xref: /openbmc/linux/drivers/net/ethernet/ti/cpmac.c (revision 171f1bc7)
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/types.h>
29 #include <linux/delay.h>
30 
31 #include <linux/netdevice.h>
32 #include <linux/if_vlan.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/skbuff.h>
36 #include <linux/mii.h>
37 #include <linux/phy.h>
38 #include <linux/phy_fixed.h>
39 #include <linux/platform_device.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/clk.h>
42 #include <linux/gpio.h>
43 #include <linux/atomic.h>
44 
45 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
46 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
47 MODULE_LICENSE("GPL");
48 MODULE_ALIAS("platform:cpmac");
49 
50 static int debug_level = 8;
51 static int dumb_switch;
52 
53 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
54 module_param(debug_level, int, 0444);
55 module_param(dumb_switch, int, 0444);
56 
57 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
58 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
59 
60 #define CPMAC_VERSION "0.5.2"
61 /* frame size + 802.1q tag + FCS size */
62 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
63 #define CPMAC_QUEUES	8
64 
65 /* Ethernet registers */
66 #define CPMAC_TX_CONTROL		0x0004
67 #define CPMAC_TX_TEARDOWN		0x0008
68 #define CPMAC_RX_CONTROL		0x0014
69 #define CPMAC_RX_TEARDOWN		0x0018
70 #define CPMAC_MBP			0x0100
71 # define MBP_RXPASSCRC			0x40000000
72 # define MBP_RXQOS			0x20000000
73 # define MBP_RXNOCHAIN			0x10000000
74 # define MBP_RXCMF			0x01000000
75 # define MBP_RXSHORT			0x00800000
76 # define MBP_RXCEF			0x00400000
77 # define MBP_RXPROMISC			0x00200000
78 # define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
79 # define MBP_RXBCAST			0x00002000
80 # define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
81 # define MBP_RXMCAST			0x00000020
82 # define MBP_MCASTCHAN(channel)		((channel) & 0x7)
83 #define CPMAC_UNICAST_ENABLE		0x0104
84 #define CPMAC_UNICAST_CLEAR		0x0108
85 #define CPMAC_MAX_LENGTH		0x010c
86 #define CPMAC_BUFFER_OFFSET		0x0110
87 #define CPMAC_MAC_CONTROL		0x0160
88 # define MAC_TXPTYPE			0x00000200
89 # define MAC_TXPACE			0x00000040
90 # define MAC_MII			0x00000020
91 # define MAC_TXFLOW			0x00000010
92 # define MAC_RXFLOW			0x00000008
93 # define MAC_MTEST			0x00000004
94 # define MAC_LOOPBACK			0x00000002
95 # define MAC_FDX			0x00000001
96 #define CPMAC_MAC_STATUS		0x0164
97 # define MAC_STATUS_QOS			0x00000004
98 # define MAC_STATUS_RXFLOW		0x00000002
99 # define MAC_STATUS_TXFLOW		0x00000001
100 #define CPMAC_TX_INT_ENABLE		0x0178
101 #define CPMAC_TX_INT_CLEAR		0x017c
102 #define CPMAC_MAC_INT_VECTOR		0x0180
103 # define MAC_INT_STATUS			0x00080000
104 # define MAC_INT_HOST			0x00040000
105 # define MAC_INT_RX			0x00020000
106 # define MAC_INT_TX			0x00010000
107 #define CPMAC_MAC_EOI_VECTOR		0x0184
108 #define CPMAC_RX_INT_ENABLE		0x0198
109 #define CPMAC_RX_INT_CLEAR		0x019c
110 #define CPMAC_MAC_INT_ENABLE		0x01a8
111 #define CPMAC_MAC_INT_CLEAR		0x01ac
112 #define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
113 #define CPMAC_MAC_ADDR_MID		0x01d0
114 #define CPMAC_MAC_ADDR_HI		0x01d4
115 #define CPMAC_MAC_HASH_LO		0x01d8
116 #define CPMAC_MAC_HASH_HI		0x01dc
117 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
118 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
119 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
120 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
121 #define CPMAC_REG_END			0x0680
122 /*
123  * Rx/Tx statistics
124  * TODO: use some of them to fill stats in cpmac_stats()
125  */
126 #define CPMAC_STATS_RX_GOOD		0x0200
127 #define CPMAC_STATS_RX_BCAST		0x0204
128 #define CPMAC_STATS_RX_MCAST		0x0208
129 #define CPMAC_STATS_RX_PAUSE		0x020c
130 #define CPMAC_STATS_RX_CRC		0x0210
131 #define CPMAC_STATS_RX_ALIGN		0x0214
132 #define CPMAC_STATS_RX_OVER		0x0218
133 #define CPMAC_STATS_RX_JABBER		0x021c
134 #define CPMAC_STATS_RX_UNDER		0x0220
135 #define CPMAC_STATS_RX_FRAG		0x0224
136 #define CPMAC_STATS_RX_FILTER		0x0228
137 #define CPMAC_STATS_RX_QOSFILTER	0x022c
138 #define CPMAC_STATS_RX_OCTETS		0x0230
139 
140 #define CPMAC_STATS_TX_GOOD		0x0234
141 #define CPMAC_STATS_TX_BCAST		0x0238
142 #define CPMAC_STATS_TX_MCAST		0x023c
143 #define CPMAC_STATS_TX_PAUSE		0x0240
144 #define CPMAC_STATS_TX_DEFER		0x0244
145 #define CPMAC_STATS_TX_COLLISION	0x0248
146 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
147 #define CPMAC_STATS_TX_MULTICOLL	0x0250
148 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
149 #define CPMAC_STATS_TX_LATECOLL		0x0258
150 #define CPMAC_STATS_TX_UNDERRUN		0x025c
151 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
152 #define CPMAC_STATS_TX_OCTETS		0x0264
153 
154 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
155 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
156 						(reg)))
157 
158 /* MDIO bus */
159 #define CPMAC_MDIO_VERSION		0x0000
