1 /*
2  * Tehuti Networks(R) Network Driver
3  * ethtool interface implementation
4  * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 /*
13  * RX HW/SW interaction overview
14  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15  * There are 2 types of RX communication channels between driver and NIC.
16  * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17  * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18  * info about buffer's location, size and ID. An ID field is used to identify a
19  * buffer when it's returned with data via RXD Fifo (see below)
20  * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21  * filled by HW and is readen by SW. Each descriptor holds status and ID.
22  * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23  * via dma moves it into host memory, builds new RXD descriptor with same ID,
24  * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25  *
26  * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27  * One holds 1.5K packets and another - 26K packets. Depending on incoming
28  * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29  * filled with data, HW builds new RXD descriptor for it and push it into single
30  * RXD Fifo.
31  *
32  * RX SW Data Structures
33  * ~~~~~~~~~~~~~~~~~~~~~
34  * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35  * For RX case, ownership lasts from allocating new empty skb for RXF until
36  * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37  * skb db. Implemented as array with bitmask.
38  * fifo - keeps info about fifo's size and location, relevant HW registers,
39  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40  * Implemented as simple struct.
41  *
42  * RX SW Execution Flow
43  * ~~~~~~~~~~~~~~~~~~~~
44  * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45  * relevant registers. At the end of init phase, driver enables interrupts.
46  * NIC sees that there is no RXF buffers and raises
47  * RD_INTR interrupt, isr fills skbs and Rx begins.
48  * Driver has two receive operation modes:
49  *    NAPI - interrupt-driven mixed with polling
50  *    interrupt-driven only
51  *
52  * Interrupt-driven only flow is following. When buffer is ready, HW raises
53  * interrupt and isr is called. isr collects all available packets
54  * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55 
56  * Rx buffer allocation note
57  * ~~~~~~~~~~~~~~~~~~~~~~~~~
58  * Driver cares to feed such amount of RxF descriptors that respective amount of
59  * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60  * overflow check in Bordeaux for RxD fifo free/used size.
61  * FIXME: this is NOT fully implemented, more work should be done
62  *
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include "tehuti.h"
68 
69 static const struct pci_device_id bdx_pci_tbl[] = {
70 	{ PCI_VDEVICE(TEHUTI, 0x3009), },
71 	{ PCI_VDEVICE(TEHUTI, 0x3010), },
72 	{ PCI_VDEVICE(TEHUTI, 0x3014), },
73 	{ 0 }
74 };
75 
76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77 
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80 static void bdx_tx_cleanup(struct bdx_priv *priv);
81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82 
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85 
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv *priv);
88 static int bdx_rx_init(struct bdx_priv *priv);
89 
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv *priv);
92 static void bdx_tx_free(struct bdx_priv *priv);
93 
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device *netdev);
96 
97 /*************************************************************************
98  *    Print Info                                                         *
99  *************************************************************************/
100 
101 static void print_hw_id(struct pci_dev *pdev)
102 {
103 	struct pci_nic *nic = pci_get_drvdata(pdev);
104 	u16 pci_link_status = 0;
105 	u16 pci_ctrl = 0;
106 
107 	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108 	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109 
110 	pr_info("%s%s\n", BDX_NIC_NAME,
111 		nic->port_num == 1 ? "" : ", 2-Port");
112 	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114 		readl(nic->regs + FPGA_SEED),
115 		GET_LINK_STATUS_LANES(pci_link_status),
116 		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
117 }
118 
119 static void print_fw_id(struct pci_nic *nic)
120 {
121 	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
122 }
123 
124 static void print_eth_id(struct net_device *ndev)
125 {
126 	netdev_info(ndev, "%s, Port %c\n",
127 		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
128 
129 }
130 
131 /*************************************************************************
132  *    Code                                                               *
133  *************************************************************************/
134 
135 #define bdx_enable_interrupts(priv)	\
136 	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv)	\
138 	do { WRITE_REG(priv, regIMR, 0); } while (0)
139 
140 /**
141  * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
142  * @priv: NIC private structure
143  * @f: fifo to initialize
144  * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
145  * @reg_XXX: offsets of registers relative to base address
146  *
147  * 1K extra space is allocated at the end of the fifo to simplify
148  * processing of descriptors that wraps around fifo's end
149  *
150  * Returns 0 on success, negative value on failure
151  *
152  */
153 static int
154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155 	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 {
157 	u16 memsz = FIFO_SIZE * (1 << fsz_type);
158 
159 	memset(f, 0, sizeof(struct fifo));
160 	/* pci_alloc_consistent gives us 4k-aligned memory */
161 	f->va = pci_alloc_consistent(priv->pdev,
162 				     memsz + FIFO_EXTRA_SPACE, &f->da);
163 	if (!f->va) {
164 		pr_err("pci_alloc_consistent failed\n");
165 		RET(-ENOMEM);
166 	}
167 	f->reg_CFG0 = reg_CFG0;
168 	f->reg_CFG1 = reg_CFG1;
169 	f->reg_RPTR = reg_RPTR;
170 	f->reg_WPTR = reg_WPTR;
171 	f->rptr = 0;
172 	f->wptr = 0;
173 	f->memsz = memsz;
174 	f->size_mask = memsz - 1;
175 	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176 	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177 
178 	RET(0);
179 }
180 
181 /**
182  * bdx_fifo_free - free all resources used by fifo
183  * @priv: NIC private structure
184  * @f: fifo to release
185  */
186 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
187 {
188 	ENTER;
189 	if (f->va) {
190 		pci_free_consistent(priv->pdev,
191 				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
192 		f->va = NULL;
193 	}
194 	RET();
195 }
196 
197 /**
198  * bdx_link_changed - notifies OS about hw link state.
199  * @priv: hw adapter structure
200  */
201 static void bdx_link_changed(struct bdx_priv *priv)
202 {
203 	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
204 
205 	if (!link) {
206 		if (netif_carrier_ok(priv->ndev)) {
207 			netif_stop_queue(priv->ndev);
208 			netif_carrier_off(priv->ndev);
209 			netdev_err(priv->ndev, "Link Down\n");
210 		}
211 	} else {
212 		if (!netif_carrier_ok(priv->ndev)) {
213 			netif_wake_queue(priv->ndev);
214 			netif_carrier_on(priv->ndev);
215 			netdev_err(priv->ndev, "Link Up\n");
216 		}
217 	}
218 }
219 
220 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
221 {
222 	if (isr & IR_RX_FREE_0) {
223 		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
224 		DBG("RX_FREE_0\n");
225 	}
226 
227 	if (isr & IR_LNKCHG0)
228 		bdx_link_changed(priv);
229 
230 	if (isr & IR_PCIE_LINK)
231 		netdev_err(priv->ndev, "PCI-E Link Fault\n");
232 
233 	if (isr & IR_PCIE_TOUT)
234 		netdev_err(priv->ndev, "PCI-E Time Out\n");
235 
236 }
237 
238 /**
239  * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
240  * @irq: interrupt number
241  * @dev: network device
242  *
243  * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244  *
245  * It reads ISR register to know interrupt reasons, and proceed them one by one.
246  * Reasons of interest are:
247  *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
248  *    RX_FREE - number of free Rx buffers in RXF fifo gets low
249  *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
250  */
251 
252 static irqreturn_t bdx_isr_napi(int irq, void *dev)
253 {
254 	struct net_device *ndev = dev;
255 	struct bdx_priv *priv = netdev_priv(ndev);
256 	u32 isr;
257 
258 	ENTER;
259 	isr = (READ_REG(priv, regISR) & IR_RUN);
260 	if (unlikely(!isr)) {
261 		bdx_enable_interrupts(priv);
262 		return IRQ_NONE;	/* Not our interrupt */
263 	}
264 
265 	if (isr & IR_EXTRA)
266 		bdx_isr_extra(priv, isr);
267 
268 	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
269 		if (likely(napi_schedule_prep(&priv->napi))) {
270 			__napi_schedule(&priv->napi);
271 			RET(IRQ_HANDLED);
272 		} else {
273 			/* NOTE: we get here if intr has slipped into window
274 			 * between these lines in bdx_poll:
275 			 *    bdx_enable_interrupts(priv);
276 			 *    return 0;
277 			 * currently intrs are disabled (since we read ISR),
278 			 * and we have failed to register next poll.
279 			 * so we read the regs to trigger chip
280 			 * and allow further interupts. */
281 			READ_REG(priv, regTXF_WPTR_0);
282 			READ_REG(priv, regRXD_WPTR_0);
283 		}
284 	}
285 
286 	bdx_enable_interrupts(priv);
287 	RET(IRQ_HANDLED);
288 }
289 
290 static int bdx_poll(struct napi_struct *napi, int budget)
291 {
292 	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
293 	int work_done;
294 
295 	ENTER;
296 	bdx_tx_cleanup(priv);
297 	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298 	if ((work_done < budget) ||
299 	    (priv->napi_stop++ >= 30)) {
300 		DBG("rx poll is done. backing to isr-driven\n");
301 
302 		/* from time to time we exit to let NAPI layer release
303 		 * device lock and allow waiting tasks (eg rmmod) to advance) */
304 		priv->napi_stop = 0;
305 
306 		napi_complete_done(napi, work_done);
307 		bdx_enable_interrupts(priv);
308 	}
309 	return work_done;
310 }
311 
312 /**
313  * bdx_fw_load - loads firmware to NIC
314  * @priv: NIC private structure
315  *
316  * Firmware is loaded via TXD fifo, so it must be initialized first.
317  * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
318  * can have few of them). So all drivers use semaphore register to choose one
319  * that will actually load FW to NIC.
