xref: /openbmc/linux/drivers/net/ethernet/sun/sunhme.c (revision 7f915eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3  *           auto carrier detecting ethernet driver.  Also known as the
4  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5  *
6  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7  *		2006, 2008 David S. Miller (davem@davemloft.net)
8  *
9  * Changes :
10  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11  *   - port to non-sparc architectures. Tested only on x86 and
12  *     only currently works with QFE PCI cards.
13  *   - ability to specify the MAC address at module load time by passing this
14  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/mm.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
39 
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43 
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <linux/uaccess.h>
54 
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME	"sunhme"
64 #define DRV_VERSION	"3.10"
65 #define DRV_RELDATE	"August 26, 2008"
66 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
67 
68 static char version[] =
69 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75 
76 static int macaddr[6];
77 
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85 
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89 
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95 
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98 	unsigned int tstamp;
99 	int tx_new, tx_old;
100 	unsigned int action;
101 #define TXLOG_ACTION_IRQ	0x01
102 #define TXLOG_ACTION_TXMIT	0x02
103 #define TXLOG_ACTION_TBUSY	0x04
104 #define TXLOG_ACTION_NBUFS	0x08
105 	unsigned int status;
106 };
107 #define TX_LOG_LEN	128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112 	struct hme_tx_logent *tlp;
113 	unsigned long flags;
114 
115 	local_irq_save(flags);
116 	tlp = &tx_log[txlog_cur_entry];
117 	tlp->tstamp = (unsigned int)jiffies;
118 	tlp->tx_new = hp->tx_new;
119 	tlp->tx_old = hp->tx_old;
120 	tlp->action = a;
121 	tlp->status = s;
122 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 	local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127 	int i, this;
128 
129 	this = txlog_cur_entry;
130 	for (i = 0; i < TX_LOG_LEN; i++) {
131 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132 		       tx_log[this].tstamp,
133 		       tx_log[this].tx_new, tx_log[this].tx_old,
134 		       tx_log[this].action, tx_log[this].status);
135 		this = (this + 1) & (TX_LOG_LEN - 1);
136 	}
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140 	struct hmeal_init_block *hb = hp->happy_block;
141 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142 	int i;
143 
144 	for (i = 0; i < TX_RING_SIZE; i+=4) {
145 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 		       i, i + 4,
147 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151 	}
152 }
153 #else
154 #define tx_add_log(hp, a, s)		do { } while(0)
155 #define tx_dump_log()			do { } while(0)
156 #define tx_dump_ring(hp)		do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *	 member _first_.  The card must not be allowed to see
180  *	 the updated descriptor flags until the address is
181  *	 correct.  I've added a write memory barrier between
182  *	 the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188 	sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193 	return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198 	rxd->rx_addr = (__force hme32)addr;
199 	dma_wmb();
200 	rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205 	txd->tx_addr = (__force hme32)addr;
206 	dma_wmb();
207 	txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212 	return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217 	writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222 	return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228 	dma_wmb();
229 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235 	dma_wmb();
236 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241 	return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245 	((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 	((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 	((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 	((__hp)->read_desc32(__p))
254 #else
255 #ifdef CONFIG_SBUS
256 /* SBUS only compilation */
257 #define hme_write32(__hp, __reg, __val) \
258 	sbus_writel((__val), (__reg))
259 #define hme_read32(__hp, __reg) \
260 	sbus_readl(__reg)
261 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
262 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
263 	dma_wmb(); \
264 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
265 } while(0)
266 #define hme_write_txd(__hp, __txd, __flags, __addr) \
267 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
268 	dma_wmb(); \
269 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
270 } while(0)
271 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
272 #else
273 /* PCI only compilation */
274 #define hme_write32(__hp, __reg, __val) \
275 	writel((__val), (__reg))
276 #define hme_read32(__hp, __reg) \
277 	readl(__reg)
278 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
279 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
280 	dma_wmb(); \
281 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
282 } while(0)
283 #define hme_write_txd(__hp, __txd, __flags, __addr) \
284 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
285 	dma_wmb(); \
286 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
287 } while(0)
288 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
289 {
290 	return le32_to_cpup((__le32 *)p);
291 }
292 #endif
293 #endif
294 
295 
296 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
297 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
298 {
299 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
300 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
301 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
302 }
303 
304 #if 0
305 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
306 {
307 	u32 ret;
308 
309 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
310 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
311 	ret = hme_read32(hp, tregs + TCVR_CFG);
312 	if (internal)
313 		ret &= TCV_CFG_MDIO0;
314 	else
315 		ret &= TCV_CFG_MDIO1;
316 
317 	return ret;
318 }
319 #endif
320 
321 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
322 {
323 	u32 retval;
324 
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 	udelay(1);
327 	retval = hme_read32(hp, tregs + TCVR_CFG);
328 	if (internal)
329 		retval &= TCV_CFG_MDIO0;
330 	else
331 		retval &= TCV_CFG_MDIO1;
332 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
333 
334 	return retval;
335 }
336 
337 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
338 
339 static int happy_meal_bb_read(struct happy_meal *hp,
340 			      void __iomem *tregs, int reg)
341 {
342 	u32 tmp;
343 	int retval = 0;
344 	int i;
345 
346 	ASD(("happy_meal_bb_read: reg=%d ", reg));
347 
348 	/* Enable the MIF BitBang outputs. */
349 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
350 
351 	/* Force BitBang into the idle state. */
352 	for (i = 0; i < 32; i++)
353 		BB_PUT_BIT(hp, tregs, 1);
354 
355 	/* Give it the read sequence. */
356 	BB_PUT_BIT(hp, tregs, 0);
357 	BB_PUT_BIT(hp, tregs, 1);
358 	BB_PUT_BIT(hp, tregs, 1);
359 	BB_PUT_BIT(hp, tregs, 0);
360 
361 	/* Give it the PHY address. */
362 	tmp = hp->paddr & 0xff;
363 	for (i = 4; i >= 0; i--)
364 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
365 
366 	/* Tell it what register we want to read. */
367 	tmp = (reg & 0xff);
368 	for (i = 4; i >= 0; i--)
369 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
370 
371 	/* Close down the MIF BitBang outputs. */
372 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
373 
374 	/* Now read in the value. */
375 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
376 	for (i = 15; i >= 0; i--)
377 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
378 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
379 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
380 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
381 	ASD(("value=%x\n", retval));
382 	return retval;
383 }
384 
385 static void happy_meal_bb_write(struct happy_meal *hp,
386 				void __iomem *tregs, int reg,
387 				unsigned short value)
388 {
389 	u32 tmp;
390 	int i;
391 
392 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
393 
394 	/* Enable the MIF BitBang outputs. */
395 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
396 
397 	/* Force BitBang into the idle state. */
398 	for (i = 0; i < 32; i++)
399 		BB_PUT_BIT(hp, tregs, 1);
400 
401 	/* Give it write sequence. */
402 	BB_PUT_BIT(hp, tregs, 0);
403 	BB_PUT_BIT(hp, tregs, 1);
404 	BB_PUT_BIT(hp, tregs, 0);
405 	BB_PUT_BIT(hp, tregs, 1);
406 
407 	/* Give it the PHY address. */
408 	tmp = (hp->paddr & 0xff);
409 	for (i = 4; i >= 0; i--)
410 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
411 
412 	/* Tell it what register we will be writing. */
413 	tmp = (reg & 0xff);
414 	for (i = 4; i >= 0; i--)
415 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
416 
417 	/* Tell it to become ready for the bits. */
418 	BB_PUT_BIT(hp, tregs, 1);
419 	BB_PUT_BIT(hp, tregs, 0);
420 
421 	for (i = 15; i >= 0; i--)
422 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
423 
424 	/* Close down the MIF BitBang outputs. */
425 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
426 }
427 
428 #define TCVR_READ_TRIES   16
429 
430 static int happy_meal_tcvr_read(struct happy_meal *hp,
431 				void __iomem *tregs, int reg)
432 {
433 	int tries = TCVR_READ_TRIES;
434 	int retval;
435 
436 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
437 	if (hp->tcvr_type == none) {
438 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
439 		return TCVR_FAILURE;
440 	}
441 
442 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
443 		ASD(("doing bit bang\n"));
444 		return happy_meal_bb_read(hp, tregs, reg);
445 	}
446 
447 	hme_write32(hp, tregs + TCVR_FRAME,
448 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
449 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
450 		udelay(20);
451 	if (!tries) {
452 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
453 		return TCVR_FAILURE;
454 	}
455 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
456 	ASD(("value=%04x\n", retval));
457 	return retval;
458 }
459 
460 #define TCVR_WRITE_TRIES  16
461 
462 static void happy_meal_tcvr_write(struct happy_meal *hp,
463 				  void __iomem *tregs, int reg,
464 				  unsigned short value)
465 {
466 	int tries = TCVR_WRITE_TRIES;
467 
468 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
469 
470 	/* Welcome to Sun Microsystems, can I take your order please? */
471 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
472 		happy_meal_bb_write(hp, tregs, reg, value);
473 		return;
474 	}
475 
476 	/* Would you like fries with that? */
477 	hme_write32(hp, tregs + TCVR_FRAME,
478 		    (FRAME_WRITE | (hp->paddr << 23) |
479 		     ((reg & 0xff) << 18) | (value & 0xffff)));
480 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
481 		udelay(20);
482 
483 	/* Anything else? */
484 	if (!tries)
485 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
486 
487 	/* Fifty-two cents is your change, have a nice day. */
488 }
489 
490 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
491  * that keeps watching the auto negotiation process as it progresses.
492  * The DP83840 is first told to start doing it's thing, we set up the time
493  * and place the timer state machine in it's initial state.
494  *
495  * Here the timer peeks at the DP83840 status registers at each click to see
496  * if the auto negotiation has completed, we assume here that the DP83840 PHY
497  * will time out at some point and just tell us what (didn't) happen.  For
498  * complete coverage we only allow so many of the ticks at this level to run,
499  * when this has expired we print a warning message and try another strategy.
500  * This "other" strategy is to force the interface into various speed/duplex
501  * configurations and we stop when we see a link-up condition before the
502  * maximum number of "peek" ticks have occurred.
503  *
504  * Once a valid link status has been detected we configure the BigMAC and
505  * the rest of the Happy Meal to speak the most efficient protocol we could
506  * get a clean link for.  The priority for link configurations, highest first
507  * is:
508  *                 100 Base-T Full Duplex
509  *                 100 Base-T Half Duplex
510  *                 10 Base-T Full Duplex
511  *                 10 Base-T Half Duplex
512  *
513  * We start a new timer now, after a successful auto negotiation status has
514  * been detected.  This timer just waits for the link-up bit to get set in
515  * the BMCR of the DP83840.  When this occurs we print a kernel log message
516  * describing the link type in use and the fact that it is up.
517  *
518  * If a fatal error of some sort is signalled and detected in the interrupt
519  * service routine, and the chip is reset, or the link is ifconfig'd down
520  * and then back up, this entire process repeats itself all over again.
521  */
522 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
523 {
524 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
525 
526 	/* Downgrade from full to half duplex.  Only possible
527 	 * via ethtool.
528 	 */
529 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
530 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
531 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
532 		return 0;
533 	}
534 
535 	/* Downgrade from 100 to 10. */
536 	if (hp->sw_bmcr & BMCR_SPEED100) {
537 		hp->sw_bmcr &= ~(BMCR_SPEED100);
538 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
539 		return 0;
540 	}
541 
542 	/* We've tried everything. */
543 	return -1;
544 }
545 
546 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
547 {
548 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
549 
550 	netdev_info(hp->dev,
551 		    "Link is up using %s transceiver at %dMb/s, %s Duplex.\n",
552 		    hp->tcvr_type == external ? "external" : "internal",
553 		    hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10,
554 		    hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half");
555 }
556 
557 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
558 {
559 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
560 
561 	netdev_info(hp->dev,
562 		    "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n",
563 		    hp->tcvr_type == external ? "external" : "internal",
564 		    hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10,
565 		    hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half");
566 }
567 
568 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
569 {
570 	int full;
571 
572 	/* All we care about is making sure the bigmac tx_cfg has a
573 	 * proper duplex setting.
