1 // SPDX-License-Identifier: GPL-2.0 2 /* TI K3 AM65x Common Platform Time Sync 3 * 4 * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com 5 * 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/clk-provider.h> 10 #include <linux/err.h> 11 #include <linux/if_vlan.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/net_tstamp.h> 16 #include <linux/of.h> 17 #include <linux/of_irq.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/ptp_classify.h> 21 #include <linux/ptp_clock_kernel.h> 22 23 #include "am65-cpts.h" 24 25 struct am65_genf_regs { 26 u32 comp_lo; /* Comparison Low Value 0:31 */ 27 u32 comp_hi; /* Comparison High Value 32:63 */ 28 u32 control; /* control */ 29 u32 length; /* Length */ 30 u32 ppm_low; /* PPM Load Low Value 0:31 */ 31 u32 ppm_hi; /* PPM Load High Value 32:63 */ 32 u32 ts_nudge; /* Nudge value */ 33 } __aligned(32) __packed; 34 35 #define AM65_CPTS_GENF_MAX_NUM 9 36 #define AM65_CPTS_ESTF_MAX_NUM 8 37 38 struct am65_cpts_regs { 39 u32 idver; /* Identification and version */ 40 u32 control; /* Time sync control */ 41 u32 rftclk_sel; /* Reference Clock Select Register */ 42 u32 ts_push; /* Time stamp event push */ 43 u32 ts_load_val_lo; /* Time Stamp Load Low Value 0:31 */ 44 u32 ts_load_en; /* Time stamp load enable */ 45 u32 ts_comp_lo; /* Time Stamp Comparison Low Value 0:31 */ 46 u32 ts_comp_length; /* Time Stamp Comparison Length */ 47 u32 intstat_raw; /* Time sync interrupt status raw */ 48 u32 intstat_masked; /* Time sync interrupt status masked */ 49 u32 int_enable; /* Time sync interrupt enable */ 50 u32 ts_comp_nudge; /* Time Stamp Comparison Nudge Value */ 51 u32 event_pop; /* Event interrupt pop */ 52 u32 event_0; /* Event Time Stamp lo 0:31 */ 53 u32 event_1; /* Event Type Fields */ 54 u32 event_2; /* Event Type Fields domain */ 55 u32 event_3; /* Event Time Stamp hi 32:63 */ 56 u32 ts_load_val_hi; /* Time Stamp Load High Value 32:63 */ 57 u32 ts_comp_hi; /* Time Stamp Comparison High Value 32:63 */ 58 u32 ts_add_val; /* Time Stamp Add value */ 59 u32 ts_ppm_low; /* Time Stamp PPM Load Low Value 0:31 */ 60 u32 ts_ppm_hi; /* Time Stamp PPM Load High Value 32:63 */ 61 u32 ts_nudge; /* Time Stamp Nudge value */ 62 u32 reserv[33]; 63 struct am65_genf_regs genf[AM65_CPTS_GENF_MAX_NUM]; 64 struct am65_genf_regs estf[AM65_CPTS_ESTF_MAX_NUM]; 65 }; 66 67 /* CONTROL_REG */ 68 #define AM65_CPTS_CONTROL_EN BIT(0) 69 #define AM65_CPTS_CONTROL_INT_TEST BIT(1) 70 #define AM65_CPTS_CONTROL_TS_COMP_POLARITY BIT(2) 71 #define AM65_CPTS_CONTROL_TSTAMP_EN BIT(3) 72 #define AM65_CPTS_CONTROL_SEQUENCE_EN BIT(4) 73 #define AM65_CPTS_CONTROL_64MODE BIT(5) 74 #define AM65_CPTS_CONTROL_TS_COMP_TOG BIT(6) 75 #define AM65_CPTS_CONTROL_TS_PPM_DIR BIT(7) 76 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_EN BIT(8) 77 #define AM65_CPTS_CONTROL_HW2_TS_PUSH_EN BIT(9) 78 #define AM65_CPTS_CONTROL_HW3_TS_PUSH_EN BIT(10) 79 #define AM65_CPTS_CONTROL_HW4_TS_PUSH_EN BIT(11) 80 #define AM65_CPTS_CONTROL_HW5_TS_PUSH_EN BIT(12) 81 #define AM65_CPTS_CONTROL_HW6_TS_PUSH_EN BIT(13) 82 #define AM65_CPTS_CONTROL_HW7_TS_PUSH_EN BIT(14) 83 #define AM65_CPTS_CONTROL_HW8_TS_PUSH_EN BIT(15) 84 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET (8) 85 86 #define AM65_CPTS_CONTROL_TX_GENF_CLR_EN BIT(17) 87 88 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_MASK (0xF) 89 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_SHIFT (28) 90 91 /* RFTCLK_SEL_REG */ 92 #define AM65_CPTS_RFTCLK_SEL_MASK (0x1F) 93 94 /* TS_PUSH_REG */ 95 #define AM65_CPTS_TS_PUSH BIT(0) 96 97 /* TS_LOAD_EN_REG */ 98 #define AM65_CPTS_TS_LOAD_EN BIT(0) 99 100 /* INTSTAT_RAW_REG */ 101 #define AM65_CPTS_INTSTAT_RAW_TS_PEND BIT(0) 102 103 /* INTSTAT_MASKED_REG */ 104 #define AM65_CPTS_INTSTAT_MASKED_TS_PEND BIT(0) 105 106 /* INT_ENABLE_REG */ 107 #define AM65_CPTS_INT_ENABLE_TS_PEND_EN BIT(0) 108 109 /* TS_COMP_NUDGE_REG */ 110 #define AM65_CPTS_TS_COMP_NUDGE_MASK (0xFF) 111 112 /* EVENT_POP_REG */ 113 #define AM65_CPTS_EVENT_POP BIT(0) 114 115 /* EVENT_1_REG */ 116 #define AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK GENMASK(15, 0) 117 118 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK GENMASK(19, 16) 119 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT (16) 120 121 #define AM65_CPTS_EVENT_1_EVENT_TYPE_MASK GENMASK(23, 20) 122 #define AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT (20) 123 124 #define AM65_CPTS_EVENT_1_PORT_NUMBER_MASK GENMASK(28, 24) 125 #define AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT (24) 126 127 /* EVENT_2_REG */ 128 #define AM65_CPTS_EVENT_2_REG_DOMAIN_MASK (0xFF) 129 #define AM65_CPTS_EVENT_2_REG_DOMAIN_SHIFT (0) 130 131 enum { 132 AM65_CPTS_EV_PUSH, /* Time Stamp Push Event */ 133 AM65_CPTS_EV_ROLL, /* Time Stamp Rollover Event */ 134 AM65_CPTS_EV_HALF, /* Time Stamp Half Rollover Event */ 135 AM65_CPTS_EV_HW, /* Hardware Time Stamp Push Event */ 136 AM65_CPTS_EV_RX, /* Ethernet Receive Event */ 137 AM65_CPTS_EV_TX, /* Ethernet Transmit Event */ 138 AM65_CPTS_EV_TS_COMP, /* Time Stamp Compare Event */ 139 AM65_CPTS_EV_HOST, /* Host Transmit Event */ 140 }; 141 142 struct am65_cpts_event { 143 struct list_head list; 144 unsigned long tmo; 145 u32 event1; 146 u32 event2; 147 u64 timestamp; 148 }; 149 150 #define AM65_CPTS_FIFO_DEPTH (16) 151 #define AM65_CPTS_MAX_EVENTS (32) 152 #define AM65_CPTS_EVENT_RX_TX_TIMEOUT (20) /* ms */ 153 #define AM65_CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */ 154 #define AM65_CPTS_MIN_PPM 0x400 155 156 struct am65_cpts { 157 struct device *dev; 158 struct am65_cpts_regs __iomem *reg; 159 struct ptp_clock_info ptp_info; 160 struct ptp_clock *ptp_clock; 161 int phc_index; 162 struct clk_hw *clk_mux_hw; 163 struct device_node *clk_mux_np; 164 struct clk *refclk; 165 u32 refclk_freq; 166 struct list_head events; 167 struct list_head pool; 168 struct am65_cpts_event pool_data[AM65_CPTS_MAX_EVENTS]; 169 spinlock_t lock; /* protects events lists*/ 170 u32 ext_ts_inputs; 171 u32 genf_num; 172 u32 ts_add_val; 173 int irq; 174 struct mutex ptp_clk_lock; /* PHC access sync */ 175 u64 timestamp; 176 u32 genf_enable; 177 u32 hw_ts_enable; 178 u32 estf_enable; 179 struct sk_buff_head txq; 180 bool pps_enabled; 181 bool pps_present; 182 u32 pps_hw_ts_idx; 183 u32 pps_genf_idx; 184 /* context save/restore */ 185 u64 sr_cpts_ns; 186 u64 sr_ktime_ns; 187 u32 sr_control; 188 u32 sr_int_enable; 189 u32 sr_rftclk_sel; 190 u32 sr_ts_ppm_hi; 191 u32 sr_ts_ppm_low; 192 struct am65_genf_regs sr_genf[AM65_CPTS_GENF_MAX_NUM]; 193 struct am65_genf_regs sr_estf[AM65_CPTS_ESTF_MAX_NUM]; 194 }; 195 196 struct am65_cpts_skb_cb_data { 197 unsigned long tmo; 198 u32 skb_mtype_seqid; 199 }; 200 201 #define am65_cpts_write32(c, v, r) writel(v, &(c)->reg->r) 202 #define am65_cpts_read32(c, r) readl(&(c)->reg->r) 203 204 static void am65_cpts_settime(struct am65_cpts *cpts, u64 start_tstamp) 205 { 206 u32 val; 207 208 val = upper_32_bits(start_tstamp); 209 am65_cpts_write32(cpts, val, ts_load_val_hi); 210 val = lower_32_bits(start_tstamp); 211 am65_cpts_write32(cpts, val, ts_load_val_lo); 212 213 am65_cpts_write32(cpts, AM65_CPTS_TS_LOAD_EN, ts_load_en); 214 } 215 216 static void am65_cpts_set_add_val(struct am65_cpts *cpts) 217 { 218 /* select coefficient according to the rate */ 219 cpts->ts_add_val = (NSEC_PER_SEC / cpts->refclk_freq - 1) & 0x7; 220 221 am65_cpts_write32(cpts, cpts->ts_add_val, ts_add_val); 222 } 223 224 static void am65_cpts_disable(struct am65_cpts *cpts) 225 { 226 am65_cpts_write32(cpts, 0, control); 227 am65_cpts_write32(cpts, 0, int_enable); 228 } 229 230 static int am65_cpts_event_get_port(struct am65_cpts_event *event) 231 { 232 return (event->event1 & AM65_CPTS_EVENT_1_PORT_NUMBER_MASK) >> 233 AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT; 234 } 235 236 static int am65_cpts_event_get_type(struct am65_cpts_event *event) 237 { 238 return (event->event1 & AM65_CPTS_EVENT_1_EVENT_TYPE_MASK) >> 239 AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT; 240 } 241 242 static int am65_cpts_cpts_purge_events(struct am65_cpts *cpts) 243 { 244 struct list_head *this, *next; 245 struct am65_cpts_event *event; 246 int removed = 0; 247 248 list_for_each_safe(this, next, &cpts->events) { 249 event = list_entry(this, struct am65_cpts_event, list); 250 if (time_after(jiffies, event->tmo)) { 251 list_del_init(&event->list); 252 list_add(&event->list, &cpts->pool); 253 ++removed; 254 } 255 } 256 257 if (removed) 258 dev_dbg(cpts->dev, "event pool cleaned up %d\n", removed); 259 return removed ? 0 : -1; 260 } 261 262 static bool am65_cpts_fifo_pop_event(struct am65_cpts *cpts, 263 struct am65_cpts_event *event) 264 { 265 u32 r = am65_cpts_read32(cpts, intstat_raw); 266 267 if (r & AM65_CPTS_INTSTAT_RAW_TS_PEND) { 268 event->timestamp = am65_cpts_read32(cpts, event_0); 269 event->event1 = am65_cpts_read32(cpts, event_1); 270 event->event2 = am65_cpts_read32(cpts, event_2); 271 event->timestamp |= (u64)am65_cpts_read32(cpts, event_3) << 32; 272 am65_cpts_write32(cpts, AM65_CPTS_EVENT_POP, event_pop); 273 return false; 274 } 275 return true; 276 } 277 278 static int am65_cpts_fifo_read(struct am65_cpts *cpts) 279 { 280 struct ptp_clock_event pevent; 281 struct am65_cpts_event *event; 282 bool schedule = false; 283 int i, type, ret = 0; 284 unsigned long flags; 285 286 spin_lock_irqsave(&cpts->lock, flags); 287 for (i = 0; i < AM65_CPTS_FIFO_DEPTH; i++) { 288 event = list_first_entry_or_null(&cpts->pool, 289 struct am65_cpts_event, list); 290 291 if (!event) { 292 if (am65_cpts_cpts_purge_events(cpts)) { 293 dev_err(cpts->dev, "cpts: event pool empty\n"); 294 ret = -1; 295 goto out; 296 } 297 continue; 298 } 299 300 if (am65_cpts_fifo_pop_event(cpts, event)) 301 break; 302 303 type = am65_cpts_event_get_type(event); 304 switch (type) { 305 case AM65_CPTS_EV_PUSH: 306 cpts->timestamp = event->timestamp; 307 