1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Tehuti Networks(R) Network Driver 4 * ethtool interface implementation 5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved 6 */ 7 8 /* 9 * RX HW/SW interaction overview 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * There are 2 types of RX communication channels between driver and NIC. 12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming 13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds 14 * info about buffer's location, size and ID. An ID field is used to identify a 15 * buffer when it's returned with data via RXD Fifo (see below) 16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is 17 * filled by HW and is readen by SW. Each descriptor holds status and ID. 18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data, 19 * via dma moves it into host memory, builds new RXD descriptor with same ID, 20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data. 21 * 22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos. 23 * One holds 1.5K packets and another - 26K packets. Depending on incoming 24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is 25 * filled with data, HW builds new RXD descriptor for it and push it into single 26 * RXD Fifo. 27 * 28 * RX SW Data Structures 29 * ~~~~~~~~~~~~~~~~~~~~~ 30 * skb db - used to keep track of all skbs owned by SW and their dma addresses. 31 * For RX case, ownership lasts from allocating new empty skb for RXF until 32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own 33 * skb db. Implemented as array with bitmask. 34 * fifo - keeps info about fifo's size and location, relevant HW registers, 35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 36 * Implemented as simple struct. 37 * 38 * RX SW Execution Flow 39 * ~~~~~~~~~~~~~~~~~~~~ 40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes 41 * relevant registers. At the end of init phase, driver enables interrupts. 42 * NIC sees that there is no RXF buffers and raises 43 * RD_INTR interrupt, isr fills skbs and Rx begins. 44 * Driver has two receive operation modes: 45 * NAPI - interrupt-driven mixed with polling 46 * interrupt-driven only 47 * 48 * Interrupt-driven only flow is following. When buffer is ready, HW raises 49 * interrupt and isr is called. isr collects all available packets 50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit. 51 52 * Rx buffer allocation note 53 * ~~~~~~~~~~~~~~~~~~~~~~~~~ 54 * Driver cares to feed such amount of RxF descriptors that respective amount of 55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of 56 * overflow check in Bordeaux for RxD fifo free/used size. 57 * FIXME: this is NOT fully implemented, more work should be done 58 * 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include "tehuti.h" 64 65 static const struct pci_device_id bdx_pci_tbl[] = { 66 { PCI_VDEVICE(TEHUTI, 0x3009), }, 67 { PCI_VDEVICE(TEHUTI, 0x3010), }, 68 { PCI_VDEVICE(TEHUTI, 0x3014), }, 69 { 0 } 70 }; 71 72 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl); 73 74 /* Definitions needed by ISR or NAPI functions */ 75 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f); 76 static void bdx_tx_cleanup(struct bdx_priv *priv); 77 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget); 78 79 /* Definitions needed by FW loading */ 80 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size); 81 82 /* Definitions needed by hw_start */ 83 static int bdx_tx_init(struct bdx_priv *priv); 84 static int bdx_rx_init(struct bdx_priv *priv); 85 86 /* Definitions needed by bdx_close */ 87 static void bdx_rx_free(struct bdx_priv *priv); 88 static void bdx_tx_free(struct bdx_priv *priv); 89 90 /* Definitions needed by bdx_probe */ 91 static void bdx_set_ethtool_ops(struct net_device *netdev); 92 93 /************************************************************************* 94 * Print Info * 95 *************************************************************************/ 96 97 static void print_hw_id(struct pci_dev *pdev) 98 { 99 struct pci_nic *nic = pci_get_drvdata(pdev); 100 u16 pci_link_status = 0; 101 u16 pci_ctrl = 0; 102 103 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status); 104 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl); 105 106 pr_info("%s%s\n", BDX_NIC_NAME, 107 nic->port_num == 1 ? "" : ", 2-Port"); 108 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n", 109 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF, 110 readl(nic->regs + FPGA_SEED), 111 GET_LINK_STATUS_LANES(pci_link_status), 112 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl)); 113 } 114 115 static void print_fw_id(struct pci_nic *nic) 116 { 117 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER)); 118 } 119 120 static void print_eth_id(struct net_device *ndev) 121 { 122 netdev_info(ndev, "%s, Port %c\n", 123 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B'); 124 125 } 126 127 /************************************************************************* 128 * Code * 129 *************************************************************************/ 130 131 #define bdx_enable_interrupts(priv) \ 132 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0) 133 #define bdx_disable_interrupts(priv) \ 134 do { WRITE_REG(priv, regIMR, 0); } while (0) 135 136 /** 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication. 138 * @priv: NIC private structure 139 * @f: fifo to initialize 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB 141 * @reg_XXX: offsets of registers relative to base address 142 * 143 * 1K extra space is allocated at the end of the fifo to simplify 144 * processing of descriptors that wraps around fifo's end 145 * 146 * Returns 0 on success, negative value on failure 147 * 148 */ 149 static int 150 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type, 151 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR) 152 { 153 u16 memsz = FIFO_SIZE * (1 << fsz_type); 154 155 memset(f, 0, sizeof(struct fifo)); 156 /* pci_alloc_consistent gives us 4k-aligned memory */ 157 f->va = pci_alloc_consistent(priv->pdev, 158 memsz + FIFO_EXTRA_SPACE, &f->da); 159 if (!f->va) { 160 pr_err("pci_alloc_consistent failed\n"); 161 RET(-ENOMEM); 162 } 163 f->reg_CFG0 = reg_CFG0; 164 f->reg_CFG1 = reg_CFG1; 165 f->reg_RPTR = reg_RPTR; 166 f->reg_WPTR = reg_WPTR; 167 f->rptr = 0; 168 f->wptr = 0; 169 f->memsz = memsz; 170 f->size_mask = memsz - 1; 171 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type)); 172 WRITE_REG(priv, reg_CFG1, H32_64(f->da)); 173 174 RET(0); 175 } 176 177 /** 178 * bdx_fifo_free - free all resources used by fifo 179 * @priv: NIC private structure 180 * @f: fifo to release 181 */ 182 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f) 183 { 184 ENTER; 185 if (f->va) { 186 pci_free_consistent(priv->pdev, 187 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da); 188 f->va = NULL; 189 } 190 RET(); 191 } 192 193 /** 194 * bdx_link_changed - notifies OS about hw link state. 195 * @priv: hw adapter structure 196 */ 197 static void bdx_link_changed(struct bdx_priv *priv) 198 { 199 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT; 200 201 if (!link) { 202 if (netif_carrier_ok(priv->ndev)) { 203 netif_stop_queue(priv->ndev); 204 netif_carrier_off(priv->ndev); 205 netdev_err(priv->ndev, "Link Down\n"); 206 } 207 } else { 208 if (!netif_carrier_ok(priv->ndev)) { 209 netif_wake_queue(priv->ndev); 210 netif_carrier_on(priv->ndev); 211 netdev_err(priv->ndev, "Link Up\n"); 212 } 213 } 214 } 215 216 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr) 217 { 218 if (isr & IR_RX_FREE_0) { 219 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 220 DBG("RX_FREE_0\n"); 221 } 222 223 if (isr & IR_LNKCHG0) 224 bdx_link_changed(priv); 225 226 if (isr & IR_PCIE_LINK) 227 netdev_err(priv->ndev, "PCI-E Link Fault\n"); 228 229 if (isr & IR_PCIE_TOUT) 230 netdev_err(priv->ndev, "PCI-E Time Out\n"); 231 232 } 233 234 /** 235 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC 236 * @irq: interrupt number 237 * @dev: network device 238 * 239 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise 240 * 241 * It reads ISR register to know interrupt reasons, and proceed them one by one. 242 * Reasons of interest are: 243 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor 244 * RX_FREE - number of free Rx buffers in RXF fifo gets low 245 * TX_FREE - packet was transmited and RXF fifo holds its descriptor 246 */ 247 248 static irqreturn_t bdx_isr_napi(int irq, void *dev) 249 { 250 struct net_device *ndev = dev; 251 struct bdx_priv *priv = netdev_priv(ndev); 252 u32 isr; 253 254 ENTER; 255 isr = (READ_REG(priv, regISR) & IR_RUN); 256 if (unlikely(!isr)) { 257 bdx_enable_interrupts(priv); 258 return IRQ_NONE; /* Not our interrupt */ 259 } 260 261 if (isr & IR_EXTRA) 262 bdx_isr_extra(priv, isr); 263 264 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) { 265 if (likely(napi_schedule_prep(&priv->napi))) { 266 __napi_schedule(&priv->napi); 267 RET(IRQ_HANDLED); 268 } else { 269 /* NOTE: we get here if intr has slipped into window 270 * between these lines in bdx_poll: 271 * bdx_enable_interrupts(priv); 272 * return 0; 273 * currently intrs are disabled (since we read ISR), 274 * and we have failed to register next poll. 275 * so we read the regs to trigger chip 276 * and allow further interupts. */ 277 READ_REG(priv, regTXF_WPTR_0); 278 READ_REG(priv, regRXD_WPTR_0); 279 } 280 } 281 282 bdx_enable_interrupts(priv); 283 RET(IRQ_HANDLED); 284 } 285 286 static int bdx_poll(struct napi_struct *napi, int budget) 287 { 288 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi); 289 int work_done; 290 291 ENTER; 292 bdx_tx_cleanup(priv); 293 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget); 294 if ((work_done < budget) || 295 (priv->napi_stop++ >= 30)) { 296 DBG("rx poll is done. backing to isr-driven\n"); 297 298 /* from time to time we exit to let NAPI layer release 299 * device lock and allow waiting tasks (eg rmmod) to advance) */ 300 priv->napi_stop = 0; 301 302 napi_complete_done(napi, work_done); 303 bdx_enable_interrupts(priv); 304 } 305 return work_done; 306 } 307 308 /** 309 * bdx_fw_load - loads firmware to NIC 310 * @priv: NIC private structure 311 * 312 * Firmware is loaded via TXD fifo, so it must be initialized first. 