574 	 */
575 	if (hp->timer_state == arbwait) {
576 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
577 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
578 			goto no_response;
579 		if (hp->sw_lpa & LPA_100FULL)
580 			full = 1;
581 		else if (hp->sw_lpa & LPA_100HALF)
582 			full = 0;
583 		else if (hp->sw_lpa & LPA_10FULL)
584 			full = 1;
585 		else
586 			full = 0;
587 	} else {
588 		/* Forcing a link mode. */
589 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
590 		if (hp->sw_bmcr & BMCR_FULLDPLX)
591 			full = 1;
592 		else
593 			full = 0;
594 	}
595 
596 	/* Before changing other bits in the tx_cfg register, and in
597 	 * general any of other the TX config registers too, you
598 	 * must:
599 	 * 1) Clear Enable
600 	 * 2) Poll with reads until that bit reads back as zero
601 	 * 3) Make TX configuration changes
602 	 * 4) Set Enable once more
603 	 */
604 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
605 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
606 		    ~(BIGMAC_TXCFG_ENABLE));
607 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
608 		barrier();
609 	if (full) {
610 		hp->happy_flags |= HFLAG_FULL;
611 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
612 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
613 			    BIGMAC_TXCFG_FULLDPLX);
614 	} else {
615 		hp->happy_flags &= ~(HFLAG_FULL);
616 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
617 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
618 			    ~(BIGMAC_TXCFG_FULLDPLX));
619 	}
620 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
621 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
622 		    BIGMAC_TXCFG_ENABLE);
623 	return 0;
624 no_response:
625 	return 1;
626 }
627 
628 static int happy_meal_init(struct happy_meal *hp);
629 
630 static int is_lucent_phy(struct happy_meal *hp)
631 {
632 	void __iomem *tregs = hp->tcvregs;
633 	unsigned short mr2, mr3;
634 	int ret = 0;
635 
636 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
637 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
638 	if ((mr2 & 0xffff) == 0x0180 &&
639 	    ((mr3 & 0xffff) >> 10) == 0x1d)
640 		ret = 1;
641 
642 	return ret;
643 }
644 
645 static void happy_meal_timer(struct timer_list *t)
646 {
647 	struct happy_meal *hp = from_timer(hp, t, happy_timer);
648 	void __iomem *tregs = hp->tcvregs;
649 	int restart_timer = 0;
650 
651 	spin_lock_irq(&hp->happy_lock);
652 
653 	hp->timer_ticks++;
654 	switch(hp->timer_state) {
655 	case arbwait:
656 		/* Only allow for 5 ticks, thats 10 seconds and much too
657 		 * long to wait for arbitration to complete.
658 		 */
659 		if (hp->timer_ticks >= 10) {
660 			/* Enter force mode. */
661 	do_force_mode:
662 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
663 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
664 			       hp->dev->name);
665 			hp->sw_bmcr = BMCR_SPEED100;
666 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
667 
668 			if (!is_lucent_phy(hp)) {
669 				/* OK, seems we need do disable the transceiver for the first
670 				 * tick to make sure we get an accurate link state at the
671 				 * second tick.
672 				 */
673 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
674 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
675 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
676 			}
677 			hp->timer_state = ltrywait;
678 			hp->timer_ticks = 0;
679 			restart_timer = 1;
680 		} else {
681 			/* Anything interesting happen? */
682 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
683 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
684 				int ret;
685 
686 				/* Just what we've been waiting for... */
687 				ret = set_happy_link_modes(hp, tregs);
688 				if (ret) {
689 					/* Ooops, something bad happened, go to force
690 					 * mode.
691 					 *
692 					 * XXX Broken hubs which don't support 802.3u
693 					 * XXX auto-negotiation make this happen as well.
694 					 */
695 					goto do_force_mode;
696 				}
697 
698 				/* Success, at least so far, advance our state engine. */
699 				hp->timer_state = lupwait;
700 				restart_timer = 1;
701 			} else {
702 				restart_timer = 1;
703 			}
704 		}
705 		break;
706 
707 	case lupwait:
708 		/* Auto negotiation was successful and we are awaiting a
709 		 * link up status.  I have decided to let this timer run
710 		 * forever until some sort of error is signalled, reporting
711 		 * a message to the user at 10 second intervals.
712 		 */
713 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
714 		if (hp->sw_bmsr & BMSR_LSTATUS) {
715 			/* Wheee, it's up, display the link mode in use and put
716 			 * the timer to sleep.
717 			 */
718 			display_link_mode(hp, tregs);
719 			hp->timer_state = asleep;
720 			restart_timer = 0;
721 		} else {
722 			if (hp->timer_ticks >= 10) {
723 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
724 				       "not completely up.\n", hp->dev->name);
725 				hp->timer_ticks = 0;
726 				restart_timer = 1;
727 			} else {
728 				restart_timer = 1;
729 			}
730 		}
731 		break;
732 
733 	case ltrywait:
734 		/* Making the timeout here too long can make it take
735 		 * annoyingly long to attempt all of the link mode
736 		 * permutations, but then again this is essentially
737 		 * error recovery code for the most part.
738 		 */
739 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
740 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
741 		if (hp->timer_ticks == 1) {
742 			if (!is_lucent_phy(hp)) {
743 				/* Re-enable transceiver, we'll re-enable the transceiver next
744 				 * tick, then check link state on the following tick.
745 				 */
746 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
747 				happy_meal_tcvr_write(hp, tregs,
748 						      DP83840_CSCONFIG, hp->sw_csconfig);
749 			}
750 			restart_timer = 1;
751 			break;
752 		}
753 		if (hp->timer_ticks == 2) {
754 			if (!is_lucent_phy(hp)) {
755 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
756 				happy_meal_tcvr_write(hp, tregs,
757 						      DP83840_CSCONFIG, hp->sw_csconfig);
758 			}
759 			restart_timer = 1;
760 			break;
761 		}
762 		if (hp->sw_bmsr & BMSR_LSTATUS) {
763 			/* Force mode selection success. */
764 			display_forced_link_mode(hp, tregs);
765 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
766 			hp->timer_state = asleep;
767 			restart_timer = 0;
768 		} else {
769 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
770 				int ret;
771 
772 				ret = try_next_permutation(hp, tregs);
773 				if (ret == -1) {
774 					/* Aieee, tried them all, reset the
775 					 * chip and try all over again.
776 					 */
777 
778 					/* Let the user know... */
779 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
780 					       hp->dev->name);
781 
782 					ret = happy_meal_init(hp);
783 					if (ret) {
784 						/* ho hum... */
785 						printk(KERN_ERR "%s: Error, cannot re-init the "
786 						       "Happy Meal.\n", hp->dev->name);
787 					}
788 					goto out;
789 				}
790 				if (!is_lucent_phy(hp)) {
791 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
792 									       DP83840_CSCONFIG);
793 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
794 					happy_meal_tcvr_write(hp, tregs,
795 							      DP83840_CSCONFIG, hp->sw_csconfig);
796 				}
797 				hp->timer_ticks = 0;
798 				restart_timer = 1;
799 			} else {
800 				restart_timer = 1;
801 			}
802 		}
803 		break;
804 
805 	case asleep:
806 	default:
807 		/* Can't happens.... */
808 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
809 		       hp->dev->name);
810 		restart_timer = 0;
811 		hp->timer_ticks = 0;
812 		hp->timer_state = asleep; /* foo on you */
813 		break;
814 	}
815 
816 	if (restart_timer) {
817 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
818 		add_timer(&hp->happy_timer);
819 	}
820 
821 out:
822 	spin_unlock_irq(&hp->happy_lock);
823 }
824 
825 #define TX_RESET_TRIES     32
826 #define RX_RESET_TRIES     32
827 
828 /* hp->happy_lock must be held */
829 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
830 {
831 	int tries = TX_RESET_TRIES;
832 
833 	HMD(("happy_meal_tx_reset: reset, "));
834 
835 	/* Would you like to try our SMCC Delux? */
836 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
837 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
838 		udelay(20);
839 
840 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
841 	if (!tries)
842 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
843 
844 	/* Take care. */
845 	HMD(("done\n"));
846 }
847 
848 /* hp->happy_lock must be held */
849 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
850 {
851 	int tries = RX_RESET_TRIES;
852 
853 	HMD(("happy_meal_rx_reset: reset, "));
854 
855 	/* We have a special on GNU/Viking hardware bugs today. */
856 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
857 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
858 		udelay(20);
859 
860 	/* Will that be all? */
861 	if (!tries)
862 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
863 
864 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
865 	HMD(("done\n"));
866 }
867 
868 #define STOP_TRIES         16
869 
870 /* hp->happy_lock must be held */
871 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
872 {
873 	int tries = STOP_TRIES;
874 
875 	HMD(("happy_meal_stop: reset, "));
876 
877 	/* We're consolidating our STB products, it's your lucky day. */
878 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
879 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
880 		udelay(20);
881 
882 	/* Come back next week when we are "Sun Microelectronics". */
883 	if (!tries)
884 		printk(KERN_ERR "happy meal: Fry guys.");
885 
886 	/* Remember: "Different name, same old buggy as shit hardware." */
887 	HMD(("done\n"));
888 }
889 
890 /* hp->happy_lock must be held */
891 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
892 {
893 	struct net_device_stats *stats = &hp->dev->stats;
894 
895 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
896 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
897 
898 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
899 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
900 
901 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
902 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
903 
904 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
905 
906 	stats->collisions +=
907 		(hme_read32(hp, bregs + BMAC_EXCTR) +
908 		 hme_read32(hp, bregs + BMAC_LTCTR));
909 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
910 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
911 }
912 
913 /* hp->happy_lock must be held */
914 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
915 {
916 	ASD(("happy_meal_poll_stop: "));
917 
918 	/* If polling disabled or not polling already, nothing to do. */
919 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
920 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
921 		HMD(("not polling, return\n"));
922 		return;
923 	}
924 
925 	/* Shut up the MIF. */
926 	ASD(("were polling, mif ints off, "));
927 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
928 
929 	/* Turn off polling. */
930 	ASD(("polling off, "));
931 	hme_write32(hp, tregs + TCVR_CFG,
932 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
933 
934 	/* We are no longer polling. */
935 	hp->happy_flags &= ~(HFLAG_POLL);
936 
937 	/* Let the bits set. */
938 	udelay(200);
939 	ASD(("done\n"));
940 }
941 
942 /* Only Sun can take such nice parts and fuck up the programming interface
943  * like this.  Good job guys...
944  */
945 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
946 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
947 
948 /* hp->happy_lock must be held */
949 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
950 {
951 	u32 tconfig;
952 	int result, tries = TCVR_RESET_TRIES;
953 
954 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
955 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
956 	if (hp->tcvr_type == external) {
957 		ASD(("external<"));
958 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
959 		hp->tcvr_type = internal;
960 		hp->paddr = TCV_PADDR_ITX;
961 		ASD(("ISOLATE,"));
962 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
963 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
964 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
965 		if (result == TCVR_FAILURE) {
966 			ASD(("phyread_fail>\n"));
967 			return -1;
968 		}
969 		ASD(("phyread_ok,PSELECT>"));
970 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
971 		hp->tcvr_type = external;
972 		hp->paddr = TCV_PADDR_ETX;
973 	} else {
974 		if (tconfig & TCV_CFG_MDIO1) {
975 			ASD(("internal<PSELECT,"));
976 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
977 			ASD(("ISOLATE,"));
978 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
979 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
980 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
981 			if (result == TCVR_FAILURE) {
982 				ASD(("phyread_fail>\n"));
983 				return -1;
984 			}
985 			ASD(("phyread_ok,~PSELECT>"));
986 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
987 			hp->tcvr_type = internal;
988 			hp->paddr = TCV_PADDR_ITX;
989 		}
990 	}
991 
992 	ASD(("BMCR_RESET "));
993 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
994 
995 	while (--tries) {
996 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
997 		if (result == TCVR_FAILURE)
998 			return -1;
999 		hp->sw_bmcr = result;
1000 		if (!(result & BMCR_RESET))
1001 			break;
1002 		udelay(20);
1003 	}
1004 	if (!tries) {
1005 		ASD(("BMCR RESET FAILED!\n"));
1006 		return -1;
1007 	}
1008 	ASD(("RESET_OK\n"));
1009 
1010 	/* Get fresh copies of the PHY registers. */
1011 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1012 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1013 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1014 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1015 
1016 	ASD(("UNISOLATE"));
1017 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1018 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1019 
1020 	tries = TCVR_UNISOLATE_TRIES;
1021 	while (--tries) {
1022 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1023 		if (result == TCVR_FAILURE)
1024 			return -1;
1025 		if (!(result & BMCR_ISOLATE))
1026 			break;
1027 		udelay(20);
1028 	}
1029 	if (!tries) {
1030 		ASD((" FAILED!\n"));
1031 		return -1;
1032 	}
1033 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1034 	if (!is_lucent_phy(hp)) {
1035 		result = happy_meal_tcvr_read(hp, tregs,
1036 					      DP83840_CSCONFIG);
1037 		happy_meal_tcvr_write(hp, tregs,
1038 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1039 	}
1040 	return 0;
1041 }
1042 
1043 /* Figure out whether we have an internal or external transceiver.
