xref: /openbmc/linux/drivers/net/ethernet/sun/sunhme.c (revision 6b5fc336)
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6  *		2006, 2008 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
38 
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42 
43 #ifdef CONFIG_SPARC
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <asm/idprom.h>
47 #include <asm/openprom.h>
48 #include <asm/oplib.h>
49 #include <asm/prom.h>
50 #include <asm/auxio.h>
51 #endif
52 #include <linux/uaccess.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME	"sunhme"
64 #define DRV_VERSION	"3.10"
65 #define DRV_RELDATE	"August 26, 2008"
66 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
67 
68 static char version[] =
69 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75 
76 static int macaddr[6];
77 
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85 
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89 
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95 
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98 	unsigned int tstamp;
99 	int tx_new, tx_old;
100 	unsigned int action;
101 #define TXLOG_ACTION_IRQ	0x01
102 #define TXLOG_ACTION_TXMIT	0x02
103 #define TXLOG_ACTION_TBUSY	0x04
104 #define TXLOG_ACTION_NBUFS	0x08
105 	unsigned int status;
106 };
107 #define TX_LOG_LEN	128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112 	struct hme_tx_logent *tlp;
113 	unsigned long flags;
114 
115 	local_irq_save(flags);
116 	tlp = &tx_log[txlog_cur_entry];
117 	tlp->tstamp = (unsigned int)jiffies;
118 	tlp->tx_new = hp->tx_new;
119 	tlp->tx_old = hp->tx_old;
120 	tlp->action = a;
121 	tlp->status = s;
122 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 	local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127 	int i, this;
128 
129 	this = txlog_cur_entry;
130 	for (i = 0; i < TX_LOG_LEN; i++) {
131 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132 		       tx_log[this].tstamp,
133 		       tx_log[this].tx_new, tx_log[this].tx_old,
134 		       tx_log[this].action, tx_log[this].status);
135 		this = (this + 1) & (TX_LOG_LEN - 1);
136 	}
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140 	struct hmeal_init_block *hb = hp->happy_block;
141 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142 	int i;
143 
144 	for (i = 0; i < TX_RING_SIZE; i+=4) {
145 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 		       i, i + 4,
147 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151 	}
152 }
153 #else
154 #define tx_add_log(hp, a, s)		do { } while(0)
155 #define tx_dump_log()			do { } while(0)
156 #define tx_dump_ring(hp)		do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *	 member _first_.  The card must not be allowed to see
180  *	 the updated descriptor flags until the address is
181  *	 correct.  I've added a write memory barrier between
182  *	 the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188 	sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193 	return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198 	rxd->rx_addr = (__force hme32)addr;
199 	dma_wmb();
200 	rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205 	txd->tx_addr = (__force hme32)addr;
206 	dma_wmb();
207 	txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212 	return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217 	writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222 	return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228 	dma_wmb();
229 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235 	dma_wmb();
236 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241 	return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245 	((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 	((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 	((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 	((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255 	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257 	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259 	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261 	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266 	sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268 	sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271 	dma_wmb(); \
272 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276 	dma_wmb(); \
277 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281 	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283 	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285 	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287 	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291 	writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293 	readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296 	dma_wmb(); \
297 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301 	dma_wmb(); \
302 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
305 {
306 	return le32_to_cpup((__le32 *)p);
307 }
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309 	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311 	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313 	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315 	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
318 
319 
320 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
322 {
323 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
324 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
326 }
327 
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
330 {
331 	u32 ret;
332 
333 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335 	ret = hme_read32(hp, tregs + TCVR_CFG);
336 	if (internal)
337 		ret &= TCV_CFG_MDIO0;
338 	else
339 		ret &= TCV_CFG_MDIO1;
340 
341 	return ret;
342 }
343 #endif
344 
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
346 {
347 	u32 retval;
348 
349 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350 	udelay(1);
351 	retval = hme_read32(hp, tregs + TCVR_CFG);
352 	if (internal)
353 		retval &= TCV_CFG_MDIO0;
354 	else
355 		retval &= TCV_CFG_MDIO1;
356 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
357 
358 	return retval;
359 }
360 
361 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
362 
363 static int happy_meal_bb_read(struct happy_meal *hp,
364 			      void __iomem *tregs, int reg)
365 {
366 	u32 tmp;
367 	int retval = 0;
368 	int i;
369 
370 	ASD(("happy_meal_bb_read: reg=%d ", reg));
371 
372 	/* Enable the MIF BitBang outputs. */
373 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
374 
375 	/* Force BitBang into the idle state. */
376 	for (i = 0; i < 32; i++)
377 		BB_PUT_BIT(hp, tregs, 1);
378 
379 	/* Give it the read sequence. */
380 	BB_PUT_BIT(hp, tregs, 0);
381 	BB_PUT_BIT(hp, tregs, 1);
382 	BB_PUT_BIT(hp, tregs, 1);
383 	BB_PUT_BIT(hp, tregs, 0);
384 
385 	/* Give it the PHY address. */
386 	tmp = hp->paddr & 0xff;
387 	for (i = 4; i >= 0; i--)
388 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
389 
390 	/* Tell it what register we want to read. */
391 	tmp = (reg & 0xff);
392 	for (i = 4; i >= 0; i--)
393 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
394 
395 	/* Close down the MIF BitBang outputs. */
396 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
397 
398 	/* Now read in the value. */
399 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400 	for (i = 15; i >= 0; i--)
401 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 	ASD(("value=%x\n", retval));
406 	return retval;
407 }
408 
409 static void happy_meal_bb_write(struct happy_meal *hp,
410 				void __iomem *tregs, int reg,
411 				unsigned short value)
412 {
413 	u32 tmp;
414 	int i;
415 
416 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
417 
418 	/* Enable the MIF BitBang outputs. */
419 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
420 
421 	/* Force BitBang into the idle state. */
422 	for (i = 0; i < 32; i++)
423 		BB_PUT_BIT(hp, tregs, 1);
424 
425 	/* Give it write sequence. */
426 	BB_PUT_BIT(hp, tregs, 0);
427 	BB_PUT_BIT(hp, tregs, 1);
428 	BB_PUT_BIT(hp, tregs, 0);
429 	BB_PUT_BIT(hp, tregs, 1);
430 
431 	/* Give it the PHY address. */
432 	tmp = (hp->paddr & 0xff);
433 	for (i = 4; i >= 0; i--)
434 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
435 
436 	/* Tell it what register we will be writing. */
437 	tmp = (reg & 0xff);
438 	for (i = 4; i >= 0; i--)
439 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
440 
441 	/* Tell it to become ready for the bits. */
442 	BB_PUT_BIT(hp, tregs, 1);
443 	BB_PUT_BIT(hp, tregs, 0);
444 
445 	for (i = 15; i >= 0; i--)
446 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
447 
448 	/* Close down the MIF BitBang outputs. */
449 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
450 }
451 
452 #define TCVR_READ_TRIES   16
453 
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455 				void __iomem *tregs, int reg)
456 {
457 	int tries = TCVR_READ_TRIES;
458 	int retval;
459 
460 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461 	if (hp->tcvr_type == none) {
462 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
463 		return TCVR_FAILURE;
464 	}
465 
466 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
467 		ASD(("doing bit bang\n"));
468 		return happy_meal_bb_read(hp, tregs, reg);
469 	}
470 
471 	hme_write32(hp, tregs + TCVR_FRAME,
472 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474 		udelay(20);
475 	if (!tries) {
476 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477 		return TCVR_FAILURE;
478 	}
479 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480 	ASD(("value=%04x\n", retval));
481 	return retval;
482 }
483 
484 #define TCVR_WRITE_TRIES  16
485 
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487 				  void __iomem *tregs, int reg,
488 				  unsigned short value)
489 {
490 	int tries = TCVR_WRITE_TRIES;
491 
492 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
493 
494 	/* Welcome to Sun Microsystems, can I take your order please? */
495 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
496 		happy_meal_bb_write(hp, tregs, reg, value);
497 		return;
498 	}
499 
500 	/* Would you like fries with that? */
501 	hme_write32(hp, tregs + TCVR_FRAME,
502 		    (FRAME_WRITE | (hp->paddr << 23) |
503 		     ((reg & 0xff) << 18) | (value & 0xffff)));
504 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505 		udelay(20);
506 
507 	/* Anything else? */
508 	if (!tries)
509 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
510 
511 	/* Fifty-two cents is your change, have a nice day. */
512 }
513 
514 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
515  * that keeps watching the auto negotiation process as it progresses.
516  * The DP83840 is first told to start doing it's thing, we set up the time
517  * and place the timer state machine in it's initial state.
518  *
519  * Here the timer peeks at the DP83840 status registers at each click to see
520  * if the auto negotiation has completed, we assume here that the DP83840 PHY
521  * will time out at some point and just tell us what (didn't) happen.  For
522  * complete coverage we only allow so many of the ticks at this level to run,
523  * when this has expired we print a warning message and try another strategy.
524  * This "other" strategy is to force the interface into various speed/duplex
525  * configurations and we stop when we see a link-up condition before the
526  * maximum number of "peek" ticks have occurred.
527  *
528  * Once a valid link status has been detected we configure the BigMAC and
529  * the rest of the Happy Meal to speak the most efficient protocol we could
530  * get a clean link for.  The priority for link configurations, highest first
531  * is:
532  *                 100 Base-T Full Duplex
533  *                 100 Base-T Half Duplex
534  *                 10 Base-T Full Duplex
535  *                 10 Base-T Half Duplex
536  *
537  * We start a new timer now, after a successful auto negotiation status has
538  * been detected.  This timer just waits for the link-up bit to get set in
539  * the BMCR of the DP83840.  When this occurs we print a kernel log message
540  * describing the link type in use and the fact that it is up.
541  *
542  * If a fatal error of some sort is signalled and detected in the interrupt
543  * service routine, and the chip is reset, or the link is ifconfig'd down
544  * and then back up, this entire process repeats itself all over again.
545  */
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
547 {
548 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
549 
550 	/* Downgrade from full to half duplex.  Only possible
551 	 * via ethtool.
552 	 */
553 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
554 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556 		return 0;
557 	}
558 
559 	/* Downgrade from 100 to 10. */
560 	if (hp->sw_bmcr & BMCR_SPEED100) {
561 		hp->sw_bmcr &= ~(BMCR_SPEED100);
562 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563 		return 0;
564 	}
565 
566 	/* We've tried everything. */
567 	return -1;
568 }
569 
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
571 {
572 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573 	if (hp->tcvr_type == external)
574 		printk("external ");
575 	else
576 		printk("internal ");
577 	printk("transceiver at ");
578 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580 		if (hp->sw_lpa & LPA_100FULL)
581 			printk("100Mb/s, Full Duplex.\n");
582 		else
583 			printk("100Mb/s, Half Duplex.\n");
584 	} else {
585 		if (hp->sw_lpa & LPA_10FULL)
586 			printk("10Mb/s, Full Duplex.\n");
587 		else
588 			printk("10Mb/s, Half Duplex.\n");
589 	}
590 }
591 
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
593 {
594 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595 	if (hp->tcvr_type == external)
596 		printk("external ");
597 	else
598 		printk("internal ");
599 	printk("transceiver at ");
600 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601 	if (hp->sw_bmcr & BMCR_SPEED100)
602 		printk("100Mb/s, ");
603 	else
604 		printk("10Mb/s, ");
605 	if (hp->sw_bmcr & BMCR_FULLDPLX)
606 		printk("Full Duplex.\n");
607 	else
608 		printk("Half Duplex.\n");
609 }
610 
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
612 {
613 	int full;
614 
615 	/* All we care about is making sure the bigmac tx_cfg has a
616 	 * proper duplex setting.