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC 314 * can have few of them). So all drivers use semaphore register to choose one 315 * that will actually load FW to NIC. 316 */ 317 318 static int bdx_fw_load(struct bdx_priv *priv) 319 { 320 const struct firmware *fw = NULL; 321 int master, i; 322 int rc; 323 324 ENTER; 325 master = READ_REG(priv, regINIT_SEMAPHORE); 326 if (!READ_REG(priv, regINIT_STATUS) && master) { 327 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev); 328 if (rc) 329 goto out; 330 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size); 331 mdelay(100); 332 } 333 for (i = 0; i < 200; i++) { 334 if (READ_REG(priv, regINIT_STATUS)) { 335 rc = 0; 336 goto out; 337 } 338 mdelay(2); 339 } 340 rc = -EIO; 341 out: 342 if (master) 343 WRITE_REG(priv, regINIT_SEMAPHORE, 1); 344 345 release_firmware(fw); 346 347 if (rc) { 348 netdev_err(priv->ndev, "firmware loading failed\n"); 349 if (rc == -EIO) 350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n", 351 READ_REG(priv, regVPC), 352 READ_REG(priv, regVIC), 353 READ_REG(priv, regINIT_STATUS), i); 354 RET(rc); 355 } else { 356 DBG("%s: firmware loading success\n", priv->ndev->name); 357 RET(0); 358 } 359 } 360 361 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv) 362 { 363 u32 val; 364 365 ENTER; 366 DBG("mac0=%x mac1=%x mac2=%x\n", 367 READ_REG(priv, regUNC_MAC0_A), 368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 369 370 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]); 371 WRITE_REG(priv, regUNC_MAC2_A, val); 372 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]); 373 WRITE_REG(priv, regUNC_MAC1_A, val); 374 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]); 375 WRITE_REG(priv, regUNC_MAC0_A, val); 376 377 DBG("mac0=%x mac1=%x mac2=%x\n", 378 READ_REG(priv, regUNC_MAC0_A), 379 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 380 RET(); 381 } 382 383 /** 384 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines 385 * @priv: NIC private structure 386 */ 387 static int bdx_hw_start(struct bdx_priv *priv) 388 { 389 int rc = -EIO; 390 struct net_device *ndev = priv->ndev; 391 392 ENTER; 393 bdx_link_changed(priv); 394 395 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */ 396 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0); 397 WRITE_REG(priv, regPAUSE_QUANT, 0x96); 398 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010); 399 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010); 400 WRITE_REG(priv, regRX_FULLNESS, 0); 401 WRITE_REG(priv, regTX_FULLNESS, 0); 402 WRITE_REG(priv, regCTRLST, 403 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA); 404 405 WRITE_REG(priv, regVGLB, 0); 406 WRITE_REG(priv, regMAX_FRAME_A, 407 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL); 408 409 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */ 410 WRITE_REG(priv, regRDINTCM0, priv->rdintcm); 411 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */ 412 413 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */ 414 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */ 415 416 /* Enable timer interrupt once in 2 secs. */ 417 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */ 418 bdx_restore_mac(priv->ndev, priv); 419 420 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN | 421 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB); 422 423 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED) 424 425 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE, 426 ndev->name, ndev); 427 if (rc) 428 goto err_irq; 429 bdx_enable_interrupts(priv); 430 431 RET(0); 432 433 err_irq: 434 RET(rc); 435 } 436 437 static void bdx_hw_stop(struct bdx_priv *priv) 438 { 439 ENTER; 440 bdx_disable_interrupts(priv); 441 free_irq(priv->pdev->irq, priv->ndev); 442 443 netif_carrier_off(priv->ndev); 444 netif_stop_queue(priv->ndev); 445 446 RET(); 447 } 448 449 static int bdx_hw_reset_direct(void __iomem *regs) 450 { 451 u32 val, i; 452 ENTER; 453 454 /* reset sequences: read, write 1, read, write 0 */ 455 val = readl(regs + regCLKPLL); 456 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL); 457 udelay(50); 458 val = readl(regs + regCLKPLL); 459 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL); 460 461 /* check that the PLLs are locked and reset ended */ 462 for (i = 0; i < 70; i++, mdelay(10)) 463 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 464 /* do any PCI-E read transaction */ 465 readl(regs + regRXD_CFG0_0); 466 return 0; 467 } 468 pr_err("HW reset failed\n"); 469 return 1; /* failure */ 470 } 471 472 static int bdx_hw_reset(struct bdx_priv *priv) 473 { 474 u32 val, i; 475 ENTER; 476 477 if (priv->port == 0) { 478 /* reset sequences: read, write 1, read, write 0 */ 479 val = READ_REG(priv, regCLKPLL); 480 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8); 481 udelay(50); 482 val = READ_REG(priv, regCLKPLL); 483 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST); 484 } 485 /* check that the PLLs are locked and reset ended */ 486 for (i = 0; i < 70; i++, mdelay(10)) 487 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 488 /* do any PCI-E read transaction */ 489 READ_REG(priv, regRXD_CFG0_0); 490 return 0; 491 } 492 pr_err("HW reset failed\n"); 493 return 1; /* failure */ 494 } 495 496 static int bdx_sw_reset(struct bdx_priv *priv) 497 { 498 int i; 499 500 ENTER; 501 /* 1. load MAC (obsolete) */ 502 /* 2. disable Rx (and Tx) */ 503 WRITE_REG(priv, regGMAC_RXF_A, 0); 504 mdelay(100); 505 /* 3. disable port */ 506 WRITE_REG(priv, regDIS_PORT, 1); 507 /* 4. disable queue */ 508 WRITE_REG(priv, regDIS_QU, 1); 509 /* 5. wait until hw is disabled */ 510 for (i = 0; i < 50; i++) { 511 if (READ_REG(priv, regRST_PORT) & 1) 512 break; 513 mdelay(10); 514 } 515 if (i == 50) 516 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n"); 517 518 /* 6. disable intrs */ 519 WRITE_REG(priv, regRDINTCM0, 0); 520 WRITE_REG(priv, regTDINTCM0, 0); 521 WRITE_REG(priv, regIMR, 0); 522 READ_REG(priv, regISR); 523 524 /* 7. reset queue */ 525 WRITE_REG(priv, regRST_QU, 1); 526 /* 8. reset port */ 527 WRITE_REG(priv, regRST_PORT, 1); 528 /* 9. zero all read and write pointers */ 529 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 530 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 531 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 532 WRITE_REG(priv, i, 0); 533 /* 10. unseet port disable */ 534 WRITE_REG(priv, regDIS_PORT, 0); 535 /* 11. unset queue disable */ 536 WRITE_REG(priv, regDIS_QU, 0); 537 /* 12. unset queue reset */ 538 WRITE_REG(priv, regRST_QU, 0); 539 /* 13. unset port reset */ 540 WRITE_REG(priv, regRST_PORT, 0); 541 /* 14. enable Rx */ 542 /* skiped. will be done later */ 543 /* 15. save MAC (obsolete) */ 544 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 545 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 546 547 RET(0); 548 } 549 550 /* bdx_reset - performs right type of reset depending on hw type */ 551 static int bdx_reset(struct bdx_priv *priv) 552 { 553 ENTER; 554 RET((priv->pdev->device == 0x3009) 555 ? bdx_hw_reset(priv) 556 : bdx_sw_reset(priv)); 557 } 558 559 /** 560 * bdx_close - Disables a network interface 561 * @netdev: network interface device structure 562 * 563 * Returns 0, this is not allowed to fail 564 * 565 * The close entry point is called when an interface is de-activated 566 * by the OS. The hardware is still under the drivers control, but 567 * needs to be disabled. A global MAC reset is issued to stop the 568 * hardware, and all transmit and receive resources are freed. 569 **/ 570 static int bdx_close(struct net_device *ndev) 571 { 572 struct bdx_priv *priv = NULL; 573 574 ENTER; 575 priv = netdev_priv(ndev); 576 577 napi_disable(&priv->napi); 578 579 bdx_reset(priv); 580 bdx_hw_stop(priv); 581 bdx_rx_free(priv); 582 bdx_tx_free(priv); 583 RET(0); 584 } 585 586 /** 587 * bdx_open - Called when a network interface is made active 588 * @netdev: network interface device structure 589 * 590 * Returns 0 on success, negative value on failure 591 * 592 * The open entry point is called when a network interface is made 593 * active by the system (IFF_UP). At this point all resources needed 594 * for transmit and receive operations are allocated, the interrupt 595 * handler is registered with the OS, the watchdog timer is started, 596 * and the stack is notified that the interface is ready. 