1 // SPDX-License-Identifier: GPL-2.0 2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 3 * sungem.c: Sun GEM ethernet driver. 4 * 5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 6 * 7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 10 * 11 * NAPI and NETPOLL support 12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/fcntl.h> 22 #include <linux/interrupt.h> 23 #include <linux/ioport.h> 24 #include <linux/in.h> 25 #include <linux/sched.h> 26 #include <linux/string.h> 27 #include <linux/delay.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 44 #include <asm/io.h> 45 #include <asm/byteorder.h> 46 #include <linux/uaccess.h> 47 #include <asm/irq.h> 48 49 #ifdef CONFIG_SPARC 50 #include <asm/idprom.h> 51 #include <asm/prom.h> 52 #endif 53 54 #ifdef CONFIG_PPC_PMAC 55 #include <asm/prom.h> 56 #include <asm/machdep.h> 57 #include <asm/pmac_feature.h> 58 #endif 59 60 #include <linux/sungem_phy.h> 61 #include "sungem.h" 62 63 /* Stripping FCS is causing problems, disabled for now */ 64 #undef STRIP_FCS 65 66 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 67 NETIF_MSG_PROBE | \ 68 NETIF_MSG_LINK) 69 70 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 71 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 72 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 73 SUPPORTED_Pause | SUPPORTED_Autoneg) 74 75 #define DRV_NAME "sungem" 76 #define DRV_VERSION "1.0" 77 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 78 79 static char version[] = 80 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 81 82 MODULE_AUTHOR(DRV_AUTHOR); 83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 84 MODULE_LICENSE("GPL"); 85 86 #define GEM_MODULE_NAME "gem" 87 88 static const struct pci_device_id gem_pci_tbl[] = { 89 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 90 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 91 92 /* These models only differ from the original GEM in 93 * that their tx/rx fifos are of a different size and 94 * they only support 10/100 speeds. -DaveM 95 * 96 * Apple's GMAC does support gigabit on machines with 97 * the BCM54xx PHYs. -BenH 98 */ 99 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 113 {0, } 114 }; 115 116 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 117 118 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 119 { 120 u32 cmd; 121 int limit = 10000; 122 123 cmd = (1 << 30); 124 cmd |= (2 << 28); 125 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 126 cmd |= (reg << 18) & MIF_FRAME_REGAD; 127 cmd |= (MIF_FRAME_TAMSB); 128 writel(cmd, gp->regs + MIF_FRAME); 129 130 while (--limit) { 131 cmd = readl(gp->regs + MIF_FRAME); 132 if (cmd & MIF_FRAME_TALSB) 133 break; 134 135 udelay(10); 136 } 137 138 if (!limit) 139 cmd = 0xffff; 140 141 return cmd & MIF_FRAME_DATA; 142 } 143 144 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 145 { 146 struct gem *gp = netdev_priv(dev); 147 return __sungem_phy_read(gp, mii_id, reg); 148 } 149 150 static inline u16 sungem_phy_read(struct gem *gp, int reg) 151 { 152 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 153 } 154 155 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 156 { 157 u32 cmd; 158 int limit = 10000; 159 160 cmd = (1 << 30); 161 cmd |= (1 << 28); 162 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 163 cmd |= (reg << 18) & MIF_FRAME_REGAD; 164 cmd |= (MIF_FRAME_TAMSB); 165 cmd |= (val & MIF_FRAME_DATA); 166 writel(cmd, gp->regs + MIF_FRAME); 167 168 while (limit--) { 169 cmd = readl(gp->regs + MIF_FRAME); 170 if (cmd & MIF_FRAME_TALSB) 171 break; 172 173 udelay(10); 174 } 175 } 176 177 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 178 { 179 struct gem *gp = netdev_priv(dev); 180 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 181 } 182 183 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 184 { 185 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 186 } 187 188 static inline void gem_enable_ints(struct gem *gp) 189 { 190 /* Enable all interrupts but TXDONE */ 191 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 192 } 193 194 static inline void gem_disable_ints(struct gem *gp) 195 { 196 /* Disable all interrupts, including TXDONE */ 197 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 198 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 199 } 200 201 static void gem_get_cell(struct gem *gp) 202 { 203 BUG_ON(gp->cell_enabled < 0); 204 gp->cell_enabled++; 205 #ifdef CONFIG_PPC_PMAC 206 if (gp->cell_enabled == 1) { 207 mb(); 208 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 209 udelay(10); 210 } 211 #endif /* CONFIG_PPC_PMAC */ 212 } 213 214 /* Turn off the chip's clock */ 215 static void gem_put_cell(struct gem *gp) 216 { 217 BUG_ON(gp->cell_enabled <= 0); 218 gp->cell_enabled--; 219 #ifdef CONFIG_PPC_PMAC 220 if (gp->cell_enabled == 0) { 221 mb(); 222 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 223 udelay(10); 224 } 225 #endif /* CONFIG_PPC_PMAC */ 226 } 227 228 static inline void gem_netif_stop(struct gem *gp) 229 { 230 netif_trans_update(gp->dev); /* prevent tx timeout */ 231 napi_disable(&gp->napi); 232 netif_tx_disable(gp->dev); 233 } 234 235 static inline void gem_netif_start(struct gem *gp) 236 { 237 /* NOTE: unconditional netif_wake_queue is only 238 * appropriate so long as all callers are assured to 239 * have free tx slots. 