160 #define CPMAC_MDIO_CONTROL		0x0004
161 # define MDIOC_IDLE			0x80000000
162 # define MDIOC_ENABLE			0x40000000
163 # define MDIOC_PREAMBLE			0x00100000
164 # define MDIOC_FAULT			0x00080000
165 # define MDIOC_FAULTDETECT		0x00040000
166 # define MDIOC_INTTEST			0x00020000
167 # define MDIOC_CLKDIV(div)		((div) & 0xff)
168 #define CPMAC_MDIO_ALIVE		0x0008
169 #define CPMAC_MDIO_LINK			0x000c
170 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
171 # define MDIO_BUSY			0x80000000
172 # define MDIO_WRITE			0x40000000
173 # define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
174 # define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
175 # define MDIO_DATA(data)		((data) & 0xffff)
176 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
177 # define PHYSEL_LINKSEL			0x00000040
178 # define PHYSEL_LINKINT			0x00000020
179 
180 struct cpmac_desc {
181 	u32 hw_next;
182 	u32 hw_data;
183 	u16 buflen;
184 	u16 bufflags;
185 	u16 datalen;
186 	u16 dataflags;
187 #define CPMAC_SOP			0x8000
188 #define CPMAC_EOP			0x4000
189 #define CPMAC_OWN			0x2000
190 #define CPMAC_EOQ			0x1000
191 	struct sk_buff *skb;
192 	struct cpmac_desc *next;
193 	struct cpmac_desc *prev;
194 	dma_addr_t mapping;
195 	dma_addr_t data_mapping;
196 };
197 
198 struct cpmac_priv {
199 	spinlock_t lock;
200 	spinlock_t rx_lock;
201 	struct cpmac_desc *rx_head;
202 	int ring_size;
203 	struct cpmac_desc *desc_ring;
204 	dma_addr_t dma_ring;
205 	void __iomem *regs;
206 	struct mii_bus *mii_bus;
207 	struct phy_device *phy;
208 	char phy_name[MII_BUS_ID_SIZE + 3];
209 	int oldlink, oldspeed, oldduplex;
210 	u32 msg_enable;
211 	struct net_device *dev;
212 	struct work_struct reset_work;
213 	struct platform_device *pdev;
214 	struct napi_struct napi;
215 	atomic_t reset_pending;
216 };
217 
218 static irqreturn_t cpmac_irq(int, void *);
219 static void cpmac_hw_start(struct net_device *dev);
220 static void cpmac_hw_stop(struct net_device *dev);
221 static int cpmac_stop(struct net_device *dev);
222 static int cpmac_open(struct net_device *dev);
223 
224 static void cpmac_dump_regs(struct net_device *dev)
225 {
226 	int i;
227 	struct cpmac_priv *priv = netdev_priv(dev);
228 	for (i = 0; i < CPMAC_REG_END; i += 4) {
229 		if (i % 16 == 0) {
230 			if (i)
231 				pr_cont("\n");
232 			printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
233 			       priv->regs + i);
234 		}
235 		printk(" %08x", cpmac_read(priv->regs, i));
236 	}
237 	printk("\n");
238 }
239 
240 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
241 {
242 	int i;
243 	printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
244 	for (i = 0; i < sizeof(*desc) / 4; i++)
245 		printk(" %08x", ((u32 *)desc)[i]);
246 	printk("\n");
247 }
248 
249 static void cpmac_dump_all_desc(struct net_device *dev)
250 {
251 	struct cpmac_priv *priv = netdev_priv(dev);
252 	struct cpmac_desc *dump = priv->rx_head;
253 	do {
254 		cpmac_dump_desc(dev, dump);
255 		dump = dump->next;
256 	} while (dump != priv->rx_head);
257 }
258 
259 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
260 {
261 	int i;
262 	printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
263 	for (i = 0; i < skb->len; i++) {
264 		if (i % 16 == 0) {
265 			if (i)
266 				pr_cont("\n");
267 			printk(KERN_DEBUG "%s: data[%p]:", dev->name,
268 			       skb->data + i);
269 		}
270 		printk(" %02x", ((u8 *)skb->data)[i]);
271 	}
272 	printk("\n");
273 }
274 
275 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
276 {
277 	u32 val;
278 
279 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
280 		cpu_relax();
281 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
282 		    MDIO_PHY(phy_id));
283 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
284 		cpu_relax();
285 	return MDIO_DATA(val);
286 }
287 
288 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
289 			    int reg, u16 val)
290 {
291 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
292 		cpu_relax();
293 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
294 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
295 	return 0;
296 }
297 
298 static int cpmac_mdio_reset(struct mii_bus *bus)
299 {
300 	struct clk *cpmac_clk;
301 
302 	cpmac_clk = clk_get(&bus->dev, "cpmac");
303 	if (IS_ERR(cpmac_clk)) {
304 		printk(KERN_ERR "unable to get cpmac clock\n");
305 		return -1;
306 	}
307 	ar7_device_reset(AR7_RESET_BIT_MDIO);
308 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
309 		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
310 	return 0;
311 }
312 
313 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
314 
315 static struct mii_bus *cpmac_mii;
316 
317 static int cpmac_config(struct net_device *dev, struct ifmap *map)
318 {
319 	if (dev->flags & IFF_UP)
320 		return -EBUSY;
321 
322 	/* Don't allow changing the I/O address */
323 	if (map->base_addr != dev->base_addr)
324 		return -EOPNOTSUPP;
325 