617 	 */
618 	if (hp->timer_state == arbwait) {
619 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621 			goto no_response;
622 		if (hp->sw_lpa & LPA_100FULL)
623 			full = 1;
624 		else if (hp->sw_lpa & LPA_100HALF)
625 			full = 0;
626 		else if (hp->sw_lpa & LPA_10FULL)
627 			full = 1;
628 		else
629 			full = 0;
630 	} else {
631 		/* Forcing a link mode. */
632 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633 		if (hp->sw_bmcr & BMCR_FULLDPLX)
634 			full = 1;
635 		else
636 			full = 0;
637 	}
638 
639 	/* Before changing other bits in the tx_cfg register, and in
640 	 * general any of other the TX config registers too, you
641 	 * must:
642 	 * 1) Clear Enable
643 	 * 2) Poll with reads until that bit reads back as zero
644 	 * 3) Make TX configuration changes
645 	 * 4) Set Enable once more
646 	 */
647 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649 		    ~(BIGMAC_TXCFG_ENABLE));
650 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
651 		barrier();
652 	if (full) {
653 		hp->happy_flags |= HFLAG_FULL;
654 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656 			    BIGMAC_TXCFG_FULLDPLX);
657 	} else {
658 		hp->happy_flags &= ~(HFLAG_FULL);
659 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661 			    ~(BIGMAC_TXCFG_FULLDPLX));
662 	}
663 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665 		    BIGMAC_TXCFG_ENABLE);
666 	return 0;
667 no_response:
668 	return 1;
669 }
670 
671 static int happy_meal_init(struct happy_meal *hp);
672 
673 static int is_lucent_phy(struct happy_meal *hp)
674 {
675 	void __iomem *tregs = hp->tcvregs;
676 	unsigned short mr2, mr3;
677 	int ret = 0;
678 
679 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681 	if ((mr2 & 0xffff) == 0x0180 &&
682 	    ((mr3 & 0xffff) >> 10) == 0x1d)
683 		ret = 1;
684 
685 	return ret;
686 }
687 
688 static void happy_meal_timer(unsigned long data)
689 {
690 	struct happy_meal *hp = (struct happy_meal *) data;
691 	void __iomem *tregs = hp->tcvregs;
692 	int restart_timer = 0;
693 
694 	spin_lock_irq(&hp->happy_lock);
695 
696 	hp->timer_ticks++;
697 	switch(hp->timer_state) {
698 	case arbwait:
699 		/* Only allow for 5 ticks, thats 10 seconds and much too
700 		 * long to wait for arbitration to complete.
701 		 */
702 		if (hp->timer_ticks >= 10) {
703 			/* Enter force mode. */
704 	do_force_mode:
705 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707 			       hp->dev->name);
708 			hp->sw_bmcr = BMCR_SPEED100;
709 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
710 
711 			if (!is_lucent_phy(hp)) {
712 				/* OK, seems we need do disable the transceiver for the first
713 				 * tick to make sure we get an accurate link state at the
714 				 * second tick.
715 				 */
716 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
719 			}
720 			hp->timer_state = ltrywait;
721 			hp->timer_ticks = 0;
722 			restart_timer = 1;
723 		} else {
724 			/* Anything interesting happen? */
725 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727 				int ret;
728 
729 				/* Just what we've been waiting for... */
730 				ret = set_happy_link_modes(hp, tregs);
731 				if (ret) {
732 					/* Ooops, something bad happened, go to force
733 					 * mode.
734 					 *
735 					 * XXX Broken hubs which don't support 802.3u
736 					 * XXX auto-negotiation make this happen as well.
737 					 */
738 					goto do_force_mode;
739 				}
740 
741 				/* Success, at least so far, advance our state engine. */
742 				hp->timer_state = lupwait;
743 				restart_timer = 1;
744 			} else {
745 				restart_timer = 1;
746 			}
747 		}
748 		break;
749 
750 	case lupwait:
751 		/* Auto negotiation was successful and we are awaiting a
752 		 * link up status.  I have decided to let this timer run
753 		 * forever until some sort of error is signalled, reporting
754 		 * a message to the user at 10 second intervals.
755 		 */
756 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757 		if (hp->sw_bmsr & BMSR_LSTATUS) {
758 			/* Wheee, it's up, display the link mode in use and put
759 			 * the timer to sleep.
760 			 */
761 			display_link_mode(hp, tregs);
762 			hp->timer_state = asleep;
763 			restart_timer = 0;
764 		} else {
765 			if (hp->timer_ticks >= 10) {
766 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767 				       "not completely up.\n", hp->dev->name);
768 				hp->timer_ticks = 0;
769 				restart_timer = 1;
770 			} else {
771 				restart_timer = 1;
772 			}
773 		}
774 		break;
775 
776 	case ltrywait:
777 		/* Making the timeout here too long can make it take
778 		 * annoyingly long to attempt all of the link mode
779 		 * permutations, but then again this is essentially
780 		 * error recovery code for the most part.
781 		 */
782 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784 		if (hp->timer_ticks == 1) {
785 			if (!is_lucent_phy(hp)) {
786 				/* Re-enable transceiver, we'll re-enable the transceiver next
787 				 * tick, then check link state on the following tick.
788 				 */
789 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790 				happy_meal_tcvr_write(hp, tregs,
791 						      DP83840_CSCONFIG, hp->sw_csconfig);
792 			}
793 			restart_timer = 1;
794 			break;
795 		}
796 		if (hp->timer_ticks == 2) {
797 			if (!is_lucent_phy(hp)) {
798 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799 				happy_meal_tcvr_write(hp, tregs,
800 						      DP83840_CSCONFIG, hp->sw_csconfig);
801 			}
802 			restart_timer = 1;
803 			break;
804 		}
805 		if (hp->sw_bmsr & BMSR_LSTATUS) {
806 			/* Force mode selection success. */
807 			display_forced_link_mode(hp, tregs);
808 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809 			hp->timer_state = asleep;
810 			restart_timer = 0;
811 		} else {
812 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813 				int ret;
814 
815 				ret = try_next_permutation(hp, tregs);
816 				if (ret == -1) {
817 					/* Aieee, tried them all, reset the
818 					 * chip and try all over again.
819 					 */
820 
821 					/* Let the user know... */
822 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823 					       hp->dev->name);
824 
825 					ret = happy_meal_init(hp);
826 					if (ret) {
827 						/* ho hum... */
828 						printk(KERN_ERR "%s: Error, cannot re-init the "
829 						       "Happy Meal.\n", hp->dev->name);
830 					}
831 					goto out;
832 				}
833 				if (!is_lucent_phy(hp)) {
834 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
835 									       DP83840_CSCONFIG);
836 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837 					happy_meal_tcvr_write(hp, tregs,
838 							      DP83840_CSCONFIG, hp->sw_csconfig);
839 				}
840 				hp->timer_ticks = 0;
841 				restart_timer = 1;
842 			} else {
843 				restart_timer = 1;
844 			}
845 		}
846 		break;
847 
848 	case asleep:
849 	default:
850 		/* Can't happens.... */
851 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852 		       hp->dev->name);
853 		restart_timer = 0;
854 		hp->timer_ticks = 0;
855 		hp->timer_state = asleep; /* foo on you */
856 		break;
857 	}
858 
859 	if (restart_timer) {
860 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861 		add_timer(&hp->happy_timer);
862 	}
863 
864 out:
865 	spin_unlock_irq(&hp->happy_lock);
866 }
867 
868 #define TX_RESET_TRIES     32
869 #define RX_RESET_TRIES     32
870 
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
873 {
874 	int tries = TX_RESET_TRIES;
875 
876 	HMD(("happy_meal_tx_reset: reset, "));
877 
878 	/* Would you like to try our SMCC Delux? */
879 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881 		udelay(20);
882 
883 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
884 	if (!tries)
885 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
886 
887 	/* Take care. */
888 	HMD(("done\n"));
889 }
890 
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
893 {
894 	int tries = RX_RESET_TRIES;
895 
896 	HMD(("happy_meal_rx_reset: reset, "));
897 
898 	/* We have a special on GNU/Viking hardware bugs today. */
899 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901 		udelay(20);
902 
903 	/* Will that be all? */
904 	if (!tries)
905 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
906 
907 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
908 	HMD(("done\n"));
909 }
910 
911 #define STOP_TRIES         16
912 
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
915 {
916 	int tries = STOP_TRIES;
917 
918 	HMD(("happy_meal_stop: reset, "));
919 
920 	/* We're consolidating our STB products, it's your lucky day. */
921 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923 		udelay(20);
924 
925 	/* Come back next week when we are "Sun Microelectronics". */
926 	if (!tries)
927 		printk(KERN_ERR "happy meal: Fry guys.");
928 
929 	/* Remember: "Different name, same old buggy as shit hardware." */
930 	HMD(("done\n"));
931 }
932 
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
935 {
936 	struct net_device_stats *stats = &hp->dev->stats;
937 
938 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
940 
941 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
943 
944 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
946 
947 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
948 
949 	stats->collisions +=
950 		(hme_read32(hp, bregs + BMAC_EXCTR) +
951 		 hme_read32(hp, bregs + BMAC_LTCTR));
952 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
953 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
954 }
955 
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
958 {
959 	ASD(("happy_meal_poll_stop: "));
960 
961 	/* If polling disabled or not polling already, nothing to do. */
962 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
964 		HMD(("not polling, return\n"));
965 		return;
966 	}
967 
968 	/* Shut up the MIF. */
969 	ASD(("were polling, mif ints off, "));
970 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
971 
972 	/* Turn off polling. */
973 	ASD(("polling off, "));
974 	hme_write32(hp, tregs + TCVR_CFG,
975 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
976 
977 	/* We are no longer polling. */
978 	hp->happy_flags &= ~(HFLAG_POLL);
979 
980 	/* Let the bits set. */
981 	udelay(200);
982 	ASD(("done\n"));
983 }
984 
985 /* Only Sun can take such nice parts and fuck up the programming interface
986  * like this.  Good job guys...
987  */
988 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
989 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
990 
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993 {
994 	u32 tconfig;
995 	int result, tries = TCVR_RESET_TRIES;
996 
997 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
998 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999 	if (hp->tcvr_type == external) {
1000 		ASD(("external<"));
1001 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002 		hp->tcvr_type = internal;
1003 		hp->paddr = TCV_PADDR_ITX;
1004 		ASD(("ISOLATE,"));
1005 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008 		if (result == TCVR_FAILURE) {
1009 			ASD(("phyread_fail>\n"));
1010 			return -1;
1011 		}
1012 		ASD(("phyread_ok,PSELECT>"));
1013 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014 		hp->tcvr_type = external;
1015 		hp->paddr = TCV_PADDR_ETX;
1016 	} else {
1017 		if (tconfig & TCV_CFG_MDIO1) {
1018 			ASD(("internal<PSELECT,"));
1019 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020 			ASD(("ISOLATE,"));
1021 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024 			if (result == TCVR_FAILURE) {
1025 				ASD(("phyread_fail>\n"));
1026 				return -1;
1027 			}
1028 			ASD(("phyread_ok,~PSELECT>"));
1029 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030 			hp->tcvr_type = internal;
1031 			hp->paddr = TCV_PADDR_ITX;
1032 		}
1033 	}
1034 
1035 	ASD(("BMCR_RESET "));
1036 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037 
1038 	while (--tries) {
1039 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040 		if (result == TCVR_FAILURE)
1041 			return -1;
1042 		hp->sw_bmcr = result;
1043 		if (!(result & BMCR_RESET))
1044 			break;
1045 		udelay(20);
1046 	}
1047 	if (!tries) {
1048 		ASD(("BMCR RESET FAILED!\n"));
1049 		return -1;
1050 	}
1051 	ASD(("RESET_OK\n"));
1052 
1053 	/* Get fresh copies of the PHY registers. */
1054 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058 
1059 	ASD(("UNISOLATE"));
1060 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062 
1063 	tries = TCVR_UNISOLATE_TRIES;
1064 	while (--tries) {
1065 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066 		if (result == TCVR_FAILURE)
1067 			return -1;
1068 		if (!(result & BMCR_ISOLATE))
1069 			break;
1070 		udelay(20);
1071 	}
1072 	if (!tries) {
1073 		ASD((" FAILED!\n"));
1074 		return -1;
1075 	}
1076 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077 	if (!is_lucent_phy(hp)) {
1078 		result = happy_meal_tcvr_read(hp, tregs,
1079 					      DP83840_CSCONFIG);
1080 		happy_meal_tcvr_write(hp, tregs,
1081 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082 	}
1083 	return 0;
1084 }
1085 
1086 /* Figure out whether we have an internal or external transceiver.