240 */ 241 netif_wake_queue(gp->dev); 242 napi_enable(&gp->napi); 243 } 244 245 static void gem_schedule_reset(struct gem *gp) 246 { 247 gp->reset_task_pending = 1; 248 schedule_work(&gp->reset_task); 249 } 250 251 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 252 { 253 if (netif_msg_intr(gp)) 254 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 255 } 256 257 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 258 { 259 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 260 u32 pcs_miistat; 261 262 if (netif_msg_intr(gp)) 263 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 264 gp->dev->name, pcs_istat); 265 266 if (!(pcs_istat & PCS_ISTAT_LSC)) { 267 netdev_err(dev, "PCS irq but no link status change???\n"); 268 return 0; 269 } 270 271 /* The link status bit latches on zero, so you must 272 * read it twice in such a case to see a transition 273 * to the link being up. 274 */ 275 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 276 if (!(pcs_miistat & PCS_MIISTAT_LS)) 277 pcs_miistat |= 278 (readl(gp->regs + PCS_MIISTAT) & 279 PCS_MIISTAT_LS); 280 281 if (pcs_miistat & PCS_MIISTAT_ANC) { 282 /* The remote-fault indication is only valid 283 * when autoneg has completed. 284 */ 285 if (pcs_miistat & PCS_MIISTAT_RF) 286 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 287 else 288 netdev_info(dev, "PCS AutoNEG complete\n"); 289 } 290 291 if (pcs_miistat & PCS_MIISTAT_LS) { 292 netdev_info(dev, "PCS link is now up\n"); 293 netif_carrier_on(gp->dev); 294 } else { 295 netdev_info(dev, "PCS link is now down\n"); 296 netif_carrier_off(gp->dev); 297 /* If this happens and the link timer is not running, 298 * reset so we re-negotiate. 299 */ 300 if (!timer_pending(&gp->link_timer)) 301 return 1; 302 } 303 304 return 0; 305 } 306 307 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 308 { 309 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 310 311 if (netif_msg_intr(gp)) 312 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 313 gp->dev->name, txmac_stat); 314 315 /* Defer timer expiration is quite normal, 316 * don't even log the event. 317 */ 318 if ((txmac_stat & MAC_TXSTAT_DTE) && 319 !(txmac_stat & ~MAC_TXSTAT_DTE)) 320 return 0; 321 322 if (txmac_stat & MAC_TXSTAT_URUN) { 323 netdev_err(dev, "TX MAC xmit underrun\n"); 324 dev->stats.tx_fifo_errors++; 325 } 326 327 if (txmac_stat & MAC_TXSTAT_MPE) { 328 netdev_err(dev, "TX MAC max packet size error\n"); 329 dev->stats.tx_errors++; 330 } 331 332 /* The rest are all cases of one of the 16-bit TX 333 * counters expiring. 334 */ 335 if (txmac_stat & MAC_TXSTAT_NCE) 336 dev->stats.collisions += 0x10000; 337 338 if (txmac_stat & MAC_TXSTAT_ECE) { 339 dev->stats.tx_aborted_errors += 0x10000; 340 dev->stats.collisions += 0x10000; 341 } 342 343 if (txmac_stat & MAC_TXSTAT_LCE) { 344 dev->stats.tx_aborted_errors += 0x10000; 345 dev->stats.collisions += 0x10000; 346 } 347 348 /* We do not keep track of MAC_TXSTAT_FCE and 349 * MAC_TXSTAT_PCE events. 350 */ 351 return 0; 352 } 353 354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 355 * so we do the following. 356 * 357 * If any part of the reset goes wrong, we return 1 and that causes the 358 * whole chip to be reset. 359 */ 360 static int gem_rxmac_reset(struct gem *gp) 361 { 362 struct net_device *dev = gp->dev; 363 int limit, i; 364 u64 desc_dma; 365 u32 val; 366 367 /* First, reset & disable MAC RX. */ 368 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 369 for (limit = 0; limit < 5000; limit++) { 370 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 371 break; 372 udelay(10); 373 } 374 if (limit == 5000) { 375 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 376 return 1; 377 } 378 379 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 380 gp->regs + MAC_RXCFG); 381 for (limit = 0; limit < 5000; limit++) { 382 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 383 break; 384 udelay(10); 385 } 386 if (limit == 5000) { 387 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 388 return 1; 389 } 390 391 /* Second, disable RX DMA. */ 392 writel(0, gp->regs + RXDMA_CFG); 393 for (limit = 0; limit < 5000; limit++) { 394 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 395 break; 396 udelay(10); 397 } 398 if (limit == 5000) { 399 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 400 return 1; 401 } 402 403 mdelay(5); 404 405 /* Execute RX reset command. */ 406 writel(gp->swrst_base | GREG_SWRST_RXRST, 407 gp->regs + GREG_SWRST); 408 for (limit = 0; limit < 5000; limit++) { 409 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 410 break; 411 udelay(10); 412 } 413 if (limit == 5000) { 414 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 415 return 1; 416 } 417 418 /* Refresh the RX ring. */ 419 for (i = 0; i < RX_RING_SIZE; i++) { 420 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 421 422 if (gp->rx_skbs[i] == NULL) { 423 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 424 return 1; 425 } 426 427 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 428 } 429 gp->rx_new = gp->rx_old = 0; 430 431 /* Now we must reprogram the rest of RX unit. */ 432 desc_dma = (u64) gp->gblock_dvma; 433 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 434 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 435 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 436 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 437 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 438 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 439 writel(val, gp->regs + RXDMA_CFG); 440 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 441 writel(((5 & RXDMA_BLANK_IPKTS) | 442 ((8 << 12) & RXDMA_BLANK_ITIME)), 443 gp->regs + RXDMA_BLANK); 444 else 445 writel(((5 & RXDMA_BLANK_IPKTS) | 446 ((4 << 12) & RXDMA_BLANK_ITIME)), 447 gp->regs + RXDMA_BLANK); 448 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 