597 **/ 598 static int bdx_open(struct net_device *ndev) 599 { 600 struct bdx_priv *priv; 601 int rc; 602 603 ENTER; 604 priv = netdev_priv(ndev); 605 bdx_reset(priv); 606 if (netif_running(ndev)) 607 netif_stop_queue(priv->ndev); 608 609 if ((rc = bdx_tx_init(priv)) || 610 (rc = bdx_rx_init(priv)) || 611 (rc = bdx_fw_load(priv))) 612 goto err; 613 614 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 615 616 rc = bdx_hw_start(priv); 617 if (rc) 618 goto err; 619 620 napi_enable(&priv->napi); 621 622 print_fw_id(priv->nic); 623 624 RET(0); 625 626 err: 627 bdx_close(ndev); 628 RET(rc); 629 } 630 631 static int bdx_range_check(struct bdx_priv *priv, u32 offset) 632 { 633 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ? 634 -EINVAL : 0; 635 } 636 637 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd) 638 { 639 struct bdx_priv *priv = netdev_priv(ndev); 640 u32 data[3]; 641 int error; 642 643 ENTER; 644 645 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd); 646 if (cmd != SIOCDEVPRIVATE) { 647 error = copy_from_user(data, ifr->ifr_data, sizeof(data)); 648 if (error) { 649 pr_err("can't copy from user\n"); 650 RET(-EFAULT); 651 } 652 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]); 653 } else { 654 return -EOPNOTSUPP; 655 } 656 657 if (!capable(CAP_SYS_RAWIO)) 658 return -EPERM; 659 660 switch (data[0]) { 661 662 case BDX_OP_READ: 663 error = bdx_range_check(priv, data[1]); 664 if (error < 0) 665 return error; 666 data[2] = READ_REG(priv, data[1]); 667 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2], 668 data[2]); 669 error = copy_to_user(ifr->ifr_data, data, sizeof(data)); 670 if (error) 671 RET(-EFAULT); 672 break; 673 674 case BDX_OP_WRITE: 675 error = bdx_range_check(priv, data[1]); 676 if (error < 0) 677 return error; 678 WRITE_REG(priv, data[1], data[2]); 679 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]); 680 break; 681 682 default: 683 RET(-EOPNOTSUPP); 684 } 685 return 0; 686 } 687 688 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) 689 { 690 ENTER; 691 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 692 RET(bdx_ioctl_priv(ndev, ifr, cmd)); 693 else 694 RET(-EOPNOTSUPP); 695 } 696 697 /** 698 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid 699 * @ndev: network device 700 * @vid: VLAN vid 701 * @op: add or kill operation 702 * 703 * Passes VLAN filter table to hardware 704 */ 705 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable) 706 { 707 struct bdx_priv *priv = netdev_priv(ndev); 708 u32 reg, bit, val; 709 710 ENTER; 711 DBG2("vid=%d value=%d\n", (int)vid, enable); 712 if (unlikely(vid >= 4096)) { 713 pr_err("invalid VID: %u (> 4096)\n", vid); 714 RET(); 715 } 716 reg = regVLAN_0 + (vid / 32) * 4; 717 bit = 1 << vid % 32; 718 val = READ_REG(priv, reg); 719 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit); 720 if (enable) 721 val |= bit; 722 else 723 val &= ~bit; 724 DBG2("new val %x\n", val); 725 WRITE_REG(priv, reg, val); 726 RET(); 727 } 728 729 /** 730 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table 731 * @ndev: network device 732 * @vid: VLAN vid to add 733 */ 734 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 735 { 736 __bdx_vlan_rx_vid(ndev, vid, 1); 737 return 0; 738 } 739 740 /** 741 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table 742 * @ndev: network device 743 * @vid: VLAN vid to kill 744 */ 745 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 746 { 747 __bdx_vlan_rx_vid(ndev, vid, 0); 748 return 0; 749 } 750 751 /** 752 * bdx_change_mtu - Change the Maximum Transfer Unit 753 * @netdev: network interface device structure 754 * @new_mtu: new value for maximum frame size 755 * 756 * Returns 0 on success, negative on failure 757 */ 758 static int bdx_change_mtu(struct net_device *ndev, int new_mtu) 759 { 760 ENTER; 761 762 ndev->mtu = new_mtu; 763 if (netif_running(ndev)) { 764 bdx_close(ndev); 765 bdx_open(ndev); 766 } 767 RET(0); 768 } 769 770 static void bdx_setmulti(struct net_device *ndev) 771 { 772 struct bdx_priv *priv = netdev_priv(ndev); 773 774 u32 rxf_val = 775 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN; 776 int i; 777 778 ENTER; 779 /* IMF - imperfect (hash) rx multicat filter */ 780 /* PMF - perfect rx multicat filter */ 781 782 /* FIXME: RXE(OFF) */ 783 if (ndev->flags & IFF_PROMISC) { 784 rxf_val |= GMAC_RX_FILTER_PRM; 785 } else if (ndev->flags & IFF_ALLMULTI) { 786 /* set IMF to accept all multicast frmaes */ 787 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 788 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0); 789 } else if (!netdev_mc_empty(ndev)) { 790 u8 hash; 791 struct netdev_hw_addr *ha; 792 u32 reg, val; 793 794 /* set IMF to deny all multicast frames */ 795 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 796 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0); 797 /* set PMF to deny all multicast frames */ 798 for (i = 0; i < MAC_MCST_NUM; i++) { 799 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0); 800 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0); 801 } 802 803 /* use PMF to accept first MAC_MCST_NUM (15) addresses */ 804 /* TBD: sort addresses and write them in ascending order 805 * into RX_MAC_MCST regs. we skip this phase now and accept ALL 806 * multicast frames throu IMF */ 807 /* accept the rest of addresses throu IMF */ 808 netdev_for_each_mc_addr(ha, ndev) { 809 hash = 0; 810 for (i = 0; i < ETH_ALEN; i++) 811 hash ^= ha->addr[i]; 812 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2); 813 val = READ_REG(priv, reg); 814 val |= (1 << (hash % 32)); 815 WRITE_REG(priv, reg, val); 816 } 817 818 } else { 819 DBG("only own mac %d\n", netdev_mc_count(ndev)); 820 rxf_val |= GMAC_RX_FILTER_AB; 821 } 822 WRITE_REG(priv, regGMAC_RXF_A, rxf_val); 823 /* enable RX */ 824 /* FIXME: RXE(ON) */ 825 RET(); 826 } 827 828 static int bdx_set_mac(struct net_device *ndev, void *p) 829 { 830 struct bdx_priv *priv = netdev_priv(ndev); 831 struct sockaddr *addr = p; 832 833 ENTER; 834 /* 835 if (netif_running(dev)) 836 return -EBUSY 837 */ 838 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 839 bdx_restore_mac(ndev, priv); 840 RET(0); 841 } 842 843 static int bdx_read_mac(struct bdx_priv *priv) 844 { 845 u16 macAddress[3], i; 846 ENTER; 847 848 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 849 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 850 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 851 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 852 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 853 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 854 for (i = 0; i < 3; i++) { 855 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i]; 856 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8; 857 } 858 RET(0); 859 } 860 861 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg) 862 { 863 u64 val; 864 865 val = READ_REG(priv, reg); 866 val |= ((u64) READ_REG(priv, reg + 8)) << 32; 867 return val; 868 } 869 870 /*Do the statistics-update work*/ 871 static void bdx_update_stats(struct bdx_priv *priv) 872 { 873 struct bdx_stats *stats = &priv->hw_stats; 874 u64 *stats_vector = (u64 *) stats; 875 int i; 876 int addr; 877 878 /*Fill HW structure */ 879 addr = 0x7200; 880 /*First 12 statistics - 0x7200 - 0x72B0 */ 881 for (i = 0; i < 12; i++) { 882 stats_vector[i] = bdx_read_l2stat(priv, addr); 883 addr += 0x10; 884 } 885 BDX_ASSERT(addr != 0x72C0); 886 /* 0x72C0-0x72E0 RSRV */ 887 addr = 0x72F0; 888 for (; i < 16; i++) { 889 stats_vector[i] = bdx_read_l2stat(priv, addr); 890 addr += 0x10; 891 } 892 BDX_ASSERT(addr != 0x7330); 893 /* 0x7330-0x7360 RSRV */ 894 addr = 0x7370; 895 for (; i < 19; i++) { 896 stats_vector[i] = bdx_read_l2stat(priv, addr); 897 addr += 0x10; 898 } 899 BDX_ASSERT(addr != 0x73A0); 900 /* 0x73A0-0x73B0 RSRV */ 901 addr = 0x73C0; 902 for (; i < 23; i++) { 903 stats_vector[i] = bdx_read_l2stat(priv, addr); 904 addr += 0x10; 905 } 906 BDX_ASSERT(addr != 0x7400); 907 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i); 908 } 909 910 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 911 u16 rxd_vlan); 912 static void print_rxfd(struct rxf_desc *rxfd); 913 914 /************************************************************************* 915 * Rx DB * 916 *************************************************************************/ 917 918 static void bdx_rxdb_destroy(struct rxdb *db) 919 { 920 vfree(db); 921 } 922 923 static struct rxdb *bdx_rxdb_create(int nelem) 924 { 925 struct rxdb *db; 926 int i; 927 928 db = vmalloc(sizeof(struct rxdb) 929 + (nelem * sizeof(int)) 930 + (nelem * sizeof(struct rx_map))); 931 if (likely(db != NULL)) { 932 db->stack = (int *)(db + 1); 933 db->elems = (void *)(db->stack + nelem); 934 db->nelem = nelem; 935 db->top = nelem; 936 for (i = 0; i < nelem; i++) 937 db->stack[i] = nelem - i - 1; /* to make first allocs 938 close to db struct*/ 939 } 940 941 return db; 942 } 943 944 static inline int