1044  *
1045  * hp->happy_lock must be held
1046  */
1047 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1048 {
1049 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1050 
1051 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1052 	if (hp->happy_flags & HFLAG_POLL) {
1053 		/* If we are polling, we must stop to get the transceiver type. */
1054 		ASD(("<polling> "));
1055 		if (hp->tcvr_type == internal) {
1056 			if (tconfig & TCV_CFG_MDIO1) {
1057 				ASD(("<internal> <poll stop> "));
1058 				happy_meal_poll_stop(hp, tregs);
1059 				hp->paddr = TCV_PADDR_ETX;
1060 				hp->tcvr_type = external;
1061 				ASD(("<external>\n"));
1062 				tconfig &= ~(TCV_CFG_PENABLE);
1063 				tconfig |= TCV_CFG_PSELECT;
1064 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1065 			}
1066 		} else {
1067 			if (hp->tcvr_type == external) {
1068 				ASD(("<external> "));
1069 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1070 					ASD(("<poll stop> "));
1071 					happy_meal_poll_stop(hp, tregs);
1072 					hp->paddr = TCV_PADDR_ITX;
1073 					hp->tcvr_type = internal;
1074 					ASD(("<internal>\n"));
1075 					hme_write32(hp, tregs + TCVR_CFG,
1076 						    hme_read32(hp, tregs + TCVR_CFG) &
1077 						    ~(TCV_CFG_PSELECT));
1078 				}
1079 				ASD(("\n"));
1080 			} else {
1081 				ASD(("<none>\n"));
1082 			}
1083 		}
1084 	} else {
1085 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1086 
1087 		/* Else we can just work off of the MDIO bits. */
1088 		ASD(("<not polling> "));
1089 		if (reread & TCV_CFG_MDIO1) {
1090 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1091 			hp->paddr = TCV_PADDR_ETX;
1092 			hp->tcvr_type = external;
1093 			ASD(("<external>\n"));
1094 		} else {
1095 			if (reread & TCV_CFG_MDIO0) {
1096 				hme_write32(hp, tregs + TCVR_CFG,
1097 					    tconfig & ~(TCV_CFG_PSELECT));
1098 				hp->paddr = TCV_PADDR_ITX;
1099 				hp->tcvr_type = internal;
1100 				ASD(("<internal>\n"));
1101 			} else {
1102 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1103 				hp->tcvr_type = none; /* Grrr... */
1104 				ASD(("<none>\n"));
1105 			}
1106 		}
1107 	}
1108 }
1109 
1110 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1111  *
1112  * The buffers we dma into must be 64 byte aligned.  So we use a special
1113  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1114  * we really need.
1115  *
1116  * We use skb_reserve() to align the data block we get in the skb.  We
1117  * also program the etxregs->cfg register to use an offset of 2.  This
1118  * imperical constant plus the ethernet header size will always leave
1119  * us with a nicely aligned ip header once we pass things up to the
1120  * protocol layers.
1121  *
1122  * The numbers work out to:
1123  *
1124  *         Max ethernet frame size         1518
1125  *         Ethernet header size              14
1126  *         Happy Meal base offset             2
1127  *
1128  * Say a skb data area is at 0xf001b010, and its size alloced is
1129  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1130  *
1131  * First our alloc_skb() routine aligns the data base to a 64 byte
1132  * boundary.  We now have 0xf001b040 as our skb data address.  We
1133  * plug this into the receive descriptor address.
1134  *
1135  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1136  * So now the data we will end up looking at starts at 0xf001b042.  When
1137  * the packet arrives, we will check out the size received and subtract
1138  * this from the skb->length.  Then we just pass the packet up to the
1139  * protocols as is, and allocate a new skb to replace this slot we have
1140  * just received from.
1141  *
1142  * The ethernet layer will strip the ether header from the front of the
1143  * skb we just sent to it, this leaves us with the ip header sitting
1144  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1145  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1146  * bit checksum is obtained from the low bits of the receive descriptor
1147  * flags, thus:
1148  *
1149  * 	skb->csum = rxd->rx_flags & 0xffff;
1150  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1151  *
1152  * before sending off the skb to the protocols, and we are good as gold.
1153  */
1154 static void happy_meal_clean_rings(struct happy_meal *hp)
1155 {
1156 	int i;
1157 
1158 	for (i = 0; i < RX_RING_SIZE; i++) {
1159 		if (hp->rx_skbs[i] != NULL) {
1160 			struct sk_buff *skb = hp->rx_skbs[i];
1161 			struct happy_meal_rxd *rxd;
1162 			u32 dma_addr;
1163 
1164 			rxd = &hp->happy_block->happy_meal_rxd[i];
1165 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1166 			dma_unmap_single(hp->dma_dev, dma_addr,
1167 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1168 			dev_kfree_skb_any(skb);
1169 			hp->rx_skbs[i] = NULL;
1170 		}
1171 	}
1172 
1173 	for (i = 0; i < TX_RING_SIZE; i++) {
1174 		if (hp->tx_skbs[i] != NULL) {
1175 			struct sk_buff *skb = hp->tx_skbs[i];
1176 			struct happy_meal_txd *txd;
1177 			u32 dma_addr;
1178 			int frag;
1179 
1180 			hp->tx_skbs[i] = NULL;
1181 
1182 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1183 				txd = &hp->happy_block->happy_meal_txd[i];
1184 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1185 				if (!frag)
1186 					dma_unmap_single(hp->dma_dev, dma_addr,
1187 							 (hme_read_desc32(hp, &txd->tx_flags)
1188 							  & TXFLAG_SIZE),
1189 							 DMA_TO_DEVICE);
1190 				else
1191 					dma_unmap_page(hp->dma_dev, dma_addr,
1192 							 (hme_read_desc32(hp, &txd->tx_flags)
1193 							  & TXFLAG_SIZE),
1194 							 DMA_TO_DEVICE);
1195 
1196 				if (frag != skb_shinfo(skb)->nr_frags)
1197 					i++;
1198 			}
1199 
1200 			dev_kfree_skb_any(skb);
1201 		}
1202 	}
1203 }
1204 
1205 /* hp->happy_lock must be held */
1206 static void happy_meal_init_rings(struct happy_meal *hp)
1207 {
1208 	struct hmeal_init_block *hb = hp->happy_block;
1209 	int i;
1210 
1211 	HMD(("happy_meal_init_rings: counters to zero, "));
1212 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1213 
1214 	/* Free any skippy bufs left around in the rings. */
1215 	HMD(("clean, "));
1216 	happy_meal_clean_rings(hp);
1217 
1218 	/* Now get new skippy bufs for the receive ring. */
1219 	HMD(("init rxring, "));
1220 	for (i = 0; i < RX_RING_SIZE; i++) {
1221 		struct sk_buff *skb;
1222 		u32 mapping;
1223 
1224 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1225 		if (!skb) {
1226 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1227 			continue;
1228 		}
1229 		hp->rx_skbs[i] = skb;
1230 
1231 		/* Because we reserve afterwards. */
1232 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1233 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1234 					 DMA_FROM_DEVICE);
1235 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1236 			dev_kfree_skb_any(skb);
1237 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1238 			continue;
1239 		}
1240 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1241 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1242 			      mapping);
1243 		skb_reserve(skb, RX_OFFSET);
1244 	}
1245 
1246 	HMD(("init txring, "));
1247 	for (i = 0; i < TX_RING_SIZE; i++)
1248 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1249 
1250 	HMD(("done\n"));
1251 }
1252 
1253 /* hp->happy_lock must be held */
1254 static void
1255 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1256 				  void __iomem *tregs,
1257 				  const struct ethtool_link_ksettings *ep)
1258 {
1259 	int timeout;
1260 
1261 	/* Read all of the registers we are interested in now. */
1262 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1263 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1264 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1265 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1266 
1267 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1268 
1269 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1270 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1271 		/* Advertise everything we can support. */
1272 		if (hp->sw_bmsr & BMSR_10HALF)
1273 			hp->sw_advertise |= (ADVERTISE_10HALF);
1274 		else
1275 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1276 
1277 		if (hp->sw_bmsr & BMSR_10FULL)
1278 			hp->sw_advertise |= (ADVERTISE_10FULL);
1279 		else
1280 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1281 		if (hp->sw_bmsr & BMSR_100HALF)
1282 			hp->sw_advertise |= (ADVERTISE_100HALF);
1283 		else
1284 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1285 		if (hp->sw_bmsr & BMSR_100FULL)
1286 			hp->sw_advertise |= (ADVERTISE_100FULL);
1287 		else
1288 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1289 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1290 
1291 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1292 		 * XXX and this is because the DP83840 does not support it, changes
1293 		 * XXX would need to be made to the tx/rx logic in the driver as well
1294 		 * XXX so I completely skip checking for it in the BMSR for now.
1295 		 */
1296 
1297 #ifdef AUTO_SWITCH_DEBUG
1298 		ASD(("%s: Advertising [ ", hp->dev->name));
1299 		if (hp->sw_advertise & ADVERTISE_10HALF)
1300 			ASD(("10H "));
1301 		if (hp->sw_advertise & ADVERTISE_10FULL)
1302 			ASD(("10F "));
1303 		if (hp->sw_advertise & ADVERTISE_100HALF)
1304 			ASD(("100H "));
1305 		if (hp->sw_advertise & ADVERTISE_100FULL)
1306 			ASD(("100F "));
1307 #endif
1308 
1309 		/* Enable Auto-Negotiation, this is usually on already... */
1310 		hp->sw_bmcr |= BMCR_ANENABLE;
1311 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1312 
1313 		/* Restart it to make sure it is going. */
1314 		hp->sw_bmcr |= BMCR_ANRESTART;
1315 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1316 
1317 		/* BMCR_ANRESTART self clears when the process has begun. */
1318 
1319 		timeout = 64;  /* More than enough. */
1320 		while (--timeout) {
1321 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1322 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1323 				break; /* got it. */
1324 			udelay(10);
1325 		}
1326 		if (!timeout) {
1327 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1328 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1329 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1330 			       hp->dev->name);
1331 			goto force_link;
1332 		} else {
1333 			hp->timer_state = arbwait;
1334 		}
1335 	} else {
1336 force_link:
1337 		/* Force the link up, trying first a particular mode.
1338 		 * Either we are here at the request of ethtool or
1339 		 * because the Happy Meal would not start to autoneg.
1340 		 */
1341 
1342 		/* Disable auto-negotiation in BMCR, enable the duplex and
1343 		 * speed setting, init the timer state machine, and fire it off.
1344 		 */
1345 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1346 			hp->sw_bmcr = BMCR_SPEED100;
1347 		} else {
1348 			if (ep->base.speed == SPEED_100)
1349 				hp->sw_bmcr = BMCR_SPEED100;
1350 			else
1351 				hp->sw_bmcr = 0;
1352 			if (ep->base.duplex == DUPLEX_FULL)
1353 				hp->sw_bmcr |= BMCR_FULLDPLX;
1354 		}
1355 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356 
1357 		if (!is_lucent_phy(hp)) {
1358 			/* OK, seems we need do disable the transceiver for the first
1359 			 * tick to make sure we get an accurate link state at the
1360 			 * second tick.
