1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Tehuti Networks(R) Network Driver 4 * ethtool interface implementation 5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved 6 */ 7 8 /* 9 * RX HW/SW interaction overview 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * There are 2 types of RX communication channels between driver and NIC. 12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming 13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds 14 * info about buffer's location, size and ID. An ID field is used to identify a 15 * buffer when it's returned with data via RXD Fifo (see below) 16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is 17 * filled by HW and is readen by SW. Each descriptor holds status and ID. 18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data, 19 * via dma moves it into host memory, builds new RXD descriptor with same ID, 20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data. 21 * 22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos. 23 * One holds 1.5K packets and another - 26K packets. Depending on incoming 24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is 25 * filled with data, HW builds new RXD descriptor for it and push it into single 26 * RXD Fifo. 27 * 28 * RX SW Data Structures 29 * ~~~~~~~~~~~~~~~~~~~~~ 30 * skb db - used to keep track of all skbs owned by SW and their dma addresses. 31 * For RX case, ownership lasts from allocating new empty skb for RXF until 32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own 33 * skb db. Implemented as array with bitmask. 34 * fifo - keeps info about fifo's size and location, relevant HW registers, 35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 36 * Implemented as simple struct. 37 * 38 * RX SW Execution Flow 39 * ~~~~~~~~~~~~~~~~~~~~ 40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes 41 * relevant registers. At the end of init phase, driver enables interrupts. 42 * NIC sees that there is no RXF buffers and raises 43 * RD_INTR interrupt, isr fills skbs and Rx begins. 44 * Driver has two receive operation modes: 45 * NAPI - interrupt-driven mixed with polling 46 * interrupt-driven only 47 * 48 * Interrupt-driven only flow is following. When buffer is ready, HW raises 49 * interrupt and isr is called. isr collects all available packets 50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit. 51 52 * Rx buffer allocation note 53 * ~~~~~~~~~~~~~~~~~~~~~~~~~ 54 * Driver cares to feed such amount of RxF descriptors that respective amount of 55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of 56 * overflow check in Bordeaux for RxD fifo free/used size. 57 * FIXME: this is NOT fully implemented, more work should be done 58 * 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include "tehuti.h" 64 65 static const struct pci_device_id bdx_pci_tbl[] = { 66 { PCI_VDEVICE(TEHUTI, 0x3009), }, 67 { PCI_VDEVICE(TEHUTI, 0x3010), }, 68 { PCI_VDEVICE(TEHUTI, 0x3014), }, 69 { 0 } 70 }; 71 72 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl); 73 74 /* Definitions needed by ISR or NAPI functions */ 75 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f); 76 static void bdx_tx_cleanup(struct bdx_priv *priv); 77 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget); 78 79 /* Definitions needed by FW loading */ 80 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size); 81 82 /* Definitions needed by hw_start */ 83 static int bdx_tx_init(struct bdx_priv *priv); 84 static int bdx_rx_init(struct bdx_priv *priv); 85 86 /* Definitions needed by bdx_close */ 87 static void bdx_rx_free(struct bdx_priv *priv); 88 static void bdx_tx_free(struct bdx_priv *priv); 89 90 /* Definitions needed by bdx_probe */ 91 static void bdx_set_ethtool_ops(struct net_device *netdev); 92 93 /************************************************************************* 94 * Print Info * 95 *************************************************************************/ 96 97 static void print_hw_id(struct pci_dev *pdev) 98 { 99 struct pci_nic *nic = pci_get_drvdata(pdev); 100 u16 pci_link_status = 0; 101 u16 pci_ctrl = 0; 102 103 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status); 104 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl); 105 106 pr_info("%s%s\n", BDX_NIC_NAME, 107 nic->port_num == 1 ? "" : ", 2-Port"); 108 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n", 109 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF, 110 readl(nic->regs + FPGA_SEED), 111 GET_LINK_STATUS_LANES(pci_link_status), 112 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl)); 113 } 114 115 static void print_fw_id(struct pci_nic *nic) 116 { 117 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER)); 118 } 119 120 static void print_eth_id(struct net_device *ndev) 121 { 122 netdev_info(ndev, "%s, Port %c\n", 123 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B'); 124 125 } 126 127 /************************************************************************* 128 * Code * 129 *************************************************************************/ 130 131 #define bdx_enable_interrupts(priv) \ 132 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0) 133 #define bdx_disable_interrupts(priv) \ 134 do { WRITE_REG(priv, regIMR, 0); } while (0) 135 136 /** 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication. 138 * @priv: NIC private structure 139 * @f: fifo to initialize 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB 141 * @reg_CFG0: offsets of registers relative to base address 142 * @reg_CFG1: offsets of registers relative to base address 143 * @reg_RPTR: offsets of registers relative to base address 144 * @reg_WPTR: offsets of registers relative to base address 145 * 146 * 1K extra space is allocated at the end of the fifo to simplify 147 * processing of descriptors that wraps around fifo's end 148 * 149 * Returns 0 on success, negative value on failure 150 * 151 */ 152 static int 153 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type, 154 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR) 155 { 156 u16 memsz = FIFO_SIZE * (1 << fsz_type); 157 158 memset(f, 0, sizeof(struct fifo)); 159 /* dma_alloc_coherent gives us 4k-aligned memory */ 160 f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE, 161 &f->da, GFP_ATOMIC); 162 if (!f->va) { 163 pr_err("dma_alloc_coherent failed\n"); 164 RET(-ENOMEM); 165 } 166 f->reg_CFG0 = reg_CFG0; 167 f->reg_CFG1 = reg_CFG1; 168 f->reg_RPTR = reg_RPTR; 169 f->reg_WPTR = reg_WPTR; 170 f->rptr = 0; 171 f->wptr = 0; 172 f->memsz = memsz; 173 f->size_mask = memsz - 1; 174 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type)); 175 WRITE_REG(priv, reg_CFG1, H32_64(f->da)); 176 177 RET(0); 178 } 179 180 /** 181 * bdx_fifo_free - free all resources used by fifo 182 * @priv: NIC private structure 183 * @f: fifo to release 184 */ 185 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f) 186 { 187 ENTER; 188 if (f->va) { 189 dma_free_coherent(&priv->pdev->dev, 190 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da); 191 f->va = NULL; 192 } 193 RET(); 194 } 195 196 /** 197 * bdx_link_changed - notifies OS about hw link state. 198 * @priv: hw adapter structure 199 */ 200 static void bdx_link_changed(struct bdx_priv *priv) 201 { 202 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT; 203 204 if (!link) { 205 if (netif_carrier_ok(priv->ndev)) { 206 netif_stop_queue(priv->ndev); 207 netif_carrier_off(priv->ndev); 208 netdev_err(priv->ndev, "Link Down\n"); 209 } 210 } else { 211 if (!netif_carrier_ok(priv->ndev)) { 212 netif_wake_queue(priv->ndev); 213 netif_carrier_on(priv->ndev); 214 netdev_err(priv->ndev, "Link Up\n"); 215 } 216 } 217 } 218 219 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr) 220 { 221 if (isr & IR_RX_FREE_0) { 222 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 223 DBG("RX_FREE_0\n"); 224 } 225 226 if (isr & IR_LNKCHG0) 227 bdx_link_changed(priv); 228 229 if (isr & IR_PCIE_LINK) 230 netdev_err(priv->ndev, "PCI-E Link Fault\n"); 231 232 if (isr & IR_PCIE_TOUT) 233 netdev_err(priv->ndev, "PCI-E Time Out\n"); 234 235 } 236 237 /** 238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC 239 * @irq: interrupt number 240 * @dev: network device 241 * 242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise 243 * 244 * It reads ISR register to know interrupt reasons, and proceed them one by one. 245 * Reasons of interest are: 246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor 247 * RX_FREE - number of free Rx buffers in RXF fifo gets low 248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor 249 */ 250 251 static irqreturn_t bdx_isr_napi(int irq, void *dev) 252 { 253 struct net_device *ndev = dev; 254 struct bdx_priv *priv = netdev_priv(ndev); 255 u32 isr; 256 257 ENTER; 258 isr = (READ_REG(priv, regISR) & IR_RUN); 259 if (unlikely(!isr)) { 260 bdx_enable_interrupts(priv); 261 return IRQ_NONE; /* Not our interrupt */ 262 } 263 264 if (isr & IR_EXTRA) 265 bdx_isr_extra(priv, isr); 266 267 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) { 268 if (likely(napi_schedule_prep(&priv->napi))) { 269 __napi_schedule(&priv->napi); 270 RET(IRQ_HANDLED); 271 } else { 272 /* NOTE: we get here if intr has slipped into window 273 * between these lines in bdx_poll: 274 * bdx_enable_interrupts(priv); 275 * return 0; 276 * currently intrs are disabled (since we read ISR), 277 * and we have failed to register next poll. 278 * so we read the regs to trigger chip 279 * and allow further interupts. */ 280 READ_REG(priv, regTXF_WPTR_0); 281 READ_REG(priv, regRXD_WPTR_0); 282 } 283 } 284 285 bdx_enable_interrupts(priv); 286 RET(IRQ_HANDLED); 287 } 288 289 static int bdx_poll(struct napi_struct *napi, int budget) 290 { 291 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi); 292 int work_done; 293 294 ENTER; 295 bdx_tx_cleanup(priv); 296 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget); 297 if ((work_done < budget) || 298 (priv->napi_stop++ >= 30)) { 299 DBG("rx poll is done. backing to isr-driven\n"); 300 301 /* from time to time we exit to let NAPI layer release 302 * device lock and allow waiting tasks (eg rmmod) to advance) */ 303 priv->napi_stop = 0; 304 305 napi_complete_done(napi, work_done); 306 bdx_enable_interrupts(priv); 307 } 308 return work_done; 309 } 310 311 /** 312 * bdx_fw_load - loads firmware to NIC 313 * @priv: NIC private structure 314 * 315 * Firmware is loaded via TXD fifo, so it must be initialized first. 