xref: /openbmc/linux/drivers/net/ethernet/sun/sunhme.c (revision e8f6f3b4)
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6  *		2006, 2008 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
38 
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42 
43 #ifdef CONFIG_SPARC
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <asm/idprom.h>
47 #include <asm/openprom.h>
48 #include <asm/oplib.h>
49 #include <asm/prom.h>
50 #include <asm/auxio.h>
51 #endif
52 #include <asm/uaccess.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME	"sunhme"
64 #define DRV_VERSION	"3.10"
65 #define DRV_RELDATE	"August 26, 2008"
66 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
67 
68 static char version[] =
69 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75 
76 static int macaddr[6];
77 
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85 
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89 
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95 
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98 	unsigned int tstamp;
99 	int tx_new, tx_old;
100 	unsigned int action;
101 #define TXLOG_ACTION_IRQ	0x01
102 #define TXLOG_ACTION_TXMIT	0x02
103 #define TXLOG_ACTION_TBUSY	0x04
104 #define TXLOG_ACTION_NBUFS	0x08
105 	unsigned int status;
106 };
107 #define TX_LOG_LEN	128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112 	struct hme_tx_logent *tlp;
113 	unsigned long flags;
114 
115 	local_irq_save(flags);
116 	tlp = &tx_log[txlog_cur_entry];
117 	tlp->tstamp = (unsigned int)jiffies;
118 	tlp->tx_new = hp->tx_new;
119 	tlp->tx_old = hp->tx_old;
120 	tlp->action = a;
121 	tlp->status = s;
122 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 	local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127 	int i, this;
128 
129 	this = txlog_cur_entry;
130 	for (i = 0; i < TX_LOG_LEN; i++) {
131 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132 		       tx_log[this].tstamp,
133 		       tx_log[this].tx_new, tx_log[this].tx_old,
134 		       tx_log[this].action, tx_log[this].status);
135 		this = (this + 1) & (TX_LOG_LEN - 1);
136 	}
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140 	struct hmeal_init_block *hb = hp->happy_block;
141 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142 	int i;
143 
144 	for (i = 0; i < TX_RING_SIZE; i+=4) {
145 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 		       i, i + 4,
147 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151 	}
152 }
153 #else
154 #define tx_add_log(hp, a, s)		do { } while(0)
155 #define tx_dump_log()			do { } while(0)
156 #define tx_dump_ring(hp)		do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *	 member _first_.  The card must not be allowed to see
180  *	 the updated descriptor flags until the address is
181  *	 correct.  I've added a write memory barrier between
182  *	 the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188 	sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193 	return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198 	rxd->rx_addr = (__force hme32)addr;
199 	wmb();
200 	rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205 	txd->tx_addr = (__force hme32)addr;
206 	wmb();
207 	txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212 	return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217 	writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222 	return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228 	wmb();
229 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235 	wmb();
236 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241 	return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245 	((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 	((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 	((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 	((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255 	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257 	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259 	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261 	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266 	sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268 	sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271 	wmb(); \
272 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276 	wmb(); \
277 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281 	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283 	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285 	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287 	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291 	writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293 	readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296 	wmb(); \
297 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301 	wmb(); \
302 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
305 {
306 	return le32_to_cpup((__le32 *)p);
307 }
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309 	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311 	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313 	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315 	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
318 
319 
320 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
322 {
323 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
324 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
326 }
327 
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
330 {
331 	u32 ret;
332 
333 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335 	ret = hme_read32(hp, tregs + TCVR_CFG);
336 	if (internal)
337 		ret &= TCV_CFG_MDIO0;
338 	else
339 		ret &= TCV_CFG_MDIO1;
340 
341 	return ret;
342 }
343 #endif
344 
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
346 {
347 	u32 retval;
348 
349 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350 	udelay(1);
351 	retval = hme_read32(hp, tregs + TCVR_CFG);
352 	if (internal)
353 		retval &= TCV_CFG_MDIO0;
354 	else
355 		retval &= TCV_CFG_MDIO1;
356 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
357 
358 	return retval;
359 }
360 
361 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
362 
363 static int happy_meal_bb_read(struct happy_meal *hp,
364 			      void __iomem *tregs, int reg)
365 {
366 	u32 tmp;
367 	int retval = 0;
368 	int i;
369 
370 	ASD(("happy_meal_bb_read: reg=%d ", reg));
371 
372 	/* Enable the MIF BitBang outputs. */
373 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
374 
375 	/* Force BitBang into the idle state. */
376 	for (i = 0; i < 32; i++)
377 		BB_PUT_BIT(hp, tregs, 1);
378 
379 	/* Give it the read sequence. */
380 	BB_PUT_BIT(hp, tregs, 0);
381 	BB_PUT_BIT(hp, tregs, 1);
382 	BB_PUT_BIT(hp, tregs, 1);
383 	BB_PUT_BIT(hp, tregs, 0);
384 
385 	/* Give it the PHY address. */
386 	tmp = hp->paddr & 0xff;
387 	for (i = 4; i >= 0; i--)
388 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
389 
390 	/* Tell it what register we want to read. */
391 	tmp = (reg & 0xff);
392 	for (i = 4; i >= 0; i--)
393 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
394 
395 	/* Close down the MIF BitBang outputs. */
396 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
397 
398 	/* Now read in the value. */
399 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400 	for (i = 15; i >= 0; i--)
401 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 	ASD(("value=%x\n", retval));
406 	return retval;
407 }
408 
409 static void happy_meal_bb_write(struct happy_meal *hp,
410 				void __iomem *tregs, int reg,
411 				unsigned short value)
412 {
413 	u32 tmp;
414 	int i;
415 
416 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
417 
418 	/* Enable the MIF BitBang outputs. */
419 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
420 
421 	/* Force BitBang into the idle state. */
422 	for (i = 0; i < 32; i++)
423 		BB_PUT_BIT(hp, tregs, 1);
424 
425 	/* Give it write sequence. */
426 	BB_PUT_BIT(hp, tregs, 0);
427 	BB_PUT_BIT(hp, tregs, 1);
428 	BB_PUT_BIT(hp, tregs, 0);
429 	BB_PUT_BIT(hp, tregs, 1);
430 
431 	/* Give it the PHY address. */
432 	tmp = (hp->paddr & 0xff);
433 	for (i = 4; i >= 0; i--)
434 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
435 
436 	/* Tell it what register we will be writing. */
437 	tmp = (reg & 0xff);
438 	for (i = 4; i >= 0; i--)
439 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
440 
441 	/* Tell it to become ready for the bits. */
442 	BB_PUT_BIT(hp, tregs, 1);
443 	BB_PUT_BIT(hp, tregs, 0);
444 
445 	for (i = 15; i >= 0; i--)
446 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
447 
448 	/* Close down the MIF BitBang outputs. */
449 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
450 }
451 
452 #define TCVR_READ_TRIES   16
453 
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455 				void __iomem *tregs, int reg)
456 {
457 	int tries = TCVR_READ_TRIES;
458 	int retval;
459 
460 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461 	if (hp->tcvr_type == none) {
462 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
463 		return TCVR_FAILURE;
464 	}
465 
466 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
467 		ASD(("doing bit bang\n"));
468 		return happy_meal_bb_read(hp, tregs, reg);
469 	}
470 
471 	hme_write32(hp, tregs + TCVR_FRAME,
472 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474 		udelay(20);
475 	if (!tries) {
476 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477 		return TCVR_FAILURE;
478 	}
479 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480 	ASD(("value=%04x\n", retval));
481 	return retval;
482 }
483 
484 #define TCVR_WRITE_TRIES  16
485 
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487 				  void __iomem *tregs, int reg,
488 				  unsigned short value)
489 {
490 	int tries = TCVR_WRITE_TRIES;
491 
492 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
493 
494 	/* Welcome to Sun Microsystems, can I take your order please? */
495 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
496 		happy_meal_bb_write(hp, tregs, reg, value);
497 		return;
498 	}
499 
500 	/* Would you like fries with that? */
501 	hme_write32(hp, tregs + TCVR_FRAME,
502 		    (FRAME_WRITE | (hp->paddr << 23) |
503 		     ((reg & 0xff) << 18) | (value & 0xffff)));
504 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505 		udelay(20);
506 
507 	/* Anything else? */
508 	if (!tries)
509 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
510 
511 	/* Fifty-two cents is your change, have a nice day. */
512 }
513 
514 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
515  * that keeps watching the auto negotiation process as it progresses.
516  * The DP83840 is first told to start doing it's thing, we set up the time
517  * and place the timer state machine in it's initial state.
518  *
519  * Here the timer peeks at the DP83840 status registers at each click to see
520  * if the auto negotiation has completed, we assume here that the DP83840 PHY
521  * will time out at some point and just tell us what (didn't) happen.  For
522  * complete coverage we only allow so many of the ticks at this level to run,
523  * when this has expired we print a warning message and try another strategy.
524  * This "other" strategy is to force the interface into various speed/duplex
525  * configurations and we stop when we see a link-up condition before the
526  * maximum number of "peek" ticks have occurred.
527  *
528  * Once a valid link status has been detected we configure the BigMAC and
529  * the rest of the Happy Meal to speak the most efficient protocol we could
530  * get a clean link for.  The priority for link configurations, highest first
531  * is:
532  *                 100 Base-T Full Duplex
533  *                 100 Base-T Half Duplex
534  *                 10 Base-T Full Duplex
535  *                 10 Base-T Half Duplex
536  *
537  * We start a new timer now, after a successful auto negotiation status has
538  * been detected.  This timer just waits for the link-up bit to get set in
539  * the BMCR of the DP83840.  When this occurs we print a kernel log message
540  * describing the link type in use and the fact that it is up.
541  *
542  * If a fatal error of some sort is signalled and detected in the interrupt
543  * service routine, and the chip is reset, or the link is ifconfig'd down
544  * and then back up, this entire process repeats itself all over again.
545  */
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
547 {
548 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
549 
550 	/* Downgrade from full to half duplex.  Only possible
551 	 * via ethtool.
552 	 */
553 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
554 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556 		return 0;
557 	}
558 
559 	/* Downgrade from 100 to 10. */
560 	if (hp->sw_bmcr & BMCR_SPEED100) {
561 		hp->sw_bmcr &= ~(BMCR_SPEED100);
562 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563 		return 0;
564 	}
565 
566 	/* We've tried everything. */
567 	return -1;
568 }
569 
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
571 {
572 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573 	if (hp->tcvr_type == external)
574 		printk("external ");
575 	else
576 		printk("internal ");
577 	printk("transceiver at ");
578 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580 		if (hp->sw_lpa & LPA_100FULL)
581 			printk("100Mb/s, Full Duplex.\n");
582 		else
583 			printk("100Mb/s, Half Duplex.\n");
584 	} else {
585 		if (hp->sw_lpa & LPA_10FULL)
586 			printk("10Mb/s, Full Duplex.\n");
587 		else
588 			printk("10Mb/s, Half Duplex.\n");
589 	}
590 }
591 
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
593 {
594 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595 	if (hp->tcvr_type == external)
596 		printk("external ");
597 	else
598 		printk("internal ");
599 	printk("transceiver at ");
600 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601 	if (hp->sw_bmcr & BMCR_SPEED100)
602 		printk("100Mb/s, ");
603 	else
604 		printk("10Mb/s, ");
605 	if (hp->sw_bmcr & BMCR_FULLDPLX)
606 		printk("Full Duplex.\n");
607 	else
608 		printk("Half Duplex.\n");
609 }
610 
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
612 {
613 	int full;
614 
615 	/* All we care about is making sure the bigmac tx_cfg has a
616 	 * proper duplex setting.