1361 			 */
1362 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1363 							       DP83840_CSCONFIG);
1364 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1365 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1366 					      hp->sw_csconfig);
1367 		}
1368 		hp->timer_state = ltrywait;
1369 	}
1370 
1371 	hp->timer_ticks = 0;
1372 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1373 	add_timer(&hp->happy_timer);
1374 }
1375 
1376 /* hp->happy_lock must be held */
1377 static int happy_meal_init(struct happy_meal *hp)
1378 {
1379 	const unsigned char *e = &hp->dev->dev_addr[0];
1380 	void __iomem *gregs        = hp->gregs;
1381 	void __iomem *etxregs      = hp->etxregs;
1382 	void __iomem *erxregs      = hp->erxregs;
1383 	void __iomem *bregs        = hp->bigmacregs;
1384 	void __iomem *tregs        = hp->tcvregs;
1385 	u32 regtmp, rxcfg;
1386 
1387 	/* If auto-negotiation timer is running, kill it. */
1388 	del_timer(&hp->happy_timer);
1389 
1390 	HMD(("happy_meal_init: happy_flags[%08x] ",
1391 	     hp->happy_flags));
1392 	if (!(hp->happy_flags & HFLAG_INIT)) {
1393 		HMD(("set HFLAG_INIT, "));
1394 		hp->happy_flags |= HFLAG_INIT;
1395 		happy_meal_get_counters(hp, bregs);
1396 	}
1397 
1398 	/* Stop polling. */
1399 	HMD(("to happy_meal_poll_stop\n"));
1400 	happy_meal_poll_stop(hp, tregs);
1401 
1402 	/* Stop transmitter and receiver. */
1403 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1404 	happy_meal_stop(hp, gregs);
1405 
1406 	/* Alloc and reset the tx/rx descriptor chains. */
1407 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1408 	happy_meal_init_rings(hp);
1409 
1410 	/* Shut up the MIF. */
1411 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1412 	     hme_read32(hp, tregs + TCVR_IMASK)));
1413 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1414 
1415 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1416 	if (hp->happy_flags & HFLAG_FENABLE) {
1417 		HMD(("use frame old[%08x], ",
1418 		     hme_read32(hp, tregs + TCVR_CFG)));
1419 		hme_write32(hp, tregs + TCVR_CFG,
1420 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1421 	} else {
1422 		HMD(("use bitbang old[%08x], ",
1423 		     hme_read32(hp, tregs + TCVR_CFG)));
1424 		hme_write32(hp, tregs + TCVR_CFG,
1425 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1426 	}
1427 
1428 	/* Check the state of the transceiver. */
1429 	HMD(("to happy_meal_transceiver_check\n"));
1430 	happy_meal_transceiver_check(hp, tregs);
1431 
1432 	/* Put the Big Mac into a sane state. */
1433 	HMD(("happy_meal_init: "));
1434 	switch(hp->tcvr_type) {
1435 	case none:
1436 		/* Cannot operate if we don't know the transceiver type! */
1437 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1438 		return -EAGAIN;
1439 
1440 	case internal:
1441 		/* Using the MII buffers. */
1442 		HMD(("internal, using MII, "));
1443 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1444 		break;
1445 
1446 	case external:
1447 		/* Not using the MII, disable it. */
1448 		HMD(("external, disable MII, "));
1449 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1450 		break;
1451 	}
1452 
1453 	if (happy_meal_tcvr_reset(hp, tregs))
1454 		return -EAGAIN;
1455 
1456 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1457 	HMD(("tx/rx reset, "));
1458 	happy_meal_tx_reset(hp, bregs);
1459 	happy_meal_rx_reset(hp, bregs);
1460 
1461 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1462 	HMD(("jsize/ipg1/ipg2, "));
1463 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1464 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1465 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1466 
1467 	/* Load up the MAC address and random seed. */
1468 	HMD(("rseed/macaddr, "));
1469 
1470 	/* The docs recommend to use the 10LSB of our MAC here. */
1471 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1472 
1473 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1474 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1475 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1476 
1477 	HMD(("htable, "));
1478 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1479 	    (netdev_mc_count(hp->dev) > 64)) {
1480 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1481 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1482 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1483 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1484 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1485 		u16 hash_table[4];
1486 		struct netdev_hw_addr *ha;
1487 		u32 crc;
1488 
1489 		memset(hash_table, 0, sizeof(hash_table));
1490 		netdev_for_each_mc_addr(ha, hp->dev) {
1491 			crc = ether_crc_le(6, ha->addr);
1492 			crc >>= 26;
1493 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1494 		}
1495 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1496 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1497 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1498 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1499 	} else {
1500 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1501 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1502 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1503 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1504 	}
1505 
1506 	/* Set the RX and TX ring ptrs. */
1507 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1508 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1509 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1510 	hme_write32(hp, erxregs + ERX_RING,
1511 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1512 	hme_write32(hp, etxregs + ETX_RING,
1513 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1514 
1515 	/* Parity issues in the ERX unit of some HME revisions can cause some
1516 	 * registers to not be written unless their parity is even.  Detect such
1517 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1518 	 * since the rxring needs to be 2K aligned).
1519 	 */
1520 	if (hme_read32(hp, erxregs + ERX_RING) !=
1521 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1522 		hme_write32(hp, erxregs + ERX_RING,
1523 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1524 			    | 0x4);
1525 
1526 	/* Set the supported burst sizes. */
1527 	HMD(("happy_meal_init: old[%08x] bursts<",
1528 	     hme_read32(hp, gregs + GREG_CFG)));
1529 
1530 #ifndef CONFIG_SPARC
1531 	/* It is always PCI and can handle 64byte bursts. */
1532 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1533 #else
1534 	if ((hp->happy_bursts & DMA_BURST64) &&
1535 	    ((hp->happy_flags & HFLAG_PCI) != 0
1536 #ifdef CONFIG_SBUS
1537 	     || sbus_can_burst64()
1538 #endif
1539 	     || 0)) {
1540 		u32 gcfg = GREG_CFG_BURST64;
1541 
1542 		/* I have no idea if I should set the extended
1543 		 * transfer mode bit for Cheerio, so for now I
1544 		 * do not.  -DaveM
1545 		 */
1546 #ifdef CONFIG_SBUS
1547 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1548 			struct platform_device *op = hp->happy_dev;
1549 			if (sbus_can_dma_64bit()) {
1550 				sbus_set_sbus64(&op->dev,
1551 						hp->happy_bursts);
1552 				gcfg |= GREG_CFG_64BIT;
1553 			}
1554 		}
1555 #endif
1556 
1557 		HMD(("64>"));
1558 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1559 	} else if (hp->happy_bursts & DMA_BURST32) {
1560 		HMD(("32>"));
1561 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1562 	} else if (hp->happy_bursts & DMA_BURST16) {
1563 		HMD(("16>"));
1564 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1565 	} else {
1566 		HMD(("XXX>"));
1567 		hme_write32(hp, gregs + GREG_CFG, 0);
1568 	}
1569 #endif /* CONFIG_SPARC */
1570 
1571 	/* Turn off interrupts we do not want to hear. */
1572 	HMD((", enable global interrupts, "));
1573 	hme_write32(hp, gregs + GREG_IMASK,
1574 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1575 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1576 
1577 	/* Set the transmit ring buffer size. */
1578 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1579 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1580 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1581 
1582 	/* Enable transmitter DVMA. */
1583 	HMD(("tx dma enable old[%08x], ",
1584 	     hme_read32(hp, etxregs + ETX_CFG)));
1585 	hme_write32(hp, etxregs + ETX_CFG,
1586 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1587 
1588 	/* This chip really rots, for the receiver sometimes when you
1589 	 * write to its control registers not all the bits get there
1590 	 * properly.  I cannot think of a sane way to provide complete
1591 	 * coverage for this hardware bug yet.
1592 	 */
1593 	HMD(("erx regs bug old[%08x]\n",
1594 	     hme_read32(hp, erxregs + ERX_CFG)));
1595 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1596 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1597 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1598 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1599 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1600 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1601 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1602 		/* XXX Should return failure here... */
1603 	}
1604 
1605 	/* Enable Big Mac hash table filter. */
1606 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1607 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1608 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1609 	if (hp->dev->flags & IFF_PROMISC)
1610 		rxcfg |= BIGMAC_RXCFG_PMISC;
1611 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1612 
1613 	/* Let the bits settle in the chip. */
1614 	udelay(10);
1615 
1616 	/* Ok, configure the Big Mac transmitter. */
1617 	HMD(("BIGMAC init, "));
1618 	regtmp = 0;
1619 	if (hp->happy_flags & HFLAG_FULL)
1620 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1621 
1622 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1623 	 * to deadlock with the PHY if a Jabber occurs.
1624 	 */
1625 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1626 
1627 	/* Give up after 16 TX attempts. */
1628 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1629 
1630 	/* Enable the output drivers no matter what. */
1631 	regtmp = BIGMAC_XCFG_ODENABLE;
1632 
1633 	/* If card can do lance mode, enable it. */
1634 	if (hp->happy_flags & HFLAG_LANCE)
1635 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1636 
1637 	/* Disable the MII buffers if using external transceiver. */
1638 	if (hp->tcvr_type == external)
1639 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1640 
1641 	HMD(("XIF config old[%08x], ",
1642 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1643 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1644 
1645 	/* Start things up. */
1646 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1647 	     hme_read32(hp, bregs + BMAC_TXCFG),
1648 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1649 
1650 	/* Set larger TX/RX size to allow for 802.1q */
1651 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1652 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1653 
1654 	hme_write32(hp, bregs + BMAC_TXCFG,
1655 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1656 	hme_write32(hp, bregs + BMAC_RXCFG,
1657 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1658 
1659 	/* Get the autonegotiation started, and the watch timer ticking. */
1660 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1661 
1662 	/* Success. */
1663 	return 0;
1664 }
1665 
1666 /* hp->happy_lock must be held */
1667 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1668 {
1669 	void __iomem *tregs	= hp->tcvregs;
1670 	void __iomem *bregs	= hp->bigmacregs;
1671 	void __iomem *gregs	= hp->gregs;
1672 
1673 	happy_meal_stop(hp, gregs);
1674 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1675 	if (hp->happy_flags & HFLAG_FENABLE)
1676 		hme_write32(hp, tregs + TCVR_CFG,
1677 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1678 	else
1679 		hme_write32(hp, tregs + TCVR_CFG,
1680 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1681 	happy_meal_transceiver_check(hp, tregs);
1682 	switch(hp->tcvr_type) {
1683 	case none:
1684 		return;
1685 	case internal:
1686 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1687 		break;
1688 	case external:
1689 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1690 		break;
1691 	}
1692 	if (happy_meal_tcvr_reset(hp, tregs))
1693 		return;
1694 
1695 	/* Latch PHY registers as of now. */
1696 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1697 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1698 
1699 	/* Advertise everything we can support. */
1700 	if (hp->sw_bmsr & BMSR_10HALF)
1701 		hp->sw_advertise |= (ADVERTISE_10HALF);
1702 	else
1703 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1704 
1705 	if (hp->sw_bmsr & BMSR_10FULL)
1706 		hp->sw_advertise |= (ADVERTISE_10FULL);
1707 	else
1708 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1709 	if (hp->sw_bmsr & BMSR_100HALF)
1710 		hp->sw_advertise |= (ADVERTISE_100HALF);
1711 	else
1712 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1713 	if (hp->sw_bmsr & BMSR_100FULL)
1714 		hp->sw_advertise |= (ADVERTISE_100FULL);
1715 	else
1716 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1717 
1718 	/* Update the PHY advertisement register. */
1719 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1720 }
1721 
1722 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1723  * the hardware, so we cannot re-read it and get a correct value.
1724  *
1725  * hp->happy_lock must be held
1726  */
1727 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1728 {
1729 	int reset = 0;
1730 
1731 	/* Only print messages for non-counter related interrupts. */
1732 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1733 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1734 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1735 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1736 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1737 		      GREG_STAT_SLVPERR))
1738 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1739 		       hp->dev->name, status);
1740 
1741 	if (status & GREG_STAT_RFIFOVF) {
1742 		/* Receive FIFO overflow is harmless and the hardware will take
1743 		   care of it, just some packets are lost. Who cares. */
1744 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1745 	}
1746 
1747 	if (status & GREG_STAT_STSTERR) {
1748 		/* BigMAC SQE link test failed. */
1749 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1750 		reset = 1;
1751 	}
1752 
1753 	if (status & GREG_STAT_TFIFO_UND) {
1754 		/* Transmit FIFO underrun, again DMA error likely. */
1755 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1756 		       hp->dev->name);
1757 		reset = 1;
1758 	}
1759 
1760 	if (status & GREG_STAT_MAXPKTERR) {
1761 		/* Driver error, tried to transmit something larger
1762 		 * than ethernet max mtu.
