xref: /openbmc/linux/drivers/net/ethernet/ti/am65-cpts.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* TI K3 AM65x Common Platform Time Sync
3  *
4  * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
5  *
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/err.h>
11 #include <linux/if_vlan.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/net_tstamp.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/ptp_classify.h>
21 #include <linux/ptp_clock_kernel.h>
22 
23 #include "am65-cpts.h"
24 
25 struct am65_genf_regs {
26 	u32 comp_lo;	/* Comparison Low Value 0:31 */
27 	u32 comp_hi;	/* Comparison High Value 32:63 */
28 	u32 control;	/* control */
29 	u32 length;	/* Length */
30 	u32 ppm_low;	/* PPM Load Low Value 0:31 */
31 	u32 ppm_hi;	/* PPM Load High Value 32:63 */
32 	u32 ts_nudge;	/* Nudge value */
33 } __aligned(32) __packed;
34 
35 #define AM65_CPTS_GENF_MAX_NUM 9
36 #define AM65_CPTS_ESTF_MAX_NUM 8
37 
38 struct am65_cpts_regs {
39 	u32 idver;		/* Identification and version */
40 	u32 control;		/* Time sync control */
41 	u32 rftclk_sel;		/* Reference Clock Select Register */
42 	u32 ts_push;		/* Time stamp event push */
43 	u32 ts_load_val_lo;	/* Time Stamp Load Low Value 0:31 */
44 	u32 ts_load_en;		/* Time stamp load enable */
45 	u32 ts_comp_lo;		/* Time Stamp Comparison Low Value 0:31 */
46 	u32 ts_comp_length;	/* Time Stamp Comparison Length */
47 	u32 intstat_raw;	/* Time sync interrupt status raw */
48 	u32 intstat_masked;	/* Time sync interrupt status masked */
49 	u32 int_enable;		/* Time sync interrupt enable */
50 	u32 ts_comp_nudge;	/* Time Stamp Comparison Nudge Value */
51 	u32 event_pop;		/* Event interrupt pop */
52 	u32 event_0;		/* Event Time Stamp lo 0:31 */
53 	u32 event_1;		/* Event Type Fields */
54 	u32 event_2;		/* Event Type Fields domain */
55 	u32 event_3;		/* Event Time Stamp hi 32:63 */
56 	u32 ts_load_val_hi;	/* Time Stamp Load High Value 32:63 */
57 	u32 ts_comp_hi;		/* Time Stamp Comparison High Value 32:63 */
58 	u32 ts_add_val;		/* Time Stamp Add value */
59 	u32 ts_ppm_low;		/* Time Stamp PPM Load Low Value 0:31 */
60 	u32 ts_ppm_hi;		/* Time Stamp PPM Load High Value 32:63 */
61 	u32 ts_nudge;		/* Time Stamp Nudge value */
62 	u32 reserv[33];
63 	struct am65_genf_regs genf[AM65_CPTS_GENF_MAX_NUM];
64 	struct am65_genf_regs estf[AM65_CPTS_ESTF_MAX_NUM];
65 };
66 
67 /* CONTROL_REG */
68 #define AM65_CPTS_CONTROL_EN			BIT(0)
69 #define AM65_CPTS_CONTROL_INT_TEST		BIT(1)
70 #define AM65_CPTS_CONTROL_TS_COMP_POLARITY	BIT(2)
71 #define AM65_CPTS_CONTROL_TSTAMP_EN		BIT(3)
72 #define AM65_CPTS_CONTROL_SEQUENCE_EN		BIT(4)
73 #define AM65_CPTS_CONTROL_64MODE		BIT(5)
74 #define AM65_CPTS_CONTROL_TS_COMP_TOG		BIT(6)
75 #define AM65_CPTS_CONTROL_TS_PPM_DIR		BIT(7)
76 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_EN	BIT(8)
77 #define AM65_CPTS_CONTROL_HW2_TS_PUSH_EN	BIT(9)
78 #define AM65_CPTS_CONTROL_HW3_TS_PUSH_EN	BIT(10)
79 #define AM65_CPTS_CONTROL_HW4_TS_PUSH_EN	BIT(11)
80 #define AM65_CPTS_CONTROL_HW5_TS_PUSH_EN	BIT(12)
81 #define AM65_CPTS_CONTROL_HW6_TS_PUSH_EN	BIT(13)
82 #define AM65_CPTS_CONTROL_HW7_TS_PUSH_EN	BIT(14)
83 #define AM65_CPTS_CONTROL_HW8_TS_PUSH_EN	BIT(15)
84 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET	(8)
85 
86 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_MASK	(0xF)
87 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_SHIFT	(28)
88 
89 /* RFTCLK_SEL_REG */
90 #define AM65_CPTS_RFTCLK_SEL_MASK		(0x1F)
91 
92 /* TS_PUSH_REG */
93 #define AM65_CPTS_TS_PUSH			BIT(0)
94 
95 /* TS_LOAD_EN_REG */
96 #define AM65_CPTS_TS_LOAD_EN			BIT(0)
97 
98 /* INTSTAT_RAW_REG */
99 #define AM65_CPTS_INTSTAT_RAW_TS_PEND		BIT(0)
100 
101 /* INTSTAT_MASKED_REG */
102 #define AM65_CPTS_INTSTAT_MASKED_TS_PEND	BIT(0)
103 
104 /* INT_ENABLE_REG */