bdx_rxdb_alloc_elem(struct rxdb *db) 945 { 946 BDX_ASSERT(db->top <= 0); 947 return db->stack[--(db->top)]; 948 } 949 950 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n) 951 { 952 BDX_ASSERT((n < 0) || (n >= db->nelem)); 953 return db->elems + n; 954 } 955 956 static inline int bdx_rxdb_available(struct rxdb *db) 957 { 958 return db->top; 959 } 960 961 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n) 962 { 963 BDX_ASSERT((n >= db->nelem) || (n < 0)); 964 db->stack[(db->top)++] = n; 965 } 966 967 /************************************************************************* 968 * Rx Init * 969 *************************************************************************/ 970 971 /** 972 * bdx_rx_init - initialize RX all related HW and SW resources 973 * @priv: NIC private structure 974 * 975 * Returns 0 on success, negative value on failure 976 * 977 * It creates rxf and rxd fifos, update relevant HW registers, preallocate 978 * skb for rx. It assumes that Rx is desabled in HW 979 * funcs are grouped for better cache usage 980 * 981 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be 982 * filled and packets will be dropped by nic without getting into host or 983 * cousing interrupt. Anyway, in that condition, host has no chance to process 984 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles 985 */ 986 987 /* TBD: ensure proper packet size */ 988 989 static int bdx_rx_init(struct bdx_priv *priv) 990 { 991 ENTER; 992 993 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size, 994 regRXD_CFG0_0, regRXD_CFG1_0, 995 regRXD_RPTR_0, regRXD_WPTR_0)) 996 goto err_mem; 997 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size, 998 regRXF_CFG0_0, regRXF_CFG1_0, 999 regRXF_RPTR_0, regRXF_WPTR_0)) 1000 goto err_mem; 1001 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz / 1002 sizeof(struct rxf_desc)); 1003 if (!priv->rxdb) 1004 goto err_mem; 1005 1006 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN; 1007 return 0; 1008 1009 err_mem: 1010 netdev_err(priv->ndev, "Rx init failed\n"); 1011 return -ENOMEM; 1012 } 1013 1014 /** 1015 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo 1016 * @priv: NIC private structure 1017 * @f: RXF fifo 1018 */ 1019 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1020 { 1021 struct rx_map *dm; 1022 struct rxdb *db = priv->rxdb; 1023 u16 i; 1024 1025 ENTER; 1026 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db), 1027 db->nelem - bdx_rxdb_available(db)); 1028 while (bdx_rxdb_available(db) > 0) { 1029 i = bdx_rxdb_alloc_elem(db); 1030 dm = bdx_rxdb_addr_elem(db, i); 1031 dm->dma = 0; 1032 } 1033 for (i = 0; i < db->nelem; i++) { 1034 dm = bdx_rxdb_addr_elem(db, i); 1035 if (dm->dma) { 1036 pci_unmap_single(priv->pdev, 1037 dm->dma, f->m.pktsz, 1038 PCI_DMA_FROMDEVICE); 1039 dev_kfree_skb(dm->skb); 1040 } 1041 } 1042 } 1043 1044 /** 1045 * bdx_rx_free - release all Rx resources 1046 * @priv: NIC private structure 1047 * 1048 * It assumes that Rx is desabled in HW 1049 */ 1050 static void bdx_rx_free(struct bdx_priv *priv) 1051 { 1052 ENTER; 1053 if (priv->rxdb) { 1054 bdx_rx_free_skbs(priv, &priv->rxf_fifo0); 1055 bdx_rxdb_destroy(priv->rxdb); 1056 priv->rxdb = NULL; 1057 } 1058 bdx_fifo_free(priv, &priv->rxf_fifo0.m); 1059 bdx_fifo_free(priv, &priv->rxd_fifo0.m); 1060 1061 RET(); 1062 } 1063 1064 /************************************************************************* 1065 * Rx Engine * 1066 *************************************************************************/ 1067 1068 /** 1069 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs 1070 * @priv: nic's private structure 1071 * @f: RXF fifo that needs skbs 1072 * 1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo. 1074 * skb's virtual and physical addresses are stored in skb db. 1075 * To calculate free space, func uses cached values of RPTR and WPTR 1076 * When needed, it also updates RPTR and WPTR. 1077 */ 1078 1079 /* TBD: do not update WPTR if no desc were written */ 1080 1081 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1082 { 1083 struct sk_buff *skb; 1084 struct rxf_desc *rxfd; 1085 struct rx_map *dm; 1086 int dno, delta, idx; 1087 struct rxdb *db = priv->rxdb; 1088 1089 ENTER; 1090 dno = bdx_rxdb_available(db) - 1; 1091 while (dno > 0) { 1092 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN); 1093 if (!skb) 1094 break; 1095 1096 skb_reserve(skb, NET_IP_ALIGN); 1097 1098 idx = bdx_rxdb_alloc_elem(db); 1099 dm = bdx_rxdb_addr_elem(db, idx); 1100 dm->dma = pci_map_single(priv->pdev, 1101 skb->data, f->m.pktsz, 1102 PCI_DMA_FROMDEVICE); 1103 dm->skb = skb; 1104 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1105 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1106 rxfd->va_lo = idx; 1107 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1108 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1109 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1110 print_rxfd(rxfd); 1111 1112 f->m.wptr += sizeof(struct rxf_desc); 1113 delta = f->m.wptr - f->m.memsz; 1114 if (unlikely(delta >= 0)) { 1115 f->m.wptr = delta; 1116 if (delta > 0) { 1117 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1118 DBG("wrapped descriptor\n"); 1119 } 1120 } 1121 dno--; 1122 } 1123 /*TBD: to do - delayed rxf wptr like in txd */ 1124 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1125 RET(); 1126 } 1127 1128 static inline void 1129 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan, 1130 struct sk_buff *skb) 1131 { 1132 ENTER; 1133 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1)); 1134 if (GET_RXD_VTAG(rxd_val1)) { 1135 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n", 1136 priv->ndev->name, 1137 GET_RXD_VLAN_ID(rxd_vlan), 1138 GET_RXD_VTAG(rxd_val1)); 1139 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan)); 1140 } 1141 netif_receive_skb(skb); 1142 } 1143 1144 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd) 1145 { 1146 struct rxf_desc *rxfd; 1147 struct rx_map *dm; 1148 struct rxf_fifo *f; 1149 struct rxdb *db; 1150 int delta; 1151 1152 ENTER; 1153 DBG("priv=%p rxdd=%p\n", priv, rxdd); 1154 f = &priv->rxf_fifo0; 1155 db = priv->rxdb; 1156 DBG("db=%p f=%p\n", db, f); 1157 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1158 DBG("dm=%p\n", dm); 1159 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1160 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1161 rxfd->va_lo = rxdd->va_lo; 1162 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1163 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1164 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1165 print_rxfd(rxfd); 1166 1167 f->m.wptr += sizeof(struct rxf_desc); 1168 delta = f->m.wptr - f->m.memsz; 1169 if (unlikely(delta >= 0)) { 1170 f->m.wptr = delta; 1171 if (delta > 0) { 1172 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1173 DBG("wrapped descriptor\n"); 1174 } 1175 } 1176 RET(); 1177 } 1178 1179 /** 1180 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS 1181 * NOTE: a special treatment is given to non-continuous descriptors 1182 * that start near the end, wraps around and continue at the beginning. a second 1183 * part is copied right after the first, and then descriptor is interpreted as 1184 * normal. fifo has an extra space to allow such operations 1185 * @priv: nic's private structure 1186 * @f: RXF fifo that needs skbs 1187 * @budget: maximum number of packets to receive 1188 */ 1189 1190 /* TBD: replace memcpy func call by explicite inline asm */ 1191 1192 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget) 1193 { 1194 struct net_device *ndev = priv->ndev; 1195 struct sk_buff *skb, *skb2; 1196 struct rxd_desc *rxdd; 1197 struct rx_map *dm; 1198 struct rxf_fifo *rxf_fifo; 1199 int tmp_len, size; 1200 int done = 0; 1201 int max_done = BDX_MAX_RX_DONE; 1202 struct rxdb *db = NULL; 1203 /* Unmarshalled descriptor - copy of descriptor in host order */ 1204 u32 rxd_val1; 1205 u16 len; 1206 u16 rxd_vlan; 1207 1208 ENTER; 1209 max_done = budget; 1210 1211 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR; 1212 1213 size = f->m.wptr - f->m.rptr; 1214 if (size < 0) 1215 size = f->m.memsz + size; /* size is negative :-) */ 1216 1217 while (size > 0) { 1218 1219 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr); 1220 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1); 1221 1222 len = CPU_CHIP_SWAP16(rxdd->len); 1223 1224 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan); 1225 1226 print_rxdd(rxdd, rxd_val1, len, rxd_vlan); 1227 1228 tmp_len = GET_RXD_BC(rxd_val1) << 3; 1229 BDX_ASSERT(tmp_len <= 0); 1230 size -= tmp_len; 1231 if (size < 0) /* test for partially arrived descriptor */ 1232 break; 1233 1234 f->m.rptr += tmp_len; 1235 1236 tmp_len = f->m.rptr - f->m.memsz; 1237 if (unlikely(tmp_len >= 0)) { 1238 f->m.rptr = tmp_len; 1239 if (tmp_len > 0) { 1240 DBG("wrapped desc rptr=%d tmp_len=%d\n", 1241 f->m.rptr, tmp_len); 1242 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len); 1243 } 1244 } 1245 1246 if (unlikely(GET_RXD_ERR(rxd_val1))) { 1247 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1)); 1248 ndev->stats.rx_errors++; 1249 bdx_recycle_skb(priv, rxdd); 1250 continue; 1251 } 1252 1253 rxf_fifo = &priv->rxf_fifo0; 1254 db = priv->rxdb; 1255 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1256 skb = dm->skb; 1257 1258 if (len < BDX_COPYBREAK && 1259 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) { 1260 skb_reserve(skb2, NET_IP_ALIGN); 1261 /*skb_put(skb2, len); */ 1262 pci_dma_sync_single_for_cpu(priv->pdev, 1263 dm->dma, rxf_fifo->m.pktsz, 1264 PCI_DMA_FROMDEVICE); 1265 memcpy(skb2->data, skb->data, len); 1266 bdx_recycle_skb(priv, rxdd); 1267 skb = skb2; 1268 } else { 1269 pci_unmap_single(priv->pdev, 1270 dm->dma, rxf_fifo->m.pktsz, 1271 PCI_DMA_FROMDEVICE); 1272 bdx_rxdb_free_elem(db, rxdd->va_lo); 1273 } 1274 1275 ndev->stats.rx_bytes += len; 1276 1277 skb_put(skb, len); 1278 skb->protocol = eth_type_trans(skb, ndev); 1279 1280 /* Non-IP packets aren't checksum-offloaded */ 1281 if (GET_RXD_PKT_ID(rxd_val1) == 0) 1282 skb_checksum_none_assert(skb); 1283 else 1284 skb->ip_summed = CHECKSUM_UNNECESSARY; 1285 1286 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb); 1287 1288 if (++done >= max_done) 1289 break; 1290 } 1291 1292 ndev->stats.rx_packets += done; 1293 1294 /* FIXME: do smth to minimize pci accesses */ 1295 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1296 1297 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 1298 1299 RET(done); 1300 } 1301 1302 /************************************************************************* 1303 * Debug / Temprorary Code * 1304 *************************************************************************/ 1305 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 1306 u16 rxd_vlan) 1307 { 1308 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n", 1309 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1), 1310 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1), 1311 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1), 1312 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan), 1313 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo, 1314 rxdd->va_hi); 1315 } 1316 1317 static void print_rxfd(struct rxf_desc *rxfd) 1318 { 1319 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n" 1320 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n", 1321 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len); 1322 } 1323 1324 /* 1325 * TX HW/SW interaction overview 1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1327 * There are 2 types of TX communication channels between driver and NIC. 1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets 1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers. 1330 * 1331 * Currently NIC supports TSO, checksuming and gather DMA 1332 * UFO and IP fragmentation is on the way 1333 * 1334 * RX SW Data Structures 1335 * ~~~~~~~~~~~~~~~~~~~~~ 1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses. 1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW 1338 * acknowledges sent by TXF descriptors. 1339 * Implemented as cyclic buffer. 1340 * fifo - keeps info about fifo's size and location, relevant HW registers, 1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 1342 * Implemented as simple struct. 1343 * 1344 * TX SW Execution Flow 1345 * ~~~~~~~~~~~~~~~~~~~~ 1346 * OS calls driver's hard_xmit method with packet to sent. 1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW 1348 * by updating TXD WPTR. 1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb. 1350 * To prevent TXD fifo overflow without reading HW registers every time, 1351 * SW deploys "tx level" technique. 1352 * Upon strart up, tx level is initialized to TXD fifo length. 1353 * For every sent packet, SW gets its TXD descriptor sizei 1354 * (from precalculated array) and substructs it from tx level. 1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of 1356 * original TXD descriptor from txdb and adds it to tx level. 1357 * When Tx level drops under some predefined treshhold, the driver 1358 * stops the TX queue. When TX level rises above that level, 1359 * the tx queue is enabled again. 1360 * 1361 * This technique avoids eccessive reading of RPTR and WPTR registers. 1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput. 1363 */ 1364 1365 /************************************************************************* 1366 * Tx DB * 1367 *************************************************************************/ 1368 static inline int bdx_tx_db_size(struct txdb *db) 1369 { 1370 int taken = db->wptr - db->rptr; 1371 if (taken < 0) 1372 taken = db->size + 1 + taken; /* (size + 1) equals memsz */ 1373 1374 return db->size - taken; 1375 } 1376 1377 /** 1378 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap 1379 * @db: tx data base 1380 * @pptr: read or write pointer 1381 */ 1382 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr) 1383 { 1384 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */ 1385 1386 BDX_ASSERT(*pptr != db->rptr && /* expect either read */ 1387 *pptr != db->wptr); /* or write pointer */ 1388 1389 BDX_ASSERT(*pptr < db->start || /* pointer has to be */ 1390 *pptr >= db->end); /* in range */ 1391 1392 ++*pptr; 1393 if (unlikely(*pptr == db->end)) 1394 *pptr = db->start; 1395 } 1396 1397 /** 1398 * bdx_tx_db_inc_rptr - increment read pointer 1399 * @db: tx data base 1400 */ 1401 static inline void bdx_tx_db_inc_rptr(struct txdb *db) 1402 { 1403 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */ 1404 __bdx_tx_db_ptr_next(db, &db->rptr); 1405 } 1406 1407 /** 1408 * bdx_tx_db_inc_wptr - increment write pointer 1409 * @db: tx data base 1410 */ 1411 static inline void bdx_tx_db_inc_wptr(struct txdb *db) 1412 { 1413 __bdx_tx_db_ptr_next(db, &db->wptr); 1414 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as 1415 a result of write */ 1416 } 1417 1418 /** 1419 * bdx_tx_db_init - creates and initializes tx db 1420 * @d: tx data base 1421 * @sz_type: size of tx fifo 1422 * 1423 * Returns 0 on success, error code otherwise 1424 */ 1425 static int bdx_tx_db_init(struct txdb *d, int sz_type) 1426 { 1427 int memsz = FIFO_SIZE * (1 << (sz_type + 1)); 1428 1429 d->start = vmalloc(memsz); 1430 if (!d->start) 1431 return -ENOMEM; 1432 1433 /* 1434 * In order to differentiate between db is empty and db is full 1435 * states at least one element should always be empty in order to 1436 * avoid rptr == wptr which means db is empty 1437 */ 1438 d->size = memsz / sizeof(struct tx_map) - 1; 1439 d->end = d->start + d->size + 1; /* just after last element */ 1440 1441 /* all dbs are created equally empty */ 1442 d->rptr = d->start; 1443 d->wptr = d->start; 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * bdx_tx_db_close - closes tx db and frees all memory 1450 * @d: tx data base 1451 */ 1452 static void bdx_tx_db_close(struct txdb *d) 1453 { 1454 BDX_ASSERT(d == NULL); 1455 1456 vfree(d->start); 1457 d->start = NULL; 1458 } 1459 1460 /************************************************************************* 1461 * Tx Engine * 1462 *************************************************************************/ 1463 1464 /* sizes of tx desc (including padding if needed) as function 1465 * of skb's frag number */ 1466 static struct { 1467 u16 bytes; 1468 u16 qwords; /* qword = 64 bit */ 1469 } txd_sizes[MAX_SKB_FRAGS + 1]; 1470 1471 /** 1472 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks 1473 * @priv: NIC private structure 1474 * @skb: socket buffer to map 1475 * @txdd: TX descriptor to use 1476 * 1477 * It makes dma mappings for skb's data blocks and writes them to PBL of 1478 * new tx descriptor. It also stores them in the tx db, so they could be 1479 * unmaped after data was sent. It is reponsibility of a caller to make 1480 * sure that there is enough space in the tx db. Last element holds pointer 1481 * to skb itself and marked with zero length 1482 */ 1483 static inline void 1484 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb, 1485 struct txd_desc *txdd) 1486 { 1487 struct txdb *db = &priv->txdb; 1488 struct pbl *pbl = &txdd->pbl[0]; 1489 int nr_frags = skb_shinfo(skb)->nr_frags; 1490 int i; 1491 1492 db->wptr->len = skb_headlen(skb); 1493 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data, 1494 db->wptr->len, PCI_DMA_TODEVICE); 1495 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1496 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1497 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1498 DBG("=== pbl len: 0x%x ================\n", pbl->len); 1499 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo); 1500 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi); 1501 bdx_tx_db_inc_wptr(db); 1502 1503 for (i = 0; i < nr_frags; i++) { 1504 const skb_frag_t *frag; 1505 1506 frag = &skb_shinfo(skb)->frags[i]; 1507 db->wptr->len = skb_frag_size(frag); 1508 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag, 1509 0, skb_frag_size(frag), 1510 DMA_TO_DEVICE); 1511 1512 pbl++; 1513 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1514 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1515 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1516 bdx_tx_db_inc_wptr(db); 1517 } 1518 1519 /* add skb clean up info. */ 1520 db->wptr->len = -txd_sizes[nr_frags].bytes; 1521 db->wptr->addr.skb = skb; 1522 bdx_tx_db_inc_wptr(db); 1523 } 1524 1525 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags 1526 * number of frags is used as index to fetch correct descriptors size, 1527 * instead of calculating it each time */ 1528 static void __init init_txd_sizes(void) 1529 { 1530 int i, lwords; 1531 1532 /* 7 - is number of lwords in txd with one phys buffer 1533 * 3 - is number of lwords used for every additional phys buffer */ 1534 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) { 1535 lwords = 7 + (i * 3); 1536 if (lwords & 1) 1537 lwords++; /* pad it with 1 lword */ 1538 txd_sizes[i].qwords = lwords >> 1; 1539 txd_sizes[i].bytes = lwords << 2; 1540 } 1541 } 1542 1543 /* bdx_tx_init - initialize all Tx related stuff. 