326 	/* ignore other fields */
327 	return 0;
328 }
329 
330 static void cpmac_set_multicast_list(struct net_device *dev)
331 {
332 	struct netdev_hw_addr *ha;
333 	u8 tmp;
334 	u32 mbp, bit, hash[2] = { 0, };
335 	struct cpmac_priv *priv = netdev_priv(dev);
336 
337 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
338 	if (dev->flags & IFF_PROMISC) {
339 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
340 			    MBP_RXPROMISC);
341 	} else {
342 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
343 		if (dev->flags & IFF_ALLMULTI) {
344 			/* enable all multicast mode */
345 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
346 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
347 		} else {
348 			/*
349 			 * cpmac uses some strange mac address hashing
350 			 * (not crc32)
351 			 */
352 			netdev_for_each_mc_addr(ha, dev) {
353 				bit = 0;
354 				tmp = ha->addr[0];
355 				bit  ^= (tmp >> 2) ^ (tmp << 4);
356 				tmp = ha->addr[1];
357 				bit  ^= (tmp >> 4) ^ (tmp << 2);
358 				tmp = ha->addr[2];
359 				bit  ^= (tmp >> 6) ^ tmp;
360 				tmp = ha->addr[3];
361 				bit  ^= (tmp >> 2) ^ (tmp << 4);
362 				tmp = ha->addr[4];
363 				bit  ^= (tmp >> 4) ^ (tmp << 2);
364 				tmp = ha->addr[5];
365 				bit  ^= (tmp >> 6) ^ tmp;
366 				bit &= 0x3f;
367 				hash[bit / 32] |= 1 << (bit % 32);
368 			}
369 
370 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
371 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
372 		}
373 	}
374 }
375 
376 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
377 				    struct cpmac_desc *desc)
378 {
379 	struct sk_buff *skb, *result = NULL;
380 
381 	if (unlikely(netif_msg_hw(priv)))
382 		cpmac_dump_desc(priv->dev, desc);
383 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
384 	if (unlikely(!desc->datalen)) {
385 		if (netif_msg_rx_err(priv) && net_ratelimit())
386 			printk(KERN_WARNING "%s: rx: spurious interrupt\n",
387 			       priv->dev->name);
388 		return NULL;
389 	}
390 
391 	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
392 	if (likely(skb)) {
393 		skb_put(desc->skb, desc->datalen);
394 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
395 		skb_checksum_none_assert(desc->skb);
396 		priv->dev->stats.rx_packets++;
397 		priv->dev->stats.rx_bytes += desc->datalen;
398 		result = desc->skb;
399 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
400 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
401 		desc->skb = skb;
402 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
403 						    CPMAC_SKB_SIZE,
404 						    DMA_FROM_DEVICE);
405 		desc->hw_data = (u32)desc->data_mapping;
406 		if (unlikely(netif_msg_pktdata(priv))) {
407 			printk(KERN_DEBUG "%s: received packet:\n",
408 			       priv->dev->name);
409 			cpmac_dump_skb(priv->dev, result);
410 		}
411 	} else {
412 		if (netif_msg_rx_err(priv) && net_ratelimit())
413 			printk(KERN_WARNING
414 			       "%s: low on skbs, dropping packet\n",
415 			       priv->dev->name);
416 		priv->dev->stats.rx_dropped++;
417 	}
418 
419 	desc->buflen = CPMAC_SKB_SIZE;
420 	desc->dataflags = CPMAC_OWN;
421 
422 	return result;
423 }
424 
425 static int cpmac_poll(struct napi_struct *napi, int budget)
426 {
427 	struct sk_buff *skb;
428 	struct cpmac_desc *desc, *restart;
429 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
430 	int received = 0, processed = 0;
431 
432 	spin_lock(&priv->rx_lock);
433 	if (unlikely(!priv->rx_head)) {
434 		if (netif_msg_rx_err(priv) && net_ratelimit())
435 			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
436 			       priv->dev->name);
437 		spin_unlock(&priv->rx_lock);
438 		napi_complete(napi);
439 		return 0;
440 	}
441 
442 	desc = priv->rx_head;
443 	restart = NULL;
444 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
445 		processed++;
446 
447 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
448 			/* The last update to eoq->hw_next didn't happen
449 			* soon enough, and the receiver stopped here.
450 			*Remember this descriptor so we can restart
451 			* the receiver after freeing some space.
452 			*/
453 			if (unlikely(restart)) {
454 				if (netif_msg_rx_err(priv))
455 					printk(KERN_ERR "%s: poll found a"
456 						" duplicate EOQ: %p and %p\n",
457 						priv->dev->name, restart, desc);
458 				goto fatal_error;
459 			}
460 
461 			restart = desc->next;
462 		}
463 
464 		skb = cpmac_rx_one(priv, desc);
465 		if (likely(skb)) {
466 			netif_receive_skb(skb);
467 			received++;
468 		}
469 		desc = desc->next;
470 	}
471 
472 	if (desc != priv->rx_head) {
473 		/* We freed some buffers, but not the whole ring,
474 		 * add what we did free to the rx list */
475 		desc->prev->hw_next = (u32)0;
476 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
477 	}
478 
479 	/* Optimization: If we did not actually process an EOQ (perhaps because
480 	 * of quota limits), check to see if the tail of the queue has EOQ set.