1087  *
1088  * hp->happy_lock must be held
1089  */
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091 {
1092 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093 
1094 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095 	if (hp->happy_flags & HFLAG_POLL) {
1096 		/* If we are polling, we must stop to get the transceiver type. */
1097 		ASD(("<polling> "));
1098 		if (hp->tcvr_type == internal) {
1099 			if (tconfig & TCV_CFG_MDIO1) {
1100 				ASD(("<internal> <poll stop> "));
1101 				happy_meal_poll_stop(hp, tregs);
1102 				hp->paddr = TCV_PADDR_ETX;
1103 				hp->tcvr_type = external;
1104 				ASD(("<external>\n"));
1105 				tconfig &= ~(TCV_CFG_PENABLE);
1106 				tconfig |= TCV_CFG_PSELECT;
1107 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108 			}
1109 		} else {
1110 			if (hp->tcvr_type == external) {
1111 				ASD(("<external> "));
1112 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113 					ASD(("<poll stop> "));
1114 					happy_meal_poll_stop(hp, tregs);
1115 					hp->paddr = TCV_PADDR_ITX;
1116 					hp->tcvr_type = internal;
1117 					ASD(("<internal>\n"));
1118 					hme_write32(hp, tregs + TCVR_CFG,
1119 						    hme_read32(hp, tregs + TCVR_CFG) &
1120 						    ~(TCV_CFG_PSELECT));
1121 				}
1122 				ASD(("\n"));
1123 			} else {
1124 				ASD(("<none>\n"));
1125 			}
1126 		}
1127 	} else {
1128 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129 
1130 		/* Else we can just work off of the MDIO bits. */
1131 		ASD(("<not polling> "));
1132 		if (reread & TCV_CFG_MDIO1) {
1133 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134 			hp->paddr = TCV_PADDR_ETX;
1135 			hp->tcvr_type = external;
1136 			ASD(("<external>\n"));
1137 		} else {
1138 			if (reread & TCV_CFG_MDIO0) {
1139 				hme_write32(hp, tregs + TCVR_CFG,
1140 					    tconfig & ~(TCV_CFG_PSELECT));
1141 				hp->paddr = TCV_PADDR_ITX;
1142 				hp->tcvr_type = internal;
1143 				ASD(("<internal>\n"));
1144 			} else {
1145 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146 				hp->tcvr_type = none; /* Grrr... */
1147 				ASD(("<none>\n"));
1148 			}
1149 		}
1150 	}
1151 }
1152 
1153 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1154  *
1155  * The buffers we dma into must be 64 byte aligned.  So we use a special
1156  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157  * we really need.
1158  *
1159  * We use skb_reserve() to align the data block we get in the skb.  We
1160  * also program the etxregs->cfg register to use an offset of 2.  This
1161  * imperical constant plus the ethernet header size will always leave
1162  * us with a nicely aligned ip header once we pass things up to the
1163  * protocol layers.
1164  *
1165  * The numbers work out to:
1166  *
1167  *         Max ethernet frame size         1518
1168  *         Ethernet header size              14
1169  *         Happy Meal base offset             2
1170  *
1171  * Say a skb data area is at 0xf001b010, and its size alloced is
1172  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173  *
1174  * First our alloc_skb() routine aligns the data base to a 64 byte
1175  * boundary.  We now have 0xf001b040 as our skb data address.  We
1176  * plug this into the receive descriptor address.
1177  *
1178  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179  * So now the data we will end up looking at starts at 0xf001b042.  When
1180  * the packet arrives, we will check out the size received and subtract
1181  * this from the skb->length.  Then we just pass the packet up to the
1182  * protocols as is, and allocate a new skb to replace this slot we have
1183  * just received from.
1184  *
1185  * The ethernet layer will strip the ether header from the front of the
1186  * skb we just sent to it, this leaves us with the ip header sitting
1187  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189  * bit checksum is obtained from the low bits of the receive descriptor
1190  * flags, thus:
1191  *
1192  * 	skb->csum = rxd->rx_flags & 0xffff;
1193  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1194  *
1195  * before sending off the skb to the protocols, and we are good as gold.
1196  */
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < RX_RING_SIZE; i++) {
1202 		if (hp->rx_skbs[i] != NULL) {
1203 			struct sk_buff *skb = hp->rx_skbs[i];
1204 			struct happy_meal_rxd *rxd;
1205 			u32 dma_addr;
1206 
1207 			rxd = &hp->happy_block->happy_meal_rxd[i];
1208 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209 			dma_unmap_single(hp->dma_dev, dma_addr,
1210 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211 			dev_kfree_skb_any(skb);
1212 			hp->rx_skbs[i] = NULL;
1213 		}
1214 	}
1215 
1216 	for (i = 0; i < TX_RING_SIZE; i++) {
1217 		if (hp->tx_skbs[i] != NULL) {
1218 			struct sk_buff *skb = hp->tx_skbs[i];
1219 			struct happy_meal_txd *txd;
1220 			u32 dma_addr;
1221 			int frag;
1222 
1223 			hp->tx_skbs[i] = NULL;
1224 
1225 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226 				txd = &hp->happy_block->happy_meal_txd[i];
1227 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228 				if (!frag)
1229 					dma_unmap_single(hp->dma_dev, dma_addr,
1230 							 (hme_read_desc32(hp, &txd->tx_flags)
1231 							  & TXFLAG_SIZE),
1232 							 DMA_TO_DEVICE);
1233 				else
1234 					dma_unmap_page(hp->dma_dev, dma_addr,
1235 							 (hme_read_desc32(hp, &txd->tx_flags)
1236 							  & TXFLAG_SIZE),
1237 							 DMA_TO_DEVICE);
1238 
1239 				if (frag != skb_shinfo(skb)->nr_frags)
1240 					i++;
1241 			}
1242 
1243 			dev_kfree_skb_any(skb);
1244 		}
1245 	}
1246 }
1247 
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1250 {
1251 	struct hmeal_init_block *hb = hp->happy_block;
1252 	int i;
1253 
1254 	HMD(("happy_meal_init_rings: counters to zero, "));
1255 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256 
1257 	/* Free any skippy bufs left around in the rings. */
1258 	HMD(("clean, "));
1259 	happy_meal_clean_rings(hp);
1260 
1261 	/* Now get new skippy bufs for the receive ring. */
1262 	HMD(("init rxring, "));
1263 	for (i = 0; i < RX_RING_SIZE; i++) {
1264 		struct sk_buff *skb;
1265 		u32 mapping;
1266 
1267 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1268 		if (!skb) {
1269 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1270 			continue;
1271 		}
1272 		hp->rx_skbs[i] = skb;
1273 
1274 		/* Because we reserve afterwards. */
1275 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1277 					 DMA_FROM_DEVICE);
1278 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1279 			dev_kfree_skb_any(skb);
1280 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281 			continue;
1282 		}
1283 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1285 			      mapping);
1286 		skb_reserve(skb, RX_OFFSET);
1287 	}
1288 
1289 	HMD(("init txring, "));
1290 	for (i = 0; i < TX_RING_SIZE; i++)
1291 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1292 
1293 	HMD(("done\n"));
1294 }
1295 
1296 /* hp->happy_lock must be held */
1297 static void
1298 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1299 				  void __iomem *tregs,
1300 				  const struct ethtool_link_ksettings *ep)
1301 {
1302 	int timeout;
1303 
1304 	/* Read all of the registers we are interested in now. */
1305 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1306 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1307 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1308 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1309 
1310 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1311 
1312 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1313 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1314 		/* Advertise everything we can support. */
1315 		if (hp->sw_bmsr & BMSR_10HALF)
1316 			hp->sw_advertise |= (ADVERTISE_10HALF);
1317 		else
1318 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1319 
1320 		if (hp->sw_bmsr & BMSR_10FULL)
1321 			hp->sw_advertise |= (ADVERTISE_10FULL);
1322 		else
1323 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1324 		if (hp->sw_bmsr & BMSR_100HALF)
1325 			hp->sw_advertise |= (ADVERTISE_100HALF);
1326 		else
1327 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1328 		if (hp->sw_bmsr & BMSR_100FULL)
1329 			hp->sw_advertise |= (ADVERTISE_100FULL);
1330 		else
1331 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1332 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1333 
1334 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1335 		 * XXX and this is because the DP83840 does not support it, changes
1336 		 * XXX would need to be made to the tx/rx logic in the driver as well
1337 		 * XXX so I completely skip checking for it in the BMSR for now.
1338 		 */
1339 
1340 #ifdef AUTO_SWITCH_DEBUG
1341 		ASD(("%s: Advertising [ ", hp->dev->name));
1342 		if (hp->sw_advertise & ADVERTISE_10HALF)
1343 			ASD(("10H "));
1344 		if (hp->sw_advertise & ADVERTISE_10FULL)
1345 			ASD(("10F "));
1346 		if (hp->sw_advertise & ADVERTISE_100HALF)
1347 			ASD(("100H "));
1348 		if (hp->sw_advertise & ADVERTISE_100FULL)
1349 			ASD(("100F "));
1350 #endif
1351 
1352 		/* Enable Auto-Negotiation, this is usually on already... */
1353 		hp->sw_bmcr |= BMCR_ANENABLE;
1354 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1355 
1356 		/* Restart it to make sure it is going. */
1357 		hp->sw_bmcr |= BMCR_ANRESTART;
1358 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1359 
1360 		/* BMCR_ANRESTART self clears when the process has begun. */
1361 
1362 		timeout = 64;  /* More than enough. */
1363 		while (--timeout) {
1364 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1365 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1366 				break; /* got it. */
1367 			udelay(10);
1368 		}
1369 		if (!timeout) {
1370 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1371 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1372 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1373 			       hp->dev->name);
1374 			goto force_link;
1375 		} else {
1376 			hp->timer_state = arbwait;
1377 		}
1378 	} else {
1379 force_link:
1380 		/* Force the link up, trying first a particular mode.
1381 		 * Either we are here at the request of ethtool or
1382 		 * because the Happy Meal would not start to autoneg.
1383 		 */
1384 
1385 		/* Disable auto-negotiation in BMCR, enable the duplex and
1386 		 * speed setting, init the timer state machine, and fire it off.
1387 		 */
1388 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1389 			hp->sw_bmcr = BMCR_SPEED100;
1390 		} else {
1391 			if (ep->base.speed == SPEED_100)
1392 				hp->sw_bmcr = BMCR_SPEED100;
1393 			else
1394 				hp->sw_bmcr = 0;
1395 			if (ep->base.duplex == DUPLEX_FULL)
1396 				hp->sw_bmcr |= BMCR_FULLDPLX;
1397 		}
1398 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1399 
1400 		if (!is_lucent_phy(hp)) {
1401 			/* OK, seems we need do disable the transceiver for the first
1402 			 * tick to make sure we get an accurate link state at the
1403 			 * second tick.