105 #define AM65_CPTS_INT_ENABLE_TS_PEND_EN		BIT(0)
106 
107 /* TS_COMP_NUDGE_REG */
108 #define AM65_CPTS_TS_COMP_NUDGE_MASK		(0xFF)
109 
110 /* EVENT_POP_REG */
111 #define AM65_CPTS_EVENT_POP			BIT(0)
112 
113 /* EVENT_1_REG */
114 #define AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK	GENMASK(15, 0)
115 
116 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK	GENMASK(19, 16)
117 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT	(16)
118 
119 #define AM65_CPTS_EVENT_1_EVENT_TYPE_MASK	GENMASK(23, 20)
120 #define AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT	(20)
121 
122 #define AM65_CPTS_EVENT_1_PORT_NUMBER_MASK	GENMASK(28, 24)
123 #define AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT	(24)
124 
125 /* EVENT_2_REG */
126 #define AM65_CPTS_EVENT_2_REG_DOMAIN_MASK	(0xFF)
127 #define AM65_CPTS_EVENT_2_REG_DOMAIN_SHIFT	(0)
128 
129 enum {
130 	AM65_CPTS_EV_PUSH,	/* Time Stamp Push Event */
131 	AM65_CPTS_EV_ROLL,	/* Time Stamp Rollover Event */
132 	AM65_CPTS_EV_HALF,	/* Time Stamp Half Rollover Event */
133 	AM65_CPTS_EV_HW,		/* Hardware Time Stamp Push Event */
134 	AM65_CPTS_EV_RX,		/* Ethernet Receive Event */
135 	AM65_CPTS_EV_TX,		/* Ethernet Transmit Event */
136 	AM65_CPTS_EV_TS_COMP,	/* Time Stamp Compare Event */
137 	AM65_CPTS_EV_HOST,	/* Host Transmit Event */
138 };
139 
140 struct am65_cpts_event {
141 	struct list_head list;
142 	unsigned long tmo;
143 	u32 event1;
144 	u32 event2;
145 	u64 timestamp;
146 };
147 
148 #define AM65_CPTS_FIFO_DEPTH		(16)
149 #define AM65_CPTS_MAX_EVENTS		(32)
150 #define AM65_CPTS_EVENT_RX_TX_TIMEOUT	(20) /* ms */
151 #define AM65_CPTS_SKB_TX_WORK_TIMEOUT	1 /* jiffies */
152 #define AM65_CPTS_MIN_PPM		0x400
153 
154 struct am65_cpts {
155 	struct device *dev;
156 	struct am65_cpts_regs __iomem *reg;
157 	struct ptp_clock_info ptp_info;
158 	struct ptp_clock *ptp_clock;
159 	int phc_index;
160 	struct clk_hw *clk_mux_hw;
161 	struct device_node *clk_mux_np;
162 	struct clk *refclk;
163 	u32 refclk_freq;
164 	struct list_head events;
165 	struct list_head pool;
166 	struct am65_cpts_event pool_data[AM65_CPTS_MAX_EVENTS];
167 	spinlock_t lock; /* protects events lists*/
168 	u32 ext_ts_inputs;
169 	u32 genf_num;
170 	u32 ts_add_val;
171 	int irq;
172 	struct mutex ptp_clk_lock; /* PHC access sync */
173 	u64 timestamp;
174 	u32 genf_enable;
175 	u32 hw_ts_enable;
176 	struct sk_buff_head txq;
177 };
178 
179 struct am65_cpts_skb_cb_data {
180 	unsigned long tmo;
181 	u32 skb_mtype_seqid;
182 };
183 
184 #define am65_cpts_write32(c, v, r) writel(v, &(c)->reg->r)
185 #define am65_cpts_read32(c, r) readl(&(c)->reg->r)
186 
187 static void am65_cpts_settime(struct am65_cpts *cpts, u64 start_tstamp)
188 {
189 	u32 val;
190 
191 	val = upper_32_bits(start_tstamp);
192 	am65_cpts_write32(cpts, val, ts_load_val_hi);
193 	val = lower_32_bits(start_tstamp);
194 	am65_cpts_write32(cpts, val, ts_load_val_lo);
195 
196 	am65_cpts_write32(cpts, AM65_CPTS_TS_LOAD_EN, ts_load_en);
197 }
198 
199 static void am65_cpts_set_add_val(struct am65_cpts *cpts)
200 {
201 	/* select coefficient according to the rate */
202 	cpts->ts_add_val = (NSEC_PER_SEC / cpts->refclk_freq - 1) & 0x7;
203 
204 	am65_cpts_write32(cpts, cpts->ts_add_val, ts_add_val);
205 }
206 
207 static void am65_cpts_disable(struct am65_cpts *cpts)
208 {
209 	am65_cpts_write32(cpts, 0, control);
210 	am65_cpts_write32(cpts, 0, int_enable);
211 }
212 
213 static int am65_cpts_event_get_port(struct am65_cpts_event *event)
214 {
215 	return (event->event1 & AM65_CPTS_EVENT_1_PORT_NUMBER_MASK) >>
216 		AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT;
217 }
218 
219 static int am65_cpts_event_get_type(struct am65_cpts_event *event)
220 {
221 	return (event->event1 & AM65_CPTS_EVENT_1_EVENT_TYPE_MASK) >>