617 	 */
618 	if (hp->timer_state == arbwait) {
619 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621 			goto no_response;
622 		if (hp->sw_lpa & LPA_100FULL)
623 			full = 1;
624 		else if (hp->sw_lpa & LPA_100HALF)
625 			full = 0;
626 		else if (hp->sw_lpa & LPA_10FULL)
627 			full = 1;
628 		else
629 			full = 0;
630 	} else {
631 		/* Forcing a link mode. */
632 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633 		if (hp->sw_bmcr & BMCR_FULLDPLX)
634 			full = 1;
635 		else
636 			full = 0;
637 	}
638 
639 	/* Before changing other bits in the tx_cfg register, and in
640 	 * general any of other the TX config registers too, you
641 	 * must:
642 	 * 1) Clear Enable
643 	 * 2) Poll with reads until that bit reads back as zero
644 	 * 3) Make TX configuration changes
645 	 * 4) Set Enable once more
646 	 */
647 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649 		    ~(BIGMAC_TXCFG_ENABLE));
650 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
651 		barrier();
652 	if (full) {
653 		hp->happy_flags |= HFLAG_FULL;
654 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656 			    BIGMAC_TXCFG_FULLDPLX);
657 	} else {
658 		hp->happy_flags &= ~(HFLAG_FULL);
659 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661 			    ~(BIGMAC_TXCFG_FULLDPLX));
662 	}
663 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665 		    BIGMAC_TXCFG_ENABLE);
666 	return 0;
667 no_response:
668 	return 1;
669 }
670 
671 static int happy_meal_init(struct happy_meal *hp);
672 
673 static int is_lucent_phy(struct happy_meal *hp)
674 {
675 	void __iomem *tregs = hp->tcvregs;
676 	unsigned short mr2, mr3;
677 	int ret = 0;
678 
679 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681 	if ((mr2 & 0xffff) == 0x0180 &&
682 	    ((mr3 & 0xffff) >> 10) == 0x1d)
683 		ret = 1;
684 
685 	return ret;
686 }
687 
688 static void happy_meal_timer(unsigned long data)
689 {
690 	struct happy_meal *hp = (struct happy_meal *) data;
691 	void __iomem *tregs = hp->tcvregs;
692 	int restart_timer = 0;
693 
694 	spin_lock_irq(&hp->happy_lock);
695 
696 	hp->timer_ticks++;
697 	switch(hp->timer_state) {
698 	case arbwait:
699 		/* Only allow for 5 ticks, thats 10 seconds and much too
700 		 * long to wait for arbitration to complete.
701 		 */
702 		if (hp->timer_ticks >= 10) {
703 			/* Enter force mode. */
704 	do_force_mode:
705 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707 			       hp->dev->name);
708 			hp->sw_bmcr = BMCR_SPEED100;
709 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
710 
711 			if (!is_lucent_phy(hp)) {
712 				/* OK, seems we need do disable the transceiver for the first
713 				 * tick to make sure we get an accurate link state at the
714 				 * second tick.
715 				 */
716 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
719 			}
720 			hp->timer_state = ltrywait;
721 			hp->timer_ticks = 0;
722 			restart_timer = 1;
723 		} else {
724 			/* Anything interesting happen? */
725 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727 				int ret;
728 
729 				/* Just what we've been waiting for... */
730 				ret = set_happy_link_modes(hp, tregs);
731 				if (ret) {
732 					/* Ooops, something bad happened, go to force
733 					 * mode.
734 					 *
735 					 * XXX Broken hubs which don't support 802.3u
736 					 * XXX auto-negotiation make this happen as well.
737 					 */
738 					goto do_force_mode;
739 				}
740 
741 				/* Success, at least so far, advance our state engine. */
742 				hp->timer_state = lupwait;
743 				restart_timer = 1;
744 			} else {
745 				restart_timer = 1;
746 			}
747 		}
748 		break;
749 
750 	case lupwait:
751 		/* Auto negotiation was successful and we are awaiting a
752 		 * link up status.  I have decided to let this timer run
753 		 * forever until some sort of error is signalled, reporting
754 		 * a message to the user at 10 second intervals.
755 		 */
756 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757 		if (hp->sw_bmsr & BMSR_LSTATUS) {
758 			/* Wheee, it's up, display the link mode in use and put
759 			 * the timer to sleep.
760 			 */
761 			display_link_mode(hp, tregs);
762 			hp->timer_state = asleep;
763 			restart_timer = 0;
764 		} else {
765 			if (hp->timer_ticks >= 10) {
766 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767 				       "not completely up.\n", hp->dev->name);
768 				hp->timer_ticks = 0;
769 				restart_timer = 1;
770 			} else {
771 				restart_timer = 1;
772 			}
773 		}
774 		break;
775 
776 	case ltrywait:
777 		/* Making the timeout here too long can make it take
778 		 * annoyingly long to attempt all of the link mode
779 		 * permutations, but then again this is essentially
780 		 * error recovery code for the most part.
781 		 */
782 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784 		if (hp->timer_ticks == 1) {
785 			if (!is_lucent_phy(hp)) {
786 				/* Re-enable transceiver, we'll re-enable the transceiver next
787 				 * tick, then check link state on the following tick.
788 				 */
789 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790 				happy_meal_tcvr_write(hp, tregs,
791 						      DP83840_CSCONFIG, hp->sw_csconfig);
792 			}
793 			restart_timer = 1;
794 			break;
795 		}
796 		if (hp->timer_ticks == 2) {
797 			if (!is_lucent_phy(hp)) {
798 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799 				happy_meal_tcvr_write(hp, tregs,
800 						      DP83840_CSCONFIG, hp->sw_csconfig);
801 			}
802 			restart_timer = 1;
803 			break;
804 		}
805 		if (hp->sw_bmsr & BMSR_LSTATUS) {
806 			/* Force mode selection success. */
807 			display_forced_link_mode(hp, tregs);
808 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809 			hp->timer_state = asleep;
810 			restart_timer = 0;
811 		} else {
812 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813 				int ret;
814 
815 				ret = try_next_permutation(hp, tregs);
816 				if (ret == -1) {
817 					/* Aieee, tried them all, reset the
818 					 * chip and try all over again.
819 					 */
820 
821 					/* Let the user know... */
822 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823 					       hp->dev->name);
824 
825 					ret = happy_meal_init(hp);
826 					if (ret) {
827 						/* ho hum... */
828 						printk(KERN_ERR "%s: Error, cannot re-init the "
829 						       "Happy Meal.\n", hp->dev->name);
830 					}
831 					goto out;
832 				}
833 				if (!is_lucent_phy(hp)) {
834 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
835 									       DP83840_CSCONFIG);
836 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837 					happy_meal_tcvr_write(hp, tregs,
838 							      DP83840_CSCONFIG, hp->sw_csconfig);
839 				}
840 				hp->timer_ticks = 0;
841 				restart_timer = 1;
842 			} else {
843 				restart_timer = 1;
844 			}
845 		}
846 		break;
847 
848 	case asleep:
849 	default:
850 		/* Can't happens.... */
851 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852 		       hp->dev->name);
853 		restart_timer = 0;
854 		hp->timer_ticks = 0;
855 		hp->timer_state = asleep; /* foo on you */
856 		break;
857 	}
858 
859 	if (restart_timer) {
860 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861 		add_timer(&hp->happy_timer);
862 	}
863 
864 out:
865 	spin_unlock_irq(&hp->happy_lock);
866 }
867 
868 #define TX_RESET_TRIES     32
869 #define RX_RESET_TRIES     32
870 
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
873 {
874 	int tries = TX_RESET_TRIES;
875 
876 	HMD(("happy_meal_tx_reset: reset, "));
877 
878 	/* Would you like to try our SMCC Delux? */
879 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881 		udelay(20);
882 
883 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
884 	if (!tries)
885 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
886 
887 	/* Take care. */
888 	HMD(("done\n"));
889 }
890 
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
893 {
894 	int tries = RX_RESET_TRIES;
895 
896 	HMD(("happy_meal_rx_reset: reset, "));
897 
898 	/* We have a special on GNU/Viking hardware bugs today. */
899 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901 		udelay(20);
902 
903 	/* Will that be all? */
904 	if (!tries)
905 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
906 
907 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
908 	HMD(("done\n"));
909 }
910 
911 #define STOP_TRIES         16
912 
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
915 {
916 	int tries = STOP_TRIES;
917 
918 	HMD(("happy_meal_stop: reset, "));
919 
920 	/* We're consolidating our STB products, it's your lucky day. */
921 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923 		udelay(20);
924 
925 	/* Come back next week when we are "Sun Microelectronics". */
926 	if (!tries)
927 		printk(KERN_ERR "happy meal: Fry guys.");
928 
929 	/* Remember: "Different name, same old buggy as shit hardware." */
930 	HMD(("done\n"));
931 }
932 
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
935 {
936 	struct net_device_stats *stats = &hp->net_stats;
937 
938 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
940 
941 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
943 
944 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
946 
947 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
948 
949 	stats->collisions +=
950 		(hme_read32(hp, bregs + BMAC_EXCTR) +
951 		 hme_read32(hp, bregs + BMAC_LTCTR));
952 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
953 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
954 }
955 
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
958 {
959 	ASD(("happy_meal_poll_stop: "));
960 
961 	/* If polling disabled or not polling already, nothing to do. */
962 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
964 		HMD(("not polling, return\n"));
965 		return;
966 	}
967 
968 	/* Shut up the MIF. */
969 	ASD(("were polling, mif ints off, "));
970 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
971 
972 	/* Turn off polling. */
973 	ASD(("polling off, "));
974 	hme_write32(hp, tregs + TCVR_CFG,
975 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
976 
977 	/* We are no longer polling. */
978 	hp->happy_flags &= ~(HFLAG_POLL);
979 
980 	/* Let the bits set. */
981 	udelay(200);
982 	ASD(("done\n"));
983 }
984 
985 /* Only Sun can take such nice parts and fuck up the programming interface
986  * like this.  Good job guys...
987  */
988 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
989 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
990 
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993 {
994 	u32 tconfig;
995 	int result, tries = TCVR_RESET_TRIES;
996 
997 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
998 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999 	if (hp->tcvr_type == external) {
1000 		ASD(("external<"));
1001 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002 		hp->tcvr_type = internal;
1003 		hp->paddr = TCV_PADDR_ITX;
1004 		ASD(("ISOLATE,"));
1005 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008 		if (result == TCVR_FAILURE) {
1009 			ASD(("phyread_fail>\n"));
1010 			return -1;
1011 		}
1012 		ASD(("phyread_ok,PSELECT>"));
1013 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014 		hp->tcvr_type = external;
1015 		hp->paddr = TCV_PADDR_ETX;
1016 	} else {
1017 		if (tconfig & TCV_CFG_MDIO1) {
1018 			ASD(("internal<PSELECT,"));
1019 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020 			ASD(("ISOLATE,"));
1021 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024 			if (result == TCVR_FAILURE) {
1025 				ASD(("phyread_fail>\n"));
1026 				return -1;
1027 			}
1028 			ASD(("phyread_ok,~PSELECT>"));
1029 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030 			hp->tcvr_type = internal;
1031 			hp->paddr = TCV_PADDR_ITX;
1032 		}
1033 	}
1034 
1035 	ASD(("BMCR_RESET "));
1036 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037 
1038 	while (--tries) {
1039 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040 		if (result == TCVR_FAILURE)
1041 			return -1;
1042 		hp->sw_bmcr = result;
1043 		if (!(result & BMCR_RESET))
1044 			break;
1045 		udelay(20);
1046 	}
1047 	if (!tries) {
1048 		ASD(("BMCR RESET FAILED!\n"));
1049 		return -1;
1050 	}
1051 	ASD(("RESET_OK\n"));
1052 
1053 	/* Get fresh copies of the PHY registers. */
1054 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058 
1059 	ASD(("UNISOLATE"));
1060 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062 
1063 	tries = TCVR_UNISOLATE_TRIES;
1064 	while (--tries) {
1065 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066 		if (result == TCVR_FAILURE)
1067 			return -1;
1068 		if (!(result & BMCR_ISOLATE))
1069 			break;
1070 		udelay(20);
1071 	}
1072 	if (!tries) {
1073 		ASD((" FAILED!\n"));
1074 		return -1;
1075 	}
1076 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077 	if (!is_lucent_phy(hp)) {
1078 		result = happy_meal_tcvr_read(hp, tregs,
1079 					      DP83840_CSCONFIG);
1080 		happy_meal_tcvr_write(hp, tregs,
1081 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082 	}
1083 	return 0;
1084 }
1085 
1086 /* Figure out whether we have an internal or external transceiver.