1763 		 */
1764 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1765 		reset = 1;
1766 	}
1767 
1768 	if (status & GREG_STAT_NORXD) {
1769 		/* This is harmless, it just means the system is
1770 		 * quite loaded and the incoming packet rate was
1771 		 * faster than the interrupt handler could keep up
1772 		 * with.
1773 		 */
1774 		printk(KERN_INFO "%s: Happy Meal out of receive "
1775 		       "descriptors, packet dropped.\n",
1776 		       hp->dev->name);
1777 	}
1778 
1779 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1780 		/* All sorts of DMA receive errors. */
1781 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1782 		if (status & GREG_STAT_RXERR)
1783 			printk("GenericError ");
1784 		if (status & GREG_STAT_RXPERR)
1785 			printk("ParityError ");
1786 		if (status & GREG_STAT_RXTERR)
1787 			printk("RxTagBotch ");
1788 		printk("]\n");
1789 		reset = 1;
1790 	}
1791 
1792 	if (status & GREG_STAT_EOPERR) {
1793 		/* Driver bug, didn't set EOP bit in tx descriptor given
1794 		 * to the happy meal.
1795 		 */
1796 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1797 		       hp->dev->name);
1798 		reset = 1;
1799 	}
1800 
1801 	if (status & GREG_STAT_MIFIRQ) {
1802 		/* MIF signalled an interrupt, were we polling it? */
1803 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1804 	}
1805 
1806 	if (status &
1807 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1808 		/* All sorts of transmit DMA errors. */
1809 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1810 		if (status & GREG_STAT_TXEACK)
1811 			printk("GenericError ");
1812 		if (status & GREG_STAT_TXLERR)
1813 			printk("LateError ");
1814 		if (status & GREG_STAT_TXPERR)
1815 			printk("ParityError ");
1816 		if (status & GREG_STAT_TXTERR)
1817 			printk("TagBotch ");
1818 		printk("]\n");
1819 		reset = 1;
1820 	}
1821 
1822 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1823 		/* Bus or parity error when cpu accessed happy meal registers
1824 		 * or it's internal FIFO's.  Should never see this.
1825 		 */
1826 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1827 		       hp->dev->name,
1828 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1829 		reset = 1;
1830 	}
1831 
1832 	if (reset) {
1833 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1834 		happy_meal_init(hp);
1835 		return 1;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /* hp->happy_lock must be held */
1841 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1842 {
1843 	void __iomem *tregs = hp->tcvregs;
1844 
1845 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1846 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1847 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1848 
1849 	/* Use the fastest transmission protocol possible. */
1850 	if (hp->sw_lpa & LPA_100FULL) {
1851 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1852 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1853 	} else if (hp->sw_lpa & LPA_100HALF) {
1854 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1855 		hp->sw_bmcr |= BMCR_SPEED100;
1856 	} else if (hp->sw_lpa & LPA_10FULL) {
1857 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1858 		hp->sw_bmcr |= BMCR_FULLDPLX;
1859 	} else {
1860 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1861 	}
1862 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1863 
1864 	/* Finally stop polling and shut up the MIF. */
1865 	happy_meal_poll_stop(hp, tregs);
1866 }
1867 
1868 #ifdef TXDEBUG
1869 #define TXD(x) printk x
1870 #else
1871 #define TXD(x)
1872 #endif
1873 
1874 /* hp->happy_lock must be held */
1875 static void happy_meal_tx(struct happy_meal *hp)
1876 {
1877 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1878 	struct happy_meal_txd *this;
1879 	struct net_device *dev = hp->dev;
1880 	int elem;
1881 
1882 	elem = hp->tx_old;
1883 	TXD(("TX<"));
1884 	while (elem != hp->tx_new) {
1885 		struct sk_buff *skb;
1886 		u32 flags, dma_addr, dma_len;
1887 		int frag;
1888 
1889 		TXD(("[%d]", elem));
1890 		this = &txbase[elem];
1891 		flags = hme_read_desc32(hp, &this->tx_flags);
1892 		if (flags & TXFLAG_OWN)
1893 			break;
1894 		skb = hp->tx_skbs[elem];
1895 		if (skb_shinfo(skb)->nr_frags) {
1896 			int last;
1897 
1898 			last = elem + skb_shinfo(skb)->nr_frags;
1899 			last &= (TX_RING_SIZE - 1);
1900 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1901 			if (flags & TXFLAG_OWN)
1902 				break;
1903 		}
1904 		hp->tx_skbs[elem] = NULL;
1905 		dev->stats.tx_bytes += skb->len;
1906 
1907 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1908 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1909 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1910 
1911 			dma_len &= TXFLAG_SIZE;
1912 			if (!frag)
1913 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1914 			else
1915 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1916 
1917 			elem = NEXT_TX(elem);
1918 			this = &txbase[elem];
1919 		}
1920 
1921 		dev_consume_skb_irq(skb);
1922 		dev->stats.tx_packets++;
1923 	}
1924 	hp->tx_old = elem;
1925 	TXD((">"));
1926 
1927 	if (netif_queue_stopped(dev) &&
1928 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1929 		netif_wake_queue(dev);
1930 }
1931 
1932 #ifdef RXDEBUG
1933 #define RXD(x) printk x
1934 #else
1935 #define RXD(x)
1936 #endif
1937 
1938 /* Originally I used to handle the allocation failure by just giving back just
1939  * that one ring buffer to the happy meal.  Problem is that usually when that
1940  * condition is triggered, the happy meal expects you to do something reasonable
1941  * with all of the packets it has DMA'd in.  So now I just drop the entire
1942  * ring when we cannot get a new skb and give them all back to the happy meal,
1943  * maybe things will be "happier" now.
1944  *
1945  * hp->happy_lock must be held
1946  */
1947 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1948 {
1949 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1950 	struct happy_meal_rxd *this;
1951 	int elem = hp->rx_new, drops = 0;
1952 	u32 flags;
1953 
1954 	RXD(("RX<"));
1955 	this = &rxbase[elem];
1956 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1957 		struct sk_buff *skb;
1958 		int len = flags >> 16;
1959 		u16 csum = flags & RXFLAG_CSUM;
1960 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1961 
1962 		RXD(("[%d ", elem));
1963 
1964 		/* Check for errors. */
1965 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1966 			RXD(("ERR(%08x)]", flags));
1967 			dev->stats.rx_errors++;
1968 			if (len < ETH_ZLEN)
1969 				dev->stats.rx_length_errors++;
1970 			if (len & (RXFLAG_OVERFLOW >> 16)) {
1971 				dev->stats.rx_over_errors++;
1972 				dev->stats.rx_fifo_errors++;
1973 			}
1974 
1975 			/* Return it to the Happy meal. */
1976 	drop_it:
1977 			dev->stats.rx_dropped++;
1978 			hme_write_rxd(hp, this,
1979 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1980 				      dma_addr);
1981 			goto next;
1982 		}
1983 		skb = hp->rx_skbs[elem];
1984 		if (len > RX_COPY_THRESHOLD) {
1985 			struct sk_buff *new_skb;
1986 			u32 mapping;
1987 
1988 			/* Now refill the entry, if we can. */
1989 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1990 			if (new_skb == NULL) {
1991 				drops++;
1992 				goto drop_it;
1993 			}
1994 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1995 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
1996 						 RX_BUF_ALLOC_SIZE,
1997 						 DMA_FROM_DEVICE);
1998 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
1999 				dev_kfree_skb_any(new_skb);
2000 				drops++;
2001 				goto drop_it;
2002 			}
2003 
2004 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2005 			hp->rx_skbs[elem] = new_skb;
2006 			hme_write_rxd(hp, this,
2007 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2008 				      mapping);
2009 			skb_reserve(new_skb, RX_OFFSET);
2010 
2011 			/* Trim the original skb for the netif. */
2012 			skb_trim(skb, len);
2013 		} else {
2014 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2015 
2016 			if (copy_skb == NULL) {
2017 				drops++;
2018 				goto drop_it;
2019 			}
2020 
2021 			skb_reserve(copy_skb, 2);
2022 			skb_put(copy_skb, len);
2023 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2024 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2025 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2026 			/* Reuse original ring buffer. */
2027 			hme_write_rxd(hp, this,
2028 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2029 				      dma_addr);
2030 
2031 			skb = copy_skb;
2032 		}
2033 
2034 		/* This card is _fucking_ hot... */
2035 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2036 		skb->ip_summed = CHECKSUM_COMPLETE;
2037 
2038 		RXD(("len=%d csum=%4x]", len, csum));
2039 		skb->protocol = eth_type_trans(skb, dev);
2040 		netif_rx(skb);
2041 
2042 		dev->stats.rx_packets++;
2043 		dev->stats.rx_bytes += len;
2044 	next:
2045 		elem = NEXT_RX(elem);
2046 		this = &rxbase[elem];
2047 	}
2048 	hp->rx_new = elem;
2049 	if (drops)
2050 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2051 	RXD((">"));
2052 }
2053 
2054 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2055 {
2056 	struct net_device *dev = dev_id;
2057 	struct happy_meal *hp  = netdev_priv(dev);
2058 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2059 
2060 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2061 
2062 	spin_lock(&hp->happy_lock);
2063 
2064 	if (happy_status & GREG_STAT_ERRORS) {
2065 		HMD(("ERRORS "));
2066 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2067 			goto out;
2068 	}
2069 
2070 	if (happy_status & GREG_STAT_MIFIRQ) {
2071 		HMD(("MIFIRQ "));
2072 		happy_meal_mif_interrupt(hp);
2073 	}
2074 
2075 	if (happy_status & GREG_STAT_TXALL) {
2076 		HMD(("TXALL "));
2077 		happy_meal_tx(hp);
2078 	}
2079 
2080 	if (happy_status & GREG_STAT_RXTOHOST) {
2081 		HMD(("RXTOHOST "));
2082 		happy_meal_rx(hp, dev);
2083 	}
2084 
2085 	HMD(("done\n"));
2086 out:
2087 	spin_unlock(&hp->happy_lock);
2088 
2089 	return IRQ_HANDLED;
2090 }
2091 
2092 #ifdef CONFIG_SBUS
2093 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2094 {
2095 	struct quattro *qp = (struct quattro *) cookie;
2096 	int i;
2097 
2098 	for (i = 0; i < 4; i++) {
2099 		struct net_device *dev = qp->happy_meals[i];
2100 		struct happy_meal *hp  = netdev_priv(dev);
2101 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2102 
2103 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2104 
2105 		if (!(happy_status & (GREG_STAT_ERRORS |
2106 				      GREG_STAT_MIFIRQ |
2107 				      GREG_STAT_TXALL |
2108 				      GREG_STAT_RXTOHOST)))
2109 			continue;
2110 
2111 		spin_lock(&hp->happy_lock);
2112 
2113 		if (happy_status & GREG_STAT_ERRORS) {
2114 			HMD(("ERRORS "));
2115 			if (happy_meal_is_not_so_happy(hp, happy_status))
2116 				goto next;
2117 		}
2118 
2119 		if (happy_status & GREG_STAT_MIFIRQ) {
2120 			HMD(("MIFIRQ "));
2121 			happy_meal_mif_interrupt(hp);
2122 		}
2123 
2124 		if (happy_status & GREG_STAT_TXALL) {
2125 			HMD(("TXALL "));
2126 			happy_meal_tx(hp);
2127 		}
2128 
2129 		if (happy_status & GREG_STAT_RXTOHOST) {
2130 			HMD(("RXTOHOST "));
2131 			happy_meal_rx(hp, dev);
2132 		}
2133 
2134 	next:
2135 		spin_unlock(&hp->happy_lock);
2136 	}
2137 	HMD(("done\n"));
2138 
2139 	return IRQ_HANDLED;
2140 }
2141 #endif
2142 
2143 static int happy_meal_open(struct net_device *dev)
2144 {
2145 	struct happy_meal *hp = netdev_priv(dev);
2146 	int res;
2147 
2148 	HMD(("happy_meal_open: "));
2149 
2150 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2151 	 * into a single source which we register handling at probe time.
