xref: /openbmc/linux/drivers/net/ethernet/sun/sunhme.c (revision 519b58bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3  *           auto carrier detecting ethernet driver.  Also known as the
4  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5  *
6  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7  *		2006, 2008 David S. Miller (davem@davemloft.net)
8  *
9  * Changes :
10  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11  *   - port to non-sparc architectures. Tested only on x86 and
12  *     only currently works with QFE PCI cards.
13  *   - ability to specify the MAC address at module load time by passing this
14  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/mm.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
39 
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43 
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <linux/uaccess.h>
54 
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME	"sunhme"
64 
65 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
66 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
67 MODULE_LICENSE("GPL");
68 
69 static int macaddr[6];
70 
71 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
72 module_param_array(macaddr, int, NULL, 0);
73 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
74 
75 #ifdef CONFIG_SBUS
76 static struct quattro *qfe_sbus_list;
77 #endif
78 
79 #ifdef CONFIG_PCI
80 static struct quattro *qfe_pci_list;
81 #endif
82 
83 #define hme_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
84 #define HMD hme_debug
85 
86 /* "Auto Switch Debug" aka phy debug */
87 #if 1
88 #define ASD hme_debug
89 #else
90 #define ASD(...)
91 #endif
92 
93 #if 0
94 struct hme_tx_logent {
95 	unsigned int tstamp;
96 	int tx_new, tx_old;
97 	unsigned int action;
98 #define TXLOG_ACTION_IRQ	0x01
99 #define TXLOG_ACTION_TXMIT	0x02
100 #define TXLOG_ACTION_TBUSY	0x04
101 #define TXLOG_ACTION_NBUFS	0x08
102 	unsigned int status;
103 };
104 #define TX_LOG_LEN	128
105 static struct hme_tx_logent tx_log[TX_LOG_LEN];
106 static int txlog_cur_entry;
107 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
108 {
109 	struct hme_tx_logent *tlp;
110 	unsigned long flags;
111 
112 	local_irq_save(flags);
113 	tlp = &tx_log[txlog_cur_entry];
114 	tlp->tstamp = (unsigned int)jiffies;
115 	tlp->tx_new = hp->tx_new;
116 	tlp->tx_old = hp->tx_old;
117 	tlp->action = a;
118 	tlp->status = s;
119 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
120 	local_irq_restore(flags);
121 }
122 static __inline__ void tx_dump_log(void)
123 {
124 	int i, this;
125 
126 	this = txlog_cur_entry;
127 	for (i = 0; i < TX_LOG_LEN; i++) {
128 		pr_err("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
129 		       tx_log[this].tstamp,
130 		       tx_log[this].tx_new, tx_log[this].tx_old,
131 		       tx_log[this].action, tx_log[this].status);
132 		this = (this + 1) & (TX_LOG_LEN - 1);
133 	}
134 }
135 #else
136 #define tx_add_log(hp, a, s)
137 #define tx_dump_log()
138 #endif
139 
140 #define DEFAULT_IPG0      16 /* For lance-mode only */
141 #define DEFAULT_IPG1       8 /* For all modes */
142 #define DEFAULT_IPG2       4 /* For all modes */
143 #define DEFAULT_JAMSIZE    4 /* Toe jam */
144 
145 /* NOTE: In the descriptor writes one _must_ write the address
146  *	 member _first_.  The card must not be allowed to see
147  *	 the updated descriptor flags until the address is
148  *	 correct.  I've added a write memory barrier between
149  *	 the two stores so that I can sleep well at night... -DaveM
150  */
151 
152 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
153 static void sbus_hme_write32(void __iomem *reg, u32 val)
154 {
155 	sbus_writel(val, reg);
156 }
157 
158 static u32 sbus_hme_read32(void __iomem *reg)
159 {
160 	return sbus_readl(reg);
161 }
162 
163 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
164 {
165 	rxd->rx_addr = (__force hme32)addr;
166 	dma_wmb();
167 	rxd->rx_flags = (__force hme32)flags;
168 }
169 
170 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
171 {
172 	txd->tx_addr = (__force hme32)addr;
173 	dma_wmb();
174 	txd->tx_flags = (__force hme32)flags;
175 }
176 
177 static u32 sbus_hme_read_desc32(hme32 *p)
178 {
179 	return (__force u32)*p;
180 }
181 
182 static void pci_hme_write32(void __iomem *reg, u32 val)
183 {
184 	writel(val, reg);
185 }
186 
187 static u32 pci_hme_read32(void __iomem *reg)
188 {
189 	return readl(reg);
190 }
191 
192 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
193 {
194 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
195 	dma_wmb();
196 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
197 }
198 
199 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
200 {
201 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
202 	dma_wmb();
203 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
204 }
205 
206 static u32 pci_hme_read_desc32(hme32 *p)
207 {
208 	return le32_to_cpup((__le32 *)p);
209 }
210 
211 #define hme_write32(__hp, __reg, __val) \
212 	((__hp)->write32((__reg), (__val)))
213 #define hme_read32(__hp, __reg) \
214 	((__hp)->read32(__reg))
215 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
216 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
217 #define hme_write_txd(__hp, __txd, __flags, __addr) \
218 	((__hp)->write_txd((__txd), (__flags), (__addr)))
219 #define hme_read_desc32(__hp, __p) \
220 	((__hp)->read_desc32(__p))
221 #else
222 #ifdef CONFIG_SBUS
223 /* SBUS only compilation */
224 #define hme_write32(__hp, __reg, __val) \
225 	sbus_writel((__val), (__reg))
226 #define hme_read32(__hp, __reg) \
227 	sbus_readl(__reg)
228 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
229 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
230 	dma_wmb(); \
231 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
232 } while(0)
233 #define hme_write_txd(__hp, __txd, __flags, __addr) \
234 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
235 	dma_wmb(); \
236 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
237 } while(0)
238 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
239 #else
240 /* PCI only compilation */
241 #define hme_write32(__hp, __reg, __val) \
242 	writel((__val), (__reg))
243 #define hme_read32(__hp, __reg) \
244 	readl(__reg)
245 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
246 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
247 	dma_wmb(); \
248 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
249 } while(0)
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
252 	dma_wmb(); \
253 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
254 } while(0)
255 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
256 {
257 	return le32_to_cpup((__le32 *)p);
258 }
259 #endif
260 #endif
261 
262 
263 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
264 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
265 {
266 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
267 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
268 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
269 }
270 
271 #if 0
272 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
273 {
274 	u32 ret;
275 
276 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
277 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
278 	ret = hme_read32(hp, tregs + TCVR_CFG);
279 	if (internal)
280 		ret &= TCV_CFG_MDIO0;
281 	else
282 		ret &= TCV_CFG_MDIO1;
283 
284 	return ret;
285 }
286 #endif
287 
288 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
289 {
290 	u32 retval;
291 
292 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
293 	udelay(1);
294 	retval = hme_read32(hp, tregs + TCVR_CFG);
295 	if (internal)
296 		retval &= TCV_CFG_MDIO0;
297 	else
298 		retval &= TCV_CFG_MDIO1;
299 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
300 
301 	return retval;
302 }
303 
304 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
305 
306 static int happy_meal_bb_read(struct happy_meal *hp,
307 			      void __iomem *tregs, int reg)
308 {
309 	u32 tmp;
310 	int retval = 0;
311 	int i;
312 
313 	/* Enable the MIF BitBang outputs. */
314 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
315 
316 	/* Force BitBang into the idle state. */
317 	for (i = 0; i < 32; i++)
318 		BB_PUT_BIT(hp, tregs, 1);
319 
320 	/* Give it the read sequence. */
321 	BB_PUT_BIT(hp, tregs, 0);
322 	BB_PUT_BIT(hp, tregs, 1);
323 	BB_PUT_BIT(hp, tregs, 1);
324 	BB_PUT_BIT(hp, tregs, 0);
325 
326 	/* Give it the PHY address. */
327 	tmp = hp->paddr & 0xff;
328 	for (i = 4; i >= 0; i--)
329 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
330 
331 	/* Tell it what register we want to read. */
332 	tmp = (reg & 0xff);
333 	for (i = 4; i >= 0; i--)
334 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
335 
336 	/* Close down the MIF BitBang outputs. */
337 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
338 
339 	/* Now read in the value. */
340 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
341 	for (i = 15; i >= 0; i--)
342 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
343 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
344 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
345 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
346 	ASD("reg=%d value=%x\n", reg, retval);
347 	return retval;
348 }
349 
350 static void happy_meal_bb_write(struct happy_meal *hp,
351 				void __iomem *tregs, int reg,
352 				unsigned short value)
353 {
354 	u32 tmp;
355 	int i;
356 
357 	ASD("reg=%d value=%x\n", reg, value);
358 
359 	/* Enable the MIF BitBang outputs. */
360 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
361 
362 	/* Force BitBang into the idle state. */
363 	for (i = 0; i < 32; i++)
364 		BB_PUT_BIT(hp, tregs, 1);
365 
366 	/* Give it write sequence. */
367 	BB_PUT_BIT(hp, tregs, 0);
368 	BB_PUT_BIT(hp, tregs, 1);
369 	BB_PUT_BIT(hp, tregs, 0);
370 	BB_PUT_BIT(hp, tregs, 1);
371 
372 	/* Give it the PHY address. */
373 	tmp = (hp->paddr & 0xff);
374 	for (i = 4; i >= 0; i--)
375 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
376 
377 	/* Tell it what register we will be writing. */
378 	tmp = (reg & 0xff);
379 	for (i = 4; i >= 0; i--)
380 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
381 
382 	/* Tell it to become ready for the bits. */
383 	BB_PUT_BIT(hp, tregs, 1);
384 	BB_PUT_BIT(hp, tregs, 0);
385 
386 	for (i = 15; i >= 0; i--)
387 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
388 
389 	/* Close down the MIF BitBang outputs. */
390 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
391 }
392 
393 #define TCVR_READ_TRIES   16
394 
395 static int happy_meal_tcvr_read(struct happy_meal *hp,
396 				void __iomem *tregs, int reg)
397 {
398 	int tries = TCVR_READ_TRIES;
399 	int retval;
400 
401 	if (hp->tcvr_type == none) {
402 		ASD("no transceiver, value=TCVR_FAILURE\n");
403 		return TCVR_FAILURE;
404 	}
405 
406 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
407 		ASD("doing bit bang\n");
408 		return happy_meal_bb_read(hp, tregs, reg);
409 	}
410 
411 	hme_write32(hp, tregs + TCVR_FRAME,
412 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
413 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
414 		udelay(20);
415 	if (!tries) {
416 		netdev_err(hp->dev, "Aieee, transceiver MIF read bolixed\n");
417 		return TCVR_FAILURE;
418 	}
419 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
420 	ASD("reg=0x%02x value=%04x\n", reg, retval);
421 	return retval;
422 }
423 
424 #define TCVR_WRITE_TRIES  16
425 
426 static void happy_meal_tcvr_write(struct happy_meal *hp,
427 				  void __iomem *tregs, int reg,
428 				  unsigned short value)
429 {
430 	int tries = TCVR_WRITE_TRIES;
431 
432 	ASD("reg=0x%02x value=%04x\n", reg, value);
433 
434 	/* Welcome to Sun Microsystems, can I take your order please? */
435 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
436 		happy_meal_bb_write(hp, tregs, reg, value);
437 		return;
438 	}
439 
440 	/* Would you like fries with that? */
441 	hme_write32(hp, tregs + TCVR_FRAME,
442 		    (FRAME_WRITE | (hp->paddr << 23) |
443 		     ((reg & 0xff) << 18) | (value & 0xffff)));
444 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
445 		udelay(20);
446 
447 	/* Anything else? */
448 	if (!tries)
449 		netdev_err(hp->dev, "Aieee, transceiver MIF write bolixed\n");
450 
451 	/* Fifty-two cents is your change, have a nice day. */
452 }
453 
454 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
455  * that keeps watching the auto negotiation process as it progresses.
456  * The DP83840 is first told to start doing it's thing, we set up the time
457  * and place the timer state machine in it's initial state.
458  *
459  * Here the timer peeks at the DP83840 status registers at each click to see
460  * if the auto negotiation has completed, we assume here that the DP83840 PHY
461  * will time out at some point and just tell us what (didn't) happen.  For
462  * complete coverage we only allow so many of the ticks at this level to run,
463  * when this has expired we print a warning message and try another strategy.
464  * This "other" strategy is to force the interface into various speed/duplex
465  * configurations and we stop when we see a link-up condition before the
466  * maximum number of "peek" ticks have occurred.