1404 			 */
1405 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1406 							       DP83840_CSCONFIG);
1407 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1408 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1409 					      hp->sw_csconfig);
1410 		}
1411 		hp->timer_state = ltrywait;
1412 	}
1413 
1414 	hp->timer_ticks = 0;
1415 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1416 	hp->happy_timer.data = (unsigned long) hp;
1417 	hp->happy_timer.function = happy_meal_timer;
1418 	add_timer(&hp->happy_timer);
1419 }
1420 
1421 /* hp->happy_lock must be held */
1422 static int happy_meal_init(struct happy_meal *hp)
1423 {
1424 	void __iomem *gregs        = hp->gregs;
1425 	void __iomem *etxregs      = hp->etxregs;
1426 	void __iomem *erxregs      = hp->erxregs;
1427 	void __iomem *bregs        = hp->bigmacregs;
1428 	void __iomem *tregs        = hp->tcvregs;
1429 	u32 regtmp, rxcfg;
1430 	unsigned char *e = &hp->dev->dev_addr[0];
1431 
1432 	/* If auto-negotiation timer is running, kill it. */
1433 	del_timer(&hp->happy_timer);
1434 
1435 	HMD(("happy_meal_init: happy_flags[%08x] ",
1436 	     hp->happy_flags));
1437 	if (!(hp->happy_flags & HFLAG_INIT)) {
1438 		HMD(("set HFLAG_INIT, "));
1439 		hp->happy_flags |= HFLAG_INIT;
1440 		happy_meal_get_counters(hp, bregs);
1441 	}
1442 
1443 	/* Stop polling. */
1444 	HMD(("to happy_meal_poll_stop\n"));
1445 	happy_meal_poll_stop(hp, tregs);
1446 
1447 	/* Stop transmitter and receiver. */
1448 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1449 	happy_meal_stop(hp, gregs);
1450 
1451 	/* Alloc and reset the tx/rx descriptor chains. */
1452 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1453 	happy_meal_init_rings(hp);
1454 
1455 	/* Shut up the MIF. */
1456 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1457 	     hme_read32(hp, tregs + TCVR_IMASK)));
1458 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1459 
1460 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1461 	if (hp->happy_flags & HFLAG_FENABLE) {
1462 		HMD(("use frame old[%08x], ",
1463 		     hme_read32(hp, tregs + TCVR_CFG)));
1464 		hme_write32(hp, tregs + TCVR_CFG,
1465 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1466 	} else {
1467 		HMD(("use bitbang old[%08x], ",
1468 		     hme_read32(hp, tregs + TCVR_CFG)));
1469 		hme_write32(hp, tregs + TCVR_CFG,
1470 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1471 	}
1472 
1473 	/* Check the state of the transceiver. */
1474 	HMD(("to happy_meal_transceiver_check\n"));
1475 	happy_meal_transceiver_check(hp, tregs);
1476 
1477 	/* Put the Big Mac into a sane state. */
1478 	HMD(("happy_meal_init: "));
1479 	switch(hp->tcvr_type) {
1480 	case none:
1481 		/* Cannot operate if we don't know the transceiver type! */
1482 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1483 		return -EAGAIN;
1484 
1485 	case internal:
1486 		/* Using the MII buffers. */
1487 		HMD(("internal, using MII, "));
1488 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1489 		break;
1490 
1491 	case external:
1492 		/* Not using the MII, disable it. */
1493 		HMD(("external, disable MII, "));
1494 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1495 		break;
1496 	}
1497 
1498 	if (happy_meal_tcvr_reset(hp, tregs))
1499 		return -EAGAIN;
1500 
1501 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1502 	HMD(("tx/rx reset, "));
1503 	happy_meal_tx_reset(hp, bregs);
1504 	happy_meal_rx_reset(hp, bregs);
1505 
1506 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1507 	HMD(("jsize/ipg1/ipg2, "));
1508 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1509 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1510 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1511 
1512 	/* Load up the MAC address and random seed. */
1513 	HMD(("rseed/macaddr, "));
1514 
1515 	/* The docs recommend to use the 10LSB of our MAC here. */
1516 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1517 
1518 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1519 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1520 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1521 
1522 	HMD(("htable, "));
1523 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1524 	    (netdev_mc_count(hp->dev) > 64)) {
1525 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1526 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1527 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1528 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1529 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1530 		u16 hash_table[4];
1531 		struct netdev_hw_addr *ha;
1532 		u32 crc;
1533 
1534 		memset(hash_table, 0, sizeof(hash_table));
1535 		netdev_for_each_mc_addr(ha, hp->dev) {
1536 			crc = ether_crc_le(6, ha->addr);
1537 			crc >>= 26;
1538 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1539 		}
1540 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1541 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1542 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1543 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1544 	} else {
1545 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1546 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1547 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1548 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1549 	}
1550 
1551 	/* Set the RX and TX ring ptrs. */
1552 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1553 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1554 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1555 	hme_write32(hp, erxregs + ERX_RING,
1556 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1557 	hme_write32(hp, etxregs + ETX_RING,
1558 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1559 
1560 	/* Parity issues in the ERX unit of some HME revisions can cause some
1561 	 * registers to not be written unless their parity is even.  Detect such
1562 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1563 	 * since the rxring needs to be 2K aligned).
1564 	 */
1565 	if (hme_read32(hp, erxregs + ERX_RING) !=
1566 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1567 		hme_write32(hp, erxregs + ERX_RING,
1568 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1569 			    | 0x4);
1570 
1571 	/* Set the supported burst sizes. */
1572 	HMD(("happy_meal_init: old[%08x] bursts<",
1573 	     hme_read32(hp, gregs + GREG_CFG)));
1574 
1575 #ifndef CONFIG_SPARC
1576 	/* It is always PCI and can handle 64byte bursts. */
1577 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1578 #else
1579 	if ((hp->happy_bursts & DMA_BURST64) &&
1580 	    ((hp->happy_flags & HFLAG_PCI) != 0
1581 #ifdef CONFIG_SBUS
1582 	     || sbus_can_burst64()
1583 #endif
1584 	     || 0)) {
1585 		u32 gcfg = GREG_CFG_BURST64;
1586 
1587 		/* I have no idea if I should set the extended
1588 		 * transfer mode bit for Cheerio, so for now I
1589 		 * do not.  -DaveM
1590 		 */
1591 #ifdef CONFIG_SBUS
1592 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1593 			struct platform_device *op = hp->happy_dev;
1594 			if (sbus_can_dma_64bit()) {
1595 				sbus_set_sbus64(&op->dev,
1596 						hp->happy_bursts);
1597 				gcfg |= GREG_CFG_64BIT;
1598 			}
1599 		}
1600 #endif
1601 
1602 		HMD(("64>"));
1603 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1604 	} else if (hp->happy_bursts & DMA_BURST32) {
1605 		HMD(("32>"));
1606 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1607 	} else if (hp->happy_bursts & DMA_BURST16) {
1608 		HMD(("16>"));
1609 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1610 	} else {
1611 		HMD(("XXX>"));
1612 		hme_write32(hp, gregs + GREG_CFG, 0);
1613 	}
1614 #endif /* CONFIG_SPARC */
1615 
1616 	/* Turn off interrupts we do not want to hear. */
1617 	HMD((", enable global interrupts, "));
1618 	hme_write32(hp, gregs + GREG_IMASK,
1619 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1620 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1621 
1622 	/* Set the transmit ring buffer size. */
1623 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1624 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1625 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1626 
1627 	/* Enable transmitter DVMA. */
1628 	HMD(("tx dma enable old[%08x], ",
1629 	     hme_read32(hp, etxregs + ETX_CFG)));
1630 	hme_write32(hp, etxregs + ETX_CFG,
1631 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1632 
1633 	/* This chip really rots, for the receiver sometimes when you
1634 	 * write to its control registers not all the bits get there
1635 	 * properly.  I cannot think of a sane way to provide complete
1636 	 * coverage for this hardware bug yet.
1637 	 */
1638 	HMD(("erx regs bug old[%08x]\n",
1639 	     hme_read32(hp, erxregs + ERX_CFG)));
1640 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1641 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1642 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1643 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1644 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1645 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1646 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1647 		/* XXX Should return failure here... */
1648 	}
1649 
1650 	/* Enable Big Mac hash table filter. */
1651 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1652 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1653 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1654 	if (hp->dev->flags & IFF_PROMISC)
1655 		rxcfg |= BIGMAC_RXCFG_PMISC;
1656 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1657 
1658 	/* Let the bits settle in the chip. */
1659 	udelay(10);
1660 
1661 	/* Ok, configure the Big Mac transmitter. */
1662 	HMD(("BIGMAC init, "));
1663 	regtmp = 0;
1664 	if (hp->happy_flags & HFLAG_FULL)
1665 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1666 
1667 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1668 	 * to deadlock with the PHY if a Jabber occurs.
1669 	 */
1670 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1671 
1672 	/* Give up after 16 TX attempts. */
1673 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1674 
1675 	/* Enable the output drivers no matter what. */
1676 	regtmp = BIGMAC_XCFG_ODENABLE;
1677 
1678 	/* If card can do lance mode, enable it. */
1679 	if (hp->happy_flags & HFLAG_LANCE)
1680 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1681 
1682 	/* Disable the MII buffers if using external transceiver. */
1683 	if (hp->tcvr_type == external)
1684 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1685 
1686 	HMD(("XIF config old[%08x], ",
1687 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1688 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1689 
1690 	/* Start things up. */
1691 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1692 	     hme_read32(hp, bregs + BMAC_TXCFG),
1693 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1694 
1695 	/* Set larger TX/RX size to allow for 802.1q */
1696 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1697 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1698 
1699 	hme_write32(hp, bregs + BMAC_TXCFG,
1700 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1701 	hme_write32(hp, bregs + BMAC_RXCFG,
1702 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1703 
1704 	/* Get the autonegotiation started, and the watch timer ticking. */
1705 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1706 
1707 	/* Success. */
1708 	return 0;
1709 }
1710 
1711 /* hp->happy_lock must be held */
1712 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1713 {
1714 	void __iomem *tregs	= hp->tcvregs;
1715 	void __iomem *bregs	= hp->bigmacregs;
1716 	void __iomem *gregs	= hp->gregs;
1717 
1718 	happy_meal_stop(hp, gregs);
1719 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1720 	if (hp->happy_flags & HFLAG_FENABLE)
1721 		hme_write32(hp, tregs + TCVR_CFG,
1722 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1723 	else
1724 		hme_write32(hp, tregs + TCVR_CFG,
1725 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1726 	happy_meal_transceiver_check(hp, tregs);
1727 	switch(hp->tcvr_type) {
1728 	case none:
1729 		return;
1730 	case internal:
1731 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1732 		break;
1733 	case external:
1734 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1735 		break;
1736 	}
1737 	if (happy_meal_tcvr_reset(hp, tregs))
1738 		return;
1739 
1740 	/* Latch PHY registers as of now. */
1741 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1742 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1743 
1744 	/* Advertise everything we can support. */
1745 	if (hp->sw_bmsr & BMSR_10HALF)
1746 		hp->sw_advertise |= (ADVERTISE_10HALF);
1747 	else
1748 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1749 
1750 	if (hp->sw_bmsr & BMSR_10FULL)
1751 		hp->sw_advertise |= (ADVERTISE_10FULL);
1752 	else
1753 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1754 	if (hp->sw_bmsr & BMSR_100HALF)
1755 		hp->sw_advertise |= (ADVERTISE_100HALF);
1756 	else
1757 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1758 	if (hp->sw_bmsr & BMSR_100FULL)
1759 		hp->sw_advertise |= (ADVERTISE_100FULL);
1760 	else
1761 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1762 
1763 	/* Update the PHY advertisement register. */
1764 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1765 }
1766 
1767 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1768  * the hardware, so we cannot re-read it and get a correct value.
1769  *
1770  * hp->happy_lock must be held
1771  */
1772 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1773 {
1774 	int reset = 0;
1775 
1776 	/* Only print messages for non-counter related interrupts. */
1777 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1778 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1779 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1780 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1781 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1782 		      GREG_STAT_SLVPERR))
1783 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1784 		       hp->dev->name, status);
1785 
1786 	if (status & GREG_STAT_RFIFOVF) {
1787 		/* Receive FIFO overflow is harmless and the hardware will take
1788 		   care of it, just some packets are lost. Who cares. */
1789 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1790 	}
1791 
1792 	if (status & GREG_STAT_STSTERR) {
1793 		/* BigMAC SQE link test failed. */
1794 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1795 		reset = 1;
1796 	}
1797 
1798 	if (status & GREG_STAT_TFIFO_UND) {
1799 		/* Transmit FIFO underrun, again DMA error likely. */
1800 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1801 		       hp->dev->name);
1802 		reset = 1;
1803 	}
1804 
1805 	if (status & GREG_STAT_MAXPKTERR) {
1806 		/* Driver error, tried to transmit something larger
1807 		 * than ethernet max mtu.
1808 		 */
1809 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1810 		reset = 1;
1811 	}
1812 
1813 	if (status & GREG_STAT_NORXD) {
1814 		/* This is harmless, it just means the system is
1815 		 * quite loaded and the incoming packet rate was
1816 		 * faster than the interrupt handler could keep up
1817 		 * with.