222 		AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT;
223 }
224 
225 static int am65_cpts_cpts_purge_events(struct am65_cpts *cpts)
226 {
227 	struct list_head *this, *next;
228 	struct am65_cpts_event *event;
229 	int removed = 0;
230 
231 	list_for_each_safe(this, next, &cpts->events) {
232 		event = list_entry(this, struct am65_cpts_event, list);
233 		if (time_after(jiffies, event->tmo)) {
234 			list_del_init(&event->list);
235 			list_add(&event->list, &cpts->pool);
236 			++removed;
237 		}
238 	}
239 
240 	if (removed)
241 		dev_dbg(cpts->dev, "event pool cleaned up %d\n", removed);
242 	return removed ? 0 : -1;
243 }
244 
245 static bool am65_cpts_fifo_pop_event(struct am65_cpts *cpts,
246 				     struct am65_cpts_event *event)
247 {
248 	u32 r = am65_cpts_read32(cpts, intstat_raw);
249 
250 	if (r & AM65_CPTS_INTSTAT_RAW_TS_PEND) {
251 		event->timestamp = am65_cpts_read32(cpts, event_0);
252 		event->event1 = am65_cpts_read32(cpts, event_1);
253 		event->event2 = am65_cpts_read32(cpts, event_2);
254 		event->timestamp |= (u64)am65_cpts_read32(cpts, event_3) << 32;
255 		am65_cpts_write32(cpts, AM65_CPTS_EVENT_POP, event_pop);
256 		return false;
257 	}
258 	return true;
259 }
260 
261 static int am65_cpts_fifo_read(struct am65_cpts *cpts)
262 {
263 	struct ptp_clock_event pevent;
264 	struct am65_cpts_event *event;
265 	bool schedule = false;
266 	int i, type, ret = 0;
267 	unsigned long flags;
268 
269 	spin_lock_irqsave(&cpts->lock, flags);
270 	for (i = 0; i < AM65_CPTS_FIFO_DEPTH; i++) {
271 		event = list_first_entry_or_null(&cpts->pool,
272 						 struct am65_cpts_event, list);
273 
274 		if (!event) {
275 			if (am65_cpts_cpts_purge_events(cpts)) {
276 				dev_err(cpts->dev, "cpts: event pool empty\n");
277 				ret = -1;
278 				goto out;
279 			}
280 			continue;
281 		}
282 
283 		if (am65_cpts_fifo_pop_event(cpts, event))
284 			break;
285 
286 		type = am65_cpts_event_get_type(event);
287 		switch (type) {
288 		case AM65_CPTS_EV_PUSH:
289 			cpts->timestamp = event->timestamp;
290 			dev_dbg(cpts->dev, "AM65_CPTS_EV_PUSH t:%llu\n",
291 				cpts->timestamp);
292 			break;
293 		case AM65_CPTS_EV_RX:
294 		case AM65_CPTS_EV_TX:
295 			event->tmo = jiffies +
296 				msecs_to_jiffies(AM65_CPTS_EVENT_RX_TX_TIMEOUT);
297 
298 			list_del_init(&event->list);
299 			list_add_tail(&event->list, &cpts->events);
300 
301 			dev_dbg(cpts->dev,
302 				"AM65_CPTS_EV_TX e1:%08x e2:%08x t:%lld\n",
303 				event->event1, event->event2,
304 				event->timestamp);
305 			schedule = true;
306 			break;
307 		case AM65_CPTS_EV_HW:
308 			pevent.index = am65_cpts_event_get_port(event) - 1;
309 			pevent.timestamp = event->timestamp;
310 			pevent.type = PTP_CLOCK_EXTTS;
311 			dev_dbg(cpts->dev, "AM65_CPTS_EV_HW p:%d t:%llu\n",
312 				pevent.index, event->timestamp);
313 
314 			ptp_clock_event(cpts->ptp_clock, &pevent);
315 			break;
316 		case AM65_CPTS_EV_HOST:
317 			break;
318 		case AM65_CPTS_EV_ROLL:
319 		case AM65_CPTS_EV_HALF:
320 		case AM65_CPTS_EV_TS_COMP:
321 			dev_dbg(cpts->dev,
322 				"AM65_CPTS_EVT: %d e1:%08x e2:%08x t:%lld\n",
323 				type,
324 				event->event1, event->event2,
325 				event->timestamp);
326 			break;
327 		default:
328 			dev_err(cpts->dev, "cpts: unknown event type\n");
329 			ret = -1;
330 			goto out;
331 		}
332 	}
333 
334 out:
335 	spin_unlock_irqrestore(&cpts->lock, flags);
336 
337 	if (schedule)
338 		ptp_schedule_worker(cpts->ptp_clock, 0);
339 
340 	return ret;
341 }
342 
343 static u64 am65_cpts_gettime(struct am65_cpts *cpts,
344 			     struct ptp_system_timestamp *sts)
345 {
346 	unsigned long flags;
347 	u64 val = 0;
348 
349 	/* temporarily disable cpts interrupt to avoid intentional
350 	 * doubled read. Interrupt can be in-flight - it's Ok.