dev_dbg(cpts->dev, "AM65_CPTS_EV_PUSH t:%llu\n", 308 cpts->timestamp); 309 break; 310 case AM65_CPTS_EV_RX: 311 case AM65_CPTS_EV_TX: 312 event->tmo = jiffies + 313 msecs_to_jiffies(AM65_CPTS_EVENT_RX_TX_TIMEOUT); 314 315 list_del_init(&event->list); 316 list_add_tail(&event->list, &cpts->events); 317 318 dev_dbg(cpts->dev, 319 "AM65_CPTS_EV_TX e1:%08x e2:%08x t:%lld\n", 320 event->event1, event->event2, 321 event->timestamp); 322 schedule = true; 323 break; 324 case AM65_CPTS_EV_HW: 325 pevent.index = am65_cpts_event_get_port(event) - 1; 326 pevent.timestamp = event->timestamp; 327 if (cpts->pps_enabled && pevent.index == cpts->pps_hw_ts_idx) { 328 pevent.type = PTP_CLOCK_PPSUSR; 329 pevent.pps_times.ts_real = ns_to_timespec64(pevent.timestamp); 330 } else { 331 pevent.type = PTP_CLOCK_EXTTS; 332 } 333 dev_dbg(cpts->dev, "AM65_CPTS_EV_HW:%s p:%d t:%llu\n", 334 pevent.type == PTP_CLOCK_EXTTS ? 335 "extts" : "pps", 336 pevent.index, event->timestamp); 337 338 ptp_clock_event(cpts->ptp_clock, &pevent); 339 break; 340 case AM65_CPTS_EV_HOST: 341 break; 342 case AM65_CPTS_EV_ROLL: 343 case AM65_CPTS_EV_HALF: 344 case AM65_CPTS_EV_TS_COMP: 345 dev_dbg(cpts->dev, 346 "AM65_CPTS_EVT: %d e1:%08x e2:%08x t:%lld\n", 347 type, 348 event->event1, event->event2, 349 event->timestamp); 350 break; 351 default: 352 dev_err(cpts->dev, "cpts: unknown event type\n"); 353 ret = -1; 354 goto out; 355 } 356 } 357 358 out: 359 spin_unlock_irqrestore(&cpts->lock, flags); 360 361 if (schedule) 362 ptp_schedule_worker(cpts->ptp_clock, 0); 363 364 return ret; 365 } 366 367 static u64 am65_cpts_gettime(struct am65_cpts *cpts, 368 struct ptp_system_timestamp *sts) 369 { 370 unsigned long flags; 371 u64 val = 0; 372 373 /* temporarily disable cpts interrupt to avoid intentional 374 * doubled read. Interrupt can be in-flight - it's Ok. 375 */ 376 am65_cpts_write32(cpts, 0, int_enable); 377 378 /* use spin_lock_irqsave() here as it has to run very fast */ 379 spin_lock_irqsave(&cpts->lock, flags); 380 ptp_read_system_prets(sts); 381 am65_cpts_write32(cpts, AM65_CPTS_TS_PUSH, ts_push); 382 am65_cpts_read32(cpts, ts_push); 383 ptp_read_system_postts(sts); 384 spin_unlock_irqrestore(&cpts->lock, flags); 385 386 am65_cpts_fifo_read(cpts); 387 388 am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable); 389 390 val = cpts->timestamp; 391 392 return val; 393 } 394 395 static irqreturn_t am65_cpts_interrupt(int irq, void *dev_id) 396 { 397 struct am65_cpts *cpts = dev_id; 398 399 if (am65_cpts_fifo_read(cpts)) 400 dev_dbg(cpts->dev, "cpts: unable to obtain a time stamp\n"); 401 402 return IRQ_HANDLED; 403 } 404 405 /* PTP clock operations */ 406 static int am65_cpts_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 407 { 408 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 409 u32 estf_ctrl_val = 0, estf_ppm_hi = 0, estf_ppm_low = 0; 410 s32 ppb = scaled_ppm_to_ppb(scaled_ppm); 411 int pps_index = cpts->pps_genf_idx; 412 u64 adj_period, pps_adj_period; 413 u32 ctrl_val, ppm_hi, ppm_low; 414 unsigned long flags; 415 int neg_adj = 0, i; 416 417 if (ppb < 0) { 418 neg_adj = 1; 419 ppb = -ppb; 420 } 421 422 /* base freq = 1GHz = 1 000 000 000 423 * ppb_norm = ppb * base_freq / clock_freq; 424 * ppm_norm = ppb_norm / 1000 425 * adj_period = 1 000 000 / ppm_norm 426 * adj_period = 1 000 000 000 / ppb_norm 427 * adj_period = 1 000 000 000 / (ppb * base_freq / clock_freq) 428 * adj_period = (1 000 000 000 * clock_freq) / (ppb * base_freq) 429 * adj_period = clock_freq / ppb 430 */ 431 adj_period = div_u64(cpts->refclk_freq, ppb); 432 433 mutex_lock(&cpts->ptp_clk_lock); 434 435 ctrl_val = am65_cpts_read32(cpts, control); 436 if (neg_adj) 437 ctrl_val |= AM65_CPTS_CONTROL_TS_PPM_DIR; 438 else 439 ctrl_val &= ~AM65_CPTS_CONTROL_TS_PPM_DIR; 440 441 ppm_hi = upper_32_bits(adj_period) & 0x3FF; 442 ppm_low = lower_32_bits(adj_period); 443 444 if (cpts->pps_enabled) { 445 estf_ctrl_val = am65_cpts_read32(cpts, genf[pps_index].control); 446 if (neg_adj) 447 estf_ctrl_val &= ~BIT(1); 448 else 449 estf_ctrl_val |= BIT(1); 450 451 /* GenF PPM will do correction using cpts refclk tick which is 452 * (cpts->ts_add_val + 1) ns, so GenF length PPM adj period 453 * need to be corrected. 