1818 		 */
1819 		printk(KERN_INFO "%s: Happy Meal out of receive "
1820 		       "descriptors, packet dropped.\n",
1821 		       hp->dev->name);
1822 	}
1823 
1824 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1825 		/* All sorts of DMA receive errors. */
1826 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1827 		if (status & GREG_STAT_RXERR)
1828 			printk("GenericError ");
1829 		if (status & GREG_STAT_RXPERR)
1830 			printk("ParityError ");
1831 		if (status & GREG_STAT_RXTERR)
1832 			printk("RxTagBotch ");
1833 		printk("]\n");
1834 		reset = 1;
1835 	}
1836 
1837 	if (status & GREG_STAT_EOPERR) {
1838 		/* Driver bug, didn't set EOP bit in tx descriptor given
1839 		 * to the happy meal.
1840 		 */
1841 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1842 		       hp->dev->name);
1843 		reset = 1;
1844 	}
1845 
1846 	if (status & GREG_STAT_MIFIRQ) {
1847 		/* MIF signalled an interrupt, were we polling it? */
1848 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1849 	}
1850 
1851 	if (status &
1852 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1853 		/* All sorts of transmit DMA errors. */
1854 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1855 		if (status & GREG_STAT_TXEACK)
1856 			printk("GenericError ");
1857 		if (status & GREG_STAT_TXLERR)
1858 			printk("LateError ");
1859 		if (status & GREG_STAT_TXPERR)
1860 			printk("ParityError ");
1861 		if (status & GREG_STAT_TXTERR)
1862 			printk("TagBotch ");
1863 		printk("]\n");
1864 		reset = 1;
1865 	}
1866 
1867 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1868 		/* Bus or parity error when cpu accessed happy meal registers
1869 		 * or it's internal FIFO's.  Should never see this.
1870 		 */
1871 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1872 		       hp->dev->name,
1873 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1874 		reset = 1;
1875 	}
1876 
1877 	if (reset) {
1878 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1879 		happy_meal_init(hp);
1880 		return 1;
1881 	}
1882 	return 0;
1883 }
1884 
1885 /* hp->happy_lock must be held */
1886 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1887 {
1888 	void __iomem *tregs = hp->tcvregs;
1889 
1890 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1891 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1892 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1893 
1894 	/* Use the fastest transmission protocol possible. */
1895 	if (hp->sw_lpa & LPA_100FULL) {
1896 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1897 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1898 	} else if (hp->sw_lpa & LPA_100HALF) {
1899 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1900 		hp->sw_bmcr |= BMCR_SPEED100;
1901 	} else if (hp->sw_lpa & LPA_10FULL) {
1902 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1903 		hp->sw_bmcr |= BMCR_FULLDPLX;
1904 	} else {
1905 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1906 	}
1907 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1908 
1909 	/* Finally stop polling and shut up the MIF. */
1910 	happy_meal_poll_stop(hp, tregs);
1911 }
1912 
1913 #ifdef TXDEBUG
1914 #define TXD(x) printk x
1915 #else
1916 #define TXD(x)
1917 #endif
1918 
1919 /* hp->happy_lock must be held */
1920 static void happy_meal_tx(struct happy_meal *hp)
1921 {
1922 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1923 	struct happy_meal_txd *this;
1924 	struct net_device *dev = hp->dev;
1925 	int elem;
1926 
1927 	elem = hp->tx_old;
1928 	TXD(("TX<"));
1929 	while (elem != hp->tx_new) {
1930 		struct sk_buff *skb;
1931 		u32 flags, dma_addr, dma_len;
1932 		int frag;
1933 
1934 		TXD(("[%d]", elem));
1935 		this = &txbase[elem];
1936 		flags = hme_read_desc32(hp, &this->tx_flags);
1937 		if (flags & TXFLAG_OWN)
1938 			break;
1939 		skb = hp->tx_skbs[elem];
1940 		if (skb_shinfo(skb)->nr_frags) {
1941 			int last;
1942 
1943 			last = elem + skb_shinfo(skb)->nr_frags;
1944 			last &= (TX_RING_SIZE - 1);
1945 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1946 			if (flags & TXFLAG_OWN)
1947 				break;
1948 		}
1949 		hp->tx_skbs[elem] = NULL;
1950 		dev->stats.tx_bytes += skb->len;
1951 
1952 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1953 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1954 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1955 
1956 			dma_len &= TXFLAG_SIZE;
1957 			if (!frag)
1958 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1959 			else
1960 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1961 
1962 			elem = NEXT_TX(elem);
1963 			this = &txbase[elem];
1964 		}
1965 
1966 		dev_kfree_skb_irq(skb);
1967 		dev->stats.tx_packets++;
1968 	}
1969 	hp->tx_old = elem;
1970 	TXD((">"));
1971 
1972 	if (netif_queue_stopped(dev) &&
1973 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1974 		netif_wake_queue(dev);
1975 }
1976 
1977 #ifdef RXDEBUG
1978 #define RXD(x) printk x
1979 #else
1980 #define RXD(x)
1981 #endif
1982 
1983 /* Originally I used to handle the allocation failure by just giving back just
1984  * that one ring buffer to the happy meal.  Problem is that usually when that
1985  * condition is triggered, the happy meal expects you to do something reasonable
1986  * with all of the packets it has DMA'd in.  So now I just drop the entire
1987  * ring when we cannot get a new skb and give them all back to the happy meal,
1988  * maybe things will be "happier" now.
1989  *
1990  * hp->happy_lock must be held
1991  */
1992 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1993 {
1994 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1995 	struct happy_meal_rxd *this;
1996 	int elem = hp->rx_new, drops = 0;
1997 	u32 flags;
1998 
1999 	RXD(("RX<"));
2000 	this = &rxbase[elem];
2001 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2002 		struct sk_buff *skb;
2003 		int len = flags >> 16;
2004 		u16 csum = flags & RXFLAG_CSUM;
2005 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2006 
2007 		RXD(("[%d ", elem));
2008 
2009 		/* Check for errors. */
2010 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2011 			RXD(("ERR(%08x)]", flags));
2012 			dev->stats.rx_errors++;
2013 			if (len < ETH_ZLEN)
2014 				dev->stats.rx_length_errors++;
2015 			if (len & (RXFLAG_OVERFLOW >> 16)) {
2016 				dev->stats.rx_over_errors++;
2017 				dev->stats.rx_fifo_errors++;
2018 			}
2019 
2020 			/* Return it to the Happy meal. */
2021 	drop_it:
2022 			dev->stats.rx_dropped++;
2023 			hme_write_rxd(hp, this,
2024 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2025 				      dma_addr);
2026 			goto next;
2027 		}
2028 		skb = hp->rx_skbs[elem];
2029 		if (len > RX_COPY_THRESHOLD) {
2030 			struct sk_buff *new_skb;
2031 			u32 mapping;
2032 
2033 			/* Now refill the entry, if we can. */
2034 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2035 			if (new_skb == NULL) {
2036 				drops++;
2037 				goto drop_it;
2038 			}
2039 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2040 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2041 						 RX_BUF_ALLOC_SIZE,
2042 						 DMA_FROM_DEVICE);
2043 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2044 				dev_kfree_skb_any(new_skb);
2045 				drops++;
2046 				goto drop_it;
2047 			}
2048 
2049 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2050 			hp->rx_skbs[elem] = new_skb;
2051 			hme_write_rxd(hp, this,
2052 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2053 				      mapping);
2054 			skb_reserve(new_skb, RX_OFFSET);
2055 
2056 			/* Trim the original skb for the netif. */
2057 			skb_trim(skb, len);
2058 		} else {
2059 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2060 
2061 			if (copy_skb == NULL) {
2062 				drops++;
2063 				goto drop_it;
2064 			}
2065 
2066 			skb_reserve(copy_skb, 2);
2067 			skb_put(copy_skb, len);
2068 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2069 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2070 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2071 			/* Reuse original ring buffer. */
2072 			hme_write_rxd(hp, this,
2073 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2074 				      dma_addr);
2075 
2076 			skb = copy_skb;
2077 		}
2078 
2079 		/* This card is _fucking_ hot... */
2080 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2081 		skb->ip_summed = CHECKSUM_COMPLETE;
2082 
2083 		RXD(("len=%d csum=%4x]", len, csum));
2084 		skb->protocol = eth_type_trans(skb, dev);
2085 		netif_rx(skb);
2086 
2087 		dev->stats.rx_packets++;
2088 		dev->stats.rx_bytes += len;
2089 	next:
2090 		elem = NEXT_RX(elem);
2091 		this = &rxbase[elem];
2092 	}
2093 	hp->rx_new = elem;
2094 	if (drops)
2095 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2096 	RXD((">"));
2097 }
2098 
2099 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2100 {
2101 	struct net_device *dev = dev_id;
2102 	struct happy_meal *hp  = netdev_priv(dev);
2103 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2104 
2105 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2106 
2107 	spin_lock(&hp->happy_lock);
2108 
2109 	if (happy_status & GREG_STAT_ERRORS) {
2110 		HMD(("ERRORS "));
2111 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2112 			goto out;
2113 	}
2114 
2115 	if (happy_status & GREG_STAT_MIFIRQ) {
2116 		HMD(("MIFIRQ "));
2117 		happy_meal_mif_interrupt(hp);
2118 	}
2119 
2120 	if (happy_status & GREG_STAT_TXALL) {
2121 		HMD(("TXALL "));
2122 		happy_meal_tx(hp);
2123 	}
2124 
2125 	if (happy_status & GREG_STAT_RXTOHOST) {
2126 		HMD(("RXTOHOST "));
2127 		happy_meal_rx(hp, dev);
2128 	}
2129 
2130 	HMD(("done\n"));
2131 out:
2132 	spin_unlock(&hp->happy_lock);
2133 
2134 	return IRQ_HANDLED;
2135 }
2136 
2137 #ifdef CONFIG_SBUS
2138 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2139 {
2140 	struct quattro *qp = (struct quattro *) cookie;
2141 	int i;
2142 
2143 	for (i = 0; i < 4; i++) {
2144 		struct net_device *dev = qp->happy_meals[i];
2145 		struct happy_meal *hp  = netdev_priv(dev);
2146 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2147 
2148 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2149 
2150 		if (!(happy_status & (GREG_STAT_ERRORS |
2151 				      GREG_STAT_MIFIRQ |
2152 				      GREG_STAT_TXALL |
2153 				      GREG_STAT_RXTOHOST)))
2154 			continue;
2155 
2156 		spin_lock(&hp->happy_lock);
2157 
2158 		if (happy_status & GREG_STAT_ERRORS) {
2159 			HMD(("ERRORS "));
2160 			if (happy_meal_is_not_so_happy(hp, happy_status))
2161 				goto next;
2162 		}
2163 
2164 		if (happy_status & GREG_STAT_MIFIRQ) {
2165 			HMD(("MIFIRQ "));
2166 			happy_meal_mif_interrupt(hp);
2167 		}
2168 
2169 		if (happy_status & GREG_STAT_TXALL) {
2170 			HMD(("TXALL "));
2171 			happy_meal_tx(hp);
2172 		}
2173 
2174 		if (happy_status & GREG_STAT_RXTOHOST) {
2175 			HMD(("RXTOHOST "));
2176 			happy_meal_rx(hp, dev);
2177 		}
2178 
2179 	next:
2180 		spin_unlock(&hp->happy_lock);
2181 	}
2182 	HMD(("done\n"));
2183 
2184 	return IRQ_HANDLED;
2185 }
2186 #endif
2187 
2188 static int happy_meal_open(struct net_device *dev)
2189 {
2190 	struct happy_meal *hp = netdev_priv(dev);
2191 	int res;
2192 
2193 	HMD(("happy_meal_open: "));
2194 
2195 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2196 	 * into a single source which we register handling at probe time.
2197 	 */
2198 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2199 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2200 				  dev->name, dev);
2201 		if (res) {
2202 			HMD(("EAGAIN\n"));
2203 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2204 			       hp->irq);
2205 
2206 			return -EAGAIN;
2207 		}
2208 	}
2209 
2210 	HMD(("to happy_meal_init\n"));
2211 
2212 	spin_lock_irq(&hp->happy_lock);
2213 	res = happy_meal_init(hp);
2214 	spin_unlock_irq(&hp->happy_lock);
2215 
2216 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2217 		free_irq(hp->irq, dev);
2218 	return res;
2219 }
2220 
2221 static int happy_meal_close(struct net_device *dev)
2222 {
2223 	struct happy_meal *hp = netdev_priv(dev);
2224 
2225 	spin_lock_irq(&hp->happy_lock);
2226 	happy_meal_stop(hp, hp->gregs);
2227 	happy_meal_clean_rings(hp);
2228 
2229 	/* If auto-negotiation timer is running, kill it. */
2230 	del_timer(&hp->happy_timer);
2231 
2232 	spin_unlock_irq(&hp->happy_lock);
2233 
2234 	/* On Quattro QFE cards, all hme interrupts are concentrated
2235 	 * into a single source which we register handling at probe
2236 	 * time and never unregister.