351 	 */
352 	am65_cpts_write32(cpts, 0, int_enable);
353 
354 	/* use spin_lock_irqsave() here as it has to run very fast */
355 	spin_lock_irqsave(&cpts->lock, flags);
356 	ptp_read_system_prets(sts);
357 	am65_cpts_write32(cpts, AM65_CPTS_TS_PUSH, ts_push);
358 	am65_cpts_read32(cpts, ts_push);
359 	ptp_read_system_postts(sts);
360 	spin_unlock_irqrestore(&cpts->lock, flags);
361 
362 	am65_cpts_fifo_read(cpts);
363 
364 	am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
365 
366 	val = cpts->timestamp;
367 
368 	return val;
369 }
370 
371 static irqreturn_t am65_cpts_interrupt(int irq, void *dev_id)
372 {
373 	struct am65_cpts *cpts = dev_id;
374 
375 	if (am65_cpts_fifo_read(cpts))
376 		dev_dbg(cpts->dev, "cpts: unable to obtain a time stamp\n");
377 
378 	return IRQ_HANDLED;
379 }
380 
381 /* PTP clock operations */
382 static int am65_cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
383 {
384 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
385 	int neg_adj = 0;
386 	u64 adj_period;
387 	u32 val;
388 
389 	if (ppb < 0) {
390 		neg_adj = 1;
391 		ppb = -ppb;
392 	}
393 
394 	/* base freq = 1GHz = 1 000 000 000
395 	 * ppb_norm = ppb * base_freq / clock_freq;
396 	 * ppm_norm = ppb_norm / 1000
397 	 * adj_period = 1 000 000 / ppm_norm
398 	 * adj_period = 1 000 000 000 / ppb_norm
399 	 * adj_period = 1 000 000 000 / (ppb * base_freq / clock_freq)
400 	 * adj_period = (1 000 000 000 * clock_freq) / (ppb * base_freq)
401 	 * adj_period = clock_freq / ppb
402 	 */
403 	adj_period = div_u64(cpts->refclk_freq, ppb);
404 
405 	mutex_lock(&cpts->ptp_clk_lock);
406 
407 	val = am65_cpts_read32(cpts, control);
408 	if (neg_adj)
409 		val |= AM65_CPTS_CONTROL_TS_PPM_DIR;
410 	else
411 		val &= ~AM65_CPTS_CONTROL_TS_PPM_DIR;
412 	am65_cpts_write32(cpts, val, control);
413 
414 	val = upper_32_bits(adj_period) & 0x3FF;
415 	am65_cpts_write32(cpts, val, ts_ppm_hi);
416 	val = lower_32_bits(adj_period);
417 	am65_cpts_write32(cpts, val, ts_ppm_low);
418 
419 	mutex_unlock(&cpts->ptp_clk_lock);
420 
421 	return 0;
422 }
423 
424 static int am65_cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
425 {
426 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
427 	s64 ns;
428 
429 	mutex_lock(&cpts->ptp_clk_lock);
430 	ns = am65_cpts_gettime(cpts, NULL);
431 	ns += delta;
432 	am65_cpts_settime(cpts, ns);
433 	mutex_unlock(&cpts->ptp_clk_lock);
434 
435 	return 0;
436 }
437 
438 static int am65_cpts_ptp_gettimex(struct ptp_clock_info *ptp,
439 				  struct timespec64 *ts,
440 				  struct ptp_system_timestamp *sts)
441 {
442 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
443 	u64 ns;
444 
445 	mutex_lock(&cpts->ptp_clk_lock);
446 	ns = am65_cpts_gettime(cpts, sts);
447 	mutex_unlock(&cpts->ptp_clk_lock);
448 	*ts = ns_to_timespec64(ns);
449 
450 	return 0;
451 }
452 
453 u64 am65_cpts_ns_gettime(struct am65_cpts *cpts)
454 {
455 	u64 ns;
456 
457 	/* reuse ptp_clk_lock as it serialize ts push */
458 	mutex_lock(&cpts->ptp_clk_lock);
459 	ns = am65_cpts_gettime(cpts, NULL);
460 	mutex_unlock(&cpts->ptp_clk_lock);
461 
462 	return ns;
463 }
464 EXPORT_SYMBOL_GPL(am65_cpts_ns_gettime);
465 
466 static int am65_cpts_ptp_settime(struct ptp_clock_info *ptp,
467 				 const struct timespec64 *ts)
468 {
469 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
470 	u64 ns;
471 
472 	ns = timespec64_to_ns(ts);
473 	mutex_lock(&cpts->ptp_clk_lock);
474 	am65_cpts_settime(cpts, ns);
475 	mutex_unlock(&cpts->ptp_clk_lock);
476 
477 	return 0;
478 }
479 
480 static void am65_cpts_extts_enable_hw(struct am65_cpts *cpts, u32 index, int on)
481 {
482 	u32 v;
483 
484 	v = am65_cpts_read32(cpts, control);
485 	if (on) {
486 		v |= BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
487 		cpts->hw_ts_enable |= BIT(index);
488 	} else {
489 		v &= ~BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
490 		cpts->hw_ts_enable &= ~BIT(index);
491 	}
492 	am65_cpts_write32(cpts, v, control);
493 }
494 
495 static int am65_cpts_extts_enable(struct am65_cpts *cpts, u32 index, int on)
496 {
497 	if (!!(cpts->hw_ts_enable & BIT(index)) == !!on)
498 		return 0;
499 
500 	mutex_lock(&cpts->ptp_clk_lock);
501 	am65_cpts_extts_enable_hw(cpts, index, on);
502 	mutex_unlock(&cpts->ptp_clk_lock);
503 
504 	dev_dbg(cpts->dev, "%s: ExtTS:%u %s\n",
505 		__func__, index, on ? "enabled" : "disabled");
506 
507 	return 0;
508 }
509 
510 int am65_cpts_estf_enable(struct am65_cpts *cpts, int idx,
511 			  struct am65_cpts_estf_cfg *cfg)