481 	* We should immediately restart in that case so that the receiver can
482 	* restart and run in parallel with more packet processing.
483 	* This lets us handle slightly larger bursts before running
484 	* out of ring space (assuming dev->weight < ring_size) */
485 
486 	if (!restart &&
487 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
488 		    == CPMAC_EOQ &&
489 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
490 		/* reset EOQ so the poll loop (above) doesn't try to
491 		* restart this when it eventually gets to this descriptor.
492 		*/
493 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
494 		restart = priv->rx_head;
495 	}
496 
497 	if (restart) {
498 		priv->dev->stats.rx_errors++;
499 		priv->dev->stats.rx_fifo_errors++;
500 		if (netif_msg_rx_err(priv) && net_ratelimit())
501 			printk(KERN_WARNING "%s: rx dma ring overrun\n",
502 			       priv->dev->name);
503 
504 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
505 			if (netif_msg_drv(priv))
506 				printk(KERN_ERR "%s: cpmac_poll is trying to "
507 					"restart rx from a descriptor that's "
508 					"not free: %p\n",
509 					priv->dev->name, restart);
510 			goto fatal_error;
511 		}
512 
513 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
514 	}
515 
516 	priv->rx_head = desc;
517 	spin_unlock(&priv->rx_lock);
518 	if (unlikely(netif_msg_rx_status(priv)))
519 		printk(KERN_DEBUG "%s: poll processed %d packets\n",
520 		       priv->dev->name, received);
521 	if (processed == 0) {
522 		/* we ran out of packets to read,
523 		 * revert to interrupt-driven mode */
524 		napi_complete(napi);
525 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
526 		return 0;
527 	}
528 
529 	return 1;
530 
531 fatal_error:
532 	/* Something went horribly wrong.
533 	 * Reset hardware to try to recover rather than wedging. */
534 
535 	if (netif_msg_drv(priv)) {
536 		printk(KERN_ERR "%s: cpmac_poll is confused. "
537 				"Resetting hardware\n", priv->dev->name);
538 		cpmac_dump_all_desc(priv->dev);
539 		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
540 			priv->dev->name,
541 			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
542 			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
543 	}
544 
545 	spin_unlock(&priv->rx_lock);
546 	napi_complete(napi);
547 	netif_tx_stop_all_queues(priv->dev);
548 	napi_disable(&priv->napi);
549 
550 	atomic_inc(&priv->reset_pending);
551 	cpmac_hw_stop(priv->dev);
552 	if (!schedule_work(&priv->reset_work))
553 		atomic_dec(&priv->reset_pending);
554 	return 0;
555 
556 }
557 
558 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
559 {
560 	int queue, len;
561 	struct cpmac_desc *desc;
562 	struct cpmac_priv *priv = netdev_priv(dev);
563 
564 	if (unlikely(atomic_read(&priv->reset_pending)))
565 		return NETDEV_TX_BUSY;
566 
567 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
568 		return NETDEV_TX_OK;
569 
570 	len = max(skb->len, ETH_ZLEN);
571 	queue = skb_get_queue_mapping(skb);
572 	netif_stop_subqueue(dev, queue);
573 
574 	desc = &priv->desc_ring[queue];
575 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
576 		if (netif_msg_tx_err(priv) && net_ratelimit())
577 			printk(KERN_WARNING "%s: tx dma ring full\n",
578 			       dev->name);
579 		return NETDEV_TX_BUSY;
580 	}
581 
582 	spin_lock(&priv->lock);
583 	spin_unlock(&priv->lock);
584 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
585 	desc->skb = skb;
586 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
587 					    DMA_TO_DEVICE);
588 	desc->hw_data = (u32)desc->data_mapping;
589 	desc->datalen = len;
590 	desc->buflen = len;
591 	if (unlikely(netif_msg_tx_queued(priv)))
592 		printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
593 		       skb->len);
594 	if (unlikely(netif_msg_hw(priv)))
595 		cpmac_dump_desc(dev, desc);
596 	if (unlikely(netif_msg_pktdata(priv)))
597 		cpmac_dump_skb(dev, skb);
598 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
599 
600 	return NETDEV_TX_OK;
601 }
602 
603 static void cpmac_end_xmit(struct net_device *dev, int queue)
604 {
605 	struct cpmac_desc *desc;
606 	struct cpmac_priv *priv = netdev_priv(dev);
607 
608 	desc = &priv->desc_ring[queue];
609 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
610 	if (likely(desc->skb)) {
611 		spin_lock(&priv->lock);
612 		dev->stats.tx_packets++;
613 		dev->stats.tx_bytes += desc->skb->len;
614 		spin_unlock(&priv->lock);
615 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
616 				 DMA_TO_DEVICE);
617 
618 		if (unlikely(netif_msg_tx_done(priv)))
619 			printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
620 			       desc->skb, desc->skb->len);
621 
622 		dev_kfree_skb_irq(desc->skb);
623 		desc->skb = NULL;
624 		if (__netif_subqueue_stopped(dev, queue))
625 			netif_wake_subqueue(dev, queue);
626 	} else {
627 		if (netif_msg_tx_err(priv) && net_ratelimit())
628 			printk(KERN_WARNING
629 			       "%s: end_xmit: spurious interrupt\n", dev->name);
630 		if (__netif_subqueue_stopped(dev, queue))