2237 	 */
2238 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2239 		free_irq(hp->irq, dev);
2240 
2241 	return 0;
2242 }
2243 
2244 #ifdef SXDEBUG
2245 #define SXD(x) printk x
2246 #else
2247 #define SXD(x)
2248 #endif
2249 
2250 static void happy_meal_tx_timeout(struct net_device *dev)
2251 {
2252 	struct happy_meal *hp = netdev_priv(dev);
2253 
2254 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2255 	tx_dump_log();
2256 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2257 		hme_read32(hp, hp->gregs + GREG_STAT),
2258 		hme_read32(hp, hp->etxregs + ETX_CFG),
2259 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2260 
2261 	spin_lock_irq(&hp->happy_lock);
2262 	happy_meal_init(hp);
2263 	spin_unlock_irq(&hp->happy_lock);
2264 
2265 	netif_wake_queue(dev);
2266 }
2267 
2268 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2269 				 u32 first_len, u32 first_entry, u32 entry)
2270 {
2271 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2272 
2273 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2274 
2275 	first_entry = NEXT_TX(first_entry);
2276 	while (first_entry != entry) {
2277 		struct happy_meal_txd *this = &txbase[first_entry];
2278 		u32 addr, len;
2279 
2280 		addr = hme_read_desc32(hp, &this->tx_addr);
2281 		len = hme_read_desc32(hp, &this->tx_flags);
2282 		len &= TXFLAG_SIZE;
2283 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2284 	}
2285 }
2286 
2287 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2288 					 struct net_device *dev)
2289 {
2290 	struct happy_meal *hp = netdev_priv(dev);
2291  	int entry;
2292  	u32 tx_flags;
2293 
2294 	tx_flags = TXFLAG_OWN;
2295 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2296 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2297 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2298 
2299 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2300 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2301 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2302 	}
2303 
2304 	spin_lock_irq(&hp->happy_lock);
2305 
2306  	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2307 		netif_stop_queue(dev);
2308 		spin_unlock_irq(&hp->happy_lock);
2309 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2310 		       dev->name);
2311 		return NETDEV_TX_BUSY;
2312 	}
2313 
2314 	entry = hp->tx_new;
2315 	SXD(("SX<l[%d]e[%d]>", len, entry));
2316 	hp->tx_skbs[entry] = skb;
2317 
2318 	if (skb_shinfo(skb)->nr_frags == 0) {
2319 		u32 mapping, len;
2320 
2321 		len = skb->len;
2322 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2323 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2324 			goto out_dma_error;
2325 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2326 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2327 			      (tx_flags | (len & TXFLAG_SIZE)),
2328 			      mapping);
2329 		entry = NEXT_TX(entry);
2330 	} else {
2331 		u32 first_len, first_mapping;
2332 		int frag, first_entry = entry;
2333 
2334 		/* We must give this initial chunk to the device last.
2335 		 * Otherwise we could race with the device.
2336 		 */
2337 		first_len = skb_headlen(skb);
2338 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2339 					       DMA_TO_DEVICE);
2340 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2341 			goto out_dma_error;
2342 		entry = NEXT_TX(entry);
2343 
2344 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2345 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2346 			u32 len, mapping, this_txflags;
2347 
2348 			len = skb_frag_size(this_frag);
2349 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2350 						   0, len, DMA_TO_DEVICE);
2351 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2352 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2353 						     first_entry, entry);
2354 				goto out_dma_error;
2355 			}
2356 			this_txflags = tx_flags;
2357 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2358 				this_txflags |= TXFLAG_EOP;
2359 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2360 				      (this_txflags | (len & TXFLAG_SIZE)),
2361 				      mapping);
2362 			entry = NEXT_TX(entry);
2363 		}
2364 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2365 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2366 			      first_mapping);
2367 	}
2368 
2369 	hp->tx_new = entry;
2370 
2371 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2372 		netif_stop_queue(dev);
2373 
2374 	/* Get it going. */
2375 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2376 
2377 	spin_unlock_irq(&hp->happy_lock);
2378 
2379 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2380 	return NETDEV_TX_OK;
2381 
2382 out_dma_error:
2383 	hp->tx_skbs[hp->tx_new] = NULL;
2384 	spin_unlock_irq(&hp->happy_lock);
2385 
2386 	dev_kfree_skb_any(skb);
2387 	dev->stats.tx_dropped++;
2388 	return NETDEV_TX_OK;
2389 }
2390 
2391 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2392 {
2393 	struct happy_meal *hp = netdev_priv(dev);
2394 
2395 	spin_lock_irq(&hp->happy_lock);
2396 	happy_meal_get_counters(hp, hp->bigmacregs);
2397 	spin_unlock_irq(&hp->happy_lock);
2398 
2399 	return &dev->stats;
2400 }
2401 
2402 static void happy_meal_set_multicast(struct net_device *dev)
2403 {
2404 	struct happy_meal *hp = netdev_priv(dev);
2405 	void __iomem *bregs = hp->bigmacregs;
2406 	struct netdev_hw_addr *ha;
2407 	u32 crc;
2408 
2409 	spin_lock_irq(&hp->happy_lock);
2410 
2411 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2412 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2413 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2414 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2415 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2416 	} else if (dev->flags & IFF_PROMISC) {
2417 		hme_write32(hp, bregs + BMAC_RXCFG,
2418 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2419 	} else {
2420 		u16 hash_table[4];
2421 
2422 		memset(hash_table, 0, sizeof(hash_table));
2423 		netdev_for_each_mc_addr(ha, dev) {
2424 			crc = ether_crc_le(6, ha->addr);
2425 			crc >>= 26;
2426 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2427 		}
2428 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2429 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2430 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2431 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2432 	}
2433 
2434 	spin_unlock_irq(&hp->happy_lock);
2435 }
2436 
2437 /* Ethtool support... */
2438 static int hme_get_link_ksettings(struct net_device *dev,
2439 				  struct ethtool_link_ksettings *cmd)
2440 {
2441 	struct happy_meal *hp = netdev_priv(dev);
2442 	u32 speed;
2443 	u32 supported;
2444 
2445 	supported =
2446 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2447 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2448 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2449 
2450 	/* XXX hardcoded stuff for now */
2451 	cmd->base.port = PORT_TP; /* XXX no MII support */
2452 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2453 
2454 	/* Record PHY settings. */
2455 	spin_lock_irq(&hp->happy_lock);
2456 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2457 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2458 	spin_unlock_irq(&hp->happy_lock);
2459 
2460 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2461 		cmd->base.autoneg = AUTONEG_ENABLE;
2462 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2463 			 SPEED_100 : SPEED_10);
2464 		if (speed == SPEED_100)
2465 			cmd->base.duplex =
2466 				(hp->sw_lpa & (LPA_100FULL)) ?
2467 				DUPLEX_FULL : DUPLEX_HALF;
2468 		else
2469 			cmd->base.duplex =
2470 				(hp->sw_lpa & (LPA_10FULL)) ?
2471 				DUPLEX_FULL : DUPLEX_HALF;
2472 	} else {
2473 		cmd->base.autoneg = AUTONEG_DISABLE;
2474 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2475 		cmd->base.duplex =
2476 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2477 			DUPLEX_FULL : DUPLEX_HALF;
2478 	}
2479 	cmd->base.speed = speed;
2480 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2481 						supported);
2482 
2483 	return 0;
2484 }
2485 
2486 static int hme_set_link_ksettings(struct net_device *dev,
2487 				  const struct ethtool_link_ksettings *cmd)
2488 {
2489 	struct happy_meal *hp = netdev_priv(dev);
2490 
2491 	/* Verify the settings we care about. */
2492 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2493 	    cmd->base.autoneg != AUTONEG_DISABLE)
2494 		return -EINVAL;
2495 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2496 	    ((cmd->base.speed != SPEED_100 &&
2497 	      cmd->base.speed != SPEED_10) ||
2498 	     (cmd->base.duplex != DUPLEX_HALF &&
2499 	      cmd->base.duplex != DUPLEX_FULL)))
2500 		return -EINVAL;
2501 
2502 	/* Ok, do it to it. */
2503 	spin_lock_irq(&hp->happy_lock);
2504 	del_timer(&hp->happy_timer);
2505 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2506 	spin_unlock_irq(&hp->happy_lock);
2507 
2508 	return 0;
2509 }
2510 
2511 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2512 {
2513 	struct happy_meal *hp = netdev_priv(dev);
2514 
2515 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2516 	strlcpy(info->version, "2.02", sizeof(info->version));
2517 	if (hp->happy_flags & HFLAG_PCI) {
2518 		struct pci_dev *pdev = hp->happy_dev;
2519 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2520 	}
2521 #ifdef CONFIG_SBUS
2522 	else {
2523 		const struct linux_prom_registers *regs;
2524 		struct platform_device *op = hp->happy_dev;
2525 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2526 		if (regs)
2527 			snprintf(info->bus_info, sizeof(info->bus_info),
2528 				"SBUS:%d",
2529 				regs->which_io);
2530 	}
2531 #endif
2532 }
2533 
2534 static u32 hme_get_link(struct net_device *dev)
2535 {
2536 	struct happy_meal *hp = netdev_priv(dev);
2537 
2538 	spin_lock_irq(&hp->happy_lock);
2539 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2540 	spin_unlock_irq(&hp->happy_lock);
2541 
2542 	return hp->sw_bmsr & BMSR_LSTATUS;
2543 }
2544 
2545 static const struct ethtool_ops hme_ethtool_ops = {
2546 	.get_drvinfo		= hme_get_drvinfo,
2547 	.get_link		= hme_get_link,
2548 	.get_link_ksettings	= hme_get_link_ksettings,
2549 	.set_link_ksettings	= hme_set_link_ksettings,
2550 };
2551 
2552 static int hme_version_printed;
2553 
2554 #ifdef CONFIG_SBUS
2555 /* Given a happy meal sbus device, find it's quattro parent.
2556  * If none exist, allocate and return a new one.
2557  *
2558  * Return NULL on failure.