467  *
468  * Once a valid link status has been detected we configure the BigMAC and
469  * the rest of the Happy Meal to speak the most efficient protocol we could
470  * get a clean link for.  The priority for link configurations, highest first
471  * is:
472  *                 100 Base-T Full Duplex
473  *                 100 Base-T Half Duplex
474  *                 10 Base-T Full Duplex
475  *                 10 Base-T Half Duplex
476  *
477  * We start a new timer now, after a successful auto negotiation status has
478  * been detected.  This timer just waits for the link-up bit to get set in
479  * the BMCR of the DP83840.  When this occurs we print a kernel log message
480  * describing the link type in use and the fact that it is up.
481  *
482  * If a fatal error of some sort is signalled and detected in the interrupt
483  * service routine, and the chip is reset, or the link is ifconfig'd down
484  * and then back up, this entire process repeats itself all over again.
485  */
486 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
487 {
488 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
489 
490 	/* Downgrade from full to half duplex.  Only possible
491 	 * via ethtool.
492 	 */
493 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
494 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
495 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
496 		return 0;
497 	}
498 
499 	/* Downgrade from 100 to 10. */
500 	if (hp->sw_bmcr & BMCR_SPEED100) {
501 		hp->sw_bmcr &= ~(BMCR_SPEED100);
502 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
503 		return 0;
504 	}
505 
506 	/* We've tried everything. */
507 	return -1;
508 }
509 
510 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
511 {
512 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
513 
514 	netdev_info(hp->dev,
515 		    "Link is up using %s transceiver at %dMb/s, %s Duplex.\n",
516 		    hp->tcvr_type == external ? "external" : "internal",
517 		    hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10,
518 		    hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half");
519 }
520 
521 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
522 {
523 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
524 
525 	netdev_info(hp->dev,
526 		    "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n",
527 		    hp->tcvr_type == external ? "external" : "internal",
528 		    hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10,
529 		    hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half");
530 }
531 
532 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
533 {
534 	int full;
535 
536 	/* All we care about is making sure the bigmac tx_cfg has a
537 	 * proper duplex setting.
538 	 */
539 	if (hp->timer_state == arbwait) {
540 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
541 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
542 			goto no_response;
543 		if (hp->sw_lpa & LPA_100FULL)
544 			full = 1;
545 		else if (hp->sw_lpa & LPA_100HALF)
546 			full = 0;
547 		else if (hp->sw_lpa & LPA_10FULL)
548 			full = 1;
549 		else
550 			full = 0;
551 	} else {
552 		/* Forcing a link mode. */
553 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
554 		if (hp->sw_bmcr & BMCR_FULLDPLX)
555 			full = 1;
556 		else
557 			full = 0;
558 	}
559 
560 	/* Before changing other bits in the tx_cfg register, and in
561 	 * general any of other the TX config registers too, you
562 	 * must:
563 	 * 1) Clear Enable
564 	 * 2) Poll with reads until that bit reads back as zero
565 	 * 3) Make TX configuration changes
566 	 * 4) Set Enable once more
567 	 */
568 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
569 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
570 		    ~(BIGMAC_TXCFG_ENABLE));
571 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
572 		barrier();
573 	if (full) {
574 		hp->happy_flags |= HFLAG_FULL;
575 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
576 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
577 			    BIGMAC_TXCFG_FULLDPLX);
578 	} else {
579 		hp->happy_flags &= ~(HFLAG_FULL);
580 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
581 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
582 			    ~(BIGMAC_TXCFG_FULLDPLX));
583 	}
584 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
585 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
586 		    BIGMAC_TXCFG_ENABLE);
587 	return 0;
588 no_response:
589 	return 1;
590 }
591 
592 static int happy_meal_init(struct happy_meal *hp);
593 
594 static int is_lucent_phy(struct happy_meal *hp)
595 {
596 	void __iomem *tregs = hp->tcvregs;
597 	unsigned short mr2, mr3;
598 	int ret = 0;
599 
600 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
601 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
602 	if ((mr2 & 0xffff) == 0x0180 &&
603 	    ((mr3 & 0xffff) >> 10) == 0x1d)
604 		ret = 1;
605 
606 	return ret;
607 }
608 
609 static void happy_meal_timer(struct timer_list *t)
610 {
611 	struct happy_meal *hp = from_timer(hp, t, happy_timer);
612 	void __iomem *tregs = hp->tcvregs;
613 	int restart_timer = 0;
614 
615 	spin_lock_irq(&hp->happy_lock);
616 
617 	hp->timer_ticks++;
618 	switch(hp->timer_state) {
619 	case arbwait:
620 		/* Only allow for 5 ticks, thats 10 seconds and much too
621 		 * long to wait for arbitration to complete.
622 		 */
623 		if (hp->timer_ticks >= 10) {
624 			/* Enter force mode. */
625 	do_force_mode:
626 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
627 			netdev_notice(hp->dev,
628 				      "Auto-Negotiation unsuccessful, trying force link mode\n");
629 			hp->sw_bmcr = BMCR_SPEED100;
630 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
631 
632 			if (!is_lucent_phy(hp)) {
633 				/* OK, seems we need do disable the transceiver for the first
634 				 * tick to make sure we get an accurate link state at the
635 				 * second tick.
636 				 */
637 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
638 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
639 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
640 			}
641 			hp->timer_state = ltrywait;
642 			hp->timer_ticks = 0;
643 			restart_timer = 1;
644 		} else {
645 			/* Anything interesting happen? */
646 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
647 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
648 				int ret;
649 
650 				/* Just what we've been waiting for... */
651 				ret = set_happy_link_modes(hp, tregs);
652 				if (ret) {
653 					/* Ooops, something bad happened, go to force
654 					 * mode.
655 					 *
656 					 * XXX Broken hubs which don't support 802.3u
657 					 * XXX auto-negotiation make this happen as well.
658 					 */
659 					goto do_force_mode;
660 				}
661 
662 				/* Success, at least so far, advance our state engine. */
663 				hp->timer_state = lupwait;
664 				restart_timer = 1;
665 			} else {
666 				restart_timer = 1;
667 			}
668 		}
669 		break;
670 
671 	case lupwait:
672 		/* Auto negotiation was successful and we are awaiting a
673 		 * link up status.  I have decided to let this timer run
674 		 * forever until some sort of error is signalled, reporting
675 		 * a message to the user at 10 second intervals.
676 		 */
677 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
678 		if (hp->sw_bmsr & BMSR_LSTATUS) {
679 			/* Wheee, it's up, display the link mode in use and put
680 			 * the timer to sleep.
681 			 */
682 			display_link_mode(hp, tregs);
683 			hp->timer_state = asleep;
684 			restart_timer = 0;
685 		} else {
686 			if (hp->timer_ticks >= 10) {
687 				netdev_notice(hp->dev,
688 					      "Auto negotiation successful, link still not completely up.\n");
689 				hp->timer_ticks = 0;
690 				restart_timer = 1;
691 			} else {
692 				restart_timer = 1;
693 			}
694 		}
695 		break;
696 
697 	case ltrywait:
698 		/* Making the timeout here too long can make it take
699 		 * annoyingly long to attempt all of the link mode
700 		 * permutations, but then again this is essentially
701 		 * error recovery code for the most part.
702 		 */
703 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
704 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
705 		if (hp->timer_ticks == 1) {
706 			if (!is_lucent_phy(hp)) {
707 				/* Re-enable transceiver, we'll re-enable the transceiver next
708 				 * tick, then check link state on the following tick.
709 				 */
710 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
711 				happy_meal_tcvr_write(hp, tregs,
712 						      DP83840_CSCONFIG, hp->sw_csconfig);
713 			}
714 			restart_timer = 1;
715 			break;
716 		}
717 		if (hp->timer_ticks == 2) {
718 			if (!is_lucent_phy(hp)) {
719 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
720 				happy_meal_tcvr_write(hp, tregs,
721 						      DP83840_CSCONFIG, hp->sw_csconfig);
722 			}
723 			restart_timer = 1;
724 			break;
725 		}
726 		if (hp->sw_bmsr & BMSR_LSTATUS) {
727 			/* Force mode selection success. */
728 			display_forced_link_mode(hp, tregs);
729 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
730 			hp->timer_state = asleep;
731 			restart_timer = 0;
732 		} else {
733 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
734 				int ret;
735 
736 				ret = try_next_permutation(hp, tregs);
737 				if (ret == -1) {
738 					/* Aieee, tried them all, reset the
739 					 * chip and try all over again.
740 					 */
741 
742 					/* Let the user know... */
743 					netdev_notice(hp->dev,
744 						      "Link down, cable problem?\n");
745 
746 					ret = happy_meal_init(hp);
747 					if (ret) {
748 						/* ho hum... */
749 						netdev_err(hp->dev,
750 							   "Error, cannot re-init the Happy Meal.\n");
751 					}
752 					goto out;
753 				}
754 				if (!is_lucent_phy(hp)) {
755 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
756 									       DP83840_CSCONFIG);
757 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
758 					happy_meal_tcvr_write(hp, tregs,
759 							      DP83840_CSCONFIG, hp->sw_csconfig);
760 				}
761 				hp->timer_ticks = 0;
762 				restart_timer = 1;
763 			} else {
764 				restart_timer = 1;
765 			}
766 		}
767 		break;
768 
769 	case asleep:
770 	default:
771 		/* Can't happens.... */
772 		netdev_err(hp->dev,
773 			   "Aieee, link timer is asleep but we got one anyways!\n");
774 		restart_timer = 0;
775 		hp->timer_ticks = 0;
776 		hp->timer_state = asleep; /* foo on you */
777 		break;
778 	}
779 
780 	if (restart_timer) {
781 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
782 		add_timer(&hp->happy_timer);
783 	}
784 
785 out:
786 	spin_unlock_irq(&hp->happy_lock);
787 }
788 
789 #define TX_RESET_TRIES     32
790 #define RX_RESET_TRIES     32
791 
792 /* hp->happy_lock must be held */
793 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
794 {
795 	int tries = TX_RESET_TRIES;
796 
797 	HMD("reset...\n");
798 
799 	/* Would you like to try our SMCC Delux? */
800 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
801 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
802 		udelay(20);
803 
804 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
805 	if (!tries)
806 		netdev_err(hp->dev, "Transceiver BigMac ATTACK!");
807 
808 	/* Take care. */
809 	HMD("done\n");
810 }
811 
812 /* hp->happy_lock must be held */
813 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
814 {
815 	int tries = RX_RESET_TRIES;
816 
817 	HMD("reset...\n");
818 
819 	/* We have a special on GNU/Viking hardware bugs today. */
820 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
821 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
822 		udelay(20);
823 
824 	/* Will that be all? */
825 	if (!tries)
826 		netdev_err(hp->dev, "Receiver BigMac ATTACK!\n");
827 
828 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
829 	HMD("done\n");
830 }
831 
832 #define STOP_TRIES         16
833 
834 /* hp->happy_lock must be held */
835 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
836 {
837 	int tries = STOP_TRIES;
838 
839 	HMD("reset...\n");
840 
841 	/* We're consolidating our STB products, it's your lucky day. */
842 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
843 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
844 		udelay(20);
845 
846 	/* Come back next week when we are "Sun Microelectronics". */
847 	if (!tries)
848 		netdev_err(hp->dev, "Fry guys.\n");
849 
850 	/* Remember: "Different name, same old buggy as shit hardware." */
851 	HMD("done\n");
852 }
853 
854 /* hp->happy_lock must be held */
855 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
856 {
857 	struct net_device_stats *stats = &hp->dev->stats;
858 
859 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
860 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
861 
862 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
863 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
864 
865 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
866 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
867 
868 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
869 
870 	stats->collisions +=
871 		(hme_read32(hp, bregs + BMAC_EXCTR) +
872 		 hme_read32(hp, bregs + BMAC_LTCTR));
873 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
874 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
875 }
876 
877 /* hp->happy_lock must be held */
878 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
879 {
880 	/* If polling disabled or not polling already, nothing to do. */
881 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
882 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
883 		ASD("not polling, return\n");
884 		return;
885 	}
886 
887 	/* Shut up the MIF. */
888 	ASD("were polling, mif ints off, polling off\n");
889 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
890 
891 	/* Turn off polling. */
892 	hme_write32(hp, tregs + TCVR_CFG,
893 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
894 
895 	/* We are no longer polling. */
896 	hp->happy_flags &= ~(HFLAG_POLL);
897 
898 	/* Let the bits set. */
899 	udelay(200);
900 	ASD("done\n");
901 }
902 
903 /* Only Sun can take such nice parts and fuck up the programming interface
904  * like this.  Good job guys...