631 			netif_wake_subqueue(dev, queue);
632 	}
633 }
634 
635 static void cpmac_hw_stop(struct net_device *dev)
636 {
637 	int i;
638 	struct cpmac_priv *priv = netdev_priv(dev);
639 	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
640 
641 	ar7_device_reset(pdata->reset_bit);
642 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
643 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
644 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
645 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
646 	for (i = 0; i < 8; i++) {
647 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
648 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
649 	}
650 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
651 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
652 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
653 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
654 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
655 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
656 }
657 
658 static void cpmac_hw_start(struct net_device *dev)
659 {
660 	int i;
661 	struct cpmac_priv *priv = netdev_priv(dev);
662 	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
663 
664 	ar7_device_reset(pdata->reset_bit);
665 	for (i = 0; i < 8; i++) {
666 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
667 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
668 	}
669 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
670 
671 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
672 		    MBP_RXMCAST);
673 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
674 	for (i = 0; i < 8; i++)
675 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
676 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
677 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
678 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
679 		    (dev->dev_addr[3] << 24));
680 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
681 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
682 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
683 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
684 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
685 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
686 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
687 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
688 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
689 
690 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
691 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
692 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
693 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
694 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
695 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
696 		    MAC_FDX);
697 }
698 
699 static void cpmac_clear_rx(struct net_device *dev)
700 {
701 	struct cpmac_priv *priv = netdev_priv(dev);
702 	struct cpmac_desc *desc;
703 	int i;
704 	if (unlikely(!priv->rx_head))
705 		return;
706 	desc = priv->rx_head;
707 	for (i = 0; i < priv->ring_size; i++) {
708 		if ((desc->dataflags & CPMAC_OWN) == 0) {
709 			if (netif_msg_rx_err(priv) && net_ratelimit())
710 				printk(KERN_WARNING "%s: packet dropped\n",
711 				       dev->name);
712 			if (unlikely(netif_msg_hw(priv)))
713 				cpmac_dump_desc(dev, desc);
714 			desc->dataflags = CPMAC_OWN;
715 			dev->stats.rx_dropped++;
716 		}
717 		desc->hw_next = desc->next->mapping;
718 		desc = desc->next;
719 	}
720 	priv->rx_head->prev->hw_next = 0;
721 }
722 
723 static void cpmac_clear_tx(struct net_device *dev)
724 {
725 	struct cpmac_priv *priv = netdev_priv(dev);
726 	int i;
727 	if (unlikely(!priv->desc_ring))
728 		return;
729 	for (i = 0; i < CPMAC_QUEUES; i++) {
730 		priv->desc_ring[i].dataflags = 0;
731 		if (priv->desc_ring[i].skb) {
732 			dev_kfree_skb_any(priv->desc_ring[i].skb);
733 			priv->desc_ring[i].skb = NULL;
734 		}
735 	}
736 }
737 
738 static void cpmac_hw_error(struct work_struct *work)
739 {
740 	struct cpmac_priv *priv =
741 		container_of(work, struct cpmac_priv, reset_work);
742 
743 	spin_lock(&priv->rx_lock);
744 	cpmac_clear_rx(priv->dev);
745 	spin_unlock(&priv->rx_lock);
746 	cpmac_clear_tx(priv->dev);
747 	cpmac_hw_start(priv->dev);
748 	barrier();
749 	atomic_dec(&priv->reset_pending);
750 
751 	netif_tx_wake_all_queues(priv->dev);
752 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
753 }
754 
755 static void cpmac_check_status(struct net_device *dev)
756 {
757 	struct cpmac_priv *priv = netdev_priv(dev);
758 
759 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
760 	int rx_channel = (macstatus >> 8) & 7;
761 	int rx_code = (macstatus >> 12) & 15;
762 	int tx_channel = (macstatus >> 16) & 7;
763 	int tx_code = (macstatus >> 20) & 15;
764 
765 	if (rx_code || tx_code) {
766 		if (netif_msg_drv(priv) && net_ratelimit()) {
767 			/* Can't find any documentation on what these
768 			 *error codes actually are. So just log them and hope..