454 */ 455 pps_adj_period = adj_period * (cpts->ts_add_val + 1); 456 estf_ppm_hi = upper_32_bits(pps_adj_period) & 0x3FF; 457 estf_ppm_low = lower_32_bits(pps_adj_period); 458 } 459 460 spin_lock_irqsave(&cpts->lock, flags); 461 462 /* All below writes must be done extremely fast: 463 * - delay between PPM dir and PPM value changes can cause err due old 464 * PPM correction applied in wrong direction 465 * - delay between CPTS-clock PPM cfg and GenF PPM cfg can cause err 466 * due CPTS-clock PPM working with new cfg while GenF PPM cfg still 467 * with old for short period of time 468 */ 469 470 am65_cpts_write32(cpts, ctrl_val, control); 471 am65_cpts_write32(cpts, ppm_hi, ts_ppm_hi); 472 am65_cpts_write32(cpts, ppm_low, ts_ppm_low); 473 474 if (cpts->pps_enabled) { 475 am65_cpts_write32(cpts, estf_ctrl_val, genf[pps_index].control); 476 am65_cpts_write32(cpts, estf_ppm_hi, genf[pps_index].ppm_hi); 477 am65_cpts_write32(cpts, estf_ppm_low, genf[pps_index].ppm_low); 478 } 479 480 for (i = 0; i < AM65_CPTS_ESTF_MAX_NUM; i++) { 481 if (cpts->estf_enable & BIT(i)) { 482 am65_cpts_write32(cpts, estf_ctrl_val, estf[i].control); 483 am65_cpts_write32(cpts, estf_ppm_hi, estf[i].ppm_hi); 484 am65_cpts_write32(cpts, estf_ppm_low, estf[i].ppm_low); 485 } 486 } 487 /* All GenF/EstF can be updated here the same way */ 488 spin_unlock_irqrestore(&cpts->lock, flags); 489 490 mutex_unlock(&cpts->ptp_clk_lock); 491 492 return 0; 493 } 494 495 static int am65_cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 496 { 497 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 498 s64 ns; 499 500 mutex_lock(&cpts->ptp_clk_lock); 501 ns = am65_cpts_gettime(cpts, NULL); 502 ns += delta; 503 am65_cpts_settime(cpts, ns); 504 mutex_unlock(&cpts->ptp_clk_lock); 505 506 return 0; 507 } 508 509 static int am65_cpts_ptp_gettimex(struct ptp_clock_info *ptp, 510 struct timespec64 *ts, 511 struct ptp_system_timestamp *sts) 512 { 513 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 514 u64 ns; 515 516 mutex_lock(&cpts->ptp_clk_lock); 517 ns = am65_cpts_gettime(cpts, sts); 518 mutex_unlock(&cpts->ptp_clk_lock); 519 *ts = ns_to_timespec64(ns); 520 521 return 0; 522 } 523 524 u64 am65_cpts_ns_gettime(struct am65_cpts *cpts) 525 { 526 u64 ns; 527 528 /* reuse ptp_clk_lock as it serialize ts push */ 529 mutex_lock(&cpts->ptp_clk_lock); 530 ns = am65_cpts_gettime(cpts, NULL); 531 mutex_unlock(&cpts->ptp_clk_lock); 532 533 return ns; 534 } 535 EXPORT_SYMBOL_GPL(am65_cpts_ns_gettime); 536 537 static int am65_cpts_ptp_settime(struct ptp_clock_info *ptp, 538 const struct timespec64 *ts) 539 { 540 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 541 u64 ns; 542 543 ns = timespec64_to_ns(ts); 544 mutex_lock(&cpts->ptp_clk_lock); 545 am65_cpts_settime(cpts, ns); 546 mutex_unlock(&cpts->ptp_clk_lock); 547 548 return 0; 549 } 550 551 static void am65_cpts_extts_enable_hw(struct am65_cpts *cpts, u32 index, int on) 552 { 553 u32 v; 554 555 v = am65_cpts_read32(cpts, control); 556 if (on) { 557 v |= BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index); 558 cpts->hw_ts_enable |= BIT(index); 559 } else { 560 v &= ~BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index); 561 cpts->hw_ts_enable &= ~BIT(index); 562 } 563 am65_cpts_write32(cpts, v, control); 564 } 565 566 static int am65_cpts_extts_enable(struct am65_cpts *cpts, u32 index, int on) 567 { 568 if (index >= cpts->ptp_info.n_ext_ts) 569 return -ENXIO; 570 571 if (cpts->pps_present && index == cpts->pps_hw_ts_idx) 572 return -EINVAL; 573 574 if (((cpts->hw_ts_enable & BIT(index)) >> index) == on) 575 return 0; 576 577 mutex_lock(&cpts->ptp_clk_lock); 578 am65_cpts_extts_enable_hw(cpts, index, on); 579 mutex_unlock(&cpts->ptp_clk_lock); 580 581 dev_dbg(cpts->dev, "%s: ExtTS:%u %s\n", 582 __func__, index, on ? "enabled" : "disabled"); 583 584 return 0; 585 } 586 587 int am65_cpts_estf_enable(struct am65_cpts *cpts, int idx, 588 struct am65_cpts_estf_cfg *cfg) 589 { 590 u64 cycles; 591 u32 val; 592 593 cycles = cfg->ns_period * cpts->refclk_freq; 594 cycles = DIV_ROUND_UP(cycles, NSEC_PER_SEC); 595 if (cycles > U32_MAX) 596 return -EINVAL; 597 598 /* according to TRM should be zeroed */ 599 am65_cpts_write32(cpts, 0, estf[idx].length); 600 601 val = upper_32_bits(cfg->ns_start); 602 am65_cpts_write32(cpts, val, estf[idx].comp_hi); 603 val = lower_32_bits(cfg->ns_start); 604 am65_cpts_write32(cpts, val, estf[idx].comp_lo); 605 val = lower_32_bits(cycles); 606 am65_cpts_write32(cpts, val, estf[idx].length); 607 am65_cpts_write32(cpts, 0, estf[idx].control); 608 am65_cpts_write32(cpts, 0, estf[idx].ppm_hi); 609 am65_cpts_write32(cpts, 0, estf[idx].ppm_low); 610 611 cpts->estf_enable |= BIT(idx); 612 613 dev_dbg(cpts->dev, "%s: ESTF:%u enabled\n", __func__, idx); 614 615 return 0; 616 } 617 EXPORT_SYMBOL_GPL(am65_cpts_estf_enable); 618 619 void am65_cpts_estf_disable(struct am65_cpts *cpts, int idx) 620 { 621 am65_cpts_write32(cpts, 0, estf[idx].length); 622 cpts->estf_enable &= ~BIT(idx); 623 624 dev_dbg(cpts->dev, "%s: ESTF:%u disabled\n", __func__, idx); 625 } 626 EXPORT_SYMBOL_GPL(am65_cpts_estf_disable); 627 628 static void am65_cpts_perout_enable_hw(struct am65_cpts *cpts, 629 struct ptp_perout_request *req, int on) 630 { 631 u64 ns_period, ns_start, cycles; 632 struct timespec64 ts; 633 u32 val; 634 635 if (on) { 636 ts.tv_sec = req->period.sec; 637 ts.tv_nsec = req->period.nsec; 638 ns_period = timespec64_to_ns(&ts); 639 640 cycles = (ns_period * cpts->refclk_freq) / NSEC_PER_SEC; 641 642 ts.tv_sec = req->start.sec; 643 ts.tv_nsec = req->start.nsec; 644 ns_start = timespec64_to_ns(&ts); 645 646 val = upper_32_bits(ns_start); 647 