1544 * Namely, TXD and TXF fifos, database etc */ 1545 static int bdx_tx_init(struct bdx_priv *priv) 1546 { 1547 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size, 1548 regTXD_CFG0_0, 1549 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0)) 1550 goto err_mem; 1551 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size, 1552 regTXF_CFG0_0, 1553 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0)) 1554 goto err_mem; 1555 1556 /* The TX db has to keep mappings for all packets sent (on TxD) 1557 * and not yet reclaimed (on TxF) */ 1558 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size))) 1559 goto err_mem; 1560 1561 priv->tx_level = BDX_MAX_TX_LEVEL; 1562 #ifdef BDX_DELAY_WPTR 1563 priv->tx_update_mark = priv->tx_level - 1024; 1564 #endif 1565 return 0; 1566 1567 err_mem: 1568 netdev_err(priv->ndev, "Tx init failed\n"); 1569 return -ENOMEM; 1570 } 1571 1572 /** 1573 * bdx_tx_space - calculates available space in TX fifo 1574 * @priv: NIC private structure 1575 * 1576 * Returns available space in TX fifo in bytes 1577 */ 1578 static inline int bdx_tx_space(struct bdx_priv *priv) 1579 { 1580 struct txd_fifo *f = &priv->txd_fifo0; 1581 int fsize; 1582 1583 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR; 1584 fsize = f->m.rptr - f->m.wptr; 1585 if (fsize <= 0) 1586 fsize = f->m.memsz + fsize; 1587 return fsize; 1588 } 1589 1590 /** 1591 * bdx_tx_transmit - send packet to NIC 1592 * @skb: packet to send 1593 * @ndev: network device assigned to NIC 1594 * Return codes: 1595 * o NETDEV_TX_OK everything ok. 1596 * o NETDEV_TX_BUSY Cannot transmit packet, try later 1597 * Usually a bug, means queue start/stop flow control is broken in 1598 * the driver. Note: the driver must NOT put the skb in its DMA ring. 1599 */ 1600 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb, 1601 struct net_device *ndev) 1602 { 1603 struct bdx_priv *priv = netdev_priv(ndev); 1604 struct txd_fifo *f = &priv->txd_fifo0; 1605 int txd_checksum = 7; /* full checksum */ 1606 int txd_lgsnd = 0; 1607 int txd_vlan_id = 0; 1608 int txd_vtag = 0; 1609 int txd_mss = 0; 1610 1611 int nr_frags = skb_shinfo(skb)->nr_frags; 1612 struct txd_desc *txdd; 1613 int len; 1614 unsigned long flags; 1615 1616 ENTER; 1617 local_irq_save(flags); 1618 spin_lock(&priv->tx_lock); 1619 1620 /* build tx descriptor */ 1621 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */ 1622 txdd = (struct txd_desc *)(f->m.va + f->m.wptr); 1623 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) 1624 txd_checksum = 0; 1625 1626 if (skb_shinfo(skb)->gso_size) { 1627 txd_mss = skb_shinfo(skb)->gso_size; 1628 txd_lgsnd = 1; 1629 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len, 1630 txd_mss); 1631 } 1632 1633 if (skb_vlan_tag_present(skb)) { 1634 /*Cut VLAN ID to 12 bits */ 1635 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12); 1636 txd_vtag = 1; 1637 } 1638 1639 txdd->length = CPU_CHIP_SWAP16(skb->len); 1640 txdd->mss = CPU_CHIP_SWAP16(txd_mss); 1641 txdd->txd_val1 = 1642 CPU_CHIP_SWAP32(TXD_W1_VAL 1643 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag, 1644 txd_lgsnd, txd_vlan_id)); 1645 DBG("=== TxD desc =====================\n"); 1646 DBG("=== w1: 0x%x ================\n", txdd->txd_val1); 1647 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length); 1648 1649 bdx_tx_map_skb(priv, skb, txdd); 1650 1651 /* increment TXD write pointer. In case of 1652 fifo wrapping copy reminder of the descriptor 1653 to the beginning */ 1654 f->m.wptr += txd_sizes[nr_frags].bytes; 1655 len = f->m.wptr - f->m.memsz; 1656 if (unlikely(len >= 0)) { 1657 f->m.wptr = len; 1658 if (len > 0) { 1659 BDX_ASSERT(len > f->m.memsz); 1660 memcpy(f->m.va, f->m.va + f->m.memsz, len); 1661 } 1662 } 1663 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */ 1664 1665 priv->tx_level -= txd_sizes[nr_frags].bytes; 1666 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1667 #ifdef BDX_DELAY_WPTR 1668 if (priv->tx_level > priv->tx_update_mark) { 1669 /* Force memory writes to complete before letting h/w 1670 know there are new descriptors to fetch. 1671 (might be needed on platforms like IA64) 1672 wmb(); */ 1673 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1674 } else { 1675 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) { 1676 priv->tx_noupd = 0; 1677 WRITE_REG(priv, f->m.reg_WPTR, 1678 f->m.wptr & TXF_WPTR_WR_PTR); 1679 } 1680 } 1681 #else 1682 /* Force memory writes to complete before letting h/w 1683 know there are new descriptors to fetch. 1684 (might be needed on platforms like IA64) 1685 wmb(); */ 1686 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1687 1688 #endif 1689 #ifdef BDX_LLTX 1690 netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */ 1691 #endif 1692 ndev->stats.tx_packets++; 1693 ndev->stats.tx_bytes += skb->len; 1694 1695 if (priv->tx_level < BDX_MIN_TX_LEVEL) { 1696 DBG("%s: %s: TX Q STOP level %d\n", 1697 BDX_DRV_NAME, ndev->name, priv->tx_level); 1698 netif_stop_queue(ndev); 1699 } 1700 1701 spin_unlock_irqrestore(&priv->tx_lock, flags); 1702 return NETDEV_TX_OK; 1703 } 1704 1705 /** 1706 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ. 1707 * @priv: bdx adapter 1708 * 1709 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS 1710 * that those packets were sent 1711 */ 1712 static void bdx_tx_cleanup(struct bdx_priv *priv) 1713 { 1714 struct txf_fifo *f = &priv->txf_fifo0; 1715 struct txdb *db = &priv->txdb; 1716 int tx_level = 0; 1717 1718 ENTER; 1719 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK; 1720 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */ 1721 1722 while (f->m.wptr != f->m.rptr) { 1723 f->m.rptr += BDX_TXF_DESC_SZ; 1724 f->m.rptr &= f->m.size_mask; 1725 1726 /* unmap all the fragments */ 1727 /* first has to come tx_maps containing dma */ 1728 BDX_ASSERT(db->rptr->len == 0); 1729 do { 1730 BDX_ASSERT(db->rptr->addr.dma == 0); 1731 pci_unmap_page(priv->pdev, db->rptr->addr.dma, 1732 db->rptr->len, PCI_DMA_TODEVICE); 1733 bdx_tx_db_inc_rptr(db); 1734 } while (db->rptr->len > 0); 1735 tx_level -= db->rptr->len; /* '-' koz len is negative */ 1736 1737 /* now should come skb pointer - free it */ 1738 dev_consume_skb_irq(db->rptr->addr.skb); 1739 bdx_tx_db_inc_rptr(db); 1740 } 1741 1742 /* let h/w know which TXF descriptors were cleaned */ 1743 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz); 1744 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1745 1746 /* We reclaimed resources, so in case the Q is stopped by xmit callback, 1747 * we resume the transmission and use tx_lock to synchronize with xmit.*/ 1748 spin_lock(&priv->tx_lock); 1749 priv->tx_level += tx_level; 1750 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1751 #ifdef BDX_DELAY_WPTR 1752 if (priv->tx_noupd) { 1753 priv->tx_noupd = 0; 1754 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR, 1755 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR); 1756 } 1757 #endif 1758 1759 if (unlikely(netif_queue_stopped(priv->ndev) && 1760 netif_carrier_ok(priv->ndev) && 1761 (priv->tx_level >= BDX_MIN_TX_LEVEL))) { 1762 DBG("%s: %s: TX Q WAKE level %d\n", 1763 BDX_DRV_NAME, priv->ndev->name, priv->tx_level); 1764 netif_wake_queue(priv->ndev); 1765 } 1766 spin_unlock(&priv->tx_lock); 1767 } 1768 1769 /** 1770 * bdx_tx_free_skbs - frees all skbs from TXD fifo. 1771 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod 1772 */ 1773 static void bdx_tx_free_skbs(struct bdx_priv *priv) 1774 { 1775 struct txdb *db = &priv->txdb; 1776 1777 ENTER; 1778 while (db->rptr != db->wptr) { 1779 if (likely(db->rptr->len)) 1780 pci_unmap_page(priv->pdev, db->rptr->addr.dma, 1781 db->rptr->len, PCI_DMA_TODEVICE); 1782 else 1783 dev_kfree_skb(db->rptr->addr.skb); 1784 bdx_tx_db_inc_rptr(db); 1785 } 1786 RET(); 1787 } 1788 1789 /* bdx_tx_free - frees all Tx resources */ 1790 static void bdx_tx_free(struct bdx_priv *priv) 1791 { 1792 ENTER; 1793 bdx_tx_free_skbs(priv); 1794 bdx_fifo_free(priv, &priv->txd_fifo0.m); 1795 bdx_fifo_free(priv, &priv->txf_fifo0.m); 1796 bdx_tx_db_close(&priv->txdb); 1797 } 1798 1799 /** 1800 * bdx_tx_push_desc - push descriptor to TxD fifo 1801 * @priv: NIC private structure 1802 * @data: desc's data 1803 * @size: desc's size 1804 * 1805 * Pushes desc to TxD fifo and overlaps it if needed. 