320  */
321 
322 static int bdx_fw_load(struct bdx_priv *priv)
323 {
324 	const struct firmware *fw = NULL;
325 	int master, i;
326 	int rc;
327 
328 	ENTER;
329 	master = READ_REG(priv, regINIT_SEMAPHORE);
330 	if (!READ_REG(priv, regINIT_STATUS) && master) {
331 		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
332 		if (rc)
333 			goto out;
334 		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
335 		mdelay(100);
336 	}
337 	for (i = 0; i < 200; i++) {
338 		if (READ_REG(priv, regINIT_STATUS)) {
339 			rc = 0;
340 			goto out;
341 		}
342 		mdelay(2);
343 	}
344 	rc = -EIO;
345 out:
346 	if (master)
347 		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
348 
349 	release_firmware(fw);
350 
351 	if (rc) {
352 		netdev_err(priv->ndev, "firmware loading failed\n");
353 		if (rc == -EIO)
354 			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
355 			    READ_REG(priv, regVPC),
356 			    READ_REG(priv, regVIC),
357 			    READ_REG(priv, regINIT_STATUS), i);
358 		RET(rc);
359 	} else {
360 		DBG("%s: firmware loading success\n", priv->ndev->name);
361 		RET(0);
362 	}
363 }
364 
365 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
366 {
367 	u32 val;
368 
369 	ENTER;
370 	DBG("mac0=%x mac1=%x mac2=%x\n",
371 	    READ_REG(priv, regUNC_MAC0_A),
372 	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
373 
374 	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
375 	WRITE_REG(priv, regUNC_MAC2_A, val);
376 	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
377 	WRITE_REG(priv, regUNC_MAC1_A, val);
378 	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
379 	WRITE_REG(priv, regUNC_MAC0_A, val);
380 
381 	DBG("mac0=%x mac1=%x mac2=%x\n",
382 	    READ_REG(priv, regUNC_MAC0_A),
383 	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
384 	RET();
385 }
386 
387 /**
388  * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
389  * @priv: NIC private structure
390  */
391 static int bdx_hw_start(struct bdx_priv *priv)
392 {
393 	int rc = -EIO;
394 	struct net_device *ndev = priv->ndev;
395 
396 	ENTER;
397 	bdx_link_changed(priv);
398 
399 	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
400 	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
401 	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
402 	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
403 	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
404 	WRITE_REG(priv, regRX_FULLNESS, 0);
405 	WRITE_REG(priv, regTX_FULLNESS, 0);
406 	WRITE_REG(priv, regCTRLST,
407 		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
408 
409 	WRITE_REG(priv, regVGLB, 0);
410 	WRITE_REG(priv, regMAX_FRAME_A,
411 		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
412 
413 	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
414 	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
415 	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
416 
417 	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
418 	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
419 
420 	/* Enable timer interrupt once in 2 secs. */
421 	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
422 	bdx_restore_mac(priv->ndev, priv);
423 
424 	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
425 		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
426 
427 #define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
428 
429 	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
430 			 ndev->name, ndev);
431 	if (rc)
432 		goto err_irq;
433 	bdx_enable_interrupts(priv);
434 
435 	RET(0);
436 
437 err_irq:
438 	RET(rc);
439 }
440 
441 static void bdx_hw_stop(struct bdx_priv *priv)
442 {
443 	ENTER;
444 	bdx_disable_interrupts(priv);
445 	free_irq(priv->pdev->irq, priv->ndev);
446 
447 	netif_carrier_off(priv->ndev);
448 	netif_stop_queue(priv->ndev);
449 
450 	RET();
451 }
452 
453 static int bdx_hw_reset_direct(void __iomem *regs)
454 {
455 	u32 val, i;
456 	ENTER;
457 
458 	/* reset sequences: read, write 1, read, write 0 */
459 	val = readl(regs + regCLKPLL);
460 	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
461 	udelay(50);
462 	val = readl(regs + regCLKPLL);
463 	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
464 
465 	/* check that the PLLs are locked and reset ended */
466 	for (i = 0; i < 70; i++, mdelay(10))
467 		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
468 			/* do any PCI-E read transaction */
469 			readl(regs + regRXD_CFG0_0);
470 			return 0;
471 		}
472 	pr_err("HW reset failed\n");
473 	return 1;		/* failure */
474 }
475 
476 static int bdx_hw_reset(struct bdx_priv *priv)
477 {
478 	u32 val, i;
479 	ENTER;
480 
481 	if (priv->port == 0) {
482 		/* reset sequences: read, write 1, read, write 0 */
483 		val = READ_REG(priv, regCLKPLL);
484 		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
485 		udelay(50);
486 		val = READ_REG(priv, regCLKPLL);
487 		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
488 	}
489 	/* check that the PLLs are locked and reset ended */
490 	for (i = 0; i < 70; i++, mdelay(10))
491 		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
492 			/* do any PCI-E read transaction */
493 			READ_REG(priv, regRXD_CFG0_0);
494 			return 0;
495 		}
496 	pr_err("HW reset failed\n");
497 	return 1;		/* failure */
498 }
499 
500 static int bdx_sw_reset(struct bdx_priv *priv)
501 {
502 	int i;
503 
504 	ENTER;
505 	/* 1. load MAC (obsolete) */
506 	/* 2. disable Rx (and Tx) */
507 	WRITE_REG(priv, regGMAC_RXF_A, 0);
508 	mdelay(100);
509 	/* 3. disable port */
510 	WRITE_REG(priv, regDIS_PORT, 1);
511 	/* 4. disable queue */
512 	WRITE_REG(priv, regDIS_QU, 1);
513 	/* 5. wait until hw is disabled */
514 	for (i = 0; i < 50; i++) {
515 		if (READ_REG(priv, regRST_PORT) & 1)
516 			break;
517 		mdelay(10);
518 	}
519 	if (i == 50)
520 		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
521 
522 	/* 6. disable intrs */
523 	WRITE_REG(priv, regRDINTCM0, 0);
524 	WRITE_REG(priv, regTDINTCM0, 0);
525 	WRITE_REG(priv, regIMR, 0);
526 	READ_REG(priv, regISR);
527 
528 	/* 7. reset queue */
529 	WRITE_REG(priv, regRST_QU, 1);
530 	/* 8. reset port */
531 	WRITE_REG(priv, regRST_PORT, 1);
532 	/* 9. zero all read and write pointers */
533 	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
534 		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
535 	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
536 		WRITE_REG(priv, i, 0);
537 	/* 10. unseet port disable */
538 	WRITE_REG(priv, regDIS_PORT, 0);
539 	/* 11. unset queue disable */
540 	WRITE_REG(priv, regDIS_QU, 0);
541 	/* 12. unset queue reset */
542 	WRITE_REG(priv, regRST_QU, 0);
543 	/* 13. unset port reset */
544 	WRITE_REG(priv, regRST_PORT, 0);
545 	/* 14. enable Rx */
546 	/* skiped. will be done later */
547 	/* 15. save MAC (obsolete) */
548 	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
549 		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
550 
551 	RET(0);
552 }
553 
554 /* bdx_reset - performs right type of reset depending on hw type */
555 static int bdx_reset(struct bdx_priv *priv)
556 {
557 	ENTER;
558 	RET((priv->pdev->device == 0x3009)
559 	    ? bdx_hw_reset(priv)
560 	    : bdx_sw_reset(priv));
561 }
562 
563 /**
564  * bdx_close - Disables a network interface
565  * @netdev: network interface device structure
566  *
567  * Returns 0, this is not allowed to fail
568  *
569  * The close entry point is called when an interface is de-activated
570  * by the OS.  The hardware is still under the drivers control, but
571  * needs to be disabled.  A global MAC reset is issued to stop the
572  * hardware, and all transmit and receive resources are freed.
573  **/
574 static int bdx_close(struct net_device *ndev)
575 {
576 	struct bdx_priv *priv = NULL;
577 
578 	ENTER;
579 	priv = netdev_priv(ndev);
580 
581 	napi_disable(&priv->napi);
582 
583 	bdx_reset(priv);
584 	bdx_hw_stop(priv);
585 	bdx_rx_free(priv);
586 	bdx_tx_free(priv);
587 	RET(0);
588 }
589 
590 /**
591  * bdx_open - Called when a network interface is made active
592  * @netdev: network interface device structure
593  *
594  * Returns 0 on success, negative value on failure
595  *
596  * The open entry point is called when a network interface is made
597  * active by the system (IFF_UP).  At this point all resources needed
598  * for transmit and receive operations are allocated, the interrupt
599  * handler is registered with the OS, the watchdog timer is started,
600  * and the stack is notified that the interface is ready.
