xref: /openbmc/linux/drivers/net/ethernet/sun/sunhme.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3  *           auto carrier detecting ethernet driver.  Also known as the
4  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5  *
6  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7  *		2006, 2008 David S. Miller (davem@davemloft.net)
8  *
9  * Changes :
10  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11  *   - port to non-sparc architectures. Tested only on x86 and
12  *     only currently works with QFE PCI cards.
13  *   - ability to specify the MAC address at module load time by passing this
14  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/mm.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
39 
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43 
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <linux/uaccess.h>
54 
55 #include <asm/pgtable.h>
56 #include <asm/irq.h>
57 
58 #ifdef CONFIG_PCI
59 #include <linux/pci.h>
60 #endif
61 
62 #include "sunhme.h"
63 
64 #define DRV_NAME	"sunhme"
65 #define DRV_VERSION	"3.10"
66 #define DRV_RELDATE	"August 26, 2008"
67 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
68 
69 static char version[] =
70 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71 
72 MODULE_VERSION(DRV_VERSION);
73 MODULE_AUTHOR(DRV_AUTHOR);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
76 
77 static int macaddr[6];
78 
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr, int, NULL, 0);
81 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
82 
83 #ifdef CONFIG_SBUS
84 static struct quattro *qfe_sbus_list;
85 #endif
86 
87 #ifdef CONFIG_PCI
88 static struct quattro *qfe_pci_list;
89 #endif
90 
91 #undef HMEDEBUG
92 #undef SXDEBUG
93 #undef RXDEBUG
94 #undef TXDEBUG
95 #undef TXLOGGING
96 
97 #ifdef TXLOGGING
98 struct hme_tx_logent {
99 	unsigned int tstamp;
100 	int tx_new, tx_old;
101 	unsigned int action;
102 #define TXLOG_ACTION_IRQ	0x01
103 #define TXLOG_ACTION_TXMIT	0x02
104 #define TXLOG_ACTION_TBUSY	0x04
105 #define TXLOG_ACTION_NBUFS	0x08
106 	unsigned int status;
107 };
108 #define TX_LOG_LEN	128
109 static struct hme_tx_logent tx_log[TX_LOG_LEN];
110 static int txlog_cur_entry;
111 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112 {
113 	struct hme_tx_logent *tlp;
114 	unsigned long flags;
115 
116 	local_irq_save(flags);
117 	tlp = &tx_log[txlog_cur_entry];
118 	tlp->tstamp = (unsigned int)jiffies;
119 	tlp->tx_new = hp->tx_new;
120 	tlp->tx_old = hp->tx_old;
121 	tlp->action = a;
122 	tlp->status = s;
123 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124 	local_irq_restore(flags);
125 }
126 static __inline__ void tx_dump_log(void)
127 {
128 	int i, this;
129 
130 	this = txlog_cur_entry;
131 	for (i = 0; i < TX_LOG_LEN; i++) {
132 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133 		       tx_log[this].tstamp,
134 		       tx_log[this].tx_new, tx_log[this].tx_old,
135 		       tx_log[this].action, tx_log[this].status);
136 		this = (this + 1) & (TX_LOG_LEN - 1);
137 	}
138 }
139 static __inline__ void tx_dump_ring(struct happy_meal *hp)
140 {
141 	struct hmeal_init_block *hb = hp->happy_block;
142 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
143 	int i;
144 
145 	for (i = 0; i < TX_RING_SIZE; i+=4) {
146 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 		       i, i + 4,
148 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
152 	}
153 }
154 #else
155 #define tx_add_log(hp, a, s)		do { } while(0)
156 #define tx_dump_log()			do { } while(0)
157 #define tx_dump_ring(hp)		do { } while(0)
158 #endif
159 
160 #ifdef HMEDEBUG
161 #define HMD(x)  printk x
162 #else
163 #define HMD(x)
164 #endif
165 
166 /* #define AUTO_SWITCH_DEBUG */
167 
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x)  printk x
170 #else
171 #define ASD(x)
172 #endif
173 
174 #define DEFAULT_IPG0      16 /* For lance-mode only */
175 #define DEFAULT_IPG1       8 /* For all modes */
176 #define DEFAULT_IPG2       4 /* For all modes */
177 #define DEFAULT_JAMSIZE    4 /* Toe jam */
178 
179 /* NOTE: In the descriptor writes one _must_ write the address
180  *	 member _first_.  The card must not be allowed to see
181  *	 the updated descriptor flags until the address is
182  *	 correct.  I've added a write memory barrier between
183  *	 the two stores so that I can sleep well at night... -DaveM
184  */
185 
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem *reg, u32 val)
188 {
189 	sbus_writel(val, reg);
190 }
191 
192 static u32 sbus_hme_read32(void __iomem *reg)
193 {
194 	return sbus_readl(reg);
195 }
196 
197 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198 {
199 	rxd->rx_addr = (__force hme32)addr;
200 	dma_wmb();
201 	rxd->rx_flags = (__force hme32)flags;
202 }
203 
204 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205 {
206 	txd->tx_addr = (__force hme32)addr;
207 	dma_wmb();
208 	txd->tx_flags = (__force hme32)flags;
209 }
210 
211 static u32 sbus_hme_read_desc32(hme32 *p)
212 {
213 	return (__force u32)*p;
214 }
215 
216 static void pci_hme_write32(void __iomem *reg, u32 val)
217 {
218 	writel(val, reg);
219 }
220 
221 static u32 pci_hme_read32(void __iomem *reg)
222 {
223 	return readl(reg);
224 }
225 
226 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227 {
228 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
229 	dma_wmb();
230 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
231 }
232 
233 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234 {
235 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
236 	dma_wmb();
237 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
238 }
239 
240 static u32 pci_hme_read_desc32(hme32 *p)
241 {
242 	return le32_to_cpup((__le32 *)p);
243 }
244 
245 #define hme_write32(__hp, __reg, __val) \
246 	((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 	((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 	((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 	((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
263 #else
264 #ifdef CONFIG_SBUS
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 	sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
269 	sbus_readl(__reg)
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 	dma_wmb(); \
273 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274 } while(0)
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 	dma_wmb(); \
278 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279 } while(0)
280 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289 #else
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 	writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
294 	readl(__reg)
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 	dma_wmb(); \
298 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299 } while(0)
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 	dma_wmb(); \
303 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304 } while(0)
305 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
306 {
307 	return le32_to_cpup((__le32 *)p);
308 }
309 #define hme_dma_map(__hp, __ptr, __size, __dir) \
310 	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
317 #endif
318 #endif
319 
320 
321 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
322 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
323 {
324 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
327 }
328 
329 #if 0
330 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
331 {
332 	u32 ret;
333 
334 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
335 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
336 	ret = hme_read32(hp, tregs + TCVR_CFG);
337 	if (internal)
338 		ret &= TCV_CFG_MDIO0;
339 	else
340 		ret &= TCV_CFG_MDIO1;
341 
342 	return ret;
343 }
344 #endif
345 
346 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
347 {
348 	u32 retval;
349 
350 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 	udelay(1);
352 	retval = hme_read32(hp, tregs + TCVR_CFG);
353 	if (internal)
354 		retval &= TCV_CFG_MDIO0;
355 	else
356 		retval &= TCV_CFG_MDIO1;
357 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
358 
359 	return retval;
360 }
361 
362 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
363 
364 static int happy_meal_bb_read(struct happy_meal *hp,
365 			      void __iomem *tregs, int reg)
366 {
367 	u32 tmp;
368 	int retval = 0;
369 	int i;
370 
371 	ASD(("happy_meal_bb_read: reg=%d ", reg));
372 
373 	/* Enable the MIF BitBang outputs. */
374 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
375 
376 	/* Force BitBang into the idle state. */
377 	for (i = 0; i < 32; i++)
378 		BB_PUT_BIT(hp, tregs, 1);
379 
380 	/* Give it the read sequence. */
381 	BB_PUT_BIT(hp, tregs, 0);
382 	BB_PUT_BIT(hp, tregs, 1);
383 	BB_PUT_BIT(hp, tregs, 1);
384 	BB_PUT_BIT(hp, tregs, 0);
385 
386 	/* Give it the PHY address. */
387 	tmp = hp->paddr & 0xff;
388 	for (i = 4; i >= 0; i--)
389 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
390 
391 	/* Tell it what register we want to read. */
392 	tmp = (reg & 0xff);
393 	for (i = 4; i >= 0; i--)
394 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
395 
396 	/* Close down the MIF BitBang outputs. */
397 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
398 
399 	/* Now read in the value. */
400 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
401 	for (i = 15; i >= 0; i--)
402 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
406 	ASD(("value=%x\n", retval));
407 	return retval;
408 }
409 
410 static void happy_meal_bb_write(struct happy_meal *hp,
411 				void __iomem *tregs, int reg,
412 				unsigned short value)
413 {
414 	u32 tmp;
415 	int i;
416 
417 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
418 
419 	/* Enable the MIF BitBang outputs. */
420 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
421 
422 	/* Force BitBang into the idle state. */
423 	for (i = 0; i < 32; i++)
424 		BB_PUT_BIT(hp, tregs, 1);
425 
426 	/* Give it write sequence. */
427 	BB_PUT_BIT(hp, tregs, 0);
428 	BB_PUT_BIT(hp, tregs, 1);
429 	BB_PUT_BIT(hp, tregs, 0);
430 	BB_PUT_BIT(hp, tregs, 1);
431 
432 	/* Give it the PHY address. */
433 	tmp = (hp->paddr & 0xff);
434 	for (i = 4; i >= 0; i--)
435 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
436 
437 	/* Tell it what register we will be writing. */
438 	tmp = (reg & 0xff);
439 	for (i = 4; i >= 0; i--)
440 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
441 
442 	/* Tell it to become ready for the bits. */
443 	BB_PUT_BIT(hp, tregs, 1);
444 	BB_PUT_BIT(hp, tregs, 0);
445 
446 	for (i = 15; i >= 0; i--)
447 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
448 
449 	/* Close down the MIF BitBang outputs. */
450 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
451 }
452 
453 #define TCVR_READ_TRIES   16
454 
455 static int happy_meal_tcvr_read(struct happy_meal *hp,
456 				void __iomem *tregs, int reg)
457 {
458 	int tries = TCVR_READ_TRIES;
459 	int retval;
460 
461 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
462 	if (hp->tcvr_type == none) {
463 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
464 		return TCVR_FAILURE;
465 	}
466 
467 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
468 		ASD(("doing bit bang\n"));
469 		return happy_meal_bb_read(hp, tregs, reg);
470 	}
471 
472 	hme_write32(hp, tregs + TCVR_FRAME,
473 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
474 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
475 		udelay(20);
476 	if (!tries) {
477 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
478 		return TCVR_FAILURE;
479 	}
480 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
481 	ASD(("value=%04x\n", retval));
482 	return retval;
483 }
484 
485 #define TCVR_WRITE_TRIES  16
486 
487 static void happy_meal_tcvr_write(struct happy_meal *hp,
488 				  void __iomem *tregs, int reg,
489 				  unsigned short value)
490 {
491 	int tries = TCVR_WRITE_TRIES;
492 
493 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
494 
495 	/* Welcome to Sun Microsystems, can I take your order please? */
496 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
497 		happy_meal_bb_write(hp, tregs, reg, value);
498 		return;
499 	}
500 
501 	/* Would you like fries with that? */
502 	hme_write32(hp, tregs + TCVR_FRAME,
503 		    (FRAME_WRITE | (hp->paddr << 23) |
504 		     ((reg & 0xff) << 18) | (value & 0xffff)));
505 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
506 		udelay(20);
507 
508 	/* Anything else? */
509 	if (!tries)
510 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
511 
512 	/* Fifty-two cents is your change, have a nice day. */
513 }
514 
515 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
516  * that keeps watching the auto negotiation process as it progresses.
517  * The DP83840 is first told to start doing it's thing, we set up the time
518  * and place the timer state machine in it's initial state.
519  *
520  * Here the timer peeks at the DP83840 status registers at each click to see
521  * if the auto negotiation has completed, we assume here that the DP83840 PHY
522  * will time out at some point and just tell us what (didn't) happen.  For
523  * complete coverage we only allow so many of the ticks at this level to run,
524  * when this has expired we print a warning message and try another strategy.
525  * This "other" strategy is to force the interface into various speed/duplex
526  * configurations and we stop when we see a link-up condition before the
527  * maximum number of "peek" ticks have occurred.