1806 * NOTE: this func does not check for available space. this is responsibility 1807 * of the caller. Neither does it check that data size is smaller than 1808 * fifo size. 1809 */ 1810 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size) 1811 { 1812 struct txd_fifo *f = &priv->txd_fifo0; 1813 int i = f->m.memsz - f->m.wptr; 1814 1815 if (size == 0) 1816 return; 1817 1818 if (i > size) { 1819 memcpy(f->m.va + f->m.wptr, data, size); 1820 f->m.wptr += size; 1821 } else { 1822 memcpy(f->m.va + f->m.wptr, data, i); 1823 f->m.wptr = size - i; 1824 memcpy(f->m.va, data + i, f->m.wptr); 1825 } 1826 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1827 } 1828 1829 /** 1830 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way 1831 * @priv: NIC private structure 1832 * @data: desc's data 1833 * @size: desc's size 1834 * 1835 * NOTE: this func does check for available space and, if necessary, waits for 1836 * NIC to read existing data before writing new one. 1837 */ 1838 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size) 1839 { 1840 int timer = 0; 1841 ENTER; 1842 1843 while (size > 0) { 1844 /* we substruct 8 because when fifo is full rptr == wptr 1845 which also means that fifo is empty, we can understand 1846 the difference, but could hw do the same ??? :) */ 1847 int avail = bdx_tx_space(priv) - 8; 1848 if (avail <= 0) { 1849 if (timer++ > 300) { /* prevent endless loop */ 1850 DBG("timeout while writing desc to TxD fifo\n"); 1851 break; 1852 } 1853 udelay(50); /* give hw a chance to clean fifo */ 1854 continue; 1855 } 1856 avail = min(avail, size); 1857 DBG("about to push %d bytes starting %p size %d\n", avail, 1858 data, size); 1859 bdx_tx_push_desc(priv, data, avail); 1860 size -= avail; 1861 data += avail; 1862 } 1863 RET(); 1864 } 1865 1866 static const struct net_device_ops bdx_netdev_ops = { 1867 .ndo_open = bdx_open, 1868 .ndo_stop = bdx_close, 1869 .ndo_start_xmit = bdx_tx_transmit, 1870 .ndo_validate_addr = eth_validate_addr, 1871 .ndo_do_ioctl = bdx_ioctl, 1872 .ndo_set_rx_mode = bdx_setmulti, 1873 .ndo_change_mtu = bdx_change_mtu, 1874 .ndo_set_mac_address = bdx_set_mac, 1875 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid, 1876 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid, 1877 }; 1878 1879 /** 1880 * bdx_probe - Device Initialization Routine 1881 * @pdev: PCI device information struct 1882 * @ent: entry in bdx_pci_tbl 1883 * 1884 * Returns 0 on success, negative on failure 1885 * 1886 * bdx_probe initializes an adapter identified by a pci_dev structure. 1887 * The OS initialization, configuring of the adapter private structure, 1888 * and a hardware reset occur. 1889 * 1890 * functions and their order used as explained in 1891 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt 1892 * 1893 */ 1894 1895 /* TBD: netif_msg should be checked and implemented. I disable it for now */ 1896 static int 1897 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1898 { 1899 struct net_device *ndev; 1900 struct bdx_priv *priv; 1901 int err, pci_using_dac, port; 1902 unsigned long pciaddr; 1903 u32 regionSize; 1904 struct pci_nic *nic; 1905 1906 ENTER; 1907 1908 nic = vmalloc(sizeof(*nic)); 1909 if (!nic) 1910 RET(-ENOMEM); 1911 1912 /************** pci *****************/ 1913 err = pci_enable_device(pdev); 1914 if (err) /* it triggers interrupt, dunno why. */ 1915 goto err_pci; /* it's not a problem though */ 1916 1917 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) && 1918 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) { 1919 pci_using_dac = 1; 1920 } else { 1921 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) || 1922 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) { 1923 pr_err("No usable DMA configuration, aborting\n"); 1924 goto err_dma; 1925 } 1926 pci_using_dac = 0; 1927 } 1928 1929 err = pci_request_regions(pdev, BDX_DRV_NAME); 1930 if (err) 1931 goto err_dma; 1932 1933 pci_set_master(pdev); 1934 1935 pciaddr = pci_resource_start(pdev, 0); 1936 if (!pciaddr) { 1937 err = -EIO; 1938 pr_err("no MMIO resource\n"); 1939 goto err_out_res; 1940 } 1941 regionSize = pci_resource_len(pdev, 0); 1942 if (regionSize < BDX_REGS_SIZE) { 1943 err = -EIO; 1944 pr_err("MMIO resource (%x) too small\n", regionSize); 1945 goto err_out_res; 1946 } 1947 1948 nic->regs = ioremap(pciaddr, regionSize); 1949 if (!nic->regs) { 1950 err = -EIO; 1951 pr_err("ioremap failed\n"); 1952 goto err_out_res; 1953 } 1954 1955 if (pdev->irq < 2) { 1956 err = -EIO; 1957 pr_err("invalid irq (%d)\n", pdev->irq); 1958 goto err_out_iomap; 1959 } 1960 pci_set_drvdata(pdev, nic); 1961 1962 if (pdev->device == 0x3014) 1963 nic->port_num = 2; 1964 else 1965 nic->port_num = 1; 1966 1967 print_hw_id(pdev); 1968 1969 bdx_hw_reset_direct(nic->regs); 1970 1971 nic->irq_type = IRQ_INTX; 1972 #ifdef BDX_MSI 1973 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) { 1974 err = pci_enable_msi(pdev); 1975 if (err) 1976 pr_err("Can't enable msi. error is %d\n", err); 1977 else 1978 nic->irq_type = IRQ_MSI; 1979 } else 1980 DBG("HW does not support MSI\n"); 1981 #endif 1982 1983 /************** netdev **************/ 1984 for (port = 0; port < nic->port_num; port++) { 1985 ndev = alloc_etherdev(sizeof(struct bdx_priv)); 1986 if (!ndev) { 1987 err = -ENOMEM; 1988 goto err_out_iomap; 1989 } 1990 1991 ndev->netdev_ops = &bdx_netdev_ops; 1992 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN; 1993 1994 bdx_set_ethtool_ops(ndev); /* ethtool interface */ 1995 1996 /* these fields are used for info purposes only 1997 * so we can have them same for all ports of the board */ 1998 ndev->if_port = port; 1999 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO 2000 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 2001 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM 2002 ; 2003 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2004 NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX; 2005 2006 if (pci_using_dac) 2007 ndev->features |= NETIF_F_HIGHDMA; 2008 2009 /************** priv ****************/ 2010 priv = nic->priv[port] = netdev_priv(ndev); 2011 2012 priv->pBdxRegs = nic->regs + port * 0x8000; 2013 priv->port = port; 2014 priv->pdev = pdev; 2015 priv->ndev = ndev; 2016 priv->nic = nic; 2017 priv->msg_enable = BDX_DEF_MSG_ENABLE; 2018 2019 netif_napi_add(ndev, &priv->napi, bdx_poll, 64); 2020 2021 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) { 2022 DBG("HW statistics not supported\n"); 2023 priv->stats_flag = 0; 2024 } else { 2025 priv->stats_flag = 1; 2026 } 2027 2028 /* Initialize fifo sizes. */ 2029 priv->txd_size = 2; 2030 priv->txf_size = 2; 2031 priv->rxd_size = 2; 2032 priv->rxf_size = 3; 2033 2034 /* Initialize the initial coalescing registers. */ 2035 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12); 2036 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12); 2037 2038 /* ndev->xmit_lock spinlock is not used. 2039 * Private priv->tx_lock is used for synchronization 2040 * between transmit and TX irq cleanup. In addition 2041 * set multicast list callback has to use priv->tx_lock. 2042 */ 2043 #ifdef BDX_LLTX 2044 ndev->features |= NETIF_F_LLTX; 2045 #endif 2046 /* MTU range: 60 - 16384 */ 2047 ndev->min_mtu = ETH_ZLEN; 2048 ndev->max_mtu = BDX_MAX_MTU; 2049 2050 spin_lock_init(&priv->tx_lock); 2051 2052 /*bdx_hw_reset(priv); */ 2053 if (bdx_read_mac(priv)) { 2054 pr_err("load MAC address failed\n"); 2055 goto err_out_iomap; 2056 } 2057 SET_NETDEV_DEV(ndev, &pdev->dev); 2058 err = register_netdev(ndev); 2059 if (err) { 2060 pr_err("register_netdev failed\n"); 2061 goto err_out_free; 2062 } 2063 netif_carrier_off(ndev); 2064 netif_stop_queue(ndev); 2065 2066 print_eth_id(ndev); 2067 } 2068 RET(0); 2069 2070 err_out_free: 2071 free_netdev(ndev); 2072 err_out_iomap: 2073 iounmap(nic->regs); 2074 err_out_res: 2075 pci_release_regions(pdev); 2076 err_dma: 2077 pci_disable_device(pdev); 2078 err_pci: 2079 vfree(nic); 2080 2081 RET(err); 2082 } 2083 2084 /****************** Ethtool interface *********************/ 2085 /* get strings for statistics counters */ 2086 static const char 2087 bdx_stat_names[][ETH_GSTRING_LEN] = { 2088 "InUCast", /* 0x7200 */ 2089 "InMCast", /* 0x7210 */ 2090 "InBCast", /* 0x7220 */ 2091 "InPkts", /* 0x7230 */ 2092 "InErrors", /* 0x7240 */ 2093 "InDropped", /* 0x7250 */ 2094 "FrameTooLong", /* 0x7260 */ 2095 "FrameSequenceErrors", /* 0x7270 */ 2096 "InVLAN", /* 0x7280 */ 2097 "InDroppedDFE", /* 0x7290 */ 2098 "InDroppedIntFull", /* 0x72A0 */ 2099 "InFrameAlignErrors", /* 0x72B0 */ 2100 2101 /* 0x72C0-0x72E0 RSRV */ 2102 2103 "OutUCast", /* 0x72F0 */ 2104 "OutMCast", /* 0x7300 */ 2105 "OutBCast", /* 0x7310 */ 2106 "OutPkts", /* 0x7320 */ 2107 2108 /* 0x7330-0x7360 RSRV */ 2109 2110 "OutVLAN", /* 0x7370 */ 2111 "InUCastOctects", /* 0x7380 */ 2112 "OutUCastOctects", /* 0x7390 */ 2113 2114 /* 0x73A0-0x73B0 RSRV */ 2115 2116 "InBCastOctects", /* 0x73C0 */ 2117 "OutBCastOctects", /* 0x73D0 */ 2118 "InOctects", /* 0x73E0 */ 2119 "OutOctects", /* 0x73F0 */ 2120 }; 2121 2122 /* 2123 * bdx_get_link_ksettings - get device-specific settings 2124 * @netdev 2125 * @ecmd 2126 */ 2127 static int bdx_get_link_ksettings(struct net_device *netdev, 2128 struct ethtool_link_ksettings *ecmd) 2129 { 2130 ethtool_link_ksettings_zero_link_mode(ecmd, supported); 2131 ethtool_link_ksettings_add_link_mode(ecmd, supported, 2132 10000baseT_Full); 2133 ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE); 2134 