am65_cpts_write32(cpts, val, genf[req->index].comp_hi); 648 val = lower_32_bits(ns_start); 649 am65_cpts_write32(cpts, val, genf[req->index].comp_lo); 650 val = lower_32_bits(cycles); 651 am65_cpts_write32(cpts, val, genf[req->index].length); 652 653 am65_cpts_write32(cpts, 0, genf[req->index].control); 654 am65_cpts_write32(cpts, 0, genf[req->index].ppm_hi); 655 am65_cpts_write32(cpts, 0, genf[req->index].ppm_low); 656 657 cpts->genf_enable |= BIT(req->index); 658 } else { 659 am65_cpts_write32(cpts, 0, genf[req->index].length); 660 661 cpts->genf_enable &= ~BIT(req->index); 662 } 663 } 664 665 static int am65_cpts_perout_enable(struct am65_cpts *cpts, 666 struct ptp_perout_request *req, int on) 667 { 668 if (req->index >= cpts->ptp_info.n_per_out) 669 return -ENXIO; 670 671 if (cpts->pps_present && req->index == cpts->pps_genf_idx) 672 return -EINVAL; 673 674 if (!!(cpts->genf_enable & BIT(req->index)) == !!on) 675 return 0; 676 677 mutex_lock(&cpts->ptp_clk_lock); 678 am65_cpts_perout_enable_hw(cpts, req, on); 679 mutex_unlock(&cpts->ptp_clk_lock); 680 681 dev_dbg(cpts->dev, "%s: GenF:%u %s\n", 682 __func__, req->index, on ? "enabled" : "disabled"); 683 684 return 0; 685 } 686 687 static int am65_cpts_pps_enable(struct am65_cpts *cpts, int on) 688 { 689 int ret = 0; 690 struct timespec64 ts; 691 struct ptp_clock_request rq; 692 u64 ns; 693 694 if (!cpts->pps_present) 695 return -EINVAL; 696 697 if (cpts->pps_enabled == !!on) 698 return 0; 699 700 mutex_lock(&cpts->ptp_clk_lock); 701 702 if (on) { 703 am65_cpts_extts_enable_hw(cpts, cpts->pps_hw_ts_idx, on); 704 705 ns = am65_cpts_gettime(cpts, NULL); 706 ts = ns_to_timespec64(ns); 707 rq.perout.period.sec = 1; 708 rq.perout.period.nsec = 0; 709 rq.perout.start.sec = ts.tv_sec + 2; 710 rq.perout.start.nsec = 0; 711 rq.perout.index = cpts->pps_genf_idx; 712 713 am65_cpts_perout_enable_hw(cpts, &rq.perout, on); 714 cpts->pps_enabled = true; 715 } else { 716 rq.perout.index = cpts->pps_genf_idx; 717 am65_cpts_perout_enable_hw(cpts, &rq.perout, on); 718 am65_cpts_extts_enable_hw(cpts, cpts->pps_hw_ts_idx, on); 719 cpts->pps_enabled = false; 720 } 721 722 mutex_unlock(&cpts->ptp_clk_lock); 723 724 dev_dbg(cpts->dev, "%s: pps: %s\n", 725 __func__, on ? "enabled" : "disabled"); 726 return ret; 727 } 728 729 static int am65_cpts_ptp_enable(struct ptp_clock_info *ptp, 730 struct ptp_clock_request *rq, int on) 731 { 732 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 733 734 switch (rq->type) { 735 case PTP_CLK_REQ_EXTTS: 736 return am65_cpts_extts_enable(cpts, rq->extts.index, on); 737 case PTP_CLK_REQ_PEROUT: 738 return am65_cpts_perout_enable(cpts, &rq->perout, on); 739 case PTP_CLK_REQ_PPS: 740 return am65_cpts_pps_enable(cpts, on); 741 default: 742 break; 743 } 744 745 return -EOPNOTSUPP; 746 } 747 748 static long am65_cpts_ts_work(struct ptp_clock_info *ptp); 749 750 static struct ptp_clock_info am65_ptp_info = { 751 .owner = THIS_MODULE, 752 .name = "CTPS timer", 753 .adjfine = am65_cpts_ptp_adjfine, 754 .adjtime = am65_cpts_ptp_adjtime, 755 .gettimex64 = am65_cpts_ptp_gettimex, 756 .settime64 = am65_cpts_ptp_settime, 757 .enable = am65_cpts_ptp_enable, 758 .do_aux_work = am65_cpts_ts_work, 759 }; 760 761 static bool am65_cpts_match_tx_ts(struct am65_cpts *cpts, 762 struct am65_cpts_event *event) 763 { 764 struct sk_buff_head txq_list; 765 struct sk_buff *skb, *tmp; 766 unsigned long flags; 767 bool found = false; 768 u32 mtype_seqid; 769 770 mtype_seqid = event->event1 & 771 (AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK | 772 AM65_CPTS_EVENT_1_EVENT_TYPE_MASK | 773 AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK); 774 775 __skb_queue_head_init(&txq_list); 776 777 spin_lock_irqsave(&cpts->txq.lock, flags); 778 skb_queue_splice_init(&cpts->txq, &txq_list); 779 spin_unlock_irqrestore(&cpts->txq.lock, flags); 780 781 /* no need to grab txq.lock as access is always done under cpts->lock */ 782 skb_queue_walk_safe(&txq_list, skb, tmp) { 783 struct skb_shared_hwtstamps ssh; 784 struct am65_cpts_skb_cb_data *skb_cb = 785 (struct am65_cpts_skb_cb_data *)skb->cb; 786 787 if ((ptp_classify_raw(skb) & PTP_CLASS_V1) && 788 ((mtype_seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK) == 789 (skb_cb->skb_mtype_seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK))) 790 mtype_seqid = skb_cb->skb_mtype_seqid; 791 792 if (mtype_seqid == skb_cb->skb_mtype_seqid) { 793 u64 ns = event->timestamp; 794 795 memset(&ssh, 0, sizeof(ssh)); 796 ssh.hwtstamp = ns_to_ktime(ns); 797 skb_tstamp_tx(skb, &ssh); 798 found = true; 799 __skb_unlink(skb, &txq_list); 800 dev_consume_skb_any(skb); 801 dev_dbg(cpts->dev, 802 "match tx timestamp mtype_seqid %08x\n", 803 mtype_seqid); 804 break; 805 } 806 807 if (time_after(jiffies, skb_cb->tmo)) { 808 /* timeout any expired skbs over 100 ms */ 809 dev_dbg(cpts->dev, 810 "expiring tx timestamp mtype_seqid %08x\n", 811 mtype_seqid); 812 __skb_unlink(skb, &txq_list); 