1087  *
1088  * hp->happy_lock must be held
1089  */
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091 {
1092 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093 
1094 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095 	if (hp->happy_flags & HFLAG_POLL) {
1096 		/* If we are polling, we must stop to get the transceiver type. */
1097 		ASD(("<polling> "));
1098 		if (hp->tcvr_type == internal) {
1099 			if (tconfig & TCV_CFG_MDIO1) {
1100 				ASD(("<internal> <poll stop> "));
1101 				happy_meal_poll_stop(hp, tregs);
1102 				hp->paddr = TCV_PADDR_ETX;
1103 				hp->tcvr_type = external;
1104 				ASD(("<external>\n"));
1105 				tconfig &= ~(TCV_CFG_PENABLE);
1106 				tconfig |= TCV_CFG_PSELECT;
1107 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108 			}
1109 		} else {
1110 			if (hp->tcvr_type == external) {
1111 				ASD(("<external> "));
1112 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113 					ASD(("<poll stop> "));
1114 					happy_meal_poll_stop(hp, tregs);
1115 					hp->paddr = TCV_PADDR_ITX;
1116 					hp->tcvr_type = internal;
1117 					ASD(("<internal>\n"));
1118 					hme_write32(hp, tregs + TCVR_CFG,
1119 						    hme_read32(hp, tregs + TCVR_CFG) &
1120 						    ~(TCV_CFG_PSELECT));
1121 				}
1122 				ASD(("\n"));
1123 			} else {
1124 				ASD(("<none>\n"));
1125 			}
1126 		}
1127 	} else {
1128 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129 
1130 		/* Else we can just work off of the MDIO bits. */
1131 		ASD(("<not polling> "));
1132 		if (reread & TCV_CFG_MDIO1) {
1133 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134 			hp->paddr = TCV_PADDR_ETX;
1135 			hp->tcvr_type = external;
1136 			ASD(("<external>\n"));
1137 		} else {
1138 			if (reread & TCV_CFG_MDIO0) {
1139 				hme_write32(hp, tregs + TCVR_CFG,
1140 					    tconfig & ~(TCV_CFG_PSELECT));
1141 				hp->paddr = TCV_PADDR_ITX;
1142 				hp->tcvr_type = internal;
1143 				ASD(("<internal>\n"));
1144 			} else {
1145 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146 				hp->tcvr_type = none; /* Grrr... */
1147 				ASD(("<none>\n"));
1148 			}
1149 		}
1150 	}
1151 }
1152 
1153 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1154  *
1155  * The buffers we dma into must be 64 byte aligned.  So we use a special
1156  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157  * we really need.
1158  *
1159  * We use skb_reserve() to align the data block we get in the skb.  We
1160  * also program the etxregs->cfg register to use an offset of 2.  This
1161  * imperical constant plus the ethernet header size will always leave
1162  * us with a nicely aligned ip header once we pass things up to the
1163  * protocol layers.
1164  *
1165  * The numbers work out to:
1166  *
1167  *         Max ethernet frame size         1518
1168  *         Ethernet header size              14
1169  *         Happy Meal base offset             2
1170  *
1171  * Say a skb data area is at 0xf001b010, and its size alloced is
1172  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173  *
1174  * First our alloc_skb() routine aligns the data base to a 64 byte
1175  * boundary.  We now have 0xf001b040 as our skb data address.  We
1176  * plug this into the receive descriptor address.
1177  *
1178  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179  * So now the data we will end up looking at starts at 0xf001b042.  When
1180  * the packet arrives, we will check out the size received and subtract
1181  * this from the skb->length.  Then we just pass the packet up to the
1182  * protocols as is, and allocate a new skb to replace this slot we have
1183  * just received from.
1184  *
1185  * The ethernet layer will strip the ether header from the front of the
1186  * skb we just sent to it, this leaves us with the ip header sitting
1187  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189  * bit checksum is obtained from the low bits of the receive descriptor
1190  * flags, thus:
1191  *
1192  * 	skb->csum = rxd->rx_flags & 0xffff;
1193  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1194  *
1195  * before sending off the skb to the protocols, and we are good as gold.
1196  */
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < RX_RING_SIZE; i++) {
1202 		if (hp->rx_skbs[i] != NULL) {
1203 			struct sk_buff *skb = hp->rx_skbs[i];
1204 			struct happy_meal_rxd *rxd;
1205 			u32 dma_addr;
1206 
1207 			rxd = &hp->happy_block->happy_meal_rxd[i];
1208 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209 			dma_unmap_single(hp->dma_dev, dma_addr,
1210 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211 			dev_kfree_skb_any(skb);
1212 			hp->rx_skbs[i] = NULL;
1213 		}
1214 	}
1215 
1216 	for (i = 0; i < TX_RING_SIZE; i++) {
1217 		if (hp->tx_skbs[i] != NULL) {
1218 			struct sk_buff *skb = hp->tx_skbs[i];
1219 			struct happy_meal_txd *txd;
1220 			u32 dma_addr;
1221 			int frag;
1222 
1223 			hp->tx_skbs[i] = NULL;
1224 
1225 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226 				txd = &hp->happy_block->happy_meal_txd[i];
1227 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228 				if (!frag)
1229 					dma_unmap_single(hp->dma_dev, dma_addr,
1230 							 (hme_read_desc32(hp, &txd->tx_flags)
1231 							  & TXFLAG_SIZE),
1232 							 DMA_TO_DEVICE);
1233 				else
1234 					dma_unmap_page(hp->dma_dev, dma_addr,
1235 							 (hme_read_desc32(hp, &txd->tx_flags)
1236 							  & TXFLAG_SIZE),
1237 							 DMA_TO_DEVICE);
1238 
1239 				if (frag != skb_shinfo(skb)->nr_frags)
1240 					i++;
1241 			}
1242 
1243 			dev_kfree_skb_any(skb);
1244 		}
1245 	}
1246 }
1247 
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1250 {
1251 	struct hmeal_init_block *hb = hp->happy_block;
1252 	int i;
1253 
1254 	HMD(("happy_meal_init_rings: counters to zero, "));
1255 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256 
1257 	/* Free any skippy bufs left around in the rings. */
1258 	HMD(("clean, "));
1259 	happy_meal_clean_rings(hp);
1260 
1261 	/* Now get new skippy bufs for the receive ring. */
1262 	HMD(("init rxring, "));
1263 	for (i = 0; i < RX_RING_SIZE; i++) {
1264 		struct sk_buff *skb;
1265 		u32 mapping;
1266 
1267 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1268 		if (!skb) {
1269 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1270 			continue;
1271 		}
1272 		hp->rx_skbs[i] = skb;
1273 
1274 		/* Because we reserve afterwards. */
1275 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1277 					 DMA_FROM_DEVICE);
1278 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1279 			dev_kfree_skb_any(skb);
1280 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281 			continue;
1282 		}
1283 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1285 			      mapping);
1286 		skb_reserve(skb, RX_OFFSET);
1287 	}
1288 
1289 	HMD(("init txring, "));
1290 	for (i = 0; i < TX_RING_SIZE; i++)
1291 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1292 
1293 	HMD(("done\n"));
1294 }
1295 
1296 /* hp->happy_lock must be held */
1297 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1298 					      void __iomem *tregs,
1299 					      struct ethtool_cmd *ep)
1300 {
1301 	int timeout;
1302 
1303 	/* Read all of the registers we are interested in now. */
1304 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1305 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1306 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1307 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1308 
1309 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1310 
1311 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1312 	if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1313 		/* Advertise everything we can support. */
1314 		if (hp->sw_bmsr & BMSR_10HALF)
1315 			hp->sw_advertise |= (ADVERTISE_10HALF);
1316 		else
1317 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1318 
1319 		if (hp->sw_bmsr & BMSR_10FULL)
1320 			hp->sw_advertise |= (ADVERTISE_10FULL);
1321 		else
1322 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1323 		if (hp->sw_bmsr & BMSR_100HALF)
1324 			hp->sw_advertise |= (ADVERTISE_100HALF);
1325 		else
1326 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1327 		if (hp->sw_bmsr & BMSR_100FULL)
1328 			hp->sw_advertise |= (ADVERTISE_100FULL);
1329 		else
1330 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1331 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1332 
1333 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1334 		 * XXX and this is because the DP83840 does not support it, changes
1335 		 * XXX would need to be made to the tx/rx logic in the driver as well
1336 		 * XXX so I completely skip checking for it in the BMSR for now.
1337 		 */
1338 
1339 #ifdef AUTO_SWITCH_DEBUG
1340 		ASD(("%s: Advertising [ ", hp->dev->name));
1341 		if (hp->sw_advertise & ADVERTISE_10HALF)
1342 			ASD(("10H "));
1343 		if (hp->sw_advertise & ADVERTISE_10FULL)
1344 			ASD(("10F "));
1345 		if (hp->sw_advertise & ADVERTISE_100HALF)
1346 			ASD(("100H "));
1347 		if (hp->sw_advertise & ADVERTISE_100FULL)
1348 			ASD(("100F "));
1349 #endif
1350 
1351 		/* Enable Auto-Negotiation, this is usually on already... */
1352 		hp->sw_bmcr |= BMCR_ANENABLE;
1353 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1354 
1355 		/* Restart it to make sure it is going. */
1356 		hp->sw_bmcr |= BMCR_ANRESTART;
1357 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1358 
1359 		/* BMCR_ANRESTART self clears when the process has begun. */
1360 
1361 		timeout = 64;  /* More than enough. */
1362 		while (--timeout) {
1363 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1364 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1365 				break; /* got it. */
1366 			udelay(10);
1367 		}
1368 		if (!timeout) {
1369 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1370 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1371 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1372 			       hp->dev->name);
1373 			goto force_link;
1374 		} else {
1375 			hp->timer_state = arbwait;
1376 		}
1377 	} else {
1378 force_link:
1379 		/* Force the link up, trying first a particular mode.
1380 		 * Either we are here at the request of ethtool or
1381 		 * because the Happy Meal would not start to autoneg.
1382 		 */
1383 
1384 		/* Disable auto-negotiation in BMCR, enable the duplex and
1385 		 * speed setting, init the timer state machine, and fire it off.
1386 		 */
1387 		if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1388 			hp->sw_bmcr = BMCR_SPEED100;
1389 		} else {
1390 			if (ethtool_cmd_speed(ep) == SPEED_100)
1391 				hp->sw_bmcr = BMCR_SPEED100;
1392 			else
1393 				hp->sw_bmcr = 0;
1394 			if (ep->duplex == DUPLEX_FULL)
1395 				hp->sw_bmcr |= BMCR_FULLDPLX;
1396 		}
1397 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1398 
1399 		if (!is_lucent_phy(hp)) {
1400 			/* OK, seems we need do disable the transceiver for the first
1401 			 * tick to make sure we get an accurate link state at the
1402 			 * second tick.