316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC 317 * can have few of them). So all drivers use semaphore register to choose one 318 * that will actually load FW to NIC. 319 */ 320 321 static int bdx_fw_load(struct bdx_priv *priv) 322 { 323 const struct firmware *fw = NULL; 324 int master, i; 325 int rc; 326 327 ENTER; 328 master = READ_REG(priv, regINIT_SEMAPHORE); 329 if (!READ_REG(priv, regINIT_STATUS) && master) { 330 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev); 331 if (rc) 332 goto out; 333 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size); 334 mdelay(100); 335 } 336 for (i = 0; i < 200; i++) { 337 if (READ_REG(priv, regINIT_STATUS)) { 338 rc = 0; 339 goto out; 340 } 341 mdelay(2); 342 } 343 rc = -EIO; 344 out: 345 if (master) 346 WRITE_REG(priv, regINIT_SEMAPHORE, 1); 347 348 release_firmware(fw); 349 350 if (rc) { 351 netdev_err(priv->ndev, "firmware loading failed\n"); 352 if (rc == -EIO) 353 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n", 354 READ_REG(priv, regVPC), 355 READ_REG(priv, regVIC), 356 READ_REG(priv, regINIT_STATUS), i); 357 RET(rc); 358 } else { 359 DBG("%s: firmware loading success\n", priv->ndev->name); 360 RET(0); 361 } 362 } 363 364 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv) 365 { 366 u32 val; 367 368 ENTER; 369 DBG("mac0=%x mac1=%x mac2=%x\n", 370 READ_REG(priv, regUNC_MAC0_A), 371 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 372 373 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]); 374 WRITE_REG(priv, regUNC_MAC2_A, val); 375 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]); 376 WRITE_REG(priv, regUNC_MAC1_A, val); 377 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]); 378 WRITE_REG(priv, regUNC_MAC0_A, val); 379 380 DBG("mac0=%x mac1=%x mac2=%x\n", 381 READ_REG(priv, regUNC_MAC0_A), 382 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 383 RET(); 384 } 385 386 /** 387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines 388 * @priv: NIC private structure 389 */ 390 static int bdx_hw_start(struct bdx_priv *priv) 391 { 392 int rc = -EIO; 393 struct net_device *ndev = priv->ndev; 394 395 ENTER; 396 bdx_link_changed(priv); 397 398 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */ 399 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0); 400 WRITE_REG(priv, regPAUSE_QUANT, 0x96); 401 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010); 402 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010); 403 WRITE_REG(priv, regRX_FULLNESS, 0); 404 WRITE_REG(priv, regTX_FULLNESS, 0); 405 WRITE_REG(priv, regCTRLST, 406 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA); 407 408 WRITE_REG(priv, regVGLB, 0); 409 WRITE_REG(priv, regMAX_FRAME_A, 410 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL); 411 412 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */ 413 WRITE_REG(priv, regRDINTCM0, priv->rdintcm); 414 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */ 415 416 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */ 417 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */ 418 419 /* Enable timer interrupt once in 2 secs. */ 420 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */ 421 bdx_restore_mac(priv->ndev, priv); 422 423 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN | 424 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB); 425 426 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED) 427 428 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE, 429 ndev->name, ndev); 430 if (rc) 431 goto err_irq; 432 bdx_enable_interrupts(priv); 433 434 RET(0); 435 436 err_irq: 437 RET(rc); 438 } 439 440 static void bdx_hw_stop(struct bdx_priv *priv) 441 { 442 ENTER; 443 bdx_disable_interrupts(priv); 444 free_irq(priv->pdev->irq, priv->ndev); 445 446 netif_carrier_off(priv->ndev); 447 netif_stop_queue(priv->ndev); 448 449 RET(); 450 } 451 452 static int bdx_hw_reset_direct(void __iomem *regs) 453 { 454 u32 val, i; 455 ENTER; 456 457 /* reset sequences: read, write 1, read, write 0 */ 458 val = readl(regs + regCLKPLL); 459 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL); 460 udelay(50); 461 val = readl(regs + regCLKPLL); 462 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL); 463 464 /* check that the PLLs are locked and reset ended */ 465 for (i = 0; i < 70; i++, mdelay(10)) 466 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 467 /* do any PCI-E read transaction */ 468 readl(regs + regRXD_CFG0_0); 469 return 0; 470 } 471 pr_err("HW reset failed\n"); 472 return 1; /* failure */ 473 } 474 475 static int bdx_hw_reset(struct bdx_priv *priv) 476 { 477 u32 val, i; 478 ENTER; 479 480 if (priv->port == 0) { 481 /* reset sequences: read, write 1, read, write 0 */ 482 val = READ_REG(priv, regCLKPLL); 483 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8); 484 udelay(50); 485 val = READ_REG(priv, regCLKPLL); 486 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST); 487 } 488 /* check that the PLLs are locked and reset ended */ 489 for (i = 0; i < 70; i++, mdelay(10)) 490 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 491 /* do any PCI-E read transaction */ 492 READ_REG(priv, regRXD_CFG0_0); 493 return 0; 494 } 495 pr_err("HW reset failed\n"); 496 return 1; /* failure */ 497 } 498 499 static int bdx_sw_reset(struct bdx_priv *priv) 500 { 501 int i; 502 503 ENTER; 504 /* 1. load MAC (obsolete) */ 505 /* 2. disable Rx (and Tx) */ 506 WRITE_REG(priv, regGMAC_RXF_A, 0); 507 mdelay(100); 508 /* 3. disable port */ 509 WRITE_REG(priv, regDIS_PORT, 1); 510 /* 4. disable queue */ 511 WRITE_REG(priv, regDIS_QU, 1); 512 /* 5. wait until hw is disabled */ 513 for (i = 0; i < 50; i++) { 514 if (READ_REG(priv, regRST_PORT) & 1) 515 break; 516 mdelay(10); 517 } 518 if (i == 50) 519 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n"); 520 521 /* 6. disable intrs */ 522 WRITE_REG(priv, regRDINTCM0, 0); 523 WRITE_REG(priv, regTDINTCM0, 0); 524 WRITE_REG(priv, regIMR, 0); 525 READ_REG(priv, regISR); 526 527 /* 7. reset queue */ 528 WRITE_REG(priv, regRST_QU, 1); 529 /* 8. reset port */ 530 WRITE_REG(priv, regRST_PORT, 1); 531 /* 9. zero all read and write pointers */ 532 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 533 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 534 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 535 WRITE_REG(priv, i, 0); 536 /* 10. unseet port disable */ 537 WRITE_REG(priv, regDIS_PORT, 0); 538 /* 11. unset queue disable */ 539 WRITE_REG(priv, regDIS_QU, 0); 540 /* 12. unset queue reset */ 541 WRITE_REG(priv, regRST_QU, 0); 542 /* 13. unset port reset */ 543 WRITE_REG(priv, regRST_PORT, 0); 544 /* 14. enable Rx */ 545 /* skiped. will be done later */ 546 /* 15. save MAC (obsolete) */ 547 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 548 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 549 550 RET(0); 551 } 552 553 /* bdx_reset - performs right type of reset depending on hw type */ 554 static int bdx_reset(struct bdx_priv *priv) 555 { 556 ENTER; 557 RET((priv->pdev->device == 0x3009) 558 ? bdx_hw_reset(priv) 559 : bdx_sw_reset(priv)); 560 } 561 562 /** 563 * bdx_close - Disables a network interface 564 * @ndev: network interface device structure 565 * 566 * Returns 0, this is not allowed to fail 567 * 568 * The close entry point is called when an interface is de-activated 569 * by the OS. The hardware is still under the drivers control, but 570 * needs to be disabled. A global MAC reset is issued to stop the 571 * hardware, and all transmit and receive resources are freed. 572 **/ 573 static int bdx_close(struct net_device *ndev) 574 { 575 struct bdx_priv *priv = NULL; 576 577 ENTER; 578 priv = netdev_priv(ndev); 579 580 napi_disable(&priv->napi); 581 582 bdx_reset(priv); 583 bdx_hw_stop(priv); 584 bdx_rx_free(priv); 585 bdx_tx_free(priv); 586 RET(0); 587 } 588 589 /** 590 * bdx_open - Called when a network interface is made active 591 * @ndev: network interface device structure 592 * 593 * Returns 0 on success, negative value on failure 594 * 595 * The open entry point is called when a network interface is made 596 * active by the system (IFF_UP). At this point all resources needed 597 * for transmit and receive operations are allocated, the interrupt 598 * handler is registered with the OS, the watchdog timer is started, 599 * and the stack is notified that the interface is ready. 