813 dev_consume_skb_any(skb); 814 } 815 } 816 817 spin_lock_irqsave(&cpts->txq.lock, flags); 818 skb_queue_splice(&txq_list, &cpts->txq); 819 spin_unlock_irqrestore(&cpts->txq.lock, flags); 820 821 return found; 822 } 823 824 static void am65_cpts_find_ts(struct am65_cpts *cpts) 825 { 826 struct am65_cpts_event *event; 827 struct list_head *this, *next; 828 LIST_HEAD(events_free); 829 unsigned long flags; 830 LIST_HEAD(events); 831 832 spin_lock_irqsave(&cpts->lock, flags); 833 list_splice_init(&cpts->events, &events); 834 spin_unlock_irqrestore(&cpts->lock, flags); 835 836 list_for_each_safe(this, next, &events) { 837 event = list_entry(this, struct am65_cpts_event, list); 838 if (am65_cpts_match_tx_ts(cpts, event) || 839 time_after(jiffies, event->tmo)) { 840 list_del_init(&event->list); 841 list_add(&event->list, &events_free); 842 } 843 } 844 845 spin_lock_irqsave(&cpts->lock, flags); 846 list_splice_tail(&events, &cpts->events); 847 list_splice_tail(&events_free, &cpts->pool); 848 spin_unlock_irqrestore(&cpts->lock, flags); 849 } 850 851 static long am65_cpts_ts_work(struct ptp_clock_info *ptp) 852 { 853 struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); 854 unsigned long flags; 855 long delay = -1; 856 857 am65_cpts_find_ts(cpts); 858 859 spin_lock_irqsave(&cpts->txq.lock, flags); 860 if (!skb_queue_empty(&cpts->txq)) 861 delay = AM65_CPTS_SKB_TX_WORK_TIMEOUT; 862 spin_unlock_irqrestore(&cpts->txq.lock, flags); 863 864 return delay; 865 } 866 867 /** 868 * am65_cpts_rx_enable - enable rx timestamping 869 * @cpts: cpts handle 870 * @en: enable 871 * 872 * This functions enables rx packets timestamping. The CPTS can timestamp all 873 * rx packets. 874 */ 875 void am65_cpts_rx_enable(struct am65_cpts *cpts, bool en) 876 { 877 u32 val; 878 879 mutex_lock(&cpts->ptp_clk_lock); 880 val = am65_cpts_read32(cpts, control); 881 if (en) 882 val |= AM65_CPTS_CONTROL_TSTAMP_EN; 883 else 884 val &= ~AM65_CPTS_CONTROL_TSTAMP_EN; 885 am65_cpts_write32(cpts, val, control); 886 mutex_unlock(&cpts->ptp_clk_lock); 887 } 888 EXPORT_SYMBOL_GPL(am65_cpts_rx_enable); 889 890 static int am65_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid) 891 { 892 unsigned int ptp_class = ptp_classify_raw(skb); 893 struct ptp_header *hdr; 894 u8 msgtype; 895 u16 seqid; 896 897 if (ptp_class == PTP_CLASS_NONE) 898 return 0; 899 900 hdr = ptp_parse_header(skb, ptp_class); 901 if (!hdr) 902 return 0; 903 904 msgtype = ptp_get_msgtype(hdr, ptp_class); 905 seqid = ntohs(hdr->sequence_id); 906 907 *mtype_seqid = (msgtype << AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT) & 908 AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK; 909 *mtype_seqid |= (seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK); 910 911 return 1; 912 } 913 914 /** 915 * am65_cpts_tx_timestamp - save tx packet for timestamping 916 * @cpts: cpts handle 917 * @skb: packet 918 * 919 * This functions saves tx packet for timestamping if packet can be timestamped. 920 * The future processing is done in from PTP auxiliary worker. 921 */ 922 void am65_cpts_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb) 923 { 924 struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb; 925 926 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 927 return; 928 929 /* add frame to queue for processing later. 930 * The periodic FIFO check will handle this. 931 */ 932 skb_get(skb); 933 /* get the timestamp for timeouts */ 934 skb_cb->tmo = jiffies + msecs_to_jiffies(100); 935 skb_queue_tail(&cpts->txq, skb); 936 ptp_schedule_worker(cpts->ptp_clock, 0); 937 } 938 EXPORT_SYMBOL_GPL(am65_cpts_tx_timestamp); 939 940 /** 941 * am65_cpts_prep_tx_timestamp - check and prepare tx packet for timestamping 942 * @cpts: cpts handle 943 * @skb: packet 944 * 945 * This functions should be called from .xmit(). 946 * It checks if packet can be timestamped, fills internal cpts data 947 * in skb-cb and marks packet as SKBTX_IN_PROGRESS. 948 */ 949 void am65_cpts_prep_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb) 950 { 951 struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb; 952 int ret; 953 954 if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 955 return; 956 957 ret = am65_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid); 958 if (!ret) 959 return; 960 skb_cb->skb_mtype_seqid |= (AM65_CPTS_EV_TX << 961 AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT); 962 963 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 964 } 965 EXPORT_SYMBOL_GPL(am65_cpts_prep_tx_timestamp); 966 967 int am65_cpts_phc_index(struct am65_cpts *cpts) 968 { 969 return cpts->phc_index; 970 } 971 EXPORT_SYMBOL_GPL(am65_cpts_phc_index); 972 973 static void cpts_free_clk_mux(void *data) 974 { 975 struct am65_cpts *cpts = data; 976 977 of_clk_del_provider(cpts->clk_mux_np); 978 clk_hw_unregister_mux(cpts->clk_mux_hw); 979 of_node_put(cpts->clk_mux_np); 980 } 981 982 static int cpts_of_mux_clk_setup(struct