1403 			 */
1404 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1405 							       DP83840_CSCONFIG);
1406 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1407 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1408 					      hp->sw_csconfig);
1409 		}
1410 		hp->timer_state = ltrywait;
1411 	}
1412 
1413 	hp->timer_ticks = 0;
1414 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1415 	hp->happy_timer.data = (unsigned long) hp;
1416 	hp->happy_timer.function = happy_meal_timer;
1417 	add_timer(&hp->happy_timer);
1418 }
1419 
1420 /* hp->happy_lock must be held */
1421 static int happy_meal_init(struct happy_meal *hp)
1422 {
1423 	void __iomem *gregs        = hp->gregs;
1424 	void __iomem *etxregs      = hp->etxregs;
1425 	void __iomem *erxregs      = hp->erxregs;
1426 	void __iomem *bregs        = hp->bigmacregs;
1427 	void __iomem *tregs        = hp->tcvregs;
1428 	u32 regtmp, rxcfg;
1429 	unsigned char *e = &hp->dev->dev_addr[0];
1430 
1431 	/* If auto-negotiation timer is running, kill it. */
1432 	del_timer(&hp->happy_timer);
1433 
1434 	HMD(("happy_meal_init: happy_flags[%08x] ",
1435 	     hp->happy_flags));
1436 	if (!(hp->happy_flags & HFLAG_INIT)) {
1437 		HMD(("set HFLAG_INIT, "));
1438 		hp->happy_flags |= HFLAG_INIT;
1439 		happy_meal_get_counters(hp, bregs);
1440 	}
1441 
1442 	/* Stop polling. */
1443 	HMD(("to happy_meal_poll_stop\n"));
1444 	happy_meal_poll_stop(hp, tregs);
1445 
1446 	/* Stop transmitter and receiver. */
1447 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1448 	happy_meal_stop(hp, gregs);
1449 
1450 	/* Alloc and reset the tx/rx descriptor chains. */
1451 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452 	happy_meal_init_rings(hp);
1453 
1454 	/* Shut up the MIF. */
1455 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456 	     hme_read32(hp, tregs + TCVR_IMASK)));
1457 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458 
1459 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460 	if (hp->happy_flags & HFLAG_FENABLE) {
1461 		HMD(("use frame old[%08x], ",
1462 		     hme_read32(hp, tregs + TCVR_CFG)));
1463 		hme_write32(hp, tregs + TCVR_CFG,
1464 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465 	} else {
1466 		HMD(("use bitbang old[%08x], ",
1467 		     hme_read32(hp, tregs + TCVR_CFG)));
1468 		hme_write32(hp, tregs + TCVR_CFG,
1469 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470 	}
1471 
1472 	/* Check the state of the transceiver. */
1473 	HMD(("to happy_meal_transceiver_check\n"));
1474 	happy_meal_transceiver_check(hp, tregs);
1475 
1476 	/* Put the Big Mac into a sane state. */
1477 	HMD(("happy_meal_init: "));
1478 	switch(hp->tcvr_type) {
1479 	case none:
1480 		/* Cannot operate if we don't know the transceiver type! */
1481 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1482 		return -EAGAIN;
1483 
1484 	case internal:
1485 		/* Using the MII buffers. */
1486 		HMD(("internal, using MII, "));
1487 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488 		break;
1489 
1490 	case external:
1491 		/* Not using the MII, disable it. */
1492 		HMD(("external, disable MII, "));
1493 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494 		break;
1495 	}
1496 
1497 	if (happy_meal_tcvr_reset(hp, tregs))
1498 		return -EAGAIN;
1499 
1500 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501 	HMD(("tx/rx reset, "));
1502 	happy_meal_tx_reset(hp, bregs);
1503 	happy_meal_rx_reset(hp, bregs);
1504 
1505 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1506 	HMD(("jsize/ipg1/ipg2, "));
1507 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510 
1511 	/* Load up the MAC address and random seed. */
1512 	HMD(("rseed/macaddr, "));
1513 
1514 	/* The docs recommend to use the 10LSB of our MAC here. */
1515 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516 
1517 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520 
1521 	HMD(("htable, "));
1522 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1523 	    (netdev_mc_count(hp->dev) > 64)) {
1524 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529 		u16 hash_table[4];
1530 		struct netdev_hw_addr *ha;
1531 		u32 crc;
1532 
1533 		memset(hash_table, 0, sizeof(hash_table));
1534 		netdev_for_each_mc_addr(ha, hp->dev) {
1535 			crc = ether_crc_le(6, ha->addr);
1536 			crc >>= 26;
1537 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538 		}
1539 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543 	} else {
1544 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548 	}
1549 
1550 	/* Set the RX and TX ring ptrs. */
1551 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554 	hme_write32(hp, erxregs + ERX_RING,
1555 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556 	hme_write32(hp, etxregs + ETX_RING,
1557 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558 
1559 	/* Parity issues in the ERX unit of some HME revisions can cause some
1560 	 * registers to not be written unless their parity is even.  Detect such
1561 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562 	 * since the rxring needs to be 2K aligned).
1563 	 */
1564 	if (hme_read32(hp, erxregs + ERX_RING) !=
1565 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566 		hme_write32(hp, erxregs + ERX_RING,
1567 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568 			    | 0x4);
1569 
1570 	/* Set the supported burst sizes. */
1571 	HMD(("happy_meal_init: old[%08x] bursts<",
1572 	     hme_read32(hp, gregs + GREG_CFG)));
1573 
1574 #ifndef CONFIG_SPARC
1575 	/* It is always PCI and can handle 64byte bursts. */
1576 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577 #else
1578 	if ((hp->happy_bursts & DMA_BURST64) &&
1579 	    ((hp->happy_flags & HFLAG_PCI) != 0
1580 #ifdef CONFIG_SBUS
1581 	     || sbus_can_burst64()
1582 #endif
1583 	     || 0)) {
1584 		u32 gcfg = GREG_CFG_BURST64;
1585 
1586 		/* I have no idea if I should set the extended
1587 		 * transfer mode bit for Cheerio, so for now I
1588 		 * do not.  -DaveM
1589 		 */
1590 #ifdef CONFIG_SBUS
1591 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592 			struct platform_device *op = hp->happy_dev;
1593 			if (sbus_can_dma_64bit()) {
1594 				sbus_set_sbus64(&op->dev,
1595 						hp->happy_bursts);
1596 				gcfg |= GREG_CFG_64BIT;
1597 			}
1598 		}
1599 #endif
1600 
1601 		HMD(("64>"));
1602 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603 	} else if (hp->happy_bursts & DMA_BURST32) {
1604 		HMD(("32>"));
1605 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606 	} else if (hp->happy_bursts & DMA_BURST16) {
1607 		HMD(("16>"));
1608 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609 	} else {
1610 		HMD(("XXX>"));
1611 		hme_write32(hp, gregs + GREG_CFG, 0);
1612 	}
1613 #endif /* CONFIG_SPARC */
1614 
1615 	/* Turn off interrupts we do not want to hear. */
1616 	HMD((", enable global interrupts, "));
1617 	hme_write32(hp, gregs + GREG_IMASK,
1618 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620 
1621 	/* Set the transmit ring buffer size. */
1622 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625 
1626 	/* Enable transmitter DVMA. */
1627 	HMD(("tx dma enable old[%08x], ",
1628 	     hme_read32(hp, etxregs + ETX_CFG)));
1629 	hme_write32(hp, etxregs + ETX_CFG,
1630 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631 
1632 	/* This chip really rots, for the receiver sometimes when you
1633 	 * write to its control registers not all the bits get there
1634 	 * properly.  I cannot think of a sane way to provide complete
1635 	 * coverage for this hardware bug yet.
1636 	 */
1637 	HMD(("erx regs bug old[%08x]\n",
1638 	     hme_read32(hp, erxregs + ERX_CFG)));
1639 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646 		/* XXX Should return failure here... */
1647 	}
1648 
1649 	/* Enable Big Mac hash table filter. */
1650 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653 	if (hp->dev->flags & IFF_PROMISC)
1654 		rxcfg |= BIGMAC_RXCFG_PMISC;
1655 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656 
1657 	/* Let the bits settle in the chip. */
1658 	udelay(10);
1659 
1660 	/* Ok, configure the Big Mac transmitter. */
1661 	HMD(("BIGMAC init, "));
1662 	regtmp = 0;
1663 	if (hp->happy_flags & HFLAG_FULL)
1664 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665 
1666 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667 	 * to deadlock with the PHY if a Jabber occurs.
1668 	 */
1669 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670 
1671 	/* Give up after 16 TX attempts. */
1672 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673 
1674 	/* Enable the output drivers no matter what. */
1675 	regtmp = BIGMAC_XCFG_ODENABLE;
1676 
1677 	/* If card can do lance mode, enable it. */
1678 	if (hp->happy_flags & HFLAG_LANCE)
1679 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680 
1681 	/* Disable the MII buffers if using external transceiver. */
1682 	if (hp->tcvr_type == external)
1683 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684 
1685 	HMD(("XIF config old[%08x], ",
1686 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688 
1689 	/* Start things up. */
1690 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691 	     hme_read32(hp, bregs + BMAC_TXCFG),
1692 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693 
1694 	/* Set larger TX/RX size to allow for 802.1q */
1695 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697 
1698 	hme_write32(hp, bregs + BMAC_TXCFG,
1699 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700 	hme_write32(hp, bregs + BMAC_RXCFG,
1701 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702 
1703 	/* Get the autonegotiation started, and the watch timer ticking. */
1704 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705 
1706 	/* Success. */
1707 	return 0;
1708 }
1709 
1710 /* hp->happy_lock must be held */
1711 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712 {
1713 	void __iomem *tregs	= hp->tcvregs;
1714 	void __iomem *bregs	= hp->bigmacregs;
1715 	void __iomem *gregs	= hp->gregs;
1716 
1717 	happy_meal_stop(hp, gregs);
1718 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719 	if (hp->happy_flags & HFLAG_FENABLE)
1720 		hme_write32(hp, tregs + TCVR_CFG,
1721 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722 	else
1723 		hme_write32(hp, tregs + TCVR_CFG,
1724 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725 	happy_meal_transceiver_check(hp, tregs);
1726 	switch(hp->tcvr_type) {
1727 	case none:
1728 		return;
1729 	case internal:
1730 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731 		break;
1732 	case external:
1733 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734 		break;
1735 	}
1736 	if (happy_meal_tcvr_reset(hp, tregs))
1737 		return;
1738 
1739 	/* Latch PHY registers as of now. */
1740 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742 
1743 	/* Advertise everything we can support. */
1744 	if (hp->sw_bmsr & BMSR_10HALF)
1745 		hp->sw_advertise |= (ADVERTISE_10HALF);
1746 	else
1747 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748 
1749 	if (hp->sw_bmsr & BMSR_10FULL)
1750 		hp->sw_advertise |= (ADVERTISE_10FULL);
1751 	else
1752 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753 	if (hp->sw_bmsr & BMSR_100HALF)
1754 		hp->sw_advertise |= (ADVERTISE_100HALF);
1755 	else
1756 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757 	if (hp->sw_bmsr & BMSR_100FULL)
1758 		hp->sw_advertise |= (ADVERTISE_100FULL);
1759 	else
1760 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761 
1762 	/* Update the PHY advertisement register. */
1763 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764 }
1765 
1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1767  * the hardware, so we cannot re-read it and get a correct value.
1768  *
1769  * hp->happy_lock must be held
1770  */
1771 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772 {
1773 	int reset = 0;
1774 
1775 	/* Only print messages for non-counter related interrupts. */
1776 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781 		      GREG_STAT_SLVPERR))
1782 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783 		       hp->dev->name, status);
1784 
1785 	if (status & GREG_STAT_RFIFOVF) {
1786 		/* Receive FIFO overflow is harmless and the hardware will take
1787 		   care of it, just some packets are lost. Who cares. */
1788 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789 	}
1790 
1791 	if (status & GREG_STAT_STSTERR) {
1792 		/* BigMAC SQE link test failed. */
1793 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794 		reset = 1;
1795 	}
1796 
1797 	if (status & GREG_STAT_TFIFO_UND) {
1798 		/* Transmit FIFO underrun, again DMA error likely. */
1799 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800 		       hp->dev->name);
1801 		reset = 1;
1802 	}
1803 
1804 	if (status & GREG_STAT_MAXPKTERR) {
1805 		/* Driver error, tried to transmit something larger
1806 		 * than ethernet max mtu.
1807 		 */
1808 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809 		reset = 1;
1810 	}
1811 
1812 	if (status & GREG_STAT_NORXD) {
1813 		/* This is harmless, it just means the system is
1814 		 * quite loaded and the incoming packet rate was
1815 		 * faster than the interrupt handler could keep up
1816 		 * with.