512 {
513 	u64 cycles;
514 	u32 val;
515 
516 	cycles = cfg->ns_period * cpts->refclk_freq;
517 	cycles = DIV_ROUND_UP(cycles, NSEC_PER_SEC);
518 	if (cycles > U32_MAX)
519 		return -EINVAL;
520 
521 	/* according to TRM should be zeroed */
522 	am65_cpts_write32(cpts, 0, estf[idx].length);
523 
524 	val = upper_32_bits(cfg->ns_start);
525 	am65_cpts_write32(cpts, val, estf[idx].comp_hi);
526 	val = lower_32_bits(cfg->ns_start);
527 	am65_cpts_write32(cpts, val, estf[idx].comp_lo);
528 	val = lower_32_bits(cycles);
529 	am65_cpts_write32(cpts, val, estf[idx].length);
530 
531 	dev_dbg(cpts->dev, "%s: ESTF:%u enabled\n", __func__, idx);
532 
533 	return 0;
534 }
535 EXPORT_SYMBOL_GPL(am65_cpts_estf_enable);
536 
537 void am65_cpts_estf_disable(struct am65_cpts *cpts, int idx)
538 {
539 	am65_cpts_write32(cpts, 0, estf[idx].length);
540 
541 	dev_dbg(cpts->dev, "%s: ESTF:%u disabled\n", __func__, idx);
542 }
543 EXPORT_SYMBOL_GPL(am65_cpts_estf_disable);
544 
545 static void am65_cpts_perout_enable_hw(struct am65_cpts *cpts,
546 				       struct ptp_perout_request *req, int on)
547 {
548 	u64 ns_period, ns_start, cycles;
549 	struct timespec64 ts;
550 	u32 val;
551 
552 	if (on) {
553 		ts.tv_sec = req->period.sec;
554 		ts.tv_nsec = req->period.nsec;
555 		ns_period = timespec64_to_ns(&ts);
556 
557 		cycles = (ns_period * cpts->refclk_freq) / NSEC_PER_SEC;
558 
559 		ts.tv_sec = req->start.sec;
560 		ts.tv_nsec = req->start.nsec;
561 		ns_start = timespec64_to_ns(&ts);
562 
563 		val = upper_32_bits(ns_start);
564 		am65_cpts_write32(cpts, val, genf[req->index].comp_hi);
565 		val = lower_32_bits(ns_start);
566 		am65_cpts_write32(cpts, val, genf[req->index].comp_lo);
567 		val = lower_32_bits(cycles);
568 		am65_cpts_write32(cpts, val, genf[req->index].length);
569 
570 		cpts->genf_enable |= BIT(req->index);
571 	} else {
572 		am65_cpts_write32(cpts, 0, genf[req->index].length);
573 
574 		cpts->genf_enable &= ~BIT(req->index);
575 	}
576 }
577 
578 static int am65_cpts_perout_enable(struct am65_cpts *cpts,
579 				   struct ptp_perout_request *req, int on)
580 {
581 	if (!!(cpts->genf_enable & BIT(req->index)) == !!on)
582 		return 0;
583 
584 	mutex_lock(&cpts->ptp_clk_lock);
585 	am65_cpts_perout_enable_hw(cpts, req, on);
586 	mutex_unlock(&cpts->ptp_clk_lock);
587 
588 	dev_dbg(cpts->dev, "%s: GenF:%u %s\n",
589 		__func__, req->index, on ? "enabled" : "disabled");
590 
591 	return 0;
592 }
593 
594 static int am65_cpts_ptp_enable(struct ptp_clock_info *ptp,
595 				struct ptp_clock_request *rq, int on)
596 {
597 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
598 
599 	switch (rq->type) {
600 	case PTP_CLK_REQ_EXTTS:
601 		return am65_cpts_extts_enable(cpts, rq->extts.index, on);
602 	case PTP_CLK_REQ_PEROUT:
603 		return am65_cpts_perout_enable(cpts, &rq->perout, on);
604 	default:
605 		break;
606 	}
607 
608 	return -EOPNOTSUPP;
609 }
610 
611 static long am65_cpts_ts_work(struct ptp_clock_info *ptp);
612 
613 static struct ptp_clock_info am65_ptp_info = {
614 	.owner		= THIS_MODULE,
615 	.name		= "CTPS timer",
616 	.adjfreq	= am65_cpts_ptp_adjfreq,
617 	.adjtime	= am65_cpts_ptp_adjtime,
618 	.gettimex64	= am65_cpts_ptp_gettimex,
619 	.settime64	= am65_cpts_ptp_settime,
620 	.enable		= am65_cpts_ptp_enable,
621 	.do_aux_work	= am65_cpts_ts_work,
622 };
623 
624 static bool am65_cpts_match_tx_ts(struct am65_cpts *cpts,
625 				  struct am65_cpts_event *event)
626 {
627 	struct sk_buff_head txq_list;
628 	struct sk_buff *skb, *tmp;
629 	unsigned long flags;
630 	bool found = false;
631 	u32 mtype_seqid;
632 
633 	mtype_seqid = event->event1 &
634 		      (AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK |
635 		       AM65_CPTS_EVENT_1_EVENT_TYPE_MASK |
636 		       AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
637 
638 	__skb_queue_head_init(&txq_list);
639 
640 	spin_lock_irqsave(&cpts->txq.lock, flags);
641 	skb_queue_splice_init(&cpts->txq, &txq_list);
642 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
643 
644 	/* no need to grab txq.lock as access is always done under cpts->lock */
645 	skb_queue_walk_safe(&txq_list, skb, tmp) {
646 		struct skb_shared_hwtstamps ssh;
647 		struct am65_cpts_skb_cb_data *skb_cb =
648 					(struct am65_cpts_skb_cb_data *)skb->cb;
649 
650 		if (mtype_seqid == skb_cb->skb_mtype_seqid) {
651 			u64 ns = event->timestamp;
652 
653 			memset(&ssh, 0, sizeof(ssh));
654 			ssh.hwtstamp = ns_to_ktime(ns);
655 			skb_tstamp_tx(skb, &ssh);
656 			found = true;