am65_cpts *cpts, 983 struct device_node *node) 984 { 985 unsigned int num_parents; 986 const char **parent_names; 987 char *clk_mux_name; 988 void __iomem *reg; 989 int ret = -EINVAL; 990 991 cpts->clk_mux_np = of_get_child_by_name(node, "refclk-mux"); 992 if (!cpts->clk_mux_np) 993 return 0; 994 995 num_parents = of_clk_get_parent_count(cpts->clk_mux_np); 996 if (num_parents < 1) { 997 dev_err(cpts->dev, "mux-clock %pOF must have parents\n", 998 cpts->clk_mux_np); 999 goto mux_fail; 1000 } 1001 1002 parent_names = devm_kcalloc(cpts->dev, sizeof(char *), num_parents, 1003 GFP_KERNEL); 1004 if (!parent_names) { 1005 ret = -ENOMEM; 1006 goto mux_fail; 1007 } 1008 1009 of_clk_parent_fill(cpts->clk_mux_np, parent_names, num_parents); 1010 1011 clk_mux_name = devm_kasprintf(cpts->dev, GFP_KERNEL, "%s.%pOFn", 1012 dev_name(cpts->dev), cpts->clk_mux_np); 1013 if (!clk_mux_name) { 1014 ret = -ENOMEM; 1015 goto mux_fail; 1016 } 1017 1018 reg = &cpts->reg->rftclk_sel; 1019 /* dev must be NULL to avoid recursive incrementing 1020 * of module refcnt 1021 */ 1022 cpts->clk_mux_hw = clk_hw_register_mux(NULL, clk_mux_name, 1023 parent_names, num_parents, 1024 0, reg, 0, 5, 0, NULL); 1025 if (IS_ERR(cpts->clk_mux_hw)) { 1026 ret = PTR_ERR(cpts->clk_mux_hw); 1027 goto mux_fail; 1028 } 1029 1030 ret = of_clk_add_hw_provider(cpts->clk_mux_np, of_clk_hw_simple_get, 1031 cpts->clk_mux_hw); 1032 if (ret) 1033 goto clk_hw_register; 1034 1035 ret = devm_add_action_or_reset(cpts->dev, cpts_free_clk_mux, cpts); 1036 if (ret) 1037 dev_err(cpts->dev, "failed to add clkmux reset action %d", ret); 1038 1039 return ret; 1040 1041 clk_hw_register: 1042 clk_hw_unregister_mux(cpts->clk_mux_hw); 1043 mux_fail: 1044 of_node_put(cpts->clk_mux_np); 1045 return ret; 1046 } 1047 1048 static int am65_cpts_of_parse(struct am65_cpts *cpts, struct device_node *node) 1049 { 1050 u32 prop[2]; 1051 1052 if (!of_property_read_u32(node, "ti,cpts-ext-ts-inputs", &prop[0])) 1053 cpts->ext_ts_inputs = prop[0]; 1054 1055 if (!of_property_read_u32(node, "ti,cpts-periodic-outputs", &prop[0])) 1056 cpts->genf_num = prop[0]; 1057 1058 if (!of_property_read_u32_array(node, "ti,pps", prop, 2)) { 1059 cpts->pps_present = true; 1060 1061 if (prop[0] > 7) { 1062 dev_err(cpts->dev, "invalid HWx_TS_PUSH index: %u provided\n", prop[0]); 1063 cpts->pps_present = false; 1064 } 1065 if (prop[1] > 1) { 1066 dev_err(cpts->dev, "invalid GENFy index: %u provided\n", prop[1]); 1067 cpts->pps_present = false; 1068 } 1069 if (cpts->pps_present) { 1070 cpts->pps_hw_ts_idx = prop[0]; 1071 cpts->pps_genf_idx = prop[1]; 1072 } 1073 } 1074 1075 return cpts_of_mux_clk_setup(cpts, node); 1076 } 1077 1078 void am65_cpts_release(struct am65_cpts *cpts) 1079 { 1080 ptp_clock_unregister(cpts->ptp_clock); 1081 am65_cpts_disable(cpts); 1082 clk_disable_unprepare(cpts->refclk); 1083 } 1084 EXPORT_SYMBOL_GPL(am65_cpts_release); 1085 1086 struct am65_cpts *am65_cpts_create(struct device *dev, void __iomem *regs, 1087 struct device_node *node) 1088 { 1089 struct am65_cpts *cpts; 1090 int ret, i; 1091 1092 cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL); 1093 if (!cpts) 1094 return ERR_PTR(-ENOMEM); 1095 1096 cpts->dev = dev; 1097 cpts->reg = (struct am65_cpts_regs __iomem *)regs; 1098 1099 cpts->irq = of_irq_get_byname(node, "cpts"); 1100 if (cpts->irq <= 0) { 1101 ret = cpts->irq ?: -ENXIO; 1102 dev_err_probe(dev, ret, "Failed to get IRQ number\n"); 1103 return ERR_PTR(ret); 1104 } 1105 1106 ret = am65_cpts_of_parse(cpts, node); 1107 if (ret) 1108 return ERR_PTR(ret); 1109 1110 mutex_init(&cpts->ptp_clk_lock); 1111 INIT_LIST_HEAD(&cpts->events); 1112 INIT_LIST_HEAD(&cpts->pool); 1113 spin_lock_init(&cpts->lock); 1114 skb_queue_head_init(&cpts->txq); 1115 1116 for (i = 0; i < AM65_CPTS_MAX_EVENTS; i++) 1117 list_add(&cpts->pool_data[i].list, &cpts->pool); 1118 1119 cpts->refclk = devm_get_clk_from_child(dev, node, "cpts"); 1120 if (IS_ERR(cpts->refclk)) { 1121 ret = PTR_ERR(cpts->refclk); 1122 dev_err_probe(dev, ret, "Failed to get refclk\n"); 1123 return ERR_PTR(ret); 1124 } 1125 1126 ret = clk_prepare_enable(cpts->refclk); 1127 if (ret) { 1128 dev_err(dev, "Failed to enable refclk %d\n", ret); 1129 return ERR_PTR(ret); 1130 } 1131 1132 cpts->refclk_freq = clk_get_rate(cpts->refclk); 1133 1134 am65_ptp_info.max_adj = cpts->refclk_freq / AM65_CPTS_MIN_PPM; 1135 cpts->ptp_info = am65_ptp_info; 1136 1137 if (cpts->ext_ts_inputs) 1138 cpts->ptp_info.n_ext_ts = cpts->ext_ts_inputs; 1139 if (cpts->genf_num) 1140 cpts->ptp_info.n_per_out = cpts->genf_num; 1141 if (cpts->pps_present) 1142 cpts->ptp_info.pps = 1; 1143 1144 am65_cpts_set_add_val(cpts); 1145 1146 am65_cpts_write32(cpts, AM65_CPTS_CONTROL_EN | 1147 AM65_CPTS_CONTROL_64MODE | 1148 AM65_CPTS_CONTROL_TX_GENF_CLR_EN, 1149 control); 1150 am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable); 1151 1152 /* set time to the current system time */ 1153 