528  *
529  * Once a valid link status has been detected we configure the BigMAC and
530  * the rest of the Happy Meal to speak the most efficient protocol we could
531  * get a clean link for.  The priority for link configurations, highest first
532  * is:
533  *                 100 Base-T Full Duplex
534  *                 100 Base-T Half Duplex
535  *                 10 Base-T Full Duplex
536  *                 10 Base-T Half Duplex
537  *
538  * We start a new timer now, after a successful auto negotiation status has
539  * been detected.  This timer just waits for the link-up bit to get set in
540  * the BMCR of the DP83840.  When this occurs we print a kernel log message
541  * describing the link type in use and the fact that it is up.
542  *
543  * If a fatal error of some sort is signalled and detected in the interrupt
544  * service routine, and the chip is reset, or the link is ifconfig'd down
545  * and then back up, this entire process repeats itself all over again.
546  */
547 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
548 {
549 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
550 
551 	/* Downgrade from full to half duplex.  Only possible
552 	 * via ethtool.
553 	 */
554 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
555 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
556 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
557 		return 0;
558 	}
559 
560 	/* Downgrade from 100 to 10. */
561 	if (hp->sw_bmcr & BMCR_SPEED100) {
562 		hp->sw_bmcr &= ~(BMCR_SPEED100);
563 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
564 		return 0;
565 	}
566 
567 	/* We've tried everything. */
568 	return -1;
569 }
570 
571 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
572 {
573 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
574 	if (hp->tcvr_type == external)
575 		printk("external ");
576 	else
577 		printk("internal ");
578 	printk("transceiver at ");
579 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
580 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
581 		if (hp->sw_lpa & LPA_100FULL)
582 			printk("100Mb/s, Full Duplex.\n");
583 		else
584 			printk("100Mb/s, Half Duplex.\n");
585 	} else {
586 		if (hp->sw_lpa & LPA_10FULL)
587 			printk("10Mb/s, Full Duplex.\n");
588 		else
589 			printk("10Mb/s, Half Duplex.\n");
590 	}
591 }
592 
593 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
594 {
595 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
596 	if (hp->tcvr_type == external)
597 		printk("external ");
598 	else
599 		printk("internal ");
600 	printk("transceiver at ");
601 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
602 	if (hp->sw_bmcr & BMCR_SPEED100)
603 		printk("100Mb/s, ");
604 	else
605 		printk("10Mb/s, ");
606 	if (hp->sw_bmcr & BMCR_FULLDPLX)
607 		printk("Full Duplex.\n");
608 	else
609 		printk("Half Duplex.\n");
610 }
611 
612 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
613 {
614 	int full;
615 
616 	/* All we care about is making sure the bigmac tx_cfg has a
617 	 * proper duplex setting.
618 	 */
619 	if (hp->timer_state == arbwait) {
620 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
621 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
622 			goto no_response;
623 		if (hp->sw_lpa & LPA_100FULL)
624 			full = 1;
625 		else if (hp->sw_lpa & LPA_100HALF)
626 			full = 0;
627 		else if (hp->sw_lpa & LPA_10FULL)
628 			full = 1;
629 		else
630 			full = 0;
631 	} else {
632 		/* Forcing a link mode. */
633 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
634 		if (hp->sw_bmcr & BMCR_FULLDPLX)
635 			full = 1;
636 		else
637 			full = 0;
638 	}
639 
640 	/* Before changing other bits in the tx_cfg register, and in
641 	 * general any of other the TX config registers too, you
642 	 * must:
643 	 * 1) Clear Enable
644 	 * 2) Poll with reads until that bit reads back as zero
645 	 * 3) Make TX configuration changes
646 	 * 4) Set Enable once more
647 	 */
648 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
649 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
650 		    ~(BIGMAC_TXCFG_ENABLE));
651 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
652 		barrier();
653 	if (full) {
654 		hp->happy_flags |= HFLAG_FULL;
655 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
656 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
657 			    BIGMAC_TXCFG_FULLDPLX);
658 	} else {
659 		hp->happy_flags &= ~(HFLAG_FULL);
660 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
661 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
662 			    ~(BIGMAC_TXCFG_FULLDPLX));
663 	}
664 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
666 		    BIGMAC_TXCFG_ENABLE);
667 	return 0;
668 no_response:
669 	return 1;
670 }
671 
672 static int happy_meal_init(struct happy_meal *hp);
673 
674 static int is_lucent_phy(struct happy_meal *hp)
675 {
676 	void __iomem *tregs = hp->tcvregs;
677 	unsigned short mr2, mr3;
678 	int ret = 0;
679 
680 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
681 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
682 	if ((mr2 & 0xffff) == 0x0180 &&
683 	    ((mr3 & 0xffff) >> 10) == 0x1d)
684 		ret = 1;
685 
686 	return ret;
687 }
688 
689 static void happy_meal_timer(struct timer_list *t)
690 {
691 	struct happy_meal *hp = from_timer(hp, t, happy_timer);
692 	void __iomem *tregs = hp->tcvregs;
693 	int restart_timer = 0;
694 
695 	spin_lock_irq(&hp->happy_lock);
696 
697 	hp->timer_ticks++;
698 	switch(hp->timer_state) {
699 	case arbwait:
700 		/* Only allow for 5 ticks, thats 10 seconds and much too
701 		 * long to wait for arbitration to complete.
702 		 */
703 		if (hp->timer_ticks >= 10) {
704 			/* Enter force mode. */
705 	do_force_mode:
706 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
707 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 			       hp->dev->name);
709 			hp->sw_bmcr = BMCR_SPEED100;
710 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
711 
712 			if (!is_lucent_phy(hp)) {
713 				/* OK, seems we need do disable the transceiver for the first
714 				 * tick to make sure we get an accurate link state at the
715 				 * second tick.
716 				 */
717 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
718 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
719 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
720 			}
721 			hp->timer_state = ltrywait;
722 			hp->timer_ticks = 0;
723 			restart_timer = 1;
724 		} else {
725 			/* Anything interesting happen? */
726 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
727 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
728 				int ret;
729 
730 				/* Just what we've been waiting for... */
731 				ret = set_happy_link_modes(hp, tregs);
732 				if (ret) {
733 					/* Ooops, something bad happened, go to force
734 					 * mode.
735 					 *
736 					 * XXX Broken hubs which don't support 802.3u
737 					 * XXX auto-negotiation make this happen as well.
738 					 */
739 					goto do_force_mode;
740 				}
741 
742 				/* Success, at least so far, advance our state engine. */
743 				hp->timer_state = lupwait;
744 				restart_timer = 1;
745 			} else {
746 				restart_timer = 1;
747 			}
748 		}
749 		break;
750 
751 	case lupwait:
752 		/* Auto negotiation was successful and we are awaiting a
753 		 * link up status.  I have decided to let this timer run
754 		 * forever until some sort of error is signalled, reporting
755 		 * a message to the user at 10 second intervals.
756 		 */
757 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
758 		if (hp->sw_bmsr & BMSR_LSTATUS) {
759 			/* Wheee, it's up, display the link mode in use and put
760 			 * the timer to sleep.
761 			 */
762 			display_link_mode(hp, tregs);
763 			hp->timer_state = asleep;
764 			restart_timer = 0;
765 		} else {
766 			if (hp->timer_ticks >= 10) {
767 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
768 				       "not completely up.\n", hp->dev->name);
769 				hp->timer_ticks = 0;
770 				restart_timer = 1;
771 			} else {
772 				restart_timer = 1;
773 			}
774 		}
775 		break;
776 
777 	case ltrywait:
778 		/* Making the timeout here too long can make it take
779 		 * annoyingly long to attempt all of the link mode
780 		 * permutations, but then again this is essentially
781 		 * error recovery code for the most part.
782 		 */
783 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
784 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
785 		if (hp->timer_ticks == 1) {
786 			if (!is_lucent_phy(hp)) {
787 				/* Re-enable transceiver, we'll re-enable the transceiver next
788 				 * tick, then check link state on the following tick.
789 				 */
790 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
791 				happy_meal_tcvr_write(hp, tregs,
792 						      DP83840_CSCONFIG, hp->sw_csconfig);
793 			}
794 			restart_timer = 1;
795 			break;
796 		}
797 		if (hp->timer_ticks == 2) {
798 			if (!is_lucent_phy(hp)) {
799 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
800 				happy_meal_tcvr_write(hp, tregs,
801 						      DP83840_CSCONFIG, hp->sw_csconfig);
802 			}
803 			restart_timer = 1;
804 			break;
805 		}
806 		if (hp->sw_bmsr & BMSR_LSTATUS) {
807 			/* Force mode selection success. */
808 			display_forced_link_mode(hp, tregs);
809 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
810 			hp->timer_state = asleep;
811 			restart_timer = 0;
812 		} else {
813 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
814 				int ret;
815 
816 				ret = try_next_permutation(hp, tregs);
817 				if (ret == -1) {
818 					/* Aieee, tried them all, reset the
819 					 * chip and try all over again.
820 					 */
821 
822 					/* Let the user know... */
823 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
824 					       hp->dev->name);
825 
826 					ret = happy_meal_init(hp);
827 					if (ret) {
828 						/* ho hum... */
829 						printk(KERN_ERR "%s: Error, cannot re-init the "
830 						       "Happy Meal.\n", hp->dev->name);
831 					}
832 					goto out;
833 				}
834 				if (!is_lucent_phy(hp)) {
835 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
836 									       DP83840_CSCONFIG);
837 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
838 					happy_meal_tcvr_write(hp, tregs,
839 							      DP83840_CSCONFIG, hp->sw_csconfig);
840 				}
841 				hp->timer_ticks = 0;
842 				restart_timer = 1;
843 			} else {
844 				restart_timer = 1;
845 			}
846 		}
847 		break;
848 
849 	case asleep:
850 	default:
851 		/* Can't happens.... */
852 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
853 		       hp->dev->name);
854 		restart_timer = 0;
855 		hp->timer_ticks = 0;
856 		hp->timer_state = asleep; /* foo on you */
857 		break;
858 	}
859 
860 	if (restart_timer) {
861 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
862 		add_timer(&hp->happy_timer);
863 	}
864 
865 out:
866 	spin_unlock_irq(&hp->happy_lock);
867 }
868 
869 #define TX_RESET_TRIES     32
870 #define RX_RESET_TRIES     32
871 
872 /* hp->happy_lock must be held */
873 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
874 {
875 	int tries = TX_RESET_TRIES;
876 
877 	HMD(("happy_meal_tx_reset: reset, "));
878 
879 	/* Would you like to try our SMCC Delux? */
880 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
881 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
882 		udelay(20);
883 
884 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
885 	if (!tries)
886 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
887 
888 	/* Take care. */
889 	HMD(("done\n"));
890 }
891 
892 /* hp->happy_lock must be held */
893 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
894 {
895 	int tries = RX_RESET_TRIES;
896 
897 	HMD(("happy_meal_rx_reset: reset, "));
898 
899 	/* We have a special on GNU/Viking hardware bugs today. */
900 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
901 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
902 		udelay(20);
903 
904 	/* Will that be all? */
905 	if (!tries)
906 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
907 
908 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
909 	HMD(("done\n"));
910 }
911 
912 #define STOP_TRIES         16
913 
914 /* hp->happy_lock must be held */
915 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
916 {
917 	int tries = STOP_TRIES;
918 
919 	HMD(("happy_meal_stop: reset, "));
920 
921 	/* We're consolidating our STB products, it's your lucky day. */
922 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
923 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
924 		udelay(20);
925 
926 	/* Come back next week when we are "Sun Microelectronics". */
927 	if (!tries)
928 		printk(KERN_ERR "happy meal: Fry guys.");
929 
930 	/* Remember: "Different name, same old buggy as shit hardware." */
931 	HMD(("done\n"));
932 }
933 
934 /* hp->happy_lock must be held */
935 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
936 {
937 	struct net_device_stats *stats = &hp->dev->stats;
938 
939 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
940 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
941 
942 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
943 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
944 
945 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
946 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
947 
948 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
949 
950 	stats->collisions +=
951 		(hme_read32(hp, bregs + BMAC_EXCTR) +
952 		 hme_read32(hp, bregs + BMAC_LTCTR));
953 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
954 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
955 }
956 
957 /* hp->happy_lock must be held */
958 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
959 {
960 	ASD(("happy_meal_poll_stop: "));
961 
962 	/* If polling disabled or not polling already, nothing to do. */
963 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
964 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
965 		HMD(("not polling, return\n"));
966 		return;
967 	}
968 
969 	/* Shut up the MIF. */
970 	ASD(("were polling, mif ints off, "));
971 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
972 
973 	/* Turn off polling. */
974 	ASD(("polling off, "));
975 	hme_write32(hp, tregs + TCVR_CFG,
976 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
977 
978 	/* We are no longer polling. */
979 	hp->happy_flags &= ~(HFLAG_POLL);
980 
981 	/* Let the bits set. */
982 	udelay(200);
983 	ASD(("done\n"));
984 }
985 
986 /* Only Sun can take such nice parts and fuck up the programming interface
987  * like this.  Good job guys...
