1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 2 * sungem.c: Sun GEM ethernet driver. 3 * 4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 5 * 6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 9 * 10 * NAPI and NETPOLL support 11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 12 * 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/fcntl.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/in.h> 24 #include <linux/sched.h> 25 #include <linux/string.h> 26 #include <linux/delay.h> 27 #include <linux/init.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 44 #include <asm/io.h> 45 #include <asm/byteorder.h> 46 #include <asm/uaccess.h> 47 #include <asm/irq.h> 48 49 #ifdef CONFIG_SPARC 50 #include <asm/idprom.h> 51 #include <asm/prom.h> 52 #endif 53 54 #ifdef CONFIG_PPC_PMAC 55 #include <asm/pci-bridge.h> 56 #include <asm/prom.h> 57 #include <asm/machdep.h> 58 #include <asm/pmac_feature.h> 59 #endif 60 61 #include <linux/sungem_phy.h> 62 #include "sungem.h" 63 64 /* Stripping FCS is causing problems, disabled for now */ 65 #undef STRIP_FCS 66 67 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 68 NETIF_MSG_PROBE | \ 69 NETIF_MSG_LINK) 70 71 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 72 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 73 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 74 SUPPORTED_Pause | SUPPORTED_Autoneg) 75 76 #define DRV_NAME "sungem" 77 #define DRV_VERSION "1.0" 78 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 79 80 static char version[] __devinitdata = 81 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 82 83 MODULE_AUTHOR(DRV_AUTHOR); 84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 85 MODULE_LICENSE("GPL"); 86 87 #define GEM_MODULE_NAME "gem" 88 89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = { 90 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 91 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 92 93 /* These models only differ from the original GEM in 94 * that their tx/rx fifos are of a different size and 95 * they only support 10/100 speeds. -DaveM 96 * 97 * Apple's GMAC does support gigabit on machines with 98 * the BCM54xx PHYs. -BenH 99 */ 100 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 112 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 114 {0, } 115 }; 116 117 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 118 119 static u16 __phy_read(struct gem *gp, int phy_addr, int reg) 120 { 121 u32 cmd; 122 int limit = 10000; 123 124 cmd = (1 << 30); 125 cmd |= (2 << 28); 126 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 127 cmd |= (reg << 18) & MIF_FRAME_REGAD; 128 cmd |= (MIF_FRAME_TAMSB); 129 writel(cmd, gp->regs + MIF_FRAME); 130 131 while (--limit) { 132 cmd = readl(gp->regs + MIF_FRAME); 133 if (cmd & MIF_FRAME_TALSB) 134 break; 135 136 udelay(10); 137 } 138 139 if (!limit) 140 cmd = 0xffff; 141 142 return cmd & MIF_FRAME_DATA; 143 } 144 145 static inline int _phy_read(struct net_device *dev, int mii_id, int reg) 146 { 147 struct gem *gp = netdev_priv(dev); 148 return __phy_read(gp, mii_id, reg); 149 } 150 151 static inline u16 phy_read(struct gem *gp, int reg) 152 { 153 return __phy_read(gp, gp->mii_phy_addr, reg); 154 } 155 156 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 157 { 158 u32 cmd; 159 int limit = 10000; 160 161 cmd = (1 << 30); 162 cmd |= (1 << 28); 163 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 164 cmd |= (reg << 18) & MIF_FRAME_REGAD; 165 cmd |= (MIF_FRAME_TAMSB); 166 cmd |= (val & MIF_FRAME_DATA); 167 writel(cmd, gp->regs + MIF_FRAME); 168 169 while (limit--) { 170 cmd = readl(gp->regs + MIF_FRAME); 171 if (cmd & MIF_FRAME_TALSB) 172 break; 173 174 udelay(10); 175 } 176 } 177 178 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val) 179 { 180 struct gem *gp = netdev_priv(dev); 181 __phy_write(gp, mii_id, reg, val & 0xffff); 182 } 183 184 static inline void phy_write(struct gem *gp, int reg, u16 val) 185 { 186 __phy_write(gp, gp->mii_phy_addr, reg, val); 187 } 188 189 static inline void gem_enable_ints(struct gem *gp) 190 { 191 /* Enable all interrupts but TXDONE */ 192 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 193 } 194 195 static inline void gem_disable_ints(struct gem *gp) 196 { 197 /* Disable all interrupts, including TXDONE */ 198 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 199 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 200 } 201 202 static void gem_get_cell(struct gem *gp) 203 { 204 BUG_ON(gp->cell_enabled < 0); 205 gp->cell_enabled++; 206 #ifdef CONFIG_PPC_PMAC 207 if (gp->cell_enabled == 1) { 208 mb(); 209 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 210 udelay(10); 211 } 212 #endif /* CONFIG_PPC_PMAC */ 213 } 214 215 /* Turn off the chip's clock */ 216 static void gem_put_cell(struct gem *gp) 217 { 218 BUG_ON(gp->cell_enabled <= 0); 219 gp->cell_enabled--; 220 #ifdef CONFIG_PPC_PMAC 221 if (gp->cell_enabled == 0) { 222 mb(); 223 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 224 udelay(10); 225 } 226 #endif /* CONFIG_PPC_PMAC */ 227 } 228 229 static inline void gem_netif_stop(struct gem *gp) 230 { 231 gp->dev->trans_start = jiffies; /* prevent tx timeout */ 232 napi_disable(&gp->napi); 233 netif_tx_disable(gp->dev); 234 } 235 236 static inline void gem_netif_start(struct gem *gp) 237 { 238 /* NOTE: unconditional netif_wake_queue is only 239 * appropriate so long as all callers are assured to 240 * have free tx slots. 241 */ 242 netif_wake_queue(gp->dev); 243 napi_enable(&gp->napi); 244 } 245 246 static void gem_schedule_reset(struct gem *gp) 247 { 248 gp->reset_task_pending = 1; 249 schedule_work(&gp->reset_task); 250 } 251 252 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 253 { 254 if (netif_msg_intr(gp)) 255 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 256 } 257 258 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 259 { 260 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 261 u32 pcs_miistat; 262 263 if (netif_msg_intr(gp)) 264 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 265 gp->dev->name, pcs_istat); 266 267 if (!(pcs_istat & PCS_ISTAT_LSC)) { 268 netdev_err(dev, "PCS irq but no link status change???\n"); 269 return 0; 270 } 271 272 /* The link status bit latches on zero, so you must 273 * read it twice in such a case to see a transition 274 * to the link being up. 275 */ 276 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 277 if (!(pcs_miistat & PCS_MIISTAT_LS)) 278 pcs_miistat |= 279 (readl(gp->regs + PCS_MIISTAT) & 280 PCS_MIISTAT_LS); 281 282 if (pcs_miistat & PCS_MIISTAT_ANC) { 283 /* The remote-fault indication is only valid 284 * when autoneg has completed. 285 */ 286 if (pcs_miistat & PCS_MIISTAT_RF) 287 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 288 else 289 netdev_info(dev, "PCS AutoNEG complete\n"); 290 } 291 292 if (pcs_miistat & PCS_MIISTAT_LS) { 293 netdev_info(dev, "PCS link is now up\n"); 294 netif_carrier_on(gp->dev); 295 } else { 296 netdev_info(dev, "PCS link is now down\n"); 297 netif_carrier_off(gp->dev); 298 /* If this happens and the link timer is not running, 299 * reset so we re-negotiate. 300 */ 301 if (!timer_pending(&gp->link_timer)) 302 return 1; 303 } 304 305 return 0; 306 } 307 308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 309 { 310 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 311 312 if (netif_msg_intr(gp)) 313 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 314 gp->dev->name, txmac_stat); 315 316 /* Defer timer expiration is quite normal, 317 * don't even log the event. 318 */ 319 if ((txmac_stat & MAC_TXSTAT_DTE) && 320 !(txmac_stat & ~MAC_TXSTAT_DTE)) 321 return 0; 322 323 if (txmac_stat & MAC_TXSTAT_URUN) { 324 netdev_err(dev, "TX MAC xmit underrun\n"); 325 dev->stats.tx_fifo_errors++; 326 } 327 328 if (txmac_stat & MAC_TXSTAT_MPE) { 329 netdev_err(dev, "TX MAC max packet size error\n"); 330 dev->stats.tx_errors++; 331 } 332 333 /* The rest are all cases of one of the 16-bit TX 334 * counters expiring. 335 */ 336 if (txmac_stat & MAC_TXSTAT_NCE) 337 dev->stats.collisions += 0x10000; 338 339 if (txmac_stat & MAC_TXSTAT_ECE) { 340 dev->stats.tx_aborted_errors += 0x10000; 341 dev->stats.collisions += 0x10000; 342 } 343 344 if (txmac_stat & MAC_TXSTAT_LCE) { 345 dev->stats.tx_aborted_errors += 0x10000; 346 dev->stats.collisions += 0x10000; 347 } 348 349 /* We do not keep track of MAC_TXSTAT_FCE and 350 * MAC_TXSTAT_PCE events. 351 */ 352 return 0; 353 } 354 355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 356 * so we do the following. 357 * 358 * If any part of the reset goes wrong, we return 1 and that causes the 359 * whole chip to be reset. 360 */ 361 static int gem_rxmac_reset(struct gem *gp) 362 { 363 struct net_device *dev = gp->dev; 364 int limit, i; 365 u64 desc_dma; 366 u32 val; 367 368 /* First, reset & disable MAC RX. */ 369 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 370 for (limit = 0; limit < 5000; limit++) { 371 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 372 break; 373 udelay(10); 374 } 375 if (limit == 5000) { 376 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 377 return 1; 378 } 379 380 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 381 gp->regs + MAC_RXCFG); 382 for (limit = 0; limit < 5000; limit++) { 383 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 384 break; 385 udelay(10); 386 } 387 if (limit == 5000) { 388 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 389 return 1; 390 } 391 392 /* Second, disable RX DMA. */ 393 writel(0, gp->regs + RXDMA_CFG); 394 for (limit = 0; limit < 5000; limit++) { 395 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 396 break; 397 udelay(10); 398 } 399 if (limit == 5000) { 400 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 401 return 1; 402 } 403 404 udelay(5000); 405 406 /* Execute RX reset command. */ 407 writel(gp->swrst_base | GREG_SWRST_RXRST, 408 gp->regs + GREG_SWRST); 409 for (limit = 0; limit < 5000; limit++) { 410 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 411 break; 412 udelay(10); 413 } 414 if (limit == 5000) { 415 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 416 return 1; 417 } 418 419 /* Refresh the RX ring. */ 420 for (i = 0; i < RX_RING_SIZE; i++) { 421 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 422 423 if (gp->rx_skbs[i] == NULL) { 424 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 425 return 1; 426 } 427 428 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 429 } 430 gp->rx_new = gp->rx_old = 0; 431 432 /* Now we must reprogram the rest of RX unit. */ 433 desc_dma = (u64) gp->gblock_dvma; 434 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 