600 **/ 601 static int bdx_open(struct net_device *ndev) 602 { 603 struct bdx_priv *priv; 604 int rc; 605 606 ENTER; 607 priv = netdev_priv(ndev); 608 bdx_reset(priv); 609 if (netif_running(ndev)) 610 netif_stop_queue(priv->ndev); 611 612 if ((rc = bdx_tx_init(priv)) || 613 (rc = bdx_rx_init(priv)) || 614 (rc = bdx_fw_load(priv))) 615 goto err; 616 617 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 618 619 rc = bdx_hw_start(priv); 620 if (rc) 621 goto err; 622 623 napi_enable(&priv->napi); 624 625 print_fw_id(priv->nic); 626 627 RET(0); 628 629 err: 630 bdx_close(ndev); 631 RET(rc); 632 } 633 634 static int bdx_range_check(struct bdx_priv *priv, u32 offset) 635 { 636 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ? 637 -EINVAL : 0; 638 } 639 640 static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr, 641 void __user *udata, int cmd) 642 { 643 struct bdx_priv *priv = netdev_priv(ndev); 644 u32 data[3]; 645 int error; 646 647 ENTER; 648 649 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd); 650 if (cmd != SIOCDEVPRIVATE) { 651 error = copy_from_user(data, udata, sizeof(data)); 652 if (error) { 653 pr_err("can't copy from user\n"); 654 RET(-EFAULT); 655 } 656 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]); 657 } else { 658 return -EOPNOTSUPP; 659 } 660 661 if (!capable(CAP_SYS_RAWIO)) 662 return -EPERM; 663 664 switch (data[0]) { 665 666 case BDX_OP_READ: 667 error = bdx_range_check(priv, data[1]); 668 if (error < 0) 669 return error; 670 data[2] = READ_REG(priv, data[1]); 671 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2], 672 data[2]); 673 error = copy_to_user(udata, data, sizeof(data)); 674 if (error) 675 RET(-EFAULT); 676 break; 677 678 case BDX_OP_WRITE: 679 error = bdx_range_check(priv, data[1]); 680 if (error < 0) 681 return error; 682 WRITE_REG(priv, data[1], data[2]); 683 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]); 684 break; 685 686 default: 687 RET(-EOPNOTSUPP); 688 } 689 return 0; 690 } 691 692 /** 693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid 694 * @ndev: network device 695 * @vid: VLAN vid 696 * @enable: enable or disable vlan 697 * 698 * Passes VLAN filter table to hardware 699 */ 700 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable) 701 { 702 struct bdx_priv *priv = netdev_priv(ndev); 703 u32 reg, bit, val; 704 705 ENTER; 706 DBG2("vid=%d value=%d\n", (int)vid, enable); 707 if (unlikely(vid >= 4096)) { 708 pr_err("invalid VID: %u (> 4096)\n", vid); 709 RET(); 710 } 711 reg = regVLAN_0 + (vid / 32) * 4; 712 bit = 1 << vid % 32; 713 val = READ_REG(priv, reg); 714 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit); 715 if (enable) 716 val |= bit; 717 else 718 val &= ~bit; 719 DBG2("new val %x\n", val); 720 WRITE_REG(priv, reg, val); 721 RET(); 722 } 723 724 /** 725 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table 726 * @ndev: network device 727 * @proto: unused 728 * @vid: VLAN vid to add 729 */ 730 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 731 { 732 __bdx_vlan_rx_vid(ndev, vid, 1); 733 return 0; 734 } 735 736 /** 737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table 738 * @ndev: network device 739 * @proto: unused 740 * @vid: VLAN vid to kill 741 */ 742 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 743 { 744 __bdx_vlan_rx_vid(ndev, vid, 0); 745 return 0; 746 } 747 748 /** 749 * bdx_change_mtu - Change the Maximum Transfer Unit 750 * @ndev: network interface device structure 751 * @new_mtu: new value for maximum frame size 752 * 753 * Returns 0 on success, negative on failure 754 */ 755 static int bdx_change_mtu(struct net_device *ndev, int new_mtu) 756 { 757 ENTER; 758 759 ndev->mtu = new_mtu; 760 if (netif_running(ndev)) { 761 bdx_close(ndev); 762 bdx_open(ndev); 763 } 764 RET(0); 765 } 766 767 static void bdx_setmulti(struct net_device *ndev) 768 { 769 struct bdx_priv *priv = netdev_priv(ndev); 770 771 u32 rxf_val = 772 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN; 773 int i; 774 775 ENTER; 776 /* IMF - imperfect (hash) rx multicat filter */ 777 /* PMF - perfect rx multicat filter */ 778 779 /* FIXME: RXE(OFF) */ 780 if (ndev->flags & IFF_PROMISC) { 781 rxf_val |= GMAC_RX_FILTER_PRM; 782 } else if (ndev->flags & IFF_ALLMULTI) { 783 /* set IMF to accept all multicast frmaes */ 784 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 785 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0); 786 } else if (!netdev_mc_empty(ndev)) { 787 u8 hash; 788 struct netdev_hw_addr *ha; 789 u32 reg, val; 790 791 /* set IMF to deny all multicast frames */ 792 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 793 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0); 794 /* set PMF to deny all multicast frames */ 795 for (i = 0; i < MAC_MCST_NUM; i++) { 796 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0); 797 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0); 798 } 799 800 /* use PMF to accept first MAC_MCST_NUM (15) addresses */ 801 /* TBD: sort addresses and write them in ascending order 802 * into RX_MAC_MCST regs. we skip this phase now and accept ALL 803 * multicast frames throu IMF */ 804 /* accept the rest of addresses throu IMF */ 805 netdev_for_each_mc_addr(ha, ndev) { 806 hash = 0; 807 for (i = 0; i < ETH_ALEN; i++) 808 hash ^= ha->addr[i]; 809 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2); 810 val = READ_REG(priv, reg); 811 val |= (1 << (hash % 32)); 812 WRITE_REG(priv, reg, val); 813 } 814 815 } else { 816 DBG("only own mac %d\n", netdev_mc_count(ndev)); 817 rxf_val |= GMAC_RX_FILTER_AB; 818 } 819 WRITE_REG(priv, regGMAC_RXF_A, rxf_val); 820 /* enable RX */ 821 /* FIXME: RXE(ON) */ 822 RET(); 823 } 824 825 static int bdx_set_mac(struct net_device *ndev, void *p) 826 { 827 struct bdx_priv *priv = netdev_priv(ndev); 828 struct sockaddr *addr = p; 829 830 ENTER; 831 /* 832 if (netif_running(dev)) 833 return -EBUSY 834 */ 835 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 836 bdx_restore_mac(ndev, priv); 837 RET(0); 838 } 839 840 static int bdx_read_mac(struct bdx_priv *priv) 841 { 842 u16 macAddress[3], i; 843 ENTER; 844 845 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 846 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 847 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 848 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 849 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 850 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 851 for (i = 0; i < 3; i++) { 852 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i]; 853 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8; 854 } 855 RET(0); 856 } 857 858 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg) 859 { 860 u64 val; 861 862 val = READ_REG(priv, reg); 863 val |= ((u64) READ_REG(priv, reg + 8)) << 32; 864 return val; 865 } 866 867 /*Do the statistics-update work*/ 868 static void bdx_update_stats(struct bdx_priv *priv) 869 { 870 struct bdx_stats *stats = &priv->hw_stats; 871 u64 *stats_vector = (u64 *) stats; 872 int i; 873 int addr; 874 875 /*Fill HW structure */ 876 addr = 0x7200; 877 /*First 12 statistics - 0x7200 - 0x72B0 */ 878 for (i = 0; i < 12; i++) { 879 stats_vector[i] = bdx_read_l2stat(priv, addr); 880 addr += 0x10; 881 } 882 BDX_ASSERT(addr != 0x72C0); 883 /* 0x72C0-0x72E0 RSRV */ 884 addr = 0x72F0; 885 for (; i < 16; i++) { 886 stats_vector[i] = bdx_read_l2stat(priv, addr); 887 addr += 0x10; 888 } 889 BDX_ASSERT(addr != 0x7330); 890 /* 0x7330-0x7360 RSRV */ 891 addr = 0x7370; 892 for (; i < 19; i++) { 893 stats_vector[i] = bdx_read_l2stat(priv, addr); 894 addr += 0x10; 895 } 896 BDX_ASSERT(addr != 0x73A0); 897 /* 0x73A0-0x73B0 RSRV */ 898 addr = 0x73C0; 899 for (; i < 23; i++) { 900 stats_vector[i] = bdx_read_l2stat(priv, addr); 901 addr += 0x10; 902 } 903 BDX_ASSERT(addr != 0x7400); 904 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i); 905 } 906 907 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 908 u16 rxd_vlan); 909 static void print_rxfd(struct rxf_desc *rxfd); 910 911 /************************************************************************* 912 * Rx DB * 913 *************************************************************************/ 914 915 static void bdx_rxdb_destroy(struct rxdb *db) 916 { 917 vfree(db); 918 } 919 920 static struct rxdb *bdx_rxdb_create(int nelem) 921 { 922 struct rxdb *db; 923 int i; 924 925 db = vmalloc(sizeof(struct rxdb) 926 + (nelem * sizeof(int)) 927 + (nelem * sizeof(struct rx_map))); 928 if (likely(db != NULL)) { 929 db->stack = (int *)(db + 1); 930 db->elems = (void *)(db->stack + nelem); 931 db->nelem = nelem; 932 db->top = nelem; 933 for (i = 0; i < nelem; i++) 934 db->stack[i] = nelem - i - 1; /* to make first allocs 935 close to db struct*/ 936 } 937 938 return db; 939 } 940 941 static inline int