449 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 450 writel(val, gp->regs + RXDMA_PTHRESH); 451 val = readl(gp->regs + RXDMA_CFG); 452 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 453 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 454 val = readl(gp->regs + MAC_RXCFG); 455 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 456 457 return 0; 458 } 459 460 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 461 { 462 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 463 int ret = 0; 464 465 if (netif_msg_intr(gp)) 466 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 467 gp->dev->name, rxmac_stat); 468 469 if (rxmac_stat & MAC_RXSTAT_OFLW) { 470 u32 smac = readl(gp->regs + MAC_SMACHINE); 471 472 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 473 dev->stats.rx_over_errors++; 474 dev->stats.rx_fifo_errors++; 475 476 ret = gem_rxmac_reset(gp); 477 } 478 479 if (rxmac_stat & MAC_RXSTAT_ACE) 480 dev->stats.rx_frame_errors += 0x10000; 481 482 if (rxmac_stat & MAC_RXSTAT_CCE) 483 dev->stats.rx_crc_errors += 0x10000; 484 485 if (rxmac_stat & MAC_RXSTAT_LCE) 486 dev->stats.rx_length_errors += 0x10000; 487 488 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 489 * events. 490 */ 491 return ret; 492 } 493 494 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 495 { 496 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 497 498 if (netif_msg_intr(gp)) 499 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 500 gp->dev->name, mac_cstat); 501 502 /* This interrupt is just for pause frame and pause 503 * tracking. It is useful for diagnostics and debug 504 * but probably by default we will mask these events. 505 */ 506 if (mac_cstat & MAC_CSTAT_PS) 507 gp->pause_entered++; 508 509 if (mac_cstat & MAC_CSTAT_PRCV) 510 gp->pause_last_time_recvd = (mac_cstat >> 16); 511 512 return 0; 513 } 514 515 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 516 { 517 u32 mif_status = readl(gp->regs + MIF_STATUS); 518 u32 reg_val, changed_bits; 519 520 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 521 changed_bits = (mif_status & MIF_STATUS_STAT); 522 523 gem_handle_mif_event(gp, reg_val, changed_bits); 524 525 return 0; 526 } 527 528 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 529 { 530 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 531 532 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 533 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 534 netdev_err(dev, "PCI error [%04x]", pci_estat); 535 536 if (pci_estat & GREG_PCIESTAT_BADACK) 537 pr_cont(" <No ACK64# during ABS64 cycle>"); 538 if (pci_estat & GREG_PCIESTAT_DTRTO) 539 pr_cont(" <Delayed transaction timeout>"); 540 if (pci_estat & GREG_PCIESTAT_OTHER) 541 pr_cont(" <other>"); 542 pr_cont("\n"); 543 } else { 544 pci_estat |= GREG_PCIESTAT_OTHER; 545 netdev_err(dev, "PCI error\n"); 546 } 547 548 if (pci_estat & GREG_PCIESTAT_OTHER) { 549 u16 pci_cfg_stat; 550 551 /* Interrogate PCI config space for the 552 * true cause. 553 */ 554 pci_read_config_word(gp->pdev, PCI_STATUS, 555 &pci_cfg_stat); 556 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 557 pci_cfg_stat); 558 if (pci_cfg_stat & PCI_STATUS_PARITY) 559 netdev_err(dev, "PCI parity error detected\n"); 560 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 561 netdev_err(dev, "PCI target abort\n"); 562 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 563 netdev_err(dev, "PCI master acks target abort\n"); 564 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 565 netdev_err(dev, "PCI master abort\n"); 566 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 567 netdev_err(dev, "PCI system error SERR#\n"); 568 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 569 netdev_err(dev, "PCI parity error\n"); 570 571 /* Write the error bits back to clear them. */ 572 pci_cfg_stat &= (PCI_STATUS_PARITY | 573 PCI_STATUS_SIG_TARGET_ABORT | 574 PCI_STATUS_REC_TARGET_ABORT | 575 PCI_STATUS_REC_MASTER_ABORT | 576 PCI_STATUS_SIG_SYSTEM_ERROR | 577 PCI_STATUS_DETECTED_PARITY); 578 pci_write_config_word(gp->pdev, 579 PCI_STATUS, pci_cfg_stat); 580 } 581 582 /* For all PCI errors, we should reset the chip. */ 583 return 1; 584 } 585 586 /* All non-normal interrupt conditions get serviced here. 587 * Returns non-zero if we should just exit the interrupt 588 * handler right now (ie. if we reset the card which invalidates 589 * all of the other original irq status bits). 590 */ 591 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 592 { 593 if (gem_status & GREG_STAT_RXNOBUF) { 594 /* Frame arrived, no free RX buffers available. */ 595 if (netif_msg_rx_err(gp)) 596 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 597 gp->dev->name); 598 dev->stats.rx_dropped++; 599 } 600 601 if (gem_status & GREG_STAT_RXTAGERR) { 602 /* corrupt RX tag framing */ 603 if (netif_msg_rx_err(gp)) 604 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 605 gp->dev->name); 606 dev->stats.rx_errors++; 607 608 return 1; 609 } 610 611 if (gem_status & GREG_STAT_PCS) { 612 if (gem_pcs_interrupt(dev, gp, gem_status)) 613 return 1; 614 } 615 616 if (gem_status & GREG_STAT_TXMAC) { 617 if (gem_txmac_interrupt(dev, gp, gem_status)) 618 return 1; 619 } 620 621 if (gem_status & GREG_STAT_RXMAC) { 622 if (gem_rxmac_interrupt(dev, gp, gem_status)) 623 return 1; 624 } 625 626 if (gem_status & GREG_STAT_MAC) { 627 if (gem_mac_interrupt(dev, gp, gem_status)) 628 return 1; 629 } 630 631 if (gem_status & GREG_STAT_MIF) { 632 if (gem_mif_interrupt(dev, gp, gem_status)) 633 return 1; 634 } 635 636 if (gem_status & GREG_STAT_PCIERR) { 637 if (gem_pci_interrupt(dev, gp, gem_status)) 638 return 1; 639 } 640 641 return 0; 642 } 643 644 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 645 { 646 int entry, limit; 647 648 entry = gp->tx_old; 649 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 650 while (entry != limit) { 651 struct sk_buff *skb; 652 struct gem_txd *txd; 653 dma_addr_t dma_addr; 654 u32 dma_len; 655 int frag; 656 657 if (netif_msg_tx_done(gp)) 658 printk(KERN_DEBUG "%s: tx done, slot %d\n", 659 gp->dev->name, entry); 660 skb = gp->tx_skbs[entry]; 661 if (skb_shinfo(skb)->nr_frags) { 662 int last = entry + skb_shinfo(skb)->nr_frags; 663 int walk = entry; 664 int incomplete = 0; 665 666 last &= (TX_RING_SIZE - 1); 667 for (;;) { 668 walk = NEXT_TX(walk); 669 if (walk == limit) 670 incomplete = 1; 671 if (walk == last) 672 break; 673 } 674 if (incomplete) 675 break; 676 } 677 gp->tx_skbs[entry] = NULL; 678 dev->stats.tx_bytes += skb->len; 679 680 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 681 txd = &gp->init_block->txd[entry]; 682 683 dma_addr = le64_to_cpu(txd->buffer); 684 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 685 686 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 687 entry = NEXT_TX(entry); 688 } 689 690 dev->stats.tx_packets++; 691 dev_consume_skb_any(skb); 692 } 693 gp->tx_old = entry; 694 695 /* Need to make the tx_old update visible to gem_start_xmit() 696 * before checking for netif_queue_stopped(). Without the 697 * memory barrier, there is a small possibility that gem_start_xmit() 698 * will miss it and cause the queue to be stopped forever. 699 */ 700 smp_mb(); 701 702 if (unlikely(netif_queue_stopped(dev) && 703 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 704 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 705 706 __netif_tx_lock(txq, smp_processor_id()); 707 if (netif_queue_stopped(dev) && 708 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 709 netif_wake_queue(dev); 710 __netif_tx_unlock(txq); 711 } 712 } 713 714 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 715 { 716 int cluster_start, curr, count, kick; 717 718 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 719 count = 0; 720 kick = -1; 721 dma_wmb(); 722 while (curr != limit) { 723 curr = NEXT_RX(curr); 724 if (++count == 4) { 725 struct gem_rxd *rxd = 726 &gp->init_block->rxd[cluster_start]; 727 for (;;) { 728 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 729 rxd++; 730 cluster_start = NEXT_RX(cluster_start); 731 if (cluster_start == curr) 732 break; 733 } 734 kick = curr; 735 count = 0; 736 } 737 } 738 if (kick >= 0) { 739 mb(); 740 writel(kick, gp->regs + RXDMA_KICK); 741 } 742 } 743 744 #define ALIGNED_RX_SKB_ADDR(addr) \ 745 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 746 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 747 gfp_t gfp_flags) 748 { 749 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 750 751 if (likely(skb)) { 752 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 753 skb_reserve(skb, offset); 754 } 755 return skb; 756 } 757 758 static int gem_rx(struct gem *gp, int work_to_do) 759 { 760 struct net_device *dev = gp->dev; 761 int entry, drops, work_done = 0; 762 u32 done; 763 __sum16 csum; 764 765 if (netif_msg_rx_status(gp)) 766 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 767 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 768 769 entry = gp->rx_new; 770 drops = 0; 771 done = readl(gp->regs + RXDMA_DONE); 772 for (;;) { 773 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 774 struct sk_buff *skb; 775 u64 status = le64_to_cpu(rxd->status_word); 776 dma_addr_t dma_addr; 777 int len; 778 779 if ((status & RXDCTRL_OWN) != 0) 780 break; 781 782 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 783 break; 784 785 /* When writing back RX descriptor, GEM writes status 786 * then buffer address, possibly in separate transactions. 787 * If we don't wait for the chip to write both, we could 788 * post a new buffer to this descriptor then have GEM spam 789 * on the buffer address. We sync on the RX completion 790 * register to prevent this from happening. 791 */ 792 if (entry == done) { 793 done = readl(gp->regs + RXDMA_DONE); 794 if (entry == done) 795 break; 796 } 797 798 /* We can now account for the work we're about to do */ 799 work_done++; 800 801 skb = gp->rx_skbs[entry]; 802 803 len = (status & RXDCTRL_BUFSZ) >> 16; 804 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 805 dev->stats.rx_errors++; 806 if (len < ETH_ZLEN) 807 dev->stats.rx_length_errors++; 808 if (len & RXDCTRL_BAD) 809 dev->stats.rx_crc_errors++; 810 811 /* We'll just return it to GEM. */ 812 drop_it: 813 dev->stats.rx_dropped++; 814 goto next; 815 } 816 817 dma_addr = le64_to_cpu(rxd->buffer); 818 if (len > RX_COPY_THRESHOLD) { 819 struct sk_buff *new_skb; 820 821 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 822 if (new_skb == NULL) { 823 drops++; 824 goto drop_it; 825 } 826 pci_unmap_page(gp->pdev, dma_addr, 827 RX_BUF_ALLOC_SIZE(gp), 828 PCI_DMA_FROMDEVICE); 829 gp->rx_skbs[entry] = new_skb; 830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 832 virt_to_page(new_skb->data), 833 offset_in_page(new_skb->data), 834 RX_BUF_ALLOC_SIZE(gp), 835 PCI_DMA_FROMDEVICE)); 836 skb_reserve(new_skb, RX_OFFSET); 837 838 /* Trim the original skb for the netif. */ 839 skb_trim(skb, len); 840 } else { 841 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 842 843 if (copy_skb == NULL) { 844 drops++; 845 goto drop_it; 846 } 847 848 skb_reserve(copy_skb, 2); 849 skb_put(copy_skb, len); 850 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 851 