am65_cpts_settime(cpts, ktime_to_ns(ktime_get_real())); 1154 1155 cpts->ptp_clock = ptp_clock_register(&cpts->ptp_info, cpts->dev); 1156 if (IS_ERR_OR_NULL(cpts->ptp_clock)) { 1157 dev_err(dev, "Failed to register ptp clk %ld\n", 1158 PTR_ERR(cpts->ptp_clock)); 1159 ret = cpts->ptp_clock ? PTR_ERR(cpts->ptp_clock) : -ENODEV; 1160 goto refclk_disable; 1161 } 1162 cpts->phc_index = ptp_clock_index(cpts->ptp_clock); 1163 1164 ret = devm_request_threaded_irq(dev, cpts->irq, NULL, 1165 am65_cpts_interrupt, 1166 IRQF_ONESHOT, dev_name(dev), cpts); 1167 if (ret < 0) { 1168 dev_err(cpts->dev, "error attaching irq %d\n", ret); 1169 goto reset_ptpclk; 1170 } 1171 1172 dev_info(dev, "CPTS ver 0x%08x, freq:%u, add_val:%u pps:%d\n", 1173 am65_cpts_read32(cpts, idver), 1174 cpts->refclk_freq, cpts->ts_add_val, cpts->pps_present); 1175 1176 return cpts; 1177 1178 reset_ptpclk: 1179 am65_cpts_release(cpts); 1180 refclk_disable: 1181 clk_disable_unprepare(cpts->refclk); 1182 return ERR_PTR(ret); 1183 } 1184 EXPORT_SYMBOL_GPL(am65_cpts_create); 1185 1186 void am65_cpts_suspend(struct am65_cpts *cpts) 1187 { 1188 /* save state and disable CPTS */ 1189 cpts->sr_control = am65_cpts_read32(cpts, control); 1190 cpts->sr_int_enable = am65_cpts_read32(cpts, int_enable); 1191 cpts->sr_rftclk_sel = am65_cpts_read32(cpts, rftclk_sel); 1192 cpts->sr_ts_ppm_hi = am65_cpts_read32(cpts, ts_ppm_hi); 1193 cpts->sr_ts_ppm_low = am65_cpts_read32(cpts, ts_ppm_low); 1194 cpts->sr_cpts_ns = am65_cpts_gettime(cpts, NULL); 1195 cpts->sr_ktime_ns = ktime_to_ns(ktime_get_real()); 1196 am65_cpts_disable(cpts); 1197 clk_disable(cpts->refclk); 1198 1199 /* Save GENF state */ 1200 memcpy_fromio(&cpts->sr_genf, &cpts->reg->genf, sizeof(cpts->sr_genf)); 1201 1202 /* Save ESTF state */ 1203 memcpy_fromio(&cpts->sr_estf, &cpts->reg->estf, sizeof(cpts->sr_estf)); 1204 } 1205 EXPORT_SYMBOL_GPL(am65_cpts_suspend); 1206 1207 void am65_cpts_resume(struct am65_cpts *cpts) 1208 { 1209 int i; 1210 s64 ktime_ns; 1211 1212 /* restore state and enable CPTS */ 1213 clk_enable(cpts->refclk); 1214 am65_cpts_write32(cpts, cpts->sr_rftclk_sel, rftclk_sel); 1215 am65_cpts_set_add_val(cpts); 1216 am65_cpts_write32(cpts, cpts->sr_control, control); 1217 am65_cpts_write32(cpts, cpts->sr_int_enable, int_enable); 1218 1219 /* Restore time to saved CPTS time + time in suspend/resume */ 1220 ktime_ns = ktime_to_ns(ktime_get_real()); 1221 ktime_ns -= cpts->sr_ktime_ns; 1222 am65_cpts_settime(cpts, cpts->sr_cpts_ns + ktime_ns); 1223 1224 /* Restore compensation (PPM) */ 1225 am65_cpts_write32(cpts, cpts->sr_ts_ppm_hi, ts_ppm_hi); 1226 am65_cpts_write32(cpts, cpts->sr_ts_ppm_low, ts_ppm_low); 1227 1228 /* Restore GENF state */ 1229 for (i = 0; i < AM65_CPTS_GENF_MAX_NUM; i++) { 1230 am65_cpts_write32(cpts, 0, genf[i].length); /* TRM sequence */ 1231 am65_cpts_write32(cpts, cpts->sr_genf[i].comp_hi, genf[i].comp_hi); 1232 am65_cpts_write32(cpts, cpts->sr_genf[i].comp_lo, genf[i].comp_lo); 1233 am65_cpts_write32(cpts, cpts->sr_genf[i].length, genf[i].length); 1234 am65_cpts_write32(cpts, cpts->sr_genf[i].control, genf[i].control); 1235 am65_cpts_write32(cpts, cpts->sr_genf[i].ppm_hi, genf[i].ppm_hi); 1236 am65_cpts_write32(cpts, cpts->sr_genf[i].ppm_low, genf[i].ppm_low); 1237 } 1238 1239 /* Restore ESTTF state */ 1240 for (i = 0; i < AM65_CPTS_ESTF_MAX_NUM; i++) { 1241 am65_cpts_write32(cpts, 0, estf[i].length); /* TRM sequence */ 1242 am65_cpts_write32(cpts, cpts->sr_estf[i].comp_hi, estf[i].comp_hi); 1243 am65_cpts_write32(cpts, cpts->sr_estf[i].comp_lo, estf[i].comp_lo); 1244 am65_cpts_write32(cpts, cpts->sr_estf[i].length, estf[i].length); 1245 am65_cpts_write32(cpts, cpts->sr_estf[i].control, estf[i].control); 1246 am65_cpts_write32(cpts, cpts->sr_estf[i].ppm_hi, estf[i].ppm_hi); 1247 am65_cpts_write32(cpts, cpts->sr_estf[i].ppm_low, estf[i].ppm_low); 1248 } 1249 } 1250 EXPORT_SYMBOL_GPL(am65_cpts_resume); 1251 1252 static int am65_cpts_probe(struct platform_device *pdev) 1253 { 1254 struct device_node *node = pdev->dev.of_node; 1255 struct device *dev = &pdev->dev; 1256 struct am65_cpts *cpts; 1257 void __iomem *base; 1258 1259 base = devm_platform_ioremap_resource_byname(pdev, "cpts"); 1260 if (IS_ERR(base)) 1261 return PTR_ERR(base); 1262 1263 cpts = am65_cpts_create(dev, base, node); 1264 return PTR_ERR_OR_ZERO(cpts); 1265 } 1266 1267 static const struct of_device_id am65_cpts_of_match[] = { 1268 { .compatible = "ti,am65-cpts", }, 1269 { .compatible = "ti,j721e-cpts", }, 1270 {}, 1271 }; 1272 MODULE_DEVICE_TABLE(of, am65_cpts_of_match); 1273 1274 static struct platform_driver am65_cpts_driver = { 1275 .probe = am65_cpts_probe, 1276 .driver = { 1277 .name = "am65-cpts", 1278 .of_match_table = am65_cpts_of_match, 1279 }, 1280 }; 1281 module_platform_driver(am65_cpts_driver); 1282 1283 MODULE_LICENSE("GPL v2"); 1284 MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>"); 1285 MODULE_DESCRIPTION("TI K3 AM65 CPTS driver"); 1286