bdx_rxdb_alloc_elem(struct rxdb *db) 942 { 943 BDX_ASSERT(db->top <= 0); 944 return db->stack[--(db->top)]; 945 } 946 947 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n) 948 { 949 BDX_ASSERT((n < 0) || (n >= db->nelem)); 950 return db->elems + n; 951 } 952 953 static inline int bdx_rxdb_available(struct rxdb *db) 954 { 955 return db->top; 956 } 957 958 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n) 959 { 960 BDX_ASSERT((n >= db->nelem) || (n < 0)); 961 db->stack[(db->top)++] = n; 962 } 963 964 /************************************************************************* 965 * Rx Init * 966 *************************************************************************/ 967 968 /** 969 * bdx_rx_init - initialize RX all related HW and SW resources 970 * @priv: NIC private structure 971 * 972 * Returns 0 on success, negative value on failure 973 * 974 * It creates rxf and rxd fifos, update relevant HW registers, preallocate 975 * skb for rx. It assumes that Rx is desabled in HW 976 * funcs are grouped for better cache usage 977 * 978 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be 979 * filled and packets will be dropped by nic without getting into host or 980 * cousing interrupt. Anyway, in that condition, host has no chance to process 981 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles 982 */ 983 984 /* TBD: ensure proper packet size */ 985 986 static int bdx_rx_init(struct bdx_priv *priv) 987 { 988 ENTER; 989 990 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size, 991 regRXD_CFG0_0, regRXD_CFG1_0, 992 regRXD_RPTR_0, regRXD_WPTR_0)) 993 goto err_mem; 994 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size, 995 regRXF_CFG0_0, regRXF_CFG1_0, 996 regRXF_RPTR_0, regRXF_WPTR_0)) 997 goto err_mem; 998 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz / 999 sizeof(struct rxf_desc)); 1000 if (!priv->rxdb) 1001 goto err_mem; 1002 1003 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN; 1004 return 0; 1005 1006 err_mem: 1007 netdev_err(priv->ndev, "Rx init failed\n"); 1008 return -ENOMEM; 1009 } 1010 1011 /** 1012 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo 1013 * @priv: NIC private structure 1014 * @f: RXF fifo 1015 */ 1016 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1017 { 1018 struct rx_map *dm; 1019 struct rxdb *db = priv->rxdb; 1020 u16 i; 1021 1022 ENTER; 1023 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db), 1024 db->nelem - bdx_rxdb_available(db)); 1025 while (bdx_rxdb_available(db) > 0) { 1026 i = bdx_rxdb_alloc_elem(db); 1027 dm = bdx_rxdb_addr_elem(db, i); 1028 dm->dma = 0; 1029 } 1030 for (i = 0; i < db->nelem; i++) { 1031 dm = bdx_rxdb_addr_elem(db, i); 1032 if (dm->dma) { 1033 dma_unmap_single(&priv->pdev->dev, dm->dma, 1034 f->m.pktsz, DMA_FROM_DEVICE); 1035 dev_kfree_skb(dm->skb); 1036 } 1037 } 1038 } 1039 1040 /** 1041 * bdx_rx_free - release all Rx resources 1042 * @priv: NIC private structure 1043 * 1044 * It assumes that Rx is desabled in HW 1045 */ 1046 static void bdx_rx_free(struct bdx_priv *priv) 1047 { 1048 ENTER; 1049 if (priv->rxdb) { 1050 bdx_rx_free_skbs(priv, &priv->rxf_fifo0); 1051 bdx_rxdb_destroy(priv->rxdb); 1052 priv->rxdb = NULL; 1053 } 1054 bdx_fifo_free(priv, &priv->rxf_fifo0.m); 1055 bdx_fifo_free(priv, &priv->rxd_fifo0.m); 1056 1057 RET(); 1058 } 1059 1060 /************************************************************************* 1061 * Rx Engine * 1062 *************************************************************************/ 1063 1064 /** 1065 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs 1066 * @priv: nic's private structure 1067 * @f: RXF fifo that needs skbs 1068 * 1069 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo. 1070 * skb's virtual and physical addresses are stored in skb db. 1071 * To calculate free space, func uses cached values of RPTR and WPTR 1072 * When needed, it also updates RPTR and WPTR. 1073 */ 1074 1075 /* TBD: do not update WPTR if no desc were written */ 1076 1077 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1078 { 1079 struct sk_buff *skb; 1080 struct rxf_desc *rxfd; 1081 struct rx_map *dm; 1082 int dno, delta, idx; 1083 struct rxdb *db = priv->rxdb; 1084 1085 ENTER; 1086 dno = bdx_rxdb_available(db) - 1; 1087 while (dno > 0) { 1088 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN); 1089 if (!skb) 1090 break; 1091 1092 skb_reserve(skb, NET_IP_ALIGN); 1093 1094 idx = bdx_rxdb_alloc_elem(db); 1095 dm = bdx_rxdb_addr_elem(db, idx); 1096 dm->dma = dma_map_single(&priv->pdev->dev, skb->data, 1097 f->m.pktsz, DMA_FROM_DEVICE); 1098 dm->skb = skb; 1099 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1100 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1101 rxfd->va_lo = idx; 1102 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1103 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1104 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1105 print_rxfd(rxfd); 1106 1107 f->m.wptr += sizeof(struct rxf_desc); 1108 delta = f->m.wptr - f->m.memsz; 1109 if (unlikely(delta >= 0)) { 1110 f->m.wptr = delta; 1111 if (delta > 0) { 1112 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1113 DBG("wrapped descriptor\n"); 1114 } 1115 } 1116 dno--; 1117 } 1118 /*TBD: to do - delayed rxf wptr like in txd */ 1119 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1120 RET(); 1121 } 1122 1123 static inline void 1124 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan, 1125 struct sk_buff *skb) 1126 { 1127 ENTER; 1128 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1)); 1129 if (GET_RXD_VTAG(rxd_val1)) { 1130 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n", 1131 priv->ndev->name, 1132 GET_RXD_VLAN_ID(rxd_vlan), 1133 GET_RXD_VTAG(rxd_val1)); 1134 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan)); 1135 } 1136 netif_receive_skb(skb); 1137 } 1138 1139 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd) 1140 { 1141 struct rxf_desc *rxfd; 1142 struct rx_map *dm; 1143 struct rxf_fifo *f; 1144 struct rxdb *db; 1145 int delta; 1146 1147 ENTER; 1148 DBG("priv=%p rxdd=%p\n", priv, rxdd); 1149 f = &priv->rxf_fifo0; 1150 db = priv->rxdb; 1151 DBG("db=%p f=%p\n", db, f); 1152 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1153 DBG("dm=%p\n", dm); 1154 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1155 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1156 rxfd->va_lo = rxdd->va_lo; 1157 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1158 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1159 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1160 print_rxfd(rxfd); 1161 1162 f->m.wptr += sizeof(struct rxf_desc); 1163 delta = f->m.wptr - f->m.memsz; 1164 if (unlikely(delta >= 0)) { 1165 f->m.wptr = delta; 1166 if (delta > 0) { 1167 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1168 DBG("wrapped descriptor\n"); 1169 } 1170 } 1171 RET(); 1172 } 1173 1174 /** 1175 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS 1176 * NOTE: a special treatment is given to non-continuous descriptors 1177 * that start near the end, wraps around and continue at the beginning. a second 1178 * part is copied right after the first, and then descriptor is interpreted as 1179 * normal. fifo has an extra space to allow such operations 1180 * @priv: nic's private structure 1181 * @f: RXF fifo that needs skbs 1182 * @budget: maximum number of packets to receive 1183 */ 1184 1185 /* TBD: replace memcpy func call by explicite inline asm */ 1186 1187 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget) 1188 { 1189 struct net_device *ndev = priv->ndev; 1190 struct sk_buff *skb, *skb2; 1191 struct rxd_desc *rxdd; 1192 struct rx_map *dm; 1193 struct rxf_fifo *rxf_fifo; 1194 int tmp_len, size; 1195 int done = 0; 1196 int max_done = BDX_MAX_RX_DONE; 1197 struct rxdb *db = NULL; 1198 /* Unmarshalled descriptor - copy of descriptor in host order */ 1199 u32 rxd_val1; 1200 u16 len; 1201 u16 rxd_vlan; 1202 1203 ENTER; 1204 max_done = budget; 1205 1206 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR; 1207 1208 size = f->m.wptr - f->m.rptr; 1209 if (size < 0) 1210 size = f->m.memsz + size; /* size is negative :-) */ 1211 1212 while (size > 0) { 1213 1214 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr); 1215 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1); 1216 1217 len = CPU_CHIP_SWAP16(rxdd->len); 1218 1219 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan); 1220 1221 print_rxdd(rxdd, rxd_val1, len, rxd_vlan); 1222 1223 tmp_len = GET_RXD_BC(rxd_val1) << 3; 1224 BDX_ASSERT(tmp_len <= 0); 1225 size -= tmp_len; 1226 if (size < 0) /* test for partially arrived descriptor */ 1227 break; 1228 1229 f->m.rptr += tmp_len; 1230 1231 tmp_len = f->m.rptr - f->m.memsz; 1232 if (unlikely(tmp_len >= 0)) { 1233 f->m.rptr = tmp_len; 1234 if (tmp_len > 0) { 1235 DBG("wrapped desc rptr=%d tmp_len=%d\n", 1236 f->m.rptr, tmp_len); 1237 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len); 1238 } 1239 } 1240 1241 if (unlikely(GET_RXD_ERR(rxd_val1))) { 1242 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1)); 1243 ndev->stats.rx_errors++; 1244 bdx_recycle_skb(priv, rxdd); 1245 continue; 1246 } 1247 1248 rxf_fifo = &priv->rxf_fifo0; 1249 db = priv->rxdb; 1250 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1251 skb = dm->skb; 1252 1253 if (len < BDX_COPYBREAK && 1254 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) { 1255 skb_reserve(skb2, NET_IP_ALIGN); 1256 /*skb_put(skb2, len); */ 1257 dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma, 1258 rxf_fifo->m.pktsz, 1259 DMA_FROM_DEVICE); 1260 memcpy(skb2->data, skb->data, len); 1261 bdx_recycle_skb(priv, rxdd); 1262 skb = skb2; 1263 } else { 1264 dma_unmap_single(&priv->pdev->dev, dm->dma, 1265 rxf_fifo->m.pktsz, DMA_FROM_DEVICE); 1266 bdx_rxdb_free_elem(db, rxdd->va_lo); 1267 } 1268 1269 ndev->stats.rx_bytes += len; 1270 1271 skb_put(skb, len); 1272 skb->protocol = eth_type_trans(skb, ndev); 1273 1274 /* Non-IP packets aren't checksum-offloaded */ 1275 if (GET_RXD_PKT_ID(rxd_val1) == 0) 1276 skb_checksum_none_assert(skb); 1277 else 1278 skb->ip_summed = CHECKSUM_UNNECESSARY; 1279 1280 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb); 1281 1282 if (++done >= max_done) 1283 break; 1284 } 1285 1286 ndev->stats.rx_packets += done; 1287 1288 /* FIXME: do smth to minimize pci accesses */ 1289 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1290 1291 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 1292 1293 RET(done); 1294 } 1295 1296 /************************************************************************* 1297 * Debug / Temprorary Code * 1298 *************************************************************************/ 1299 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 1300 u16 rxd_vlan) 1301 { 1302 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n", 1303 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1), 1304 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1), 1305 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1), 1306 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan), 1307 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo, 1308 rxdd->va_hi); 1309 } 1310 1311 static void print_rxfd(struct rxf_desc *rxfd) 1312 { 1313 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n" 1314 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n", 1315 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len); 1316 } 1317 1318 /* 1319 * TX HW/SW interaction overview 1320 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1321 * There are 2 types of TX communication channels between driver and NIC. 1322 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets 1323 * 2) TX Data Fifo - TXD - holds descriptors of full buffers. 1324 * 1325 * Currently NIC supports TSO, checksuming and gather DMA 1326 * UFO and IP fragmentation is on the way 1327 * 1328 * RX SW Data Structures 1329 * ~~~~~~~~~~~~~~~~~~~~~ 1330 * txdb - used to keep track of all skbs owned by SW and their dma addresses. 1331 * For TX case, ownership lasts from geting packet via hard_xmit and until HW 1332 * acknowledges sent by TXF descriptors. 1333 * Implemented as cyclic buffer. 1334 * fifo - keeps info about fifo's size and location, relevant HW registers, 1335 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 1336 * Implemented as simple struct. 1337 * 1338 * TX SW Execution Flow 1339 * ~~~~~~~~~~~~~~~~~~~~ 1340 * OS calls driver's hard_xmit method with packet to sent. 1341 * Driver creates DMA mappings, builds TXD descriptors and kicks HW 1342 * by updating TXD WPTR. 1343 * When packet is sent, HW write us TXF descriptor and SW frees original skb. 1344 * To prevent TXD fifo overflow without reading HW registers every time, 1345 * SW deploys "tx level" technique. 1346 * Upon strart up, tx level is initialized to TXD fifo length. 1347 * For every sent packet, SW gets its TXD descriptor sizei 1348 * (from precalculated array) and substructs it from tx level. 1349 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of 1350 * original TXD descriptor from txdb and adds it to tx level. 1351 * When Tx level drops under some predefined treshhold, the driver 1352 * stops the TX queue. When TX level rises above that level, 1353 * the tx queue is enabled again. 1354 * 1355 * This technique avoids eccessive reading of RPTR and WPTR registers. 1356 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput. 1357 */ 1358 1359 /** 1360 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap 1361 * @db: tx data base 1362 * @pptr: read or write pointer 1363 */ 1364 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr) 1365 { 1366 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */ 1367 1368 BDX_ASSERT(*pptr != db->rptr && /* expect either read */ 1369 *pptr != db->wptr); /* or write pointer */ 1370 1371 BDX_ASSERT(*pptr < db->start || /* pointer has to be */ 1372 *pptr >= db->end); /* in range */ 1373 1374 ++*pptr; 1375 if (unlikely(*pptr == db->end)) 1376 *pptr = db->start; 1377 } 1378 1379 /** 1380 * bdx_tx_db_inc_rptr - increment read pointer 1381 * @db: tx data base 1382 */ 1383 static inline void bdx_tx_db_inc_rptr(struct txdb *db) 1384 { 1385 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */ 1386 __bdx_tx_db_ptr_next(db, &db->rptr); 1387 } 1388 1389 /** 1390 * bdx_tx_db_inc_wptr - increment write pointer 1391 * @db: tx data base 1392 */ 1393 static inline void bdx_tx_db_inc_wptr(struct txdb *db) 1394 { 1395 __bdx_tx_db_ptr_next(db, &db->wptr); 1396 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as 1397 a result of write */ 1398 } 1399 1400 /** 1401 * bdx_tx_db_init - creates and initializes tx db 1402 * @d: tx data base 1403 * @sz_type: size of tx fifo 1404 * 1405 * Returns 0 on success, error code otherwise 1406 */ 1407 static int bdx_tx_db_init(struct txdb *d, int sz_type) 1408 { 1409 int memsz = FIFO_SIZE * (1 << (sz_type + 1)); 1410 1411 d->start = vmalloc(memsz); 1412 if (!d->start) 1413 return -ENOMEM; 1414 1415 /* 1416 * In order to differentiate between db is empty and db is full 1417 * states at least one element should always be empty in order to 1418 * avoid rptr == wptr which means db is empty 1419 */ 1420 d->size = memsz / sizeof(struct tx_map) - 1; 1421 d->end = d->start + d->size + 1; /* just after last element */ 1422 1423 /* all dbs are created equally empty */ 1424 d->rptr = d->start; 1425 d->wptr = d->start; 1426 1427 return 0; 1428 } 1429 1430 /** 1431 * bdx_tx_db_close - closes tx db and frees all memory 1432 * @d: tx data base 1433 */ 1434 static void bdx_tx_db_close(struct txdb *d) 1435 { 1436 BDX_ASSERT(d == NULL); 1437 1438 vfree(d->start); 1439 d->start = NULL; 1440 } 1441 1442 /************************************************************************* 1443 * Tx Engine * 1444 *************************************************************************/ 1445 1446 /* sizes of tx desc (including padding if needed) as function 1447 * of skb's frag number */ 1448 static struct { 1449 u16 bytes; 1450 u16 qwords; /* qword = 64 bit */ 1451 } txd_sizes[MAX_SKB_FRAGS + 1]; 1452 1453 /** 1454 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks 1455 * @priv: NIC private structure 1456 * @skb: socket buffer to map 1457 * @txdd: TX descriptor to use 1458 * 1459 * It makes dma mappings for skb's data blocks and writes them to PBL of 1460 * new tx descriptor. It also stores them in the tx db, so they could be 1461 * unmaped after data was sent. It is reponsibility of a caller to make 1462 * sure that there is enough space in the tx db. Last element holds pointer 1463 * to skb itself and marked with zero length 1464 */ 1465 static inline void 1466 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb, 1467 struct txd_desc *txdd) 1468 { 1469 struct txdb *db = &priv->txdb; 1470 struct pbl *pbl = &txdd->pbl[0]; 1471 int nr_frags = skb_shinfo(skb)->nr_frags; 1472 int i; 1473 1474 db->wptr->len = skb_headlen(skb); 1475 db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data, 1476 db->wptr->len, DMA_TO_DEVICE); 1477 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1478 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1479 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1480 DBG("=== pbl len: 0x%x ================\n", pbl->len); 1481 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo); 1482 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi); 1483 bdx_tx_db_inc_wptr(db); 1484 1485 for (i = 0; i < nr_frags; i++) { 1486 const skb_frag_t *frag; 1487 1488 frag = &skb_shinfo(skb)->frags[i]; 1489 db->wptr->len = skb_frag_size(frag); 1490 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag, 1491 0, skb_frag_size(frag), 1492 DMA_TO_DEVICE); 1493 1494 pbl++; 1495 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1496 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1497 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1498 bdx_tx_db_inc_wptr(db); 1499 } 1500 1501 /* add skb clean up info. */ 1502 db->wptr->len = -txd_sizes[nr_frags].bytes; 1503 db->wptr->addr.skb = skb; 1504 bdx_tx_db_inc_wptr(db); 1505 } 1506 1507 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags 1508 * number of frags is used as index to fetch correct descriptors size, 1509 * instead of calculating it each time */ 1510 static void __init init_txd_sizes(void) 1511 { 1512 int i, lwords; 1513 1514 /* 7 - is number of lwords in txd with one phys buffer 1515 * 3 - is number of lwords used for every additional phys buffer */ 1516 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) { 1517 lwords = 7 + (i * 3); 1518 if (lwords & 1) 1519 lwords++; /* pad it with 1 lword */ 1520 txd_sizes[i].qwords = lwords >> 1; 1521 txd_sizes[i].bytes = lwords << 2; 1522 } 1523 } 1524 1525 /* bdx_tx_init - initialize all Tx related stuff. 