988  */
989 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
990 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
991 
992 /* hp->happy_lock must be held */
993 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
994 {
995 	u32 tconfig;
996 	int result, tries = TCVR_RESET_TRIES;
997 
998 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
999 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000 	if (hp->tcvr_type == external) {
1001 		ASD(("external<"));
1002 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003 		hp->tcvr_type = internal;
1004 		hp->paddr = TCV_PADDR_ITX;
1005 		ASD(("ISOLATE,"));
1006 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009 		if (result == TCVR_FAILURE) {
1010 			ASD(("phyread_fail>\n"));
1011 			return -1;
1012 		}
1013 		ASD(("phyread_ok,PSELECT>"));
1014 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015 		hp->tcvr_type = external;
1016 		hp->paddr = TCV_PADDR_ETX;
1017 	} else {
1018 		if (tconfig & TCV_CFG_MDIO1) {
1019 			ASD(("internal<PSELECT,"));
1020 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021 			ASD(("ISOLATE,"));
1022 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025 			if (result == TCVR_FAILURE) {
1026 				ASD(("phyread_fail>\n"));
1027 				return -1;
1028 			}
1029 			ASD(("phyread_ok,~PSELECT>"));
1030 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031 			hp->tcvr_type = internal;
1032 			hp->paddr = TCV_PADDR_ITX;
1033 		}
1034 	}
1035 
1036 	ASD(("BMCR_RESET "));
1037 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038 
1039 	while (--tries) {
1040 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041 		if (result == TCVR_FAILURE)
1042 			return -1;
1043 		hp->sw_bmcr = result;
1044 		if (!(result & BMCR_RESET))
1045 			break;
1046 		udelay(20);
1047 	}
1048 	if (!tries) {
1049 		ASD(("BMCR RESET FAILED!\n"));
1050 		return -1;
1051 	}
1052 	ASD(("RESET_OK\n"));
1053 
1054 	/* Get fresh copies of the PHY registers. */
1055 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059 
1060 	ASD(("UNISOLATE"));
1061 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063 
1064 	tries = TCVR_UNISOLATE_TRIES;
1065 	while (--tries) {
1066 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067 		if (result == TCVR_FAILURE)
1068 			return -1;
1069 		if (!(result & BMCR_ISOLATE))
1070 			break;
1071 		udelay(20);
1072 	}
1073 	if (!tries) {
1074 		ASD((" FAILED!\n"));
1075 		return -1;
1076 	}
1077 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 	if (!is_lucent_phy(hp)) {
1079 		result = happy_meal_tcvr_read(hp, tregs,
1080 					      DP83840_CSCONFIG);
1081 		happy_meal_tcvr_write(hp, tregs,
1082 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083 	}
1084 	return 0;
1085 }
1086 
1087 /* Figure out whether we have an internal or external transceiver.
1088  *
1089  * hp->happy_lock must be held
1090  */
1091 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092 {
1093 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094 
1095 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096 	if (hp->happy_flags & HFLAG_POLL) {
1097 		/* If we are polling, we must stop to get the transceiver type. */
1098 		ASD(("<polling> "));
1099 		if (hp->tcvr_type == internal) {
1100 			if (tconfig & TCV_CFG_MDIO1) {
1101 				ASD(("<internal> <poll stop> "));
1102 				happy_meal_poll_stop(hp, tregs);
1103 				hp->paddr = TCV_PADDR_ETX;
1104 				hp->tcvr_type = external;
1105 				ASD(("<external>\n"));
1106 				tconfig &= ~(TCV_CFG_PENABLE);
1107 				tconfig |= TCV_CFG_PSELECT;
1108 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109 			}
1110 		} else {
1111 			if (hp->tcvr_type == external) {
1112 				ASD(("<external> "));
1113 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114 					ASD(("<poll stop> "));
1115 					happy_meal_poll_stop(hp, tregs);
1116 					hp->paddr = TCV_PADDR_ITX;
1117 					hp->tcvr_type = internal;
1118 					ASD(("<internal>\n"));
1119 					hme_write32(hp, tregs + TCVR_CFG,
1120 						    hme_read32(hp, tregs + TCVR_CFG) &
1121 						    ~(TCV_CFG_PSELECT));
1122 				}
1123 				ASD(("\n"));
1124 			} else {
1125 				ASD(("<none>\n"));
1126 			}
1127 		}
1128 	} else {
1129 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130 
1131 		/* Else we can just work off of the MDIO bits. */
1132 		ASD(("<not polling> "));
1133 		if (reread & TCV_CFG_MDIO1) {
1134 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135 			hp->paddr = TCV_PADDR_ETX;
1136 			hp->tcvr_type = external;
1137 			ASD(("<external>\n"));
1138 		} else {
1139 			if (reread & TCV_CFG_MDIO0) {
1140 				hme_write32(hp, tregs + TCVR_CFG,
1141 					    tconfig & ~(TCV_CFG_PSELECT));
1142 				hp->paddr = TCV_PADDR_ITX;
1143 				hp->tcvr_type = internal;
1144 				ASD(("<internal>\n"));
1145 			} else {
1146 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147 				hp->tcvr_type = none; /* Grrr... */
1148 				ASD(("<none>\n"));
1149 			}
1150 		}
1151 	}
1152 }
1153 
1154 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1155  *
1156  * The buffers we dma into must be 64 byte aligned.  So we use a special
1157  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158  * we really need.
1159  *
1160  * We use skb_reserve() to align the data block we get in the skb.  We
1161  * also program the etxregs->cfg register to use an offset of 2.  This
1162  * imperical constant plus the ethernet header size will always leave
1163  * us with a nicely aligned ip header once we pass things up to the
1164  * protocol layers.
1165  *
1166  * The numbers work out to:
1167  *
1168  *         Max ethernet frame size         1518
1169  *         Ethernet header size              14
1170  *         Happy Meal base offset             2
1171  *
1172  * Say a skb data area is at 0xf001b010, and its size alloced is
1173  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174  *
1175  * First our alloc_skb() routine aligns the data base to a 64 byte
1176  * boundary.  We now have 0xf001b040 as our skb data address.  We
1177  * plug this into the receive descriptor address.
1178  *
1179  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180  * So now the data we will end up looking at starts at 0xf001b042.  When
1181  * the packet arrives, we will check out the size received and subtract
1182  * this from the skb->length.  Then we just pass the packet up to the
1183  * protocols as is, and allocate a new skb to replace this slot we have
1184  * just received from.
1185  *
1186  * The ethernet layer will strip the ether header from the front of the
1187  * skb we just sent to it, this leaves us with the ip header sitting
1188  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1189  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1190  * bit checksum is obtained from the low bits of the receive descriptor
1191  * flags, thus:
1192  *
1193  * 	skb->csum = rxd->rx_flags & 0xffff;
1194  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1195  *
1196  * before sending off the skb to the protocols, and we are good as gold.
1197  */
1198 static void happy_meal_clean_rings(struct happy_meal *hp)
1199 {
1200 	int i;
1201 
1202 	for (i = 0; i < RX_RING_SIZE; i++) {
1203 		if (hp->rx_skbs[i] != NULL) {
1204 			struct sk_buff *skb = hp->rx_skbs[i];
1205 			struct happy_meal_rxd *rxd;
1206 			u32 dma_addr;
1207 
1208 			rxd = &hp->happy_block->happy_meal_rxd[i];
1209 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210 			dma_unmap_single(hp->dma_dev, dma_addr,
1211 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212 			dev_kfree_skb_any(skb);
1213 			hp->rx_skbs[i] = NULL;
1214 		}
1215 	}
1216 
1217 	for (i = 0; i < TX_RING_SIZE; i++) {
1218 		if (hp->tx_skbs[i] != NULL) {
1219 			struct sk_buff *skb = hp->tx_skbs[i];
1220 			struct happy_meal_txd *txd;
1221 			u32 dma_addr;
1222 			int frag;
1223 
1224 			hp->tx_skbs[i] = NULL;
1225 
1226 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227 				txd = &hp->happy_block->happy_meal_txd[i];
1228 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229 				if (!frag)
1230 					dma_unmap_single(hp->dma_dev, dma_addr,
1231 							 (hme_read_desc32(hp, &txd->tx_flags)
1232 							  & TXFLAG_SIZE),
1233 							 DMA_TO_DEVICE);
1234 				else
1235 					dma_unmap_page(hp->dma_dev, dma_addr,
1236 							 (hme_read_desc32(hp, &txd->tx_flags)
1237 							  & TXFLAG_SIZE),
1238 							 DMA_TO_DEVICE);
1239 
1240 				if (frag != skb_shinfo(skb)->nr_frags)
1241 					i++;
1242 			}
1243 
1244 			dev_kfree_skb_any(skb);
1245 		}
1246 	}
1247 }
1248 
1249 /* hp->happy_lock must be held */
1250 static void happy_meal_init_rings(struct happy_meal *hp)
1251 {
1252 	struct hmeal_init_block *hb = hp->happy_block;
1253 	int i;
1254 
1255 	HMD(("happy_meal_init_rings: counters to zero, "));
1256 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257 
1258 	/* Free any skippy bufs left around in the rings. */
1259 	HMD(("clean, "));
1260 	happy_meal_clean_rings(hp);
1261 
1262 	/* Now get new skippy bufs for the receive ring. */
1263 	HMD(("init rxring, "));
1264 	for (i = 0; i < RX_RING_SIZE; i++) {
1265 		struct sk_buff *skb;
1266 		u32 mapping;
1267 
1268 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269 		if (!skb) {
1270 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271 			continue;
1272 		}
1273 		hp->rx_skbs[i] = skb;
1274 
1275 		/* Because we reserve afterwards. */
1276 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1277 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278 					 DMA_FROM_DEVICE);
1279 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1280 			dev_kfree_skb_any(skb);
1281 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1282 			continue;
1283 		}
1284 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1285 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1286 			      mapping);
1287 		skb_reserve(skb, RX_OFFSET);
1288 	}
1289 
1290 	HMD(("init txring, "));
1291 	for (i = 0; i < TX_RING_SIZE; i++)
1292 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1293 
1294 	HMD(("done\n"));
1295 }
1296 
1297 /* hp->happy_lock must be held */
1298 static void
1299 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300 				  void __iomem *tregs,
1301 				  const struct ethtool_link_ksettings *ep)
1302 {
1303 	int timeout;
1304 
1305 	/* Read all of the registers we are interested in now. */
1306 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310 
1311 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312 
1313 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1315 		/* Advertise everything we can support. */
1316 		if (hp->sw_bmsr & BMSR_10HALF)
1317 			hp->sw_advertise |= (ADVERTISE_10HALF);
1318 		else
1319 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320 
1321 		if (hp->sw_bmsr & BMSR_10FULL)
1322 			hp->sw_advertise |= (ADVERTISE_10FULL);
1323 		else
1324 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325 		if (hp->sw_bmsr & BMSR_100HALF)
1326 			hp->sw_advertise |= (ADVERTISE_100HALF);
1327 		else
1328 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329 		if (hp->sw_bmsr & BMSR_100FULL)
1330 			hp->sw_advertise |= (ADVERTISE_100FULL);
1331 		else
1332 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334 
1335 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336 		 * XXX and this is because the DP83840 does not support it, changes
1337 		 * XXX would need to be made to the tx/rx logic in the driver as well
1338 		 * XXX so I completely skip checking for it in the BMSR for now.
1339 		 */
1340 
1341 #ifdef AUTO_SWITCH_DEBUG
1342 		ASD(("%s: Advertising [ ", hp->dev->name));
1343 		if (hp->sw_advertise & ADVERTISE_10HALF)
1344 			ASD(("10H "));
1345 		if (hp->sw_advertise & ADVERTISE_10FULL)
1346 			ASD(("10F "));
1347 		if (hp->sw_advertise & ADVERTISE_100HALF)
1348 			ASD(("100H "));
1349 		if (hp->sw_advertise & ADVERTISE_100FULL)
1350 			ASD(("100F "));
1351 #endif
1352 
1353 		/* Enable Auto-Negotiation, this is usually on already... */
1354 		hp->sw_bmcr |= BMCR_ANENABLE;
1355 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356 
1357 		/* Restart it to make sure it is going. */
1358 		hp->sw_bmcr |= BMCR_ANRESTART;
1359 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360 
1361 		/* BMCR_ANRESTART self clears when the process has begun. */
1362 
1363 		timeout = 64;  /* More than enough. */
1364 		while (--timeout) {
1365 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367 				break; /* got it. */
1368 			udelay(10);
1369 		}
1370 		if (!timeout) {
1371 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374 			       hp->dev->name);
1375 			goto force_link;
1376 		} else {
1377 			hp->timer_state = arbwait;
1378 		}
1379 	} else {
1380 force_link:
1381 		/* Force the link up, trying first a particular mode.