657 			__skb_unlink(skb, &txq_list);
658 			dev_consume_skb_any(skb);
659 			dev_dbg(cpts->dev,
660 				"match tx timestamp mtype_seqid %08x\n",
661 				mtype_seqid);
662 			break;
663 		}
664 
665 		if (time_after(jiffies, skb_cb->tmo)) {
666 			/* timeout any expired skbs over 100 ms */
667 			dev_dbg(cpts->dev,
668 				"expiring tx timestamp mtype_seqid %08x\n",
669 				mtype_seqid);
670 			__skb_unlink(skb, &txq_list);
671 			dev_consume_skb_any(skb);
672 		}
673 	}
674 
675 	spin_lock_irqsave(&cpts->txq.lock, flags);
676 	skb_queue_splice(&txq_list, &cpts->txq);
677 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
678 
679 	return found;
680 }
681 
682 static void am65_cpts_find_ts(struct am65_cpts *cpts)
683 {
684 	struct am65_cpts_event *event;
685 	struct list_head *this, *next;
686 	LIST_HEAD(events_free);
687 	unsigned long flags;
688 	LIST_HEAD(events);
689 
690 	spin_lock_irqsave(&cpts->lock, flags);
691 	list_splice_init(&cpts->events, &events);
692 	spin_unlock_irqrestore(&cpts->lock, flags);
693 
694 	list_for_each_safe(this, next, &events) {
695 		event = list_entry(this, struct am65_cpts_event, list);
696 		if (am65_cpts_match_tx_ts(cpts, event) ||
697 		    time_after(jiffies, event->tmo)) {
698 			list_del_init(&event->list);
699 			list_add(&event->list, &events_free);
700 		}
701 	}
702 
703 	spin_lock_irqsave(&cpts->lock, flags);
704 	list_splice_tail(&events, &cpts->events);
705 	list_splice_tail(&events_free, &cpts->pool);
706 	spin_unlock_irqrestore(&cpts->lock, flags);
707 }
708 
709 static long am65_cpts_ts_work(struct ptp_clock_info *ptp)
710 {
711 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
712 	unsigned long flags;
713 	long delay = -1;
714 
715 	am65_cpts_find_ts(cpts);
716 
717 	spin_lock_irqsave(&cpts->txq.lock, flags);
718 	if (!skb_queue_empty(&cpts->txq))
719 		delay = AM65_CPTS_SKB_TX_WORK_TIMEOUT;
720 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
721 
722 	return delay;
723 }
724 
725 /**
726  * am65_cpts_rx_enable - enable rx timestamping
727  * @cpts: cpts handle
728  * @skb: packet
729  *
730  * This functions enables rx packets timestamping. The CPTS can timestamp all
731  * rx packets.
732  */
733 void am65_cpts_rx_enable(struct am65_cpts *cpts, bool en)
734 {
735 	u32 val;
736 
737 	mutex_lock(&cpts->ptp_clk_lock);
738 	val = am65_cpts_read32(cpts, control);
739 	if (en)
740 		val |= AM65_CPTS_CONTROL_TSTAMP_EN;
741 	else
742 		val &= ~AM65_CPTS_CONTROL_TSTAMP_EN;
743 	am65_cpts_write32(cpts, val, control);
744 	mutex_unlock(&cpts->ptp_clk_lock);
745 }
746 EXPORT_SYMBOL_GPL(am65_cpts_rx_enable);
747 
748 static int am65_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid)
749 {
750 	unsigned int ptp_class = ptp_classify_raw(skb);
751 	u8 *msgtype, *data = skb->data;
752 	unsigned int offset = 0;
753 	__be16 *seqid;
754 
755 	if (ptp_class == PTP_CLASS_NONE)
756 		return 0;
757 
758 	if (ptp_class & PTP_CLASS_VLAN)
759 		offset += VLAN_HLEN;
760 
761 	switch (ptp_class & PTP_CLASS_PMASK) {
762 	case PTP_CLASS_IPV4:
763 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
764 		break;
765 	case PTP_CLASS_IPV6:
766 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
767 		break;
768 	case PTP_CLASS_L2:
769 		offset += ETH_HLEN;
770 		break;
771 	default:
772 		return 0;
773 	}
774 
775 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
776 		return 0;
777 
778 	if (unlikely(ptp_class & PTP_CLASS_V1))
779 		msgtype = data + offset + OFF_PTP_CONTROL;
780 	else
781 		msgtype = data + offset;
782 
783 	seqid = (__be16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
784 	*mtype_seqid = (*msgtype << AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT) &
785 			AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK;
786 	*mtype_seqid |= (ntohs(*seqid) & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
787 
788 	return 1;
789 }
790 
791 /**
792  * am65_cpts_tx_timestamp - save tx packet for timestamping
793  * @cpts: cpts handle
794  * @skb: packet
795  *
796  * This functions saves tx packet for timestamping if packet can be timestamped.
797  * The future processing is done in from PTP auxiliary worker.
798  */
799 void am65_cpts_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
800 {
801 	struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
802 
803 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
804 		return;
805 
806 	/* add frame to queue for processing later.
807 	 * The periodic FIFO check will handle this.