769 			 */
770 			if (rx_code)
771 				printk(KERN_WARNING "%s: host error %d on rx "
772 				     "channel %d (macstatus %08x), resetting\n",
773 				     dev->name, rx_code, rx_channel, macstatus);
774 			if (tx_code)
775 				printk(KERN_WARNING "%s: host error %d on tx "
776 				     "channel %d (macstatus %08x), resetting\n",
777 				     dev->name, tx_code, tx_channel, macstatus);
778 		}
779 
780 		netif_tx_stop_all_queues(dev);
781 		cpmac_hw_stop(dev);
782 		if (schedule_work(&priv->reset_work))
783 			atomic_inc(&priv->reset_pending);
784 		if (unlikely(netif_msg_hw(priv)))
785 			cpmac_dump_regs(dev);
786 	}
787 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
788 }
789 
790 static irqreturn_t cpmac_irq(int irq, void *dev_id)
791 {
792 	struct net_device *dev = dev_id;
793 	struct cpmac_priv *priv;
794 	int queue;
795 	u32 status;
796 
797 	priv = netdev_priv(dev);
798 
799 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
800 
801 	if (unlikely(netif_msg_intr(priv)))
802 		printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
803 		       status);
804 
805 	if (status & MAC_INT_TX)
806 		cpmac_end_xmit(dev, (status & 7));
807 
808 	if (status & MAC_INT_RX) {
809 		queue = (status >> 8) & 7;
810 		if (napi_schedule_prep(&priv->napi)) {
811 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
812 			__napi_schedule(&priv->napi);
813 		}
814 	}
815 
816 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
817 
818 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
819 		cpmac_check_status(dev);
820 
821 	return IRQ_HANDLED;
822 }
823 
824 static void cpmac_tx_timeout(struct net_device *dev)
825 {
826 	struct cpmac_priv *priv = netdev_priv(dev);
827 
828 	spin_lock(&priv->lock);
829 	dev->stats.tx_errors++;
830 	spin_unlock(&priv->lock);
831 	if (netif_msg_tx_err(priv) && net_ratelimit())
832 		printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
833 
834 	atomic_inc(&priv->reset_pending);
835 	barrier();
836 	cpmac_clear_tx(dev);
837 	barrier();
838 	atomic_dec(&priv->reset_pending);
839 
840 	netif_tx_wake_all_queues(priv->dev);
841 }
842 
843 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
844 {
845 	struct cpmac_priv *priv = netdev_priv(dev);
846 	if (!(netif_running(dev)))
847 		return -EINVAL;
848 	if (!priv->phy)
849 		return -EINVAL;
850 
851 	return phy_mii_ioctl(priv->phy, ifr, cmd);
852 }
853 
854 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
855 {
856 	struct cpmac_priv *priv = netdev_priv(dev);
857 
858 	if (priv->phy)
859 		return phy_ethtool_gset(priv->phy, cmd);
860 
861 	return -EINVAL;
862 }
863 
864 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
865 {
866 	struct cpmac_priv *priv = netdev_priv(dev);
867 
868 	if (!capable(CAP_NET_ADMIN))
869 		return -EPERM;
870 
871 	if (priv->phy)
872 		return phy_ethtool_sset(priv->phy, cmd);
873 
874 	return -EINVAL;
875 }
876 
877 static void cpmac_get_ringparam(struct net_device *dev,
878 						struct ethtool_ringparam *ring)
879 {
880 	struct cpmac_priv *priv = netdev_priv(dev);
881 
882 	ring->rx_max_pending = 1024;
883 	ring->rx_mini_max_pending = 1;
884 	ring->rx_jumbo_max_pending = 1;
885 	ring->tx_max_pending = 1;
886 
887 	ring->rx_pending = priv->ring_size;
888 	ring->rx_mini_pending = 1;
889 	ring->rx_jumbo_pending = 1;
890 	ring->tx_pending = 1;
891 }
892 
893 static int cpmac_set_ringparam(struct net_device *dev,
894 						struct ethtool_ringparam *ring)
895 {
896 	struct cpmac_priv *priv = netdev_priv(dev);
897 
898 	if (netif_running(dev))
899 		return -EBUSY;
900 	priv->ring_size = ring->rx_pending;
901 	return 0;
902 }
903 
904 static void cpmac_get_drvinfo(struct net_device *dev,
905 			      struct ethtool_drvinfo *info)
906 {
907 	strcpy(info->driver, "cpmac");
908 	strcpy(info->version, CPMAC_VERSION);
909 	info->fw_version[0] = '\0';
910 	sprintf(info->bus_info, "%s", "cpmac");
911 	info->regdump_len = 0;
912 }
913 
914 static const struct ethtool_ops cpmac_ethtool_ops = {
915 	.get_settings = cpmac_get_settings,
916 	.set_settings = cpmac_set_settings,
917 	.get_drvinfo = cpmac_get_drvinfo,
918 	.get_link = ethtool_op_get_link,
919 	.get_ringparam = cpmac_get_ringparam,
920 	.set_ringparam = cpmac_set_ringparam,
921 };
922 
923 static void cpmac_adjust_link(struct net_device *dev)
924 {
925 	struct cpmac_priv *priv = netdev_priv(dev);
926 	int new_state = 0;
927 
928 	spin_lock(&priv->lock);
929 	if (priv->phy->link) {
930 		netif_tx_start_all_queues(dev);
931 		if (priv->phy->duplex != priv->oldduplex) {
932 			new_state = 1;
933 			priv->oldduplex = priv->phy->duplex;
934 		}
935 
936 		if (priv->phy->speed != priv->oldspeed) {
937 			new_state = 1;
938 			priv->oldspeed = priv->phy->speed;
939 		}
940 
941 		if (!priv->oldlink) {
942 			new_state = 1;
943 			priv->oldlink = 1;
944 		}
945 	} else if (priv->oldlink) {
946 		new_state = 1;
947 		priv->oldlink = 0;
948 		priv->oldspeed = 0;
949 		priv->oldduplex = -1;
950 	}
951 