1382 		 * Either we are here at the request of ethtool or
1383 		 * because the Happy Meal would not start to autoneg.
1384 		 */
1385 
1386 		/* Disable auto-negotiation in BMCR, enable the duplex and
1387 		 * speed setting, init the timer state machine, and fire it off.
1388 		 */
1389 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1390 			hp->sw_bmcr = BMCR_SPEED100;
1391 		} else {
1392 			if (ep->base.speed == SPEED_100)
1393 				hp->sw_bmcr = BMCR_SPEED100;
1394 			else
1395 				hp->sw_bmcr = 0;
1396 			if (ep->base.duplex == DUPLEX_FULL)
1397 				hp->sw_bmcr |= BMCR_FULLDPLX;
1398 		}
1399 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400 
1401 		if (!is_lucent_phy(hp)) {
1402 			/* OK, seems we need do disable the transceiver for the first
1403 			 * tick to make sure we get an accurate link state at the
1404 			 * second tick.
1405 			 */
1406 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407 							       DP83840_CSCONFIG);
1408 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410 					      hp->sw_csconfig);
1411 		}
1412 		hp->timer_state = ltrywait;
1413 	}
1414 
1415 	hp->timer_ticks = 0;
1416 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1417 	add_timer(&hp->happy_timer);
1418 }
1419 
1420 /* hp->happy_lock must be held */
1421 static int happy_meal_init(struct happy_meal *hp)
1422 {
1423 	void __iomem *gregs        = hp->gregs;
1424 	void __iomem *etxregs      = hp->etxregs;
1425 	void __iomem *erxregs      = hp->erxregs;
1426 	void __iomem *bregs        = hp->bigmacregs;
1427 	void __iomem *tregs        = hp->tcvregs;
1428 	u32 regtmp, rxcfg;
1429 	unsigned char *e = &hp->dev->dev_addr[0];
1430 
1431 	/* If auto-negotiation timer is running, kill it. */
1432 	del_timer(&hp->happy_timer);
1433 
1434 	HMD(("happy_meal_init: happy_flags[%08x] ",
1435 	     hp->happy_flags));
1436 	if (!(hp->happy_flags & HFLAG_INIT)) {
1437 		HMD(("set HFLAG_INIT, "));
1438 		hp->happy_flags |= HFLAG_INIT;
1439 		happy_meal_get_counters(hp, bregs);
1440 	}
1441 
1442 	/* Stop polling. */
1443 	HMD(("to happy_meal_poll_stop\n"));
1444 	happy_meal_poll_stop(hp, tregs);
1445 
1446 	/* Stop transmitter and receiver. */
1447 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1448 	happy_meal_stop(hp, gregs);
1449 
1450 	/* Alloc and reset the tx/rx descriptor chains. */
1451 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452 	happy_meal_init_rings(hp);
1453 
1454 	/* Shut up the MIF. */
1455 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456 	     hme_read32(hp, tregs + TCVR_IMASK)));
1457 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458 
1459 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460 	if (hp->happy_flags & HFLAG_FENABLE) {
1461 		HMD(("use frame old[%08x], ",
1462 		     hme_read32(hp, tregs + TCVR_CFG)));
1463 		hme_write32(hp, tregs + TCVR_CFG,
1464 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465 	} else {
1466 		HMD(("use bitbang old[%08x], ",
1467 		     hme_read32(hp, tregs + TCVR_CFG)));
1468 		hme_write32(hp, tregs + TCVR_CFG,
1469 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470 	}
1471 
1472 	/* Check the state of the transceiver. */
1473 	HMD(("to happy_meal_transceiver_check\n"));
1474 	happy_meal_transceiver_check(hp, tregs);
1475 
1476 	/* Put the Big Mac into a sane state. */
1477 	HMD(("happy_meal_init: "));
1478 	switch(hp->tcvr_type) {
1479 	case none:
1480 		/* Cannot operate if we don't know the transceiver type! */
1481 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1482 		return -EAGAIN;
1483 
1484 	case internal:
1485 		/* Using the MII buffers. */
1486 		HMD(("internal, using MII, "));
1487 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488 		break;
1489 
1490 	case external:
1491 		/* Not using the MII, disable it. */
1492 		HMD(("external, disable MII, "));
1493 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494 		break;
1495 	}
1496 
1497 	if (happy_meal_tcvr_reset(hp, tregs))
1498 		return -EAGAIN;
1499 
1500 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501 	HMD(("tx/rx reset, "));
1502 	happy_meal_tx_reset(hp, bregs);
1503 	happy_meal_rx_reset(hp, bregs);
1504 
1505 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1506 	HMD(("jsize/ipg1/ipg2, "));
1507 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510 
1511 	/* Load up the MAC address and random seed. */
1512 	HMD(("rseed/macaddr, "));
1513 
1514 	/* The docs recommend to use the 10LSB of our MAC here. */
1515 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516 
1517 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520 
1521 	HMD(("htable, "));
1522 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1523 	    (netdev_mc_count(hp->dev) > 64)) {
1524 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529 		u16 hash_table[4];
1530 		struct netdev_hw_addr *ha;
1531 		u32 crc;
1532 
1533 		memset(hash_table, 0, sizeof(hash_table));
1534 		netdev_for_each_mc_addr(ha, hp->dev) {
1535 			crc = ether_crc_le(6, ha->addr);
1536 			crc >>= 26;
1537 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538 		}
1539 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543 	} else {
1544 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548 	}
1549 
1550 	/* Set the RX and TX ring ptrs. */
1551 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554 	hme_write32(hp, erxregs + ERX_RING,
1555 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556 	hme_write32(hp, etxregs + ETX_RING,
1557 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558 
1559 	/* Parity issues in the ERX unit of some HME revisions can cause some
1560 	 * registers to not be written unless their parity is even.  Detect such
1561 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562 	 * since the rxring needs to be 2K aligned).
1563 	 */
1564 	if (hme_read32(hp, erxregs + ERX_RING) !=
1565 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566 		hme_write32(hp, erxregs + ERX_RING,
1567 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568 			    | 0x4);
1569 
1570 	/* Set the supported burst sizes. */
1571 	HMD(("happy_meal_init: old[%08x] bursts<",
1572 	     hme_read32(hp, gregs + GREG_CFG)));
1573 
1574 #ifndef CONFIG_SPARC
1575 	/* It is always PCI and can handle 64byte bursts. */
1576 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577 #else
1578 	if ((hp->happy_bursts & DMA_BURST64) &&
1579 	    ((hp->happy_flags & HFLAG_PCI) != 0
1580 #ifdef CONFIG_SBUS
1581 	     || sbus_can_burst64()
1582 #endif
1583 	     || 0)) {
1584 		u32 gcfg = GREG_CFG_BURST64;
1585 
1586 		/* I have no idea if I should set the extended
1587 		 * transfer mode bit for Cheerio, so for now I
1588 		 * do not.  -DaveM
1589 		 */
1590 #ifdef CONFIG_SBUS
1591 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592 			struct platform_device *op = hp->happy_dev;
1593 			if (sbus_can_dma_64bit()) {
1594 				sbus_set_sbus64(&op->dev,
1595 						hp->happy_bursts);
1596 				gcfg |= GREG_CFG_64BIT;
1597 			}
1598 		}
1599 #endif
1600 
1601 		HMD(("64>"));
1602 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603 	} else if (hp->happy_bursts & DMA_BURST32) {
1604 		HMD(("32>"));
1605 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606 	} else if (hp->happy_bursts & DMA_BURST16) {
1607 		HMD(("16>"));
1608 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609 	} else {
1610 		HMD(("XXX>"));
1611 		hme_write32(hp, gregs + GREG_CFG, 0);
1612 	}
1613 #endif /* CONFIG_SPARC */
1614 
1615 	/* Turn off interrupts we do not want to hear. */
1616 	HMD((", enable global interrupts, "));
1617 	hme_write32(hp, gregs + GREG_IMASK,
1618 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620 
1621 	/* Set the transmit ring buffer size. */
1622 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625 
1626 	/* Enable transmitter DVMA. */
1627 	HMD(("tx dma enable old[%08x], ",
1628 	     hme_read32(hp, etxregs + ETX_CFG)));
1629 	hme_write32(hp, etxregs + ETX_CFG,
1630 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631 
1632 	/* This chip really rots, for the receiver sometimes when you
1633 	 * write to its control registers not all the bits get there
1634 	 * properly.  I cannot think of a sane way to provide complete
1635 	 * coverage for this hardware bug yet.
1636 	 */
1637 	HMD(("erx regs bug old[%08x]\n",
1638 	     hme_read32(hp, erxregs + ERX_CFG)));
1639 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646 		/* XXX Should return failure here... */
1647 	}
1648 
1649 	/* Enable Big Mac hash table filter. */
1650 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653 	if (hp->dev->flags & IFF_PROMISC)
1654 		rxcfg |= BIGMAC_RXCFG_PMISC;
1655 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656 
1657 	/* Let the bits settle in the chip. */
1658 	udelay(10);
1659 
1660 	/* Ok, configure the Big Mac transmitter. */
1661 	HMD(("BIGMAC init, "));
1662 	regtmp = 0;
1663 	if (hp->happy_flags & HFLAG_FULL)
1664 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665 
1666 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667 	 * to deadlock with the PHY if a Jabber occurs.
1668 	 */
1669 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670 
1671 	/* Give up after 16 TX attempts. */
1672 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673 
1674 	/* Enable the output drivers no matter what. */
1675 	regtmp = BIGMAC_XCFG_ODENABLE;
1676 
1677 	/* If card can do lance mode, enable it. */
1678 	if (hp->happy_flags & HFLAG_LANCE)
1679 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680 
1681 	/* Disable the MII buffers if using external transceiver. */
1682 	if (hp->tcvr_type == external)
1683 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684 
1685 	HMD(("XIF config old[%08x], ",
1686 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688 
1689 	/* Start things up. */
1690 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691 	     hme_read32(hp, bregs + BMAC_TXCFG),
1692 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693 
1694 	/* Set larger TX/RX size to allow for 802.1q */
1695 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697 
1698 	hme_write32(hp, bregs + BMAC_TXCFG,
1699 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700 	hme_write32(hp, bregs + BMAC_RXCFG,
1701 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702 
1703 	/* Get the autonegotiation started, and the watch timer ticking. */
1704 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705 
1706 	/* Success. */
1707 	return 0;
1708 }
1709 
1710 /* hp->happy_lock must be held */
1711 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712 {
1713 	void __iomem *tregs	= hp->tcvregs;
1714 	void __iomem *bregs	= hp->bigmacregs;
1715 	void __iomem *gregs	= hp->gregs;
1716 
1717 	happy_meal_stop(hp, gregs);
1718 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719 	if (hp->happy_flags & HFLAG_FENABLE)
1720 		hme_write32(hp, tregs + TCVR_CFG,
1721 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722 	else
1723 		hme_write32(hp, tregs + TCVR_CFG,
1724 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725 	happy_meal_transceiver_check(hp, tregs);
1726 	switch(hp->tcvr_type) {
1727 	case none:
1728 		return;
1729 	case internal:
1730 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731 		break;
1732 	case external:
1733 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734 		break;
1735 	}
1736 	if (happy_meal_tcvr_reset(hp, tregs))
1737 		return;
1738 
1739 	/* Latch PHY registers as of now. */
1740 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742 
1743 	/* Advertise everything we can support. */
1744 	if (hp->sw_bmsr & BMSR_10HALF)
1745 		hp->sw_advertise |= (ADVERTISE_10HALF);
1746 	else
1747 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748 
1749 	if (hp->sw_bmsr & BMSR_10FULL)
1750 		hp->sw_advertise |= (ADVERTISE_10FULL);
1751 	else
1752 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753 	if (hp->sw_bmsr & BMSR_100HALF)
1754 		hp->sw_advertise |= (ADVERTISE_100HALF);
1755 	else
1756 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757 	if (hp->sw_bmsr & BMSR_100FULL)
1758 		hp->sw_advertise |= (ADVERTISE_100FULL);
1759 	else
1760 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761 
1762 	/* Update the PHY advertisement register. */
1763 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764 }
1765 
1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1767  * the hardware, so we cannot re-read it and get a correct value.