2152 	 */
2153 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2154 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2155 				  dev->name, dev);
2156 		if (res) {
2157 			HMD(("EAGAIN\n"));
2158 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2159 			       hp->irq);
2160 
2161 			return -EAGAIN;
2162 		}
2163 	}
2164 
2165 	HMD(("to happy_meal_init\n"));
2166 
2167 	spin_lock_irq(&hp->happy_lock);
2168 	res = happy_meal_init(hp);
2169 	spin_unlock_irq(&hp->happy_lock);
2170 
2171 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2172 		free_irq(hp->irq, dev);
2173 	return res;
2174 }
2175 
2176 static int happy_meal_close(struct net_device *dev)
2177 {
2178 	struct happy_meal *hp = netdev_priv(dev);
2179 
2180 	spin_lock_irq(&hp->happy_lock);
2181 	happy_meal_stop(hp, hp->gregs);
2182 	happy_meal_clean_rings(hp);
2183 
2184 	/* If auto-negotiation timer is running, kill it. */
2185 	del_timer(&hp->happy_timer);
2186 
2187 	spin_unlock_irq(&hp->happy_lock);
2188 
2189 	/* On Quattro QFE cards, all hme interrupts are concentrated
2190 	 * into a single source which we register handling at probe
2191 	 * time and never unregister.
2192 	 */
2193 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2194 		free_irq(hp->irq, dev);
2195 
2196 	return 0;
2197 }
2198 
2199 #ifdef SXDEBUG
2200 #define SXD(x) printk x
2201 #else
2202 #define SXD(x)
2203 #endif
2204 
2205 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2206 {
2207 	struct happy_meal *hp = netdev_priv(dev);
2208 
2209 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2210 	tx_dump_log();
2211 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2212 		hme_read32(hp, hp->gregs + GREG_STAT),
2213 		hme_read32(hp, hp->etxregs + ETX_CFG),
2214 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2215 
2216 	spin_lock_irq(&hp->happy_lock);
2217 	happy_meal_init(hp);
2218 	spin_unlock_irq(&hp->happy_lock);
2219 
2220 	netif_wake_queue(dev);
2221 }
2222 
2223 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2224 				 u32 first_len, u32 first_entry, u32 entry)
2225 {
2226 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2227 
2228 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2229 
2230 	first_entry = NEXT_TX(first_entry);
2231 	while (first_entry != entry) {
2232 		struct happy_meal_txd *this = &txbase[first_entry];
2233 		u32 addr, len;
2234 
2235 		addr = hme_read_desc32(hp, &this->tx_addr);
2236 		len = hme_read_desc32(hp, &this->tx_flags);
2237 		len &= TXFLAG_SIZE;
2238 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2239 	}
2240 }
2241 
2242 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2243 					 struct net_device *dev)
2244 {
2245 	struct happy_meal *hp = netdev_priv(dev);
2246 	int entry;
2247 	u32 tx_flags;
2248 
2249 	tx_flags = TXFLAG_OWN;
2250 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2251 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2252 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2253 
2254 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2255 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2256 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2257 	}
2258 
2259 	spin_lock_irq(&hp->happy_lock);
2260 
2261 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2262 		netif_stop_queue(dev);
2263 		spin_unlock_irq(&hp->happy_lock);
2264 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2265 		       dev->name);
2266 		return NETDEV_TX_BUSY;
2267 	}
2268 
2269 	entry = hp->tx_new;
2270 	SXD(("SX<l[%d]e[%d]>", len, entry));
2271 	hp->tx_skbs[entry] = skb;
2272 
2273 	if (skb_shinfo(skb)->nr_frags == 0) {
2274 		u32 mapping, len;
2275 
2276 		len = skb->len;
2277 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2278 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2279 			goto out_dma_error;
2280 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2281 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2282 			      (tx_flags | (len & TXFLAG_SIZE)),
2283 			      mapping);
2284 		entry = NEXT_TX(entry);
2285 	} else {
2286 		u32 first_len, first_mapping;
2287 		int frag, first_entry = entry;
2288 
2289 		/* We must give this initial chunk to the device last.
2290 		 * Otherwise we could race with the device.
2291 		 */
2292 		first_len = skb_headlen(skb);
2293 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2294 					       DMA_TO_DEVICE);
2295 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2296 			goto out_dma_error;
2297 		entry = NEXT_TX(entry);
2298 
2299 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2300 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2301 			u32 len, mapping, this_txflags;
2302 
2303 			len = skb_frag_size(this_frag);
2304 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2305 						   0, len, DMA_TO_DEVICE);
2306 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2307 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2308 						     first_entry, entry);
2309 				goto out_dma_error;
2310 			}
2311 			this_txflags = tx_flags;
2312 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2313 				this_txflags |= TXFLAG_EOP;
2314 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2315 				      (this_txflags | (len & TXFLAG_SIZE)),
2316 				      mapping);
2317 			entry = NEXT_TX(entry);
2318 		}
2319 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2320 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2321 			      first_mapping);
2322 	}
2323 
2324 	hp->tx_new = entry;
2325 
2326 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2327 		netif_stop_queue(dev);
2328 
2329 	/* Get it going. */
2330 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2331 
2332 	spin_unlock_irq(&hp->happy_lock);
2333 
2334 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2335 	return NETDEV_TX_OK;
2336 
2337 out_dma_error:
2338 	hp->tx_skbs[hp->tx_new] = NULL;
2339 	spin_unlock_irq(&hp->happy_lock);
2340 
2341 	dev_kfree_skb_any(skb);
2342 	dev->stats.tx_dropped++;
2343 	return NETDEV_TX_OK;
2344 }
2345 
2346 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2347 {
2348 	struct happy_meal *hp = netdev_priv(dev);
2349 
2350 	spin_lock_irq(&hp->happy_lock);
2351 	happy_meal_get_counters(hp, hp->bigmacregs);
2352 	spin_unlock_irq(&hp->happy_lock);
2353 
2354 	return &dev->stats;
2355 }
2356 
2357 static void happy_meal_set_multicast(struct net_device *dev)
2358 {
2359 	struct happy_meal *hp = netdev_priv(dev);
2360 	void __iomem *bregs = hp->bigmacregs;
2361 	struct netdev_hw_addr *ha;
2362 	u32 crc;
2363 
2364 	spin_lock_irq(&hp->happy_lock);
2365 
2366 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2367 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2368 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2369 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2370 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2371 	} else if (dev->flags & IFF_PROMISC) {
2372 		hme_write32(hp, bregs + BMAC_RXCFG,
2373 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2374 	} else {
2375 		u16 hash_table[4];
2376 
2377 		memset(hash_table, 0, sizeof(hash_table));
2378 		netdev_for_each_mc_addr(ha, dev) {
2379 			crc = ether_crc_le(6, ha->addr);
2380 			crc >>= 26;
2381 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2382 		}
2383 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2384 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2385 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2386 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2387 	}
2388 
2389 	spin_unlock_irq(&hp->happy_lock);
2390 }
2391 
2392 /* Ethtool support... */
2393 static int hme_get_link_ksettings(struct net_device *dev,
2394 				  struct ethtool_link_ksettings *cmd)
2395 {
2396 	struct happy_meal *hp = netdev_priv(dev);
2397 	u32 speed;
2398 	u32 supported;
2399 
2400 	supported =
2401 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2402 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2403 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2404 
2405 	/* XXX hardcoded stuff for now */
2406 	cmd->base.port = PORT_TP; /* XXX no MII support */
2407 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2408 
2409 	/* Record PHY settings. */
2410 	spin_lock_irq(&hp->happy_lock);
2411 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2412 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2413 	spin_unlock_irq(&hp->happy_lock);
2414 
2415 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2416 		cmd->base.autoneg = AUTONEG_ENABLE;
2417 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2418 			 SPEED_100 : SPEED_10);
2419 		if (speed == SPEED_100)
2420 			cmd->base.duplex =
2421 				(hp->sw_lpa & (LPA_100FULL)) ?
2422 				DUPLEX_FULL : DUPLEX_HALF;
2423 		else
2424 			cmd->base.duplex =
2425 				(hp->sw_lpa & (LPA_10FULL)) ?
2426 				DUPLEX_FULL : DUPLEX_HALF;
2427 	} else {
2428 		cmd->base.autoneg = AUTONEG_DISABLE;
2429 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2430 		cmd->base.duplex =
2431 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2432 			DUPLEX_FULL : DUPLEX_HALF;
2433 	}
2434 	cmd->base.speed = speed;
2435 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2436 						supported);
2437 
2438 	return 0;
2439 }
2440 
2441 static int hme_set_link_ksettings(struct net_device *dev,
2442 				  const struct ethtool_link_ksettings *cmd)
2443 {
2444 	struct happy_meal *hp = netdev_priv(dev);
2445 
2446 	/* Verify the settings we care about. */
2447 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2448 	    cmd->base.autoneg != AUTONEG_DISABLE)
2449 		return -EINVAL;
2450 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2451 	    ((cmd->base.speed != SPEED_100 &&
2452 	      cmd->base.speed != SPEED_10) ||
2453 	     (cmd->base.duplex != DUPLEX_HALF &&
2454 	      cmd->base.duplex != DUPLEX_FULL)))
2455 		return -EINVAL;
2456 
2457 	/* Ok, do it to it. */
2458 	spin_lock_irq(&hp->happy_lock);
2459 	del_timer(&hp->happy_timer);
2460 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2461 	spin_unlock_irq(&hp->happy_lock);
2462 
2463 	return 0;
2464 }
2465 
2466 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2467 {
2468 	struct happy_meal *hp = netdev_priv(dev);
2469 
2470 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2471 	strlcpy(info->version, "2.02", sizeof(info->version));
2472 	if (hp->happy_flags & HFLAG_PCI) {
2473 		struct pci_dev *pdev = hp->happy_dev;
2474 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2475 	}
2476 #ifdef CONFIG_SBUS
2477 	else {
2478 		const struct linux_prom_registers *regs;
2479 		struct platform_device *op = hp->happy_dev;
2480 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2481 		if (regs)
2482 			snprintf(info->bus_info, sizeof(info->bus_info),
2483 				"SBUS:%d",
2484 				regs->which_io);
2485 	}
2486 #endif
2487 }
2488 
2489 static u32 hme_get_link(struct net_device *dev)
2490 {
2491 	struct happy_meal *hp = netdev_priv(dev);
2492 
2493 	spin_lock_irq(&hp->happy_lock);
2494 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2495 	spin_unlock_irq(&hp->happy_lock);
2496 
2497 	return hp->sw_bmsr & BMSR_LSTATUS;
2498 }
2499 
2500 static const struct ethtool_ops hme_ethtool_ops = {
2501 	.get_drvinfo		= hme_get_drvinfo,
2502 	.get_link		= hme_get_link,
2503 	.get_link_ksettings	= hme_get_link_ksettings,
2504 	.set_link_ksettings	= hme_set_link_ksettings,
2505 };
2506 
2507 static int hme_version_printed;
2508 
2509 #ifdef CONFIG_SBUS
2510 /* Given a happy meal sbus device, find it's quattro parent.
2511  * If none exist, allocate and return a new one.
2512  *
2513  * Return NULL on failure.