2559  */
2560 static struct quattro *quattro_sbus_find(struct platform_device *child)
2561 {
2562 	struct device *parent = child->dev.parent;
2563 	struct platform_device *op;
2564 	struct quattro *qp;
2565 
2566 	op = to_platform_device(parent);
2567 	qp = platform_get_drvdata(op);
2568 	if (qp)
2569 		return qp;
2570 
2571 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2572 	if (qp != NULL) {
2573 		int i;
2574 
2575 		for (i = 0; i < 4; i++)
2576 			qp->happy_meals[i] = NULL;
2577 
2578 		qp->quattro_dev = child;
2579 		qp->next = qfe_sbus_list;
2580 		qfe_sbus_list = qp;
2581 
2582 		platform_set_drvdata(op, qp);
2583 	}
2584 	return qp;
2585 }
2586 
2587 /* After all quattro cards have been probed, we call these functions
2588  * to register the IRQ handlers for the cards that have been
2589  * successfully probed and skip the cards that failed to initialize
2590  */
2591 static int __init quattro_sbus_register_irqs(void)
2592 {
2593 	struct quattro *qp;
2594 
2595 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2596 		struct platform_device *op = qp->quattro_dev;
2597 		int err, qfe_slot, skip = 0;
2598 
2599 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2600 			if (!qp->happy_meals[qfe_slot])
2601 				skip = 1;
2602 		}
2603 		if (skip)
2604 			continue;
2605 
2606 		err = request_irq(op->archdata.irqs[0],
2607 				  quattro_sbus_interrupt,
2608 				  IRQF_SHARED, "Quattro",
2609 				  qp);
2610 		if (err != 0) {
2611 			printk(KERN_ERR "Quattro HME: IRQ registration "
2612 			       "error %d.\n", err);
2613 			return err;
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void quattro_sbus_free_irqs(void)
2621 {
2622 	struct quattro *qp;
2623 
2624 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2625 		struct platform_device *op = qp->quattro_dev;
2626 		int qfe_slot, skip = 0;
2627 
2628 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2629 			if (!qp->happy_meals[qfe_slot])
2630 				skip = 1;
2631 		}
2632 		if (skip)
2633 			continue;
2634 
2635 		free_irq(op->archdata.irqs[0], qp);
2636 	}
2637 }
2638 #endif /* CONFIG_SBUS */
2639 
2640 #ifdef CONFIG_PCI
2641 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2642 {
2643 	struct pci_dev *bdev = pdev->bus->self;
2644 	struct quattro *qp;
2645 
2646 	if (!bdev) return NULL;
2647 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2648 		struct pci_dev *qpdev = qp->quattro_dev;
2649 
2650 		if (qpdev == bdev)
2651 			return qp;
2652 	}
2653 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2654 	if (qp != NULL) {
2655 		int i;
2656 
2657 		for (i = 0; i < 4; i++)
2658 			qp->happy_meals[i] = NULL;
2659 
2660 		qp->quattro_dev = bdev;
2661 		qp->next = qfe_pci_list;
2662 		qfe_pci_list = qp;
2663 
2664 		/* No range tricks necessary on PCI. */
2665 		qp->nranges = 0;
2666 	}
2667 	return qp;
2668 }
2669 #endif /* CONFIG_PCI */
2670 
2671 static const struct net_device_ops hme_netdev_ops = {
2672 	.ndo_open		= happy_meal_open,
2673 	.ndo_stop		= happy_meal_close,
2674 	.ndo_start_xmit		= happy_meal_start_xmit,
2675 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2676 	.ndo_get_stats		= happy_meal_get_stats,
2677 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2678 	.ndo_set_mac_address 	= eth_mac_addr,
2679 	.ndo_validate_addr	= eth_validate_addr,
2680 };
2681 
2682 #ifdef CONFIG_SBUS
2683 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2684 {
2685 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2686 	struct quattro *qp = NULL;
2687 	struct happy_meal *hp;
2688 	struct net_device *dev;
2689 	int i, qfe_slot = -1;
2690 	int err = -ENODEV;
2691 
2692 	sbus_dp = op->dev.parent->of_node;
2693 
2694 	/* We can match PCI devices too, do not accept those here. */
2695 	if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2696 		return err;
2697 
2698 	if (is_qfe) {
2699 		qp = quattro_sbus_find(op);
2700 		if (qp == NULL)
2701 			goto err_out;
2702 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2703 			if (qp->happy_meals[qfe_slot] == NULL)
2704 				break;
2705 		if (qfe_slot == 4)
2706 			goto err_out;
2707 	}
2708 
2709 	err = -ENOMEM;
2710 	dev = alloc_etherdev(sizeof(struct happy_meal));
2711 	if (!dev)
2712 		goto err_out;
2713 	SET_NETDEV_DEV(dev, &op->dev);
2714 
2715 	if (hme_version_printed++ == 0)
2716 		printk(KERN_INFO "%s", version);
2717 
2718 	/* If user did not specify a MAC address specifically, use
2719 	 * the Quattro local-mac-address property...
2720 	 */
2721 	for (i = 0; i < 6; i++) {
2722 		if (macaddr[i] != 0)
2723 			break;
2724 	}
2725 	if (i < 6) { /* a mac address was given */
2726 		for (i = 0; i < 6; i++)
2727 			dev->dev_addr[i] = macaddr[i];
2728 		macaddr[5]++;
2729 	} else {
2730 		const unsigned char *addr;
2731 		int len;
2732 
2733 		addr = of_get_property(dp, "local-mac-address", &len);
2734 
2735 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2736 			memcpy(dev->dev_addr, addr, ETH_ALEN);
2737 		else
2738 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2739 	}
2740 
2741 	hp = netdev_priv(dev);
2742 
2743 	hp->happy_dev = op;
2744 	hp->dma_dev = &op->dev;
2745 
2746 	spin_lock_init(&hp->happy_lock);
2747 
2748 	err = -ENODEV;
2749 	if (qp != NULL) {
2750 		hp->qfe_parent = qp;
2751 		hp->qfe_ent = qfe_slot;
2752 		qp->happy_meals[qfe_slot] = dev;
2753 	}
2754 
2755 	hp->gregs = of_ioremap(&op->resource[0], 0,
2756 			       GREG_REG_SIZE, "HME Global Regs");
2757 	if (!hp->gregs) {
2758 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2759 		goto err_out_free_netdev;
2760 	}
2761 
2762 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2763 				 ETX_REG_SIZE, "HME TX Regs");
2764 	if (!hp->etxregs) {
2765 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2766 		goto err_out_iounmap;
2767 	}
2768 
2769 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2770 				 ERX_REG_SIZE, "HME RX Regs");
2771 	if (!hp->erxregs) {
2772 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2773 		goto err_out_iounmap;
2774 	}
2775 
2776 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2777 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2778 	if (!hp->bigmacregs) {
2779 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2780 		goto err_out_iounmap;
2781 	}
2782 
2783 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2784 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2785 	if (!hp->tcvregs) {
2786 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2787 		goto err_out_iounmap;
2788 	}
2789 
2790 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2791 	if (hp->hm_revision == 0xff)
2792 		hp->hm_revision = 0xa0;
2793 
2794 	/* Now enable the feature flags we can. */
2795 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2796 		hp->happy_flags = HFLAG_20_21;
2797 	else if (hp->hm_revision != 0xa0)
2798 		hp->happy_flags = HFLAG_NOT_A0;
2799 
2800 	if (qp != NULL)
2801 		hp->happy_flags |= HFLAG_QUATTRO;
2802 
2803 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2804 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2805 						 "burst-sizes", 0x00);
2806 
2807 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2808 					     PAGE_SIZE,
2809 					     &hp->hblock_dvma,
2810 					     GFP_ATOMIC);
2811 	err = -ENOMEM;
2812 	if (!hp->happy_block)
2813 		goto err_out_iounmap;
2814 
2815 	/* Force check of the link first time we are brought up. */
2816 	hp->linkcheck = 0;
2817 
2818 	/* Force timer state to 'asleep' with count of zero. */
2819 	hp->timer_state = asleep;
2820 	hp->timer_ticks = 0;
2821 
2822 	init_timer(&hp->happy_timer);
2823 
2824 	hp->dev = dev;
2825 	dev->netdev_ops = &hme_netdev_ops;
2826 	dev->watchdog_timeo = 5*HZ;
2827 	dev->ethtool_ops = &hme_ethtool_ops;
2828 
2829 	/* Happy Meal can do it all... */
2830 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2831 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2832 
2833 	hp->irq = op->archdata.irqs[0];
2834 
2835 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2836 	/* Hook up SBUS register/descriptor accessors. */
2837 	hp->read_desc32 = sbus_hme_read_desc32;
2838 	hp->write_txd = sbus_hme_write_txd;
2839 	hp->write_rxd = sbus_hme_write_rxd;
2840 	hp->read32 = sbus_hme_read32;
2841 	hp->write32 = sbus_hme_write32;
2842 #endif
2843 
2844 	/* Grrr, Happy Meal comes up by default not advertising
2845 	 * full duplex 100baseT capabilities, fix this.
2846 	 */
2847 	spin_lock_irq(&hp->happy_lock);
2848 	happy_meal_set_initial_advertisement(hp);
2849 	spin_unlock_irq(&hp->happy_lock);
2850 
2851 	err = register_netdev(hp->dev);
2852 	if (err) {
2853 		printk(KERN_ERR "happymeal: Cannot register net device, "
2854 		       "aborting.\n");
2855 		goto err_out_free_coherent;
2856 	}
2857 
2858 	platform_set_drvdata(op, hp);
2859 
2860 	if (qfe_slot != -1)
2861 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2862 		       dev->name, qfe_slot);
2863 	else
2864 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2865 		       dev->name);
2866 
2867 	printk("%pM\n", dev->dev_addr);
2868 
2869 	return 0;
2870 
2871 err_out_free_coherent:
2872 	dma_free_coherent(hp->dma_dev,
2873 			  PAGE_SIZE,
2874 			  hp->happy_block,
2875 			  hp->hblock_dvma);
2876 
2877 err_out_iounmap:
2878 	if (hp->gregs)
2879 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2880 	if (hp->etxregs)
2881 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2882 	if (hp->erxregs)
2883 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2884 	if (hp->bigmacregs)
2885 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2886 	if (hp->tcvregs)
2887 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2888 
2889 	if (qp)
2890 		qp->happy_meals[qfe_slot] = NULL;
2891 
2892 err_out_free_netdev:
2893 	free_netdev(dev);
2894 
2895 err_out:
2896 	return err;
2897 }
2898 #endif
2899 
2900 #ifdef CONFIG_PCI
2901 #ifndef CONFIG_SPARC
2902 static int is_quattro_p(struct pci_dev *pdev)
2903 {
2904 	struct pci_dev *busdev = pdev->bus->self;
2905 	struct pci_dev *this_pdev;
2906 	int n_hmes;
2907 
2908 	if (busdev == NULL ||
2909 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2910 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2911 		return 0;
2912 
2913 	n_hmes = 0;
2914 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2915 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2916 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2917 			n_hmes++;
2918 	}
2919 
2920 	if (n_hmes != 4)
2921 		return 0;
2922 
2923 	return 1;
2924 }
2925 
2926 /* Fetch MAC address from vital product data of PCI ROM. */
2927 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2928 {
2929 	int this_offset;
2930 
2931 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2932 		void __iomem *p = rom_base + this_offset;
2933 
2934 		if (readb(p + 0) != 0x90 ||
2935 		    readb(p + 1) != 0x00 ||
2936 		    readb(p + 2) != 0x09 ||
2937 		    readb(p + 3) != 0x4e ||
2938 		    readb(p + 4) != 0x41 ||
2939 		    readb(p + 5) != 0x06)
2940 			continue;
2941 
2942 		this_offset += 6;
2943 		p += 6;
2944 
2945 		if (index == 0) {
2946 			int i;
2947 
2948 			for (i = 0; i < 6; i++)
2949 				dev_addr[i] = readb(p + i);
2950 			return 1;
2951 		}
2952 		index--;
2953 	}
2954 	return 0;
2955 }
2956 
2957 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2958 {
2959 	size_t size;
2960 	void __iomem *p = pci_map_rom(pdev, &size);
2961 
2962 	if (p) {
2963 		int index = 0;
2964 		int found;
2965 
2966 		if (is_quattro_p(pdev))
2967 			index = PCI_SLOT(pdev->devfn);
2968 