601  **/
602 static int bdx_open(struct net_device *ndev)
603 {
604 	struct bdx_priv *priv;
605 	int rc;
606 
607 	ENTER;
608 	priv = netdev_priv(ndev);
609 	bdx_reset(priv);
610 	if (netif_running(ndev))
611 		netif_stop_queue(priv->ndev);
612 
613 	if ((rc = bdx_tx_init(priv)) ||
614 	    (rc = bdx_rx_init(priv)) ||
615 	    (rc = bdx_fw_load(priv)))
616 		goto err;
617 
618 	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
619 
620 	rc = bdx_hw_start(priv);
621 	if (rc)
622 		goto err;
623 
624 	napi_enable(&priv->napi);
625 
626 	print_fw_id(priv->nic);
627 
628 	RET(0);
629 
630 err:
631 	bdx_close(ndev);
632 	RET(rc);
633 }
634 
635 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
636 {
637 	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
638 		-EINVAL : 0;
639 }
640 
641 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
642 {
643 	struct bdx_priv *priv = netdev_priv(ndev);
644 	u32 data[3];
645 	int error;
646 
647 	ENTER;
648 
649 	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
650 	if (cmd != SIOCDEVPRIVATE) {
651 		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
652 		if (error) {
653 			pr_err("can't copy from user\n");
654 			RET(-EFAULT);
655 		}
656 		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
657 	} else {
658 		return -EOPNOTSUPP;
659 	}
660 
661 	if (!capable(CAP_SYS_RAWIO))
662 		return -EPERM;
663 
664 	switch (data[0]) {
665 
666 	case BDX_OP_READ:
667 		error = bdx_range_check(priv, data[1]);
668 		if (error < 0)
669 			return error;
670 		data[2] = READ_REG(priv, data[1]);
671 		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
672 		    data[2]);
673 		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
674 		if (error)
675 			RET(-EFAULT);
676 		break;
677 
678 	case BDX_OP_WRITE:
679 		error = bdx_range_check(priv, data[1]);
680 		if (error < 0)
681 			return error;
682 		WRITE_REG(priv, data[1], data[2]);
683 		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
684 		break;
685 
686 	default:
687 		RET(-EOPNOTSUPP);
688 	}
689 	return 0;
690 }
691 
692 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
693 {
694 	ENTER;
695 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
696 		RET(bdx_ioctl_priv(ndev, ifr, cmd));
697 	else
698 		RET(-EOPNOTSUPP);
699 }
700 
701 /**
702  * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
703  * @ndev: network device
704  * @vid:  VLAN vid
705  * @op:   add or kill operation
706  *
707  * Passes VLAN filter table to hardware
708  */
709 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
710 {
711 	struct bdx_priv *priv = netdev_priv(ndev);
712 	u32 reg, bit, val;
713 
714 	ENTER;
715 	DBG2("vid=%d value=%d\n", (int)vid, enable);
716 	if (unlikely(vid >= 4096)) {
717 		pr_err("invalid VID: %u (> 4096)\n", vid);
718 		RET();
719 	}
720 	reg = regVLAN_0 + (vid / 32) * 4;
721 	bit = 1 << vid % 32;
722 	val = READ_REG(priv, reg);
723 	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
724 	if (enable)
725 		val |= bit;
726 	else
727 		val &= ~bit;
728 	DBG2("new val %x\n", val);
729 	WRITE_REG(priv, reg, val);
730 	RET();
731 }
732 
733 /**
734  * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
735  * @ndev: network device
736  * @vid:  VLAN vid to add
737  */
738 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
739 {
740 	__bdx_vlan_rx_vid(ndev, vid, 1);
741 	return 0;
742 }
743 
744 /**
745  * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
746  * @ndev: network device
747  * @vid:  VLAN vid to kill
748  */
749 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
750 {
751 	__bdx_vlan_rx_vid(ndev, vid, 0);
752 	return 0;
753 }
754 
755 /**
756  * bdx_change_mtu - Change the Maximum Transfer Unit
757  * @netdev: network interface device structure
758  * @new_mtu: new value for maximum frame size
759  *
760  * Returns 0 on success, negative on failure
761  */
762 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
763 {
764 	ENTER;
765 
766 	ndev->mtu = new_mtu;
767 	if (netif_running(ndev)) {
768 		bdx_close(ndev);
769 		bdx_open(ndev);
770 	}
771 	RET(0);
772 }
773 
774 static void bdx_setmulti(struct net_device *ndev)
775 {
776 	struct bdx_priv *priv = netdev_priv(ndev);
777 
778 	u32 rxf_val =
779 	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
780 	int i;
781 
782 	ENTER;
783 	/* IMF - imperfect (hash) rx multicat filter */
784 	/* PMF - perfect rx multicat filter */
785 
786 	/* FIXME: RXE(OFF) */
787 	if (ndev->flags & IFF_PROMISC) {
788 		rxf_val |= GMAC_RX_FILTER_PRM;
789 	} else if (ndev->flags & IFF_ALLMULTI) {
790 		/* set IMF to accept all multicast frmaes */
791 		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
792 			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
793 	} else if (!netdev_mc_empty(ndev)) {
794 		u8 hash;
795 		struct netdev_hw_addr *ha;
796 		u32 reg, val;
797 
798 		/* set IMF to deny all multicast frames */
799 		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
800 			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
801 		/* set PMF to deny all multicast frames */
802 		for (i = 0; i < MAC_MCST_NUM; i++) {
803 			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
804 			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
805 		}
806 
807 		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
808 		/* TBD: sort addresses and write them in ascending order
809 		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
810 		 * multicast frames throu IMF */
811 		/* accept the rest of addresses throu IMF */
812 		netdev_for_each_mc_addr(ha, ndev) {
813 			hash = 0;
814 			for (i = 0; i < ETH_ALEN; i++)
815 				hash ^= ha->addr[i];
816 			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
817 			val = READ_REG(priv, reg);
818 			val |= (1 << (hash % 32));
819 			WRITE_REG(priv, reg, val);
820 		}
821 
822 	} else {
823 		DBG("only own mac %d\n", netdev_mc_count(ndev));
824 		rxf_val |= GMAC_RX_FILTER_AB;
825 	}
826 	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
827 	/* enable RX */
828 	/* FIXME: RXE(ON) */
829 	RET();
830 }
831 
832 static int bdx_set_mac(struct net_device *ndev, void *p)
833 {
834 	struct bdx_priv *priv = netdev_priv(ndev);
835 	struct sockaddr *addr = p;
836 
837 	ENTER;
838 	/*
839 	   if (netif_running(dev))
840 	   return -EBUSY
841 	 */
842 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
843 	bdx_restore_mac(ndev, priv);
844 	RET(0);
845 }
846 
847 static int bdx_read_mac(struct bdx_priv *priv)
848 {
849 	u16 macAddress[3], i;
850 	ENTER;
851 
852 	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
853 	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
854 	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
855 	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
856 	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
857 	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
858 	for (i = 0; i < 3; i++) {
859 		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
860 		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
861 	}
862 	RET(0);
863 }
864 
865 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
866 {
867 	u64 val;
868 
869 	val = READ_REG(priv, reg);
870 	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
871 	return val;
872 }
873 
874 /*Do the statistics-update work*/
875 static void bdx_update_stats(struct bdx_priv *priv)
876 {
877 	struct bdx_stats *stats = &priv->hw_stats;
878 	u64 *stats_vector = (u64 *) stats;
879 	int i;
880 	int addr;
881 
882 	/*Fill HW structure */
883 	addr = 0x7200;
884 	/*First 12 statistics - 0x7200 - 0x72B0 */
885 	for (i = 0; i < 12; i++) {
886 		stats_vector[i] = bdx_read_l2stat(priv, addr);
887 		addr += 0x10;
888 	}
889 	BDX_ASSERT(addr != 0x72C0);
890 	/* 0x72C0-0x72E0 RSRV */
891 	addr = 0x72F0;
892 	for (; i < 16; i++) {
893 		stats_vector[i] = bdx_read_l2stat(priv, addr);
894 		addr += 0x10;
895 	}
896 	BDX_ASSERT(addr != 0x7330);
897 	/* 0x7330-0x7360 RSRV */
898 	addr = 0x7370;
899 	for (; i < 19; i++) {
900 		stats_vector[i] = bdx_read_l2stat(priv, addr);
901 		addr += 0x10;
902 	}
903 	BDX_ASSERT(addr != 0x73A0);
904 	/* 0x73A0-0x73B0 RSRV */
905 	addr = 0x73C0;
906 	for (; i < 23; i++) {
907 		stats_vector[i] = bdx_read_l2stat(priv, addr);
908 		addr += 0x10;
909 	}
910 	BDX_ASSERT(addr != 0x7400);
911 	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
912 }
913 
914 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
915 		       u16 rxd_vlan);
916 static void print_rxfd(struct rxf_desc *rxfd);
917 
918 /*************************************************************************
919  *     Rx DB                                                             *
920  *************************************************************************/
921 
922 static void bdx_rxdb_destroy(struct rxdb *db)
923 {
924 	vfree(db);
925 }
926 
927 static struct rxdb *bdx_rxdb_create(int nelem)
928 {
929 	struct rxdb *db;
930 	int i;
931 
932 	db = vmalloc(sizeof(struct rxdb)
933 		     + (nelem * sizeof(int))
934 		     + (nelem * sizeof(struct rx_map)));
935 	if (likely(db != NULL)) {
936 		db->stack = (int *)(db + 1);
937 		db->elems = (void *)(db->stack + nelem);
938 		db->nelem = nelem;
939 		db->top = nelem;
940 		for (i = 0; i < nelem; i++)
941 			db->stack[i] = nelem - i - 1;	/* to make first allocs
942 							   close to db struct*/
943 	}
944 
945 	return db;
946 }
947 
948 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
949 {
950 	BDX_ASSERT(db->top <= 0);
951 	return db->stack[--(db->top)];
952 }
953 
954 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
955 {
956 	BDX_ASSERT((n < 0) || (n >= db->nelem));
957 	return db->elems + n;
958 }
959 
960 static inline int bdx_rxdb_available(struct rxdb *db)
961 {
962 	return db->top;
963 }
964 
965 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
966 {
967 	BDX_ASSERT((n >= db->nelem) || (n < 0));
968 	db->stack[(db->top)++] = n;
969 }
970 
971 /*************************************************************************
972  *     Rx Init                                                           *
973  *************************************************************************/
974 
975 /**
976  * bdx_rx_init - initialize RX all related HW and SW resources
977  * @priv: NIC private structure
978  *
979  * Returns 0 on success, negative value on failure
980  *
981  * It creates rxf and rxd fifos, update relevant HW registers, preallocate
982  * skb for rx. It assumes that Rx is desabled in HW
983  * funcs are grouped for better cache usage
984  *
985  * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
986  * filled and packets will be dropped by nic without getting into host or
987  * cousing interrupt. Anyway, in that condition, host has no chance to process
988  * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
989  */
990 
991 /* TBD: ensure proper packet size */
992 