808 	 */
809 	skb_get(skb);
810 	/* get the timestamp for timeouts */
811 	skb_cb->tmo = jiffies + msecs_to_jiffies(100);
812 	skb_queue_tail(&cpts->txq, skb);
813 	ptp_schedule_worker(cpts->ptp_clock, 0);
814 }
815 EXPORT_SYMBOL_GPL(am65_cpts_tx_timestamp);
816 
817 /**
818  * am65_cpts_prep_tx_timestamp - check and prepare tx packet for timestamping
819  * @cpts: cpts handle
820  * @skb: packet
821  *
822  * This functions should be called from .xmit().
823  * It checks if packet can be timestamped, fills internal cpts data
824  * in skb-cb and marks packet as SKBTX_IN_PROGRESS.
825  */
826 void am65_cpts_prep_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
827 {
828 	struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
829 	int ret;
830 
831 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
832 		return;
833 
834 	ret = am65_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
835 	if (!ret)
836 		return;
837 	skb_cb->skb_mtype_seqid |= (AM65_CPTS_EV_TX <<
838 				   AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT);
839 
840 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
841 }
842 EXPORT_SYMBOL_GPL(am65_cpts_prep_tx_timestamp);
843 
844 int am65_cpts_phc_index(struct am65_cpts *cpts)
845 {
846 	return cpts->phc_index;
847 }
848 EXPORT_SYMBOL_GPL(am65_cpts_phc_index);
849 
850 static void cpts_free_clk_mux(void *data)
851 {
852 	struct am65_cpts *cpts = data;
853 
854 	of_clk_del_provider(cpts->clk_mux_np);
855 	clk_hw_unregister_mux(cpts->clk_mux_hw);
856 	of_node_put(cpts->clk_mux_np);
857 }
858 
859 static int cpts_of_mux_clk_setup(struct am65_cpts *cpts,
860 				 struct device_node *node)
861 {
862 	unsigned int num_parents;
863 	const char **parent_names;
864 	char *clk_mux_name;
865 	void __iomem *reg;
866 	int ret = -EINVAL;
867 
868 	cpts->clk_mux_np = of_get_child_by_name(node, "refclk-mux");
869 	if (!cpts->clk_mux_np)
870 		return 0;
871 
872 	num_parents = of_clk_get_parent_count(cpts->clk_mux_np);
873 	if (num_parents < 1) {
874 		dev_err(cpts->dev, "mux-clock %pOF must have parents\n",
875 			cpts->clk_mux_np);
876 		goto mux_fail;
877 	}
878 
879 	parent_names = devm_kcalloc(cpts->dev, sizeof(char *), num_parents,
880 				    GFP_KERNEL);
881 	if (!parent_names) {
882 		ret = -ENOMEM;
883 		goto mux_fail;
884 	}
885 
886 	of_clk_parent_fill(cpts->clk_mux_np, parent_names, num_parents);
887 
888 	clk_mux_name = devm_kasprintf(cpts->dev, GFP_KERNEL, "%s.%pOFn",
889 				      dev_name(cpts->dev), cpts->clk_mux_np);
890 	if (!clk_mux_name) {
891 		ret = -ENOMEM;
892 		goto mux_fail;
893 	}
894 
895 	reg = &cpts->reg->rftclk_sel;
896 	/* dev must be NULL to avoid recursive incrementing
897 	 * of module refcnt
898 	 */
899 	cpts->clk_mux_hw = clk_hw_register_mux(NULL, clk_mux_name,
900 					       parent_names, num_parents,
901 					       0, reg, 0, 5, 0, NULL);
902 	if (IS_ERR(cpts->clk_mux_hw)) {
903 		ret = PTR_ERR(cpts->clk_mux_hw);
904 		goto mux_fail;
905 	}
906 
907 	ret = of_clk_add_hw_provider(cpts->clk_mux_np, of_clk_hw_simple_get,
908 				     cpts->clk_mux_hw);
909 	if (ret)
910 		goto clk_hw_register;
911 
912 	ret = devm_add_action_or_reset(cpts->dev, cpts_free_clk_mux, cpts);
913 	if (ret)
914 		dev_err(cpts->dev, "failed to add clkmux reset action %d", ret);
915 
916 	return ret;
917 
918 clk_hw_register:
919 	clk_hw_unregister_mux(cpts->clk_mux_hw);
920 mux_fail:
921 	of_node_put(cpts->clk_mux_np);
922 	return ret;
923 }
924 
925 static int am65_cpts_of_parse(struct am65_cpts *cpts, struct device_node *node)
926 {
927 	u32 prop[2];
928 
929 	if (!of_property_read_u32(node, "ti,cpts-ext-ts-inputs", &prop[0]))
930 		cpts->ext_ts_inputs = prop[0];
931 
932 	if (!of_property_read_u32(node, "ti,cpts-periodic-outputs", &prop[0]))
933 		cpts->genf_num = prop[0];
934 
935 	return cpts_of_mux_clk_setup(cpts, node);
936 }
937 
938 static void am65_cpts_release(void *data)
939 {
940 	struct am65_cpts *cpts = data;
941 
942 	ptp_clock_unregister(cpts->ptp_clock);
943 	am65_cpts_disable(cpts);
944 	clk_disable_unprepare(cpts->refclk);
945 }
946 
947 struct am65_cpts *am65_cpts_create(struct device *dev, void __iomem *regs,
948 				   struct device_node *node)
949 {
950 	struct am65_cpts *cpts;