435 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 436 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 437 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 438 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 439 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 440 writel(val, gp->regs + RXDMA_CFG); 441 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 442 writel(((5 & RXDMA_BLANK_IPKTS) | 443 ((8 << 12) & RXDMA_BLANK_ITIME)), 444 gp->regs + RXDMA_BLANK); 445 else 446 writel(((5 & RXDMA_BLANK_IPKTS) | 447 ((4 << 12) & RXDMA_BLANK_ITIME)), 448 gp->regs + RXDMA_BLANK); 449 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 450 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 451 writel(val, gp->regs + RXDMA_PTHRESH); 452 val = readl(gp->regs + RXDMA_CFG); 453 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 454 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 455 val = readl(gp->regs + MAC_RXCFG); 456 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 457 458 return 0; 459 } 460 461 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 462 { 463 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 464 int ret = 0; 465 466 if (netif_msg_intr(gp)) 467 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 468 gp->dev->name, rxmac_stat); 469 470 if (rxmac_stat & MAC_RXSTAT_OFLW) { 471 u32 smac = readl(gp->regs + MAC_SMACHINE); 472 473 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 474 dev->stats.rx_over_errors++; 475 dev->stats.rx_fifo_errors++; 476 477 ret = gem_rxmac_reset(gp); 478 } 479 480 if (rxmac_stat & MAC_RXSTAT_ACE) 481 dev->stats.rx_frame_errors += 0x10000; 482 483 if (rxmac_stat & MAC_RXSTAT_CCE) 484 dev->stats.rx_crc_errors += 0x10000; 485 486 if (rxmac_stat & MAC_RXSTAT_LCE) 487 dev->stats.rx_length_errors += 0x10000; 488 489 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 490 * events. 491 */ 492 return ret; 493 } 494 495 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 496 { 497 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 498 499 if (netif_msg_intr(gp)) 500 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 501 gp->dev->name, mac_cstat); 502 503 /* This interrupt is just for pause frame and pause 504 * tracking. It is useful for diagnostics and debug 505 * but probably by default we will mask these events. 506 */ 507 if (mac_cstat & MAC_CSTAT_PS) 508 gp->pause_entered++; 509 510 if (mac_cstat & MAC_CSTAT_PRCV) 511 gp->pause_last_time_recvd = (mac_cstat >> 16); 512 513 return 0; 514 } 515 516 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 517 { 518 u32 mif_status = readl(gp->regs + MIF_STATUS); 519 u32 reg_val, changed_bits; 520 521 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 522 changed_bits = (mif_status & MIF_STATUS_STAT); 523 524 gem_handle_mif_event(gp, reg_val, changed_bits); 525 526 return 0; 527 } 528 529 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 530 { 531 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 532 533 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 534 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 535 netdev_err(dev, "PCI error [%04x]", pci_estat); 536 537 if (pci_estat & GREG_PCIESTAT_BADACK) 538 pr_cont(" <No ACK64# during ABS64 cycle>"); 539 if (pci_estat & GREG_PCIESTAT_DTRTO) 540 pr_cont(" <Delayed transaction timeout>"); 541 if (pci_estat & GREG_PCIESTAT_OTHER) 542 pr_cont(" <other>"); 543 pr_cont("\n"); 544 } else { 545 pci_estat |= GREG_PCIESTAT_OTHER; 546 netdev_err(dev, "PCI error\n"); 547 } 548 549 if (pci_estat & GREG_PCIESTAT_OTHER) { 550 u16 pci_cfg_stat; 551 552 /* Interrogate PCI config space for the 553 * true cause. 554 */ 555 pci_read_config_word(gp->pdev, PCI_STATUS, 556 &pci_cfg_stat); 557 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 558 pci_cfg_stat); 559 if (pci_cfg_stat & PCI_STATUS_PARITY) 560 netdev_err(dev, "PCI parity error detected\n"); 561 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 562 netdev_err(dev, "PCI target abort\n"); 563 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 564 netdev_err(dev, "PCI master acks target abort\n"); 565 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 566 netdev_err(dev, "PCI master abort\n"); 567 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 568 netdev_err(dev, "PCI system error SERR#\n"); 569 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 570 netdev_err(dev, "PCI parity error\n"); 571 572 /* Write the error bits back to clear them. */ 573 pci_cfg_stat &= (PCI_STATUS_PARITY | 574 PCI_STATUS_SIG_TARGET_ABORT | 575 PCI_STATUS_REC_TARGET_ABORT | 576 PCI_STATUS_REC_MASTER_ABORT | 577 PCI_STATUS_SIG_SYSTEM_ERROR | 578 PCI_STATUS_DETECTED_PARITY); 579 pci_write_config_word(gp->pdev, 580 PCI_STATUS, pci_cfg_stat); 581 } 582 583 /* For all PCI errors, we should reset the chip. */ 584 return 1; 585 } 586 587 /* All non-normal interrupt conditions get serviced here. 588 * Returns non-zero if we should just exit the interrupt 589 * handler right now (ie. if we reset the card which invalidates 590 * all of the other original irq status bits). 591 */ 592 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 593 { 594 if (gem_status & GREG_STAT_RXNOBUF) { 595 /* Frame arrived, no free RX buffers available. */ 596 if (netif_msg_rx_err(gp)) 597 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 598 gp->dev->name); 599 dev->stats.rx_dropped++; 600 } 601 602 if (gem_status & GREG_STAT_RXTAGERR) { 603 /* corrupt RX tag framing */ 604 if (netif_msg_rx_err(gp)) 605 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 606 gp->dev->name); 607 dev->stats.rx_errors++; 608 609 return 1; 610 } 611 612 if (gem_status & GREG_STAT_PCS) { 613 if (gem_pcs_interrupt(dev, gp, gem_status)) 614 return 1; 615 } 616 617 if (gem_status & GREG_STAT_TXMAC) { 618 if (gem_txmac_interrupt(dev, gp, gem_status)) 619 return 1; 620 } 621 622 if (gem_status & GREG_STAT_RXMAC) { 623 if (gem_rxmac_interrupt(dev, gp, gem_status)) 624 return 1; 625 } 626 627 if (gem_status & GREG_STAT_MAC) { 628 if (gem_mac_interrupt(dev, gp, gem_status)) 629 return 1; 630 } 631 632 if (gem_status & GREG_STAT_MIF) { 633 if (gem_mif_interrupt(dev, gp, gem_status)) 634 return 1; 635 } 636 637 if (gem_status & GREG_STAT_PCIERR) { 638 if (gem_pci_interrupt(dev, gp, gem_status)) 639 return 1; 640 } 641 642 return 0; 643 } 644 645 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 646 { 647 int entry, limit; 648 649 entry = gp->tx_old; 650 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 651 while (entry != limit) { 652 struct sk_buff *skb; 653 struct gem_txd *txd; 654 dma_addr_t dma_addr; 655 u32 dma_len; 656 int frag; 657 658 if (netif_msg_tx_done(gp)) 659 printk(KERN_DEBUG "%s: tx done, slot %d\n", 660 gp->dev->name, entry); 661 skb = gp->tx_skbs[entry]; 662 if (skb_shinfo(skb)->nr_frags) { 663 int last = entry + skb_shinfo(skb)->nr_frags; 664 int walk = entry; 665 int incomplete = 0; 666 667 last &= (TX_RING_SIZE - 1); 668 for (;;) { 669 walk = NEXT_TX(walk); 670 if (walk == limit) 671 incomplete = 1; 672 if (walk == last) 673 break; 674 } 675 if (incomplete) 676 break; 677 } 678 gp->tx_skbs[entry] = NULL; 679 dev->stats.tx_bytes += skb->len; 680 681 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 682 txd = &gp->init_block->txd[entry]; 683 684 dma_addr = le64_to_cpu(txd->buffer); 685 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 686 687 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 688 entry = NEXT_TX(entry); 689 } 690 691 dev->stats.tx_packets++; 692 dev_kfree_skb(skb); 693 } 694 gp->tx_old = entry; 695 696 /* Need to make the tx_old update visible to gem_start_xmit() 697 * before checking for netif_queue_stopped(). Without the 698 * memory barrier, there is a small possibility that gem_start_xmit() 699 * will miss it and cause the queue to be stopped forever. 700 */ 701 smp_mb(); 702 703 if (unlikely(netif_queue_stopped(dev) && 704 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 705 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 706 707 __netif_tx_lock(txq, smp_processor_id()); 708 if (netif_queue_stopped(dev) && 709 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 710 netif_wake_queue(dev); 711 __netif_tx_unlock(txq); 712 } 713 } 714 715 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 716 { 717 int cluster_start, curr, count, kick; 718 719 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 720 count = 0; 721 kick = -1; 722 wmb(); 723 while (curr != limit) { 724 curr = NEXT_RX(curr); 725 if (++count == 4) { 726 struct gem_rxd *rxd = 727 &gp->init_block->rxd[cluster_start]; 728 for (;;) { 729 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 730 rxd++; 731 cluster_start = NEXT_RX(cluster_start); 732 if (cluster_start == curr) 733 break; 734 } 735 kick = curr; 736 count = 0; 737 } 738 } 739 if (kick >= 0) { 740 mb(); 741 writel(kick, gp->regs + RXDMA_KICK); 742 } 743 } 744 745 #define ALIGNED_RX_SKB_ADDR(addr) \ 746 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 747 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 748 gfp_t gfp_flags) 749 { 750 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 751 752 if (likely(skb)) { 753 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 754 skb_reserve(skb, offset); 755 skb->dev = dev; 756 } 757 return skb; 758 } 759 760 static int gem_rx(struct gem *gp, int work_to_do) 761 { 762 struct net_device *dev = gp->dev; 763 int entry, drops, work_done = 0; 764 u32 done; 765 __sum16 csum; 766 767 if (netif_msg_rx_status(gp)) 768 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 769 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 770 771 entry = gp->rx_new; 772 drops = 0; 773 done = readl(gp->regs + RXDMA_DONE); 774 for (;;) { 775 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 776 struct sk_buff *skb; 777 u64 status = le64_to_cpu(rxd->status_word); 778 dma_addr_t dma_addr; 779 int len; 780 781 if ((status & RXDCTRL_OWN) != 0) 782 break; 783 784 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 785 break; 786 787 /* When writing back RX descriptor, GEM writes status 788 * then buffer address, possibly in separate transactions. 789 * If we don't wait for the chip to write both, we could 790 * post a new buffer to this descriptor then have GEM spam 791 * on the buffer address. We sync on the RX completion 792 * register to prevent this from happening. 