1526 * Namely, TXD and TXF fifos, database etc */ 1527 static int bdx_tx_init(struct bdx_priv *priv) 1528 { 1529 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size, 1530 regTXD_CFG0_0, 1531 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0)) 1532 goto err_mem; 1533 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size, 1534 regTXF_CFG0_0, 1535 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0)) 1536 goto err_mem; 1537 1538 /* The TX db has to keep mappings for all packets sent (on TxD) 1539 * and not yet reclaimed (on TxF) */ 1540 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size))) 1541 goto err_mem; 1542 1543 priv->tx_level = BDX_MAX_TX_LEVEL; 1544 #ifdef BDX_DELAY_WPTR 1545 priv->tx_update_mark = priv->tx_level - 1024; 1546 #endif 1547 return 0; 1548 1549 err_mem: 1550 netdev_err(priv->ndev, "Tx init failed\n"); 1551 return -ENOMEM; 1552 } 1553 1554 /** 1555 * bdx_tx_space - calculates available space in TX fifo 1556 * @priv: NIC private structure 1557 * 1558 * Returns available space in TX fifo in bytes 1559 */ 1560 static inline int bdx_tx_space(struct bdx_priv *priv) 1561 { 1562 struct txd_fifo *f = &priv->txd_fifo0; 1563 int fsize; 1564 1565 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR; 1566 fsize = f->m.rptr - f->m.wptr; 1567 if (fsize <= 0) 1568 fsize = f->m.memsz + fsize; 1569 return fsize; 1570 } 1571 1572 /** 1573 * bdx_tx_transmit - send packet to NIC 1574 * @skb: packet to send 1575 * @ndev: network device assigned to NIC 1576 * Return codes: 1577 * o NETDEV_TX_OK everything ok. 1578 * o NETDEV_TX_BUSY Cannot transmit packet, try later 1579 * Usually a bug, means queue start/stop flow control is broken in 1580 * the driver. Note: the driver must NOT put the skb in its DMA ring. 1581 */ 1582 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb, 1583 struct net_device *ndev) 1584 { 1585 struct bdx_priv *priv = netdev_priv(ndev); 1586 struct txd_fifo *f = &priv->txd_fifo0; 1587 int txd_checksum = 7; /* full checksum */ 1588 int txd_lgsnd = 0; 1589 int txd_vlan_id = 0; 1590 int txd_vtag = 0; 1591 int txd_mss = 0; 1592 1593 int nr_frags = skb_shinfo(skb)->nr_frags; 1594 struct txd_desc *txdd; 1595 int len; 1596 unsigned long flags; 1597 1598 ENTER; 1599 local_irq_save(flags); 1600 spin_lock(&priv->tx_lock); 1601 1602 /* build tx descriptor */ 1603 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */ 1604 txdd = (struct txd_desc *)(f->m.va + f->m.wptr); 1605 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) 1606 txd_checksum = 0; 1607 1608 if (skb_shinfo(skb)->gso_size) { 1609 txd_mss = skb_shinfo(skb)->gso_size; 1610 txd_lgsnd = 1; 1611 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len, 1612 txd_mss); 1613 } 1614 1615 if (skb_vlan_tag_present(skb)) { 1616 /*Cut VLAN ID to 12 bits */ 1617 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12); 1618 txd_vtag = 1; 1619 } 1620 1621 txdd->length = CPU_CHIP_SWAP16(skb->len); 1622 txdd->mss = CPU_CHIP_SWAP16(txd_mss); 1623 txdd->txd_val1 = 1624 CPU_CHIP_SWAP32(TXD_W1_VAL 1625 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag, 1626 txd_lgsnd, txd_vlan_id)); 1627 DBG("=== TxD desc =====================\n"); 1628 DBG("=== w1: 0x%x ================\n", txdd->txd_val1); 1629 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length); 1630 1631 bdx_tx_map_skb(priv, skb, txdd); 1632 1633 /* increment TXD write pointer. In case of 1634 fifo wrapping copy reminder of the descriptor 1635 to the beginning */ 1636 f->m.wptr += txd_sizes[nr_frags].bytes; 1637 len = f->m.wptr - f->m.memsz; 1638 if (unlikely(len >= 0)) { 1639 f->m.wptr = len; 1640 if (len > 0) { 1641 BDX_ASSERT(len > f->m.memsz); 1642 memcpy(f->m.va, f->m.va + f->m.memsz, len); 1643 } 1644 } 1645 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */ 1646 1647 priv->tx_level -= txd_sizes[nr_frags].bytes; 1648 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1649 #ifdef BDX_DELAY_WPTR 1650 if (priv->tx_level > priv->tx_update_mark) { 1651 /* Force memory writes to complete before letting h/w 1652 know there are new descriptors to fetch. 1653 (might be needed on platforms like IA64) 1654 wmb(); */ 1655 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1656 } else { 1657 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) { 1658 priv->tx_noupd = 0; 1659 WRITE_REG(priv, f->m.reg_WPTR, 1660 f->m.wptr & TXF_WPTR_WR_PTR); 1661 } 1662 } 1663 #else 1664 /* Force memory writes to complete before letting h/w 1665 know there are new descriptors to fetch. 1666 (might be needed on platforms like IA64) 1667 wmb(); */ 1668 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1669 1670 #endif 1671 #ifdef BDX_LLTX 1672 netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */ 1673 #endif 1674 ndev->stats.tx_packets++; 1675 ndev->stats.tx_bytes += skb->len; 1676 1677 if (priv->tx_level < BDX_MIN_TX_LEVEL) { 1678 DBG("%s: %s: TX Q STOP level %d\n", 1679 BDX_DRV_NAME, ndev->name, priv->tx_level); 1680 netif_stop_queue(ndev); 1681 } 1682 1683 spin_unlock_irqrestore(&priv->tx_lock, flags); 1684 return NETDEV_TX_OK; 1685 } 1686 1687 /** 1688 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ. 1689 * @priv: bdx adapter 1690 * 1691 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS 1692 * that those packets were sent 1693 */ 1694 static void bdx_tx_cleanup(struct bdx_priv *priv) 1695 { 1696 struct txf_fifo *f = &priv->txf_fifo0; 1697 struct txdb *db = &priv->txdb; 1698 int tx_level = 0; 1699 1700 ENTER; 1701 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK; 1702 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */ 1703 1704 while (f->m.wptr != f->m.rptr) { 1705 f->m.rptr += BDX_TXF_DESC_SZ; 1706 f->m.rptr &= f->m.size_mask; 1707 1708 /* unmap all the fragments */ 1709 /* first has to come tx_maps containing dma */ 1710 BDX_ASSERT(db->rptr->len == 0); 1711 do { 1712 BDX_ASSERT(db->rptr->addr.dma == 0); 1713 dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma, 1714 db->rptr->len, DMA_TO_DEVICE); 1715 bdx_tx_db_inc_rptr(db); 1716 } while (db->rptr->len > 0); 1717 tx_level -= db->rptr->len; /* '-' koz len is negative */ 1718 1719 /* now should come skb pointer - free it */ 1720 dev_consume_skb_irq(db->rptr->addr.skb); 1721 bdx_tx_db_inc_rptr(db); 1722 } 1723 1724 /* let h/w know which TXF descriptors were cleaned */ 1725 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz); 1726 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1727 1728 /* We reclaimed resources, so in case the Q is stopped by xmit callback, 1729 * we resume the transmission and use tx_lock to synchronize with xmit.*/ 1730 spin_lock(&priv->tx_lock); 1731 priv->tx_level += tx_level; 1732 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1733 #ifdef BDX_DELAY_WPTR 1734 if (priv->tx_noupd) { 1735 priv->tx_noupd = 0; 1736 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR, 1737 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR); 1738 } 1739 #endif 1740 1741 if (unlikely(netif_queue_stopped(priv->ndev) && 1742 netif_carrier_ok(priv->ndev) && 1743 (priv->tx_level >= BDX_MIN_TX_LEVEL))) { 1744 DBG("%s: %s: TX Q WAKE level %d\n", 1745 BDX_DRV_NAME, priv->ndev->name, priv->tx_level); 1746 netif_wake_queue(priv->ndev); 1747 } 1748 spin_unlock(&priv->tx_lock); 1749 } 1750 1751 /** 1752 * bdx_tx_free_skbs - frees all skbs from TXD fifo. 1753 * @priv: NIC private structure 1754 * 1755 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod 1756 */ 1757 static void bdx_tx_free_skbs(struct bdx_priv *priv) 1758 { 1759 struct txdb *db = &priv->txdb; 1760 1761 ENTER; 1762 while (db->rptr != db->wptr) { 1763 if (likely(db->rptr->len)) 1764 dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma, 1765 db->rptr->len, DMA_TO_DEVICE); 1766 else 1767 dev_kfree_skb(db->rptr->addr.skb); 1768 bdx_tx_db_inc_rptr(db); 1769 } 1770 RET(); 1771 } 1772 1773 /* bdx_tx_free - frees all Tx resources */ 1774 static void bdx_tx_free(struct bdx_priv *priv) 1775 { 1776 ENTER; 1777 bdx_tx_free_skbs(priv); 1778 bdx_fifo_free(priv, &priv->txd_fifo0.m); 1779 bdx_fifo_free(priv, &priv->txf_fifo0.m); 1780 bdx_tx_db_close(&priv->txdb); 1781 } 1782 1783 /** 1784 * bdx_tx_push_desc - push descriptor to TxD fifo 1785 * @priv: NIC private structure 1786 * @data: desc's data 1787 * @size: desc's size 1788 * 1789 * Pushes desc to TxD fifo and overlaps it if needed. 