905  */
906 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
907 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
908 
909 /* hp->happy_lock must be held */
910 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
911 {
912 	u32 tconfig;
913 	int result, tries = TCVR_RESET_TRIES;
914 
915 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
916 	ASD("tcfg=%08x\n", tconfig);
917 	if (hp->tcvr_type == external) {
918 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
919 		hp->tcvr_type = internal;
920 		hp->paddr = TCV_PADDR_ITX;
921 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
922 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
923 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
924 		if (result == TCVR_FAILURE) {
925 			ASD("phyread_fail\n");
926 			return -1;
927 		}
928 		ASD("external: ISOLATE, phyread_ok, PSELECT\n");
929 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
930 		hp->tcvr_type = external;
931 		hp->paddr = TCV_PADDR_ETX;
932 	} else {
933 		if (tconfig & TCV_CFG_MDIO1) {
934 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
935 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
936 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
937 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
938 			if (result == TCVR_FAILURE) {
939 				ASD("phyread_fail>\n");
940 				return -1;
941 			}
942 			ASD("internal: PSELECT, ISOLATE, phyread_ok, ~PSELECT\n");
943 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
944 			hp->tcvr_type = internal;
945 			hp->paddr = TCV_PADDR_ITX;
946 		}
947 	}
948 
949 	ASD("BMCR_RESET...\n");
950 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
951 
952 	while (--tries) {
953 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
954 		if (result == TCVR_FAILURE)
955 			return -1;
956 		hp->sw_bmcr = result;
957 		if (!(result & BMCR_RESET))
958 			break;
959 		udelay(20);
960 	}
961 	if (!tries) {
962 		ASD("BMCR RESET FAILED!\n");
963 		return -1;
964 	}
965 	ASD("RESET_OK\n");
966 
967 	/* Get fresh copies of the PHY registers. */
968 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
969 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
970 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
971 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
972 
973 	ASD("UNISOLATE...\n");
974 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
975 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
976 
977 	tries = TCVR_UNISOLATE_TRIES;
978 	while (--tries) {
979 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
980 		if (result == TCVR_FAILURE)
981 			return -1;
982 		if (!(result & BMCR_ISOLATE))
983 			break;
984 		udelay(20);
985 	}
986 	if (!tries) {
987 		ASD("UNISOLATE FAILED!\n");
988 		return -1;
989 	}
990 	ASD("SUCCESS and CSCONFIG_DFBYPASS\n");
991 	if (!is_lucent_phy(hp)) {
992 		result = happy_meal_tcvr_read(hp, tregs,
993 					      DP83840_CSCONFIG);
994 		happy_meal_tcvr_write(hp, tregs,
995 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
996 	}
997 	return 0;
998 }
999 
1000 /* Figure out whether we have an internal or external transceiver.
1001  *
1002  * hp->happy_lock must be held
1003  */
1004 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1005 {
1006 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1007 
1008 	ASD("tcfg=%08lx\n", tconfig);
1009 	if (hp->happy_flags & HFLAG_POLL) {
1010 		/* If we are polling, we must stop to get the transceiver type. */
1011 		if (hp->tcvr_type == internal) {
1012 			if (tconfig & TCV_CFG_MDIO1) {
1013 				happy_meal_poll_stop(hp, tregs);
1014 				hp->paddr = TCV_PADDR_ETX;
1015 				hp->tcvr_type = external;
1016 				tconfig &= ~(TCV_CFG_PENABLE);
1017 				tconfig |= TCV_CFG_PSELECT;
1018 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1019 				ASD("poll stop, internal->external\n");
1020 			}
1021 		} else {
1022 			if (hp->tcvr_type == external) {
1023 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1024 					happy_meal_poll_stop(hp, tregs);
1025 					hp->paddr = TCV_PADDR_ITX;
1026 					hp->tcvr_type = internal;
1027 					hme_write32(hp, tregs + TCVR_CFG,
1028 						    hme_read32(hp, tregs + TCVR_CFG) &
1029 						    ~(TCV_CFG_PSELECT));
1030 					ASD("poll stop, external->internal\n");
1031 				}
1032 			} else {
1033 				ASD("polling, none\n");
1034 			}
1035 		}
1036 	} else {
1037 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1038 
1039 		/* Else we can just work off of the MDIO bits. */
1040 		if (reread & TCV_CFG_MDIO1) {
1041 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1042 			hp->paddr = TCV_PADDR_ETX;
1043 			hp->tcvr_type = external;
1044 			ASD("not polling, external\n");
1045 		} else {
1046 			if (reread & TCV_CFG_MDIO0) {
1047 				hme_write32(hp, tregs + TCVR_CFG,
1048 					    tconfig & ~(TCV_CFG_PSELECT));
1049 				hp->paddr = TCV_PADDR_ITX;
1050 				hp->tcvr_type = internal;
1051 				ASD("not polling, internal\n");
1052 			} else {
1053 				netdev_err(hp->dev,
1054 					   "Transceiver and a coke please.");
1055 				hp->tcvr_type = none; /* Grrr... */
1056 				ASD("not polling, none\n");
1057 			}
1058 		}
1059 	}
1060 }
1061 
1062 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1063  *
1064  * The buffers we dma into must be 64 byte aligned.  So we use a special
1065  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1066  * we really need.
1067  *
1068  * We use skb_reserve() to align the data block we get in the skb.  We
1069  * also program the etxregs->cfg register to use an offset of 2.  This
1070  * imperical constant plus the ethernet header size will always leave
1071  * us with a nicely aligned ip header once we pass things up to the
1072  * protocol layers.
1073  *
1074  * The numbers work out to:
1075  *
1076  *         Max ethernet frame size         1518
1077  *         Ethernet header size              14
1078  *         Happy Meal base offset             2
1079  *
1080  * Say a skb data area is at 0xf001b010, and its size alloced is
1081  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1082  *
1083  * First our alloc_skb() routine aligns the data base to a 64 byte
1084  * boundary.  We now have 0xf001b040 as our skb data address.  We
1085  * plug this into the receive descriptor address.
1086  *
1087  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1088  * So now the data we will end up looking at starts at 0xf001b042.  When
1089  * the packet arrives, we will check out the size received and subtract
1090  * this from the skb->length.  Then we just pass the packet up to the
1091  * protocols as is, and allocate a new skb to replace this slot we have
1092  * just received from.
1093  *
1094  * The ethernet layer will strip the ether header from the front of the
1095  * skb we just sent to it, this leaves us with the ip header sitting
1096  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1097  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1098  * bit checksum is obtained from the low bits of the receive descriptor
1099  * flags, thus:
1100  *
1101  * 	skb->csum = rxd->rx_flags & 0xffff;
1102  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1103  *
1104  * before sending off the skb to the protocols, and we are good as gold.
1105  */
1106 static void happy_meal_clean_rings(struct happy_meal *hp)
1107 {
1108 	int i;
1109 
1110 	for (i = 0; i < RX_RING_SIZE; i++) {
1111 		if (hp->rx_skbs[i] != NULL) {
1112 			struct sk_buff *skb = hp->rx_skbs[i];
1113 			struct happy_meal_rxd *rxd;
1114 			u32 dma_addr;
1115 
1116 			rxd = &hp->happy_block->happy_meal_rxd[i];
1117 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1118 			dma_unmap_single(hp->dma_dev, dma_addr,
1119 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1120 			dev_kfree_skb_any(skb);
1121 			hp->rx_skbs[i] = NULL;
1122 		}
1123 	}
1124 
1125 	for (i = 0; i < TX_RING_SIZE; i++) {
1126 		if (hp->tx_skbs[i] != NULL) {
1127 			struct sk_buff *skb = hp->tx_skbs[i];
1128 			struct happy_meal_txd *txd;
1129 			u32 dma_addr;
1130 			int frag;
1131 
1132 			hp->tx_skbs[i] = NULL;
1133 
1134 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1135 				txd = &hp->happy_block->happy_meal_txd[i];
1136 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1137 				if (!frag)
1138 					dma_unmap_single(hp->dma_dev, dma_addr,
1139 							 (hme_read_desc32(hp, &txd->tx_flags)
1140 							  & TXFLAG_SIZE),
1141 							 DMA_TO_DEVICE);
1142 				else
1143 					dma_unmap_page(hp->dma_dev, dma_addr,
1144 							 (hme_read_desc32(hp, &txd->tx_flags)
1145 							  & TXFLAG_SIZE),
1146 							 DMA_TO_DEVICE);
1147 
1148 				if (frag != skb_shinfo(skb)->nr_frags)
1149 					i++;
1150 			}
1151 
1152 			dev_kfree_skb_any(skb);
1153 		}
1154 	}
1155 }
1156 
1157 /* hp->happy_lock must be held */
1158 static void happy_meal_init_rings(struct happy_meal *hp)
1159 {
1160 	struct hmeal_init_block *hb = hp->happy_block;
1161 	int i;
1162 
1163 	HMD("counters to zero\n");
1164 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1165 
1166 	/* Free any skippy bufs left around in the rings. */
1167 	happy_meal_clean_rings(hp);
1168 
1169 	/* Now get new skippy bufs for the receive ring. */
1170 	HMD("init rxring\n");
1171 	for (i = 0; i < RX_RING_SIZE; i++) {
1172 		struct sk_buff *skb;
1173 		u32 mapping;
1174 
1175 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1176 		if (!skb) {
1177 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1178 			continue;
1179 		}
1180 		hp->rx_skbs[i] = skb;
1181 
1182 		/* Because we reserve afterwards. */
1183 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1184 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1185 					 DMA_FROM_DEVICE);
1186 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1187 			dev_kfree_skb_any(skb);
1188 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1189 			continue;
1190 		}
1191 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1192 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1193 			      mapping);
1194 		skb_reserve(skb, RX_OFFSET);
1195 	}
1196 
1197 	HMD("init txring\n");
1198 	for (i = 0; i < TX_RING_SIZE; i++)
1199 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1200 
1201 	HMD("done\n");
1202 }
1203 
1204 /* hp->happy_lock must be held */
1205 static void
1206 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1207 				  void __iomem *tregs,
1208 				  const struct ethtool_link_ksettings *ep)
1209 {
1210 	int timeout;
1211 
1212 	/* Read all of the registers we are interested in now. */
1213 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1214 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1215 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1216 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1217 
1218 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1219 
1220 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1221 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1222 		/* Advertise everything we can support. */
1223 		if (hp->sw_bmsr & BMSR_10HALF)
1224 			hp->sw_advertise |= (ADVERTISE_10HALF);
1225 		else
1226 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1227 
1228 		if (hp->sw_bmsr & BMSR_10FULL)
1229 			hp->sw_advertise |= (ADVERTISE_10FULL);
1230 		else
1231 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1232 		if (hp->sw_bmsr & BMSR_100HALF)
1233 			hp->sw_advertise |= (ADVERTISE_100HALF);
1234 		else
1235 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1236 		if (hp->sw_bmsr & BMSR_100FULL)
1237 			hp->sw_advertise |= (ADVERTISE_100FULL);
1238 		else
1239 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1240 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1241 
1242 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1243 		 * XXX and this is because the DP83840 does not support it, changes
1244 		 * XXX would need to be made to the tx/rx logic in the driver as well
1245 		 * XXX so I completely skip checking for it in the BMSR for now.
1246 		 */
1247 
1248 		ASD("Advertising [ %s%s%s%s]\n",
1249 		    hp->sw_advertise & ADVERTISE_10HALF ? "10H " : "",
1250 		    hp->sw_advertise & ADVERTISE_10FULL ? "10F " : "",
1251 		    hp->sw_advertise & ADVERTISE_100HALF ? "100H " : "",
1252 		    hp->sw_advertise & ADVERTISE_100FULL ? "100F " : "");
1253 
1254 		/* Enable Auto-Negotiation, this is usually on already... */
1255 		hp->sw_bmcr |= BMCR_ANENABLE;
1256 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1257 
1258 		/* Restart it to make sure it is going. */
1259 		hp->sw_bmcr |= BMCR_ANRESTART;
1260 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1261 
1262 		/* BMCR_ANRESTART self clears when the process has begun. */
1263 
1264 		timeout = 64;  /* More than enough. */
1265 		while (--timeout) {
1266 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1267 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1268 				break; /* got it. */
1269 			udelay(10);
1270 		}
1271 		if (!timeout) {
1272 			netdev_err(hp->dev,
1273 				   "Happy Meal would not start auto negotiation BMCR=0x%04x\n",
1274 				   hp->sw_bmcr);
1275 			netdev_notice(hp->dev,
1276 				      "Performing force link detection.\n");
1277 			goto force_link;
1278 		} else {
1279 			hp->timer_state = arbwait;
1280 		}
1281 	} else {
1282 force_link:
1283 		/* Force the link up, trying first a particular mode.
1284 		 * Either we are here at the request of ethtool or
1285 		 * because the Happy Meal would not start to autoneg.
1286 		 */
1287 
1288 		/* Disable auto-negotiation in BMCR, enable the duplex and
1289 		 * speed setting, init the timer state machine, and fire it off.