952 	if (new_state && netif_msg_link(priv) && net_ratelimit())
953 		phy_print_status(priv->phy);
954 
955 	spin_unlock(&priv->lock);
956 }
957 
958 static int cpmac_open(struct net_device *dev)
959 {
960 	int i, size, res;
961 	struct cpmac_priv *priv = netdev_priv(dev);
962 	struct resource *mem;
963 	struct cpmac_desc *desc;
964 	struct sk_buff *skb;
965 
966 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
967 	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
968 		if (netif_msg_drv(priv))
969 			printk(KERN_ERR "%s: failed to request registers\n",
970 			       dev->name);
971 		res = -ENXIO;
972 		goto fail_reserve;
973 	}
974 
975 	priv->regs = ioremap(mem->start, resource_size(mem));
976 	if (!priv->regs) {
977 		if (netif_msg_drv(priv))
978 			printk(KERN_ERR "%s: failed to remap registers\n",
979 			       dev->name);
980 		res = -ENXIO;
981 		goto fail_remap;
982 	}
983 
984 	size = priv->ring_size + CPMAC_QUEUES;
985 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
986 					     sizeof(struct cpmac_desc) * size,
987 					     &priv->dma_ring,
988 					     GFP_KERNEL);
989 	if (!priv->desc_ring) {
990 		res = -ENOMEM;
991 		goto fail_alloc;
992 	}
993 
994 	for (i = 0; i < size; i++)
995 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
996 
997 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
998 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
999 		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
1000 		if (unlikely(!skb)) {
1001 			res = -ENOMEM;
1002 			goto fail_desc;
1003 		}
1004 		desc->skb = skb;
1005 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1006 						    CPMAC_SKB_SIZE,
1007 						    DMA_FROM_DEVICE);
1008 		desc->hw_data = (u32)desc->data_mapping;
1009 		desc->buflen = CPMAC_SKB_SIZE;
1010 		desc->dataflags = CPMAC_OWN;
1011 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1012 		desc->next->prev = desc;
1013 		desc->hw_next = (u32)desc->next->mapping;
1014 	}
1015 
1016 	priv->rx_head->prev->hw_next = (u32)0;
1017 
1018 	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1019 	if (res) {
1020 		if (netif_msg_drv(priv))
1021 			printk(KERN_ERR "%s: failed to obtain irq\n",
1022 			       dev->name);
1023 		goto fail_irq;
1024 	}
1025 
1026 	atomic_set(&priv->reset_pending, 0);
1027 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1028 	cpmac_hw_start(dev);
1029 
1030 	napi_enable(&priv->napi);
1031 	priv->phy->state = PHY_CHANGELINK;
1032 	phy_start(priv->phy);
1033 
1034 	return 0;
1035 
1036 fail_irq:
1037 fail_desc:
1038 	for (i = 0; i < priv->ring_size; i++) {
1039 		if (priv->rx_head[i].skb) {
1040 			dma_unmap_single(&dev->dev,
1041 					 priv->rx_head[i].data_mapping,
1042 					 CPMAC_SKB_SIZE,
1043 					 DMA_FROM_DEVICE);
1044 			kfree_skb(priv->rx_head[i].skb);
1045 		}
1046 	}
1047 fail_alloc:
1048 	kfree(priv->desc_ring);
1049 	iounmap(priv->regs);
1050 
1051 fail_remap:
1052 	release_mem_region(mem->start, resource_size(mem));
1053 
1054 fail_reserve:
1055 	return res;
1056 }
1057 
1058 static int cpmac_stop(struct net_device *dev)
1059 {
1060 	int i;
1061 	struct cpmac_priv *priv = netdev_priv(dev);
1062 	struct resource *mem;
1063 
1064 	netif_tx_stop_all_queues(dev);
1065 
1066 	cancel_work_sync(&priv->reset_work);
1067 	napi_disable(&priv->napi);
1068 	phy_stop(priv->phy);
1069 
1070 	cpmac_hw_stop(dev);
1071 
1072 	for (i = 0; i < 8; i++)
1073 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1074 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1075 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1076 
1077 	free_irq(dev->irq, dev);
1078 	iounmap(priv->regs);
1079 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1080 	release_mem_region(mem->start, resource_size(mem));
1081 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1082 	for (i = 0; i < priv->ring_size; i++) {
1083 		if (priv->rx_head[i].skb) {
1084 			dma_unmap_single(&dev->dev,
1085 					 priv->rx_head[i].data_mapping,
1086 					 CPMAC_SKB_SIZE,
1087 					 DMA_FROM_DEVICE);
1088 			kfree_skb(priv->rx_head[i].skb);
1089 		}
1090 	}
1091 
1092 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1093 			  (CPMAC_QUEUES + priv->ring_size),
1094 			  priv->desc_ring, priv->dma_ring);
1095 	return 0;
1096 }
1097 
1098 static const struct net_device_ops cpmac_netdev_ops = {
1099 	.ndo_open		= cpmac_open,
1100 	.ndo_stop		= cpmac_stop,
1101 	.ndo_start_xmit		= cpmac_start_xmit,
1102 	.ndo_tx_timeout		= cpmac_tx_timeout,
1103 	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1104 	.ndo_do_ioctl		= cpmac_ioctl,
1105 	.ndo_set_config		= cpmac_config,
1106 	.ndo_change_mtu		= eth_change_mtu,
1107 	.ndo_validate_addr	= eth_validate_addr,
1108 	.ndo_set_mac_address	= eth_mac_addr,
1109 };
1110 
1111 static int external_switch;
1112 
1113 static int __devinit cpmac_probe(struct platform_device *pdev)
1114 {
1115 	int rc, phy_id;
1116 	char mdio_bus_id[MII_BUS_ID_SIZE];
1117 	struct resource *mem;
1118 	struct cpmac_priv *priv;
1119 	struct net_device *dev;