793 */ 794 if (entry == done) { 795 done = readl(gp->regs + RXDMA_DONE); 796 if (entry == done) 797 break; 798 } 799 800 /* We can now account for the work we're about to do */ 801 work_done++; 802 803 skb = gp->rx_skbs[entry]; 804 805 len = (status & RXDCTRL_BUFSZ) >> 16; 806 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 807 dev->stats.rx_errors++; 808 if (len < ETH_ZLEN) 809 dev->stats.rx_length_errors++; 810 if (len & RXDCTRL_BAD) 811 dev->stats.rx_crc_errors++; 812 813 /* We'll just return it to GEM. */ 814 drop_it: 815 dev->stats.rx_dropped++; 816 goto next; 817 } 818 819 dma_addr = le64_to_cpu(rxd->buffer); 820 if (len > RX_COPY_THRESHOLD) { 821 struct sk_buff *new_skb; 822 823 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 824 if (new_skb == NULL) { 825 drops++; 826 goto drop_it; 827 } 828 pci_unmap_page(gp->pdev, dma_addr, 829 RX_BUF_ALLOC_SIZE(gp), 830 PCI_DMA_FROMDEVICE); 831 gp->rx_skbs[entry] = new_skb; 832 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 833 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 834 virt_to_page(new_skb->data), 835 offset_in_page(new_skb->data), 836 RX_BUF_ALLOC_SIZE(gp), 837 PCI_DMA_FROMDEVICE)); 838 skb_reserve(new_skb, RX_OFFSET); 839 840 /* Trim the original skb for the netif. */ 841 skb_trim(skb, len); 842 } else { 843 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 844 845 if (copy_skb == NULL) { 846 drops++; 847 goto drop_it; 848 } 849 850 skb_reserve(copy_skb, 2); 851 skb_put(copy_skb, len); 852 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 853 skb_copy_from_linear_data(skb, copy_skb->data, len); 854 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 855 856 /* We'll reuse the original ring buffer. */ 857 skb = copy_skb; 858 } 859 860 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 861 skb->csum = csum_unfold(csum); 862 skb->ip_summed = CHECKSUM_COMPLETE; 863 skb->protocol = eth_type_trans(skb, gp->dev); 864 865 napi_gro_receive(&gp->napi, skb); 866 867 dev->stats.rx_packets++; 868 dev->stats.rx_bytes += len; 869 870 next: 871 entry = NEXT_RX(entry); 872 } 873 874 gem_post_rxds(gp, entry); 875 876 gp->rx_new = entry; 877 878 if (drops) 879 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 880 881 return work_done; 882 } 883 884 static int gem_poll(struct napi_struct *napi, int budget) 885 { 886 struct gem *gp = container_of(napi, struct gem, napi); 887 struct net_device *dev = gp->dev; 888 int work_done; 889 890 work_done = 0; 891 do { 892 /* Handle anomalies */ 893 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 894 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 895 int reset; 896 897 /* We run the abnormal interrupt handling code with 898 * the Tx lock. It only resets the Rx portion of the 899 * chip, but we need to guard it against DMA being 900 * restarted by the link poll timer 901 */ 902 __netif_tx_lock(txq, smp_processor_id()); 903 reset = gem_abnormal_irq(dev, gp, gp->status); 904 __netif_tx_unlock(txq); 905 if (reset) { 906 gem_schedule_reset(gp); 907 napi_complete(napi); 908 return work_done; 909 } 910 } 911 912 /* Run TX completion thread */ 913 gem_tx(dev, gp, gp->status); 914 915 /* Run RX thread. We don't use any locking here, 916 * code willing to do bad things - like cleaning the 917 * rx ring - must call napi_disable(), which 918 * schedule_timeout()'s if polling is already disabled. 919 */ 920 work_done += gem_rx(gp, budget - work_done); 921 922 if (work_done >= budget) 923 return work_done; 924 925 gp->status = readl(gp->regs + GREG_STAT); 926 } while (gp->status & GREG_STAT_NAPI); 927 928 napi_complete(napi); 929 gem_enable_ints(gp); 930 931 return work_done; 932 } 933 934 static irqreturn_t gem_interrupt(int irq, void *dev_id) 935 { 936 struct net_device *dev = dev_id; 937 struct gem *gp = netdev_priv(dev); 938 939 if (napi_schedule_prep(&gp->napi)) { 940 u32 gem_status = readl(gp->regs + GREG_STAT); 941 942 if (unlikely(gem_status == 0)) { 943 napi_enable(&gp->napi); 944 return IRQ_NONE; 945 } 946 if (netif_msg_intr(gp)) 947 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 948 gp->dev->name, gem_status); 949 950 gp->status = gem_status; 951 gem_disable_ints(gp); 952 __napi_schedule(&gp->napi); 953 } 954 955 /* If polling was disabled at the time we received that 956 * interrupt, we may return IRQ_HANDLED here while we 957 * should return IRQ_NONE. No big deal... 958 */ 959 return IRQ_HANDLED; 960 } 961 962 #ifdef CONFIG_NET_POLL_CONTROLLER 963 static void gem_poll_controller(struct net_device *dev) 964 { 965 struct gem *gp = netdev_priv(dev); 966 967 disable_irq(gp->pdev->irq); 968 gem_interrupt(gp->pdev->irq, dev); 969 enable_irq(gp->pdev->irq); 970 } 971 #endif 972 973 static void gem_tx_timeout(struct net_device *dev) 974 { 975 struct gem *gp = netdev_priv(dev); 976 977 netdev_err(dev, "transmit timed out, resetting\n"); 978 979 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 980 readl(gp->regs + TXDMA_CFG), 981 readl(gp->regs + MAC_TXSTAT), 982 readl(gp->regs + MAC_TXCFG)); 983 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 984 readl(gp->regs + RXDMA_CFG), 985 readl(gp->regs + MAC_RXSTAT), 986 readl(gp->regs + MAC_RXCFG)); 987 988 gem_schedule_reset(gp); 989 } 990 991 static __inline__ int gem_intme(int entry) 992 { 993 /* Algorithm: IRQ every 1/2 of descriptors. */ 994 if (!(entry & ((TX_RING_SIZE>>1)-1))) 995 return 1; 996 997 return 0; 998 } 999 1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 1001 struct net_device *dev) 1002 { 1003 struct gem *gp = netdev_priv(dev); 1004 int entry; 1005 u64 ctrl; 1006 1007 ctrl = 0; 1008 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1009 const u64 csum_start_off = skb_checksum_start_offset(skb); 1010 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1011 1012 ctrl = (TXDCTRL_CENAB | 1013 (csum_start_off << 15) | 1014 (csum_stuff_off << 21)); 1015 } 1016 1017 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1018 /* This is a hard error, log it. */ 1019 if (!netif_queue_stopped(dev)) { 1020 netif_stop_queue(dev); 1021 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1022 } 1023 return NETDEV_TX_BUSY; 1024 } 1025 1026 entry = gp->tx_new; 1027 gp->tx_skbs[entry] = skb; 1028 1029 if (skb_shinfo(skb)->nr_frags == 0) { 1030 struct gem_txd *txd = &gp->init_block->txd[entry]; 1031 dma_addr_t mapping; 1032 u32 len; 1033 1034 len = skb->len; 1035 mapping = pci_map_page(gp->pdev, 1036 virt_to_page(skb->data), 1037 offset_in_page(skb->data), 1038 len, PCI_DMA_TODEVICE); 1039 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1040 if (gem_intme(entry)) 1041 ctrl |= TXDCTRL_INTME; 1042 txd->buffer = cpu_to_le64(mapping); 1043 wmb(); 1044 txd->control_word = cpu_to_le64(ctrl); 1045 entry = NEXT_TX(entry); 1046 } else { 1047 struct gem_txd *txd; 1048 u32 first_len; 1049 u64 intme; 1050 dma_addr_t first_mapping; 1051 int frag, first_entry = entry; 1052 1053 intme = 0; 1054 if (gem_intme(entry)) 1055 intme |= TXDCTRL_INTME; 1056 1057 /* We must give this initial chunk to the device last. 1058 * Otherwise we could race with the device. 1059 */ 1060 first_len = skb_headlen(skb); 1061 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1062 offset_in_page(skb->data), 1063 first_len, PCI_DMA_TODEVICE); 1064 entry = NEXT_TX(entry); 1065 1066 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1067 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1068 u32 len; 1069 dma_addr_t mapping; 1070 u64 this_ctrl; 1071 1072 len = skb_frag_size(this_frag); 1073 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1074 0, len, DMA_TO_DEVICE); 1075 this_ctrl = ctrl; 1076 if (frag == skb_shinfo(skb)->nr_frags - 1) 1077 this_ctrl |= TXDCTRL_EOF; 1078 1079 txd = &gp->init_block->txd[entry]; 1080 txd->buffer = cpu_to_le64(mapping); 1081 wmb(); 1082 txd->control_word = cpu_to_le64(this_ctrl | len); 1083 1084 if (gem_intme(entry)) 1085 intme |= TXDCTRL_INTME; 1086 1087 entry = NEXT_TX(entry); 1088 } 1089 txd = &gp->init_block->txd[first_entry]; 1090 txd->buffer = cpu_to_le64(first_mapping); 1091 wmb(); 1092 txd->control_word = 1093 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1094 } 1095 1096 gp->tx_new = entry; 1097 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1098 netif_stop_queue(dev); 1099 1100 /* netif_stop_queue() must be done before checking 1101 * checking tx index in TX_BUFFS_AVAIL() below, because 1102 * in gem_tx(), we update tx_old before checking for 1103 * netif_queue_stopped(). 1104 */ 1105 smp_mb(); 1106 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1107 netif_wake_queue(dev); 1108 } 1109 if (netif_msg_tx_queued(gp)) 1110 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1111 dev->name, entry, skb->len); 1112 mb(); 1113 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1114 1115 return NETDEV_TX_OK; 1116 } 1117 1118 static void gem_pcs_reset(struct gem *gp) 1119 { 1120 int limit; 1121 u32 val; 1122 1123 /* Reset PCS unit. */ 1124 val = readl(gp->regs + PCS_MIICTRL); 1125 val |= PCS_MIICTRL_RST; 1126 writel(val, gp->regs + PCS_MIICTRL); 1127 1128 limit = 32; 1129 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1130 udelay(100); 1131 if (limit-- <= 0) 1132 break; 1133 } 1134 if (limit < 0) 1135 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1136 } 1137 1138 static void gem_pcs_reinit_adv(struct gem *gp) 1139 { 1140 u32 val; 1141 1142 /* Make sure PCS is disabled while changing advertisement 1143 * configuration. 1144 */ 1145 val = readl(gp->regs + PCS_CFG); 1146 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1147 writel(val, gp->regs + PCS_CFG); 1148 1149 /* Advertise all capabilities except asymmetric 1150 * pause. 1151 */ 1152 val = readl(gp->regs + PCS_MIIADV); 1153 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1154 PCS_MIIADV_SP | PCS_MIIADV_AP); 1155 writel(val, gp->regs + PCS_MIIADV); 1156 1157 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1158 * and re-enable PCS. 1159 */ 1160 val = readl(gp->regs + PCS_MIICTRL); 1161 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1162 val &= ~PCS_MIICTRL_WB; 1163 writel(val, gp->regs + PCS_MIICTRL); 1164 1165 val = readl(gp->regs + PCS_CFG); 1166 val |= PCS_CFG_ENABLE; 1167 writel(val, gp->regs + PCS_CFG); 1168 1169 /* Make sure serialink loopback is off. The meaning 1170 * of this bit is logically inverted based upon whether 1171 * you are in Serialink or SERDES mode. 1172 */ 1173 val = readl(gp->regs + PCS_SCTRL); 1174 if (gp->phy_type == phy_serialink) 1175 val &= ~PCS_SCTRL_LOOP; 1176 else 1177 val |= PCS_SCTRL_LOOP; 1178 writel(val, gp->regs + PCS_SCTRL); 1179 } 1180 1181 #define STOP_TRIES 32 1182 1183 static void gem_reset(struct gem *gp) 1184 { 1185 int limit; 1186 u32 val; 1187 1188 /* Make sure we won't get any more interrupts */ 1189 writel(0xffffffff, gp->regs + GREG_IMASK); 1190 1191 /* Reset the chip */ 1192 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1193 gp->regs + GREG_SWRST); 1194 1195 limit = STOP_TRIES; 1196 1197 do { 1198 udelay(20); 1199 val = readl(gp->regs + GREG_SWRST); 1200 if (limit-- <= 0) 1201 break; 1202 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1203 1204 if (limit < 0) 1205 netdev_err(gp->dev, "SW reset is ghetto\n"); 1206 1207 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1208 gem_pcs_reinit_adv(gp); 1209 } 1210 1211 static void gem_start_dma(struct gem *gp) 1212 { 1213 u32 val; 1214 1215 /* We are ready to rock, turn everything on. */ 1216 val = readl(gp->regs + TXDMA_CFG); 1217 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1218 val = readl(gp->regs + RXDMA_CFG); 1219 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1220 val = readl(gp->regs + MAC_TXCFG); 1221 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1222 val = readl(gp->regs + MAC_RXCFG); 1223 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1224 1225 (void) readl(gp->regs + MAC_RXCFG); 1226 udelay(100); 1227 1228 gem_enable_ints(gp); 1229 1230 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1231 } 1232 1233 /* DMA won't be actually stopped before about 4ms tho ... 