1290 		 */
1291 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1292 			hp->sw_bmcr = BMCR_SPEED100;
1293 		} else {
1294 			if (ep->base.speed == SPEED_100)
1295 				hp->sw_bmcr = BMCR_SPEED100;
1296 			else
1297 				hp->sw_bmcr = 0;
1298 			if (ep->base.duplex == DUPLEX_FULL)
1299 				hp->sw_bmcr |= BMCR_FULLDPLX;
1300 		}
1301 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1302 
1303 		if (!is_lucent_phy(hp)) {
1304 			/* OK, seems we need do disable the transceiver for the first
1305 			 * tick to make sure we get an accurate link state at the
1306 			 * second tick.
1307 			 */
1308 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1309 							       DP83840_CSCONFIG);
1310 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1311 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1312 					      hp->sw_csconfig);
1313 		}
1314 		hp->timer_state = ltrywait;
1315 	}
1316 
1317 	hp->timer_ticks = 0;
1318 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1319 	add_timer(&hp->happy_timer);
1320 }
1321 
1322 /* hp->happy_lock must be held */
1323 static int happy_meal_init(struct happy_meal *hp)
1324 {
1325 	const unsigned char *e = &hp->dev->dev_addr[0];
1326 	void __iomem *gregs        = hp->gregs;
1327 	void __iomem *etxregs      = hp->etxregs;
1328 	void __iomem *erxregs      = hp->erxregs;
1329 	void __iomem *bregs        = hp->bigmacregs;
1330 	void __iomem *tregs        = hp->tcvregs;
1331 	const char *bursts = "64";
1332 	u32 regtmp, rxcfg;
1333 
1334 	/* If auto-negotiation timer is running, kill it. */
1335 	del_timer(&hp->happy_timer);
1336 
1337 	HMD("happy_flags[%08x]\n", hp->happy_flags);
1338 	if (!(hp->happy_flags & HFLAG_INIT)) {
1339 		HMD("set HFLAG_INIT\n");
1340 		hp->happy_flags |= HFLAG_INIT;
1341 		happy_meal_get_counters(hp, bregs);
1342 	}
1343 
1344 	/* Stop polling. */
1345 	HMD("to happy_meal_poll_stop\n");
1346 	happy_meal_poll_stop(hp, tregs);
1347 
1348 	/* Stop transmitter and receiver. */
1349 	HMD("to happy_meal_stop\n");
1350 	happy_meal_stop(hp, gregs);
1351 
1352 	/* Alloc and reset the tx/rx descriptor chains. */
1353 	HMD("to happy_meal_init_rings\n");
1354 	happy_meal_init_rings(hp);
1355 
1356 	/* Shut up the MIF. */
1357 	HMD("Disable all MIF irqs (old[%08x])\n",
1358 	    hme_read32(hp, tregs + TCVR_IMASK));
1359 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1360 
1361 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1362 	if (hp->happy_flags & HFLAG_FENABLE) {
1363 		HMD("use frame old[%08x]\n",
1364 		    hme_read32(hp, tregs + TCVR_CFG));
1365 		hme_write32(hp, tregs + TCVR_CFG,
1366 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1367 	} else {
1368 		HMD("use bitbang old[%08x]\n",
1369 		    hme_read32(hp, tregs + TCVR_CFG));
1370 		hme_write32(hp, tregs + TCVR_CFG,
1371 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1372 	}
1373 
1374 	/* Check the state of the transceiver. */
1375 	HMD("to happy_meal_transceiver_check\n");
1376 	happy_meal_transceiver_check(hp, tregs);
1377 
1378 	/* Put the Big Mac into a sane state. */
1379 	switch(hp->tcvr_type) {
1380 	case none:
1381 		/* Cannot operate if we don't know the transceiver type! */
1382 		HMD("AAIEEE no transceiver type, EAGAIN\n");
1383 		return -EAGAIN;
1384 
1385 	case internal:
1386 		/* Using the MII buffers. */
1387 		HMD("internal, using MII\n");
1388 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1389 		break;
1390 
1391 	case external:
1392 		/* Not using the MII, disable it. */
1393 		HMD("external, disable MII\n");
1394 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1395 		break;
1396 	}
1397 
1398 	if (happy_meal_tcvr_reset(hp, tregs))
1399 		return -EAGAIN;
1400 
1401 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1402 	HMD("tx/rx reset\n");
1403 	happy_meal_tx_reset(hp, bregs);
1404 	happy_meal_rx_reset(hp, bregs);
1405 
1406 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1407 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1408 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1409 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1410 
1411 	/* Load up the MAC address and random seed. */
1412 
1413 	/* The docs recommend to use the 10LSB of our MAC here. */
1414 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1415 
1416 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1417 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1418 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1419 
1420 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1421 	    (netdev_mc_count(hp->dev) > 64)) {
1422 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1423 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1424 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1425 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1426 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1427 		u16 hash_table[4];
1428 		struct netdev_hw_addr *ha;
1429 		u32 crc;
1430 
1431 		memset(hash_table, 0, sizeof(hash_table));
1432 		netdev_for_each_mc_addr(ha, hp->dev) {
1433 			crc = ether_crc_le(6, ha->addr);
1434 			crc >>= 26;
1435 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1436 		}
1437 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1438 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1439 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1440 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1441 	} else {
1442 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1443 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1444 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1445 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1446 	}
1447 
1448 	/* Set the RX and TX ring ptrs. */
1449 	HMD("ring ptrs rxr[%08x] txr[%08x]\n",
1450 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1451 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1452 	hme_write32(hp, erxregs + ERX_RING,
1453 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1454 	hme_write32(hp, etxregs + ETX_RING,
1455 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1456 
1457 	/* Parity issues in the ERX unit of some HME revisions can cause some
1458 	 * registers to not be written unless their parity is even.  Detect such
1459 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1460 	 * since the rxring needs to be 2K aligned).
1461 	 */
1462 	if (hme_read32(hp, erxregs + ERX_RING) !=
1463 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1464 		hme_write32(hp, erxregs + ERX_RING,
1465 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1466 			    | 0x4);
1467 
1468 	/* Set the supported burst sizes. */
1469 #ifndef CONFIG_SPARC
1470 	/* It is always PCI and can handle 64byte bursts. */
1471 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1472 #else
1473 	if ((hp->happy_bursts & DMA_BURST64) &&
1474 	    ((hp->happy_flags & HFLAG_PCI) != 0
1475 #ifdef CONFIG_SBUS
1476 	     || sbus_can_burst64()
1477 #endif
1478 	     || 0)) {
1479 		u32 gcfg = GREG_CFG_BURST64;
1480 
1481 		/* I have no idea if I should set the extended
1482 		 * transfer mode bit for Cheerio, so for now I
1483 		 * do not.  -DaveM
1484 		 */
1485 #ifdef CONFIG_SBUS
1486 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1487 			struct platform_device *op = hp->happy_dev;
1488 			if (sbus_can_dma_64bit()) {
1489 				sbus_set_sbus64(&op->dev,
1490 						hp->happy_bursts);
1491 				gcfg |= GREG_CFG_64BIT;
1492 			}
1493 		}
1494 #endif
1495 
1496 		bursts = "64";
1497 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1498 	} else if (hp->happy_bursts & DMA_BURST32) {
1499 		bursts = "32";
1500 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1501 	} else if (hp->happy_bursts & DMA_BURST16) {
1502 		bursts = "16";
1503 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1504 	} else {
1505 		bursts = "XXX";
1506 		hme_write32(hp, gregs + GREG_CFG, 0);
1507 	}
1508 #endif /* CONFIG_SPARC */
1509 
1510 	HMD("old[%08x] bursts<%s>\n",
1511 	    hme_read32(hp, gregs + GREG_CFG), bursts);
1512 
1513 	/* Turn off interrupts we do not want to hear. */
1514 	hme_write32(hp, gregs + GREG_IMASK,
1515 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1516 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1517 
1518 	/* Set the transmit ring buffer size. */
1519 	HMD("tx rsize=%d oreg[%08x]\n", (int)TX_RING_SIZE,
1520 	    hme_read32(hp, etxregs + ETX_RSIZE));
1521 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1522 
1523 	/* Enable transmitter DVMA. */
1524 	HMD("tx dma enable old[%08x]\n", hme_read32(hp, etxregs + ETX_CFG));
1525 	hme_write32(hp, etxregs + ETX_CFG,
1526 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1527 
1528 	/* This chip really rots, for the receiver sometimes when you
1529 	 * write to its control registers not all the bits get there
1530 	 * properly.  I cannot think of a sane way to provide complete
1531 	 * coverage for this hardware bug yet.
1532 	 */
1533 	HMD("erx regs bug old[%08x]\n",
1534 	    hme_read32(hp, erxregs + ERX_CFG));
1535 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1536 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1537 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1538 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1539 		netdev_err(hp->dev,
1540 			   "Eieee, rx config register gets greasy fries.\n");
1541 		netdev_err(hp->dev,
1542 			   "Trying to set %08x, reread gives %08x\n",
1543 			   ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1544 		/* XXX Should return failure here... */
1545 	}
1546 
1547 	/* Enable Big Mac hash table filter. */
1548 	HMD("enable hash rx_cfg_old[%08x]\n",
1549 	    hme_read32(hp, bregs + BMAC_RXCFG));
1550 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1551 	if (hp->dev->flags & IFF_PROMISC)
1552 		rxcfg |= BIGMAC_RXCFG_PMISC;
1553 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1554 
1555 	/* Let the bits settle in the chip. */
1556 	udelay(10);
1557 
1558 	/* Ok, configure the Big Mac transmitter. */
1559 	HMD("BIGMAC init\n");
1560 	regtmp = 0;
1561 	if (hp->happy_flags & HFLAG_FULL)
1562 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1563 
1564 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1565 	 * to deadlock with the PHY if a Jabber occurs.
1566 	 */
1567 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1568 
1569 	/* Give up after 16 TX attempts. */
1570 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1571 
1572 	/* Enable the output drivers no matter what. */
1573 	regtmp = BIGMAC_XCFG_ODENABLE;
1574 
1575 	/* If card can do lance mode, enable it. */
1576 	if (hp->happy_flags & HFLAG_LANCE)
1577 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1578 
1579 	/* Disable the MII buffers if using external transceiver. */
1580 	if (hp->tcvr_type == external)
1581 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1582 
1583 	HMD("XIF config old[%08x]\n", hme_read32(hp, bregs + BMAC_XIFCFG));
1584 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1585 
1586 	/* Start things up. */
1587 	HMD("tx old[%08x] and rx [%08x] ON!\n",
1588 	    hme_read32(hp, bregs + BMAC_TXCFG),
1589 	    hme_read32(hp, bregs + BMAC_RXCFG));
1590 
1591 	/* Set larger TX/RX size to allow for 802.1q */
1592 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1593 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1594 
1595 	hme_write32(hp, bregs + BMAC_TXCFG,
1596 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1597 	hme_write32(hp, bregs + BMAC_RXCFG,
1598 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1599 
1600 	/* Get the autonegotiation started, and the watch timer ticking. */
1601 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1602 
1603 	/* Success. */
1604 	return 0;
1605 }
1606 
1607 /* hp->happy_lock must be held */
1608 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1609 {
1610 	void __iomem *tregs	= hp->tcvregs;
1611 	void __iomem *bregs	= hp->bigmacregs;
1612 	void __iomem *gregs	= hp->gregs;
1613 
1614 	happy_meal_stop(hp, gregs);
1615 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1616 	if (hp->happy_flags & HFLAG_FENABLE)
1617 		hme_write32(hp, tregs + TCVR_CFG,
1618 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1619 	else
1620 		hme_write32(hp, tregs + TCVR_CFG,
1621 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1622 	happy_meal_transceiver_check(hp, tregs);
1623 	switch(hp->tcvr_type) {
1624 	case none:
1625 		return;
1626 	case internal:
1627 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1628 		break;
1629 	case external:
1630 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1631 		break;
1632 	}
1633 	if (happy_meal_tcvr_reset(hp, tregs))
1634 		return;
1635 
1636 	/* Latch PHY registers as of now. */
1637 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1638 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1639 
1640 	/* Advertise everything we can support. */
1641 	if (hp->sw_bmsr & BMSR_10HALF)
1642 		hp->sw_advertise |= (ADVERTISE_10HALF);
1643 	else
1644 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1645 
1646 	if (hp->sw_bmsr & BMSR_10FULL)
1647 		hp->sw_advertise |= (ADVERTISE_10FULL);
1648 	else
1649 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1650 	if (hp->sw_bmsr & BMSR_100HALF)
1651 		hp->sw_advertise |= (ADVERTISE_100HALF);
1652 	else
1653 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1654 	if (hp->sw_bmsr & BMSR_100FULL)
1655 		hp->sw_advertise |= (ADVERTISE_100FULL);
1656 	else
1657 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1658 
1659 	/* Update the PHY advertisement register. */
1660 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1661 }
1662 
1663 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1664  * the hardware, so we cannot re-read it and get a correct value.