993 static int bdx_rx_init(struct bdx_priv *priv)
994 {
995 	ENTER;
996 
997 	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
998 			  regRXD_CFG0_0, regRXD_CFG1_0,
999 			  regRXD_RPTR_0, regRXD_WPTR_0))
1000 		goto err_mem;
1001 	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1002 			  regRXF_CFG0_0, regRXF_CFG1_0,
1003 			  regRXF_RPTR_0, regRXF_WPTR_0))
1004 		goto err_mem;
1005 	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1006 				     sizeof(struct rxf_desc));
1007 	if (!priv->rxdb)
1008 		goto err_mem;
1009 
1010 	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1011 	return 0;
1012 
1013 err_mem:
1014 	netdev_err(priv->ndev, "Rx init failed\n");
1015 	return -ENOMEM;
1016 }
1017 
1018 /**
1019  * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1020  * @priv: NIC private structure
1021  * @f: RXF fifo
1022  */
1023 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1024 {
1025 	struct rx_map *dm;
1026 	struct rxdb *db = priv->rxdb;
1027 	u16 i;
1028 
1029 	ENTER;
1030 	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1031 	    db->nelem - bdx_rxdb_available(db));
1032 	while (bdx_rxdb_available(db) > 0) {
1033 		i = bdx_rxdb_alloc_elem(db);
1034 		dm = bdx_rxdb_addr_elem(db, i);
1035 		dm->dma = 0;
1036 	}
1037 	for (i = 0; i < db->nelem; i++) {
1038 		dm = bdx_rxdb_addr_elem(db, i);
1039 		if (dm->dma) {
1040 			pci_unmap_single(priv->pdev,
1041 					 dm->dma, f->m.pktsz,
1042 					 PCI_DMA_FROMDEVICE);
1043 			dev_kfree_skb(dm->skb);
1044 		}
1045 	}
1046 }
1047 
1048 /**
1049  * bdx_rx_free - release all Rx resources
1050  * @priv: NIC private structure
1051  *
1052  * It assumes that Rx is desabled in HW
1053  */
1054 static void bdx_rx_free(struct bdx_priv *priv)
1055 {
1056 	ENTER;
1057 	if (priv->rxdb) {
1058 		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1059 		bdx_rxdb_destroy(priv->rxdb);
1060 		priv->rxdb = NULL;
1061 	}
1062 	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1063 	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1064 
1065 	RET();
1066 }
1067 
1068 /*************************************************************************
1069  *     Rx Engine                                                         *
1070  *************************************************************************/
1071 
1072 /**
1073  * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1074  * @priv: nic's private structure
1075  * @f: RXF fifo that needs skbs
1076  *
1077  * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1078  * skb's virtual and physical addresses are stored in skb db.
1079  * To calculate free space, func uses cached values of RPTR and WPTR
1080  * When needed, it also updates RPTR and WPTR.
1081  */
1082 
1083 /* TBD: do not update WPTR if no desc were written */
1084 
1085 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1086 {
1087 	struct sk_buff *skb;
1088 	struct rxf_desc *rxfd;
1089 	struct rx_map *dm;
1090 	int dno, delta, idx;
1091 	struct rxdb *db = priv->rxdb;
1092 
1093 	ENTER;
1094 	dno = bdx_rxdb_available(db) - 1;
1095 	while (dno > 0) {
1096 		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1097 		if (!skb)
1098 			break;
1099 
1100 		skb_reserve(skb, NET_IP_ALIGN);
1101 
1102 		idx = bdx_rxdb_alloc_elem(db);
1103 		dm = bdx_rxdb_addr_elem(db, idx);
1104 		dm->dma = pci_map_single(priv->pdev,
1105 					 skb->data, f->m.pktsz,
1106 					 PCI_DMA_FROMDEVICE);
1107 		dm->skb = skb;
1108 		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1109 		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1110 		rxfd->va_lo = idx;
1111 		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1112 		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1113 		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1114 		print_rxfd(rxfd);
1115 
1116 		f->m.wptr += sizeof(struct rxf_desc);
1117 		delta = f->m.wptr - f->m.memsz;
1118 		if (unlikely(delta >= 0)) {
1119 			f->m.wptr = delta;
1120 			if (delta > 0) {
1121 				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1122 				DBG("wrapped descriptor\n");
1123 			}
1124 		}
1125 		dno--;
1126 	}
1127 	/*TBD: to do - delayed rxf wptr like in txd */
1128 	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1129 	RET();
1130 }
1131 
1132 static inline void
1133 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1134 	     struct sk_buff *skb)
1135 {
1136 	ENTER;
1137 	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1138 	if (GET_RXD_VTAG(rxd_val1)) {
1139 		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1140 		    priv->ndev->name,
1141 		    GET_RXD_VLAN_ID(rxd_vlan),
1142 		    GET_RXD_VTAG(rxd_val1));
1143 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1144 	}
1145 	netif_receive_skb(skb);
1146 }
1147 
1148 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1149 {
1150 	struct rxf_desc *rxfd;
1151 	struct rx_map *dm;
1152 	struct rxf_fifo *f;
1153 	struct rxdb *db;
1154 	int delta;
1155 
1156 	ENTER;
1157 	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1158 	f = &priv->rxf_fifo0;
1159 	db = priv->rxdb;
1160 	DBG("db=%p f=%p\n", db, f);
1161 	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1162 	DBG("dm=%p\n", dm);
1163 	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1164 	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1165 	rxfd->va_lo = rxdd->va_lo;
1166 	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1167 	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1168 	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1169 	print_rxfd(rxfd);
1170 
1171 	f->m.wptr += sizeof(struct rxf_desc);
1172 	delta = f->m.wptr - f->m.memsz;
1173 	if (unlikely(delta >= 0)) {
1174 		f->m.wptr = delta;
1175 		if (delta > 0) {
1176 			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1177 			DBG("wrapped descriptor\n");
1178 		}
1179 	}
1180 	RET();
1181 }
1182 
1183 /**
1184  * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1185  * NOTE: a special treatment is given to non-continuous descriptors
1186  * that start near the end, wraps around and continue at the beginning. a second
1187  * part is copied right after the first, and then descriptor is interpreted as
1188  * normal. fifo has an extra space to allow such operations
1189  * @priv: nic's private structure
1190  * @f: RXF fifo that needs skbs
1191  * @budget: maximum number of packets to receive
1192  */
1193 
1194 /* TBD: replace memcpy func call by explicite inline asm */
1195 
1196 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1197 {
1198 	struct net_device *ndev = priv->ndev;
1199 	struct sk_buff *skb, *skb2;
1200 	struct rxd_desc *rxdd;
1201 	struct rx_map *dm;
1202 	struct rxf_fifo *rxf_fifo;
1203 	int tmp_len, size;
1204 	int done = 0;
1205 	int max_done = BDX_MAX_RX_DONE;
1206 	struct rxdb *db = NULL;
1207 	/* Unmarshalled descriptor - copy of descriptor in host order */
1208 	u32 rxd_val1;
1209 	u16 len;
1210 	u16 rxd_vlan;
1211 
1212 	ENTER;
1213 	max_done = budget;
1214 
1215 	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1216 
1217 	size = f->m.wptr - f->m.rptr;
1218 	if (size < 0)
1219 		size = f->m.memsz + size;	/* size is negative :-) */
1220 
1221 	while (size > 0) {
1222 
1223 		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1224 		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1225 
1226 		len = CPU_CHIP_SWAP16(rxdd->len);
1227 
1228 		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1229 
1230 		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1231 
1232 		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1233 		BDX_ASSERT(tmp_len <= 0);
1234 		size -= tmp_len;
1235 		if (size < 0)	/* test for partially arrived descriptor */
1236 			break;
1237 
1238 		f->m.rptr += tmp_len;
1239 
1240 		tmp_len = f->m.rptr - f->m.memsz;
1241 		if (unlikely(tmp_len >= 0)) {
1242 			f->m.rptr = tmp_len;
1243 			if (tmp_len > 0) {
1244 				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1245 				    f->m.rptr, tmp_len);
1246 				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1247 			}
1248 		}
1249 
1250 		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1251 			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1252 			ndev->stats.rx_errors++;
1253 			bdx_recycle_skb(priv, rxdd);
1254 			continue;
1255 		}
1256 
1257 		rxf_fifo = &priv->rxf_fifo0;
1258 		db = priv->rxdb;
1259 		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1260 		skb = dm->skb;
1261 
1262 		if (len < BDX_COPYBREAK &&
1263 		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1264 			skb_reserve(skb2, NET_IP_ALIGN);
1265 			/*skb_put(skb2, len); */
1266 			pci_dma_sync_single_for_cpu(priv->pdev,
1267 						    dm->dma, rxf_fifo->m.pktsz,
1268 						    PCI_DMA_FROMDEVICE);
1269 			memcpy(skb2->data, skb->data, len);
1270 			bdx_recycle_skb(priv, rxdd);
1271 			skb = skb2;
1272 		} else {
1273 			pci_unmap_single(priv->pdev,
1274 					 dm->dma, rxf_fifo->m.pktsz,
1275 					 PCI_DMA_FROMDEVICE);
1276 			bdx_rxdb_free_elem(db, rxdd->va_lo);
1277 		}
1278 
1279 		ndev->stats.rx_bytes += len;
1280 
1281 		skb_put(skb, len);
1282 		skb->protocol = eth_type_trans(skb, ndev);
1283 
1284 		/* Non-IP packets aren't checksum-offloaded */
1285 		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1286 			skb_checksum_none_assert(skb);
1287 		else
1288 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1289 
1290 		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1291 
1292 		if (++done >= max_done)
1293 			break;
1294 	}
1295 
1296 	ndev->stats.rx_packets += done;
1297 
1298 	/* FIXME: do smth to minimize pci accesses    */
1299 	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1300 
1301 	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1302 
1303 	RET(done);
1304 }
1305 
1306 /*************************************************************************
1307  * Debug / Temprorary Code                                               *
1308  *************************************************************************/
1309 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1310 		       u16 rxd_vlan)
1311 {
1312 	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1313 	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1314 	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1315 	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1316 	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1317 	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1318 	    rxdd->va_hi);
1319 }
1320 
1321 static void print_rxfd(struct rxf_desc *rxfd)
1322 {
1323 	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1324 	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1325 	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1326 }
1327 
1328 /*
1329  * TX HW/SW interaction overview
1330  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1331  * There are 2 types of TX communication channels between driver and NIC.