1768  *
1769  * hp->happy_lock must be held
1770  */
1771 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772 {
1773 	int reset = 0;
1774 
1775 	/* Only print messages for non-counter related interrupts. */
1776 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781 		      GREG_STAT_SLVPERR))
1782 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783 		       hp->dev->name, status);
1784 
1785 	if (status & GREG_STAT_RFIFOVF) {
1786 		/* Receive FIFO overflow is harmless and the hardware will take
1787 		   care of it, just some packets are lost. Who cares. */
1788 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789 	}
1790 
1791 	if (status & GREG_STAT_STSTERR) {
1792 		/* BigMAC SQE link test failed. */
1793 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794 		reset = 1;
1795 	}
1796 
1797 	if (status & GREG_STAT_TFIFO_UND) {
1798 		/* Transmit FIFO underrun, again DMA error likely. */
1799 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800 		       hp->dev->name);
1801 		reset = 1;
1802 	}
1803 
1804 	if (status & GREG_STAT_MAXPKTERR) {
1805 		/* Driver error, tried to transmit something larger
1806 		 * than ethernet max mtu.
1807 		 */
1808 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809 		reset = 1;
1810 	}
1811 
1812 	if (status & GREG_STAT_NORXD) {
1813 		/* This is harmless, it just means the system is
1814 		 * quite loaded and the incoming packet rate was
1815 		 * faster than the interrupt handler could keep up
1816 		 * with.
1817 		 */
1818 		printk(KERN_INFO "%s: Happy Meal out of receive "
1819 		       "descriptors, packet dropped.\n",
1820 		       hp->dev->name);
1821 	}
1822 
1823 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824 		/* All sorts of DMA receive errors. */
1825 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826 		if (status & GREG_STAT_RXERR)
1827 			printk("GenericError ");
1828 		if (status & GREG_STAT_RXPERR)
1829 			printk("ParityError ");
1830 		if (status & GREG_STAT_RXTERR)
1831 			printk("RxTagBotch ");
1832 		printk("]\n");
1833 		reset = 1;
1834 	}
1835 
1836 	if (status & GREG_STAT_EOPERR) {
1837 		/* Driver bug, didn't set EOP bit in tx descriptor given
1838 		 * to the happy meal.
1839 		 */
1840 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841 		       hp->dev->name);
1842 		reset = 1;
1843 	}
1844 
1845 	if (status & GREG_STAT_MIFIRQ) {
1846 		/* MIF signalled an interrupt, were we polling it? */
1847 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848 	}
1849 
1850 	if (status &
1851 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852 		/* All sorts of transmit DMA errors. */
1853 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854 		if (status & GREG_STAT_TXEACK)
1855 			printk("GenericError ");
1856 		if (status & GREG_STAT_TXLERR)
1857 			printk("LateError ");
1858 		if (status & GREG_STAT_TXPERR)
1859 			printk("ParityError ");
1860 		if (status & GREG_STAT_TXTERR)
1861 			printk("TagBotch ");
1862 		printk("]\n");
1863 		reset = 1;
1864 	}
1865 
1866 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867 		/* Bus or parity error when cpu accessed happy meal registers
1868 		 * or it's internal FIFO's.  Should never see this.
1869 		 */
1870 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 		       hp->dev->name,
1872 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873 		reset = 1;
1874 	}
1875 
1876 	if (reset) {
1877 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878 		happy_meal_init(hp);
1879 		return 1;
1880 	}
1881 	return 0;
1882 }
1883 
1884 /* hp->happy_lock must be held */
1885 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886 {
1887 	void __iomem *tregs = hp->tcvregs;
1888 
1889 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892 
1893 	/* Use the fastest transmission protocol possible. */
1894 	if (hp->sw_lpa & LPA_100FULL) {
1895 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897 	} else if (hp->sw_lpa & LPA_100HALF) {
1898 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899 		hp->sw_bmcr |= BMCR_SPEED100;
1900 	} else if (hp->sw_lpa & LPA_10FULL) {
1901 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902 		hp->sw_bmcr |= BMCR_FULLDPLX;
1903 	} else {
1904 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905 	}
1906 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907 
1908 	/* Finally stop polling and shut up the MIF. */
1909 	happy_meal_poll_stop(hp, tregs);
1910 }
1911 
1912 #ifdef TXDEBUG
1913 #define TXD(x) printk x
1914 #else
1915 #define TXD(x)
1916 #endif
1917 
1918 /* hp->happy_lock must be held */
1919 static void happy_meal_tx(struct happy_meal *hp)
1920 {
1921 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922 	struct happy_meal_txd *this;
1923 	struct net_device *dev = hp->dev;
1924 	int elem;
1925 
1926 	elem = hp->tx_old;
1927 	TXD(("TX<"));
1928 	while (elem != hp->tx_new) {
1929 		struct sk_buff *skb;
1930 		u32 flags, dma_addr, dma_len;
1931 		int frag;
1932 
1933 		TXD(("[%d]", elem));
1934 		this = &txbase[elem];
1935 		flags = hme_read_desc32(hp, &this->tx_flags);
1936 		if (flags & TXFLAG_OWN)
1937 			break;
1938 		skb = hp->tx_skbs[elem];
1939 		if (skb_shinfo(skb)->nr_frags) {
1940 			int last;
1941 
1942 			last = elem + skb_shinfo(skb)->nr_frags;
1943 			last &= (TX_RING_SIZE - 1);
1944 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945 			if (flags & TXFLAG_OWN)
1946 				break;
1947 		}
1948 		hp->tx_skbs[elem] = NULL;
1949 		dev->stats.tx_bytes += skb->len;
1950 
1951 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954 
1955 			dma_len &= TXFLAG_SIZE;
1956 			if (!frag)
1957 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958 			else
1959 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960 
1961 			elem = NEXT_TX(elem);
1962 			this = &txbase[elem];
1963 		}
1964 
1965 		dev_consume_skb_irq(skb);
1966 		dev->stats.tx_packets++;
1967 	}
1968 	hp->tx_old = elem;
1969 	TXD((">"));
1970 
1971 	if (netif_queue_stopped(dev) &&
1972 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973 		netif_wake_queue(dev);
1974 }
1975 
1976 #ifdef RXDEBUG
1977 #define RXD(x) printk x
1978 #else
1979 #define RXD(x)
1980 #endif
1981 
1982 /* Originally I used to handle the allocation failure by just giving back just
1983  * that one ring buffer to the happy meal.  Problem is that usually when that
1984  * condition is triggered, the happy meal expects you to do something reasonable
1985  * with all of the packets it has DMA'd in.  So now I just drop the entire
1986  * ring when we cannot get a new skb and give them all back to the happy meal,
1987  * maybe things will be "happier" now.
1988  *
1989  * hp->happy_lock must be held
1990  */
1991 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992 {
1993 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994 	struct happy_meal_rxd *this;
1995 	int elem = hp->rx_new, drops = 0;
1996 	u32 flags;
1997 
1998 	RXD(("RX<"));
1999 	this = &rxbase[elem];
2000 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001 		struct sk_buff *skb;
2002 		int len = flags >> 16;
2003 		u16 csum = flags & RXFLAG_CSUM;
2004 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005 
2006 		RXD(("[%d ", elem));
2007 
2008 		/* Check for errors. */
2009 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010 			RXD(("ERR(%08x)]", flags));
2011 			dev->stats.rx_errors++;
2012 			if (len < ETH_ZLEN)
2013 				dev->stats.rx_length_errors++;
2014 			if (len & (RXFLAG_OVERFLOW >> 16)) {
2015 				dev->stats.rx_over_errors++;
2016 				dev->stats.rx_fifo_errors++;
2017 			}
2018 
2019 			/* Return it to the Happy meal. */
2020 	drop_it:
2021 			dev->stats.rx_dropped++;
2022 			hme_write_rxd(hp, this,
2023 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024 				      dma_addr);
2025 			goto next;
2026 		}
2027 		skb = hp->rx_skbs[elem];
2028 		if (len > RX_COPY_THRESHOLD) {
2029 			struct sk_buff *new_skb;
2030 			u32 mapping;
2031 
2032 			/* Now refill the entry, if we can. */
2033 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034 			if (new_skb == NULL) {
2035 				drops++;
2036 				goto drop_it;
2037 			}
2038 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040 						 RX_BUF_ALLOC_SIZE,
2041 						 DMA_FROM_DEVICE);
2042 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043 				dev_kfree_skb_any(new_skb);
2044 				drops++;
2045 				goto drop_it;
2046 			}
2047 
2048 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049 			hp->rx_skbs[elem] = new_skb;
2050 			hme_write_rxd(hp, this,
2051 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052 				      mapping);
2053 			skb_reserve(new_skb, RX_OFFSET);
2054 
2055 			/* Trim the original skb for the netif. */
2056 			skb_trim(skb, len);
2057 		} else {
2058 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059 
2060 			if (copy_skb == NULL) {
2061 				drops++;
2062 				goto drop_it;
2063 			}
2064 
2065 			skb_reserve(copy_skb, 2);
2066 			skb_put(copy_skb, len);
2067 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2069 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070 			/* Reuse original ring buffer. */
2071 			hme_write_rxd(hp, this,
2072 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073 				      dma_addr);
2074 
2075 			skb = copy_skb;
2076 		}
2077 
2078 		/* This card is _fucking_ hot... */
2079 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080 		skb->ip_summed = CHECKSUM_COMPLETE;
2081 
2082 		RXD(("len=%d csum=%4x]", len, csum));
2083 		skb->protocol = eth_type_trans(skb, dev);
2084 		netif_rx(skb);
2085 
2086 		dev->stats.rx_packets++;
2087 		dev->stats.rx_bytes += len;
2088 	next:
2089 		elem = NEXT_RX(elem);
2090 		this = &rxbase[elem];
2091 	}
2092 	hp->rx_new = elem;
2093 	if (drops)
2094 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095 	RXD((">"));
2096 }
2097 
2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099 {
2100 	struct net_device *dev = dev_id;
2101 	struct happy_meal *hp  = netdev_priv(dev);
2102 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103 
2104 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105 
2106 	spin_lock(&hp->happy_lock);
2107 
2108 	if (happy_status & GREG_STAT_ERRORS) {
2109 		HMD(("ERRORS "));
2110 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111 			goto out;
2112 	}
2113 
2114 	if (happy_status & GREG_STAT_MIFIRQ) {
2115 		HMD(("MIFIRQ "));
2116 		happy_meal_mif_interrupt(hp);
2117 	}
2118 
2119 	if (happy_status & GREG_STAT_TXALL) {
2120 		HMD(("TXALL "));
2121 		happy_meal_tx(hp);
2122 	}
2123 
2124 	if (happy_status & GREG_STAT_RXTOHOST) {
2125 		HMD(("RXTOHOST "));
2126 		happy_meal_rx(hp, dev);
2127 	}
2128 
2129 	HMD(("done\n"));
2130 out:
2131 	spin_unlock(&hp->happy_lock);
2132 
2133 	return IRQ_HANDLED;
2134 }
2135 
2136 #ifdef CONFIG_SBUS
2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138 {
2139 	struct quattro *qp = (struct quattro *) cookie;
2140 	int i;
2141 
2142 	for (i = 0; i < 4; i++) {
2143 		struct net_device *dev = qp->happy_meals[i];
2144 		struct happy_meal *hp  = netdev_priv(dev);
2145 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146 
2147 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2148 
2149 		if (!(happy_status & (GREG_STAT_ERRORS |
2150 				      GREG_STAT_MIFIRQ |
2151 				      GREG_STAT_TXALL |
2152 				      GREG_STAT_RXTOHOST)))
2153 			continue;
2154 
2155 		spin_lock(&hp->happy_lock);
2156 
2157 		if (happy_status & GREG_STAT_ERRORS) {
2158 			HMD(("ERRORS "));
2159 			if (happy_meal_is_not_so_happy(hp, happy_status))
2160 				goto next;
2161 		}
2162 
2163 		if (happy_status & GREG_STAT_MIFIRQ) {
2164 			HMD(("MIFIRQ "));
2165 			happy_meal_mif_interrupt(hp);
2166 		}
2167 
2168 		if (happy_status & GREG_STAT_TXALL) {
2169 			HMD(("TXALL "));
2170 			happy_meal_tx(hp);
2171 		}
2172 
2173 		if (happy_status & GREG_STAT_RXTOHOST) {
2174 			HMD(("RXTOHOST "));
2175 			happy_meal_rx(hp, dev);
2176 		}
2177 
2178 	next:
2179 		spin_unlock(&hp->happy_lock);
2180 	}
2181 	HMD(("done\n"));
2182 
2183 	return IRQ_HANDLED;
2184 }
2185 #endif
2186 
2187 static int happy_meal_open(struct net_device *dev)
2188 {
2189 	struct happy_meal *hp = netdev_priv(dev);
2190 	int res;
2191 
2192 	HMD(("happy_meal_open: "));
2193 
2194 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195 	 * into a single source which we register handling at probe time.