skb_copy_from_linear_data(skb, copy_skb->data, len); 852 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 853 854 /* We'll reuse the original ring buffer. */ 855 skb = copy_skb; 856 } 857 858 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 859 skb->csum = csum_unfold(csum); 860 skb->ip_summed = CHECKSUM_COMPLETE; 861 skb->protocol = eth_type_trans(skb, gp->dev); 862 863 napi_gro_receive(&gp->napi, skb); 864 865 dev->stats.rx_packets++; 866 dev->stats.rx_bytes += len; 867 868 next: 869 entry = NEXT_RX(entry); 870 } 871 872 gem_post_rxds(gp, entry); 873 874 gp->rx_new = entry; 875 876 if (drops) 877 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 878 879 return work_done; 880 } 881 882 static int gem_poll(struct napi_struct *napi, int budget) 883 { 884 struct gem *gp = container_of(napi, struct gem, napi); 885 struct net_device *dev = gp->dev; 886 int work_done; 887 888 work_done = 0; 889 do { 890 /* Handle anomalies */ 891 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 892 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 893 int reset; 894 895 /* We run the abnormal interrupt handling code with 896 * the Tx lock. It only resets the Rx portion of the 897 * chip, but we need to guard it against DMA being 898 * restarted by the link poll timer 899 */ 900 __netif_tx_lock(txq, smp_processor_id()); 901 reset = gem_abnormal_irq(dev, gp, gp->status); 902 __netif_tx_unlock(txq); 903 if (reset) { 904 gem_schedule_reset(gp); 905 napi_complete(napi); 906 return work_done; 907 } 908 } 909 910 /* Run TX completion thread */ 911 gem_tx(dev, gp, gp->status); 912 913 /* Run RX thread. We don't use any locking here, 914 * code willing to do bad things - like cleaning the 915 * rx ring - must call napi_disable(), which 916 * schedule_timeout()'s if polling is already disabled. 917 */ 918 work_done += gem_rx(gp, budget - work_done); 919 920 if (work_done >= budget) 921 return work_done; 922 923 gp->status = readl(gp->regs + GREG_STAT); 924 } while (gp->status & GREG_STAT_NAPI); 925 926 napi_complete_done(napi, work_done); 927 gem_enable_ints(gp); 928 929 return work_done; 930 } 931 932 static irqreturn_t gem_interrupt(int irq, void *dev_id) 933 { 934 struct net_device *dev = dev_id; 935 struct gem *gp = netdev_priv(dev); 936 937 if (napi_schedule_prep(&gp->napi)) { 938 u32 gem_status = readl(gp->regs + GREG_STAT); 939 940 if (unlikely(gem_status == 0)) { 941 napi_enable(&gp->napi); 942 return IRQ_NONE; 943 } 944 if (netif_msg_intr(gp)) 945 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 946 gp->dev->name, gem_status); 947 948 gp->status = gem_status; 949 gem_disable_ints(gp); 950 __napi_schedule(&gp->napi); 951 } 952 953 /* If polling was disabled at the time we received that 954 * interrupt, we may return IRQ_HANDLED here while we 955 * should return IRQ_NONE. No big deal... 956 */ 957 return IRQ_HANDLED; 958 } 959 960 #ifdef CONFIG_NET_POLL_CONTROLLER 961 static void gem_poll_controller(struct net_device *dev) 962 { 963 struct gem *gp = netdev_priv(dev); 964 965 disable_irq(gp->pdev->irq); 966 gem_interrupt(gp->pdev->irq, dev); 967 enable_irq(gp->pdev->irq); 968 } 969 #endif 970 971 static void gem_tx_timeout(struct net_device *dev) 972 { 973 struct gem *gp = netdev_priv(dev); 974 975 netdev_err(dev, "transmit timed out, resetting\n"); 976 977 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 978 readl(gp->regs + TXDMA_CFG), 979 readl(gp->regs + MAC_TXSTAT), 980 readl(gp->regs + MAC_TXCFG)); 981 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 982 readl(gp->regs + RXDMA_CFG), 983 readl(gp->regs + MAC_RXSTAT), 984 readl(gp->regs + MAC_RXCFG)); 985 986 gem_schedule_reset(gp); 987 } 988 989 static __inline__ int gem_intme(int entry) 990 { 991 /* Algorithm: IRQ every 1/2 of descriptors. */ 992 if (!(entry & ((TX_RING_SIZE>>1)-1))) 993 return 1; 994 995 return 0; 996 } 997 998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 999 struct net_device *dev) 1000 { 1001 struct gem *gp = netdev_priv(dev); 1002 int entry; 1003 u64 ctrl; 1004 1005 ctrl = 0; 1006 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1007 const u64 csum_start_off = skb_checksum_start_offset(skb); 1008 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1009 1010 ctrl = (TXDCTRL_CENAB | 1011 (csum_start_off << 15) | 1012 (csum_stuff_off << 21)); 1013 } 1014 1015 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1016 /* This is a hard error, log it. */ 1017 if (!netif_queue_stopped(dev)) { 1018 netif_stop_queue(dev); 1019 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1020 } 1021 return NETDEV_TX_BUSY; 1022 } 1023 1024 entry = gp->tx_new; 1025 gp->tx_skbs[entry] = skb; 1026 1027 if (skb_shinfo(skb)->nr_frags == 0) { 1028 struct gem_txd *txd = &gp->init_block->txd[entry]; 1029 dma_addr_t mapping; 1030 u32 len; 1031 1032 len = skb->len; 1033 mapping = pci_map_page(gp->pdev, 1034 virt_to_page(skb->data), 1035 offset_in_page(skb->data), 1036 len, PCI_DMA_TODEVICE); 1037 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1038 if (gem_intme(entry)) 1039 ctrl |= TXDCTRL_INTME; 1040 txd->buffer = cpu_to_le64(mapping); 1041 dma_wmb(); 1042 txd->control_word = cpu_to_le64(ctrl); 1043 entry = NEXT_TX(entry); 1044 } else { 1045 struct gem_txd *txd; 1046 u32 first_len; 1047 u64 intme; 1048 dma_addr_t first_mapping; 1049 int frag, first_entry = entry; 1050 1051 intme = 0; 1052 if (gem_intme(entry)) 1053 intme |= TXDCTRL_INTME; 1054 1055 /* We must give this initial chunk to the device last. 1056 * Otherwise we could race with the device. 