1234 */ 1235 static void gem_stop_dma(struct gem *gp) 1236 { 1237 u32 val; 1238 1239 /* We are done rocking, turn everything off. */ 1240 val = readl(gp->regs + TXDMA_CFG); 1241 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1242 val = readl(gp->regs + RXDMA_CFG); 1243 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1244 val = readl(gp->regs + MAC_TXCFG); 1245 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1246 val = readl(gp->regs + MAC_RXCFG); 1247 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1248 1249 (void) readl(gp->regs + MAC_RXCFG); 1250 1251 /* Need to wait a bit ... done by the caller */ 1252 } 1253 1254 1255 // XXX dbl check what that function should do when called on PCS PHY 1256 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) 1257 { 1258 u32 advertise, features; 1259 int autoneg; 1260 int speed; 1261 int duplex; 1262 1263 if (gp->phy_type != phy_mii_mdio0 && 1264 gp->phy_type != phy_mii_mdio1) 1265 goto non_mii; 1266 1267 /* Setup advertise */ 1268 if (found_mii_phy(gp)) 1269 features = gp->phy_mii.def->features; 1270 else 1271 features = 0; 1272 1273 advertise = features & ADVERTISE_MASK; 1274 if (gp->phy_mii.advertising != 0) 1275 advertise &= gp->phy_mii.advertising; 1276 1277 autoneg = gp->want_autoneg; 1278 speed = gp->phy_mii.speed; 1279 duplex = gp->phy_mii.duplex; 1280 1281 /* Setup link parameters */ 1282 if (!ep) 1283 goto start_aneg; 1284 if (ep->autoneg == AUTONEG_ENABLE) { 1285 advertise = ep->advertising; 1286 autoneg = 1; 1287 } else { 1288 autoneg = 0; 1289 speed = ethtool_cmd_speed(ep); 1290 duplex = ep->duplex; 1291 } 1292 1293 start_aneg: 1294 /* Sanitize settings based on PHY capabilities */ 1295 if ((features & SUPPORTED_Autoneg) == 0) 1296 autoneg = 0; 1297 if (speed == SPEED_1000 && 1298 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1299 speed = SPEED_100; 1300 if (speed == SPEED_100 && 1301 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1302 speed = SPEED_10; 1303 if (duplex == DUPLEX_FULL && 1304 !(features & (SUPPORTED_1000baseT_Full | 1305 SUPPORTED_100baseT_Full | 1306 SUPPORTED_10baseT_Full))) 1307 duplex = DUPLEX_HALF; 1308 if (speed == 0) 1309 speed = SPEED_10; 1310 1311 /* If we are asleep, we don't try to actually setup the PHY, we 1312 * just store the settings 1313 */ 1314 if (!netif_device_present(gp->dev)) { 1315 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1316 gp->phy_mii.speed = speed; 1317 gp->phy_mii.duplex = duplex; 1318 return; 1319 } 1320 1321 /* Configure PHY & start aneg */ 1322 gp->want_autoneg = autoneg; 1323 if (autoneg) { 1324 if (found_mii_phy(gp)) 1325 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1326 gp->lstate = link_aneg; 1327 } else { 1328 if (found_mii_phy(gp)) 1329 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1330 gp->lstate = link_force_ok; 1331 } 1332 1333 non_mii: 1334 gp->timer_ticks = 0; 1335 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1336 } 1337 1338 /* A link-up condition has occurred, initialize and enable the 1339 * rest of the chip. 1340 */ 1341 static int gem_set_link_modes(struct gem *gp) 1342 { 1343 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1344 int full_duplex, speed, pause; 1345 u32 val; 1346 1347 full_duplex = 0; 1348 speed = SPEED_10; 1349 pause = 0; 1350 1351 if (found_mii_phy(gp)) { 1352 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1353 return 1; 1354 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1355 speed = gp->phy_mii.speed; 1356 pause = gp->phy_mii.pause; 1357 } else if (gp->phy_type == phy_serialink || 1358 gp->phy_type == phy_serdes) { 1359 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1360 1361 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1362 full_duplex = 1; 1363 speed = SPEED_1000; 1364 } 1365 1366 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1367 speed, (full_duplex ? "full" : "half")); 1368 1369 1370 /* We take the tx queue lock to avoid collisions between 1371 * this code, the tx path and the NAPI-driven error path 1372 */ 1373 __netif_tx_lock(txq, smp_processor_id()); 1374 1375 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1376 if (full_duplex) { 1377 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1378 } else { 1379 /* MAC_TXCFG_NBO must be zero. */ 1380 } 1381 writel(val, gp->regs + MAC_TXCFG); 1382 1383 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1384 if (!full_duplex && 1385 (gp->phy_type == phy_mii_mdio0 || 1386 gp->phy_type == phy_mii_mdio1)) { 1387 val |= MAC_XIFCFG_DISE; 1388 } else if (full_duplex) { 1389 val |= MAC_XIFCFG_FLED; 1390 } 1391 1392 if (speed == SPEED_1000) 1393 val |= (MAC_XIFCFG_GMII); 1394 1395 writel(val, gp->regs + MAC_XIFCFG); 1396 1397 /* If gigabit and half-duplex, enable carrier extension 1398 * mode. Else, disable it. 1399 */ 1400 if (speed == SPEED_1000 && !full_duplex) { 1401 val = readl(gp->regs + MAC_TXCFG); 1402 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1403 1404 val = readl(gp->regs + MAC_RXCFG); 1405 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1406 } else { 1407 val = readl(gp->regs + MAC_TXCFG); 1408 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1409 1410 val = readl(gp->regs + MAC_RXCFG); 1411 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1412 } 1413 1414 if (gp->phy_type == phy_serialink || 1415 gp->phy_type == phy_serdes) { 1416 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1417 1418 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1419 pause = 1; 1420 } 1421 1422 if (!full_duplex) 1423 writel(512, gp->regs + MAC_STIME); 1424 else 1425 writel(64, gp->regs + MAC_STIME); 1426 val = readl(gp->regs + MAC_MCCFG); 1427 if (pause) 1428 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1429 else 1430 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1431 writel(val, gp->regs + MAC_MCCFG); 1432 1433 gem_start_dma(gp); 1434 1435 __netif_tx_unlock(txq); 1436 1437 if (netif_msg_link(gp)) { 1438 if (pause) { 1439 netdev_info(gp->dev, 1440 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1441 gp->rx_fifo_sz, 1442 gp->rx_pause_off, 1443 gp->rx_pause_on); 1444 } else { 1445 netdev_info(gp->dev, "Pause is disabled\n"); 1446 } 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int gem_mdio_link_not_up(struct gem *gp) 1453 { 1454 switch (gp->lstate) { 1455 case link_force_ret: 1456 netif_info(gp, link, gp->dev, 1457 "Autoneg failed again, keeping forced mode\n"); 1458 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1459 gp->last_forced_speed, DUPLEX_HALF); 1460 gp->timer_ticks = 5; 1461 gp->lstate = link_force_ok; 1462 return 0; 1463 case link_aneg: 1464 /* We try forced modes after a failed aneg only on PHYs that don't 1465 * have "magic_aneg" bit set, which means they internally do the 1466 * while forced-mode thingy. On these, we just restart aneg 1467 */ 1468 if (gp->phy_mii.def->magic_aneg) 1469 return 1; 1470 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1471 /* Try forced modes. */ 1472 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1473 DUPLEX_HALF); 1474 gp->timer_ticks = 5; 1475 gp->lstate = link_force_try; 1476 return 0; 1477 case link_force_try: 1478 /* Downgrade from 100 to 10 Mbps if necessary. 1479 * If already at 10Mbps, warn user about the 1480 * situation every 10 ticks. 1481 */ 1482 if (gp->phy_mii.speed == SPEED_100) { 1483 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1484 DUPLEX_HALF); 1485 gp->timer_ticks = 5; 1486 netif_info(gp, link, gp->dev, 1487 "switching to forced 10bt\n"); 1488 return 0; 1489 } else 1490 return 1; 1491 default: 1492 return 0; 1493 } 1494 } 1495 1496 static void gem_link_timer(unsigned long data) 1497 { 1498 struct gem *gp = (struct gem *) data; 1499 struct net_device *dev = gp->dev; 1500 int restart_aneg = 0; 1501 1502 /* There's no point doing anything if we're going to be reset */ 1503 if (gp->reset_task_pending) 1504 return; 1505 1506 if (gp->phy_type == phy_serialink || 1507 gp->phy_type == phy_serdes) { 1508 u32 val = readl(gp->regs + PCS_MIISTAT); 1509 1510 if (!(val & PCS_MIISTAT_LS)) 1511 val = readl(gp->regs + PCS_MIISTAT); 1512 1513 if ((val & PCS_MIISTAT_LS) != 0) { 1514 if (gp->lstate == link_up) 1515 goto restart; 1516 1517 gp->lstate = link_up; 1518 netif_carrier_on(dev); 1519 (void)gem_set_link_modes(gp); 1520 } 1521 goto restart; 1522 } 1523 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1524 /* Ok, here we got a link. If we had it due to a forced 1525 * fallback, and we were configured for autoneg, we do 1526 * retry a short autoneg pass. If you know your hub is 1527 * broken, use ethtool ;) 1528 */ 1529 if (gp->lstate == link_force_try && gp->want_autoneg) { 1530 gp->lstate = link_force_ret; 1531 gp->last_forced_speed = gp->phy_mii.speed; 1532 gp->timer_ticks = 5; 1533 if (netif_msg_link(gp)) 1534 netdev_info(dev, 1535 "Got link after fallback, retrying autoneg once...