1332  * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1333  * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1334  *
1335  * Currently NIC supports TSO, checksuming and gather DMA
1336  * UFO and IP fragmentation is on the way
1337  *
1338  * RX SW Data Structures
1339  * ~~~~~~~~~~~~~~~~~~~~~
1340  * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1341  * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1342  * acknowledges sent by TXF descriptors.
1343  * Implemented as cyclic buffer.
1344  * fifo - keeps info about fifo's size and location, relevant HW registers,
1345  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1346  * Implemented as simple struct.
1347  *
1348  * TX SW Execution Flow
1349  * ~~~~~~~~~~~~~~~~~~~~
1350  * OS calls driver's hard_xmit method with packet to sent.
1351  * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1352  * by updating TXD WPTR.
1353  * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1354  * To prevent TXD fifo overflow without reading HW registers every time,
1355  * SW deploys "tx level" technique.
1356  * Upon strart up, tx level is initialized to TXD fifo length.
1357  * For every sent packet, SW gets its TXD descriptor sizei
1358  * (from precalculated array) and substructs it from tx level.
1359  * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1360  * original TXD descriptor from txdb and adds it to tx level.
1361  * When Tx level drops under some predefined treshhold, the driver
1362  * stops the TX queue. When TX level rises above that level,
1363  * the tx queue is enabled again.
1364  *
1365  * This technique avoids eccessive reading of RPTR and WPTR registers.
1366  * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1367  */
1368 
1369 /*************************************************************************
1370  *     Tx DB                                                             *
1371  *************************************************************************/
1372 static inline int bdx_tx_db_size(struct txdb *db)
1373 {
1374 	int taken = db->wptr - db->rptr;
1375 	if (taken < 0)
1376 		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1377 
1378 	return db->size - taken;
1379 }
1380 
1381 /**
1382  * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1383  * @db: tx data base
1384  * @pptr: read or write pointer
1385  */
1386 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1387 {
1388 	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1389 
1390 	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1391 		   *pptr != db->wptr);	/* or write pointer */
1392 
1393 	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1394 		   *pptr >= db->end);	/* in range */
1395 
1396 	++*pptr;
1397 	if (unlikely(*pptr == db->end))
1398 		*pptr = db->start;
1399 }
1400 
1401 /**
1402  * bdx_tx_db_inc_rptr - increment read pointer
1403  * @db: tx data base
1404  */
1405 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1406 {
1407 	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1408 	__bdx_tx_db_ptr_next(db, &db->rptr);
1409 }
1410 
1411 /**
1412  * bdx_tx_db_inc_wptr - increment write pointer
1413  * @db: tx data base
1414  */
1415 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1416 {
1417 	__bdx_tx_db_ptr_next(db, &db->wptr);
1418 	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1419 						   a result of write */
1420 }
1421 
1422 /**
1423  * bdx_tx_db_init - creates and initializes tx db
1424  * @d: tx data base
1425  * @sz_type: size of tx fifo
1426  *
1427  * Returns 0 on success, error code otherwise
1428  */
1429 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1430 {
1431 	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1432 
1433 	d->start = vmalloc(memsz);
1434 	if (!d->start)
1435 		return -ENOMEM;
1436 
1437 	/*
1438 	 * In order to differentiate between db is empty and db is full
1439 	 * states at least one element should always be empty in order to
1440 	 * avoid rptr == wptr which means db is empty
1441 	 */
1442 	d->size = memsz / sizeof(struct tx_map) - 1;
1443 	d->end = d->start + d->size + 1;	/* just after last element */
1444 
1445 	/* all dbs are created equally empty */
1446 	d->rptr = d->start;
1447 	d->wptr = d->start;
1448 
1449 	return 0;
1450 }
1451 
1452 /**
1453  * bdx_tx_db_close - closes tx db and frees all memory
1454  * @d: tx data base
1455  */
1456 static void bdx_tx_db_close(struct txdb *d)
1457 {
1458 	BDX_ASSERT(d == NULL);
1459 
1460 	vfree(d->start);
1461 	d->start = NULL;
1462 }
1463 
1464 /*************************************************************************
1465  *     Tx Engine                                                         *
1466  *************************************************************************/
1467 
1468 /* sizes of tx desc (including padding if needed) as function
1469  * of skb's frag number */
1470 static struct {
1471 	u16 bytes;
1472 	u16 qwords;		/* qword = 64 bit */
1473 } txd_sizes[MAX_SKB_FRAGS + 1];
1474 
1475 /**
1476  * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1477  * @priv: NIC private structure
1478  * @skb: socket buffer to map
1479  * @txdd: TX descriptor to use
1480  *
1481  * It makes dma mappings for skb's data blocks and writes them to PBL of
1482  * new tx descriptor. It also stores them in the tx db, so they could be
1483  * unmaped after data was sent. It is reponsibility of a caller to make
1484  * sure that there is enough space in the tx db. Last element holds pointer
1485  * to skb itself and marked with zero length
1486  */
1487 static inline void
1488 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1489 	       struct txd_desc *txdd)
1490 {
1491 	struct txdb *db = &priv->txdb;
1492 	struct pbl *pbl = &txdd->pbl[0];
1493 	int nr_frags = skb_shinfo(skb)->nr_frags;
1494 	int i;
1495 
1496 	db->wptr->len = skb_headlen(skb);
1497 	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1498 					    db->wptr->len, PCI_DMA_TODEVICE);
1499 	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1500 	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1501 	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1502 	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1503 	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1504 	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1505 	bdx_tx_db_inc_wptr(db);
1506 
1507 	for (i = 0; i < nr_frags; i++) {
1508 		const struct skb_frag_struct *frag;
1509 
1510 		frag = &skb_shinfo(skb)->frags[i];
1511 		db->wptr->len = skb_frag_size(frag);
1512 		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1513 						      0, skb_frag_size(frag),
1514 						      DMA_TO_DEVICE);
1515 
1516 		pbl++;
1517 		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1518 		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1519 		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1520 		bdx_tx_db_inc_wptr(db);
1521 	}
1522 
1523 	/* add skb clean up info. */
1524 	db->wptr->len = -txd_sizes[nr_frags].bytes;
1525 	db->wptr->addr.skb = skb;
1526 	bdx_tx_db_inc_wptr(db);
1527 }
1528 
1529 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1530  * number of frags is used as index to fetch correct descriptors size,
1531  * instead of calculating it each time */
1532 static void __init init_txd_sizes(void)
1533 {
1534 	int i, lwords;
1535 
1536 	/* 7 - is number of lwords in txd with one phys buffer
1537 	 * 3 - is number of lwords used for every additional phys buffer */
1538 	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1539 		lwords = 7 + (i * 3);
1540 		if (lwords & 1)
1541 			lwords++;	/* pad it with 1 lword */
1542 		txd_sizes[i].qwords = lwords >> 1;
1543 		txd_sizes[i].bytes = lwords << 2;
1544 	}
1545 }
1546 
1547 /* bdx_tx_init - initialize all Tx related stuff.
1548  * Namely, TXD and TXF fifos, database etc */
1549 static int bdx_tx_init(struct bdx_priv *priv)
1550 {
1551 	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1552 			  regTXD_CFG0_0,
1553 			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1554 		goto err_mem;
1555 	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1556 			  regTXF_CFG0_0,
1557 			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1558 		goto err_mem;
1559 
1560 	/* The TX db has to keep mappings for all packets sent (on TxD)
1561 	 * and not yet reclaimed (on TxF) */
1562 	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1563 		goto err_mem;
1564 
1565 	priv->tx_level = BDX_MAX_TX_LEVEL;
1566 #ifdef BDX_DELAY_WPTR
1567 	priv->tx_update_mark = priv->tx_level - 1024;
1568 #endif
1569 	return 0;
1570 
1571 err_mem:
1572 	netdev_err(priv->ndev, "Tx init failed\n");
1573 	return -ENOMEM;
1574 }
1575 
1576 /**
1577  * bdx_tx_space - calculates available space in TX fifo
1578  * @priv: NIC private structure
1579  *
1580  * Returns available space in TX fifo in bytes
1581  */
1582 static inline int bdx_tx_space(struct bdx_priv *priv)
1583 {
1584 	struct txd_fifo *f = &priv->txd_fifo0;
1585 	int fsize;
1586 
1587 	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1588 	fsize = f->m.rptr - f->m.wptr;
1589 	if (fsize <= 0)
1590 		fsize = f->m.memsz + fsize;
1591 	return fsize;
1592 }
1593 
1594 /**
1595  * bdx_tx_transmit - send packet to NIC
1596  * @skb: packet to send
1597  * @ndev: network device assigned to NIC
1598  * Return codes:
1599  * o NETDEV_TX_OK everything ok.
