obtain irq\n");
1012 
1013 		goto fail_irq;
1014 	}
1015 
1016 	atomic_set(&priv->reset_pending, 0);
1017 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1018 	cpmac_hw_start(dev);
1019 
1020 	napi_enable(&priv->napi);
1021 	priv->phy->state = PHY_CHANGELINK;
1022 	phy_start(priv->phy);
1023 
1024 	return 0;
1025 
1026 fail_irq:
1027 fail_desc:
1028 	for (i = 0; i < priv->ring_size; i++) {
1029 		if (priv->rx_head[i].skb) {
1030 			dma_unmap_single(&dev->dev,
1031 					 priv->rx_head[i].data_mapping,
1032 					 CPMAC_SKB_SIZE,
1033 					 DMA_FROM_DEVICE);
1034 			kfree_skb(priv->rx_head[i].skb);
1035 		}
1036 	}
1037 fail_alloc:
1038 	kfree(priv->desc_ring);
1039 	iounmap(priv->regs);
1040 
1041 fail_remap:
1042 	release_mem_region(mem->start, resource_size(mem));
1043 
1044 fail_reserve:
1045 	return res;
1046 }
1047 
1048 static int cpmac_stop(struct net_device *dev)
1049 {
1050 	int i;
1051 	struct cpmac_priv *priv = netdev_priv(dev);
1052 	struct resource *mem;
1053 
1054 	netif_tx_stop_all_queues(dev);
1055 
1056 	cancel_work_sync(&priv->reset_work);
1057 	napi_disable(&priv->napi);
1058 	phy_stop(priv->phy);
1059 
1060 	cpmac_hw_stop(dev);
1061 
1062 	for (i = 0; i < 8; i++)
1063 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1064 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1065 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1066 
1067 	free_irq(dev->irq, dev);
1068 	iounmap(priv->regs);
1069 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1070 	release_mem_region(mem->start, resource_size(mem));
1071 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1072 	for (i = 0; i < priv->ring_size; i++) {
1073 		if (priv->rx_head[i].skb) {
1074 			dma_unmap_single(&dev->dev,
1075 					 priv->rx_head[i].data_mapping,
1076 					 CPMAC_SKB_SIZE,
1077 					 DMA_FROM_DEVICE);
1078 			kfree_skb(priv->rx_head[i].skb);
1079 		}
1080 	}
1081 
1082 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1083 			  (CPMAC_QUEUES + priv->ring_size),
1084 			  priv->desc_ring, priv->dma_ring);
1085 
1086 	return 0;
1087 }
1088 
1089 static const struct net_device_ops cpmac_netdev_ops = {
1090 	.ndo_open		= cpmac_open,
1091 	.ndo_stop		= cpmac_stop,
1092 	.ndo_start_xmit		= cpmac_start_xmit,
1093 	.ndo_tx_timeout		= cpmac_tx_timeout,
1094 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1095 	.ndo_do_ioctl		= cpmac_ioctl,
1096 	.ndo_change_mtu		= eth_change_mtu,
1097 	.ndo_validate_addr	= eth_validate_addr,
1098 	.ndo_set_mac_address	= eth_mac_addr,
1099 };
1100 
1101 static int external_switch;
1102 
1103 static int cpmac_probe(struct platform_device *pdev)
1104 {
1105 	int rc, phy_id;
1106 	char mdio_bus_id[MII_BUS_ID_SIZE];
1107 	struct resource *mem;
1108 	struct cpmac_priv *priv;
1109 	struct net_device *dev;
1110 	struct plat_cpmac_data *pdata;
1111 
1112 	pdata = dev_get_platdata(&pdev->dev);
1113 
1114 	if (external_switch || dumb_switch) {
1115 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1116 		phy_id = pdev->id;
1117 	} else {
1118 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1119 			if (!(pdata->phy_mask & (1 << phy_id)))
1120 				continue;
1121 			if (!cpmac_mii->phy_map[phy_id])
1122 				continue;
1123 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1124 			break;
1125 		}
1126 	}
1127 
1128 	if (phy_id == PHY_MAX_ADDR) {
1129 		dev_err(&pdev->dev, "no PHY present, falling back "
1130 			"to switch on MDIO bus 0\n");
1131 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1132 		phy_id = pdev->id;
1133 	}
1134 	mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1135 
1136 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1137 	if (!dev)
1138 		return -ENOMEM;
1139 
1140 	platform_set_drvdata(pdev, dev);
1141 	priv = netdev_priv(dev);
1142 
1143 	priv->pdev = pdev;