ethtool_link_ksettings_zero_link_mode(ecmd, advertising); 2135 ethtool_link_ksettings_add_link_mode(ecmd, advertising, 2136 10000baseT_Full); 2137 ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE); 2138 2139 ecmd->base.speed = SPEED_10000; 2140 ecmd->base.duplex = DUPLEX_FULL; 2141 ecmd->base.port = PORT_FIBRE; 2142 ecmd->base.autoneg = AUTONEG_DISABLE; 2143 2144 return 0; 2145 } 2146 2147 /* 2148 * bdx_get_drvinfo - report driver information 2149 * @netdev 2150 * @drvinfo 2151 */ 2152 static void 2153 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 2154 { 2155 struct bdx_priv *priv = netdev_priv(netdev); 2156 2157 strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver)); 2158 strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version)); 2159 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 2160 strlcpy(drvinfo->bus_info, pci_name(priv->pdev), 2161 sizeof(drvinfo->bus_info)); 2162 } 2163 2164 /* 2165 * bdx_get_coalesce - get interrupt coalescing parameters 2166 * @netdev 2167 * @ecoal 2168 */ 2169 static int 2170 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal) 2171 { 2172 u32 rdintcm; 2173 u32 tdintcm; 2174 struct bdx_priv *priv = netdev_priv(netdev); 2175 2176 rdintcm = priv->rdintcm; 2177 tdintcm = priv->tdintcm; 2178 2179 /* PCK_TH measures in multiples of FIFO bytes 2180 We translate to packets */ 2181 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT; 2182 ecoal->rx_max_coalesced_frames = 2183 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc)); 2184 2185 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT; 2186 ecoal->tx_max_coalesced_frames = 2187 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ); 2188 2189 /* adaptive parameters ignored */ 2190 return 0; 2191 } 2192 2193 /* 2194 * bdx_set_coalesce - set interrupt coalescing parameters 2195 * @netdev 2196 * @ecoal 2197 */ 2198 static int 2199 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal) 2200 { 2201 u32 rdintcm; 2202 u32 tdintcm; 2203 struct bdx_priv *priv = netdev_priv(netdev); 2204 int rx_coal; 2205 int tx_coal; 2206 int rx_max_coal; 2207 int tx_max_coal; 2208 2209 /* Check for valid input */ 2210 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT; 2211 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT; 2212 rx_max_coal = ecoal->rx_max_coalesced_frames; 2213 tx_max_coal = ecoal->tx_max_coalesced_frames; 2214 2215 /* Translate from packets to multiples of FIFO bytes */ 2216 rx_max_coal = 2217 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1) 2218 / PCK_TH_MULT); 2219 tx_max_coal = 2220 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1) 2221 / PCK_TH_MULT); 2222 2223 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) || 2224 (rx_max_coal > 0xF) || (tx_max_coal > 0xF)) 2225 return -EINVAL; 2226 2227 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm), 2228 GET_RXF_TH(priv->rdintcm), rx_max_coal); 2229 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0, 2230 tx_max_coal); 2231 2232 priv->rdintcm = rdintcm; 2233 priv->tdintcm = tdintcm; 2234 2235 WRITE_REG(priv, regRDINTCM0, rdintcm); 2236 WRITE_REG(priv, regTDINTCM0, tdintcm); 2237 2238 return 0; 2239 } 2240 2241 /* Convert RX fifo size to number of pending packets */ 2242 static inline int bdx_rx_fifo_size_to_packets(int rx_size) 2243 { 2244 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc); 2245 } 2246 2247 /* Convert TX fifo size to number of pending packets */ 2248 static inline int bdx_tx_fifo_size_to_packets(int tx_size) 2249 { 2250 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ; 2251 } 2252 2253 /* 2254 * bdx_get_ringparam - report ring sizes 2255 * @netdev 2256 * @ring 2257 */ 2258 static void 2259 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2260 { 2261 struct bdx_priv *priv = netdev_priv(netdev); 2262 2263 /*max_pending - the maximum-sized FIFO we allow */ 2264 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3); 2265 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3); 2266 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size); 2267 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size); 2268 } 2269 2270 /* 2271 * bdx_set_ringparam - set ring sizes 2272 * @netdev 2273 * @ring 2274 */ 2275 static int 2276 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2277 { 2278 struct bdx_priv *priv = netdev_priv(netdev); 2279 int rx_size = 0; 2280 int tx_size = 0; 2281 2282 for (; rx_size < 4; rx_size++) { 2283 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending) 2284 break; 2285 } 2286 if (rx_size == 4) 2287 rx_size = 3; 2288 2289 for (; tx_size < 4; tx_size++) { 2290 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending) 2291 break; 2292 } 2293 if (tx_size == 4) 2294 tx_size = 3; 2295 2296 /*Is there anything to do? */ 2297 if ((rx_size == priv->rxf_size) && 2298 (tx_size == priv->txd_size)) 2299 return 0; 2300 2301 priv->rxf_size = rx_size; 2302 if (rx_size > 1) 2303 priv->rxd_size = rx_size - 1; 2304 else 2305 priv->rxd_size = rx_size; 2306 2307 priv->txf_size = priv->txd_size = tx_size; 2308 2309 if (netif_running(netdev)) { 2310 bdx_close(netdev); 2311 bdx_open(netdev); 2312 } 2313 return 0; 2314 } 2315 2316 /* 2317 * bdx_get_strings - return a set of strings that describe the requested objects 2318 * @netdev 2319 * @data 2320 */ 2321 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2322 { 2323 switch (stringset) { 2324 case ETH_SS_STATS: 2325 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names)); 2326 break; 2327 } 2328 } 2329 2330 /* 2331 * bdx_get_sset_count - return number of statistics or tests 2332 * @netdev 2333 */ 2334 static int bdx_get_sset_count(struct net_device *netdev, int stringset) 2335 { 2336 struct bdx_priv *priv = netdev_priv(netdev); 2337 2338 switch (stringset) { 2339 case ETH_SS_STATS: 2340 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names) 2341 != sizeof(struct bdx_stats) / sizeof(u64)); 2342 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0; 2343 } 2344 2345 return -EINVAL; 2346 } 2347 2348 /* 2349 * bdx_get_ethtool_stats - return device's hardware L2 statistics 2350 * @netdev 2351 * @stats 2352 * @data 2353 */ 2354 static void bdx_get_ethtool_stats(struct net_device *netdev, 2355 struct ethtool_stats *stats, u64 *data) 2356 { 2357 struct bdx_priv *priv = netdev_priv(netdev); 2358 2359 if (priv->stats_flag) { 2360 2361 /* Update stats from HW */ 2362 bdx_update_stats(priv); 2363 2364 /* Copy data to user buffer */ 2365 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats)); 2366 } 2367 } 2368 2369 /* 2370 * bdx_set_ethtool_ops - ethtool interface implementation 2371 * @netdev 2372 */ 2373 static void bdx_set_ethtool_ops(struct net_device *netdev) 2374 { 2375 static const struct ethtool_ops bdx_ethtool_ops = { 2376 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2377 ETHTOOL_COALESCE_MAX_FRAMES, 2378 .get_drvinfo = bdx_get_drvinfo, 2379 .get_link = ethtool_op_get_link, 2380 .get_coalesce = bdx_get_coalesce, 2381 .set_coalesce = bdx_set_coalesce, 2382 .get_ringparam = bdx_get_ringparam, 2383 .set_ringparam = bdx_set_ringparam, 2384 .get_strings = bdx_get_strings, 2385 .get_sset_count = bdx_get_sset_count, 2386 .get_ethtool_stats = bdx_get_ethtool_stats, 2387 .get_link_ksettings = bdx_get_link_ksettings, 2388 }; 2389 2390 netdev->ethtool_ops = &bdx_ethtool_ops; 2391 } 2392 2393 /** 2394 * bdx_remove - Device Removal Routine 2395 * @pdev: PCI device information struct 2396 * 2397 * bdx_remove is called by the PCI subsystem to alert the driver 2398 * that it should release a PCI device. The could be caused by a 2399 * Hot-Plug event, or because the driver is going to be removed from 2400 * memory. 2401 **/ 2402 static void bdx_remove(struct pci_dev *pdev) 2403 { 2404 struct pci_nic *nic = pci_get_drvdata(pdev); 2405 struct net_device *ndev; 2406 int port; 2407 2408 for (port = 0; port < nic->port_num; port++) { 2409 ndev = nic->priv[port]->ndev; 2410 unregister_netdev(ndev); 2411 free_netdev(ndev); 2412 } 2413 2414 /*bdx_hw_reset_direct(nic->regs); */ 2415 #ifdef BDX_MSI 2416 if (nic->irq_type == IRQ_MSI) 2417 pci_disable_msi(pdev); 2418 #endif 2419 2420 iounmap(nic->regs); 2421 pci_release_regions(pdev); 2422 pci_disable_device(pdev); 2423 vfree(nic); 2424 2425 RET(); 2426 } 2427 2428 static struct pci_driver bdx_pci_driver = { 2429 .name = BDX_DRV_NAME, 2430 .id_table = bdx_pci_tbl, 2431 .probe = bdx_probe, 2432 .remove = bdx_remove, 2433 }; 2434 2435 /* 2436 * print_driver_id - print parameters of the driver build 2437 */ 2438 static void __init print_driver_id(void) 2439 { 2440 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION); 2441 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING); 2442 } 2443 2444 static int __init bdx_module_init(void) 2445 { 2446 ENTER; 2447 init_txd_sizes(); 2448 print_driver_id(); 2449 RET(pci_register_driver(&bdx_pci_driver)); 2450 } 2451 2452 module_init(bdx_module_init); 2453 2454 static void __exit bdx_module_exit(void) 2455 { 2456 ENTER; 2457 pci_unregister_driver(&bdx_pci_driver); 2458 RET(); 2459 } 2460 2461 module_exit(bdx_module_exit); 2462 2463 MODULE_LICENSE("GPL"); 2464 MODULE_AUTHOR(DRIVER_AUTHOR); 2465 MODULE_DESCRIPTION(BDX_DRV_DESC); 2466 MODULE_FIRMWARE("tehuti/bdx.bin"); 2467