1600  * o NETDEV_TX_BUSY Cannot transmit packet, try later
1601  *   Usually a bug, means queue start/stop flow control is broken in
1602  *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1603  */
1604 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1605 				   struct net_device *ndev)
1606 {
1607 	struct bdx_priv *priv = netdev_priv(ndev);
1608 	struct txd_fifo *f = &priv->txd_fifo0;
1609 	int txd_checksum = 7;	/* full checksum */
1610 	int txd_lgsnd = 0;
1611 	int txd_vlan_id = 0;
1612 	int txd_vtag = 0;
1613 	int txd_mss = 0;
1614 
1615 	int nr_frags = skb_shinfo(skb)->nr_frags;
1616 	struct txd_desc *txdd;
1617 	int len;
1618 	unsigned long flags;
1619 
1620 	ENTER;
1621 	local_irq_save(flags);
1622 	spin_lock(&priv->tx_lock);
1623 
1624 	/* build tx descriptor */
1625 	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1626 	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1627 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1628 		txd_checksum = 0;
1629 
1630 	if (skb_shinfo(skb)->gso_size) {
1631 		txd_mss = skb_shinfo(skb)->gso_size;
1632 		txd_lgsnd = 1;
1633 		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1634 		    txd_mss);
1635 	}
1636 
1637 	if (skb_vlan_tag_present(skb)) {
1638 		/*Cut VLAN ID to 12 bits */
1639 		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1640 		txd_vtag = 1;
1641 	}
1642 
1643 	txdd->length = CPU_CHIP_SWAP16(skb->len);
1644 	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1645 	txdd->txd_val1 =
1646 	    CPU_CHIP_SWAP32(TXD_W1_VAL
1647 			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1648 			     txd_lgsnd, txd_vlan_id));
1649 	DBG("=== TxD desc =====================\n");
1650 	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1651 	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1652 
1653 	bdx_tx_map_skb(priv, skb, txdd);
1654 
1655 	/* increment TXD write pointer. In case of
1656 	   fifo wrapping copy reminder of the descriptor
1657 	   to the beginning */
1658 	f->m.wptr += txd_sizes[nr_frags].bytes;
1659 	len = f->m.wptr - f->m.memsz;
1660 	if (unlikely(len >= 0)) {
1661 		f->m.wptr = len;
1662 		if (len > 0) {
1663 			BDX_ASSERT(len > f->m.memsz);
1664 			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1665 		}
1666 	}
1667 	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1668 
1669 	priv->tx_level -= txd_sizes[nr_frags].bytes;
1670 	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1671 #ifdef BDX_DELAY_WPTR
1672 	if (priv->tx_level > priv->tx_update_mark) {
1673 		/* Force memory writes to complete before letting h/w
1674 		   know there are new descriptors to fetch.
1675 		   (might be needed on platforms like IA64)
1676 		   wmb(); */
1677 		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1678 	} else {
1679 		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1680 			priv->tx_noupd = 0;
1681 			WRITE_REG(priv, f->m.reg_WPTR,
1682 				  f->m.wptr & TXF_WPTR_WR_PTR);
1683 		}
1684 	}
1685 #else
1686 	/* Force memory writes to complete before letting h/w
1687 	   know there are new descriptors to fetch.
1688 	   (might be needed on platforms like IA64)
1689 	   wmb(); */
1690 	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1691 
1692 #endif
1693 #ifdef BDX_LLTX
1694 	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1695 #endif
1696 	ndev->stats.tx_packets++;
1697 	ndev->stats.tx_bytes += skb->len;
1698 
1699 	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1700 		DBG("%s: %s: TX Q STOP level %d\n",
1701 		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1702 		netif_stop_queue(ndev);
1703 	}
1704 
1705 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1706 	return NETDEV_TX_OK;
1707 }
1708 
1709 /**
1710  * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1711  * @priv: bdx adapter
1712  *
1713  * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1714  * that those packets were sent
1715  */
1716 static void bdx_tx_cleanup(struct bdx_priv *priv)
1717 {
1718 	struct txf_fifo *f = &priv->txf_fifo0;
1719 	struct txdb *db = &priv->txdb;
1720 	int tx_level = 0;
1721 
1722 	ENTER;
1723 	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1724 	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1725 
1726 	while (f->m.wptr != f->m.rptr) {
1727 		f->m.rptr += BDX_TXF_DESC_SZ;
1728 		f->m.rptr &= f->m.size_mask;
1729 
1730 		/* unmap all the fragments */
1731 		/* first has to come tx_maps containing dma */
1732 		BDX_ASSERT(db->rptr->len == 0);
1733 		do {
1734 			BDX_ASSERT(db->rptr->addr.dma == 0);
1735 			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1736 				       db->rptr->len, PCI_DMA_TODEVICE);
1737 			bdx_tx_db_inc_rptr(db);
1738 		} while (db->rptr->len > 0);
1739 		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1740 
1741 		/* now should come skb pointer - free it */
1742 		dev_kfree_skb_irq(db->rptr->addr.skb);
1743 		bdx_tx_db_inc_rptr(db);
1744 	}
1745 
1746 	/* let h/w know which TXF descriptors were cleaned */
1747 	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1748 	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1749 
1750 	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1751 	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1752 	spin_lock(&priv->tx_lock);
1753 	priv->tx_level += tx_level;
1754 	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1755 #ifdef BDX_DELAY_WPTR
1756 	if (priv->tx_noupd) {
1757 		priv->tx_noupd = 0;
1758 		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1759 			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1760 	}
1761 #endif
1762 
1763 	if (unlikely(netif_queue_stopped(priv->ndev) &&
1764 		     netif_carrier_ok(priv->ndev) &&
1765 		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1766 		DBG("%s: %s: TX Q WAKE level %d\n",
1767 		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1768 		netif_wake_queue(priv->ndev);
1769 	}
1770 	spin_unlock(&priv->tx_lock);
1771 }
1772 
1773 /**
1774  * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1775  * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1776  */
1777 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1778 {
1779 	struct txdb *db = &priv->txdb;
1780 
1781 	ENTER;
1782 	while (db->rptr != db->wptr) {
1783 		if (likely(db->rptr->len))
1784 			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1785 				       db->rptr->len, PCI_DMA_TODEVICE);
1786 		else
1787 			dev_kfree_skb(db->rptr->addr.skb);
1788 		bdx_tx_db_inc_rptr(db);
1789 	}
1790 	RET();
1791 }
1792 
1793 /* bdx_tx_free - frees all Tx resources */
1794 static void bdx_tx_free(struct bdx_priv *priv)
1795 {
1796 	ENTER;
1797 	bdx_tx_free_skbs(priv);
1798 	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1799 	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1800 	bdx_tx_db_close(&priv->txdb);
1801 }
1802 
1803 /**
1804  * bdx_tx_push_desc - push descriptor to TxD fifo
1805  * @priv: NIC private structure
1806  * @data: desc's data
1807  * @size: desc's size
1808  *
1809  * Pushes desc to TxD fifo and overlaps it if needed.
1810  * NOTE: this func does not check for available space. this is responsibility
1811  *    of the caller. Neither does it check that data size is smaller than
1812  *    fifo size.
1813  */
1814 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1815 {
1816 	struct txd_fifo *f = &priv->txd_fifo0;
1817 	int i = f->m.memsz - f->m.wptr;
1818 
1819 	if (size == 0)
1820 		return;
1821 
1822 	if (i > size) {
1823 		memcpy(f->m.va + f->m.wptr, data, size);
1824 		f->m.wptr += size;
1825 	} else {
1826 		memcpy(f->m.va + f->m.wptr, data, i);
1827 		f->m.wptr = size - i;
1828 		memcpy(f->m.va, data + i, f->m.wptr);
1829 	}
1830 	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1831 }
1832 
1833 /**
1834  * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1835  * @priv: NIC private structure
1836  * @data: desc's data
1837  * @size: desc's size
1838  *
1839  * NOTE: this func does check for available space and, if necessary, waits for
1840  *   NIC to read existing data before writing new one.
1841  */
1842 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1843 {
1844 	int timer = 0;
1845 	ENTER;
1846 
1847 	while (size > 0) {
1848 		/* we substruct 8 because when fifo is full rptr == wptr
1849 		   which also means that fifo is empty, we can understand
1850 		   the difference, but could hw do the same ??? :) */
1851 		int avail = bdx_tx_space(priv) - 8;
1852 		if (avail <= 0) {
1853 			if (timer++ > 300) {	/* prevent endless loop */
1854 				DBG("timeout while writing desc to TxD fifo\n");
1855 				break;
1856 			}
1857 			udelay(50);	/* give hw a chance to clean fifo */
1858 			continue;
1859 		}
1860 		avail = min(avail, size);
1861 		DBG("about to push  %d bytes starting %p size %d\n", avail,
1862 		    data, size);
1863 		bdx_tx_push_desc(priv, data, avail);
1864 		size -= avail;
1865 		data += avail;
1866 	}
1867 	RET();
1868 }
1869 
1870 static const struct net_device_ops bdx_netdev_ops = {
1871 	.ndo_open		= bdx_open,
1872 	.ndo_stop		= bdx_close,
1873 	.ndo_start_xmit		= bdx_tx_transmit,
1874 	.ndo_validate_addr	= eth_validate_addr,
1875 	.ndo_do_ioctl		= bdx_ioctl,
1876 	.ndo_set_rx_mode	= bdx_setmulti,
1877 	.ndo_change_mtu		= bdx_change_mtu,
1878 	.ndo_set_mac_address	= bdx_set_mac,
1879 	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1880 	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1881 };
1882 
1883 /**
1884  * bdx_probe - Device Initialization Routine
1885  * @pdev: PCI device information struct
1886  * @ent: entry in bdx_pci_tbl
1887  *
1888  * Returns 0 on success, negative on failure
1889  *
1890  * bdx_probe initializes an adapter identified by a pci_dev structure.