1057 */ 1058 first_len = skb_headlen(skb); 1059 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1060 offset_in_page(skb->data), 1061 first_len, PCI_DMA_TODEVICE); 1062 entry = NEXT_TX(entry); 1063 1064 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1065 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1066 u32 len; 1067 dma_addr_t mapping; 1068 u64 this_ctrl; 1069 1070 len = skb_frag_size(this_frag); 1071 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1072 0, len, DMA_TO_DEVICE); 1073 this_ctrl = ctrl; 1074 if (frag == skb_shinfo(skb)->nr_frags - 1) 1075 this_ctrl |= TXDCTRL_EOF; 1076 1077 txd = &gp->init_block->txd[entry]; 1078 txd->buffer = cpu_to_le64(mapping); 1079 dma_wmb(); 1080 txd->control_word = cpu_to_le64(this_ctrl | len); 1081 1082 if (gem_intme(entry)) 1083 intme |= TXDCTRL_INTME; 1084 1085 entry = NEXT_TX(entry); 1086 } 1087 txd = &gp->init_block->txd[first_entry]; 1088 txd->buffer = cpu_to_le64(first_mapping); 1089 dma_wmb(); 1090 txd->control_word = 1091 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1092 } 1093 1094 gp->tx_new = entry; 1095 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1096 netif_stop_queue(dev); 1097 1098 /* netif_stop_queue() must be done before checking 1099 * checking tx index in TX_BUFFS_AVAIL() below, because 1100 * in gem_tx(), we update tx_old before checking for 1101 * netif_queue_stopped(). 1102 */ 1103 smp_mb(); 1104 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1105 netif_wake_queue(dev); 1106 } 1107 if (netif_msg_tx_queued(gp)) 1108 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1109 dev->name, entry, skb->len); 1110 mb(); 1111 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1112 1113 return NETDEV_TX_OK; 1114 } 1115 1116 static void gem_pcs_reset(struct gem *gp) 1117 { 1118 int limit; 1119 u32 val; 1120 1121 /* Reset PCS unit. */ 1122 val = readl(gp->regs + PCS_MIICTRL); 1123 val |= PCS_MIICTRL_RST; 1124 writel(val, gp->regs + PCS_MIICTRL); 1125 1126 limit = 32; 1127 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1128 udelay(100); 1129 if (limit-- <= 0) 1130 break; 1131 } 1132 if (limit < 0) 1133 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1134 } 1135 1136 static void gem_pcs_reinit_adv(struct gem *gp) 1137 { 1138 u32 val; 1139 1140 /* Make sure PCS is disabled while changing advertisement 1141 * configuration. 1142 */ 1143 val = readl(gp->regs + PCS_CFG); 1144 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1145 writel(val, gp->regs + PCS_CFG); 1146 1147 /* Advertise all capabilities except asymmetric 1148 * pause. 1149 */ 1150 val = readl(gp->regs + PCS_MIIADV); 1151 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1152 PCS_MIIADV_SP | PCS_MIIADV_AP); 1153 writel(val, gp->regs + PCS_MIIADV); 1154 1155 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1156 * and re-enable PCS. 1157 */ 1158 val = readl(gp->regs + PCS_MIICTRL); 1159 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1160 val &= ~PCS_MIICTRL_WB; 1161 writel(val, gp->regs + PCS_MIICTRL); 1162 1163 val = readl(gp->regs + PCS_CFG); 1164 val |= PCS_CFG_ENABLE; 1165 writel(val, gp->regs + PCS_CFG); 1166 1167 /* Make sure serialink loopback is off. The meaning 1168 * of this bit is logically inverted based upon whether 1169 * you are in Serialink or SERDES mode. 1170 */ 1171 val = readl(gp->regs + PCS_SCTRL); 1172 if (gp->phy_type == phy_serialink) 1173 val &= ~PCS_SCTRL_LOOP; 1174 else 1175 val |= PCS_SCTRL_LOOP; 1176 writel(val, gp->regs + PCS_SCTRL); 1177 } 1178 1179 #define STOP_TRIES 32 1180 1181 static void gem_reset(struct gem *gp) 1182 { 1183 int limit; 1184 u32 val; 1185 1186 /* Make sure we won't get any more interrupts */ 1187 writel(0xffffffff, gp->regs + GREG_IMASK); 1188 1189 /* Reset the chip */ 1190 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1191 gp->regs + GREG_SWRST); 1192 1193 limit = STOP_TRIES; 1194 1195 do { 1196 udelay(20); 1197 val = readl(gp->regs + GREG_SWRST); 1198 if (limit-- <= 0) 1199 break; 1200 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1201 1202 if (limit < 0) 1203 netdev_err(gp->dev, "SW reset is ghetto\n"); 1204 1205 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1206 gem_pcs_reinit_adv(gp); 1207 } 1208 1209 static void gem_start_dma(struct gem *gp) 1210 { 1211 u32 val; 1212 1213 /* We are ready to rock, turn everything on. */ 1214 val = readl(gp->regs + TXDMA_CFG); 1215 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1216 val = readl(gp->regs + RXDMA_CFG); 1217 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1218 val = readl(gp->regs + MAC_TXCFG); 1219 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1220 val = readl(gp->regs + MAC_RXCFG); 1221 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1222 1223 (void) readl(gp->regs + MAC_RXCFG); 1224 udelay(100); 1225 1226 gem_enable_ints(gp); 1227 1228 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1229 } 1230 1231 /* DMA won't be actually stopped before about 4ms tho ... 