2196 	 */
2197 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199 				  dev->name, dev);
2200 		if (res) {
2201 			HMD(("EAGAIN\n"));
2202 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203 			       hp->irq);
2204 
2205 			return -EAGAIN;
2206 		}
2207 	}
2208 
2209 	HMD(("to happy_meal_init\n"));
2210 
2211 	spin_lock_irq(&hp->happy_lock);
2212 	res = happy_meal_init(hp);
2213 	spin_unlock_irq(&hp->happy_lock);
2214 
2215 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216 		free_irq(hp->irq, dev);
2217 	return res;
2218 }
2219 
2220 static int happy_meal_close(struct net_device *dev)
2221 {
2222 	struct happy_meal *hp = netdev_priv(dev);
2223 
2224 	spin_lock_irq(&hp->happy_lock);
2225 	happy_meal_stop(hp, hp->gregs);
2226 	happy_meal_clean_rings(hp);
2227 
2228 	/* If auto-negotiation timer is running, kill it. */
2229 	del_timer(&hp->happy_timer);
2230 
2231 	spin_unlock_irq(&hp->happy_lock);
2232 
2233 	/* On Quattro QFE cards, all hme interrupts are concentrated
2234 	 * into a single source which we register handling at probe
2235 	 * time and never unregister.
2236 	 */
2237 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238 		free_irq(hp->irq, dev);
2239 
2240 	return 0;
2241 }
2242 
2243 #ifdef SXDEBUG
2244 #define SXD(x) printk x
2245 #else
2246 #define SXD(x)
2247 #endif
2248 
2249 static void happy_meal_tx_timeout(struct net_device *dev)
2250 {
2251 	struct happy_meal *hp = netdev_priv(dev);
2252 
2253 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254 	tx_dump_log();
2255 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256 		hme_read32(hp, hp->gregs + GREG_STAT),
2257 		hme_read32(hp, hp->etxregs + ETX_CFG),
2258 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259 
2260 	spin_lock_irq(&hp->happy_lock);
2261 	happy_meal_init(hp);
2262 	spin_unlock_irq(&hp->happy_lock);
2263 
2264 	netif_wake_queue(dev);
2265 }
2266 
2267 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268 				 u32 first_len, u32 first_entry, u32 entry)
2269 {
2270 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271 
2272 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273 
2274 	first_entry = NEXT_TX(first_entry);
2275 	while (first_entry != entry) {
2276 		struct happy_meal_txd *this = &txbase[first_entry];
2277 		u32 addr, len;
2278 
2279 		addr = hme_read_desc32(hp, &this->tx_addr);
2280 		len = hme_read_desc32(hp, &this->tx_flags);
2281 		len &= TXFLAG_SIZE;
2282 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283 	}
2284 }
2285 
2286 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287 					 struct net_device *dev)
2288 {
2289 	struct happy_meal *hp = netdev_priv(dev);
2290  	int entry;
2291  	u32 tx_flags;
2292 
2293 	tx_flags = TXFLAG_OWN;
2294 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2296 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297 
2298 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301 	}
2302 
2303 	spin_lock_irq(&hp->happy_lock);
2304 
2305  	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306 		netif_stop_queue(dev);
2307 		spin_unlock_irq(&hp->happy_lock);
2308 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309 		       dev->name);
2310 		return NETDEV_TX_BUSY;
2311 	}
2312 
2313 	entry = hp->tx_new;
2314 	SXD(("SX<l[%d]e[%d]>", len, entry));
2315 	hp->tx_skbs[entry] = skb;
2316 
2317 	if (skb_shinfo(skb)->nr_frags == 0) {
2318 		u32 mapping, len;
2319 
2320 		len = skb->len;
2321 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323 			goto out_dma_error;
2324 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326 			      (tx_flags | (len & TXFLAG_SIZE)),
2327 			      mapping);
2328 		entry = NEXT_TX(entry);
2329 	} else {
2330 		u32 first_len, first_mapping;
2331 		int frag, first_entry = entry;
2332 
2333 		/* We must give this initial chunk to the device last.
2334 		 * Otherwise we could race with the device.
2335 		 */
2336 		first_len = skb_headlen(skb);
2337 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338 					       DMA_TO_DEVICE);
2339 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340 			goto out_dma_error;
2341 		entry = NEXT_TX(entry);
2342 
2343 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345 			u32 len, mapping, this_txflags;
2346 
2347 			len = skb_frag_size(this_frag);
2348 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349 						   0, len, DMA_TO_DEVICE);
2350 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2352 						     first_entry, entry);
2353 				goto out_dma_error;
2354 			}
2355 			this_txflags = tx_flags;
2356 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2357 				this_txflags |= TXFLAG_EOP;
2358 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359 				      (this_txflags | (len & TXFLAG_SIZE)),
2360 				      mapping);
2361 			entry = NEXT_TX(entry);
2362 		}
2363 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365 			      first_mapping);
2366 	}
2367 
2368 	hp->tx_new = entry;
2369 
2370 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371 		netif_stop_queue(dev);
2372 
2373 	/* Get it going. */
2374 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375 
2376 	spin_unlock_irq(&hp->happy_lock);
2377 
2378 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379 	return NETDEV_TX_OK;
2380 
2381 out_dma_error:
2382 	hp->tx_skbs[hp->tx_new] = NULL;
2383 	spin_unlock_irq(&hp->happy_lock);
2384 
2385 	dev_kfree_skb_any(skb);
2386 	dev->stats.tx_dropped++;
2387 	return NETDEV_TX_OK;
2388 }
2389 
2390 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391 {
2392 	struct happy_meal *hp = netdev_priv(dev);
2393 
2394 	spin_lock_irq(&hp->happy_lock);
2395 	happy_meal_get_counters(hp, hp->bigmacregs);
2396 	spin_unlock_irq(&hp->happy_lock);
2397 
2398 	return &dev->stats;
2399 }
2400 
2401 static void happy_meal_set_multicast(struct net_device *dev)
2402 {
2403 	struct happy_meal *hp = netdev_priv(dev);
2404 	void __iomem *bregs = hp->bigmacregs;
2405 	struct netdev_hw_addr *ha;
2406 	u32 crc;
2407 
2408 	spin_lock_irq(&hp->happy_lock);
2409 
2410 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415 	} else if (dev->flags & IFF_PROMISC) {
2416 		hme_write32(hp, bregs + BMAC_RXCFG,
2417 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418 	} else {
2419 		u16 hash_table[4];
2420 
2421 		memset(hash_table, 0, sizeof(hash_table));
2422 		netdev_for_each_mc_addr(ha, dev) {
2423 			crc = ether_crc_le(6, ha->addr);
2424 			crc >>= 26;
2425 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426 		}
2427 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431 	}
2432 
2433 	spin_unlock_irq(&hp->happy_lock);
2434 }
2435 
2436 /* Ethtool support... */
2437 static int hme_get_link_ksettings(struct net_device *dev,
2438 				  struct ethtool_link_ksettings *cmd)
2439 {
2440 	struct happy_meal *hp = netdev_priv(dev);
2441 	u32 speed;
2442 	u32 supported;
2443 
2444 	supported =
2445 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2446 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2447 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2448 
2449 	/* XXX hardcoded stuff for now */
2450 	cmd->base.port = PORT_TP; /* XXX no MII support */
2451 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2452 
2453 	/* Record PHY settings. */
2454 	spin_lock_irq(&hp->happy_lock);
2455 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2456 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2457 	spin_unlock_irq(&hp->happy_lock);
2458 
2459 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2460 		cmd->base.autoneg = AUTONEG_ENABLE;
2461 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2462 			 SPEED_100 : SPEED_10);
2463 		if (speed == SPEED_100)
2464 			cmd->base.duplex =
2465 				(hp->sw_lpa & (LPA_100FULL)) ?
2466 				DUPLEX_FULL : DUPLEX_HALF;
2467 		else
2468 			cmd->base.duplex =
2469 				(hp->sw_lpa & (LPA_10FULL)) ?
2470 				DUPLEX_FULL : DUPLEX_HALF;
2471 	} else {
2472 		cmd->base.autoneg = AUTONEG_DISABLE;
2473 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2474 		cmd->base.duplex =
2475 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2476 			DUPLEX_FULL : DUPLEX_HALF;
2477 	}
2478 	cmd->base.speed = speed;
2479 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2480 						supported);
2481 
2482 	return 0;
2483 }
2484 
2485 static int hme_set_link_ksettings(struct net_device *dev,
2486 				  const struct ethtool_link_ksettings *cmd)
2487 {
2488 	struct happy_meal *hp = netdev_priv(dev);
2489 
2490 	/* Verify the settings we care about. */
2491 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2492 	    cmd->base.autoneg != AUTONEG_DISABLE)
2493 		return -EINVAL;
2494 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2495 	    ((cmd->base.speed != SPEED_100 &&
2496 	      cmd->base.speed != SPEED_10) ||
2497 	     (cmd->base.duplex != DUPLEX_HALF &&
2498 	      cmd->base.duplex != DUPLEX_FULL)))
2499 		return -EINVAL;
2500 
2501 	/* Ok, do it to it. */
2502 	spin_lock_irq(&hp->happy_lock);
2503 	del_timer(&hp->happy_timer);
2504 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2505 	spin_unlock_irq(&hp->happy_lock);
2506 
2507 	return 0;
2508 }
2509 
2510 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511 {
2512 	struct happy_meal *hp = netdev_priv(dev);
2513 
2514 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2515 	strlcpy(info->version, "2.02", sizeof(info->version));
2516 	if (hp->happy_flags & HFLAG_PCI) {
2517 		struct pci_dev *pdev = hp->happy_dev;
2518 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2519 	}
2520 #ifdef CONFIG_SBUS
2521 	else {
2522 		const struct linux_prom_registers *regs;
2523 		struct platform_device *op = hp->happy_dev;
2524 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2525 		if (regs)
2526 			snprintf(info->bus_info, sizeof(info->bus_info),
2527 				"SBUS:%d",
2528 				regs->which_io);
2529 	}
2530 #endif
2531 }
2532 
2533 static u32 hme_get_link(struct net_device *dev)
2534 {
2535 	struct happy_meal *hp = netdev_priv(dev);
2536 
2537 	spin_lock_irq(&hp->happy_lock);
2538 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2539 	spin_unlock_irq(&hp->happy_lock);
2540 
2541 	return hp->sw_bmsr & BMSR_LSTATUS;
2542 }
2543 
2544 static const struct ethtool_ops hme_ethtool_ops = {
2545 	.get_drvinfo		= hme_get_drvinfo,
2546 	.get_link		= hme_get_link,
2547 	.get_link_ksettings	= hme_get_link_ksettings,
2548 	.set_link_ksettings	= hme_set_link_ksettings,
2549 };
2550 
2551 static int hme_version_printed;
2552 
2553 #ifdef CONFIG_SBUS
2554 /* Given a happy meal sbus device, find it's quattro parent.
2555  * If none exist, allocate and return a new one.
2556  *
2557  * Return NULL on failure.