\n"); 1536 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1537 } else if (gp->lstate != link_up) { 1538 gp->lstate = link_up; 1539 netif_carrier_on(dev); 1540 if (gem_set_link_modes(gp)) 1541 restart_aneg = 1; 1542 } 1543 } else { 1544 /* If the link was previously up, we restart the 1545 * whole process 1546 */ 1547 if (gp->lstate == link_up) { 1548 gp->lstate = link_down; 1549 netif_info(gp, link, dev, "Link down\n"); 1550 netif_carrier_off(dev); 1551 gem_schedule_reset(gp); 1552 /* The reset task will restart the timer */ 1553 return; 1554 } else if (++gp->timer_ticks > 10) { 1555 if (found_mii_phy(gp)) 1556 restart_aneg = gem_mdio_link_not_up(gp); 1557 else 1558 restart_aneg = 1; 1559 } 1560 } 1561 if (restart_aneg) { 1562 gem_begin_auto_negotiation(gp, NULL); 1563 return; 1564 } 1565 restart: 1566 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1567 } 1568 1569 static void gem_clean_rings(struct gem *gp) 1570 { 1571 struct gem_init_block *gb = gp->init_block; 1572 struct sk_buff *skb; 1573 int i; 1574 dma_addr_t dma_addr; 1575 1576 for (i = 0; i < RX_RING_SIZE; i++) { 1577 struct gem_rxd *rxd; 1578 1579 rxd = &gb->rxd[i]; 1580 if (gp->rx_skbs[i] != NULL) { 1581 skb = gp->rx_skbs[i]; 1582 dma_addr = le64_to_cpu(rxd->buffer); 1583 pci_unmap_page(gp->pdev, dma_addr, 1584 RX_BUF_ALLOC_SIZE(gp), 1585 PCI_DMA_FROMDEVICE); 1586 dev_kfree_skb_any(skb); 1587 gp->rx_skbs[i] = NULL; 1588 } 1589 rxd->status_word = 0; 1590 wmb(); 1591 rxd->buffer = 0; 1592 } 1593 1594 for (i = 0; i < TX_RING_SIZE; i++) { 1595 if (gp->tx_skbs[i] != NULL) { 1596 struct gem_txd *txd; 1597 int frag; 1598 1599 skb = gp->tx_skbs[i]; 1600 gp->tx_skbs[i] = NULL; 1601 1602 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1603 int ent = i & (TX_RING_SIZE - 1); 1604 1605 txd = &gb->txd[ent]; 1606 dma_addr = le64_to_cpu(txd->buffer); 1607 pci_unmap_page(gp->pdev, dma_addr, 1608 le64_to_cpu(txd->control_word) & 1609 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1610 1611 if (frag != skb_shinfo(skb)->nr_frags) 1612 i++; 1613 } 1614 dev_kfree_skb_any(skb); 1615 } 1616 } 1617 } 1618 1619 static void gem_init_rings(struct gem *gp) 1620 { 1621 struct gem_init_block *gb = gp->init_block; 1622 struct net_device *dev = gp->dev; 1623 int i; 1624 dma_addr_t dma_addr; 1625 1626 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1627 1628 gem_clean_rings(gp); 1629 1630 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1631 (unsigned)VLAN_ETH_FRAME_LEN); 1632 1633 for (i = 0; i < RX_RING_SIZE; i++) { 1634 struct sk_buff *skb; 1635 struct gem_rxd *rxd = &gb->rxd[i]; 1636 1637 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1638 if (!skb) { 1639 rxd->buffer = 0; 1640 rxd->status_word = 0; 1641 continue; 1642 } 1643 1644 gp->rx_skbs[i] = skb; 1645 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1646 dma_addr = pci_map_page(gp->pdev, 1647 virt_to_page(skb->data), 1648 offset_in_page(skb->data), 1649 RX_BUF_ALLOC_SIZE(gp), 1650 PCI_DMA_FROMDEVICE); 1651 rxd->buffer = cpu_to_le64(dma_addr); 1652 wmb(); 1653 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1654 skb_reserve(skb, RX_OFFSET); 1655 } 1656 1657 for (i = 0; i < TX_RING_SIZE; i++) { 1658 struct gem_txd *txd = &gb->txd[i]; 1659 1660 txd->control_word = 0; 1661 wmb(); 1662 txd->buffer = 0; 1663 } 1664 wmb(); 1665 } 1666 1667 /* Init PHY interface and start link poll state machine */ 1668 static void gem_init_phy(struct gem *gp) 1669 { 1670 u32 mifcfg; 1671 1672 /* Revert MIF CFG setting done on stop_phy */ 1673 mifcfg = readl(gp->regs + MIF_CFG); 1674 mifcfg &= ~MIF_CFG_BBMODE; 1675 writel(mifcfg, gp->regs + MIF_CFG); 1676 1677 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1678 int i; 1679 1680 /* Those delay sucks, the HW seem to love them though, I'll 1681 * serisouly consider breaking some locks here to be able 1682 * to schedule instead 1683 */ 1684 for (i = 0; i < 3; i++) { 1685 #ifdef CONFIG_PPC_PMAC 1686 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1687 msleep(20); 1688 #endif 1689 /* Some PHYs used by apple have problem getting back to us, 1690 * we do an additional reset here 1691 */ 1692 phy_write(gp, MII_BMCR, BMCR_RESET); 1693 msleep(20); 1694 if (phy_read(gp, MII_BMCR) != 0xffff) 1695 break; 1696 if (i == 2) 1697 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1698 } 1699 } 1700 1701 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1702 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1703 u32 val; 1704 1705 /* Init datapath mode register. */ 1706 if (gp->phy_type == phy_mii_mdio0 || 1707 gp->phy_type == phy_mii_mdio1) { 1708 val = PCS_DMODE_MGM; 1709 } else if (gp->phy_type == phy_serialink) { 1710 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1711 } else { 1712 val = PCS_DMODE_ESM; 1713 } 1714 1715 writel(val, gp->regs + PCS_DMODE); 1716 } 1717 1718 if (gp->phy_type == phy_mii_mdio0 || 1719 gp->phy_type == phy_mii_mdio1) { 1720 /* Reset and detect MII PHY */ 1721 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1722 1723 /* Init PHY */ 1724 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1725 gp->phy_mii.def->ops->init(&gp->phy_mii); 1726 } else { 1727 gem_pcs_reset(gp); 1728 gem_pcs_reinit_adv(gp); 1729 } 1730 1731 /* Default aneg parameters */ 1732 gp->timer_ticks = 0; 1733 gp->lstate = link_down; 1734 netif_carrier_off(gp->dev); 1735 1736 /* Print things out */ 1737 if (gp->phy_type == phy_mii_mdio0 || 1738 gp->phy_type == phy_mii_mdio1) 1739 netdev_info(gp->dev, "Found %s PHY\n", 1740 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1741 1742 gem_begin_auto_negotiation(gp, NULL); 1743 } 1744 1745 static void gem_init_dma(struct gem *gp) 1746 { 1747 u64 desc_dma = (u64) gp->gblock_dvma; 1748 u32 val; 1749 1750 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1751 writel(val, gp->regs + TXDMA_CFG); 1752 1753 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1754 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1755 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1756 1757 writel(0, gp->regs + TXDMA_KICK); 1758 1759 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1760 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1761 writel(val, gp->regs + RXDMA_CFG); 1762 1763 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1764 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1765 1766 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1767 1768 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1769 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1770 writel(val, gp->regs + RXDMA_PTHRESH); 1771 1772 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1773 writel(((5 & RXDMA_BLANK_IPKTS) | 1774 ((8 << 12) & RXDMA_BLANK_ITIME)), 1775 gp->regs + RXDMA_BLANK); 1776 else 1777 writel(((5 & RXDMA_BLANK_IPKTS) | 1778 ((4 << 12) & RXDMA_BLANK_ITIME)), 1779 gp->regs + RXDMA_BLANK); 1780 } 1781 1782 static u32 gem_setup_multicast(struct gem *gp) 1783 { 1784 u32 rxcfg = 0; 1785 int i; 1786 1787 if ((gp->dev->flags & IFF_ALLMULTI) || 1788 (netdev_mc_count(gp->dev) > 256)) { 1789 for (i=0; i<16; i++) 1790 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1791 rxcfg |= MAC_RXCFG_HFE; 1792 } else if (gp->dev->flags & IFF_PROMISC) { 1793 rxcfg |= MAC_RXCFG_PROM; 1794 } else { 1795 u16 hash_table[16]; 1796 u32 crc; 1797 struct netdev_hw_addr *ha; 1798 int i; 1799 1800 memset(hash_table, 0, sizeof(hash_table)); 1801 netdev_for_each_mc_addr(ha, gp->dev) { 1802 crc = ether_crc_le(6, ha->addr); 1803 crc >>= 24; 1804 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1805 } 1806 for (i=0; i<16; i++) 1807 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1808 rxcfg |= MAC_RXCFG_HFE; 1809 } 1810 1811 return rxcfg; 1812 } 1813 1814 static void gem_init_mac(struct gem *gp) 1815 { 1816 unsigned char *e = &gp->dev->dev_addr[0]; 1817 1818 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1819 1820 writel(0x00, gp->regs + MAC_IPG0); 1821 writel(0x08, gp->regs + MAC_IPG1); 1822 writel(0x04, gp->regs + MAC_IPG2); 1823 writel(0x40, gp->regs + MAC_STIME); 1824 writel(0x40, gp->regs + MAC_MINFSZ); 1825 1826 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1827 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1828 1829 writel(0x07, gp->regs + MAC_PASIZE); 1830 writel(0x04, gp->regs + MAC_JAMSIZE); 1831 writel(0x10, gp->regs + MAC_ATTLIM); 1832 writel(0x8808, gp->regs + MAC_MCTYPE); 1833 1834 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1835 1836 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1837 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1838 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1839 1840 writel(0, gp->regs + MAC_ADDR3); 1841 writel(0, gp->regs + MAC_ADDR4); 1842 writel(0, gp->regs + MAC_ADDR5); 1843 1844 writel(0x0001, gp->regs + MAC_ADDR6); 1845 writel(0xc200, gp->regs + MAC_ADDR7); 1846 writel(0x0180, gp->regs + MAC_ADDR8); 1847 1848 writel(0, gp->regs + MAC_AFILT0); 1849 writel(0, gp->regs + MAC_AFILT1); 1850 writel(0, gp->regs + MAC_AFILT2); 1851 writel(0, gp->regs + MAC_AF21MSK); 1852 writel(0, gp->regs + MAC_AF0MSK); 1853 1854 gp->mac_rx_cfg = gem_setup_multicast(gp); 1855 #ifdef STRIP_FCS 1856 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1857 #endif 1858 writel(0, gp->regs + MAC_NCOLL); 1859 writel(0, gp->regs + MAC_FASUCC); 1860 writel(0, gp->regs + MAC_ECOLL); 1861 writel(0, gp->regs + MAC_LCOLL); 1862 writel(0, gp->regs + MAC_DTIMER); 1863 writel(0, gp->regs + MAC_PATMPS); 1864 writel(0, gp->regs + MAC_RFCTR); 1865 writel(0, gp->regs + MAC_LERR); 1866 writel(0, gp->regs + MAC_AERR); 1867 writel(0, gp->regs + MAC_FCSERR); 1868 writel(0, gp->regs + MAC_RXCVERR); 1869 1870 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1871 * them once a link is established. 1872 */ 1873 writel(0, gp->regs + MAC_TXCFG); 1874 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1875 writel(0, gp->regs + MAC_MCCFG); 1876 writel(0, gp->regs + MAC_XIFCFG); 1877 1878 /* Setup MAC interrupts. We want to get all of the interesting 1879 * counter expiration events, but we do not want to hear about 1880 * normal rx/tx as the DMA engine tells us that. 1881 */ 1882 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1883 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1884 1885 /* Don't enable even the PAUSE interrupts for now, we 1886 * make no use of those events other than to record them. 1887 */ 1888 writel(0xffffffff, gp->regs + MAC_MCMASK); 1889 1890 /* Don't enable GEM's WOL in normal operations 1891 */ 1892 if (gp->has_wol) 1893 writel(0, gp->regs + WOL_WAKECSR); 1894 } 1895 1896 static void gem_init_pause_thresholds(struct gem *gp) 1897 { 1898 u32 cfg; 1899 1900 /* Calculate pause thresholds. Setting the OFF threshold to the 1901 * full RX fifo size effectively disables PAUSE generation which 1902 * is what we do for 10/100 only GEMs which have FIFOs too small 1903 * to make real gains from PAUSE. 