1891  * The OS initialization, configuring of the adapter private structure,
1892  * and a hardware reset occur.
1893  *
1894  * functions and their order used as explained in
1895  * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1896  *
1897  */
1898 
1899 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1900 static int
1901 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1902 {
1903 	struct net_device *ndev;
1904 	struct bdx_priv *priv;
1905 	int err, pci_using_dac, port;
1906 	unsigned long pciaddr;
1907 	u32 regionSize;
1908 	struct pci_nic *nic;
1909 
1910 	ENTER;
1911 
1912 	nic = vmalloc(sizeof(*nic));
1913 	if (!nic)
1914 		RET(-ENOMEM);
1915 
1916     /************** pci *****************/
1917 	err = pci_enable_device(pdev);
1918 	if (err)			/* it triggers interrupt, dunno why. */
1919 		goto err_pci;		/* it's not a problem though */
1920 
1921 	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1922 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1923 		pci_using_dac = 1;
1924 	} else {
1925 		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1926 		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1927 			pr_err("No usable DMA configuration, aborting\n");
1928 			goto err_dma;
1929 		}
1930 		pci_using_dac = 0;
1931 	}
1932 
1933 	err = pci_request_regions(pdev, BDX_DRV_NAME);
1934 	if (err)
1935 		goto err_dma;
1936 
1937 	pci_set_master(pdev);
1938 
1939 	pciaddr = pci_resource_start(pdev, 0);
1940 	if (!pciaddr) {
1941 		err = -EIO;
1942 		pr_err("no MMIO resource\n");
1943 		goto err_out_res;
1944 	}
1945 	regionSize = pci_resource_len(pdev, 0);
1946 	if (regionSize < BDX_REGS_SIZE) {
1947 		err = -EIO;
1948 		pr_err("MMIO resource (%x) too small\n", regionSize);
1949 		goto err_out_res;
1950 	}
1951 
1952 	nic->regs = ioremap(pciaddr, regionSize);
1953 	if (!nic->regs) {
1954 		err = -EIO;
1955 		pr_err("ioremap failed\n");
1956 		goto err_out_res;
1957 	}
1958 
1959 	if (pdev->irq < 2) {
1960 		err = -EIO;
1961 		pr_err("invalid irq (%d)\n", pdev->irq);
1962 		goto err_out_iomap;
1963 	}
1964 	pci_set_drvdata(pdev, nic);
1965 
1966 	if (pdev->device == 0x3014)
1967 		nic->port_num = 2;
1968 	else
1969 		nic->port_num = 1;
1970 
1971 	print_hw_id(pdev);
1972 
1973 	bdx_hw_reset_direct(nic->regs);
1974 
1975 	nic->irq_type = IRQ_INTX;
1976 #ifdef BDX_MSI
1977 	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1978 		err = pci_enable_msi(pdev);
1979 		if (err)
1980 			pr_err("Can't enable msi. error is %d\n", err);
1981 		else
1982 			nic->irq_type = IRQ_MSI;
1983 	} else
1984 		DBG("HW does not support MSI\n");
1985 #endif
1986 
1987     /************** netdev **************/
1988 	for (port = 0; port < nic->port_num; port++) {
1989 		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1990 		if (!ndev) {
1991 			err = -ENOMEM;
1992 			goto err_out_iomap;
1993 		}
1994 
1995 		ndev->netdev_ops = &bdx_netdev_ops;
1996 		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1997 
1998 		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
1999 
2000 		/* these fields are used for info purposes only
2001 		 * so we can have them same for all ports of the board */
2002 		ndev->if_port = port;
2003 		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2004 		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2005 		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2006 		    ;
2007 		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2008 			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2009 
2010 		if (pci_using_dac)
2011 			ndev->features |= NETIF_F_HIGHDMA;
2012 
2013 	/************** priv ****************/
2014 		priv = nic->priv[port] = netdev_priv(ndev);
2015 
2016 		priv->pBdxRegs = nic->regs + port * 0x8000;
2017 		priv->port = port;
2018 		priv->pdev = pdev;
2019 		priv->ndev = ndev;
2020 		priv->nic = nic;
2021 		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2022 
2023 		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2024 
2025 		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2026 			DBG("HW statistics not supported\n");
2027 			priv->stats_flag = 0;
2028 		} else {
2029 			priv->stats_flag = 1;
2030 		}
2031 
2032 		/* Initialize fifo sizes. */
2033 		priv->txd_size = 2;
2034 		priv->txf_size = 2;
2035 		priv->rxd_size = 2;
2036 		priv->rxf_size = 3;
2037 
2038 		/* Initialize the initial coalescing registers. */
2039 		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2040 		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2041 
2042 		/* ndev->xmit_lock spinlock is not used.
2043 		 * Private priv->tx_lock is used for synchronization
2044 		 * between transmit and TX irq cleanup.  In addition
2045 		 * set multicast list callback has to use priv->tx_lock.
2046 		 */
2047 #ifdef BDX_LLTX
2048 		ndev->features |= NETIF_F_LLTX;
2049 #endif
2050 		/* MTU range: 60 - 16384 */
2051 		ndev->min_mtu = ETH_ZLEN;
2052 		ndev->max_mtu = BDX_MAX_MTU;
2053 
2054 		spin_lock_init(&priv->tx_lock);
2055 
2056 		/*bdx_hw_reset(priv); */
2057 		if (bdx_read_mac(priv)) {
2058 			pr_err("load MAC address failed\n");
2059 			goto err_out_iomap;
2060 		}
2061 		SET_NETDEV_DEV(ndev, &pdev->dev);
2062 		err = register_netdev(ndev);
2063 		if (err) {
2064 			pr_err("register_netdev failed\n");
2065 			goto err_out_free;
2066 		}
2067 		netif_carrier_off(ndev);
2068 		netif_stop_queue(ndev);
2069 
2070 		print_eth_id(ndev);
2071 	}
2072 	RET(0);
2073 
2074 err_out_free:
2075 	free_netdev(ndev);
2076 err_out_iomap:
2077 	iounmap(nic->regs);
2078 err_out_res:
2079 	pci_release_regions(pdev);
2080 err_dma:
2081 	pci_disable_device(pdev);
2082 err_pci:
2083 	vfree(nic);
2084 
2085 	RET(err);
2086 }
2087 
2088 /****************** Ethtool interface *********************/
2089 /* get strings for statistics counters */
2090 static const char
2091  bdx_stat_names[][ETH_GSTRING_LEN] = {
2092 	"InUCast",		/* 0x7200 */
2093 	"InMCast",		/* 0x7210 */
2094 	"InBCast",		/* 0x7220 */
2095 	"InPkts",		/* 0x7230 */
2096 	"InErrors",		/* 0x7240 */
2097 	"InDropped",		/* 0x7250 */
2098 	"FrameTooLong",		/* 0x7260 */
2099 	"FrameSequenceErrors",	/* 0x7270 */
2100 	"InVLAN",		/* 0x7280 */
2101 	"InDroppedDFE",		/* 0x7290 */
2102 	"InDroppedIntFull",	/* 0x72A0 */
2103 	"InFrameAlignErrors",	/* 0x72B0 */
2104 
2105 	/* 0x72C0-0x72E0 RSRV */
2106 
2107 	"OutUCast",		/* 0x72F0 */
2108 	"OutMCast",		/* 0x7300 */
2109 	"OutBCast",		/* 0x7310 */
2110 	"OutPkts",		/* 0x7320 */
2111 
2112 	/* 0x7330-0x7360 RSRV */
2113 
2114 	"OutVLAN",		/* 0x7370 */
2115 	"InUCastOctects",	/* 0x7380 */
2116 	"OutUCastOctects",	/* 0x7390 */
2117 
2118 	/* 0x73A0-0x73B0 RSRV */
2119 
2120 	"InBCastOctects",	/* 0x73C0 */
2121 	"OutBCastOctects",	/* 0x73D0 */
2122 	"InOctects",		/* 0x73E0 */
2123 	"OutOctects",		/* 0x73F0 */
2124 };
2125 
2126 /*
2127  * bdx_get_link_ksettings - get device-specific settings
2128  * @netdev
2129  * @ecmd
2130  */
2131 static int bdx_get_link_ksettings(struct net_device *netdev,
2132 				  struct ethtool_link_ksettings *ecmd)
2133 {
2134 	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2135 	ethtool_link_ksettings_add_link_mode(ecmd, supported,
2136 					     10000baseT_Full);
2137 	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2138 	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2139 	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2140 					     10000baseT_Full);
2141 	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2142 
2143 	ecmd->base.speed = SPEED_10000;
2144 	ecmd->base.duplex = DUPLEX_FULL;
2145 	ecmd->base.port = PORT_FIBRE;
2146 	ecmd->base.autoneg = AUTONEG_DISABLE;
2147 
2148 	return 0;
2149 }
2150 
2151 /*
2152  * bdx_get_drvinfo - report driver information
2153  * @netdev
2154  * @drvinfo
2155  */
2156 static void
2157 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2158 {
2159 	struct bdx_priv *priv = netdev_priv(netdev);
2160 
2161 	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2162 	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2163 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2164 	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2165 		sizeof(drvinfo->bus_info));
2166 }
2167 
2168 /*
2169  * bdx_get_coalesce - get interrupt coalescing parameters
2170  * @netdev
2171  * @ecoal