1120 	struct plat_cpmac_data *pdata;
1121 
1122 	pdata = pdev->dev.platform_data;
1123 
1124 	if (external_switch || dumb_switch) {
1125 		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1126 		phy_id = pdev->id;
1127 	} else {
1128 		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1129 			if (!(pdata->phy_mask & (1 << phy_id)))
1130 				continue;
1131 			if (!cpmac_mii->phy_map[phy_id])
1132 				continue;
1133 			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1134 			break;
1135 		}
1136 	}
1137 
1138 	if (phy_id == PHY_MAX_ADDR) {
1139 		dev_err(&pdev->dev, "no PHY present, falling back "
1140 					"to switch on MDIO bus 0\n");
1141 		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1142 		phy_id = pdev->id;
1143 	}
1144 
1145 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1146 
1147 	if (!dev) {
1148 		printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1149 		return -ENOMEM;
1150 	}
1151 
1152 	platform_set_drvdata(pdev, dev);
1153 	priv = netdev_priv(dev);
1154 
1155 	priv->pdev = pdev;
1156 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1157 	if (!mem) {
1158 		rc = -ENODEV;
1159 		goto fail;
1160 	}
1161 
1162 	dev->irq = platform_get_irq_byname(pdev, "irq");
1163 
1164 	dev->netdev_ops = &cpmac_netdev_ops;
1165 	dev->ethtool_ops = &cpmac_ethtool_ops;
1166 
1167 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1168 
1169 	spin_lock_init(&priv->lock);
1170 	spin_lock_init(&priv->rx_lock);
1171 	priv->dev = dev;
1172 	priv->ring_size = 64;
1173 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1174 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1175 
1176 	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1177 						mdio_bus_id, phy_id);
1178 
1179 	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 0,
1180 						PHY_INTERFACE_MODE_MII);
1181 
1182 	if (IS_ERR(priv->phy)) {
1183 		if (netif_msg_drv(priv))
1184 			printk(KERN_ERR "%s: Could not attach to PHY\n",
1185 			       dev->name);
1186 		rc = PTR_ERR(priv->phy);
1187 		goto fail;
1188 	}
1189 
1190 	rc = register_netdev(dev);
1191 	if (rc) {
1192 		printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1193 		       dev->name);
1194 		goto fail;
1195 	}
1196 
1197 	if (netif_msg_probe(priv)) {
1198 		printk(KERN_INFO
1199 		       "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1200 		       "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1201 		       priv->phy_name, dev->dev_addr);
1202 	}
1203 	return 0;
1204 
1205 fail:
1206 	free_netdev(dev);
1207 	return rc;
1208 }
1209 
1210 static int __devexit cpmac_remove(struct platform_device *pdev)
1211 {
1212 	struct net_device *dev = platform_get_drvdata(pdev);
1213 	unregister_netdev(dev);
1214 	free_netdev(dev);
1215 	return 0;
1216 }
1217 
1218 static struct platform_driver cpmac_driver = {
1219 	.driver.name = "cpmac",
1220 	.driver.owner = THIS_MODULE,
1221 	.probe = cpmac_probe,
1222 	.remove = __devexit_p(cpmac_remove),
1223 };
1224 
1225 int __devinit cpmac_init(void)
1226 {
1227 	u32 mask;
1228 	int i, res;
1229 
1230 	cpmac_mii = mdiobus_alloc();
1231 	if (cpmac_mii == NULL)
1232 		return -ENOMEM;
1233 
1234 	cpmac_mii->name = "cpmac-mii";
1235 	cpmac_mii->read = cpmac_mdio_read;
1236 	cpmac_mii->write = cpmac_mdio_write;
1237 	cpmac_mii->reset = cpmac_mdio_reset;
1238 	cpmac_mii->irq = mii_irqs;
1239 
1240 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1241 
1242 	if (!cpmac_mii->priv) {
1243 		printk(KERN_ERR "Can't ioremap mdio registers\n");
1244 		res = -ENXIO;
1245 		goto fail_alloc;
1246 	}
1247 
1248 #warning FIXME: unhardcode gpio&reset bits
1249 	ar7_gpio_disable(26);
1250 	ar7_gpio_disable(27);
1251 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1252 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1253 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1254 
1255 	cpmac_mii->reset(cpmac_mii);
1256 
1257 	for (i = 0; i < 300; i++) {
1258 		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1259 		if (mask)
1260 			break;
1261 		else
1262 			msleep(10);
1263 	}
1264 
1265 	mask &= 0x7fffffff;
1266 	if (mask & (mask - 1)) {
1267 		external_switch = 1;
1268 		mask = 0;
1269 	}
1270 
1271 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1272 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1273 
1274 	res = mdiobus_register(cpmac_mii);
1275 	if (res)
1276 		goto fail_mii;
1277 
1278 	res = platform_driver_register(&cpmac_driver);
1279 	if (res)
1280 		goto fail_cpmac;
1281 
1282 	return 0;
1283 
1284 fail_cpmac:
1285 	mdiobus_unregister(cpmac_mii);
1286 
1287 fail_mii:
1288 	iounmap(cpmac_mii->priv);
1289 
1290 fail_alloc:
1291 	mdiobus_free(cpmac_mii);
1292 
1293 	return res;
1294 }
1295 
1296 void __devexit cpmac_exit(void)
1297 {
1298 	platform_driver_unregister(&cpmac_driver);
1299 	mdiobus_unregister(cpmac_mii);
1300 	iounmap(cpmac_mii->priv);
1301 	mdiobus_free(cpmac_mii);
1302 }
1303 
1304 module_init(cpmac_init);
1305 module_exit(cpmac_exit);
1306