1904 */ 1905 if (gp->rx_fifo_sz <= (2 * 1024)) { 1906 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1907 } else { 1908 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1909 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1910 int on = off - max_frame; 1911 1912 gp->rx_pause_off = off; 1913 gp->rx_pause_on = on; 1914 } 1915 1916 1917 /* Configure the chip "burst" DMA mode & enable some 1918 * HW bug fixes on Apple version 1919 */ 1920 cfg = 0; 1921 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1922 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1923 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1924 cfg |= GREG_CFG_IBURST; 1925 #endif 1926 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1927 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1928 writel(cfg, gp->regs + GREG_CFG); 1929 1930 /* If Infinite Burst didn't stick, then use different 1931 * thresholds (and Apple bug fixes don't exist) 1932 */ 1933 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1934 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1935 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1936 writel(cfg, gp->regs + GREG_CFG); 1937 } 1938 } 1939 1940 static int gem_check_invariants(struct gem *gp) 1941 { 1942 struct pci_dev *pdev = gp->pdev; 1943 u32 mif_cfg; 1944 1945 /* On Apple's sungem, we can't rely on registers as the chip 1946 * was been powered down by the firmware. The PHY is looked 1947 * up later on. 1948 */ 1949 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1950 gp->phy_type = phy_mii_mdio0; 1951 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1952 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1953 gp->swrst_base = 0; 1954 1955 mif_cfg = readl(gp->regs + MIF_CFG); 1956 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1957 mif_cfg |= MIF_CFG_MDI0; 1958 writel(mif_cfg, gp->regs + MIF_CFG); 1959 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1960 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1961 1962 /* We hard-code the PHY address so we can properly bring it out of 1963 * reset later on, we can't really probe it at this point, though 1964 * that isn't an issue. 1965 */ 1966 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1967 gp->mii_phy_addr = 1; 1968 else 1969 gp->mii_phy_addr = 0; 1970 1971 return 0; 1972 } 1973 1974 mif_cfg = readl(gp->regs + MIF_CFG); 1975 1976 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1977 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1978 /* One of the MII PHYs _must_ be present 1979 * as this chip has no gigabit PHY. 1980 */ 1981 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1982 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1983 mif_cfg); 1984 return -1; 1985 } 1986 } 1987 1988 /* Determine initial PHY interface type guess. MDIO1 is the 1989 * external PHY and thus takes precedence over MDIO0. 1990 */ 1991 1992 if (mif_cfg & MIF_CFG_MDI1) { 1993 gp->phy_type = phy_mii_mdio1; 1994 mif_cfg |= MIF_CFG_PSELECT; 1995 writel(mif_cfg, gp->regs + MIF_CFG); 1996 } else if (mif_cfg & MIF_CFG_MDI0) { 1997 gp->phy_type = phy_mii_mdio0; 1998 mif_cfg &= ~MIF_CFG_PSELECT; 1999 writel(mif_cfg, gp->regs + MIF_CFG); 2000 } else { 2001 #ifdef CONFIG_SPARC 2002 const char *p; 2003 2004 p = of_get_property(gp->of_node, "shared-pins", NULL); 2005 if (p && !strcmp(p, "serdes")) 2006 gp->phy_type = phy_serdes; 2007 else 2008 #endif 2009 gp->phy_type = phy_serialink; 2010 } 2011 if (gp->phy_type == phy_mii_mdio1 || 2012 gp->phy_type == phy_mii_mdio0) { 2013 int i; 2014 2015 for (i = 0; i < 32; i++) { 2016 gp->mii_phy_addr = i; 2017 if (phy_read(gp, MII_BMCR) != 0xffff) 2018 break; 2019 } 2020 if (i == 32) { 2021 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2022 pr_err("RIO MII phy will not respond\n"); 2023 return -1; 2024 } 2025 gp->phy_type = phy_serdes; 2026 } 2027 } 2028 2029 /* Fetch the FIFO configurations now too. */ 2030 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2031 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2032 2033 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2034 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2035 if (gp->tx_fifo_sz != (9 * 1024) || 2036 gp->rx_fifo_sz != (20 * 1024)) { 2037 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2038 gp->tx_fifo_sz, gp->rx_fifo_sz); 2039 return -1; 2040 } 2041 gp->swrst_base = 0; 2042 } else { 2043 if (gp->tx_fifo_sz != (2 * 1024) || 2044 gp->rx_fifo_sz != (2 * 1024)) { 2045 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2046 gp->tx_fifo_sz, gp->rx_fifo_sz); 2047 return -1; 2048 } 2049 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2050 } 2051 } 2052 2053 return 0; 2054 } 2055 2056 static void gem_reinit_chip(struct gem *gp) 2057 { 2058 /* Reset the chip */ 2059 gem_reset(gp); 2060 2061 /* Make sure ints are disabled */ 2062 gem_disable_ints(gp); 2063 2064 /* Allocate & setup ring buffers */ 2065 gem_init_rings(gp); 2066 2067 /* Configure pause thresholds */ 2068 gem_init_pause_thresholds(gp); 2069 2070 /* Init DMA & MAC engines */ 2071 gem_init_dma(gp); 2072 gem_init_mac(gp); 2073 } 2074 2075 2076 static void gem_stop_phy(struct gem *gp, int wol) 2077 { 2078 u32 mifcfg; 2079 2080 /* Let the chip settle down a bit, it seems that helps 2081 * for sleep mode on some models 2082 */ 2083 msleep(10); 2084 2085 /* Make sure we aren't polling PHY status change. We 2086 * don't currently use that feature though 2087 */ 2088 mifcfg = readl(gp->regs + MIF_CFG); 2089 mifcfg &= ~MIF_CFG_POLL; 2090 writel(mifcfg, gp->regs + MIF_CFG); 2091 2092 if (wol && gp->has_wol) { 2093 unsigned char *e = &gp->dev->dev_addr[0]; 2094 u32 csr; 2095 2096 /* Setup wake-on-lan for MAGIC packet */ 2097 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2098 gp->regs + MAC_RXCFG); 2099 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2100 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2101 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2102 2103 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2104 csr = WOL_WAKECSR_ENABLE; 2105 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2106 csr |= WOL_WAKECSR_MII; 2107 writel(csr, gp->regs + WOL_WAKECSR); 2108 } else { 2109 writel(0, gp->regs + MAC_RXCFG); 2110 (void)readl(gp->regs + MAC_RXCFG); 2111 /* Machine sleep will die in strange ways if we 2112 * dont wait a bit here, looks like the chip takes 2113 * some time to really shut down 2114 */ 2115 msleep(10); 2116 } 2117 2118 writel(0, gp->regs + MAC_TXCFG); 2119 writel(0, gp->regs + MAC_XIFCFG); 2120 writel(0, gp->regs + TXDMA_CFG); 2121 writel(0, gp->regs + RXDMA_CFG); 2122 2123 if (!wol) { 2124 gem_reset(gp); 2125 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2126 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2127 2128 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2129 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2130 2131 /* According to Apple, we must set the MDIO pins to this begnign 2132 * state or we may 1) eat more current, 2) damage some PHYs 2133 */ 2134 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2135 writel(0, gp->regs + MIF_BBCLK); 2136 writel(0, gp->regs + MIF_BBDATA); 2137 writel(0, gp->regs + MIF_BBOENAB); 2138 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2139 (void) readl(gp->regs + MAC_XIFCFG); 2140 } 2141 } 2142 2143 static int gem_do_start(struct net_device *dev) 2144 { 2145 struct gem *gp = netdev_priv(dev); 2146 int rc; 2147 2148 /* Enable the cell */ 2149 gem_get_cell(gp); 2150 2151 /* Make sure PCI access and bus master are enabled */ 2152 rc = pci_enable_device(gp->pdev); 2153 if (rc) { 2154 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2155 2156 /* Put cell and forget it for now, it will be considered as 2157 * still asleep, a new sleep cycle may bring it back 2158 */ 2159 gem_put_cell(gp); 2160 return -ENXIO; 2161 } 2162 pci_set_master(gp->pdev); 2163 2164 /* Init & setup chip hardware */ 2165 gem_reinit_chip(gp); 2166 2167 /* An interrupt might come in handy */ 2168 rc = request_irq(gp->pdev->irq, gem_interrupt, 2169 IRQF_SHARED, dev->name, (void *)dev); 2170 if (rc) { 2171 netdev_err(dev, "failed to request irq !\n"); 2172 2173 gem_reset(gp); 2174 gem_clean_rings(gp); 2175 gem_put_cell(gp); 2176 return rc; 2177 } 2178 2179 /* Mark us as attached again if we come from resume(), this has 2180 * no effect if we weren't detatched and needs to be done now. 2181 */ 2182 netif_device_attach(dev); 2183 2184 /* Restart NAPI & queues */ 2185 gem_netif_start(gp); 2186 2187 /* Detect & init PHY, start autoneg etc... this will 2188 * eventually result in starting DMA operations when 2189 * the link is up 2190 */ 2191 gem_init_phy(gp); 2192 2193 return 0; 2194 } 2195 2196 static void gem_do_stop(struct net_device *dev, int wol) 2197 { 2198 struct gem *gp = netdev_priv(dev); 2199 2200 /* Stop NAPI and stop tx queue */ 2201 gem_netif_stop(gp); 2202 2203 /* Make sure ints are disabled. We don't care about 2204 * synchronizing as NAPI is disabled, thus a stray 2205 * interrupt will do nothing bad (our irq handler 2206 * just schedules NAPI) 2207 */ 2208 gem_disable_ints(gp); 2209 2210 /* Stop the link timer */ 2211 del_timer_sync(&gp->link_timer); 2212 2213 /* We cannot cancel the reset task while holding the 2214 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2215 * if we did. This is not an issue however as the reset 2216 * task is synchronized vs. us (rtnl_lock) and will do 2217 * nothing if the device is down or suspended. We do 2218 * still clear reset_task_pending to avoid a spurrious 2219 * reset later on in case we do resume before it gets 2220 * scheduled. 2221 */ 2222 gp->reset_task_pending = 0; 2223 2224 /* If we are going to sleep with WOL */ 2225 gem_stop_dma(gp); 2226 msleep(10); 2227 if (!wol) 2228 gem_reset(gp); 2229 msleep(10); 2230 2231 /* Get rid of rings */ 2232 gem_clean_rings(gp); 2233 2234 /* No irq needed anymore */ 2235 free_irq(gp->pdev->irq, (void *) dev); 2236 2237 /* Shut the PHY down eventually and setup WOL */ 2238 gem_stop_phy(gp, wol); 2239 2240 /* Make sure bus master is disabled */ 2241 pci_disable_device(gp->pdev); 2242 2243 /* Cell not needed neither if no WOL */ 2244 if (!wol) 2245 gem_put_cell(gp); 2246 } 2247 2248 static void gem_reset_task(struct work_struct *work) 2249 { 2250 struct gem *gp = container_of(work, struct gem, reset_task); 2251 2252 /* Lock out the network stack (essentially shield ourselves 2253 * against a racing open, close, control call, or suspend 2254 */ 2255 rtnl_lock(); 2256 2257 /* Skip the reset task if suspended or closed, or if it's 2258 * been cancelled by gem_do_stop (see comment there) 2259 */ 2260 if (!netif_device_present(gp->dev) || 2261 !netif_running(gp->dev) || 2262 !gp->reset_task_pending) { 2263 rtnl_unlock(); 2264 return; 2265 } 2266 2267 /* Stop the link timer */ 2268 del_timer_sync(&gp->link_timer); 2269 2270 /* Stop NAPI and tx */ 2271 gem_netif_stop(gp); 2272 2273 /* Reset the chip & rings */ 2274 gem_reinit_chip(gp); 2275 if (gp->lstate == link_up) 2276 gem_set_link_modes(gp); 2277 2278 /* Restart NAPI and Tx */ 2279 gem_netif_start(gp); 2280 2281 /* We are back ! */ 2282 gp->reset_task_pending = 0; 2283 2284 /* If the link is not up, restart autoneg, else restart the 2285 * polling timer 2286 */ 2287 if (gp->lstate != link_up) 2288 gem_begin_auto_negotiation(gp, NULL); 2289 else 2290 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2291 2292 rtnl_unlock(); 2293 } 2294 2295 static int gem_open(struct net_device *dev) 2296 { 2297 /* We allow open while suspended, we just do nothing, 2298 * the chip will be initialized in resume() 2299 */ 2300 if (netif_device_present(dev)) 2301 return gem_do_start(dev); 2302 return 0; 2303 } 2304 2305 static int gem_close(struct net_device *dev) 2306 { 2307 if (netif_device_present(dev)) 2308 gem_do_stop(dev, 0); 2309 2310 return 0; 2311 } 2312 2313 #ifdef CONFIG_PM 2314 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2315 { 2316 struct net_device *dev = pci_get_drvdata(pdev); 2317 struct gem *gp = netdev_priv(dev); 2318 2319 /* Lock the network stack first to avoid racing with open/close, 2320 * reset task and setting calls 2321 */ 2322 rtnl_lock(); 2323 2324 /* Not running, mark ourselves non-present, no need for 2325 * a lock here 2326 */ 2327 if (!netif_running(dev)) { 2328 netif_device_detach(dev); 2329 rtnl_unlock(); 2330 return 0; 2331 } 2332 netdev_info(dev, "suspending, WakeOnLan %s\n", 2333 (gp->wake_on_lan && netif_running(dev)) ? 