1817 		 */
1818 		printk(KERN_INFO "%s: Happy Meal out of receive "
1819 		       "descriptors, packet dropped.\n",
1820 		       hp->dev->name);
1821 	}
1822 
1823 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824 		/* All sorts of DMA receive errors. */
1825 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826 		if (status & GREG_STAT_RXERR)
1827 			printk("GenericError ");
1828 		if (status & GREG_STAT_RXPERR)
1829 			printk("ParityError ");
1830 		if (status & GREG_STAT_RXTERR)
1831 			printk("RxTagBotch ");
1832 		printk("]\n");
1833 		reset = 1;
1834 	}
1835 
1836 	if (status & GREG_STAT_EOPERR) {
1837 		/* Driver bug, didn't set EOP bit in tx descriptor given
1838 		 * to the happy meal.
1839 		 */
1840 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841 		       hp->dev->name);
1842 		reset = 1;
1843 	}
1844 
1845 	if (status & GREG_STAT_MIFIRQ) {
1846 		/* MIF signalled an interrupt, were we polling it? */
1847 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848 	}
1849 
1850 	if (status &
1851 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852 		/* All sorts of transmit DMA errors. */
1853 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854 		if (status & GREG_STAT_TXEACK)
1855 			printk("GenericError ");
1856 		if (status & GREG_STAT_TXLERR)
1857 			printk("LateError ");
1858 		if (status & GREG_STAT_TXPERR)
1859 			printk("ParityErro ");
1860 		if (status & GREG_STAT_TXTERR)
1861 			printk("TagBotch ");
1862 		printk("]\n");
1863 		reset = 1;
1864 	}
1865 
1866 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867 		/* Bus or parity error when cpu accessed happy meal registers
1868 		 * or it's internal FIFO's.  Should never see this.
1869 		 */
1870 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 		       hp->dev->name,
1872 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873 		reset = 1;
1874 	}
1875 
1876 	if (reset) {
1877 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878 		happy_meal_init(hp);
1879 		return 1;
1880 	}
1881 	return 0;
1882 }
1883 
1884 /* hp->happy_lock must be held */
1885 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886 {
1887 	void __iomem *tregs = hp->tcvregs;
1888 
1889 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892 
1893 	/* Use the fastest transmission protocol possible. */
1894 	if (hp->sw_lpa & LPA_100FULL) {
1895 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897 	} else if (hp->sw_lpa & LPA_100HALF) {
1898 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899 		hp->sw_bmcr |= BMCR_SPEED100;
1900 	} else if (hp->sw_lpa & LPA_10FULL) {
1901 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902 		hp->sw_bmcr |= BMCR_FULLDPLX;
1903 	} else {
1904 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905 	}
1906 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907 
1908 	/* Finally stop polling and shut up the MIF. */
1909 	happy_meal_poll_stop(hp, tregs);
1910 }
1911 
1912 #ifdef TXDEBUG
1913 #define TXD(x) printk x
1914 #else
1915 #define TXD(x)
1916 #endif
1917 
1918 /* hp->happy_lock must be held */
1919 static void happy_meal_tx(struct happy_meal *hp)
1920 {
1921 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922 	struct happy_meal_txd *this;
1923 	struct net_device *dev = hp->dev;
1924 	int elem;
1925 
1926 	elem = hp->tx_old;
1927 	TXD(("TX<"));
1928 	while (elem != hp->tx_new) {
1929 		struct sk_buff *skb;
1930 		u32 flags, dma_addr, dma_len;
1931 		int frag;
1932 
1933 		TXD(("[%d]", elem));
1934 		this = &txbase[elem];
1935 		flags = hme_read_desc32(hp, &this->tx_flags);
1936 		if (flags & TXFLAG_OWN)
1937 			break;
1938 		skb = hp->tx_skbs[elem];
1939 		if (skb_shinfo(skb)->nr_frags) {
1940 			int last;
1941 
1942 			last = elem + skb_shinfo(skb)->nr_frags;
1943 			last &= (TX_RING_SIZE - 1);
1944 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945 			if (flags & TXFLAG_OWN)
1946 				break;
1947 		}
1948 		hp->tx_skbs[elem] = NULL;
1949 		hp->net_stats.tx_bytes += skb->len;
1950 
1951 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954 
1955 			dma_len &= TXFLAG_SIZE;
1956 			if (!frag)
1957 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958 			else
1959 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960 
1961 			elem = NEXT_TX(elem);
1962 			this = &txbase[elem];
1963 		}
1964 
1965 		dev_kfree_skb_irq(skb);
1966 		hp->net_stats.tx_packets++;
1967 	}
1968 	hp->tx_old = elem;
1969 	TXD((">"));
1970 
1971 	if (netif_queue_stopped(dev) &&
1972 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973 		netif_wake_queue(dev);
1974 }
1975 
1976 #ifdef RXDEBUG
1977 #define RXD(x) printk x
1978 #else
1979 #define RXD(x)
1980 #endif
1981 
1982 /* Originally I used to handle the allocation failure by just giving back just
1983  * that one ring buffer to the happy meal.  Problem is that usually when that
1984  * condition is triggered, the happy meal expects you to do something reasonable
1985  * with all of the packets it has DMA'd in.  So now I just drop the entire
1986  * ring when we cannot get a new skb and give them all back to the happy meal,
1987  * maybe things will be "happier" now.
1988  *
1989  * hp->happy_lock must be held
1990  */
1991 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992 {
1993 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994 	struct happy_meal_rxd *this;
1995 	int elem = hp->rx_new, drops = 0;
1996 	u32 flags;
1997 
1998 	RXD(("RX<"));
1999 	this = &rxbase[elem];
2000 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001 		struct sk_buff *skb;
2002 		int len = flags >> 16;
2003 		u16 csum = flags & RXFLAG_CSUM;
2004 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005 
2006 		RXD(("[%d ", elem));
2007 
2008 		/* Check for errors. */
2009 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010 			RXD(("ERR(%08x)]", flags));
2011 			hp->net_stats.rx_errors++;
2012 			if (len < ETH_ZLEN)
2013 				hp->net_stats.rx_length_errors++;
2014 			if (len & (RXFLAG_OVERFLOW >> 16)) {
2015 				hp->net_stats.rx_over_errors++;
2016 				hp->net_stats.rx_fifo_errors++;
2017 			}
2018 
2019 			/* Return it to the Happy meal. */
2020 	drop_it:
2021 			hp->net_stats.rx_dropped++;
2022 			hme_write_rxd(hp, this,
2023 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024 				      dma_addr);
2025 			goto next;
2026 		}
2027 		skb = hp->rx_skbs[elem];
2028 		if (len > RX_COPY_THRESHOLD) {
2029 			struct sk_buff *new_skb;
2030 			u32 mapping;
2031 
2032 			/* Now refill the entry, if we can. */
2033 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034 			if (new_skb == NULL) {
2035 				drops++;
2036 				goto drop_it;
2037 			}
2038 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040 						 RX_BUF_ALLOC_SIZE,
2041 						 DMA_FROM_DEVICE);
2042 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043 				dev_kfree_skb_any(new_skb);
2044 				drops++;
2045 				goto drop_it;
2046 			}
2047 
2048 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049 			hp->rx_skbs[elem] = new_skb;
2050 			hme_write_rxd(hp, this,
2051 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052 				      mapping);
2053 			skb_reserve(new_skb, RX_OFFSET);
2054 
2055 			/* Trim the original skb for the netif. */
2056 			skb_trim(skb, len);
2057 		} else {
2058 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059 
2060 			if (copy_skb == NULL) {
2061 				drops++;
2062 				goto drop_it;
2063 			}
2064 
2065 			skb_reserve(copy_skb, 2);
2066 			skb_put(copy_skb, len);
2067 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2069 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070 			/* Reuse original ring buffer. */
2071 			hme_write_rxd(hp, this,
2072 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073 				      dma_addr);
2074 
2075 			skb = copy_skb;
2076 		}
2077 
2078 		/* This card is _fucking_ hot... */
2079 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080 		skb->ip_summed = CHECKSUM_COMPLETE;
2081 
2082 		RXD(("len=%d csum=%4x]", len, csum));
2083 		skb->protocol = eth_type_trans(skb, dev);
2084 		netif_rx(skb);
2085 
2086 		hp->net_stats.rx_packets++;
2087 		hp->net_stats.rx_bytes += len;
2088 	next:
2089 		elem = NEXT_RX(elem);
2090 		this = &rxbase[elem];
2091 	}
2092 	hp->rx_new = elem;
2093 	if (drops)
2094 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095 	RXD((">"));
2096 }
2097 
2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099 {
2100 	struct net_device *dev = dev_id;
2101 	struct happy_meal *hp  = netdev_priv(dev);
2102 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103 
2104 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105 
2106 	spin_lock(&hp->happy_lock);
2107 
2108 	if (happy_status & GREG_STAT_ERRORS) {
2109 		HMD(("ERRORS "));
2110 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111 			goto out;
2112 	}
2113 
2114 	if (happy_status & GREG_STAT_MIFIRQ) {
2115 		HMD(("MIFIRQ "));
2116 		happy_meal_mif_interrupt(hp);
2117 	}
2118 
2119 	if (happy_status & GREG_STAT_TXALL) {
2120 		HMD(("TXALL "));
2121 		happy_meal_tx(hp);
2122 	}
2123 
2124 	if (happy_status & GREG_STAT_RXTOHOST) {
2125 		HMD(("RXTOHOST "));
2126 		happy_meal_rx(hp, dev);
2127 	}
2128 
2129 	HMD(("done\n"));
2130 out:
2131 	spin_unlock(&hp->happy_lock);
2132 
2133 	return IRQ_HANDLED;
2134 }
2135 
2136 #ifdef CONFIG_SBUS
2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138 {
2139 	struct quattro *qp = (struct quattro *) cookie;
2140 	int i;
2141 
2142 	for (i = 0; i < 4; i++) {
2143 		struct net_device *dev = qp->happy_meals[i];
2144 		struct happy_meal *hp  = netdev_priv(dev);
2145 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146 
2147 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2148 
2149 		if (!(happy_status & (GREG_STAT_ERRORS |
2150 				      GREG_STAT_MIFIRQ |
2151 				      GREG_STAT_TXALL |
2152 				      GREG_STAT_RXTOHOST)))
2153 			continue;
2154 
2155 		spin_lock(&hp->happy_lock);
2156 
2157 		if (happy_status & GREG_STAT_ERRORS) {
2158 			HMD(("ERRORS "));
2159 			if (happy_meal_is_not_so_happy(hp, happy_status))
2160 				goto next;
2161 		}
2162 
2163 		if (happy_status & GREG_STAT_MIFIRQ) {
2164 			HMD(("MIFIRQ "));
2165 			happy_meal_mif_interrupt(hp);
2166 		}
2167 
2168 		if (happy_status & GREG_STAT_TXALL) {
2169 			HMD(("TXALL "));
2170 			happy_meal_tx(hp);
2171 		}
2172 
2173 		if (happy_status & GREG_STAT_RXTOHOST) {
2174 			HMD(("RXTOHOST "));
2175 			happy_meal_rx(hp, dev);
2176 		}
2177 
2178 	next:
2179 		spin_unlock(&hp->happy_lock);
2180 	}
2181 	HMD(("done\n"));
2182 
2183 	return IRQ_HANDLED;
2184 }
2185 #endif
2186 
2187 static int happy_meal_open(struct net_device *dev)
2188 {
2189 	struct happy_meal *hp = netdev_priv(dev);
2190 	int res;
2191 
2192 	HMD(("happy_meal_open: "));
2193 
2194 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195 	 * into a single source which we register handling at probe time.
2196 	 */
2197 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199 				  dev->name, dev);
2200 		if (res) {
2201 			HMD(("EAGAIN\n"));
2202 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203 			       hp->irq);
2204 
2205 			return -EAGAIN;
2206 		}
2207 	}
2208 
2209 	HMD(("to happy_meal_init\n"));
2210 
2211 	spin_lock_irq(&hp->happy_lock);
2212 	res = happy_meal_init(hp);
2213 	spin_unlock_irq(&hp->happy_lock);
2214 
2215 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216 		free_irq(hp->irq, dev);
2217 	return res;
2218 }
2219 
2220 static int happy_meal_close(struct net_device *dev)
2221 {
2222 	struct happy_meal *hp = netdev_priv(dev);
2223 
2224 	spin_lock_irq(&hp->happy_lock);
2225 	happy_meal_stop(hp, hp->gregs);
2226 	happy_meal_clean_rings(hp);
2227 
2228 	/* If auto-negotiation timer is running, kill it. */
2229 	del_timer(&hp->happy_timer);
2230 
2231 	spin_unlock_irq(&hp->happy_lock);
2232 
2233 	/* On Quattro QFE cards, all hme interrupts are concentrated
2234 	 * into a single source which we register handling at probe
2235 	 * time and never unregister.