2969 		found = readb(p) == 0x55 &&
2970 			readb(p + 1) == 0xaa &&
2971 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2972 		pci_unmap_rom(pdev, p);
2973 		if (found)
2974 			return;
2975 	}
2976 
2977 	/* Sun MAC prefix then 3 random bytes. */
2978 	dev_addr[0] = 0x08;
2979 	dev_addr[1] = 0x00;
2980 	dev_addr[2] = 0x20;
2981 	get_random_bytes(&dev_addr[3], 3);
2982 }
2983 #endif /* !(CONFIG_SPARC) */
2984 
2985 static int happy_meal_pci_probe(struct pci_dev *pdev,
2986 				const struct pci_device_id *ent)
2987 {
2988 	struct quattro *qp = NULL;
2989 #ifdef CONFIG_SPARC
2990 	struct device_node *dp;
2991 #endif
2992 	struct happy_meal *hp;
2993 	struct net_device *dev;
2994 	void __iomem *hpreg_base;
2995 	unsigned long hpreg_res;
2996 	int i, qfe_slot = -1;
2997 	char prom_name[64];
2998 	int err;
2999 
3000 	/* Now make sure pci_dev cookie is there. */
3001 #ifdef CONFIG_SPARC
3002 	dp = pci_device_to_OF_node(pdev);
3003 	strcpy(prom_name, dp->name);
3004 #else
3005 	if (is_quattro_p(pdev))
3006 		strcpy(prom_name, "SUNW,qfe");
3007 	else
3008 		strcpy(prom_name, "SUNW,hme");
3009 #endif
3010 
3011 	err = -ENODEV;
3012 
3013 	if (pci_enable_device(pdev))
3014 		goto err_out;
3015 	pci_set_master(pdev);
3016 
3017 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3018 		qp = quattro_pci_find(pdev);
3019 		if (qp == NULL)
3020 			goto err_out;
3021 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3022 			if (qp->happy_meals[qfe_slot] == NULL)
3023 				break;
3024 		if (qfe_slot == 4)
3025 			goto err_out;
3026 	}
3027 
3028 	dev = alloc_etherdev(sizeof(struct happy_meal));
3029 	err = -ENOMEM;
3030 	if (!dev)
3031 		goto err_out;
3032 	SET_NETDEV_DEV(dev, &pdev->dev);
3033 
3034 	if (hme_version_printed++ == 0)
3035 		printk(KERN_INFO "%s", version);
3036 
3037 	hp = netdev_priv(dev);
3038 
3039 	hp->happy_dev = pdev;
3040 	hp->dma_dev = &pdev->dev;
3041 
3042 	spin_lock_init(&hp->happy_lock);
3043 
3044 	if (qp != NULL) {
3045 		hp->qfe_parent = qp;
3046 		hp->qfe_ent = qfe_slot;
3047 		qp->happy_meals[qfe_slot] = dev;
3048 	}
3049 
3050 	hpreg_res = pci_resource_start(pdev, 0);
3051 	err = -ENODEV;
3052 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3053 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3054 		goto err_out_clear_quattro;
3055 	}
3056 	if (pci_request_regions(pdev, DRV_NAME)) {
3057 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3058 		       "aborting.\n");
3059 		goto err_out_clear_quattro;
3060 	}
3061 
3062 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3063 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3064 		goto err_out_free_res;
3065 	}
3066 
3067 	for (i = 0; i < 6; i++) {
3068 		if (macaddr[i] != 0)
3069 			break;
3070 	}
3071 	if (i < 6) { /* a mac address was given */
3072 		for (i = 0; i < 6; i++)
3073 			dev->dev_addr[i] = macaddr[i];
3074 		macaddr[5]++;
3075 	} else {
3076 #ifdef CONFIG_SPARC
3077 		const unsigned char *addr;
3078 		int len;
3079 
3080 		if (qfe_slot != -1 &&
3081 		    (addr = of_get_property(dp, "local-mac-address", &len))
3082 			!= NULL &&
3083 		    len == 6) {
3084 			memcpy(dev->dev_addr, addr, ETH_ALEN);
3085 		} else {
3086 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3087 		}
3088 #else
3089 		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3090 #endif
3091 	}
3092 
3093 	/* Layout registers. */
3094 	hp->gregs      = (hpreg_base + 0x0000UL);
3095 	hp->etxregs    = (hpreg_base + 0x2000UL);
3096 	hp->erxregs    = (hpreg_base + 0x4000UL);
3097 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3098 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3099 
3100 #ifdef CONFIG_SPARC
3101 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3102 	if (hp->hm_revision == 0xff)
3103 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3104 #else
3105 	/* works with this on non-sparc hosts */
3106 	hp->hm_revision = 0x20;
3107 #endif
3108 
3109 	/* Now enable the feature flags we can. */
3110 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3111 		hp->happy_flags = HFLAG_20_21;
3112 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3113 		hp->happy_flags = HFLAG_NOT_A0;
3114 
3115 	if (qp != NULL)
3116 		hp->happy_flags |= HFLAG_QUATTRO;
3117 
3118 	/* And of course, indicate this is PCI. */
3119 	hp->happy_flags |= HFLAG_PCI;
3120 
3121 #ifdef CONFIG_SPARC
3122 	/* Assume PCI happy meals can handle all burst sizes. */
3123 	hp->happy_bursts = DMA_BURSTBITS;
3124 #endif
3125 
3126 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3127 					     &hp->hblock_dvma, GFP_KERNEL);
3128 	err = -ENODEV;
3129 	if (!hp->happy_block)
3130 		goto err_out_iounmap;
3131 
3132 	hp->linkcheck = 0;
3133 	hp->timer_state = asleep;
3134 	hp->timer_ticks = 0;
3135 
3136 	init_timer(&hp->happy_timer);
3137 
3138 	hp->irq = pdev->irq;
3139 	hp->dev = dev;
3140 	dev->netdev_ops = &hme_netdev_ops;
3141 	dev->watchdog_timeo = 5*HZ;
3142 	dev->ethtool_ops = &hme_ethtool_ops;
3143 
3144 	/* Happy Meal can do it all... */
3145 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3146 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3147 
3148 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3149 	/* Hook up PCI register/descriptor accessors. */
3150 	hp->read_desc32 = pci_hme_read_desc32;
3151 	hp->write_txd = pci_hme_write_txd;
3152 	hp->write_rxd = pci_hme_write_rxd;
3153 	hp->read32 = pci_hme_read32;
3154 	hp->write32 = pci_hme_write32;
3155 #endif
3156 
3157 	/* Grrr, Happy Meal comes up by default not advertising
3158 	 * full duplex 100baseT capabilities, fix this.
3159 	 */
3160 	spin_lock_irq(&hp->happy_lock);
3161 	happy_meal_set_initial_advertisement(hp);
3162 	spin_unlock_irq(&hp->happy_lock);
3163 
3164 	err = register_netdev(hp->dev);
3165 	if (err) {
3166 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3167 		       "aborting.\n");
3168 		goto err_out_iounmap;
3169 	}
3170 
3171 	pci_set_drvdata(pdev, hp);
3172 
3173 	if (!qfe_slot) {
3174 		struct pci_dev *qpdev = qp->quattro_dev;
3175 
3176 		prom_name[0] = 0;
3177 		if (!strncmp(dev->name, "eth", 3)) {
3178 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3179 			sprintf(prom_name, "-%d", i + 3);
3180 		}
3181 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3182 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3183 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3184 			printk("DEC 21153 PCI Bridge\n");
3185 		else
3186 			printk("unknown bridge %04x.%04x\n",
3187 				qpdev->vendor, qpdev->device);
3188 	}
3189 
3190 	if (qfe_slot != -1)
3191 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3192 		       dev->name, qfe_slot);
3193 	else
3194 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3195 		       dev->name);
3196 
3197 	printk("%pM\n", dev->dev_addr);
3198 
3199 	return 0;
3200 
3201 err_out_iounmap:
3202 	iounmap(hp->gregs);
3203 
3204 err_out_free_res:
3205 	pci_release_regions(pdev);
3206 
3207 err_out_clear_quattro:
3208 	if (qp != NULL)
3209 		qp->happy_meals[qfe_slot] = NULL;
3210 
3211 	free_netdev(dev);
3212 
3213 err_out:
3214 	return err;
3215 }
3216 
3217 static void happy_meal_pci_remove(struct pci_dev *pdev)
3218 {
3219 	struct happy_meal *hp = pci_get_drvdata(pdev);
3220 	struct net_device *net_dev = hp->dev;
3221 
3222 	unregister_netdev(net_dev);
3223 
3224 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3225 			  hp->happy_block, hp->hblock_dvma);
3226 	iounmap(hp->gregs);
3227 	pci_release_regions(hp->happy_dev);
3228 
3229 	free_netdev(net_dev);
3230 }
3231 
3232 static const struct pci_device_id happymeal_pci_ids[] = {
3233 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3234 	{ }			/* Terminating entry */
3235 };
3236 
3237 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3238 
3239 static struct pci_driver hme_pci_driver = {
3240 	.name		= "hme",
3241 	.id_table	= happymeal_pci_ids,
3242 	.probe		= happy_meal_pci_probe,
3243 	.remove		= happy_meal_pci_remove,
3244 };
3245 
3246 static int __init happy_meal_pci_init(void)
3247 {
3248 	return pci_register_driver(&hme_pci_driver);
3249 }
3250 
3251 static void happy_meal_pci_exit(void)
3252 {
3253 	pci_unregister_driver(&hme_pci_driver);
3254 
3255 	while (qfe_pci_list) {
3256 		struct quattro *qfe = qfe_pci_list;
3257 		struct quattro *next = qfe->next;
3258 
3259 		kfree(qfe);
3260 
3261 		qfe_pci_list = next;
3262 	}
3263 }
3264 
3265 #endif
3266 
3267 #ifdef CONFIG_SBUS
3268 static const struct of_device_id hme_sbus_match[];
3269 static int hme_sbus_probe(struct platform_device *op)
3270 {
3271 	const struct of_device_id *match;
3272 	struct device_node *dp = op->dev.of_node;
3273 	const char *model = of_get_property(dp, "model", NULL);
3274 	int is_qfe;
3275 
3276 	match = of_match_device(hme_sbus_match, &op->dev);
3277 	if (!match)
3278 		return -EINVAL;
3279 	is_qfe = (match->data != NULL);
3280 
3281 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3282 		is_qfe = 1;
3283 
3284 	return happy_meal_sbus_probe_one(op, is_qfe);
3285 }
3286 
3287 static int hme_sbus_remove(struct platform_device *op)
3288 {
3289 	struct happy_meal *hp = platform_get_drvdata(op);
3290 	struct net_device *net_dev = hp->dev;
3291 
3292 	unregister_netdev(net_dev);
3293 
3294 	/* XXX qfe parent interrupt... */
3295 
3296 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3297 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3298 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3299 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3300 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3301 	dma_free_coherent(hp->dma_dev,
3302 			  PAGE_SIZE,
3303 			  hp->happy_block,
3304 			  hp->hblock_dvma);
3305 
3306 	free_netdev(net_dev);
3307 
3308 	return 0;
3309 }
3310 
3311 static const struct of_device_id hme_sbus_match[] = {
3312 	{
3313 		.name = "SUNW,hme",
3314 	},
3315 	{
3316 		.name = "SUNW,qfe",
3317 		.data = (void *) 1,
3318 	},
3319 	{
3320 		.name = "qfe",
3321 		.data = (void *) 1,
3322 	},
3323 	{},
3324 };
3325 
3326 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3327 
3328 static struct platform_driver hme_sbus_driver = {
3329 	.driver = {
3330 		.name = "hme",
3331 		.of_match_table = hme_sbus_match,
3332 	},
3333 	.probe		= hme_sbus_probe,
3334 	.remove		= hme_sbus_remove,
3335 };
3336 
3337 static int __init happy_meal_sbus_init(void)
3338 {
3339 	int err;
3340 
3341 	err = platform_driver_register(&hme_sbus_driver);
3342 	if (!err)
3343 		err = quattro_sbus_register_irqs();
3344 
3345 	return err;
3346 }
3347 
3348 static void happy_meal_sbus_exit(void)
3349 {
3350 	platform_driver_unregister(&hme_sbus_driver);
3351 	quattro_sbus_free_irqs();
3352 
3353 	while (qfe_sbus_list) {
3354 		struct quattro *qfe = qfe_sbus_list;
3355 		struct quattro *next = qfe->next;
3356 
3357 		kfree(qfe);
3358 
3359 		qfe_sbus_list = next;
3360 	}
3361 }
3362 #endif
3363 
3364 static int __init happy_meal_probe(void)
3365 {
3366 	int err = 0;
3367 
3368 #ifdef CONFIG_SBUS
3369 	err = happy_meal_sbus_init();
3370 #endif
3371 #ifdef CONFIG_PCI
3372 	if (!err) {
3373 		err = happy_meal_pci_init();
3374 #ifdef CONFIG_SBUS
3375 		if (err)
3376 			happy_meal_sbus_exit();
3377 #endif
3378 	}
3379 #endif
3380 
3381 	return err;
3382 }
3383 
3384 
3385 static void __exit happy_meal_exit(void)
3386 {
3387 #ifdef CONFIG_SBUS
3388 	happy_meal_sbus_exit();
3389 #endif
3390 #ifdef CONFIG_PCI
3391 	happy_meal_pci_exit();
3392 #endif
3393 }
3394 
3395 module_init(happy_meal_probe);
3396 module_exit(happy_meal_exit);
3397