951 	int ret, i;
952 
953 	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
954 	if (!cpts)
955 		return ERR_PTR(-ENOMEM);
956 
957 	cpts->dev = dev;
958 	cpts->reg = (struct am65_cpts_regs __iomem *)regs;
959 
960 	cpts->irq = of_irq_get_byname(node, "cpts");
961 	if (cpts->irq <= 0) {
962 		ret = cpts->irq ?: -ENXIO;
963 		if (ret != -EPROBE_DEFER)
964 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
965 				ret);
966 		return ERR_PTR(ret);
967 	}
968 
969 	ret = am65_cpts_of_parse(cpts, node);
970 	if (ret)
971 		return ERR_PTR(ret);
972 
973 	mutex_init(&cpts->ptp_clk_lock);
974 	INIT_LIST_HEAD(&cpts->events);
975 	INIT_LIST_HEAD(&cpts->pool);
976 	spin_lock_init(&cpts->lock);
977 	skb_queue_head_init(&cpts->txq);
978 
979 	for (i = 0; i < AM65_CPTS_MAX_EVENTS; i++)
980 		list_add(&cpts->pool_data[i].list, &cpts->pool);
981 
982 	cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
983 	if (IS_ERR(cpts->refclk)) {
984 		ret = PTR_ERR(cpts->refclk);
985 		if (ret != -EPROBE_DEFER)
986 			dev_err(dev, "Failed to get refclk %d\n", ret);
987 		return ERR_PTR(ret);
988 	}
989 
990 	ret = clk_prepare_enable(cpts->refclk);
991 	if (ret) {
992 		dev_err(dev, "Failed to enable refclk %d\n", ret);
993 		return ERR_PTR(ret);
994 	}
995 
996 	cpts->refclk_freq = clk_get_rate(cpts->refclk);
997 
998 	am65_ptp_info.max_adj = cpts->refclk_freq / AM65_CPTS_MIN_PPM;
999 	cpts->ptp_info = am65_ptp_info;
1000 
1001 	if (cpts->ext_ts_inputs)
1002 		cpts->ptp_info.n_ext_ts = cpts->ext_ts_inputs;
1003 	if (cpts->genf_num)
1004 		cpts->ptp_info.n_per_out = cpts->genf_num;
1005 
1006 	am65_cpts_set_add_val(cpts);
1007 
1008 	am65_cpts_write32(cpts, AM65_CPTS_CONTROL_EN | AM65_CPTS_CONTROL_64MODE,
1009 			  control);
1010 	am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
1011 
1012 	/* set time to the current system time */
1013 	am65_cpts_settime(cpts, ktime_to_ns(ktime_get_real()));
1014 
1015 	cpts->ptp_clock = ptp_clock_register(&cpts->ptp_info, cpts->dev);
1016 	if (IS_ERR_OR_NULL(cpts->ptp_clock)) {
1017 		dev_err(dev, "Failed to register ptp clk %ld\n",
1018 			PTR_ERR(cpts->ptp_clock));
1019 		if (!cpts->ptp_clock)
1020 			ret = -ENODEV;
1021 		goto refclk_disable;
1022 	}
1023 	cpts->phc_index = ptp_clock_index(cpts->ptp_clock);
1024 
1025 	ret = devm_add_action_or_reset(dev, am65_cpts_release, cpts);
1026 	if (ret) {
1027 		dev_err(dev, "failed to add ptpclk reset action %d", ret);
1028 		return ERR_PTR(ret);
1029 	}
1030 
1031 	ret = devm_request_threaded_irq(dev, cpts->irq, NULL,
1032 					am65_cpts_interrupt,
1033 					IRQF_ONESHOT, dev_name(dev), cpts);
1034 	if (ret < 0) {
1035 		dev_err(cpts->dev, "error attaching irq %d\n", ret);
1036 		return ERR_PTR(ret);
1037 	}
1038 
1039 	dev_info(dev, "CPTS ver 0x%08x, freq:%u, add_val:%u\n",
1040 		 am65_cpts_read32(cpts, idver),
1041 		 cpts->refclk_freq, cpts->ts_add_val);
1042 
1043 	return cpts;
1044 
1045 refclk_disable:
1046 	clk_disable_unprepare(cpts->refclk);
1047 	return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(am65_cpts_create);
1050 
1051 static int am65_cpts_probe(struct platform_device *pdev)
1052 {
1053 	struct device_node *node = pdev->dev.of_node;
1054 	struct device *dev = &pdev->dev;
1055 	struct am65_cpts *cpts;
1056 	struct resource *res;
1057 	void __iomem *base;
1058 
1059 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpts");
1060 	base = devm_ioremap_resource(dev, res);
1061 	if (IS_ERR(base))
1062 		return PTR_ERR(base);
1063 
1064 	cpts = am65_cpts_create(dev, base, node);
1065 	return PTR_ERR_OR_ZERO(cpts);
1066 }
1067 
1068 static const struct of_device_id am65_cpts_of_match[] = {
1069 	{ .compatible = "ti,am65-cpts", },
1070 	{ .compatible = "ti,j721e-cpts", },
1071 	{},
1072 };
1073 MODULE_DEVICE_TABLE(of, am65_cpts_of_match);
1074 
1075 static struct platform_driver am65_cpts_driver = {
1076 	.probe		= am65_cpts_probe,
1077 	.driver		= {
1078 		.name	= "am65-cpts",
1079 		.of_match_table = am65_cpts_of_match,
1080 	},
1081 };
1082 module_platform_driver(am65_cpts_driver);
1083 
1084 MODULE_LICENSE("GPL v2");
1085 MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>");
1086 MODULE_DESCRIPTION("TI K3 AM65 CPTS driver");
1087