1665  *
1666  * hp->happy_lock must be held
1667  */
1668 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1669 {
1670 	int reset = 0;
1671 
1672 	/* Only print messages for non-counter related interrupts. */
1673 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1674 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1675 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1676 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1677 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1678 		      GREG_STAT_SLVPERR))
1679 		netdev_err(hp->dev,
1680 			   "Error interrupt for happy meal, status = %08x\n",
1681 			   status);
1682 
1683 	if (status & GREG_STAT_RFIFOVF) {
1684 		/* Receive FIFO overflow is harmless and the hardware will take
1685 		   care of it, just some packets are lost. Who cares. */
1686 		netdev_dbg(hp->dev, "Happy Meal receive FIFO overflow.\n");
1687 	}
1688 
1689 	if (status & GREG_STAT_STSTERR) {
1690 		/* BigMAC SQE link test failed. */
1691 		netdev_err(hp->dev, "Happy Meal BigMAC SQE test failed.\n");
1692 		reset = 1;
1693 	}
1694 
1695 	if (status & GREG_STAT_TFIFO_UND) {
1696 		/* Transmit FIFO underrun, again DMA error likely. */
1697 		netdev_err(hp->dev,
1698 			   "Happy Meal transmitter FIFO underrun, DMA error.\n");
1699 		reset = 1;
1700 	}
1701 
1702 	if (status & GREG_STAT_MAXPKTERR) {
1703 		/* Driver error, tried to transmit something larger
1704 		 * than ethernet max mtu.
1705 		 */
1706 		netdev_err(hp->dev, "Happy Meal MAX Packet size error.\n");
1707 		reset = 1;
1708 	}
1709 
1710 	if (status & GREG_STAT_NORXD) {
1711 		/* This is harmless, it just means the system is
1712 		 * quite loaded and the incoming packet rate was
1713 		 * faster than the interrupt handler could keep up
1714 		 * with.
1715 		 */
1716 		netdev_info(hp->dev,
1717 			    "Happy Meal out of receive descriptors, packet dropped.\n");
1718 	}
1719 
1720 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1721 		/* All sorts of DMA receive errors. */
1722 		netdev_err(hp->dev, "Happy Meal rx DMA errors [ %s%s%s]\n",
1723 			   status & GREG_STAT_RXERR ? "GenericError " : "",
1724 			   status & GREG_STAT_RXPERR ? "ParityError " : "",
1725 			   status & GREG_STAT_RXTERR ? "RxTagBotch " : "");
1726 		reset = 1;
1727 	}
1728 
1729 	if (status & GREG_STAT_EOPERR) {
1730 		/* Driver bug, didn't set EOP bit in tx descriptor given
1731 		 * to the happy meal.
1732 		 */
1733 		netdev_err(hp->dev,
1734 			   "EOP not set in happy meal transmit descriptor!\n");
1735 		reset = 1;
1736 	}
1737 
1738 	if (status & GREG_STAT_MIFIRQ) {
1739 		/* MIF signalled an interrupt, were we polling it? */
1740 		netdev_err(hp->dev, "Happy Meal MIF interrupt.\n");
1741 	}
1742 
1743 	if (status &
1744 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1745 		/* All sorts of transmit DMA errors. */
1746 		netdev_err(hp->dev, "Happy Meal tx DMA errors [ %s%s%s%s]\n",
1747 			   status & GREG_STAT_TXEACK ? "GenericError " : "",
1748 			   status & GREG_STAT_TXLERR ? "LateError " : "",
1749 			   status & GREG_STAT_TXPERR ? "ParityError " : "",
1750 			   status & GREG_STAT_TXTERR ? "TagBotch " : "");
1751 		reset = 1;
1752 	}
1753 
1754 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1755 		/* Bus or parity error when cpu accessed happy meal registers
1756 		 * or it's internal FIFO's.  Should never see this.
1757 		 */
1758 		netdev_err(hp->dev,
1759 			   "Happy Meal register access SBUS slave (%s) error.\n",
1760 			   (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1761 		reset = 1;
1762 	}
1763 
1764 	if (reset) {
1765 		netdev_notice(hp->dev, "Resetting...\n");
1766 		happy_meal_init(hp);
1767 		return 1;
1768 	}
1769 	return 0;
1770 }
1771 
1772 /* hp->happy_lock must be held */
1773 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1774 {
1775 	void __iomem *tregs = hp->tcvregs;
1776 
1777 	netdev_info(hp->dev, "Link status change.\n");
1778 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1779 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1780 
1781 	/* Use the fastest transmission protocol possible. */
1782 	if (hp->sw_lpa & LPA_100FULL) {
1783 		netdev_info(hp->dev, "Switching to 100Mbps at full duplex.\n");
1784 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1785 	} else if (hp->sw_lpa & LPA_100HALF) {
1786 		netdev_info(hp->dev, "Switching to 100MBps at half duplex.\n");
1787 		hp->sw_bmcr |= BMCR_SPEED100;
1788 	} else if (hp->sw_lpa & LPA_10FULL) {
1789 		netdev_info(hp->dev, "Switching to 10MBps at full duplex.\n");
1790 		hp->sw_bmcr |= BMCR_FULLDPLX;
1791 	} else {
1792 		netdev_info(hp->dev, "Using 10Mbps at half duplex.\n");
1793 	}
1794 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1795 
1796 	/* Finally stop polling and shut up the MIF. */
1797 	happy_meal_poll_stop(hp, tregs);
1798 }
1799 
1800 /* hp->happy_lock must be held */
1801 static void happy_meal_tx(struct happy_meal *hp)
1802 {
1803 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1804 	struct happy_meal_txd *this;
1805 	struct net_device *dev = hp->dev;
1806 	int elem;
1807 
1808 	elem = hp->tx_old;
1809 	while (elem != hp->tx_new) {
1810 		struct sk_buff *skb;
1811 		u32 flags, dma_addr, dma_len;
1812 		int frag;
1813 
1814 		netdev_vdbg(hp->dev, "TX[%d]\n", elem);
1815 		this = &txbase[elem];
1816 		flags = hme_read_desc32(hp, &this->tx_flags);
1817 		if (flags & TXFLAG_OWN)
1818 			break;
1819 		skb = hp->tx_skbs[elem];
1820 		if (skb_shinfo(skb)->nr_frags) {
1821 			int last;
1822 
1823 			last = elem + skb_shinfo(skb)->nr_frags;
1824 			last &= (TX_RING_SIZE - 1);
1825 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1826 			if (flags & TXFLAG_OWN)
1827 				break;
1828 		}
1829 		hp->tx_skbs[elem] = NULL;
1830 		dev->stats.tx_bytes += skb->len;
1831 
1832 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1833 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1834 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1835 
1836 			dma_len &= TXFLAG_SIZE;
1837 			if (!frag)
1838 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1839 			else
1840 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1841 
1842 			elem = NEXT_TX(elem);
1843 			this = &txbase[elem];
1844 		}
1845 
1846 		dev_consume_skb_irq(skb);
1847 		dev->stats.tx_packets++;
1848 	}
1849 	hp->tx_old = elem;
1850 
1851 	if (netif_queue_stopped(dev) &&
1852 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1853 		netif_wake_queue(dev);
1854 }
1855 
1856 /* Originally I used to handle the allocation failure by just giving back just
1857  * that one ring buffer to the happy meal.  Problem is that usually when that
1858  * condition is triggered, the happy meal expects you to do something reasonable
1859  * with all of the packets it has DMA'd in.  So now I just drop the entire
1860  * ring when we cannot get a new skb and give them all back to the happy meal,
1861  * maybe things will be "happier" now.
1862  *
1863  * hp->happy_lock must be held
1864  */
1865 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1866 {
1867 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1868 	struct happy_meal_rxd *this;
1869 	int elem = hp->rx_new, drops = 0;
1870 	u32 flags;
1871 
1872 	this = &rxbase[elem];
1873 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1874 		struct sk_buff *skb;
1875 		int len = flags >> 16;
1876 		u16 csum = flags & RXFLAG_CSUM;
1877 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1878 
1879 		/* Check for errors. */
1880 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1881 			netdev_vdbg(dev, "RX[%d ERR(%08x)]", elem, flags);
1882 			dev->stats.rx_errors++;
1883 			if (len < ETH_ZLEN)
1884 				dev->stats.rx_length_errors++;
1885 			if (len & (RXFLAG_OVERFLOW >> 16)) {
1886 				dev->stats.rx_over_errors++;
1887 				dev->stats.rx_fifo_errors++;
1888 			}
1889 
1890 			/* Return it to the Happy meal. */
1891 	drop_it:
1892 			dev->stats.rx_dropped++;
1893 			hme_write_rxd(hp, this,
1894 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1895 				      dma_addr);
1896 			goto next;
1897 		}
1898 		skb = hp->rx_skbs[elem];
1899 		if (len > RX_COPY_THRESHOLD) {
1900 			struct sk_buff *new_skb;
1901 			u32 mapping;
1902 
1903 			/* Now refill the entry, if we can. */
1904 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1905 			if (new_skb == NULL) {
1906 				drops++;
1907 				goto drop_it;
1908 			}
1909 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1910 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
1911 						 RX_BUF_ALLOC_SIZE,
1912 						 DMA_FROM_DEVICE);
1913 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
1914 				dev_kfree_skb_any(new_skb);
1915 				drops++;
1916 				goto drop_it;
1917 			}
1918 
1919 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1920 			hp->rx_skbs[elem] = new_skb;
1921 			hme_write_rxd(hp, this,
1922 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1923 				      mapping);
1924 			skb_reserve(new_skb, RX_OFFSET);
1925 
1926 			/* Trim the original skb for the netif. */
1927 			skb_trim(skb, len);
1928 		} else {
1929 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
1930 
1931 			if (copy_skb == NULL) {
1932 				drops++;
1933 				goto drop_it;
1934 			}
1935 
1936 			skb_reserve(copy_skb, 2);
1937 			skb_put(copy_skb, len);
1938 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1939 			skb_copy_from_linear_data(skb, copy_skb->data, len);
1940 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1941 			/* Reuse original ring buffer. */
1942 			hme_write_rxd(hp, this,
1943 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1944 				      dma_addr);
1945 
1946 			skb = copy_skb;
1947 		}
1948 
1949 		/* This card is _fucking_ hot... */
1950 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
1951 		skb->ip_summed = CHECKSUM_COMPLETE;
1952 
1953 		netdev_vdbg(dev, "RX[%d len=%d csum=%4x]", elem, len, csum);
1954 		skb->protocol = eth_type_trans(skb, dev);
1955 		netif_rx(skb);
1956 
1957 		dev->stats.rx_packets++;
1958 		dev->stats.rx_bytes += len;
1959 	next:
1960 		elem = NEXT_RX(elem);
1961 		this = &rxbase[elem];
1962 	}
1963 	hp->rx_new = elem;
1964 	if (drops)
1965 		netdev_info(hp->dev, "Memory squeeze, deferring packet.\n");
1966 }
1967 
1968 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
1969 {
1970 	struct net_device *dev = dev_id;
1971 	struct happy_meal *hp  = netdev_priv(dev);
1972 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
1973 
1974 	HMD("status=%08x\n", happy_status);
1975 
1976 	spin_lock(&hp->happy_lock);
1977 
1978 	if (happy_status & GREG_STAT_ERRORS) {
1979 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
1980 			goto out;
1981 	}
1982 
1983 	if (happy_status & GREG_STAT_MIFIRQ)
1984 		happy_meal_mif_interrupt(hp);
1985 
1986 	if (happy_status & GREG_STAT_TXALL)
1987 		happy_meal_tx(hp);
1988 
1989 	if (happy_status & GREG_STAT_RXTOHOST)
1990 		happy_meal_rx(hp, dev);
1991 
1992 	HMD("done\n");
1993 out:
1994 	spin_unlock(&hp->happy_lock);
1995 
1996 	return IRQ_HANDLED;
1997 }
1998 
1999 #ifdef CONFIG_SBUS
2000 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2001 {
2002 	struct quattro *qp = (struct quattro *) cookie;
2003 	int i;
2004 
2005 	for (i = 0; i < 4; i++) {
2006 		struct net_device *dev = qp->happy_meals[i];
2007 		struct happy_meal *hp  = netdev_priv(dev);
2008 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2009 
2010 		HMD("status=%08x\n", happy_status);
2011 
2012 		if (!(happy_status & (GREG_STAT_ERRORS |
2013 				      GREG_STAT_MIFIRQ |
2014 				      GREG_STAT_TXALL |
2015 				      GREG_STAT_RXTOHOST)))
2016 			continue;
2017 
2018 		spin_lock(&hp->happy_lock);
2019 
2020 		if (happy_status & GREG_STAT_ERRORS)
2021 			if (happy_meal_is_not_so_happy(hp, happy_status))
2022 				goto next;
2023 
2024 		if (happy_status & GREG_STAT_MIFIRQ)
2025 			happy_meal_mif_interrupt(hp);
2026 
2027 		if (happy_status & GREG_STAT_TXALL)
2028 			happy_meal_tx(hp);
2029 
2030 		if (happy_status & GREG_STAT_RXTOHOST)
2031 			happy_meal_rx(hp, dev);
2032 
2033 	next:
2034 		spin_unlock(&hp->happy_lock);
2035 	}
2036 	HMD("done\n");
2037 
2038 	return IRQ_HANDLED;
2039 }
2040 #endif
2041 
2042 static int happy_meal_open(struct net_device *dev)
2043 {
2044 	struct happy_meal *hp = netdev_priv(dev);
2045 	int res;
2046 
2047 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2048 	 * into a single source which we register handling at probe time.