2172  */
2173 static int
2174 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2175 {
2176 	u32 rdintcm;
2177 	u32 tdintcm;
2178 	struct bdx_priv *priv = netdev_priv(netdev);
2179 
2180 	rdintcm = priv->rdintcm;
2181 	tdintcm = priv->tdintcm;
2182 
2183 	/* PCK_TH measures in multiples of FIFO bytes
2184 	   We translate to packets */
2185 	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2186 	ecoal->rx_max_coalesced_frames =
2187 	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2188 
2189 	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2190 	ecoal->tx_max_coalesced_frames =
2191 	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2192 
2193 	/* adaptive parameters ignored */
2194 	return 0;
2195 }
2196 
2197 /*
2198  * bdx_set_coalesce - set interrupt coalescing parameters
2199  * @netdev
2200  * @ecoal
2201  */
2202 static int
2203 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2204 {
2205 	u32 rdintcm;
2206 	u32 tdintcm;
2207 	struct bdx_priv *priv = netdev_priv(netdev);
2208 	int rx_coal;
2209 	int tx_coal;
2210 	int rx_max_coal;
2211 	int tx_max_coal;
2212 
2213 	/* Check for valid input */
2214 	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2215 	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2216 	rx_max_coal = ecoal->rx_max_coalesced_frames;
2217 	tx_max_coal = ecoal->tx_max_coalesced_frames;
2218 
2219 	/* Translate from packets to multiples of FIFO bytes */
2220 	rx_max_coal =
2221 	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2222 	     / PCK_TH_MULT);
2223 	tx_max_coal =
2224 	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2225 	     / PCK_TH_MULT);
2226 
2227 	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2228 	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2229 		return -EINVAL;
2230 
2231 	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2232 			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2233 	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2234 			      tx_max_coal);
2235 
2236 	priv->rdintcm = rdintcm;
2237 	priv->tdintcm = tdintcm;
2238 
2239 	WRITE_REG(priv, regRDINTCM0, rdintcm);
2240 	WRITE_REG(priv, regTDINTCM0, tdintcm);
2241 
2242 	return 0;
2243 }
2244 
2245 /* Convert RX fifo size to number of pending packets */
2246 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2247 {
2248 	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2249 }
2250 
2251 /* Convert TX fifo size to number of pending packets */
2252 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2253 {
2254 	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2255 }
2256 
2257 /*
2258  * bdx_get_ringparam - report ring sizes
2259  * @netdev
2260  * @ring
2261  */
2262 static void
2263 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2264 {
2265 	struct bdx_priv *priv = netdev_priv(netdev);
2266 
2267 	/*max_pending - the maximum-sized FIFO we allow */
2268 	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2269 	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2270 	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2271 	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2272 }
2273 
2274 /*
2275  * bdx_set_ringparam - set ring sizes
2276  * @netdev
2277  * @ring
2278  */
2279 static int
2280 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2281 {
2282 	struct bdx_priv *priv = netdev_priv(netdev);
2283 	int rx_size = 0;
2284 	int tx_size = 0;
2285 
2286 	for (; rx_size < 4; rx_size++) {
2287 		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2288 			break;
2289 	}
2290 	if (rx_size == 4)
2291 		rx_size = 3;
2292 
2293 	for (; tx_size < 4; tx_size++) {
2294 		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2295 			break;
2296 	}
2297 	if (tx_size == 4)
2298 		tx_size = 3;
2299 
2300 	/*Is there anything to do? */
2301 	if ((rx_size == priv->rxf_size) &&
2302 	    (tx_size == priv->txd_size))
2303 		return 0;
2304 
2305 	priv->rxf_size = rx_size;
2306 	if (rx_size > 1)
2307 		priv->rxd_size = rx_size - 1;
2308 	else
2309 		priv->rxd_size = rx_size;
2310 
2311 	priv->txf_size = priv->txd_size = tx_size;
2312 
2313 	if (netif_running(netdev)) {
2314 		bdx_close(netdev);
2315 		bdx_open(netdev);
2316 	}
2317 	return 0;
2318 }
2319 
2320 /*
2321  * bdx_get_strings - return a set of strings that describe the requested objects
2322  * @netdev
2323  * @data
2324  */
2325 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2326 {
2327 	switch (stringset) {
2328 	case ETH_SS_STATS:
2329 		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2330 		break;
2331 	}
2332 }
2333 
2334 /*
2335  * bdx_get_sset_count - return number of statistics or tests
2336  * @netdev
2337  */
2338 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2339 {
2340 	struct bdx_priv *priv = netdev_priv(netdev);
2341 
2342 	switch (stringset) {
2343 	case ETH_SS_STATS:
2344 		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2345 			   != sizeof(struct bdx_stats) / sizeof(u64));
2346 		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2347 	}
2348 
2349 	return -EINVAL;
2350 }
2351 
2352 /*
2353  * bdx_get_ethtool_stats - return device's hardware L2 statistics
2354  * @netdev
2355  * @stats
2356  * @data
2357  */
2358 static void bdx_get_ethtool_stats(struct net_device *netdev,
2359 				  struct ethtool_stats *stats, u64 *data)
2360 {
2361 	struct bdx_priv *priv = netdev_priv(netdev);
2362 
2363 	if (priv->stats_flag) {
2364 
2365 		/* Update stats from HW */
2366 		bdx_update_stats(priv);
2367 
2368 		/* Copy data to user buffer */
2369 		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2370 	}
2371 }
2372 
2373 /*
2374  * bdx_set_ethtool_ops - ethtool interface implementation
2375  * @netdev
2376  */
2377 static void bdx_set_ethtool_ops(struct net_device *netdev)
2378 {
2379 	static const struct ethtool_ops bdx_ethtool_ops = {
2380 		.get_drvinfo = bdx_get_drvinfo,
2381 		.get_link = ethtool_op_get_link,
2382 		.get_coalesce = bdx_get_coalesce,
2383 		.set_coalesce = bdx_set_coalesce,
2384 		.get_ringparam = bdx_get_ringparam,
2385 		.set_ringparam = bdx_set_ringparam,
2386 		.get_strings = bdx_get_strings,
2387 		.get_sset_count = bdx_get_sset_count,
2388 		.get_ethtool_stats = bdx_get_ethtool_stats,
2389 		.get_link_ksettings = bdx_get_link_ksettings,
2390 	};
2391 
2392 	netdev->ethtool_ops = &bdx_ethtool_ops;
2393 }
2394 
2395 /**
2396  * bdx_remove - Device Removal Routine
2397  * @pdev: PCI device information struct
2398  *
2399  * bdx_remove is called by the PCI subsystem to alert the driver
2400  * that it should release a PCI device.  The could be caused by a
2401  * Hot-Plug event, or because the driver is going to be removed from
2402  * memory.
2403  **/
2404 static void bdx_remove(struct pci_dev *pdev)
2405 {
2406 	struct pci_nic *nic = pci_get_drvdata(pdev);
2407 	struct net_device *ndev;
2408 	int port;
2409 
2410 	for (port = 0; port < nic->port_num; port++) {
2411 		ndev = nic->priv[port]->ndev;
2412 		unregister_netdev(ndev);
2413 		free_netdev(ndev);
2414 	}
2415 
2416 	/*bdx_hw_reset_direct(nic->regs); */
2417 #ifdef BDX_MSI
2418 	if (nic->irq_type == IRQ_MSI)
2419 		pci_disable_msi(pdev);
2420 #endif
2421 
2422 	iounmap(nic->regs);
2423 	pci_release_regions(pdev);
2424 	pci_disable_device(pdev);
2425 	vfree(nic);
2426 
2427 	RET();
2428 }
2429 
2430 static struct pci_driver bdx_pci_driver = {
2431 	.name = BDX_DRV_NAME,
2432 	.id_table = bdx_pci_tbl,
2433 	.probe = bdx_probe,
2434 	.remove = bdx_remove,
2435 };
2436 
2437 /*
2438  * print_driver_id - print parameters of the driver build
2439  */
2440 static void __init print_driver_id(void)
2441 {
2442 	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2443 	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2444 }
2445 
2446 static int __init bdx_module_init(void)
2447 {
2448 	ENTER;
2449 	init_txd_sizes();
2450 	print_driver_id();
2451 	RET(pci_register_driver(&bdx_pci_driver));
2452 }
2453 
2454 module_init(bdx_module_init);
2455 
2456 static void __exit bdx_module_exit(void)
2457 {
2458 	ENTER;
2459 	pci_unregister_driver(&bdx_pci_driver);
2460 	RET();
2461 }
2462 
2463 module_exit(bdx_module_exit);
2464 
2465 MODULE_LICENSE("GPL");
2466 MODULE_AUTHOR(DRIVER_AUTHOR);
2467 MODULE_DESCRIPTION(BDX_DRV_DESC);
2468 MODULE_FIRMWARE("tehuti/bdx.bin");
2469