2334 "enabled" : "disabled"); 2335 2336 /* Tell the network stack we're gone. gem_do_stop() below will 2337 * synchronize with TX, stop NAPI etc... 2338 */ 2339 netif_device_detach(dev); 2340 2341 /* Switch off chip, remember WOL setting */ 2342 gp->asleep_wol = gp->wake_on_lan; 2343 gem_do_stop(dev, gp->asleep_wol); 2344 2345 /* Unlock the network stack */ 2346 rtnl_unlock(); 2347 2348 return 0; 2349 } 2350 2351 static int gem_resume(struct pci_dev *pdev) 2352 { 2353 struct net_device *dev = pci_get_drvdata(pdev); 2354 struct gem *gp = netdev_priv(dev); 2355 2356 /* See locking comment in gem_suspend */ 2357 rtnl_lock(); 2358 2359 /* Not running, mark ourselves present, no need for 2360 * a lock here 2361 */ 2362 if (!netif_running(dev)) { 2363 netif_device_attach(dev); 2364 rtnl_unlock(); 2365 return 0; 2366 } 2367 2368 /* Restart chip. If that fails there isn't much we can do, we 2369 * leave things stopped. 2370 */ 2371 gem_do_start(dev); 2372 2373 /* If we had WOL enabled, the cell clock was never turned off during 2374 * sleep, so we end up beeing unbalanced. Fix that here 2375 */ 2376 if (gp->asleep_wol) 2377 gem_put_cell(gp); 2378 2379 /* Unlock the network stack */ 2380 rtnl_unlock(); 2381 2382 return 0; 2383 } 2384 #endif /* CONFIG_PM */ 2385 2386 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2387 { 2388 struct gem *gp = netdev_priv(dev); 2389 2390 /* I have seen this being called while the PM was in progress, 2391 * so we shield against this. Let's also not poke at registers 2392 * while the reset task is going on. 2393 * 2394 * TODO: Move stats collection elsewhere (link timer ?) and 2395 * make this a nop to avoid all those synchro issues 2396 */ 2397 if (!netif_device_present(dev) || !netif_running(dev)) 2398 goto bail; 2399 2400 /* Better safe than sorry... */ 2401 if (WARN_ON(!gp->cell_enabled)) 2402 goto bail; 2403 2404 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2405 writel(0, gp->regs + MAC_FCSERR); 2406 2407 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2408 writel(0, gp->regs + MAC_AERR); 2409 2410 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2411 writel(0, gp->regs + MAC_LERR); 2412 2413 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2414 dev->stats.collisions += 2415 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2416 writel(0, gp->regs + MAC_ECOLL); 2417 writel(0, gp->regs + MAC_LCOLL); 2418 bail: 2419 return &dev->stats; 2420 } 2421 2422 static int gem_set_mac_address(struct net_device *dev, void *addr) 2423 { 2424 struct sockaddr *macaddr = (struct sockaddr *) addr; 2425 struct gem *gp = netdev_priv(dev); 2426 unsigned char *e = &dev->dev_addr[0]; 2427 2428 if (!is_valid_ether_addr(macaddr->sa_data)) 2429 return -EADDRNOTAVAIL; 2430 2431 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2432 2433 /* We'll just catch it later when the device is up'd or resumed */ 2434 if (!netif_running(dev) || !netif_device_present(dev)) 2435 return 0; 2436 2437 /* Better safe than sorry... */ 2438 if (WARN_ON(!gp->cell_enabled)) 2439 return 0; 2440 2441 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2442 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2443 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2444 2445 return 0; 2446 } 2447 2448 static void gem_set_multicast(struct net_device *dev) 2449 { 2450 struct gem *gp = netdev_priv(dev); 2451 u32 rxcfg, rxcfg_new; 2452 int limit = 10000; 2453 2454 if (!netif_running(dev) || !netif_device_present(dev)) 2455 return; 2456 2457 /* Better safe than sorry... */ 2458 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2459 return; 2460 2461 rxcfg = readl(gp->regs + MAC_RXCFG); 2462 rxcfg_new = gem_setup_multicast(gp); 2463 #ifdef STRIP_FCS 2464 rxcfg_new |= MAC_RXCFG_SFCS; 2465 #endif 2466 gp->mac_rx_cfg = rxcfg_new; 2467 2468 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2469 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2470 if (!limit--) 2471 break; 2472 udelay(10); 2473 } 2474 2475 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2476 rxcfg |= rxcfg_new; 2477 2478 writel(rxcfg, gp->regs + MAC_RXCFG); 2479 } 2480 2481 /* Jumbo-grams don't seem to work :-( */ 2482 #define GEM_MIN_MTU 68 2483 #if 1 2484 #define GEM_MAX_MTU 1500 2485 #else 2486 #define GEM_MAX_MTU 9000 2487 #endif 2488 2489 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2490 { 2491 struct gem *gp = netdev_priv(dev); 2492 2493 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) 2494 return -EINVAL; 2495 2496 dev->mtu = new_mtu; 2497 2498 /* We'll just catch it later when the device is up'd or resumed */ 2499 if (!netif_running(dev) || !netif_device_present(dev)) 2500 return 0; 2501 2502 /* Better safe than sorry... */ 2503 if (WARN_ON(!gp->cell_enabled)) 2504 return 0; 2505 2506 gem_netif_stop(gp); 2507 gem_reinit_chip(gp); 2508 if (gp->lstate == link_up) 2509 gem_set_link_modes(gp); 2510 gem_netif_start(gp); 2511 2512 return 0; 2513 } 2514 2515 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2516 { 2517 struct gem *gp = netdev_priv(dev); 2518 2519 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2520 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2521 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2522 } 2523 2524 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2525 { 2526 struct gem *gp = netdev_priv(dev); 2527 2528 if (gp->phy_type == phy_mii_mdio0 || 2529 gp->phy_type == phy_mii_mdio1) { 2530 if (gp->phy_mii.def) 2531 cmd->supported = gp->phy_mii.def->features; 2532 else 2533 cmd->supported = (SUPPORTED_10baseT_Half | 2534 SUPPORTED_10baseT_Full); 2535 2536 /* XXX hardcoded stuff for now */ 2537 cmd->port = PORT_MII; 2538 cmd->transceiver = XCVR_EXTERNAL; 2539 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2540 2541 /* Return current PHY settings */ 2542 cmd->autoneg = gp->want_autoneg; 2543 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); 2544 cmd->duplex = gp->phy_mii.duplex; 2545 cmd->advertising = gp->phy_mii.advertising; 2546 2547 /* If we started with a forced mode, we don't have a default 2548 * advertise set, we need to return something sensible so 2549 * userland can re-enable autoneg properly. 2550 */ 2551 if (cmd->advertising == 0) 2552 cmd->advertising = cmd->supported; 2553 } else { // XXX PCS ? 2554 cmd->supported = 2555 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2556 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2557 SUPPORTED_Autoneg); 2558 cmd->advertising = cmd->supported; 2559 ethtool_cmd_speed_set(cmd, 0); 2560 cmd->duplex = cmd->port = cmd->phy_address = 2561 cmd->transceiver = cmd->autoneg = 0; 2562 2563 /* serdes means usually a Fibre connector, with most fixed */ 2564 if (gp->phy_type == phy_serdes) { 2565 cmd->port = PORT_FIBRE; 2566 cmd->supported = (SUPPORTED_1000baseT_Half | 2567 SUPPORTED_1000baseT_Full | 2568 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2569 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2570 cmd->advertising = cmd->supported; 2571 cmd->transceiver = XCVR_INTERNAL; 2572 if (gp->lstate == link_up) 2573 ethtool_cmd_speed_set(cmd, SPEED_1000); 2574 cmd->duplex = DUPLEX_FULL; 2575 cmd->autoneg = 1; 2576 } 2577 } 2578 cmd->maxtxpkt = cmd->maxrxpkt = 0; 2579 2580 return 0; 2581 } 2582 2583 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2584 { 2585 struct gem *gp = netdev_priv(dev); 2586 u32 speed = ethtool_cmd_speed(cmd); 2587 2588 /* Verify the settings we care about. */ 2589 if (cmd->autoneg != AUTONEG_ENABLE && 2590 cmd->autoneg != AUTONEG_DISABLE) 2591 return -EINVAL; 2592 2593 if (cmd->autoneg == AUTONEG_ENABLE && 2594 cmd->advertising == 0) 2595 return -EINVAL; 2596 2597 if (cmd->autoneg == AUTONEG_DISABLE && 2598 ((speed != SPEED_1000 && 2599 speed != SPEED_100 && 2600 speed != SPEED_10) || 2601 (cmd->duplex != DUPLEX_HALF && 2602 cmd->duplex != DUPLEX_FULL))) 2603 return -EINVAL; 2604 2605 /* Apply settings and restart link process. */ 2606 if (netif_device_present(gp->dev)) { 2607 del_timer_sync(&gp->link_timer); 2608 gem_begin_auto_negotiation(gp, cmd); 2609 } 2610 2611 return 0; 2612 } 2613 2614 static int gem_nway_reset(struct net_device *dev) 2615 { 2616 struct gem *gp = netdev_priv(dev); 2617 2618 if (!gp->want_autoneg) 2619 return -EINVAL; 2620 2621 /* Restart link process */ 2622 if (netif_device_present(gp->dev)) { 2623 del_timer_sync(&gp->link_timer); 2624 gem_begin_auto_negotiation(gp, NULL); 2625 } 2626 2627 return 0; 2628 } 2629 2630 static u32 gem_get_msglevel(struct net_device *dev) 2631 { 2632 struct gem *gp = netdev_priv(dev); 2633 return gp->msg_enable; 2634 } 2635 2636 static void gem_set_msglevel(struct net_device *dev, u32 value) 2637 { 2638 struct gem *gp = netdev_priv(dev); 2639 gp->msg_enable = value; 2640 } 2641 2642 2643 /* Add more when I understand how to program the chip */ 2644 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2645 2646 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2647 2648 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2649 { 2650 struct gem *gp = netdev_priv(dev); 2651 2652 /* Add more when I understand how to program the chip */ 2653 if (gp->has_wol) { 2654 wol->supported = WOL_SUPPORTED_MASK; 2655 wol->wolopts = gp->wake_on_lan; 2656 } else { 2657 wol->supported = 0; 2658 wol->wolopts = 0; 2659 } 2660 } 2661 2662 