2236 	 */
2237 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238 		free_irq(hp->irq, dev);
2239 
2240 	return 0;
2241 }
2242 
2243 #ifdef SXDEBUG
2244 #define SXD(x) printk x
2245 #else
2246 #define SXD(x)
2247 #endif
2248 
2249 static void happy_meal_tx_timeout(struct net_device *dev)
2250 {
2251 	struct happy_meal *hp = netdev_priv(dev);
2252 
2253 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254 	tx_dump_log();
2255 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256 		hme_read32(hp, hp->gregs + GREG_STAT),
2257 		hme_read32(hp, hp->etxregs + ETX_CFG),
2258 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259 
2260 	spin_lock_irq(&hp->happy_lock);
2261 	happy_meal_init(hp);
2262 	spin_unlock_irq(&hp->happy_lock);
2263 
2264 	netif_wake_queue(dev);
2265 }
2266 
2267 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268 				 u32 first_len, u32 first_entry, u32 entry)
2269 {
2270 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271 
2272 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273 
2274 	first_entry = NEXT_TX(first_entry);
2275 	while (first_entry != entry) {
2276 		struct happy_meal_txd *this = &txbase[first_entry];
2277 		u32 addr, len;
2278 
2279 		addr = hme_read_desc32(hp, &this->tx_addr);
2280 		len = hme_read_desc32(hp, &this->tx_flags);
2281 		len &= TXFLAG_SIZE;
2282 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283 	}
2284 }
2285 
2286 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287 					 struct net_device *dev)
2288 {
2289 	struct happy_meal *hp = netdev_priv(dev);
2290  	int entry;
2291  	u32 tx_flags;
2292 
2293 	tx_flags = TXFLAG_OWN;
2294 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2296 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297 
2298 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301 	}
2302 
2303 	spin_lock_irq(&hp->happy_lock);
2304 
2305  	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306 		netif_stop_queue(dev);
2307 		spin_unlock_irq(&hp->happy_lock);
2308 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309 		       dev->name);
2310 		return NETDEV_TX_BUSY;
2311 	}
2312 
2313 	entry = hp->tx_new;
2314 	SXD(("SX<l[%d]e[%d]>", len, entry));
2315 	hp->tx_skbs[entry] = skb;
2316 
2317 	if (skb_shinfo(skb)->nr_frags == 0) {
2318 		u32 mapping, len;
2319 
2320 		len = skb->len;
2321 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323 			goto out_dma_error;
2324 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326 			      (tx_flags | (len & TXFLAG_SIZE)),
2327 			      mapping);
2328 		entry = NEXT_TX(entry);
2329 	} else {
2330 		u32 first_len, first_mapping;
2331 		int frag, first_entry = entry;
2332 
2333 		/* We must give this initial chunk to the device last.
2334 		 * Otherwise we could race with the device.
2335 		 */
2336 		first_len = skb_headlen(skb);
2337 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338 					       DMA_TO_DEVICE);
2339 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340 			goto out_dma_error;
2341 		entry = NEXT_TX(entry);
2342 
2343 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345 			u32 len, mapping, this_txflags;
2346 
2347 			len = skb_frag_size(this_frag);
2348 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349 						   0, len, DMA_TO_DEVICE);
2350 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2352 						     first_entry, entry);
2353 				goto out_dma_error;
2354 			}
2355 			this_txflags = tx_flags;
2356 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2357 				this_txflags |= TXFLAG_EOP;
2358 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359 				      (this_txflags | (len & TXFLAG_SIZE)),
2360 				      mapping);
2361 			entry = NEXT_TX(entry);
2362 		}
2363 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365 			      first_mapping);
2366 	}
2367 
2368 	hp->tx_new = entry;
2369 
2370 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371 		netif_stop_queue(dev);
2372 
2373 	/* Get it going. */
2374 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375 
2376 	spin_unlock_irq(&hp->happy_lock);
2377 
2378 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379 	return NETDEV_TX_OK;
2380 
2381 out_dma_error:
2382 	hp->tx_skbs[hp->tx_new] = NULL;
2383 	spin_unlock_irq(&hp->happy_lock);
2384 
2385 	dev_kfree_skb_any(skb);
2386 	dev->stats.tx_dropped++;
2387 	return NETDEV_TX_OK;
2388 }
2389 
2390 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391 {
2392 	struct happy_meal *hp = netdev_priv(dev);
2393 
2394 	spin_lock_irq(&hp->happy_lock);
2395 	happy_meal_get_counters(hp, hp->bigmacregs);
2396 	spin_unlock_irq(&hp->happy_lock);
2397 
2398 	return &hp->net_stats;
2399 }
2400 
2401 static void happy_meal_set_multicast(struct net_device *dev)
2402 {
2403 	struct happy_meal *hp = netdev_priv(dev);
2404 	void __iomem *bregs = hp->bigmacregs;
2405 	struct netdev_hw_addr *ha;
2406 	u32 crc;
2407 
2408 	spin_lock_irq(&hp->happy_lock);
2409 
2410 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415 	} else if (dev->flags & IFF_PROMISC) {
2416 		hme_write32(hp, bregs + BMAC_RXCFG,
2417 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418 	} else {
2419 		u16 hash_table[4];
2420 
2421 		memset(hash_table, 0, sizeof(hash_table));
2422 		netdev_for_each_mc_addr(ha, dev) {
2423 			crc = ether_crc_le(6, ha->addr);
2424 			crc >>= 26;
2425 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426 		}
2427 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431 	}
2432 
2433 	spin_unlock_irq(&hp->happy_lock);
2434 }
2435 
2436 /* Ethtool support... */
2437 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2438 {
2439 	struct happy_meal *hp = netdev_priv(dev);
2440 	u32 speed;
2441 
2442 	cmd->supported =
2443 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2444 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2445 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2446 
2447 	/* XXX hardcoded stuff for now */
2448 	cmd->port = PORT_TP; /* XXX no MII support */
2449 	cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2450 	cmd->phy_address = 0; /* XXX fixed PHYAD */
2451 
2452 	/* Record PHY settings. */
2453 	spin_lock_irq(&hp->happy_lock);
2454 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2455 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2456 	spin_unlock_irq(&hp->happy_lock);
2457 
2458 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2459 		cmd->autoneg = AUTONEG_ENABLE;
2460 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2461 			 SPEED_100 : SPEED_10);
2462 		if (speed == SPEED_100)
2463 			cmd->duplex =
2464 				(hp->sw_lpa & (LPA_100FULL)) ?
2465 				DUPLEX_FULL : DUPLEX_HALF;
2466 		else
2467 			cmd->duplex =
2468 				(hp->sw_lpa & (LPA_10FULL)) ?
2469 				DUPLEX_FULL : DUPLEX_HALF;
2470 	} else {
2471 		cmd->autoneg = AUTONEG_DISABLE;
2472 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2473 		cmd->duplex =
2474 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2475 			DUPLEX_FULL : DUPLEX_HALF;
2476 	}
2477 	ethtool_cmd_speed_set(cmd, speed);
2478 	return 0;
2479 }
2480 
2481 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2482 {
2483 	struct happy_meal *hp = netdev_priv(dev);
2484 
2485 	/* Verify the settings we care about. */
2486 	if (cmd->autoneg != AUTONEG_ENABLE &&
2487 	    cmd->autoneg != AUTONEG_DISABLE)
2488 		return -EINVAL;
2489 	if (cmd->autoneg == AUTONEG_DISABLE &&
2490 	    ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2491 	      ethtool_cmd_speed(cmd) != SPEED_10) ||
2492 	     (cmd->duplex != DUPLEX_HALF &&
2493 	      cmd->duplex != DUPLEX_FULL)))
2494 		return -EINVAL;
2495 
2496 	/* Ok, do it to it. */
2497 	spin_lock_irq(&hp->happy_lock);
2498 	del_timer(&hp->happy_timer);
2499 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2500 	spin_unlock_irq(&hp->happy_lock);
2501 
2502 	return 0;
2503 }
2504 
2505 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2506 {
2507 	struct happy_meal *hp = netdev_priv(dev);
2508 
2509 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2510 	strlcpy(info->version, "2.02", sizeof(info->version));
2511 	if (hp->happy_flags & HFLAG_PCI) {
2512 		struct pci_dev *pdev = hp->happy_dev;
2513 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2514 	}
2515 #ifdef CONFIG_SBUS
2516 	else {
2517 		const struct linux_prom_registers *regs;
2518 		struct platform_device *op = hp->happy_dev;
2519 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2520 		if (regs)
2521 			snprintf(info->bus_info, sizeof(info->bus_info),
2522 				"SBUS:%d",
2523 				regs->which_io);
2524 	}
2525 #endif
2526 }
2527 
2528 static u32 hme_get_link(struct net_device *dev)
2529 {
2530 	struct happy_meal *hp = netdev_priv(dev);
2531 
2532 	spin_lock_irq(&hp->happy_lock);
2533 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2534 	spin_unlock_irq(&hp->happy_lock);
2535 
2536 	return hp->sw_bmsr & BMSR_LSTATUS;
2537 }
2538 
2539 static const struct ethtool_ops hme_ethtool_ops = {
2540 	.get_settings		= hme_get_settings,
2541 	.set_settings		= hme_set_settings,
2542 	.get_drvinfo		= hme_get_drvinfo,
2543 	.get_link		= hme_get_link,
2544 };
2545 
2546 static int hme_version_printed;
2547 
2548 #ifdef CONFIG_SBUS
2549 /* Given a happy meal sbus device, find it's quattro parent.
2550  * If none exist, allocate and return a new one.
2551  *
2552  * Return NULL on failure.