2514  */
2515 static struct quattro *quattro_sbus_find(struct platform_device *child)
2516 {
2517 	struct device *parent = child->dev.parent;
2518 	struct platform_device *op;
2519 	struct quattro *qp;
2520 
2521 	op = to_platform_device(parent);
2522 	qp = platform_get_drvdata(op);
2523 	if (qp)
2524 		return qp;
2525 
2526 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2527 	if (qp != NULL) {
2528 		int i;
2529 
2530 		for (i = 0; i < 4; i++)
2531 			qp->happy_meals[i] = NULL;
2532 
2533 		qp->quattro_dev = child;
2534 		qp->next = qfe_sbus_list;
2535 		qfe_sbus_list = qp;
2536 
2537 		platform_set_drvdata(op, qp);
2538 	}
2539 	return qp;
2540 }
2541 
2542 /* After all quattro cards have been probed, we call these functions
2543  * to register the IRQ handlers for the cards that have been
2544  * successfully probed and skip the cards that failed to initialize
2545  */
2546 static int __init quattro_sbus_register_irqs(void)
2547 {
2548 	struct quattro *qp;
2549 
2550 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2551 		struct platform_device *op = qp->quattro_dev;
2552 		int err, qfe_slot, skip = 0;
2553 
2554 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2555 			if (!qp->happy_meals[qfe_slot])
2556 				skip = 1;
2557 		}
2558 		if (skip)
2559 			continue;
2560 
2561 		err = request_irq(op->archdata.irqs[0],
2562 				  quattro_sbus_interrupt,
2563 				  IRQF_SHARED, "Quattro",
2564 				  qp);
2565 		if (err != 0) {
2566 			printk(KERN_ERR "Quattro HME: IRQ registration "
2567 			       "error %d.\n", err);
2568 			return err;
2569 		}
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static void quattro_sbus_free_irqs(void)
2576 {
2577 	struct quattro *qp;
2578 
2579 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2580 		struct platform_device *op = qp->quattro_dev;
2581 		int qfe_slot, skip = 0;
2582 
2583 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2584 			if (!qp->happy_meals[qfe_slot])
2585 				skip = 1;
2586 		}
2587 		if (skip)
2588 			continue;
2589 
2590 		free_irq(op->archdata.irqs[0], qp);
2591 	}
2592 }
2593 #endif /* CONFIG_SBUS */
2594 
2595 #ifdef CONFIG_PCI
2596 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2597 {
2598 	struct pci_dev *bdev = pdev->bus->self;
2599 	struct quattro *qp;
2600 
2601 	if (!bdev) return NULL;
2602 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2603 		struct pci_dev *qpdev = qp->quattro_dev;
2604 
2605 		if (qpdev == bdev)
2606 			return qp;
2607 	}
2608 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2609 	if (qp != NULL) {
2610 		int i;
2611 
2612 		for (i = 0; i < 4; i++)
2613 			qp->happy_meals[i] = NULL;
2614 
2615 		qp->quattro_dev = bdev;
2616 		qp->next = qfe_pci_list;
2617 		qfe_pci_list = qp;
2618 
2619 		/* No range tricks necessary on PCI. */
2620 		qp->nranges = 0;
2621 	}
2622 	return qp;
2623 }
2624 #endif /* CONFIG_PCI */
2625 
2626 static const struct net_device_ops hme_netdev_ops = {
2627 	.ndo_open		= happy_meal_open,
2628 	.ndo_stop		= happy_meal_close,
2629 	.ndo_start_xmit		= happy_meal_start_xmit,
2630 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2631 	.ndo_get_stats		= happy_meal_get_stats,
2632 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2633 	.ndo_set_mac_address 	= eth_mac_addr,
2634 	.ndo_validate_addr	= eth_validate_addr,
2635 };
2636 
2637 #ifdef CONFIG_SBUS
2638 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2639 {
2640 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2641 	struct quattro *qp = NULL;
2642 	struct happy_meal *hp;
2643 	struct net_device *dev;
2644 	int i, qfe_slot = -1;
2645 	u8 addr[ETH_ALEN];
2646 	int err = -ENODEV;
2647 
2648 	sbus_dp = op->dev.parent->of_node;
2649 
2650 	/* We can match PCI devices too, do not accept those here. */
2651 	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2652 		return err;
2653 
2654 	if (is_qfe) {
2655 		qp = quattro_sbus_find(op);
2656 		if (qp == NULL)
2657 			goto err_out;
2658 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2659 			if (qp->happy_meals[qfe_slot] == NULL)
2660 				break;
2661 		if (qfe_slot == 4)
2662 			goto err_out;
2663 	}
2664 
2665 	err = -ENOMEM;
2666 	dev = alloc_etherdev(sizeof(struct happy_meal));
2667 	if (!dev)
2668 		goto err_out;
2669 	SET_NETDEV_DEV(dev, &op->dev);
2670 
2671 	if (hme_version_printed++ == 0)
2672 		printk(KERN_INFO "%s", version);
2673 
2674 	/* If user did not specify a MAC address specifically, use
2675 	 * the Quattro local-mac-address property...
2676 	 */
2677 	for (i = 0; i < 6; i++) {
2678 		if (macaddr[i] != 0)
2679 			break;
2680 	}
2681 	if (i < 6) { /* a mac address was given */
2682 		for (i = 0; i < 6; i++)
2683 			addr[i] = macaddr[i];
2684 		eth_hw_addr_set(dev, addr);
2685 		macaddr[5]++;
2686 	} else {
2687 		const unsigned char *addr;
2688 		int len;
2689 
2690 		addr = of_get_property(dp, "local-mac-address", &len);
2691 
2692 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2693 			eth_hw_addr_set(dev, addr);
2694 		else
2695 			eth_hw_addr_set(dev, idprom->id_ethaddr);
2696 	}
2697 
2698 	hp = netdev_priv(dev);
2699 
2700 	hp->happy_dev = op;
2701 	hp->dma_dev = &op->dev;
2702 
2703 	spin_lock_init(&hp->happy_lock);
2704 
2705 	err = -ENODEV;
2706 	if (qp != NULL) {
2707 		hp->qfe_parent = qp;
2708 		hp->qfe_ent = qfe_slot;
2709 		qp->happy_meals[qfe_slot] = dev;
2710 	}
2711 
2712 	hp->gregs = of_ioremap(&op->resource[0], 0,
2713 			       GREG_REG_SIZE, "HME Global Regs");
2714 	if (!hp->gregs) {
2715 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2716 		goto err_out_free_netdev;
2717 	}
2718 
2719 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2720 				 ETX_REG_SIZE, "HME TX Regs");
2721 	if (!hp->etxregs) {
2722 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2723 		goto err_out_iounmap;
2724 	}
2725 
2726 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2727 				 ERX_REG_SIZE, "HME RX Regs");
2728 	if (!hp->erxregs) {
2729 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2730 		goto err_out_iounmap;
2731 	}
2732 
2733 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2734 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2735 	if (!hp->bigmacregs) {
2736 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2737 		goto err_out_iounmap;
2738 	}
2739 
2740 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2741 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2742 	if (!hp->tcvregs) {
2743 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2744 		goto err_out_iounmap;
2745 	}
2746 
2747 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2748 	if (hp->hm_revision == 0xff)
2749 		hp->hm_revision = 0xa0;
2750 
2751 	/* Now enable the feature flags we can. */
2752 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2753 		hp->happy_flags = HFLAG_20_21;
2754 	else if (hp->hm_revision != 0xa0)
2755 		hp->happy_flags = HFLAG_NOT_A0;
2756 
2757 	if (qp != NULL)
2758 		hp->happy_flags |= HFLAG_QUATTRO;
2759 
2760 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2761 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2762 						 "burst-sizes", 0x00);
2763 
2764 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2765 					     PAGE_SIZE,
2766 					     &hp->hblock_dvma,
2767 					     GFP_ATOMIC);
2768 	err = -ENOMEM;
2769 	if (!hp->happy_block)
2770 		goto err_out_iounmap;
2771 
2772 	/* Force check of the link first time we are brought up. */
2773 	hp->linkcheck = 0;
2774 
2775 	/* Force timer state to 'asleep' with count of zero. */
2776 	hp->timer_state = asleep;
2777 	hp->timer_ticks = 0;
2778 
2779 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2780 
2781 	hp->dev = dev;
2782 	dev->netdev_ops = &hme_netdev_ops;
2783 	dev->watchdog_timeo = 5*HZ;
2784 	dev->ethtool_ops = &hme_ethtool_ops;
2785 
2786 	/* Happy Meal can do it all... */
2787 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2788 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2789 
2790 	hp->irq = op->archdata.irqs[0];
2791 
2792 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2793 	/* Hook up SBUS register/descriptor accessors. */
2794 	hp->read_desc32 = sbus_hme_read_desc32;
2795 	hp->write_txd = sbus_hme_write_txd;
2796 	hp->write_rxd = sbus_hme_write_rxd;
2797 	hp->read32 = sbus_hme_read32;
2798 	hp->write32 = sbus_hme_write32;
2799 #endif
2800 
2801 	/* Grrr, Happy Meal comes up by default not advertising
2802 	 * full duplex 100baseT capabilities, fix this.
2803 	 */
2804 	spin_lock_irq(&hp->happy_lock);
2805 	happy_meal_set_initial_advertisement(hp);
2806 	spin_unlock_irq(&hp->happy_lock);
2807 
2808 	err = register_netdev(hp->dev);
2809 	if (err) {
2810 		printk(KERN_ERR "happymeal: Cannot register net device, "
2811 		       "aborting.\n");
2812 		goto err_out_free_coherent;
2813 	}
2814 
2815 	platform_set_drvdata(op, hp);
2816 
2817 	if (qfe_slot != -1)
2818 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2819 		       dev->name, qfe_slot);
2820 	else
2821 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2822 		       dev->name);
2823 
2824 	printk("%pM\n", dev->dev_addr);
2825 
2826 	return 0;
2827 
2828 err_out_free_coherent:
2829 	dma_free_coherent(hp->dma_dev,
2830 			  PAGE_SIZE,
2831 			  hp->happy_block,
2832 			  hp->hblock_dvma);
2833 
2834 err_out_iounmap:
2835 	if (hp->gregs)
2836 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2837 	if (hp->etxregs)
2838 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2839 	if (hp->erxregs)
2840 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2841 	if (hp->bigmacregs)
2842 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2843 	if (hp->tcvregs)
2844 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2845 
2846 	if (qp)
2847 		qp->happy_meals[qfe_slot] = NULL;
2848 
2849 err_out_free_netdev:
2850 	free_netdev(dev);
2851 
2852 err_out:
2853 	return err;
2854 }
2855 #endif
2856 
2857 #ifdef CONFIG_PCI
2858 #ifndef CONFIG_SPARC
2859 static int is_quattro_p(struct pci_dev *pdev)
2860 {
2861 	struct pci_dev *busdev = pdev->bus->self;
2862 	struct pci_dev *this_pdev;
2863 	int n_hmes;
2864 
2865 	if (busdev == NULL ||
2866 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2867 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2868 		return 0;
2869 
2870 	n_hmes = 0;
2871 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2872 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2873 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2874 			n_hmes++;
2875 	}
2876 
2877 	if (n_hmes != 4)
2878 		return 0;
2879 
2880 	return 1;
2881 }
2882 
2883 /* Fetch MAC address from vital product data of PCI ROM. */
2884 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2885 {
2886 	int this_offset;
2887 
2888 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2889 		void __iomem *p = rom_base + this_offset;
2890 
2891 		if (readb(p + 0) != 0x90 ||
2892 		    readb(p + 1) != 0x00 ||
2893 		    readb(p + 2) != 0x09 ||
2894 		    readb(p + 3) != 0x4e ||
2895 		    readb(p + 4) != 0x41 ||
2896 		    readb(p + 5) != 0x06)
2897 			continue;
2898 
2899 		this_offset += 6;
2900 		p += 6;
2901 
2902 		if (index == 0) {
2903 			int i;
2904 
2905 			for (i = 0; i < 6; i++)
2906 				dev_addr[i] = readb(p + i);
2907 			return 1;
2908 		}
2909 		index--;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2915 {
2916 	size_t size;
2917 	void __iomem *p = pci_map_rom(pdev, &size);
2918 
2919 	if (p) {
2920 		int index = 0;
2921 		int found;
2922 
2923 		if (is_quattro_p(pdev))
2924 			index = PCI_SLOT(pdev->devfn);
2925 
2926 		found = readb(p) == 0x55 &&
2927 			readb(p + 1) == 0xaa &&
2928 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2929 		pci_unmap_rom(pdev, p);