2049 	 */
2050 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2051 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2052 				  dev->name, dev);
2053 		if (res) {
2054 			HMD("EAGAIN\n");
2055 			netdev_err(dev, "Can't order irq %d to go.\n", hp->irq);
2056 
2057 			return -EAGAIN;
2058 		}
2059 	}
2060 
2061 	HMD("to happy_meal_init\n");
2062 
2063 	spin_lock_irq(&hp->happy_lock);
2064 	res = happy_meal_init(hp);
2065 	spin_unlock_irq(&hp->happy_lock);
2066 
2067 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2068 		free_irq(hp->irq, dev);
2069 	return res;
2070 }
2071 
2072 static int happy_meal_close(struct net_device *dev)
2073 {
2074 	struct happy_meal *hp = netdev_priv(dev);
2075 
2076 	spin_lock_irq(&hp->happy_lock);
2077 	happy_meal_stop(hp, hp->gregs);
2078 	happy_meal_clean_rings(hp);
2079 
2080 	/* If auto-negotiation timer is running, kill it. */
2081 	del_timer(&hp->happy_timer);
2082 
2083 	spin_unlock_irq(&hp->happy_lock);
2084 
2085 	/* On Quattro QFE cards, all hme interrupts are concentrated
2086 	 * into a single source which we register handling at probe
2087 	 * time and never unregister.
2088 	 */
2089 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2090 		free_irq(hp->irq, dev);
2091 
2092 	return 0;
2093 }
2094 
2095 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2096 {
2097 	struct happy_meal *hp = netdev_priv(dev);
2098 
2099 	netdev_err(dev, "transmit timed out, resetting\n");
2100 	tx_dump_log();
2101 	netdev_err(dev, "Happy Status %08x TX[%08x:%08x]\n",
2102 		   hme_read32(hp, hp->gregs + GREG_STAT),
2103 		   hme_read32(hp, hp->etxregs + ETX_CFG),
2104 		   hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2105 
2106 	spin_lock_irq(&hp->happy_lock);
2107 	happy_meal_init(hp);
2108 	spin_unlock_irq(&hp->happy_lock);
2109 
2110 	netif_wake_queue(dev);
2111 }
2112 
2113 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2114 				 u32 first_len, u32 first_entry, u32 entry)
2115 {
2116 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2117 
2118 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2119 
2120 	first_entry = NEXT_TX(first_entry);
2121 	while (first_entry != entry) {
2122 		struct happy_meal_txd *this = &txbase[first_entry];
2123 		u32 addr, len;
2124 
2125 		addr = hme_read_desc32(hp, &this->tx_addr);
2126 		len = hme_read_desc32(hp, &this->tx_flags);
2127 		len &= TXFLAG_SIZE;
2128 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2129 	}
2130 }
2131 
2132 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2133 					 struct net_device *dev)
2134 {
2135 	struct happy_meal *hp = netdev_priv(dev);
2136 	int entry;
2137 	u32 tx_flags;
2138 
2139 	tx_flags = TXFLAG_OWN;
2140 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2142 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2143 
2144 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2145 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2146 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2147 	}
2148 
2149 	spin_lock_irq(&hp->happy_lock);
2150 
2151 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2152 		netif_stop_queue(dev);
2153 		spin_unlock_irq(&hp->happy_lock);
2154 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2155 		return NETDEV_TX_BUSY;
2156 	}
2157 
2158 	entry = hp->tx_new;
2159 	netdev_vdbg(dev, "SX<l[%d]e[%d]>\n", skb->len, entry);
2160 	hp->tx_skbs[entry] = skb;
2161 
2162 	if (skb_shinfo(skb)->nr_frags == 0) {
2163 		u32 mapping, len;
2164 
2165 		len = skb->len;
2166 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2167 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2168 			goto out_dma_error;
2169 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2170 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2171 			      (tx_flags | (len & TXFLAG_SIZE)),
2172 			      mapping);
2173 		entry = NEXT_TX(entry);
2174 	} else {
2175 		u32 first_len, first_mapping;
2176 		int frag, first_entry = entry;
2177 
2178 		/* We must give this initial chunk to the device last.
2179 		 * Otherwise we could race with the device.
2180 		 */
2181 		first_len = skb_headlen(skb);
2182 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2183 					       DMA_TO_DEVICE);
2184 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2185 			goto out_dma_error;
2186 		entry = NEXT_TX(entry);
2187 
2188 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2189 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2190 			u32 len, mapping, this_txflags;
2191 
2192 			len = skb_frag_size(this_frag);
2193 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2194 						   0, len, DMA_TO_DEVICE);
2195 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2196 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2197 						     first_entry, entry);
2198 				goto out_dma_error;
2199 			}
2200 			this_txflags = tx_flags;
2201 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2202 				this_txflags |= TXFLAG_EOP;
2203 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2204 				      (this_txflags | (len & TXFLAG_SIZE)),
2205 				      mapping);
2206 			entry = NEXT_TX(entry);
2207 		}
2208 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2209 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2210 			      first_mapping);
2211 	}
2212 
2213 	hp->tx_new = entry;
2214 
2215 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2216 		netif_stop_queue(dev);
2217 
2218 	/* Get it going. */
2219 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2220 
2221 	spin_unlock_irq(&hp->happy_lock);
2222 
2223 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2224 	return NETDEV_TX_OK;
2225 
2226 out_dma_error:
2227 	hp->tx_skbs[hp->tx_new] = NULL;
2228 	spin_unlock_irq(&hp->happy_lock);
2229 
2230 	dev_kfree_skb_any(skb);
2231 	dev->stats.tx_dropped++;
2232 	return NETDEV_TX_OK;
2233 }
2234 
2235 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2236 {
2237 	struct happy_meal *hp = netdev_priv(dev);
2238 
2239 	spin_lock_irq(&hp->happy_lock);
2240 	happy_meal_get_counters(hp, hp->bigmacregs);
2241 	spin_unlock_irq(&hp->happy_lock);
2242 
2243 	return &dev->stats;
2244 }
2245 
2246 static void happy_meal_set_multicast(struct net_device *dev)
2247 {
2248 	struct happy_meal *hp = netdev_priv(dev);
2249 	void __iomem *bregs = hp->bigmacregs;
2250 	struct netdev_hw_addr *ha;
2251 	u32 crc;
2252 
2253 	spin_lock_irq(&hp->happy_lock);
2254 
2255 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2256 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2257 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2258 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2259 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2260 	} else if (dev->flags & IFF_PROMISC) {
2261 		hme_write32(hp, bregs + BMAC_RXCFG,
2262 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2263 	} else {
2264 		u16 hash_table[4];
2265 
2266 		memset(hash_table, 0, sizeof(hash_table));
2267 		netdev_for_each_mc_addr(ha, dev) {
2268 			crc = ether_crc_le(6, ha->addr);
2269 			crc >>= 26;
2270 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2271 		}
2272 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2273 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2274 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2275 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2276 	}
2277 
2278 	spin_unlock_irq(&hp->happy_lock);
2279 }
2280 
2281 /* Ethtool support... */
2282 static int hme_get_link_ksettings(struct net_device *dev,
2283 				  struct ethtool_link_ksettings *cmd)
2284 {
2285 	struct happy_meal *hp = netdev_priv(dev);
2286 	u32 speed;
2287 	u32 supported;
2288 
2289 	supported =
2290 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2291 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2292 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2293 
2294 	/* XXX hardcoded stuff for now */
2295 	cmd->base.port = PORT_TP; /* XXX no MII support */
2296 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2297 
2298 	/* Record PHY settings. */
2299 	spin_lock_irq(&hp->happy_lock);
2300 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2301 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2302 	spin_unlock_irq(&hp->happy_lock);
2303 
2304 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2305 		cmd->base.autoneg = AUTONEG_ENABLE;
2306 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2307 			 SPEED_100 : SPEED_10);
2308 		if (speed == SPEED_100)
2309 			cmd->base.duplex =
2310 				(hp->sw_lpa & (LPA_100FULL)) ?
2311 				DUPLEX_FULL : DUPLEX_HALF;
2312 		else
2313 			cmd->base.duplex =
2314 				(hp->sw_lpa & (LPA_10FULL)) ?
2315 				DUPLEX_FULL : DUPLEX_HALF;
2316 	} else {
2317 		cmd->base.autoneg = AUTONEG_DISABLE;
2318 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2319 		cmd->base.duplex =
2320 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2321 			DUPLEX_FULL : DUPLEX_HALF;
2322 	}
2323 	cmd->base.speed = speed;
2324 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2325 						supported);
2326 
2327 	return 0;
2328 }
2329 
2330 static int hme_set_link_ksettings(struct net_device *dev,
2331 				  const struct ethtool_link_ksettings *cmd)
2332 {
2333 	struct happy_meal *hp = netdev_priv(dev);
2334 
2335 	/* Verify the settings we care about. */
2336 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2337 	    cmd->base.autoneg != AUTONEG_DISABLE)
2338 		return -EINVAL;
2339 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2340 	    ((cmd->base.speed != SPEED_100 &&
2341 	      cmd->base.speed != SPEED_10) ||
2342 	     (cmd->base.duplex != DUPLEX_HALF &&
2343 	      cmd->base.duplex != DUPLEX_FULL)))
2344 		return -EINVAL;
2345 
2346 	/* Ok, do it to it. */
2347 	spin_lock_irq(&hp->happy_lock);
2348 	del_timer(&hp->happy_timer);
2349 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2350 	spin_unlock_irq(&hp->happy_lock);
2351 
2352 	return 0;
2353 }
2354 
2355 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2356 {
2357 	struct happy_meal *hp = netdev_priv(dev);
2358 
2359 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2360 	if (hp->happy_flags & HFLAG_PCI) {
2361 		struct pci_dev *pdev = hp->happy_dev;
2362 		strscpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2363 	}
2364 #ifdef CONFIG_SBUS
2365 	else {
2366 		const struct linux_prom_registers *regs;
2367 		struct platform_device *op = hp->happy_dev;
2368 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2369 		if (regs)
2370 			snprintf(info->bus_info, sizeof(info->bus_info),
2371 				"SBUS:%d",
2372 				regs->which_io);
2373 	}
2374 #endif
2375 }
2376 
2377 static u32 hme_get_link(struct net_device *dev)
2378 {
2379 	struct happy_meal *hp = netdev_priv(dev);
2380 
2381 	spin_lock_irq(&hp->happy_lock);
2382 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2383 	spin_unlock_irq(&hp->happy_lock);
2384 
2385 	return hp->sw_bmsr & BMSR_LSTATUS;
2386 }
2387 
2388 static const struct ethtool_ops hme_ethtool_ops = {
2389 	.get_drvinfo		= hme_get_drvinfo,
2390 	.get_link		= hme_get_link,
2391 	.get_link_ksettings	= hme_get_link_ksettings,
2392 	.set_link_ksettings	= hme_set_link_ksettings,
2393 };
2394 
2395 #ifdef CONFIG_SBUS
2396 /* Given a happy meal sbus device, find it's quattro parent.
2397  * If none exist, allocate and return a new one.
2398  *
2399  * Return NULL on failure.