2558  */
2559 static struct quattro *quattro_sbus_find(struct platform_device *child)
2560 {
2561 	struct device *parent = child->dev.parent;
2562 	struct platform_device *op;
2563 	struct quattro *qp;
2564 
2565 	op = to_platform_device(parent);
2566 	qp = platform_get_drvdata(op);
2567 	if (qp)
2568 		return qp;
2569 
2570 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2571 	if (qp != NULL) {
2572 		int i;
2573 
2574 		for (i = 0; i < 4; i++)
2575 			qp->happy_meals[i] = NULL;
2576 
2577 		qp->quattro_dev = child;
2578 		qp->next = qfe_sbus_list;
2579 		qfe_sbus_list = qp;
2580 
2581 		platform_set_drvdata(op, qp);
2582 	}
2583 	return qp;
2584 }
2585 
2586 /* After all quattro cards have been probed, we call these functions
2587  * to register the IRQ handlers for the cards that have been
2588  * successfully probed and skip the cards that failed to initialize
2589  */
2590 static int __init quattro_sbus_register_irqs(void)
2591 {
2592 	struct quattro *qp;
2593 
2594 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2595 		struct platform_device *op = qp->quattro_dev;
2596 		int err, qfe_slot, skip = 0;
2597 
2598 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2599 			if (!qp->happy_meals[qfe_slot])
2600 				skip = 1;
2601 		}
2602 		if (skip)
2603 			continue;
2604 
2605 		err = request_irq(op->archdata.irqs[0],
2606 				  quattro_sbus_interrupt,
2607 				  IRQF_SHARED, "Quattro",
2608 				  qp);
2609 		if (err != 0) {
2610 			printk(KERN_ERR "Quattro HME: IRQ registration "
2611 			       "error %d.\n", err);
2612 			return err;
2613 		}
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static void quattro_sbus_free_irqs(void)
2620 {
2621 	struct quattro *qp;
2622 
2623 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2624 		struct platform_device *op = qp->quattro_dev;
2625 		int qfe_slot, skip = 0;
2626 
2627 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2628 			if (!qp->happy_meals[qfe_slot])
2629 				skip = 1;
2630 		}
2631 		if (skip)
2632 			continue;
2633 
2634 		free_irq(op->archdata.irqs[0], qp);
2635 	}
2636 }
2637 #endif /* CONFIG_SBUS */
2638 
2639 #ifdef CONFIG_PCI
2640 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2641 {
2642 	struct pci_dev *bdev = pdev->bus->self;
2643 	struct quattro *qp;
2644 
2645 	if (!bdev) return NULL;
2646 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2647 		struct pci_dev *qpdev = qp->quattro_dev;
2648 
2649 		if (qpdev == bdev)
2650 			return qp;
2651 	}
2652 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2653 	if (qp != NULL) {
2654 		int i;
2655 
2656 		for (i = 0; i < 4; i++)
2657 			qp->happy_meals[i] = NULL;
2658 
2659 		qp->quattro_dev = bdev;
2660 		qp->next = qfe_pci_list;
2661 		qfe_pci_list = qp;
2662 
2663 		/* No range tricks necessary on PCI. */
2664 		qp->nranges = 0;
2665 	}
2666 	return qp;
2667 }
2668 #endif /* CONFIG_PCI */
2669 
2670 static const struct net_device_ops hme_netdev_ops = {
2671 	.ndo_open		= happy_meal_open,
2672 	.ndo_stop		= happy_meal_close,
2673 	.ndo_start_xmit		= happy_meal_start_xmit,
2674 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2675 	.ndo_get_stats		= happy_meal_get_stats,
2676 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2677 	.ndo_set_mac_address 	= eth_mac_addr,
2678 	.ndo_validate_addr	= eth_validate_addr,
2679 };
2680 
2681 #ifdef CONFIG_SBUS
2682 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2683 {
2684 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2685 	struct quattro *qp = NULL;
2686 	struct happy_meal *hp;
2687 	struct net_device *dev;
2688 	int i, qfe_slot = -1;
2689 	int err = -ENODEV;
2690 
2691 	sbus_dp = op->dev.parent->of_node;
2692 
2693 	/* We can match PCI devices too, do not accept those here. */
2694 	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2695 		return err;
2696 
2697 	if (is_qfe) {
2698 		qp = quattro_sbus_find(op);
2699 		if (qp == NULL)
2700 			goto err_out;
2701 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2702 			if (qp->happy_meals[qfe_slot] == NULL)
2703 				break;
2704 		if (qfe_slot == 4)
2705 			goto err_out;
2706 	}
2707 
2708 	err = -ENOMEM;
2709 	dev = alloc_etherdev(sizeof(struct happy_meal));
2710 	if (!dev)
2711 		goto err_out;
2712 	SET_NETDEV_DEV(dev, &op->dev);
2713 
2714 	if (hme_version_printed++ == 0)
2715 		printk(KERN_INFO "%s", version);
2716 
2717 	/* If user did not specify a MAC address specifically, use
2718 	 * the Quattro local-mac-address property...
2719 	 */
2720 	for (i = 0; i < 6; i++) {
2721 		if (macaddr[i] != 0)
2722 			break;
2723 	}
2724 	if (i < 6) { /* a mac address was given */
2725 		for (i = 0; i < 6; i++)
2726 			dev->dev_addr[i] = macaddr[i];
2727 		macaddr[5]++;
2728 	} else {
2729 		const unsigned char *addr;
2730 		int len;
2731 
2732 		addr = of_get_property(dp, "local-mac-address", &len);
2733 
2734 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2735 			memcpy(dev->dev_addr, addr, ETH_ALEN);
2736 		else
2737 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2738 	}
2739 
2740 	hp = netdev_priv(dev);
2741 
2742 	hp->happy_dev = op;
2743 	hp->dma_dev = &op->dev;
2744 
2745 	spin_lock_init(&hp->happy_lock);
2746 
2747 	err = -ENODEV;
2748 	if (qp != NULL) {
2749 		hp->qfe_parent = qp;
2750 		hp->qfe_ent = qfe_slot;
2751 		qp->happy_meals[qfe_slot] = dev;
2752 	}
2753 
2754 	hp->gregs = of_ioremap(&op->resource[0], 0,
2755 			       GREG_REG_SIZE, "HME Global Regs");
2756 	if (!hp->gregs) {
2757 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2758 		goto err_out_free_netdev;
2759 	}
2760 
2761 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2762 				 ETX_REG_SIZE, "HME TX Regs");
2763 	if (!hp->etxregs) {
2764 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2765 		goto err_out_iounmap;
2766 	}
2767 
2768 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2769 				 ERX_REG_SIZE, "HME RX Regs");
2770 	if (!hp->erxregs) {
2771 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2772 		goto err_out_iounmap;
2773 	}
2774 
2775 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2776 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2777 	if (!hp->bigmacregs) {
2778 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2779 		goto err_out_iounmap;
2780 	}
2781 
2782 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2783 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2784 	if (!hp->tcvregs) {
2785 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2786 		goto err_out_iounmap;
2787 	}
2788 
2789 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2790 	if (hp->hm_revision == 0xff)
2791 		hp->hm_revision = 0xa0;
2792 
2793 	/* Now enable the feature flags we can. */
2794 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2795 		hp->happy_flags = HFLAG_20_21;
2796 	else if (hp->hm_revision != 0xa0)
2797 		hp->happy_flags = HFLAG_NOT_A0;
2798 
2799 	if (qp != NULL)
2800 		hp->happy_flags |= HFLAG_QUATTRO;
2801 
2802 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2803 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2804 						 "burst-sizes", 0x00);
2805 
2806 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2807 					     PAGE_SIZE,
2808 					     &hp->hblock_dvma,
2809 					     GFP_ATOMIC);
2810 	err = -ENOMEM;
2811 	if (!hp->happy_block)
2812 		goto err_out_iounmap;
2813 
2814 	/* Force check of the link first time we are brought up. */
2815 	hp->linkcheck = 0;
2816 
2817 	/* Force timer state to 'asleep' with count of zero. */
2818 	hp->timer_state = asleep;
2819 	hp->timer_ticks = 0;
2820 
2821 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2822 
2823 	hp->dev = dev;
2824 	dev->netdev_ops = &hme_netdev_ops;
2825 	dev->watchdog_timeo = 5*HZ;
2826 	dev->ethtool_ops = &hme_ethtool_ops;
2827 
2828 	/* Happy Meal can do it all... */
2829 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2830 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2831 
2832 	hp->irq = op->archdata.irqs[0];
2833 
2834 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2835 	/* Hook up SBUS register/descriptor accessors. */
2836 	hp->read_desc32 = sbus_hme_read_desc32;
2837 	hp->write_txd = sbus_hme_write_txd;
2838 	hp->write_rxd = sbus_hme_write_rxd;
2839 	hp->read32 = sbus_hme_read32;
2840 	hp->write32 = sbus_hme_write32;
2841 #endif
2842 
2843 	/* Grrr, Happy Meal comes up by default not advertising
2844 	 * full duplex 100baseT capabilities, fix this.
2845 	 */
2846 	spin_lock_irq(&hp->happy_lock);
2847 	happy_meal_set_initial_advertisement(hp);
2848 	spin_unlock_irq(&hp->happy_lock);
2849 
2850 	err = register_netdev(hp->dev);
2851 	if (err) {
2852 		printk(KERN_ERR "happymeal: Cannot register net device, "
2853 		       "aborting.\n");
2854 		goto err_out_free_coherent;
2855 	}
2856 
2857 	platform_set_drvdata(op, hp);
2858 
2859 	if (qfe_slot != -1)
2860 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2861 		       dev->name, qfe_slot);
2862 	else
2863 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2864 		       dev->name);
2865 
2866 	printk("%pM\n", dev->dev_addr);
2867 
2868 	return 0;
2869 
2870 err_out_free_coherent:
2871 	dma_free_coherent(hp->dma_dev,
2872 			  PAGE_SIZE,
2873 			  hp->happy_block,
2874 			  hp->hblock_dvma);
2875 
2876 err_out_iounmap:
2877 	if (hp->gregs)
2878 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2879 	if (hp->etxregs)
2880 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2881 	if (hp->erxregs)
2882 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2883 	if (hp->bigmacregs)
2884 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2885 	if (hp->tcvregs)
2886 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2887 
2888 	if (qp)
2889 		qp->happy_meals[qfe_slot] = NULL;
2890 
2891 err_out_free_netdev:
2892 	free_netdev(dev);
2893 
2894 err_out:
2895 	return err;
2896 }
2897 #endif
2898 
2899 #ifdef CONFIG_PCI
2900 #ifndef CONFIG_SPARC
2901 static int is_quattro_p(struct pci_dev *pdev)
2902 {
2903 	struct pci_dev *busdev = pdev->bus->self;
2904 	struct pci_dev *this_pdev;
2905 	int n_hmes;
2906 
2907 	if (busdev == NULL ||
2908 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2909 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2910 		return 0;
2911 
2912 	n_hmes = 0;
2913 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2914 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2915 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2916 			n_hmes++;
2917 	}
2918 
2919 	if (n_hmes != 4)
2920 		return 0;
2921 
2922 	return 1;
2923 }
2924 
2925 /* Fetch MAC address from vital product data of PCI ROM. */
2926 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2927 {
2928 	int this_offset;
2929 
2930 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2931 		void __iomem *p = rom_base + this_offset;
2932 
2933 		if (readb(p + 0) != 0x90 ||
2934 		    readb(p + 1) != 0x00 ||
2935 		    readb(p + 2) != 0x09 ||
2936 		    readb(p + 3) != 0x4e ||
2937 		    readb(p + 4) != 0x41 ||
2938 		    readb(p + 5) != 0x06)
2939 			continue;
2940 
2941 		this_offset += 6;
2942 		p += 6;
2943 
2944 		if (index == 0) {
2945 			int i;
2946 
2947 			for (i = 0; i < 6; i++)
2948 				dev_addr[i] = readb(p + i);
2949 			return 1;
2950 		}
2951 		index--;
2952 	}
2953 	return 0;
2954 }
2955 
2956 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2957 {
2958 	size_t size;
2959 	void __iomem *p = pci_map_rom(pdev, &size);
2960 
2961 	if (p) {
2962 		int index = 0;
2963 		int found;
2964 
2965 		if (is_quattro_p(pdev))
2966 			index = PCI_SLOT(pdev->devfn);
2967 