2930 		if (found)
2931 			return;
2932 	}
2933 
2934 	/* Sun MAC prefix then 3 random bytes. */
2935 	dev_addr[0] = 0x08;
2936 	dev_addr[1] = 0x00;
2937 	dev_addr[2] = 0x20;
2938 	get_random_bytes(&dev_addr[3], 3);
2939 }
2940 #endif /* !(CONFIG_SPARC) */
2941 
2942 static int happy_meal_pci_probe(struct pci_dev *pdev,
2943 				const struct pci_device_id *ent)
2944 {
2945 	struct quattro *qp = NULL;
2946 #ifdef CONFIG_SPARC
2947 	struct device_node *dp;
2948 #endif
2949 	struct happy_meal *hp;
2950 	struct net_device *dev;
2951 	void __iomem *hpreg_base;
2952 	unsigned long hpreg_res;
2953 	int i, qfe_slot = -1;
2954 	char prom_name[64];
2955 	u8 addr[ETH_ALEN];
2956 	int err;
2957 
2958 	/* Now make sure pci_dev cookie is there. */
2959 #ifdef CONFIG_SPARC
2960 	dp = pci_device_to_OF_node(pdev);
2961 	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2962 #else
2963 	if (is_quattro_p(pdev))
2964 		strcpy(prom_name, "SUNW,qfe");
2965 	else
2966 		strcpy(prom_name, "SUNW,hme");
2967 #endif
2968 
2969 	err = -ENODEV;
2970 
2971 	if (pci_enable_device(pdev))
2972 		goto err_out;
2973 	pci_set_master(pdev);
2974 
2975 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2976 		qp = quattro_pci_find(pdev);
2977 		if (qp == NULL)
2978 			goto err_out;
2979 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2980 			if (qp->happy_meals[qfe_slot] == NULL)
2981 				break;
2982 		if (qfe_slot == 4)
2983 			goto err_out;
2984 	}
2985 
2986 	dev = alloc_etherdev(sizeof(struct happy_meal));
2987 	err = -ENOMEM;
2988 	if (!dev)
2989 		goto err_out;
2990 	SET_NETDEV_DEV(dev, &pdev->dev);
2991 
2992 	if (hme_version_printed++ == 0)
2993 		printk(KERN_INFO "%s", version);
2994 
2995 	hp = netdev_priv(dev);
2996 
2997 	hp->happy_dev = pdev;
2998 	hp->dma_dev = &pdev->dev;
2999 
3000 	spin_lock_init(&hp->happy_lock);
3001 
3002 	if (qp != NULL) {
3003 		hp->qfe_parent = qp;
3004 		hp->qfe_ent = qfe_slot;
3005 		qp->happy_meals[qfe_slot] = dev;
3006 	}
3007 
3008 	hpreg_res = pci_resource_start(pdev, 0);
3009 	err = -ENODEV;
3010 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3011 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3012 		goto err_out_clear_quattro;
3013 	}
3014 	if (pci_request_regions(pdev, DRV_NAME)) {
3015 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3016 		       "aborting.\n");
3017 		goto err_out_clear_quattro;
3018 	}
3019 
3020 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3021 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3022 		goto err_out_free_res;
3023 	}
3024 
3025 	for (i = 0; i < 6; i++) {
3026 		if (macaddr[i] != 0)
3027 			break;
3028 	}
3029 	if (i < 6) { /* a mac address was given */
3030 		for (i = 0; i < 6; i++)
3031 			addr[i] = macaddr[i];
3032 		eth_hw_addr_set(dev, addr);
3033 		macaddr[5]++;
3034 	} else {
3035 #ifdef CONFIG_SPARC
3036 		const unsigned char *addr;
3037 		int len;
3038 
3039 		if (qfe_slot != -1 &&
3040 		    (addr = of_get_property(dp, "local-mac-address", &len))
3041 			!= NULL &&
3042 		    len == 6) {
3043 			eth_hw_addr_set(dev, addr);
3044 		} else {
3045 			eth_hw_addr_set(dev, idprom->id_ethaddr);
3046 		}
3047 #else
3048 		u8 addr[ETH_ALEN];
3049 
3050 		get_hme_mac_nonsparc(pdev, addr);
3051 		eth_hw_addr_set(dev, addr);
3052 #endif
3053 	}
3054 
3055 	/* Layout registers. */
3056 	hp->gregs      = (hpreg_base + 0x0000UL);
3057 	hp->etxregs    = (hpreg_base + 0x2000UL);
3058 	hp->erxregs    = (hpreg_base + 0x4000UL);
3059 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3060 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3061 
3062 #ifdef CONFIG_SPARC
3063 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3064 	if (hp->hm_revision == 0xff)
3065 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3066 #else
3067 	/* works with this on non-sparc hosts */
3068 	hp->hm_revision = 0x20;
3069 #endif
3070 
3071 	/* Now enable the feature flags we can. */
3072 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3073 		hp->happy_flags = HFLAG_20_21;
3074 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3075 		hp->happy_flags = HFLAG_NOT_A0;
3076 
3077 	if (qp != NULL)
3078 		hp->happy_flags |= HFLAG_QUATTRO;
3079 
3080 	/* And of course, indicate this is PCI. */
3081 	hp->happy_flags |= HFLAG_PCI;
3082 
3083 #ifdef CONFIG_SPARC
3084 	/* Assume PCI happy meals can handle all burst sizes. */
3085 	hp->happy_bursts = DMA_BURSTBITS;
3086 #endif
3087 
3088 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3089 					     &hp->hblock_dvma, GFP_KERNEL);
3090 	err = -ENODEV;
3091 	if (!hp->happy_block)
3092 		goto err_out_iounmap;
3093 
3094 	hp->linkcheck = 0;
3095 	hp->timer_state = asleep;
3096 	hp->timer_ticks = 0;
3097 
3098 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3099 
3100 	hp->irq = pdev->irq;
3101 	hp->dev = dev;
3102 	dev->netdev_ops = &hme_netdev_ops;
3103 	dev->watchdog_timeo = 5*HZ;
3104 	dev->ethtool_ops = &hme_ethtool_ops;
3105 
3106 	/* Happy Meal can do it all... */
3107 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3108 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3109 
3110 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3111 	/* Hook up PCI register/descriptor accessors. */
3112 	hp->read_desc32 = pci_hme_read_desc32;
3113 	hp->write_txd = pci_hme_write_txd;
3114 	hp->write_rxd = pci_hme_write_rxd;
3115 	hp->read32 = pci_hme_read32;
3116 	hp->write32 = pci_hme_write32;
3117 #endif
3118 
3119 	/* Grrr, Happy Meal comes up by default not advertising
3120 	 * full duplex 100baseT capabilities, fix this.
3121 	 */
3122 	spin_lock_irq(&hp->happy_lock);
3123 	happy_meal_set_initial_advertisement(hp);
3124 	spin_unlock_irq(&hp->happy_lock);
3125 
3126 	err = register_netdev(hp->dev);
3127 	if (err) {
3128 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3129 		       "aborting.\n");
3130 		goto err_out_free_coherent;
3131 	}
3132 
3133 	pci_set_drvdata(pdev, hp);
3134 
3135 	if (!qfe_slot) {
3136 		struct pci_dev *qpdev = qp->quattro_dev;
3137 
3138 		prom_name[0] = 0;
3139 		if (!strncmp(dev->name, "eth", 3)) {
3140 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3141 			sprintf(prom_name, "-%d", i + 3);
3142 		}
3143 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3144 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3145 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3146 			printk("DEC 21153 PCI Bridge\n");
3147 		else
3148 			printk("unknown bridge %04x.%04x\n",
3149 				qpdev->vendor, qpdev->device);
3150 	}
3151 
3152 	if (qfe_slot != -1)
3153 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3154 		       dev->name, qfe_slot);
3155 	else
3156 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3157 		       dev->name);
3158 
3159 	printk("%pM\n", dev->dev_addr);
3160 
3161 	return 0;
3162 
3163 err_out_free_coherent:
3164 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3165 			  hp->happy_block, hp->hblock_dvma);
3166 
3167 err_out_iounmap:
3168 	iounmap(hp->gregs);
3169 
3170 err_out_free_res:
3171 	pci_release_regions(pdev);
3172 
3173 err_out_clear_quattro:
3174 	if (qp != NULL)
3175 		qp->happy_meals[qfe_slot] = NULL;
3176 
3177 	free_netdev(dev);
3178 
3179 err_out:
3180 	return err;
3181 }
3182 
3183 static void happy_meal_pci_remove(struct pci_dev *pdev)
3184 {
3185 	struct happy_meal *hp = pci_get_drvdata(pdev);
3186 	struct net_device *net_dev = hp->dev;
3187 
3188 	unregister_netdev(net_dev);
3189 
3190 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3191 			  hp->happy_block, hp->hblock_dvma);
3192 	iounmap(hp->gregs);
3193 	pci_release_regions(hp->happy_dev);
3194 
3195 	free_netdev(net_dev);
3196 }
3197 
3198 static const struct pci_device_id happymeal_pci_ids[] = {
3199 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3200 	{ }			/* Terminating entry */
3201 };
3202 
3203 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3204 
3205 static struct pci_driver hme_pci_driver = {
3206 	.name		= "hme",
3207 	.id_table	= happymeal_pci_ids,
3208 	.probe		= happy_meal_pci_probe,
3209 	.remove		= happy_meal_pci_remove,
3210 };
3211 
3212 static int __init happy_meal_pci_init(void)
3213 {
3214 	return pci_register_driver(&hme_pci_driver);
3215 }
3216 
3217 static void happy_meal_pci_exit(void)
3218 {
3219 	pci_unregister_driver(&hme_pci_driver);
3220 
3221 	while (qfe_pci_list) {
3222 		struct quattro *qfe = qfe_pci_list;
3223 		struct quattro *next = qfe->next;
3224 
3225 		kfree(qfe);
3226 
3227 		qfe_pci_list = next;
3228 	}
3229 }
3230 
3231 #endif
3232 
3233 #ifdef CONFIG_SBUS
3234 static const struct of_device_id hme_sbus_match[];
3235 static int hme_sbus_probe(struct platform_device *op)
3236 {
3237 	const struct of_device_id *match;
3238 	struct device_node *dp = op->dev.of_node;
3239 	const char *model = of_get_property(dp, "model", NULL);
3240 	int is_qfe;
3241 
3242 	match = of_match_device(hme_sbus_match, &op->dev);
3243 	if (!match)
3244 		return -EINVAL;
3245 	is_qfe = (match->data != NULL);
3246 
3247 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3248 		is_qfe = 1;
3249 
3250 	return happy_meal_sbus_probe_one(op, is_qfe);
3251 }
3252 
3253 static int hme_sbus_remove(struct platform_device *op)
3254 {
3255 	struct happy_meal *hp = platform_get_drvdata(op);
3256 	struct net_device *net_dev = hp->dev;
3257 
3258 	unregister_netdev(net_dev);
3259 
3260 	/* XXX qfe parent interrupt... */
3261 
3262 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3263 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3264 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3265 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3266 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3267 	dma_free_coherent(hp->dma_dev,
3268 			  PAGE_SIZE,
3269 			  hp->happy_block,
3270 			  hp->hblock_dvma);
3271 
3272 	free_netdev(net_dev);
3273 
3274 	return 0;
3275 }
3276 
3277 static const struct of_device_id hme_sbus_match[] = {
3278 	{
3279 		.name = "SUNW,hme",
3280 	},
3281 	{
3282 		.name = "SUNW,qfe",
3283 		.data = (void *) 1,
3284 	},
3285 	{
3286 		.name = "qfe",
3287 		.data = (void *) 1,
3288 	},
3289 	{},
3290 };
3291 
3292 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3293 
3294 static struct platform_driver hme_sbus_driver = {
3295 	.driver = {
3296 		.name = "hme",
3297 		.of_match_table = hme_sbus_match,
3298 	},
3299 	.probe		= hme_sbus_probe,
3300 	.remove		= hme_sbus_remove,
3301 };
3302 
3303 static int __init happy_meal_sbus_init(void)
3304 {
3305 	int err;
3306 
3307 	err = platform_driver_register(&hme_sbus_driver);
3308 	if (!err)
3309 		err = quattro_sbus_register_irqs();
3310 
3311 	return err;
3312 }
3313 
3314 static void happy_meal_sbus_exit(void)
3315 {
3316 	platform_driver_unregister(&hme_sbus_driver);
3317 	quattro_sbus_free_irqs();
3318 
3319 	while (qfe_sbus_list) {
3320 		struct quattro *qfe = qfe_sbus_list;
3321 		struct quattro *next = qfe->next;
3322 
3323 		kfree(qfe);
3324 
3325 		qfe_sbus_list = next;
3326 	}
3327 }
3328 #endif
3329 
3330 static int __init happy_meal_probe(void)
3331 {
3332 	int err = 0;
3333 
3334 #ifdef CONFIG_SBUS
3335 	err = happy_meal_sbus_init();
3336 #endif
3337 #ifdef CONFIG_PCI
3338 	if (!err) {
3339 		err = happy_meal_pci_init();
3340 #ifdef CONFIG_SBUS
3341 		if (err)
3342 			happy_meal_sbus_exit();
3343 #endif
3344 	}
3345 #endif
3346 
3347 	return err;
3348 }
3349 
3350 
3351 static void __exit happy_meal_exit(void)
3352 {
3353 #ifdef CONFIG_SBUS
3354 	happy_meal_sbus_exit();
3355 #endif
3356 #ifdef CONFIG_PCI
3357 	happy_meal_pci_exit();
3358 #endif
3359 }
3360 
3361 module_init(happy_meal_probe);
3362 module_exit(happy_meal_exit);
3363