2400  */
2401 static struct quattro *quattro_sbus_find(struct platform_device *child)
2402 {
2403 	struct device *parent = child->dev.parent;
2404 	struct platform_device *op;
2405 	struct quattro *qp;
2406 
2407 	op = to_platform_device(parent);
2408 	qp = platform_get_drvdata(op);
2409 	if (qp)
2410 		return qp;
2411 
2412 	qp = kzalloc(sizeof(*qp), GFP_KERNEL);
2413 	if (!qp)
2414 		return NULL;
2415 
2416 	qp->quattro_dev = child;
2417 	qp->next = qfe_sbus_list;
2418 	qfe_sbus_list = qp;
2419 
2420 	platform_set_drvdata(op, qp);
2421 	return qp;
2422 }
2423 
2424 /* After all quattro cards have been probed, we call these functions
2425  * to register the IRQ handlers for the cards that have been
2426  * successfully probed and skip the cards that failed to initialize
2427  */
2428 static int __init quattro_sbus_register_irqs(void)
2429 {
2430 	struct quattro *qp;
2431 
2432 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2433 		struct platform_device *op = qp->quattro_dev;
2434 		int err, qfe_slot, skip = 0;
2435 
2436 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2437 			if (!qp->happy_meals[qfe_slot])
2438 				skip = 1;
2439 		}
2440 		if (skip)
2441 			continue;
2442 
2443 		err = request_irq(op->archdata.irqs[0],
2444 				  quattro_sbus_interrupt,
2445 				  IRQF_SHARED, "Quattro",
2446 				  qp);
2447 		if (err != 0) {
2448 			dev_err(&op->dev,
2449 				"Quattro HME: IRQ registration error %d.\n",
2450 				err);
2451 			return err;
2452 		}
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static void quattro_sbus_free_irqs(void)
2459 {
2460 	struct quattro *qp;
2461 
2462 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2463 		struct platform_device *op = qp->quattro_dev;
2464 		int qfe_slot, skip = 0;
2465 
2466 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2467 			if (!qp->happy_meals[qfe_slot])
2468 				skip = 1;
2469 		}
2470 		if (skip)
2471 			continue;
2472 
2473 		free_irq(op->archdata.irqs[0], qp);
2474 	}
2475 }
2476 #endif /* CONFIG_SBUS */
2477 
2478 #ifdef CONFIG_PCI
2479 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2480 {
2481 	int i;
2482 	struct pci_dev *bdev = pdev->bus->self;
2483 	struct quattro *qp;
2484 
2485 	if (!bdev)
2486 		return ERR_PTR(-ENODEV);
2487 
2488 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2489 		struct pci_dev *qpdev = qp->quattro_dev;
2490 
2491 		if (qpdev == bdev)
2492 			return qp;
2493 	}
2494 
2495 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2496 	if (!qp)
2497 		return ERR_PTR(-ENOMEM);
2498 
2499 	for (i = 0; i < 4; i++)
2500 		qp->happy_meals[i] = NULL;
2501 
2502 	qp->quattro_dev = bdev;
2503 	qp->next = qfe_pci_list;
2504 	qfe_pci_list = qp;
2505 
2506 	/* No range tricks necessary on PCI. */
2507 	qp->nranges = 0;
2508 	return qp;
2509 }
2510 #endif /* CONFIG_PCI */
2511 
2512 static const struct net_device_ops hme_netdev_ops = {
2513 	.ndo_open		= happy_meal_open,
2514 	.ndo_stop		= happy_meal_close,
2515 	.ndo_start_xmit		= happy_meal_start_xmit,
2516 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2517 	.ndo_get_stats		= happy_meal_get_stats,
2518 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2519 	.ndo_set_mac_address 	= eth_mac_addr,
2520 	.ndo_validate_addr	= eth_validate_addr,
2521 };
2522 
2523 #ifdef CONFIG_SBUS
2524 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2525 {
2526 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2527 	struct quattro *qp = NULL;
2528 	struct happy_meal *hp;
2529 	struct net_device *dev;
2530 	int i, qfe_slot = -1;
2531 	u8 addr[ETH_ALEN];
2532 	int err = -ENODEV;
2533 
2534 	sbus_dp = op->dev.parent->of_node;
2535 
2536 	/* We can match PCI devices too, do not accept those here. */
2537 	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2538 		return err;
2539 
2540 	if (is_qfe) {
2541 		qp = quattro_sbus_find(op);
2542 		if (qp == NULL)
2543 			goto err_out;
2544 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2545 			if (qp->happy_meals[qfe_slot] == NULL)
2546 				break;
2547 		if (qfe_slot == 4)
2548 			goto err_out;
2549 	}
2550 
2551 	err = -ENOMEM;
2552 	dev = alloc_etherdev(sizeof(struct happy_meal));
2553 	if (!dev)
2554 		goto err_out;
2555 	SET_NETDEV_DEV(dev, &op->dev);
2556 
2557 	/* If user did not specify a MAC address specifically, use
2558 	 * the Quattro local-mac-address property...
2559 	 */
2560 	for (i = 0; i < 6; i++) {
2561 		if (macaddr[i] != 0)
2562 			break;
2563 	}
2564 	if (i < 6) { /* a mac address was given */
2565 		for (i = 0; i < 6; i++)
2566 			addr[i] = macaddr[i];
2567 		eth_hw_addr_set(dev, addr);
2568 		macaddr[5]++;
2569 	} else {
2570 		const unsigned char *addr;
2571 		int len;
2572 
2573 		addr = of_get_property(dp, "local-mac-address", &len);
2574 
2575 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2576 			eth_hw_addr_set(dev, addr);
2577 		else
2578 			eth_hw_addr_set(dev, idprom->id_ethaddr);
2579 	}
2580 
2581 	hp = netdev_priv(dev);
2582 
2583 	hp->happy_dev = op;
2584 	hp->dma_dev = &op->dev;
2585 
2586 	spin_lock_init(&hp->happy_lock);
2587 
2588 	err = -ENODEV;
2589 	if (qp != NULL) {
2590 		hp->qfe_parent = qp;
2591 		hp->qfe_ent = qfe_slot;
2592 		qp->happy_meals[qfe_slot] = dev;
2593 	}
2594 
2595 	hp->gregs = of_ioremap(&op->resource[0], 0,
2596 			       GREG_REG_SIZE, "HME Global Regs");
2597 	if (!hp->gregs) {
2598 		dev_err(&op->dev, "Cannot map global registers.\n");
2599 		goto err_out_free_netdev;
2600 	}
2601 
2602 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2603 				 ETX_REG_SIZE, "HME TX Regs");
2604 	if (!hp->etxregs) {
2605 		dev_err(&op->dev, "Cannot map MAC TX registers.\n");
2606 		goto err_out_iounmap;
2607 	}
2608 
2609 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2610 				 ERX_REG_SIZE, "HME RX Regs");
2611 	if (!hp->erxregs) {
2612 		dev_err(&op->dev, "Cannot map MAC RX registers.\n");
2613 		goto err_out_iounmap;
2614 	}
2615 
2616 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2617 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2618 	if (!hp->bigmacregs) {
2619 		dev_err(&op->dev, "Cannot map BIGMAC registers.\n");
2620 		goto err_out_iounmap;
2621 	}
2622 
2623 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2624 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2625 	if (!hp->tcvregs) {
2626 		dev_err(&op->dev, "Cannot map TCVR registers.\n");
2627 		goto err_out_iounmap;
2628 	}
2629 
2630 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2631 	if (hp->hm_revision == 0xff)
2632 		hp->hm_revision = 0xa0;
2633 
2634 	/* Now enable the feature flags we can. */
2635 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2636 		hp->happy_flags = HFLAG_20_21;
2637 	else if (hp->hm_revision != 0xa0)
2638 		hp->happy_flags = HFLAG_NOT_A0;
2639 
2640 	if (qp != NULL)
2641 		hp->happy_flags |= HFLAG_QUATTRO;
2642 
2643 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2644 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2645 						 "burst-sizes", 0x00);
2646 
2647 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2648 					     PAGE_SIZE,
2649 					     &hp->hblock_dvma,
2650 					     GFP_ATOMIC);
2651 	err = -ENOMEM;
2652 	if (!hp->happy_block)
2653 		goto err_out_iounmap;
2654 
2655 	/* Force check of the link first time we are brought up. */
2656 	hp->linkcheck = 0;
2657 
2658 	/* Force timer state to 'asleep' with count of zero. */
2659 	hp->timer_state = asleep;
2660 	hp->timer_ticks = 0;
2661 
2662 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2663 
2664 	hp->dev = dev;
2665 	dev->netdev_ops = &hme_netdev_ops;
2666 	dev->watchdog_timeo = 5*HZ;
2667 	dev->ethtool_ops = &hme_ethtool_ops;
2668 
2669 	/* Happy Meal can do it all... */
2670 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2671 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2672 
2673 	hp->irq = op->archdata.irqs[0];
2674 
2675 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2676 	/* Hook up SBUS register/descriptor accessors. */
2677 	hp->read_desc32 = sbus_hme_read_desc32;
2678 	hp->write_txd = sbus_hme_write_txd;
2679 	hp->write_rxd = sbus_hme_write_rxd;
2680 	hp->read32 = sbus_hme_read32;
2681 	hp->write32 = sbus_hme_write32;
2682 #endif
2683 
2684 	/* Grrr, Happy Meal comes up by default not advertising
2685 	 * full duplex 100baseT capabilities, fix this.
2686 	 */
2687 	spin_lock_irq(&hp->happy_lock);
2688 	happy_meal_set_initial_advertisement(hp);
2689 	spin_unlock_irq(&hp->happy_lock);
2690 
2691 	err = register_netdev(hp->dev);
2692 	if (err) {
2693 		dev_err(&op->dev, "Cannot register net device, aborting.\n");
2694 		goto err_out_free_coherent;
2695 	}
2696 
2697 	platform_set_drvdata(op, hp);
2698 
2699 	if (qfe_slot != -1)
2700 		netdev_info(dev,
2701 			    "Quattro HME slot %d (SBUS) 10/100baseT Ethernet %pM\n",
2702 			    qfe_slot, dev->dev_addr);
2703 	else
2704 		netdev_info(dev, "HAPPY MEAL (SBUS) 10/100baseT Ethernet %pM\n",
2705 			    dev->dev_addr);
2706 
2707 	return 0;
2708 
2709 err_out_free_coherent:
2710 	dma_free_coherent(hp->dma_dev,
2711 			  PAGE_SIZE,
2712 			  hp->happy_block,
2713 			  hp->hblock_dvma);
2714 
2715 err_out_iounmap:
2716 	if (hp->gregs)
2717 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2718 	if (hp->etxregs)
2719 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2720 	if (hp->erxregs)
2721 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2722 	if (hp->bigmacregs)
2723 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2724 	if (hp->tcvregs)
2725 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2726 
2727 	if (qp)
2728 		qp->happy_meals[qfe_slot] = NULL;
2729 
2730 err_out_free_netdev:
2731 	free_netdev(dev);
2732 
2733 err_out:
2734 	return err;
2735 }
2736 #endif
2737 
2738 #ifdef CONFIG_PCI
2739 #ifndef CONFIG_SPARC
2740 static int is_quattro_p(struct pci_dev *pdev)
2741 {
2742 	struct pci_dev *busdev = pdev->bus->self;
2743 	struct pci_dev *this_pdev;
2744 	int n_hmes;
2745 
2746 	if (busdev == NULL ||
2747 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2748 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2749 		return 0;
2750 
2751 	n_hmes = 0;
2752 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2753 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2754 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2755 			n_hmes++;
2756 	}
2757 
2758 	if (n_hmes != 4)
2759 		return 0;
2760 
2761 	return 1;
2762 }
2763 
2764 /* Fetch MAC address from vital product data of PCI ROM. */
2765 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2766 {
2767 	int this_offset;
2768 
2769 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2770 		void __iomem *p = rom_base + this_offset;
2771 
2772 		if (readb(p + 0) != 0x90 ||
2773 		    readb(p + 1) != 0x00 ||
2774 		    readb(p + 2) != 0x09 ||
2775 		    readb(p + 3) != 0x4e ||
2776 		    readb(p + 4) != 0x41 ||
2777 		    readb(p + 5) != 0x06)
2778 			continue;
2779 
2780 		this_offset += 6;
2781 		p += 6;
2782 
2783 		if (index == 0) {
2784 			int i;
2785 
2786 			for (i = 0; i < 6; i++)
2787 				dev_addr[i] = readb(p + i);
2788 			return 1;
2789 		}
2790 		index--;
2791 	}
2792 	return 0;
2793 }
2794 
2795 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2796 {
2797 	size_t size;