1232 */ 1233 static void gem_stop_dma(struct gem *gp) 1234 { 1235 u32 val; 1236 1237 /* We are done rocking, turn everything off. */ 1238 val = readl(gp->regs + TXDMA_CFG); 1239 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1240 val = readl(gp->regs + RXDMA_CFG); 1241 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1242 val = readl(gp->regs + MAC_TXCFG); 1243 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1244 val = readl(gp->regs + MAC_RXCFG); 1245 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1246 1247 (void) readl(gp->regs + MAC_RXCFG); 1248 1249 /* Need to wait a bit ... done by the caller */ 1250 } 1251 1252 1253 // XXX dbl check what that function should do when called on PCS PHY 1254 static void gem_begin_auto_negotiation(struct gem *gp, 1255 const struct ethtool_link_ksettings *ep) 1256 { 1257 u32 advertise, features; 1258 int autoneg; 1259 int speed; 1260 int duplex; 1261 u32 advertising; 1262 1263 if (ep) 1264 ethtool_convert_link_mode_to_legacy_u32( 1265 &advertising, ep->link_modes.advertising); 1266 1267 if (gp->phy_type != phy_mii_mdio0 && 1268 gp->phy_type != phy_mii_mdio1) 1269 goto non_mii; 1270 1271 /* Setup advertise */ 1272 if (found_mii_phy(gp)) 1273 features = gp->phy_mii.def->features; 1274 else 1275 features = 0; 1276 1277 advertise = features & ADVERTISE_MASK; 1278 if (gp->phy_mii.advertising != 0) 1279 advertise &= gp->phy_mii.advertising; 1280 1281 autoneg = gp->want_autoneg; 1282 speed = gp->phy_mii.speed; 1283 duplex = gp->phy_mii.duplex; 1284 1285 /* Setup link parameters */ 1286 if (!ep) 1287 goto start_aneg; 1288 if (ep->base.autoneg == AUTONEG_ENABLE) { 1289 advertise = advertising; 1290 autoneg = 1; 1291 } else { 1292 autoneg = 0; 1293 speed = ep->base.speed; 1294 duplex = ep->base.duplex; 1295 } 1296 1297 start_aneg: 1298 /* Sanitize settings based on PHY capabilities */ 1299 if ((features & SUPPORTED_Autoneg) == 0) 1300 autoneg = 0; 1301 if (speed == SPEED_1000 && 1302 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1303 speed = SPEED_100; 1304 if (speed == SPEED_100 && 1305 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1306 speed = SPEED_10; 1307 if (duplex == DUPLEX_FULL && 1308 !(features & (SUPPORTED_1000baseT_Full | 1309 SUPPORTED_100baseT_Full | 1310 SUPPORTED_10baseT_Full))) 1311 duplex = DUPLEX_HALF; 1312 if (speed == 0) 1313 speed = SPEED_10; 1314 1315 /* If we are asleep, we don't try to actually setup the PHY, we 1316 * just store the settings 1317 */ 1318 if (!netif_device_present(gp->dev)) { 1319 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1320 gp->phy_mii.speed = speed; 1321 gp->phy_mii.duplex = duplex; 1322 return; 1323 } 1324 1325 /* Configure PHY & start aneg */ 1326 gp->want_autoneg = autoneg; 1327 if (autoneg) { 1328 if (found_mii_phy(gp)) 1329 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1330 gp->lstate = link_aneg; 1331 } else { 1332 if (found_mii_phy(gp)) 1333 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1334 gp->lstate = link_force_ok; 1335 } 1336 1337 non_mii: 1338 gp->timer_ticks = 0; 1339 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1340 } 1341 1342 /* A link-up condition has occurred, initialize and enable the 1343 * rest of the chip. 1344 */ 1345 static int gem_set_link_modes(struct gem *gp) 1346 { 1347 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1348 int full_duplex, speed, pause; 1349 u32 val; 1350 1351 full_duplex = 0; 1352 speed = SPEED_10; 1353 pause = 0; 1354 1355 if (found_mii_phy(gp)) { 1356 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1357 return 1; 1358 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1359 speed = gp->phy_mii.speed; 1360 pause = gp->phy_mii.pause; 1361 } else if (gp->phy_type == phy_serialink || 1362 gp->phy_type == phy_serdes) { 1363 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1364 1365 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1366 full_duplex = 1; 1367 speed = SPEED_1000; 1368 } 1369 1370 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1371 speed, (full_duplex ? "full" : "half")); 1372 1373 1374 /* We take the tx queue lock to avoid collisions between 1375 * this code, the tx path and the NAPI-driven error path 1376 */ 1377 __netif_tx_lock(txq, smp_processor_id()); 1378 1379 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1380 if (full_duplex) { 1381 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1382 } else { 1383 /* MAC_TXCFG_NBO must be zero. */ 1384 } 1385 writel(val, gp->regs + MAC_TXCFG); 1386 1387 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1388 if (!full_duplex && 1389 (gp->phy_type == phy_mii_mdio0 || 1390 gp->phy_type == phy_mii_mdio1)) { 1391 val |= MAC_XIFCFG_DISE; 1392 } else if (full_duplex) { 1393 val |= MAC_XIFCFG_FLED; 1394 } 1395 1396 if (speed == SPEED_1000) 1397 val |= (MAC_XIFCFG_GMII); 1398 1399 writel(val, gp->regs + MAC_XIFCFG); 1400 1401 /* If gigabit and half-duplex, enable carrier extension 1402 * mode. Else, disable it. 1403 */ 1404 if (speed == SPEED_1000 && !full_duplex) { 1405 val = readl(gp->regs + MAC_TXCFG); 1406 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1407 1408 val = readl(gp->regs + MAC_RXCFG); 1409 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1410 } else { 1411 val = readl(gp->regs + MAC_TXCFG); 1412 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1413 1414 val = readl(gp->regs + MAC_RXCFG); 1415 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1416 } 1417 1418 if (gp->phy_type == phy_serialink || 1419 gp->phy_type == phy_serdes) { 1420 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1421 1422 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1423 pause = 1; 1424 } 1425 1426 if (!full_duplex) 1427 writel(512, gp->regs + MAC_STIME); 1428 else 1429 writel(64, gp->regs + MAC_STIME); 1430 val = readl(gp->regs + MAC_MCCFG); 1431 if (pause) 1432 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1433 else 1434 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1435 writel(val, gp->regs + MAC_MCCFG); 1436 1437 gem_start_dma(gp); 1438 1439 __netif_tx_unlock(txq); 1440 1441 if (netif_msg_link(gp)) { 1442 if (pause) { 1443 netdev_info(gp->dev, 1444 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1445 gp->rx_fifo_sz, 1446 gp->rx_pause_off, 1447 gp->rx_pause_on); 1448 } else { 1449 netdev_info(gp->dev, "Pause is