1144 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1145 	if (!mem) {
1146 		rc = -ENODEV;
1147 		goto out;
1148 	}
1149 
1150 	dev->irq = platform_get_irq_byname(pdev, "irq");
1151 
1152 	dev->netdev_ops = &cpmac_netdev_ops;
1153 	dev->ethtool_ops = &cpmac_ethtool_ops;
1154 
1155 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1156 
1157 	spin_lock_init(&priv->lock);
1158 	spin_lock_init(&priv->rx_lock);
1159 	priv->dev = dev;
1160 	priv->ring_size = 64;
1161 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1162 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1163 
1164 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1165 						mdio_bus_id, phy_id);
1166 
1167 	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1168 				PHY_INTERFACE_MODE_MII);
1169 
1170 	if (IS_ERR(priv->phy)) {
1171 		if (netif_msg_drv(priv))
1172 			dev_err(&pdev->dev, "Could not attach to PHY\n");
1173 
1174 		rc = PTR_ERR(priv->phy);
1175 		goto out;
1176 	}
1177 
1178 	rc = register_netdev(dev);
1179 	if (rc) {
1180 		dev_err(&pdev->dev, "Could not register net device\n");
1181 		goto fail;
1182 	}
1183 
1184 	if (netif_msg_probe(priv)) {
1185 		dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1186 			 "mac: %pM\n", (void *)mem->start, dev->irq,
1187 			 priv->phy_name, dev->dev_addr);
1188 	}
1189 
1190 	return 0;
1191 
1192 fail:
1193 	free_netdev(dev);
1194 out:
1195 	return rc;
1196 }
1197 
1198 static int cpmac_remove(struct platform_device *pdev)
1199 {
1200 	struct net_device *dev = platform_get_drvdata(pdev);
1201 
1202 	unregister_netdev(dev);
1203 	free_netdev(dev);
1204 
1205 	return 0;
1206 }
1207 
1208 static struct platform_driver cpmac_driver = {
1209 	.driver = {
1210 		.name 	= "cpmac",
1211 	},
1212 	.probe 	= cpmac_probe,
1213 	.remove = cpmac_remove,
1214 };
1215 
1216 int cpmac_init(void)
1217 {
1218 	u32 mask;
1219 	int i, res;
1220 
1221 	cpmac_mii = mdiobus_alloc();
1222 	if (cpmac_mii == NULL)
1223 		return -ENOMEM;
1224 
1225 	cpmac_mii->name = "cpmac-mii";
1226 	cpmac_mii->read = cpmac_mdio_read;
1227 	cpmac_mii->write = cpmac_mdio_write;
1228 	cpmac_mii->reset = cpmac_mdio_reset;
1229 	cpmac_mii->irq = mii_irqs;
1230 
1231 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1232 
1233 	if (!cpmac_mii->priv) {
1234 		pr_err("Can't ioremap mdio registers\n");
1235 		res = -ENXIO;
1236 		goto fail_alloc;
1237 	}
1238 
1239 #warning FIXME: unhardcode gpio&reset bits
1240 	ar7_gpio_disable(26);
1241 	ar7_gpio_disable(27);
1242 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1243 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1244 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1245 
1246 	cpmac_mii->reset(cpmac_mii);
1247 
1248 	for (i = 0; i < 300; i++) {
1249 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1250 		if (mask)
1251 			break;
1252 		else
1253 			msleep(10);
1254 	}
1255 
1256 	mask &= 0x7fffffff;
1257 	if (mask & (mask - 1)) {
1258 		external_switch = 1;
1259 		mask = 0;
1260 	}
1261 
1262 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1263 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1264 
1265 	res = mdiobus_register(cpmac_mii);
1266 	if (res)
1267 		goto fail_mii;
1268 
1269 	res = platform_driver_register(&cpmac_driver);
1270 	if (res)
1271 		goto fail_cpmac;
1272 
1273 	return 0;
1274 
1275 fail_cpmac:
1276 	mdiobus_unregister(cpmac_mii);
1277 
1278 fail_mii:
1279 	iounmap(cpmac_mii->priv);
1280 
1281 fail_alloc:
1282 	mdiobus_free(cpmac_mii);
1283 
1284 	return res;
1285 }
1286 
1287 void cpmac_exit(void)
1288 {
1289 	platform_driver_unregister(&cpmac_driver);
1290 	mdiobus_unregister(cpmac_mii);
1291 	iounmap(cpmac_mii->priv);
1292 	mdiobus_free(cpmac_mii);
1293 }
1294 
1295 module_init(cpmac_init);
1296 module_exit(cpmac_exit);
1297