2798 	void __iomem *p = pci_map_rom(pdev, &size);
2799 
2800 	if (p) {
2801 		int index = 0;
2802 		int found;
2803 
2804 		if (is_quattro_p(pdev))
2805 			index = PCI_SLOT(pdev->devfn);
2806 
2807 		found = readb(p) == 0x55 &&
2808 			readb(p + 1) == 0xaa &&
2809 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2810 		pci_unmap_rom(pdev, p);
2811 		if (found)
2812 			return;
2813 	}
2814 
2815 	/* Sun MAC prefix then 3 random bytes. */
2816 	dev_addr[0] = 0x08;
2817 	dev_addr[1] = 0x00;
2818 	dev_addr[2] = 0x20;
2819 	get_random_bytes(&dev_addr[3], 3);
2820 }
2821 #endif /* !(CONFIG_SPARC) */
2822 
2823 static int happy_meal_pci_probe(struct pci_dev *pdev,
2824 				const struct pci_device_id *ent)
2825 {
2826 	struct quattro *qp = NULL;
2827 #ifdef CONFIG_SPARC
2828 	struct device_node *dp;
2829 #endif
2830 	struct happy_meal *hp;
2831 	struct net_device *dev;
2832 	void __iomem *hpreg_base;
2833 	struct resource *hpreg_res;
2834 	int i, qfe_slot = -1;
2835 	char prom_name[64];
2836 	u8 addr[ETH_ALEN];
2837 	int err;
2838 
2839 	/* Now make sure pci_dev cookie is there. */
2840 #ifdef CONFIG_SPARC
2841 	dp = pci_device_to_OF_node(pdev);
2842 	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2843 #else
2844 	if (is_quattro_p(pdev))
2845 		strcpy(prom_name, "SUNW,qfe");
2846 	else
2847 		strcpy(prom_name, "SUNW,hme");
2848 #endif
2849 
2850 	err = pcim_enable_device(pdev);
2851 	if (err)
2852 		goto err_out;
2853 	pci_set_master(pdev);
2854 
2855 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2856 		qp = quattro_pci_find(pdev);
2857 		if (IS_ERR(qp)) {
2858 			err = PTR_ERR(qp);
2859 			goto err_out;
2860 		}
2861 
2862 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2863 			if (!qp->happy_meals[qfe_slot])
2864 				break;
2865 
2866 		if (qfe_slot == 4)
2867 			goto err_out;
2868 	}
2869 
2870 	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct happy_meal));
2871 	if (!dev) {
2872 		err = -ENOMEM;
2873 		goto err_out;
2874 	}
2875 	SET_NETDEV_DEV(dev, &pdev->dev);
2876 
2877 	hp = netdev_priv(dev);
2878 
2879 	hp->happy_dev = pdev;
2880 	hp->dma_dev = &pdev->dev;
2881 
2882 	spin_lock_init(&hp->happy_lock);
2883 
2884 	if (qp != NULL) {
2885 		hp->qfe_parent = qp;
2886 		hp->qfe_ent = qfe_slot;
2887 		qp->happy_meals[qfe_slot] = dev;
2888 	}
2889 
2890 	err = -EINVAL;
2891 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2892 		dev_err(&pdev->dev,
2893 			"Cannot find proper PCI device base address.\n");
2894 		goto err_out_clear_quattro;
2895 	}
2896 
2897 	hpreg_res = devm_request_region(&pdev->dev, pci_resource_start(pdev, 0),
2898 					pci_resource_len(pdev, 0), DRV_NAME);
2899 	if (!hpreg_res) {
2900 		err = -EBUSY;
2901 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
2902 		goto err_out_clear_quattro;
2903 	}
2904 
2905 	hpreg_base = pcim_iomap(pdev, 0, 0x8000);
2906 	if (!hpreg_base) {
2907 		err = -ENOMEM;
2908 		dev_err(&pdev->dev, "Unable to remap card memory.\n");
2909 		goto err_out_clear_quattro;
2910 	}
2911 
2912 	for (i = 0; i < 6; i++) {
2913 		if (macaddr[i] != 0)
2914 			break;
2915 	}
2916 	if (i < 6) { /* a mac address was given */
2917 		for (i = 0; i < 6; i++)
2918 			addr[i] = macaddr[i];
2919 		eth_hw_addr_set(dev, addr);
2920 		macaddr[5]++;
2921 	} else {
2922 #ifdef CONFIG_SPARC
2923 		const unsigned char *addr;
2924 		int len;
2925 
2926 		if (qfe_slot != -1 &&
2927 		    (addr = of_get_property(dp, "local-mac-address", &len))
2928 			!= NULL &&
2929 		    len == 6) {
2930 			eth_hw_addr_set(dev, addr);
2931 		} else {
2932 			eth_hw_addr_set(dev, idprom->id_ethaddr);
2933 		}
2934 #else
2935 		u8 addr[ETH_ALEN];
2936 
2937 		get_hme_mac_nonsparc(pdev, addr);
2938 		eth_hw_addr_set(dev, addr);
2939 #endif
2940 	}
2941 
2942 	/* Layout registers. */
2943 	hp->gregs      = (hpreg_base + 0x0000UL);
2944 	hp->etxregs    = (hpreg_base + 0x2000UL);
2945 	hp->erxregs    = (hpreg_base + 0x4000UL);
2946 	hp->bigmacregs = (hpreg_base + 0x6000UL);
2947 	hp->tcvregs    = (hpreg_base + 0x7000UL);
2948 
2949 #ifdef CONFIG_SPARC
2950 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2951 	if (hp->hm_revision == 0xff)
2952 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
2953 #else
2954 	/* works with this on non-sparc hosts */
2955 	hp->hm_revision = 0x20;
2956 #endif
2957 
2958 	/* Now enable the feature flags we can. */
2959 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2960 		hp->happy_flags = HFLAG_20_21;
2961 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
2962 		hp->happy_flags = HFLAG_NOT_A0;
2963 
2964 	if (qp != NULL)
2965 		hp->happy_flags |= HFLAG_QUATTRO;
2966 
2967 	/* And of course, indicate this is PCI. */
2968 	hp->happy_flags |= HFLAG_PCI;
2969 
2970 #ifdef CONFIG_SPARC
2971 	/* Assume PCI happy meals can handle all burst sizes. */
2972 	hp->happy_bursts = DMA_BURSTBITS;
2973 #endif
2974 
2975 	hp->happy_block = dmam_alloc_coherent(&pdev->dev, PAGE_SIZE,
2976 					      &hp->hblock_dvma, GFP_KERNEL);
2977 	if (!hp->happy_block) {
2978 		err = -ENOMEM;
2979 		goto err_out_clear_quattro;
2980 	}
2981 
2982 	hp->linkcheck = 0;
2983 	hp->timer_state = asleep;
2984 	hp->timer_ticks = 0;
2985 
2986 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2987 
2988 	hp->irq = pdev->irq;
2989 	hp->dev = dev;
2990 	dev->netdev_ops = &hme_netdev_ops;
2991 	dev->watchdog_timeo = 5*HZ;
2992 	dev->ethtool_ops = &hme_ethtool_ops;
2993 
2994 	/* Happy Meal can do it all... */
2995 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2996 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2997 
2998 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2999 	/* Hook up PCI register/descriptor accessors. */
3000 	hp->read_desc32 = pci_hme_read_desc32;
3001 	hp->write_txd = pci_hme_write_txd;
3002 	hp->write_rxd = pci_hme_write_rxd;
3003 	hp->read32 = pci_hme_read32;
3004 	hp->write32 = pci_hme_write32;
3005 #endif
3006 
3007 	/* Grrr, Happy Meal comes up by default not advertising
3008 	 * full duplex 100baseT capabilities, fix this.
3009 	 */
3010 	spin_lock_irq(&hp->happy_lock);
3011 	happy_meal_set_initial_advertisement(hp);
3012 	spin_unlock_irq(&hp->happy_lock);
3013 
3014 	err = devm_register_netdev(&pdev->dev, dev);
3015 	if (err) {
3016 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
3017 		goto err_out_clear_quattro;
3018 	}
3019 
3020 	pci_set_drvdata(pdev, hp);
3021 
3022 	if (!qfe_slot) {
3023 		struct pci_dev *qpdev = qp->quattro_dev;
3024 
3025 		prom_name[0] = 0;
3026 		if (!strncmp(dev->name, "eth", 3)) {
3027 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3028 			sprintf(prom_name, "-%d", i + 3);
3029 		}
3030 		netdev_info(dev,
3031 			    "%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet bridge %04x.%04x\n",
3032 			    prom_name, qpdev->vendor, qpdev->device);
3033 	}
3034 
3035 	if (qfe_slot != -1)
3036 		netdev_info(dev,
3037 			    "Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet %pM\n",
3038 			    qfe_slot, dev->dev_addr);
3039 	else
3040 		netdev_info(dev,
3041 			    "HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet %pM\n",
3042 			    dev->dev_addr);
3043 
3044 	return 0;
3045 
3046 err_out_clear_quattro:
3047 	if (qp != NULL)
3048 		qp->happy_meals[qfe_slot] = NULL;
3049 
3050 err_out:
3051 	return err;
3052 }
3053 
3054 static const struct pci_device_id happymeal_pci_ids[] = {
3055 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3056 	{ }			/* Terminating entry */
3057 };
3058 
3059 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3060 
3061 static struct pci_driver hme_pci_driver = {
3062 	.name		= "hme",
3063 	.id_table	= happymeal_pci_ids,
3064 	.probe		= happy_meal_pci_probe,
3065 };
3066 
3067 static int __init happy_meal_pci_init(void)
3068 {
3069 	return pci_register_driver(&hme_pci_driver);
3070 }
3071 
3072 static void happy_meal_pci_exit(void)
3073 {
3074 	pci_unregister_driver(&hme_pci_driver);
3075 
3076 	while (qfe_pci_list) {
3077 		struct quattro *qfe = qfe_pci_list;
3078 		struct quattro *next = qfe->next;
3079 
3080 		kfree(qfe);
3081 
3082 		qfe_pci_list = next;
3083 	}
3084 }
3085 
3086 #endif
3087 
3088 #ifdef CONFIG_SBUS
3089 static const struct of_device_id hme_sbus_match[];
3090 static int hme_sbus_probe(struct platform_device *op)
3091 {
3092 	const struct of_device_id *match;
3093 	struct device_node *dp = op->dev.of_node;
3094 	const char *model = of_get_property(dp, "model", NULL);
3095 	int is_qfe;
3096 
3097 	match = of_match_device(hme_sbus_match, &op->dev);
3098 	if (!match)
3099 		return -EINVAL;
3100 	is_qfe = (match->data != NULL);
3101 
3102 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3103 		is_qfe = 1;
3104 
3105 	return happy_meal_sbus_probe_one(op, is_qfe);
3106 }
3107 
3108 static int hme_sbus_remove(struct platform_device *op)
3109 {
3110 	struct happy_meal *hp = platform_get_drvdata(op);
3111 	struct net_device *net_dev = hp->dev;
3112 
3113 	unregister_netdev(net_dev);
3114 
3115 	/* XXX qfe parent interrupt... */
3116 
3117 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3118 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3119 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3120 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3121 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3122 	dma_free_coherent(hp->dma_dev,
3123 			  PAGE_SIZE,
3124 			  hp->happy_block,
3125 			  hp->hblock_dvma);
3126 
3127 	free_netdev(net_dev);
3128 
3129 	return 0;
3130 }
3131 
3132 static const struct of_device_id hme_sbus_match[] = {
3133 	{
3134 		.name = "SUNW,hme",
3135 	},
3136 	{
3137 		.name = "SUNW,qfe",
3138 		.data = (void *) 1,
3139 	},
3140 	{
3141 		.name = "qfe",
3142 		.data = (void *) 1,
3143 	},
3144 	{},
3145 };
3146 
3147 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3148 
3149 static struct platform_driver hme_sbus_driver = {
3150 	.driver = {
3151 		.name = "hme",
3152 		.of_match_table = hme_sbus_match,
3153 	},
3154 	.probe		= hme_sbus_probe,
3155 	.remove		= hme_sbus_remove,
3156 };
3157 
3158 static int __init happy_meal_sbus_init(void)
3159 {
3160 	int err;
3161 
3162 	err = platform_driver_register(&hme_sbus_driver);
3163 	if (!err)
3164 		err = quattro_sbus_register_irqs();
3165 
3166 	return err;
3167 }
3168 
3169 static void happy_meal_sbus_exit(void)
3170 {
3171 	platform_driver_unregister(&hme_sbus_driver);
3172 	quattro_sbus_free_irqs();
3173 
3174 	while (qfe_sbus_list) {
3175 		struct quattro *qfe = qfe_sbus_list;
3176 		struct quattro *next = qfe->next;
3177 
3178 		kfree(qfe);
3179 
3180 		qfe_sbus_list = next;
3181 	}
3182 }
3183 #endif
3184 
3185 static int __init happy_meal_probe(void)
3186 {
3187 	int err = 0;
3188 
3189 #ifdef CONFIG_SBUS
3190 	err = happy_meal_sbus_init();
3191 #endif
3192 #ifdef CONFIG_PCI
3193 	if (!err) {
3194 		err = happy_meal_pci_init();
3195 #ifdef CONFIG_SBUS
3196 		if (err)
3197 			happy_meal_sbus_exit();
3198 #endif
3199 	}
3200 #endif
3201 
3202 	return err;
3203 }
3204 
3205 
3206 static void __exit happy_meal_exit(void)
3207 {
3208 #ifdef CONFIG_SBUS
3209 	happy_meal_sbus_exit();
3210 #endif
3211 #ifdef CONFIG_PCI
3212 	happy_meal_pci_exit();
3213 #endif
3214 }
3215 
3216 module_init(happy_meal_probe);
3217 module_exit(happy_meal_exit);
3218