2553  */
2554 static struct quattro *quattro_sbus_find(struct platform_device *child)
2555 {
2556 	struct device *parent = child->dev.parent;
2557 	struct platform_device *op;
2558 	struct quattro *qp;
2559 
2560 	op = to_platform_device(parent);
2561 	qp = platform_get_drvdata(op);
2562 	if (qp)
2563 		return qp;
2564 
2565 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2566 	if (qp != NULL) {
2567 		int i;
2568 
2569 		for (i = 0; i < 4; i++)
2570 			qp->happy_meals[i] = NULL;
2571 
2572 		qp->quattro_dev = child;
2573 		qp->next = qfe_sbus_list;
2574 		qfe_sbus_list = qp;
2575 
2576 		platform_set_drvdata(op, qp);
2577 	}
2578 	return qp;
2579 }
2580 
2581 /* After all quattro cards have been probed, we call these functions
2582  * to register the IRQ handlers for the cards that have been
2583  * successfully probed and skip the cards that failed to initialize
2584  */
2585 static int __init quattro_sbus_register_irqs(void)
2586 {
2587 	struct quattro *qp;
2588 
2589 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2590 		struct platform_device *op = qp->quattro_dev;
2591 		int err, qfe_slot, skip = 0;
2592 
2593 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2594 			if (!qp->happy_meals[qfe_slot])
2595 				skip = 1;
2596 		}
2597 		if (skip)
2598 			continue;
2599 
2600 		err = request_irq(op->archdata.irqs[0],
2601 				  quattro_sbus_interrupt,
2602 				  IRQF_SHARED, "Quattro",
2603 				  qp);
2604 		if (err != 0) {
2605 			printk(KERN_ERR "Quattro HME: IRQ registration "
2606 			       "error %d.\n", err);
2607 			return err;
2608 		}
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 static void quattro_sbus_free_irqs(void)
2615 {
2616 	struct quattro *qp;
2617 
2618 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2619 		struct platform_device *op = qp->quattro_dev;
2620 		int qfe_slot, skip = 0;
2621 
2622 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2623 			if (!qp->happy_meals[qfe_slot])
2624 				skip = 1;
2625 		}
2626 		if (skip)
2627 			continue;
2628 
2629 		free_irq(op->archdata.irqs[0], qp);
2630 	}
2631 }
2632 #endif /* CONFIG_SBUS */
2633 
2634 #ifdef CONFIG_PCI
2635 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2636 {
2637 	struct pci_dev *bdev = pdev->bus->self;
2638 	struct quattro *qp;
2639 
2640 	if (!bdev) return NULL;
2641 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2642 		struct pci_dev *qpdev = qp->quattro_dev;
2643 
2644 		if (qpdev == bdev)
2645 			return qp;
2646 	}
2647 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2648 	if (qp != NULL) {
2649 		int i;
2650 
2651 		for (i = 0; i < 4; i++)
2652 			qp->happy_meals[i] = NULL;
2653 
2654 		qp->quattro_dev = bdev;
2655 		qp->next = qfe_pci_list;
2656 		qfe_pci_list = qp;
2657 
2658 		/* No range tricks necessary on PCI. */
2659 		qp->nranges = 0;
2660 	}
2661 	return qp;
2662 }
2663 #endif /* CONFIG_PCI */
2664 
2665 static const struct net_device_ops hme_netdev_ops = {
2666 	.ndo_open		= happy_meal_open,
2667 	.ndo_stop		= happy_meal_close,
2668 	.ndo_start_xmit		= happy_meal_start_xmit,
2669 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2670 	.ndo_get_stats		= happy_meal_get_stats,
2671 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2672 	.ndo_change_mtu		= eth_change_mtu,
2673 	.ndo_set_mac_address 	= eth_mac_addr,
2674 	.ndo_validate_addr	= eth_validate_addr,
2675 };
2676 
2677 #ifdef CONFIG_SBUS
2678 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2679 {
2680 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2681 	struct quattro *qp = NULL;
2682 	struct happy_meal *hp;
2683 	struct net_device *dev;
2684 	int i, qfe_slot = -1;
2685 	int err = -ENODEV;
2686 
2687 	sbus_dp = op->dev.parent->of_node;
2688 
2689 	/* We can match PCI devices too, do not accept those here. */
2690 	if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2691 		return err;
2692 
2693 	if (is_qfe) {
2694 		qp = quattro_sbus_find(op);
2695 		if (qp == NULL)
2696 			goto err_out;
2697 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2698 			if (qp->happy_meals[qfe_slot] == NULL)
2699 				break;
2700 		if (qfe_slot == 4)
2701 			goto err_out;
2702 	}
2703 
2704 	err = -ENOMEM;
2705 	dev = alloc_etherdev(sizeof(struct happy_meal));
2706 	if (!dev)
2707 		goto err_out;
2708 	SET_NETDEV_DEV(dev, &op->dev);
2709 
2710 	if (hme_version_printed++ == 0)
2711 		printk(KERN_INFO "%s", version);
2712 
2713 	/* If user did not specify a MAC address specifically, use
2714 	 * the Quattro local-mac-address property...
2715 	 */
2716 	for (i = 0; i < 6; i++) {
2717 		if (macaddr[i] != 0)
2718 			break;
2719 	}
2720 	if (i < 6) { /* a mac address was given */
2721 		for (i = 0; i < 6; i++)
2722 			dev->dev_addr[i] = macaddr[i];
2723 		macaddr[5]++;
2724 	} else {
2725 		const unsigned char *addr;
2726 		int len;
2727 
2728 		addr = of_get_property(dp, "local-mac-address", &len);
2729 
2730 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2731 			memcpy(dev->dev_addr, addr, ETH_ALEN);
2732 		else
2733 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2734 	}
2735 
2736 	hp = netdev_priv(dev);
2737 
2738 	hp->happy_dev = op;
2739 	hp->dma_dev = &op->dev;
2740 
2741 	spin_lock_init(&hp->happy_lock);
2742 
2743 	err = -ENODEV;
2744 	if (qp != NULL) {
2745 		hp->qfe_parent = qp;
2746 		hp->qfe_ent = qfe_slot;
2747 		qp->happy_meals[qfe_slot] = dev;
2748 	}
2749 
2750 	hp->gregs = of_ioremap(&op->resource[0], 0,
2751 			       GREG_REG_SIZE, "HME Global Regs");
2752 	if (!hp->gregs) {
2753 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2754 		goto err_out_free_netdev;
2755 	}
2756 
2757 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2758 				 ETX_REG_SIZE, "HME TX Regs");
2759 	if (!hp->etxregs) {
2760 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2761 		goto err_out_iounmap;
2762 	}
2763 
2764 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2765 				 ERX_REG_SIZE, "HME RX Regs");
2766 	if (!hp->erxregs) {
2767 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2768 		goto err_out_iounmap;
2769 	}
2770 
2771 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2772 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2773 	if (!hp->bigmacregs) {
2774 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2775 		goto err_out_iounmap;
2776 	}
2777 
2778 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2779 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2780 	if (!hp->tcvregs) {
2781 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2782 		goto err_out_iounmap;
2783 	}
2784 
2785 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2786 	if (hp->hm_revision == 0xff)
2787 		hp->hm_revision = 0xa0;
2788 
2789 	/* Now enable the feature flags we can. */
2790 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2791 		hp->happy_flags = HFLAG_20_21;
2792 	else if (hp->hm_revision != 0xa0)
2793 		hp->happy_flags = HFLAG_NOT_A0;
2794 
2795 	if (qp != NULL)
2796 		hp->happy_flags |= HFLAG_QUATTRO;
2797 
2798 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2799 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2800 						 "burst-sizes", 0x00);
2801 
2802 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2803 					     PAGE_SIZE,
2804 					     &hp->hblock_dvma,
2805 					     GFP_ATOMIC);
2806 	err = -ENOMEM;
2807 	if (!hp->happy_block)
2808 		goto err_out_iounmap;
2809 
2810 	/* Force check of the link first time we are brought up. */
2811 	hp->linkcheck = 0;
2812 
2813 	/* Force timer state to 'asleep' with count of zero. */
2814 	hp->timer_state = asleep;
2815 	hp->timer_ticks = 0;
2816 
2817 	init_timer(&hp->happy_timer);
2818 
2819 	hp->dev = dev;
2820 	dev->netdev_ops = &hme_netdev_ops;
2821 	dev->watchdog_timeo = 5*HZ;
2822 	dev->ethtool_ops = &hme_ethtool_ops;
2823 
2824 	/* Happy Meal can do it all... */
2825 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2826 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2827 
2828 	hp->irq = op->archdata.irqs[0];
2829 
2830 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2831 	/* Hook up SBUS register/descriptor accessors. */
2832 	hp->read_desc32 = sbus_hme_read_desc32;
2833 	hp->write_txd = sbus_hme_write_txd;
2834 	hp->write_rxd = sbus_hme_write_rxd;
2835 	hp->read32 = sbus_hme_read32;
2836 	hp->write32 = sbus_hme_write32;
2837 #endif
2838 
2839 	/* Grrr, Happy Meal comes up by default not advertising
2840 	 * full duplex 100baseT capabilities, fix this.
2841 	 */
2842 	spin_lock_irq(&hp->happy_lock);
2843 	happy_meal_set_initial_advertisement(hp);
2844 	spin_unlock_irq(&hp->happy_lock);
2845 
2846 	err = register_netdev(hp->dev);
2847 	if (err) {
2848 		printk(KERN_ERR "happymeal: Cannot register net device, "
2849 		       "aborting.\n");
2850 		goto err_out_free_coherent;
2851 	}
2852 
2853 	platform_set_drvdata(op, hp);
2854 
2855 	if (qfe_slot != -1)
2856 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2857 		       dev->name, qfe_slot);
2858 	else
2859 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2860 		       dev->name);
2861 
2862 	printk("%pM\n", dev->dev_addr);
2863 
2864 	return 0;
2865 
2866 err_out_free_coherent:
2867 	dma_free_coherent(hp->dma_dev,
2868 			  PAGE_SIZE,
2869 			  hp->happy_block,
2870 			  hp->hblock_dvma);
2871 
2872 err_out_iounmap:
2873 	if (hp->gregs)
2874 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2875 	if (hp->etxregs)
2876 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2877 	if (hp->erxregs)
2878 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2879 	if (hp->bigmacregs)
2880 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2881 	if (hp->tcvregs)
2882 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2883 
2884 	if (qp)
2885 		qp->happy_meals[qfe_slot] = NULL;
2886 
2887 err_out_free_netdev:
2888 	free_netdev(dev);
2889 
2890 err_out:
2891 	return err;
2892 }
2893 #endif
2894 
2895 #ifdef CONFIG_PCI
2896 #ifndef CONFIG_SPARC
2897 static int is_quattro_p(struct pci_dev *pdev)
2898 {
2899 	struct pci_dev *busdev = pdev->bus->self;
2900 	struct pci_dev *this_pdev;
2901 	int n_hmes;
2902 
2903 	if (busdev == NULL ||
2904 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2905 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2906 		return 0;
2907 
2908 	n_hmes = 0;
2909 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2910 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2911 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2912 			n_hmes++;
2913 	}
2914 
2915 	if (n_hmes != 4)
2916 		return 0;
2917 
2918 	return 1;
2919 }
2920 
2921 /* Fetch MAC address from vital product data of PCI ROM. */
2922 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2923 {
2924 	int this_offset;
2925 
2926 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2927 		void __iomem *p = rom_base + this_offset;
2928 
2929 		if (readb(p + 0) != 0x90 ||
2930 		    readb(p + 1) != 0x00 ||
2931 		    readb(p + 2) != 0x09 ||
2932 		    readb(p + 3) != 0x4e ||
2933 		    readb(p + 4) != 0x41 ||
2934 		    readb(p + 5) != 0x06)
2935 			continue;
2936 
2937 		this_offset += 6;
2938 		p += 6;
2939 
2940 		if (index == 0) {
2941 			int i;
2942 
2943 			for (i = 0; i < 6; i++)
2944 				dev_addr[i] = readb(p + i);
2945 			return 1;
2946 		}
2947 		index--;
2948 	}
2949 	return 0;
2950 }
2951 
2952 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2953 {
2954 	size_t size;
2955 	void __iomem *p = pci_map_rom(pdev, &size);
2956 
2957 	if (p) {
2958 		int index = 0;
2959 		int found;
2960 
2961 		if (is_quattro_p(pdev))
2962 			index = PCI_SLOT(pdev->devfn);