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2663 { 2664 struct gem *gp = netdev_priv(dev); 2665 2666 if (!gp->has_wol) 2667 return -EOPNOTSUPP; 2668 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2669 return 0; 2670 } 2671 2672 static const struct ethtool_ops gem_ethtool_ops = { 2673 .get_drvinfo = gem_get_drvinfo, 2674 .get_link = ethtool_op_get_link, 2675 .get_settings = gem_get_settings, 2676 .set_settings = gem_set_settings, 2677 .nway_reset = gem_nway_reset, 2678 .get_msglevel = gem_get_msglevel, 2679 .set_msglevel = gem_set_msglevel, 2680 .get_wol = gem_get_wol, 2681 .set_wol = gem_set_wol, 2682 }; 2683 2684 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2685 { 2686 struct gem *gp = netdev_priv(dev); 2687 struct mii_ioctl_data *data = if_mii(ifr); 2688 int rc = -EOPNOTSUPP; 2689 2690 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2691 * netif_device_present() is true and holds rtnl_lock for us 2692 * so we have nothing to worry about 2693 */ 2694 2695 switch (cmd) { 2696 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2697 data->phy_id = gp->mii_phy_addr; 2698 /* Fallthrough... */ 2699 2700 case SIOCGMIIREG: /* Read MII PHY register. */ 2701 data->val_out = __phy_read(gp, data->phy_id & 0x1f, 2702 data->reg_num & 0x1f); 2703 rc = 0; 2704 break; 2705 2706 case SIOCSMIIREG: /* Write MII PHY register. */ 2707 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2708 data->val_in); 2709 rc = 0; 2710 break; 2711 } 2712 return rc; 2713 } 2714 2715 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2716 /* Fetch MAC address from vital product data of PCI ROM. */ 2717 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2718 { 2719 int this_offset; 2720 2721 for (this_offset = 0x20; this_offset < len; this_offset++) { 2722 void __iomem *p = rom_base + this_offset; 2723 int i; 2724 2725 if (readb(p + 0) != 0x90 || 2726 readb(p + 1) != 0x00 || 2727 readb(p + 2) != 0x09 || 2728 readb(p + 3) != 0x4e || 2729 readb(p + 4) != 0x41 || 2730 readb(p + 5) != 0x06) 2731 continue; 2732 2733 this_offset += 6; 2734 p += 6; 2735 2736 for (i = 0; i < 6; i++) 2737 dev_addr[i] = readb(p + i); 2738 return 1; 2739 } 2740 return 0; 2741 } 2742 2743 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2744 { 2745 size_t size; 2746 void __iomem *p = pci_map_rom(pdev, &size); 2747 2748 if (p) { 2749 int found; 2750 2751 found = readb(p) == 0x55 && 2752 readb(p + 1) == 0xaa && 2753 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2754 pci_unmap_rom(pdev, p); 2755 if (found) 2756 return; 2757 } 2758 2759 /* Sun MAC prefix then 3 random bytes. */ 2760 dev_addr[0] = 0x08; 2761 dev_addr[1] = 0x00; 2762 dev_addr[2] = 0x20; 2763 get_random_bytes(dev_addr + 3, 3); 2764 } 2765 #endif /* not Sparc and not PPC */ 2766 2767 static int __devinit gem_get_device_address(struct gem *gp) 2768 { 2769 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2770 struct net_device *dev = gp->dev; 2771 const unsigned char *addr; 2772 2773 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2774 if (addr == NULL) { 2775 #ifdef CONFIG_SPARC 2776 addr = idprom->id_ethaddr; 2777 #else 2778 printk("\n"); 2779 pr_err("%s: can't get mac-address\n", dev->name); 2780 return -1; 2781 #endif 2782 } 2783 memcpy(dev->dev_addr, addr, 6); 2784 #else 2785 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2786 #endif 2787 return 0; 2788 } 2789 2790 static void gem_remove_one(struct pci_dev *pdev) 2791 { 2792 struct net_device *dev = pci_get_drvdata(pdev); 2793 2794 if (dev) { 2795 struct gem *gp = netdev_priv(dev); 2796 2797 unregister_netdev(dev); 2798 2799 /* Ensure reset task is truely gone */ 2800 cancel_work_sync(&gp->reset_task); 2801 2802 /* Free resources */ 2803 pci_free_consistent(pdev, 2804 sizeof(struct gem_init_block), 2805 gp->init_block, 2806 gp->gblock_dvma); 2807 iounmap(gp->regs); 2808 pci_release_regions(pdev); 2809 free_netdev(dev); 2810 2811 pci_set_drvdata(pdev, NULL); 2812 } 2813 } 2814 2815 static const struct net_device_ops gem_netdev_ops = { 2816 .ndo_open = gem_open, 2817 .ndo_stop = gem_close, 2818 .ndo_start_xmit = gem_start_xmit, 2819 .ndo_get_stats = gem_get_stats, 2820 .ndo_set_rx_mode = gem_set_multicast, 2821 .ndo_do_ioctl = gem_ioctl, 2822 .ndo_tx_timeout = gem_tx_timeout, 2823 .ndo_change_mtu = gem_change_mtu, 2824 .ndo_validate_addr = eth_validate_addr, 2825 .ndo_set_mac_address = gem_set_mac_address, 2826 #ifdef CONFIG_NET_POLL_CONTROLLER 2827 .ndo_poll_controller = gem_poll_controller, 2828 #endif 2829 }; 2830 2831 static int __devinit gem_init_one(struct pci_dev *pdev, 2832 const struct pci_device_id *ent) 2833 { 2834 unsigned long gemreg_base, gemreg_len; 2835 struct net_device *dev; 2836 struct gem *gp; 2837 int err, pci_using_dac; 2838 2839 printk_once(KERN_INFO "%s", version); 2840 2841 /* Apple gmac note: during probe, the chip is powered up by 2842 * the arch code to allow the code below to work (and to let 2843 * the chip be probed on the config space. It won't stay powered 2844 * up until the interface is brought up however, so we can't rely 2845 * on register configuration done at this point. 2846 */ 2847 err = pci_enable_device(pdev); 2848 if (err) { 2849 pr_err("Cannot enable MMIO operation, aborting\n"); 2850 return err; 2851 } 2852 pci_set_master(pdev); 2853 2854 /* Configure DMA attributes. */ 2855 2856 /* All of the GEM documentation states that 64-bit DMA addressing 2857 * is fully supported and should work just fine. However the 2858 * front end for RIO based GEMs is different and only supports 2859 * 32-bit addressing. 2860 * 2861 * For now we assume the various PPC GEMs are 32-bit only as well. 2862 */ 2863 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2864 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2865 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2866 pci_using_dac = 1; 2867 } else { 2868 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2869 if (err) { 2870 pr_err("No usable DMA configuration, aborting\n"); 2871 goto err_disable_device; 2872 } 2873 pci_using_dac = 0; 2874 } 2875 2876 gemreg_base = pci_resource_start(pdev, 0); 2877 gemreg_len = pci_resource_len(pdev, 0); 2878 2879 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2880 pr_err("Cannot find proper PCI device base address, aborting\n"); 2881 err = -ENODEV; 2882 goto err_disable_device; 2883 } 2884 2885 dev = alloc_etherdev(sizeof(*gp)); 2886 if (!dev) { 2887 err = -ENOMEM; 2888 goto err_disable_device; 2889 } 2890 SET_NETDEV_DEV(dev, &pdev->dev); 2891 2892 gp = netdev_priv(dev); 2893 2894 err = pci_request_regions(pdev, DRV_NAME); 2895 if (err) { 2896 pr_err("Cannot obtain PCI resources, aborting\n"); 2897 goto err_out_free_netdev; 2898 } 2899 2900 gp->pdev = pdev; 2901 dev->base_addr = (long) pdev; 2902 gp->dev = dev; 2903 2904 gp->msg_enable = DEFAULT_MSG; 2905 2906 init_timer(&gp->link_timer); 2907 gp->link_timer.function = gem_link_timer; 2908 gp->link_timer.data = (unsigned long) gp; 2909 2910 INIT_WORK(&gp->reset_task, gem_reset_task); 2911 2912 gp->lstate = link_down; 2913 gp->timer_ticks = 0; 2914 netif_carrier_off(dev); 2915 2916 gp->regs = ioremap(gemreg_base, gemreg_len); 2917 if (!gp->regs) { 2918 pr_err("Cannot map device registers, aborting\n"); 2919 err = -EIO; 2920 goto err_out_free_res; 2921 } 2922 2923 /* On Apple, we want a reference to the Open Firmware device-tree 2924 * node. We use it for clock control. 2925 */ 2926 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2927 gp->of_node = pci_device_to_OF_node(pdev); 2928 #endif 2929 2930 /* Only Apple version supports WOL afaik */ 2931 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2932 gp->has_wol = 1; 2933 2934 /* Make sure cell is enabled */ 2935 gem_get_cell(gp); 2936 2937 /* Make sure everything is stopped and in init state */ 2938 gem_reset(gp); 2939 2940 /* Fill up the mii_phy structure (even if we won't use it) */ 2941 gp->phy_mii.dev = dev; 2942 gp->phy_mii.mdio_read = _phy_read; 2943 gp->phy_mii.mdio_write = _phy_write; 2944 #ifdef CONFIG_PPC_PMAC 2945 gp->phy_mii.platform_data = gp->of_node; 2946 #endif 2947 /* By default, we start with autoneg */ 2948 gp->want_autoneg = 1; 2949 2950 /* Check fifo sizes, PHY type, etc... */ 2951 if (gem_check_invariants(gp)) { 2952 err = -ENODEV; 2953 goto err_out_iounmap; 2954 } 2955 2956 /* It is guaranteed that the returned buffer will be at least 2957 * PAGE_SIZE aligned. 2958 */ 2959 gp->init_block = (struct gem_init_block *) 2960 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2961 &gp->gblock_dvma); 2962 if (!gp->init_block) { 2963 pr_err("Cannot allocate init block, aborting\n"); 2964 err = -ENOMEM; 2965 goto err_out_iounmap; 2966 } 2967 2968 if (gem_get_device_address(gp)) 2969 goto err_out_free_consistent; 2970 2971 dev->netdev_ops = &gem_netdev_ops; 2972 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2973 dev->ethtool_ops = &gem_ethtool_ops; 2974 dev->watchdog_timeo = 5 * HZ; 2975 dev->irq = pdev->irq; 2976 dev->dma = 0; 2977 2978 /* Set that now, in case PM kicks in now */ 2979 pci_set_drvdata(pdev, dev); 2980 2981 /* We can do scatter/gather and HW checksum */ 2982 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2983 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2984 if (pci_using_dac) 2985 dev->features |= NETIF_F_HIGHDMA; 2986 2987 /* Register with kernel */ 2988 if (register_netdev(dev)) { 2989 pr_err("Cannot register net device, aborting\n"); 2990 err = -ENOMEM; 2991 goto err_out_free_consistent; 2992 } 2993 2994 /* Undo the get_cell with appropriate locking (we could use 2995 * ndo_init/uninit but that would be even more clumsy imho) 2996 */ 2997 rtnl_lock(); 2998 gem_put_cell(gp); 2999 rtnl_unlock(); 3000 3001 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3002 dev->dev_addr); 3003 return 0; 3004 3005 err_out_free_consistent: 3006 gem_remove_one(pdev); 3007 err_out_iounmap: 3008 gem_put_cell(gp); 3009 iounmap(gp->regs); 3010 3011 err_out_free_res: 3012 pci_release_regions(pdev); 3013 3014 err_out_free_netdev: 3015 free_netdev(dev); 3016 err_disable_device: 3017 pci_disable_device(pdev); 3018 return err; 3019 3020 } 3021 3022 3023 static struct pci_driver gem_driver = { 3024 .name = GEM_MODULE_NAME, 3025 .id_table = gem_pci_tbl, 3026 .probe = gem_init_one, 3027 .remove = gem_remove_one, 3028 #ifdef CONFIG_PM 3029 .suspend = gem_suspend, 3030 .resume = gem_resume, 3031 #endif /* CONFIG_PM */ 3032 }; 3033 3034 static int __init gem_init(void) 3035 { 3036 return pci_register_driver(&gem_driver); 3037 } 3038 3039 static void __exit gem_cleanup(void) 3040 { 3041 pci_unregister_driver(&gem_driver); 3042 } 3043 3044 module_init(gem_init); 3045 module_exit(gem_cleanup); 3046