1790 * NOTE: this func does not check for available space. this is responsibility 1791 * of the caller. Neither does it check that data size is smaller than 1792 * fifo size. 1793 */ 1794 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size) 1795 { 1796 struct txd_fifo *f = &priv->txd_fifo0; 1797 int i = f->m.memsz - f->m.wptr; 1798 1799 if (size == 0) 1800 return; 1801 1802 if (i > size) { 1803 memcpy(f->m.va + f->m.wptr, data, size); 1804 f->m.wptr += size; 1805 } else { 1806 memcpy(f->m.va + f->m.wptr, data, i); 1807 f->m.wptr = size - i; 1808 memcpy(f->m.va, data + i, f->m.wptr); 1809 } 1810 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1811 } 1812 1813 /** 1814 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way 1815 * @priv: NIC private structure 1816 * @data: desc's data 1817 * @size: desc's size 1818 * 1819 * NOTE: this func does check for available space and, if necessary, waits for 1820 * NIC to read existing data before writing new one. 1821 */ 1822 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size) 1823 { 1824 int timer = 0; 1825 ENTER; 1826 1827 while (size > 0) { 1828 /* we substruct 8 because when fifo is full rptr == wptr 1829 which also means that fifo is empty, we can understand 1830 the difference, but could hw do the same ??? :) */ 1831 int avail = bdx_tx_space(priv) - 8; 1832 if (avail <= 0) { 1833 if (timer++ > 300) { /* prevent endless loop */ 1834 DBG("timeout while writing desc to TxD fifo\n"); 1835 break; 1836 } 1837 udelay(50); /* give hw a chance to clean fifo */ 1838 continue; 1839 } 1840 avail = min(avail, size); 1841 DBG("about to push %d bytes starting %p size %d\n", avail, 1842 data, size); 1843 bdx_tx_push_desc(priv, data, avail); 1844 size -= avail; 1845 data += avail; 1846 } 1847 RET(); 1848 } 1849 1850 static const struct net_device_ops bdx_netdev_ops = { 1851 .ndo_open = bdx_open, 1852 .ndo_stop = bdx_close, 1853 .ndo_start_xmit = bdx_tx_transmit, 1854 .ndo_validate_addr = eth_validate_addr, 1855 .ndo_siocdevprivate = bdx_siocdevprivate, 1856 .ndo_set_rx_mode = bdx_setmulti, 1857 .ndo_change_mtu = bdx_change_mtu, 1858 .ndo_set_mac_address = bdx_set_mac, 1859 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid, 1860 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid, 1861 }; 1862 1863 /** 1864 * bdx_probe - Device Initialization Routine 1865 * @pdev: PCI device information struct 1866 * @ent: entry in bdx_pci_tbl 1867 * 1868 * Returns 0 on success, negative on failure 1869 * 1870 * bdx_probe initializes an adapter identified by a pci_dev structure. 1871 * The OS initialization, configuring of the adapter private structure, 1872 * and a hardware reset occur. 1873 * 1874 * functions and their order used as explained in 1875 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt 1876 * 1877 */ 1878 1879 /* TBD: netif_msg should be checked and implemented. I disable it for now */ 1880 static int 1881 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1882 { 1883 struct net_device *ndev; 1884 struct bdx_priv *priv; 1885 int err, pci_using_dac, port; 1886 unsigned long pciaddr; 1887 u32 regionSize; 1888 struct pci_nic *nic; 1889 1890 ENTER; 1891 1892 nic = vmalloc(sizeof(*nic)); 1893 if (!nic) 1894 RET(-ENOMEM); 1895 1896 /************** pci *****************/ 1897 err = pci_enable_device(pdev); 1898 if (err) /* it triggers interrupt, dunno why. */ 1899 goto err_pci; /* it's not a problem though */ 1900 1901 if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) && 1902 !(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)))) { 1903 pci_using_dac = 1; 1904 } else { 1905 if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) || 1906 (err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) { 1907 pr_err("No usable DMA configuration, aborting\n"); 1908 goto err_dma; 1909 } 1910 pci_using_dac = 0; 1911 } 1912 1913 err = pci_request_regions(pdev, BDX_DRV_NAME); 1914 if (err) 1915 goto err_dma; 1916 1917 pci_set_master(pdev); 1918 1919 pciaddr = pci_resource_start(pdev, 0); 1920 if (!pciaddr) { 1921 err = -EIO; 1922 pr_err("no MMIO resource\n"); 1923 goto err_out_res; 1924 } 1925 regionSize = pci_resource_len(pdev, 0); 1926 if (regionSize < BDX_REGS_SIZE) { 1927 err = -EIO; 1928 pr_err("MMIO resource (%x) too small\n", regionSize); 1929 goto err_out_res; 1930 } 1931 1932 nic->regs = ioremap(pciaddr, regionSize); 1933 if (!nic->regs) { 1934 err = -EIO; 1935 pr_err("ioremap failed\n"); 1936 goto err_out_res; 1937 } 1938 1939 if (pdev->irq < 2) { 1940 err = -EIO; 1941 pr_err("invalid irq (%d)\n", pdev->irq); 1942 goto err_out_iomap; 1943 } 1944 pci_set_drvdata(pdev, nic); 1945 1946 if (pdev->device == 0x3014) 1947 nic->port_num = 2; 1948 else 1949 nic->port_num = 1; 1950 1951 print_hw_id(pdev); 1952 1953 bdx_hw_reset_direct(nic->regs); 1954 1955 nic->irq_type = IRQ_INTX; 1956 #ifdef BDX_MSI 1957 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) { 1958 err = pci_enable_msi(pdev); 1959 if (err) 1960 pr_err("Can't enable msi. error is %d\n", err); 1961 else 1962 nic->irq_type = IRQ_MSI; 1963 } else 1964 DBG("HW does not support MSI\n"); 1965 #endif 1966 1967 /************** netdev **************/ 1968 for (port = 0; port < nic->port_num; port++) { 1969 ndev = alloc_etherdev(sizeof(struct bdx_priv)); 1970 if (!ndev) { 1971 err = -ENOMEM; 1972 goto err_out_iomap; 1973 } 1974 1975 ndev->netdev_ops = &bdx_netdev_ops; 1976 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN; 1977 1978 bdx_set_ethtool_ops(ndev); /* ethtool interface */ 1979 1980 /* these fields are used for info purposes only 1981 * so we can have them same for all ports of the board */ 1982 ndev->if_port = port; 1983 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO 1984 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 1985 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM 1986 ; 1987 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1988 NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX; 1989 1990 if (pci_using_dac) 1991 ndev->features |= NETIF_F_HIGHDMA; 1992 1993 /************** priv ****************/ 1994 priv = nic->priv[port] = netdev_priv(ndev); 1995 1996 priv->pBdxRegs = nic->regs + port * 0x8000; 1997 priv->port = port; 1998 priv->pdev = pdev; 1999 priv->ndev = ndev; 2000 priv->nic = nic; 2001 priv->msg_enable = BDX_DEF_MSG_ENABLE; 2002 2003 netif_napi_add(ndev, &priv->napi, bdx_poll, 64); 2004 2005 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) { 2006 DBG("HW statistics not supported\n"); 2007 priv->stats_flag = 0; 2008 } else { 2009 priv->stats_flag = 1; 2010 } 2011 2012 /* Initialize fifo sizes. */ 2013 priv->txd_size = 2; 2014 priv->txf_size = 2; 2015 priv->rxd_size = 2; 2016 priv->rxf_size = 3; 2017 2018 /* Initialize the initial coalescing registers. */ 2019 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12); 2020 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12); 2021 2022 /* ndev->xmit_lock spinlock is not used. 2023 * Private priv->tx_lock is used for synchronization 2024 * between transmit and TX irq cleanup. In addition 2025 * set multicast list callback has to use priv->tx_lock. 2026 */ 2027 #ifdef BDX_LLTX 2028 ndev->features |= NETIF_F_LLTX; 2029 #endif 2030 /* MTU range: 60 - 16384 */ 2031 ndev->min_mtu = ETH_ZLEN; 2032 ndev->max_mtu = BDX_MAX_MTU; 2033 2034 spin_lock_init(&priv->tx_lock); 2035 2036 /*bdx_hw_reset(priv); */ 2037 if (bdx_read_mac(priv)) { 2038 pr_err("load MAC address failed\n"); 2039 err = -EFAULT; 2040 goto err_out_iomap; 2041 } 2042 SET_NETDEV_DEV(ndev, &pdev->dev); 2043 err = register_netdev(ndev); 2044 if (err) { 2045 pr_err("register_netdev failed\n"); 2046 goto err_out_free; 2047 } 2048 netif_carrier_off(ndev); 2049 netif_stop_queue(ndev); 2050 2051 print_eth_id(ndev); 2052 } 2053 RET(0); 2054 2055 err_out_free: 2056 free_netdev(ndev); 2057 err_out_iomap: 2058 iounmap(nic->regs); 2059 err_out_res: 2060 pci_release_regions(pdev); 2061 err_dma: 2062 pci_disable_device(pdev); 2063 err_pci: 2064 vfree(nic); 2065 2066 RET(err); 2067 } 2068 2069 /****************** Ethtool interface *********************/ 2070 /* get strings for statistics counters */ 2071 static const char 2072 bdx_stat_names[][ETH_GSTRING_LEN] = { 2073 "InUCast", /* 0x7200 */ 2074 "InMCast", /* 0x7210 */ 2075 "InBCast", /* 0x7220 */ 2076 "InPkts", /* 0x7230 */ 2077 "InErrors", /* 0x7240 */ 2078 "InDropped", /* 0x7250 */ 2079 "FrameTooLong", /* 0x7260 */ 2080 "FrameSequenceErrors", /* 0x7270 */ 2081 "InVLAN", /* 0x7280 */ 2082 "InDroppedDFE", /* 0x7290 */ 2083 "InDroppedIntFull", /* 0x72A0 */ 2084 "InFrameAlignErrors", /* 0x72B0 */ 2085 2086 /* 0x72C0-0x72E0 RSRV */ 2087 2088 "OutUCast", /* 0x72F0 */ 2089 "OutMCast", /* 0x7300 */ 2090 "OutBCast", /* 0x7310 */ 2091 "OutPkts", /* 0x7320 */ 2092 2093 /* 0x7330-0x7360 RSRV */ 2094 2095 "OutVLAN", /* 0x7370 */ 2096 "InUCastOctects", /* 0x7380 */ 2097 "OutUCastOctects", /* 0x7390 */ 2098 2099 /* 0x73A0-0x73B0 RSRV */ 2100 2101 "InBCastOctects", /* 0x73C0 */ 2102 "OutBCastOctects", /* 0x73D0 */ 2103 "InOctects", /* 0x73E0 */ 2104 "OutOctects", /* 0x73F0 */ 2105 }; 2106 2107 /* 2108 * bdx_get_link_ksettings - get device-specific settings 2109 * @netdev 2110 * @ecmd 2111 */ 2112 static int bdx_get_link_ksettings(struct net_device *netdev, 2113 struct ethtool_link_ksettings *ecmd) 2114 { 2115 ethtool_link_ksettings_zero_link_mode(ecmd, supported); 2116 ethtool_link_ksettings_add_link_mode(ecmd, supported, 2117 10000baseT_Full); 2118 ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE); 2119 ethtool_link_ksettings_zero_link_mode(ecmd, advertising); 2120 ethtool_link_ksettings_add_link_mode(ecmd, advertising, 2121 10000baseT_Full); 2122 ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE); 2123 2124 ecmd->base.speed = SPEED_10000; 2125 ecmd->base.duplex = DUPLEX_FULL; 2126 ecmd->base.port = PORT_FIBRE; 2127 ecmd->base.autoneg = AUTONEG_DISABLE; 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * bdx_get_drvinfo - report driver information 2134 * @netdev 2135 * @drvinfo 2136 */ 2137 static void 2138 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 2139 { 2140 struct bdx_priv *priv = netdev_priv(netdev); 2141 2142 strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver)); 2143 strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version)); 2144 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 2145 strlcpy(drvinfo->bus_info, pci_name(priv->pdev), 2146 sizeof(drvinfo->bus_info)); 2147 } 2148 2149 /* 2150 * bdx_get_coalesce - get interrupt coalescing parameters 2151 * @netdev 2152 * @ecoal 2153 */ 2154 static int bdx_get_coalesce(struct net_device *netdev, 2155 struct ethtool_coalesce *ecoal, 2156 struct kernel_ethtool_coalesce *kernel_coal, 2157 struct netlink_ext_ack *extack) 2158 { 2159 u32 rdintcm; 2160 u32 tdintcm; 2161 struct bdx_priv *priv = netdev_priv(netdev); 2162 2163 rdintcm = priv->rdintcm; 2164 tdintcm = priv->tdintcm; 2165 2166 /* PCK_TH measures in multiples of FIFO bytes 2167 We translate to packets */ 2168 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT; 2169 ecoal->rx_max_coalesced_frames = 2170 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc)); 2171 2172 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT; 2173 ecoal->tx_max_coalesced_frames = 2174 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ); 2175 2176 /* adaptive parameters ignored */ 2177 return 0; 2178 } 2179 2180 /* 2181 * bdx_set_coalesce - set interrupt coalescing parameters 2182 * @netdev 2183 * @ecoal 2184 */ 2185 static int bdx_set_coalesce(struct net_device *netdev, 2186 struct ethtool_coalesce *ecoal, 2187 struct kernel_ethtool_coalesce *kernel_coal, 2188 struct netlink_ext_ack *extack) 2189 { 2190 u32 rdintcm; 2191 u32 tdintcm; 2192 struct bdx_priv *priv = netdev_priv(netdev); 2193 int rx_coal; 2194 int tx_coal; 2195 int rx_max_coal; 2196 int tx_max_coal; 2197 2198 /* Check for valid input */ 2199 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT; 2200 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT; 2201 rx_max_coal = ecoal->rx_max_coalesced_frames; 2202 tx_max_coal = ecoal->tx_max_coalesced_frames; 2203 2204 /* Translate from packets to multiples of FIFO bytes */ 2205 rx_max_coal = 2206 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1) 2207 / PCK_TH_MULT); 2208 tx_max_coal = 2209 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1) 2210 / PCK_TH_MULT); 2211 2212 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) || 2213 (rx_max_coal > 0xF) || (tx_max_coal > 0xF)) 2214 return -EINVAL; 2215 2216 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm), 2217 GET_RXF_TH(priv->rdintcm), rx_max_coal); 2218 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0, 2219 tx_max_coal); 2220 2221 priv->rdintcm = rdintcm; 2222 priv->tdintcm = tdintcm; 2223 2224 WRITE_REG(priv, regRDINTCM0, rdintcm); 2225 WRITE_REG(priv, regTDINTCM0, tdintcm); 2226 2227 return 0; 2228 } 2229 2230 /* Convert RX fifo size to number of pending packets */ 2231 static inline int bdx_rx_fifo_size_to_packets(int rx_size) 2232 { 2233 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc); 2234 } 2235 2236 /* Convert TX fifo size to number of pending packets */ 2237 static inline int bdx_tx_fifo_size_to_packets(int tx_size) 2238 { 2239 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ; 2240 } 2241 2242 /* 2243 * bdx_get_ringparam - report ring sizes 2244 * @netdev 2245 * @ring 2246 */ 2247 static void 2248 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2249 { 2250 struct bdx_priv *priv = netdev_priv(netdev); 2251 2252 /*max_pending - the maximum-sized FIFO we allow */ 2253 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3); 2254 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3); 2255 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size); 2256 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size); 2257 } 2258 2259 /* 2260 * bdx_set_ringparam - set ring sizes 2261 * @netdev 2262 * @ring 2263 */ 2264 static int 2265 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2266 { 2267 struct bdx_priv *priv = netdev_priv(netdev); 2268 int rx_size = 0; 2269 int tx_size = 0; 2270 2271 for (; rx_size < 4; rx_size++) { 2272 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending) 2273 break; 2274 } 2275 if (rx_size == 4) 2276 rx_size = 3; 2277 2278 for (; tx_size < 4; tx_size++) { 2279 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending) 2280 break; 2281 } 2282 if (tx_size == 4) 2283 tx_size = 3; 2284 2285 /*Is there anything to do? */ 2286 if ((rx_size == priv->rxf_size) && 2287 (tx_size == priv->txd_size)) 2288 return 0; 2289 2290 priv->rxf_size = rx_size; 2291 if (rx_size > 1) 2292 priv->rxd_size = rx_size - 1; 2293 else 2294 priv->rxd_size = rx_size; 2295 2296 priv->txf_size = priv->txd_size = tx_size; 2297 2298 if (netif_running(netdev)) { 2299 bdx_close(netdev); 2300 bdx_open(netdev); 2301 } 2302 return 0; 2303 } 2304 2305 /* 2306 * bdx_get_strings - return a set of strings that describe the requested objects 2307 * @netdev 2308 * @data 2309 */ 2310 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2311 { 2312 switch (stringset) { 2313 case ETH_SS_STATS: 2314 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names)); 2315 break; 2316 } 2317 } 2318 2319 /* 2320 * bdx_get_sset_count - return number of statistics or tests 2321 * @netdev 2322 */ 2323 static int bdx_get_sset_count(struct net_device *netdev, int stringset) 2324 { 2325 struct bdx_priv *priv = netdev_priv(netdev); 2326 2327 switch (stringset) { 2328 case ETH_SS_STATS: 2329 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names) 2330 != sizeof(struct bdx_stats) / sizeof(u64)); 2331 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0; 2332 } 2333 2334 return -EINVAL; 2335 } 2336 2337 /* 2338 * bdx_get_ethtool_stats - return device's hardware L2 statistics 2339 * @netdev 2340 * @stats 2341 * @data 2342 */ 2343 static void bdx_get_ethtool_stats(struct net_device *netdev, 2344 struct ethtool_stats *stats, u64 *data) 2345 { 2346 struct bdx_priv *priv = netdev_priv(netdev); 2347 2348 if (priv->stats_flag) { 2349 2350 /* Update stats from HW */ 2351 bdx_update_stats(priv); 2352 2353 /* Copy data to user buffer */ 2354 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats)); 2355 } 2356 } 2357 2358 /* 2359 * bdx_set_ethtool_ops - ethtool interface implementation 2360 * @netdev 2361 */ 2362 static void bdx_set_ethtool_ops(struct net_device *netdev) 2363 { 2364 static const struct ethtool_ops bdx_ethtool_ops = { 2365 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2366 ETHTOOL_COALESCE_MAX_FRAMES, 2367 .get_drvinfo = bdx_get_drvinfo, 2368 .get_link = ethtool_op_get_link, 2369 .get_coalesce = bdx_get_coalesce, 2370 .set_coalesce = bdx_set_coalesce, 2371 .get_ringparam = bdx_get_ringparam, 2372 .set_ringparam = bdx_set_ringparam, 2373 .get_strings = bdx_get_strings, 2374 .get_sset_count = bdx_get_sset_count, 2375 .get_ethtool_stats = bdx_get_ethtool_stats, 2376 .get_link_ksettings = bdx_get_link_ksettings, 2377 }; 2378 2379 netdev->ethtool_ops = &bdx_ethtool_ops; 2380 } 2381 2382 /** 2383 * bdx_remove - Device Removal Routine 2384 * @pdev: PCI device information struct 2385 * 2386 * bdx_remove is called by the PCI subsystem to alert the driver 2387 * that it should release a PCI device. The could be caused by a 2388 * Hot-Plug event, or because the driver is going to be removed from 2389 * memory. 2390 **/ 2391 static void bdx_remove(struct pci_dev *pdev) 2392 { 2393 struct pci_nic *nic = pci_get_drvdata(pdev); 2394 struct net_device *ndev; 2395 int port; 2396 2397 for (port = 0; port < nic->port_num; port++) { 2398 ndev = nic->priv[port]->ndev; 2399 unregister_netdev(ndev); 2400 free_netdev(ndev); 2401 } 2402 2403 /*bdx_hw_reset_direct(nic->regs); */ 2404 #ifdef BDX_MSI 2405 if (nic->irq_type == IRQ_MSI) 2406 pci_disable_msi(pdev); 2407 #endif 2408 2409 iounmap(nic->regs); 2410 pci_release_regions(pdev); 2411 pci_disable_device(pdev); 2412 vfree(nic); 2413 2414 RET(); 2415 } 2416 2417 static struct pci_driver bdx_pci_driver = { 2418 .name = BDX_DRV_NAME, 2419 .id_table = bdx_pci_tbl, 2420 .probe = bdx_probe, 2421 .remove = bdx_remove, 2422 }; 2423 2424 /* 2425 * print_driver_id - print parameters of the driver build 2426 */ 2427 static void __init print_driver_id(void) 2428 { 2429 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION); 2430 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING); 2431 } 2432 2433 static int __init bdx_module_init(void) 2434 { 2435 ENTER; 2436 init_txd_sizes(); 2437 print_driver_id(); 2438 RET(pci_register_driver(&bdx_pci_driver)); 2439 } 2440 2441 module_init(bdx_module_init); 2442 2443 static void __exit bdx_module_exit(void) 2444 { 2445 ENTER; 2446 pci_unregister_driver(&bdx_pci_driver); 2447 RET(); 2448 } 2449 2450 module_exit(bdx_module_exit); 2451 2452 MODULE_LICENSE("GPL"); 2453 MODULE_AUTHOR(DRIVER_AUTHOR); 2454 MODULE_DESCRIPTION(BDX_DRV_DESC); 2455 MODULE_FIRMWARE("tehuti/bdx.bin"); 2456