2963 
2964 		found = readb(p) == 0x55 &&
2965 			readb(p + 1) == 0xaa &&
2966 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2967 		pci_unmap_rom(pdev, p);
2968 		if (found)
2969 			return;
2970 	}
2971 
2972 	/* Sun MAC prefix then 3 random bytes. */
2973 	dev_addr[0] = 0x08;
2974 	dev_addr[1] = 0x00;
2975 	dev_addr[2] = 0x20;
2976 	get_random_bytes(&dev_addr[3], 3);
2977 }
2978 #endif /* !(CONFIG_SPARC) */
2979 
2980 static int happy_meal_pci_probe(struct pci_dev *pdev,
2981 				const struct pci_device_id *ent)
2982 {
2983 	struct quattro *qp = NULL;
2984 #ifdef CONFIG_SPARC
2985 	struct device_node *dp;
2986 #endif
2987 	struct happy_meal *hp;
2988 	struct net_device *dev;
2989 	void __iomem *hpreg_base;
2990 	unsigned long hpreg_res;
2991 	int i, qfe_slot = -1;
2992 	char prom_name[64];
2993 	int err;
2994 
2995 	/* Now make sure pci_dev cookie is there. */
2996 #ifdef CONFIG_SPARC
2997 	dp = pci_device_to_OF_node(pdev);
2998 	strcpy(prom_name, dp->name);
2999 #else
3000 	if (is_quattro_p(pdev))
3001 		strcpy(prom_name, "SUNW,qfe");
3002 	else
3003 		strcpy(prom_name, "SUNW,hme");
3004 #endif
3005 
3006 	err = -ENODEV;
3007 
3008 	if (pci_enable_device(pdev))
3009 		goto err_out;
3010 	pci_set_master(pdev);
3011 
3012 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3013 		qp = quattro_pci_find(pdev);
3014 		if (qp == NULL)
3015 			goto err_out;
3016 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3017 			if (qp->happy_meals[qfe_slot] == NULL)
3018 				break;
3019 		if (qfe_slot == 4)
3020 			goto err_out;
3021 	}
3022 
3023 	dev = alloc_etherdev(sizeof(struct happy_meal));
3024 	err = -ENOMEM;
3025 	if (!dev)
3026 		goto err_out;
3027 	SET_NETDEV_DEV(dev, &pdev->dev);
3028 
3029 	if (hme_version_printed++ == 0)
3030 		printk(KERN_INFO "%s", version);
3031 
3032 	hp = netdev_priv(dev);
3033 
3034 	hp->happy_dev = pdev;
3035 	hp->dma_dev = &pdev->dev;
3036 
3037 	spin_lock_init(&hp->happy_lock);
3038 
3039 	if (qp != NULL) {
3040 		hp->qfe_parent = qp;
3041 		hp->qfe_ent = qfe_slot;
3042 		qp->happy_meals[qfe_slot] = dev;
3043 	}
3044 
3045 	hpreg_res = pci_resource_start(pdev, 0);
3046 	err = -ENODEV;
3047 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3048 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3049 		goto err_out_clear_quattro;
3050 	}
3051 	if (pci_request_regions(pdev, DRV_NAME)) {
3052 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3053 		       "aborting.\n");
3054 		goto err_out_clear_quattro;
3055 	}
3056 
3057 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3058 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3059 		goto err_out_free_res;
3060 	}
3061 
3062 	for (i = 0; i < 6; i++) {
3063 		if (macaddr[i] != 0)
3064 			break;
3065 	}
3066 	if (i < 6) { /* a mac address was given */
3067 		for (i = 0; i < 6; i++)
3068 			dev->dev_addr[i] = macaddr[i];
3069 		macaddr[5]++;
3070 	} else {
3071 #ifdef CONFIG_SPARC
3072 		const unsigned char *addr;
3073 		int len;
3074 
3075 		if (qfe_slot != -1 &&
3076 		    (addr = of_get_property(dp, "local-mac-address", &len))
3077 			!= NULL &&
3078 		    len == 6) {
3079 			memcpy(dev->dev_addr, addr, ETH_ALEN);
3080 		} else {
3081 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3082 		}
3083 #else
3084 		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3085 #endif
3086 	}
3087 
3088 	/* Layout registers. */
3089 	hp->gregs      = (hpreg_base + 0x0000UL);
3090 	hp->etxregs    = (hpreg_base + 0x2000UL);
3091 	hp->erxregs    = (hpreg_base + 0x4000UL);
3092 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3093 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3094 
3095 #ifdef CONFIG_SPARC
3096 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3097 	if (hp->hm_revision == 0xff)
3098 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3099 #else
3100 	/* works with this on non-sparc hosts */
3101 	hp->hm_revision = 0x20;
3102 #endif
3103 
3104 	/* Now enable the feature flags we can. */
3105 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3106 		hp->happy_flags = HFLAG_20_21;
3107 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3108 		hp->happy_flags = HFLAG_NOT_A0;
3109 
3110 	if (qp != NULL)
3111 		hp->happy_flags |= HFLAG_QUATTRO;
3112 
3113 	/* And of course, indicate this is PCI. */
3114 	hp->happy_flags |= HFLAG_PCI;
3115 
3116 #ifdef CONFIG_SPARC
3117 	/* Assume PCI happy meals can handle all burst sizes. */
3118 	hp->happy_bursts = DMA_BURSTBITS;
3119 #endif
3120 
3121 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3122 					     &hp->hblock_dvma, GFP_KERNEL);
3123 	err = -ENODEV;
3124 	if (!hp->happy_block)
3125 		goto err_out_iounmap;
3126 
3127 	hp->linkcheck = 0;
3128 	hp->timer_state = asleep;
3129 	hp->timer_ticks = 0;
3130 
3131 	init_timer(&hp->happy_timer);
3132 
3133 	hp->irq = pdev->irq;
3134 	hp->dev = dev;
3135 	dev->netdev_ops = &hme_netdev_ops;
3136 	dev->watchdog_timeo = 5*HZ;
3137 	dev->ethtool_ops = &hme_ethtool_ops;
3138 
3139 	/* Happy Meal can do it all... */
3140 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3141 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3142 
3143 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3144 	/* Hook up PCI register/descriptor accessors. */
3145 	hp->read_desc32 = pci_hme_read_desc32;
3146 	hp->write_txd = pci_hme_write_txd;
3147 	hp->write_rxd = pci_hme_write_rxd;
3148 	hp->read32 = pci_hme_read32;
3149 	hp->write32 = pci_hme_write32;
3150 #endif
3151 
3152 	/* Grrr, Happy Meal comes up by default not advertising
3153 	 * full duplex 100baseT capabilities, fix this.
3154 	 */
3155 	spin_lock_irq(&hp->happy_lock);
3156 	happy_meal_set_initial_advertisement(hp);
3157 	spin_unlock_irq(&hp->happy_lock);
3158 
3159 	err = register_netdev(hp->dev);
3160 	if (err) {
3161 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3162 		       "aborting.\n");
3163 		goto err_out_iounmap;
3164 	}
3165 
3166 	pci_set_drvdata(pdev, hp);
3167 
3168 	if (!qfe_slot) {
3169 		struct pci_dev *qpdev = qp->quattro_dev;
3170 
3171 		prom_name[0] = 0;
3172 		if (!strncmp(dev->name, "eth", 3)) {
3173 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3174 			sprintf(prom_name, "-%d", i + 3);
3175 		}
3176 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3177 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3178 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3179 			printk("DEC 21153 PCI Bridge\n");
3180 		else
3181 			printk("unknown bridge %04x.%04x\n",
3182 				qpdev->vendor, qpdev->device);
3183 	}
3184 
3185 	if (qfe_slot != -1)
3186 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3187 		       dev->name, qfe_slot);
3188 	else
3189 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3190 		       dev->name);
3191 
3192 	printk("%pM\n", dev->dev_addr);
3193 
3194 	return 0;
3195 
3196 err_out_iounmap:
3197 	iounmap(hp->gregs);
3198 
3199 err_out_free_res:
3200 	pci_release_regions(pdev);
3201 
3202 err_out_clear_quattro:
3203 	if (qp != NULL)
3204 		qp->happy_meals[qfe_slot] = NULL;
3205 
3206 	free_netdev(dev);
3207 
3208 err_out:
3209 	return err;
3210 }
3211 
3212 static void happy_meal_pci_remove(struct pci_dev *pdev)
3213 {
3214 	struct happy_meal *hp = pci_get_drvdata(pdev);
3215 	struct net_device *net_dev = hp->dev;
3216 
3217 	unregister_netdev(net_dev);
3218 
3219 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3220 			  hp->happy_block, hp->hblock_dvma);
3221 	iounmap(hp->gregs);
3222 	pci_release_regions(hp->happy_dev);
3223 
3224 	free_netdev(net_dev);
3225 }
3226 
3227 static const struct pci_device_id happymeal_pci_ids[] = {
3228 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3229 	{ }			/* Terminating entry */
3230 };
3231 
3232 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3233 
3234 static struct pci_driver hme_pci_driver = {
3235 	.name		= "hme",
3236 	.id_table	= happymeal_pci_ids,
3237 	.probe		= happy_meal_pci_probe,
3238 	.remove		= happy_meal_pci_remove,
3239 };
3240 
3241 static int __init happy_meal_pci_init(void)
3242 {
3243 	return pci_register_driver(&hme_pci_driver);
3244 }
3245 
3246 static void happy_meal_pci_exit(void)
3247 {
3248 	pci_unregister_driver(&hme_pci_driver);
3249 
3250 	while (qfe_pci_list) {
3251 		struct quattro *qfe = qfe_pci_list;
3252 		struct quattro *next = qfe->next;
3253 
3254 		kfree(qfe);
3255 
3256 		qfe_pci_list = next;
3257 	}
3258 }
3259 
3260 #endif
3261 
3262 #ifdef CONFIG_SBUS
3263 static const struct of_device_id hme_sbus_match[];
3264 static int hme_sbus_probe(struct platform_device *op)
3265 {
3266 	const struct of_device_id *match;
3267 	struct device_node *dp = op->dev.of_node;
3268 	const char *model = of_get_property(dp, "model", NULL);
3269 	int is_qfe;
3270 
3271 	match = of_match_device(hme_sbus_match, &op->dev);
3272 	if (!match)
3273 		return -EINVAL;
3274 	is_qfe = (match->data != NULL);
3275 
3276 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3277 		is_qfe = 1;
3278 
3279 	return happy_meal_sbus_probe_one(op, is_qfe);
3280 }
3281 
3282 static int hme_sbus_remove(struct platform_device *op)
3283 {
3284 	struct happy_meal *hp = platform_get_drvdata(op);
3285 	struct net_device *net_dev = hp->dev;
3286 
3287 	unregister_netdev(net_dev);
3288 
3289 	/* XXX qfe parent interrupt... */
3290 
3291 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3292 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3293 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3294 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3295 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3296 	dma_free_coherent(hp->dma_dev,
3297 			  PAGE_SIZE,
3298 			  hp->happy_block,
3299 			  hp->hblock_dvma);
3300 
3301 	free_netdev(net_dev);
3302 
3303 	return 0;
3304 }
3305 
3306 static const struct of_device_id hme_sbus_match[] = {
3307 	{
3308 		.name = "SUNW,hme",
3309 	},
3310 	{
3311 		.name = "SUNW,qfe",
3312 		.data = (void *) 1,
3313 	},
3314 	{
3315 		.name = "qfe",
3316 		.data = (void *) 1,
3317 	},
3318 	{},
3319 };
3320 
3321 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3322 
3323 static struct platform_driver hme_sbus_driver = {
3324 	.driver = {
3325 		.name = "hme",
3326 		.of_match_table = hme_sbus_match,
3327 	},
3328 	.probe		= hme_sbus_probe,
3329 	.remove		= hme_sbus_remove,
3330 };
3331 
3332 static int __init happy_meal_sbus_init(void)
3333 {
3334 	int err;
3335 
3336 	err = platform_driver_register(&hme_sbus_driver);
3337 	if (!err)
3338 		err = quattro_sbus_register_irqs();
3339 
3340 	return err;
3341 }
3342 
3343 static void happy_meal_sbus_exit(void)
3344 {
3345 	platform_driver_unregister(&hme_sbus_driver);
3346 	quattro_sbus_free_irqs();
3347 
3348 	while (qfe_sbus_list) {
3349 		struct quattro *qfe = qfe_sbus_list;
3350 		struct quattro *next = qfe->next;
3351 
3352 		kfree(qfe);
3353 
3354 		qfe_sbus_list = next;
3355 	}
3356 }
3357 #endif
3358 
3359 static int __init happy_meal_probe(void)
3360 {
3361 	int err = 0;
3362 
3363 #ifdef CONFIG_SBUS
3364 	err = happy_meal_sbus_init();
3365 #endif
3366 #ifdef CONFIG_PCI
3367 	if (!err) {
3368 		err = happy_meal_pci_init();
3369 #ifdef CONFIG_SBUS
3370 		if (err)
3371 			happy_meal_sbus_exit();
3372 #endif
3373 	}
3374 #endif
3375 
3376 	return err;
3377 }
3378 
3379 
3380 static void __exit happy_meal_exit(void)
3381 {
3382 #ifdef CONFIG_SBUS
3383 	happy_meal_sbus_exit();
3384 #endif
3385 #ifdef CONFIG_PCI
3386 	happy_meal_pci_exit();
3387 #endif
3388 }
3389 
3390 module_init(happy_meal_probe);
3391 module_exit(happy_meal_exit);
3392