2968 		found = readb(p) == 0x55 &&
2969 			readb(p + 1) == 0xaa &&
2970 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2971 		pci_unmap_rom(pdev, p);
2972 		if (found)
2973 			return;
2974 	}
2975 
2976 	/* Sun MAC prefix then 3 random bytes. */
2977 	dev_addr[0] = 0x08;
2978 	dev_addr[1] = 0x00;
2979 	dev_addr[2] = 0x20;
2980 	get_random_bytes(&dev_addr[3], 3);
2981 }
2982 #endif /* !(CONFIG_SPARC) */
2983 
2984 static int happy_meal_pci_probe(struct pci_dev *pdev,
2985 				const struct pci_device_id *ent)
2986 {
2987 	struct quattro *qp = NULL;
2988 #ifdef CONFIG_SPARC
2989 	struct device_node *dp;
2990 #endif
2991 	struct happy_meal *hp;
2992 	struct net_device *dev;
2993 	void __iomem *hpreg_base;
2994 	unsigned long hpreg_res;
2995 	int i, qfe_slot = -1;
2996 	char prom_name[64];
2997 	int err;
2998 
2999 	/* Now make sure pci_dev cookie is there. */
3000 #ifdef CONFIG_SPARC
3001 	dp = pci_device_to_OF_node(pdev);
3002 	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
3003 #else
3004 	if (is_quattro_p(pdev))
3005 		strcpy(prom_name, "SUNW,qfe");
3006 	else
3007 		strcpy(prom_name, "SUNW,hme");
3008 #endif
3009 
3010 	err = -ENODEV;
3011 
3012 	if (pci_enable_device(pdev))
3013 		goto err_out;
3014 	pci_set_master(pdev);
3015 
3016 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3017 		qp = quattro_pci_find(pdev);
3018 		if (qp == NULL)
3019 			goto err_out;
3020 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3021 			if (qp->happy_meals[qfe_slot] == NULL)
3022 				break;
3023 		if (qfe_slot == 4)
3024 			goto err_out;
3025 	}
3026 
3027 	dev = alloc_etherdev(sizeof(struct happy_meal));
3028 	err = -ENOMEM;
3029 	if (!dev)
3030 		goto err_out;
3031 	SET_NETDEV_DEV(dev, &pdev->dev);
3032 
3033 	if (hme_version_printed++ == 0)
3034 		printk(KERN_INFO "%s", version);
3035 
3036 	hp = netdev_priv(dev);
3037 
3038 	hp->happy_dev = pdev;
3039 	hp->dma_dev = &pdev->dev;
3040 
3041 	spin_lock_init(&hp->happy_lock);
3042 
3043 	if (qp != NULL) {
3044 		hp->qfe_parent = qp;
3045 		hp->qfe_ent = qfe_slot;
3046 		qp->happy_meals[qfe_slot] = dev;
3047 	}
3048 
3049 	hpreg_res = pci_resource_start(pdev, 0);
3050 	err = -ENODEV;
3051 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3052 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3053 		goto err_out_clear_quattro;
3054 	}
3055 	if (pci_request_regions(pdev, DRV_NAME)) {
3056 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3057 		       "aborting.\n");
3058 		goto err_out_clear_quattro;
3059 	}
3060 
3061 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3062 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3063 		goto err_out_free_res;
3064 	}
3065 
3066 	for (i = 0; i < 6; i++) {
3067 		if (macaddr[i] != 0)
3068 			break;
3069 	}
3070 	if (i < 6) { /* a mac address was given */
3071 		for (i = 0; i < 6; i++)
3072 			dev->dev_addr[i] = macaddr[i];
3073 		macaddr[5]++;
3074 	} else {
3075 #ifdef CONFIG_SPARC
3076 		const unsigned char *addr;
3077 		int len;
3078 
3079 		if (qfe_slot != -1 &&
3080 		    (addr = of_get_property(dp, "local-mac-address", &len))
3081 			!= NULL &&
3082 		    len == 6) {
3083 			memcpy(dev->dev_addr, addr, ETH_ALEN);
3084 		} else {
3085 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3086 		}
3087 #else
3088 		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3089 #endif
3090 	}
3091 
3092 	/* Layout registers. */
3093 	hp->gregs      = (hpreg_base + 0x0000UL);
3094 	hp->etxregs    = (hpreg_base + 0x2000UL);
3095 	hp->erxregs    = (hpreg_base + 0x4000UL);
3096 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3097 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3098 
3099 #ifdef CONFIG_SPARC
3100 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3101 	if (hp->hm_revision == 0xff)
3102 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3103 #else
3104 	/* works with this on non-sparc hosts */
3105 	hp->hm_revision = 0x20;
3106 #endif
3107 
3108 	/* Now enable the feature flags we can. */
3109 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3110 		hp->happy_flags = HFLAG_20_21;
3111 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3112 		hp->happy_flags = HFLAG_NOT_A0;
3113 
3114 	if (qp != NULL)
3115 		hp->happy_flags |= HFLAG_QUATTRO;
3116 
3117 	/* And of course, indicate this is PCI. */
3118 	hp->happy_flags |= HFLAG_PCI;
3119 
3120 #ifdef CONFIG_SPARC
3121 	/* Assume PCI happy meals can handle all burst sizes. */
3122 	hp->happy_bursts = DMA_BURSTBITS;
3123 #endif
3124 
3125 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3126 					     &hp->hblock_dvma, GFP_KERNEL);
3127 	err = -ENODEV;
3128 	if (!hp->happy_block)
3129 		goto err_out_iounmap;
3130 
3131 	hp->linkcheck = 0;
3132 	hp->timer_state = asleep;
3133 	hp->timer_ticks = 0;
3134 
3135 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3136 
3137 	hp->irq = pdev->irq;
3138 	hp->dev = dev;
3139 	dev->netdev_ops = &hme_netdev_ops;
3140 	dev->watchdog_timeo = 5*HZ;
3141 	dev->ethtool_ops = &hme_ethtool_ops;
3142 
3143 	/* Happy Meal can do it all... */
3144 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3145 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3146 
3147 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3148 	/* Hook up PCI register/descriptor accessors. */
3149 	hp->read_desc32 = pci_hme_read_desc32;
3150 	hp->write_txd = pci_hme_write_txd;
3151 	hp->write_rxd = pci_hme_write_rxd;
3152 	hp->read32 = pci_hme_read32;
3153 	hp->write32 = pci_hme_write32;
3154 #endif
3155 
3156 	/* Grrr, Happy Meal comes up by default not advertising
3157 	 * full duplex 100baseT capabilities, fix this.
3158 	 */
3159 	spin_lock_irq(&hp->happy_lock);
3160 	happy_meal_set_initial_advertisement(hp);
3161 	spin_unlock_irq(&hp->happy_lock);
3162 
3163 	err = register_netdev(hp->dev);
3164 	if (err) {
3165 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3166 		       "aborting.\n");
3167 		goto err_out_iounmap;
3168 	}
3169 
3170 	pci_set_drvdata(pdev, hp);
3171 
3172 	if (!qfe_slot) {
3173 		struct pci_dev *qpdev = qp->quattro_dev;
3174 
3175 		prom_name[0] = 0;
3176 		if (!strncmp(dev->name, "eth", 3)) {
3177 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3178 			sprintf(prom_name, "-%d", i + 3);
3179 		}
3180 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3181 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3182 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3183 			printk("DEC 21153 PCI Bridge\n");
3184 		else
3185 			printk("unknown bridge %04x.%04x\n",
3186 				qpdev->vendor, qpdev->device);
3187 	}
3188 
3189 	if (qfe_slot != -1)
3190 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3191 		       dev->name, qfe_slot);
3192 	else
3193 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3194 		       dev->name);
3195 
3196 	printk("%pM\n", dev->dev_addr);
3197 
3198 	return 0;
3199 
3200 err_out_iounmap:
3201 	iounmap(hp->gregs);
3202 
3203 err_out_free_res:
3204 	pci_release_regions(pdev);
3205 
3206 err_out_clear_quattro:
3207 	if (qp != NULL)
3208 		qp->happy_meals[qfe_slot] = NULL;
3209 
3210 	free_netdev(dev);
3211 
3212 err_out:
3213 	return err;
3214 }
3215 
3216 static void happy_meal_pci_remove(struct pci_dev *pdev)
3217 {
3218 	struct happy_meal *hp = pci_get_drvdata(pdev);
3219 	struct net_device *net_dev = hp->dev;
3220 
3221 	unregister_netdev(net_dev);
3222 
3223 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3224 			  hp->happy_block, hp->hblock_dvma);
3225 	iounmap(hp->gregs);
3226 	pci_release_regions(hp->happy_dev);
3227 
3228 	free_netdev(net_dev);
3229 }
3230 
3231 static const struct pci_device_id happymeal_pci_ids[] = {
3232 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3233 	{ }			/* Terminating entry */
3234 };
3235 
3236 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3237 
3238 static struct pci_driver hme_pci_driver = {
3239 	.name		= "hme",
3240 	.id_table	= happymeal_pci_ids,
3241 	.probe		= happy_meal_pci_probe,
3242 	.remove		= happy_meal_pci_remove,
3243 };
3244 
3245 static int __init happy_meal_pci_init(void)
3246 {
3247 	return pci_register_driver(&hme_pci_driver);
3248 }
3249 
3250 static void happy_meal_pci_exit(void)
3251 {
3252 	pci_unregister_driver(&hme_pci_driver);
3253 
3254 	while (qfe_pci_list) {
3255 		struct quattro *qfe = qfe_pci_list;
3256 		struct quattro *next = qfe->next;
3257 
3258 		kfree(qfe);
3259 
3260 		qfe_pci_list = next;
3261 	}
3262 }
3263 
3264 #endif
3265 
3266 #ifdef CONFIG_SBUS
3267 static const struct of_device_id hme_sbus_match[];
3268 static int hme_sbus_probe(struct platform_device *op)
3269 {
3270 	const struct of_device_id *match;
3271 	struct device_node *dp = op->dev.of_node;
3272 	const char *model = of_get_property(dp, "model", NULL);
3273 	int is_qfe;
3274 
3275 	match = of_match_device(hme_sbus_match, &op->dev);
3276 	if (!match)
3277 		return -EINVAL;
3278 	is_qfe = (match->data != NULL);
3279 
3280 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3281 		is_qfe = 1;
3282 
3283 	return happy_meal_sbus_probe_one(op, is_qfe);
3284 }
3285 
3286 static int hme_sbus_remove(struct platform_device *op)
3287 {
3288 	struct happy_meal *hp = platform_get_drvdata(op);
3289 	struct net_device *net_dev = hp->dev;
3290 
3291 	unregister_netdev(net_dev);
3292 
3293 	/* XXX qfe parent interrupt... */
3294 
3295 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3296 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3297 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3298 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3299 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3300 	dma_free_coherent(hp->dma_dev,
3301 			  PAGE_SIZE,
3302 			  hp->happy_block,
3303 			  hp->hblock_dvma);
3304 
3305 	free_netdev(net_dev);
3306 
3307 	return 0;
3308 }
3309 
3310 static const struct of_device_id hme_sbus_match[] = {
3311 	{
3312 		.name = "SUNW,hme",
3313 	},
3314 	{
3315 		.name = "SUNW,qfe",
3316 		.data = (void *) 1,
3317 	},
3318 	{
3319 		.name = "qfe",
3320 		.data = (void *) 1,
3321 	},
3322 	{},
3323 };
3324 
3325 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3326 
3327 static struct platform_driver hme_sbus_driver = {
3328 	.driver = {
3329 		.name = "hme",
3330 		.of_match_table = hme_sbus_match,
3331 	},
3332 	.probe		= hme_sbus_probe,
3333 	.remove		= hme_sbus_remove,
3334 };
3335 
3336 static int __init happy_meal_sbus_init(void)
3337 {
3338 	int err;
3339 
3340 	err = platform_driver_register(&hme_sbus_driver);
3341 	if (!err)
3342 		err = quattro_sbus_register_irqs();
3343 
3344 	return err;
3345 }
3346 
3347 static void happy_meal_sbus_exit(void)
3348 {
3349 	platform_driver_unregister(&hme_sbus_driver);
3350 	quattro_sbus_free_irqs();
3351 
3352 	while (qfe_sbus_list) {
3353 		struct quattro *qfe = qfe_sbus_list;
3354 		struct quattro *next = qfe->next;
3355 
3356 		kfree(qfe);
3357 
3358 		qfe_sbus_list = next;
3359 	}
3360 }
3361 #endif
3362 
3363 static int __init happy_meal_probe(void)
3364 {
3365 	int err = 0;
3366 
3367 #ifdef CONFIG_SBUS
3368 	err = happy_meal_sbus_init();
3369 #endif
3370 #ifdef CONFIG_PCI
3371 	if (!err) {
3372 		err = happy_meal_pci_init();
3373 #ifdef CONFIG_SBUS
3374 		if (err)
3375 			happy_meal_sbus_exit();
3376 #endif
3377 	}
3378 #endif
3379 
3380 	return err;
3381 }
3382 
3383 
3384 static void __exit happy_meal_exit(void)
3385 {
3386 #ifdef CONFIG_SBUS
3387 	happy_meal_sbus_exit();
3388 #endif
3389 #ifdef CONFIG_PCI
3390 	happy_meal_pci_exit();
3391 #endif
3392 }
3393 
3394 module_init(happy_meal_probe);
3395 module_exit(happy_meal_exit);
3396