disabled\n"); 1450 } 1451 } 1452 1453 return 0; 1454 } 1455 1456 static int gem_mdio_link_not_up(struct gem *gp) 1457 { 1458 switch (gp->lstate) { 1459 case link_force_ret: 1460 netif_info(gp, link, gp->dev, 1461 "Autoneg failed again, keeping forced mode\n"); 1462 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1463 gp->last_forced_speed, DUPLEX_HALF); 1464 gp->timer_ticks = 5; 1465 gp->lstate = link_force_ok; 1466 return 0; 1467 case link_aneg: 1468 /* We try forced modes after a failed aneg only on PHYs that don't 1469 * have "magic_aneg" bit set, which means they internally do the 1470 * while forced-mode thingy. On these, we just restart aneg 1471 */ 1472 if (gp->phy_mii.def->magic_aneg) 1473 return 1; 1474 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1475 /* Try forced modes. */ 1476 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1477 DUPLEX_HALF); 1478 gp->timer_ticks = 5; 1479 gp->lstate = link_force_try; 1480 return 0; 1481 case link_force_try: 1482 /* Downgrade from 100 to 10 Mbps if necessary. 1483 * If already at 10Mbps, warn user about the 1484 * situation every 10 ticks. 1485 */ 1486 if (gp->phy_mii.speed == SPEED_100) { 1487 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1488 DUPLEX_HALF); 1489 gp->timer_ticks = 5; 1490 netif_info(gp, link, gp->dev, 1491 "switching to forced 10bt\n"); 1492 return 0; 1493 } else 1494 return 1; 1495 default: 1496 return 0; 1497 } 1498 } 1499 1500 static void gem_link_timer(struct timer_list *t) 1501 { 1502 struct gem *gp = from_timer(gp, t, link_timer); 1503 struct net_device *dev = gp->dev; 1504 int restart_aneg = 0; 1505 1506 /* There's no point doing anything if we're going to be reset */ 1507 if (gp->reset_task_pending) 1508 return; 1509 1510 if (gp->phy_type == phy_serialink || 1511 gp->phy_type == phy_serdes) { 1512 u32 val = readl(gp->regs + PCS_MIISTAT); 1513 1514 if (!(val & PCS_MIISTAT_LS)) 1515 val = readl(gp->regs + PCS_MIISTAT); 1516 1517 if ((val & PCS_MIISTAT_LS) != 0) { 1518 if (gp->lstate == link_up) 1519 goto restart; 1520 1521 gp->lstate = link_up; 1522 netif_carrier_on(dev); 1523 (void)gem_set_link_modes(gp); 1524 } 1525 goto restart; 1526 } 1527 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1528 /* Ok, here we got a link. If we had it due to a forced 1529 * fallback, and we were configured for autoneg, we do 1530 * retry a short autoneg pass. If you know your hub is 1531 * broken, use ethtool ;) 1532 */ 1533 if (gp->lstate == link_force_try && gp->want_autoneg) { 1534 gp->lstate = link_force_ret; 1535 gp->last_forced_speed = gp->phy_mii.speed; 1536 gp->timer_ticks = 5; 1537 if (netif_msg_link(gp)) 1538 netdev_info(dev, 1539 "Got link after fallback, retrying autoneg once...\n"); 1540 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1541 } else if (gp->lstate != link_up) { 1542 gp->lstate = link_up; 1543 netif_carrier_on(dev); 1544 if (gem_set_link_modes(gp)) 1545 restart_aneg = 1; 1546 } 1547 } else { 1548 /* If the link was previously up, we restart the 1549 * whole process 1550 */ 1551 if (gp->lstate == link_up) { 1552 gp->lstate = link_down; 1553 netif_info(gp, link, dev, "Link down\n"); 1554 netif_carrier_off(dev); 1555 gem_schedule_reset(gp); 1556 /* The reset task will restart the timer */ 1557 return; 1558 } else if (++gp->timer_ticks > 10) { 1559 if (found_mii_phy(gp)) 1560 restart_aneg = gem_mdio_link_not_up(gp); 1561 else 1562 restart_aneg = 1; 1563 } 1564 } 1565 if (restart_aneg) { 1566 gem_begin_auto_negotiation(gp, NULL); 1567 return; 1568 } 1569 restart: 1570 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1571 } 1572 1573 static void gem_clean_rings(struct gem *gp) 1574 { 1575 struct gem_init_block *gb = gp->init_block; 1576 struct sk_buff *skb; 1577 int i; 1578 dma_addr_t dma_addr; 1579 1580 for (i = 0; i < RX_RING_SIZE; i++) { 1581 struct gem_rxd *rxd; 1582 1583 rxd = &gb->rxd[i]; 1584 if (gp->rx_skbs[i] != NULL) { 1585 skb = gp->rx_skbs[i]; 1586 dma_addr = le64_to_cpu(rxd->buffer); 1587 pci_unmap_page(gp->pdev, dma_addr, 1588 RX_BUF_ALLOC_SIZE(gp), 1589 PCI_DMA_FROMDEVICE); 1590 dev_kfree_skb_any(skb); 1591 gp->rx_skbs[i] = NULL; 1592 } 1593 rxd->status_word = 0; 1594 dma_wmb(); 1595 rxd->buffer = 0; 1596 } 1597 1598 for (i = 0; i < TX_RING_SIZE; i++) { 1599 if (gp->tx_skbs[i] != NULL) { 1600 struct gem_txd *txd; 1601 int frag; 1602 1603 skb = gp->tx_skbs[i]; 1604 gp->tx_skbs[i] = NULL; 1605 1606 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1607 int ent = i & (TX_RING_SIZE - 1); 1608 1609 txd = &gb->txd[ent]; 1610 dma_addr = le64_to_cpu(txd->buffer); 1611 pci_unmap_page(gp->pdev, dma_addr, 1612 le64_to_cpu(txd->control_word) & 1613 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1614 1615 if (frag != skb_shinfo(skb)->nr_frags) 1616 i++; 1617 } 1618 dev_kfree_skb_any(skb); 1619 } 1620 } 1621 } 1622 1623 static void gem_init_rings(struct gem *gp) 1624 { 1625 struct gem_init_block *gb = gp->init_block; 1626 struct net_device *dev = gp->dev; 1627 int i; 1628 dma_addr_t dma_addr; 1629 1630 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1631 1632 gem_clean_rings(gp); 1633 1634 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1635 (unsigned)VLAN_ETH_FRAME_LEN); 1636 1637 for (i = 0; i < RX_RING_SIZE; i++) { 1638 struct sk_buff *skb; 1639 struct gem_rxd *rxd = &gb->rxd[i]; 1640 1641 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1642 if (!skb) { 1643 rxd->buffer = 0; 1644 rxd->status_word = 0; 1645 continue; 1646 } 1647 1648 gp->rx_skbs[i] = skb; 1649 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1650 dma_addr = pci_map_page(gp->pdev, 1651 virt_to_page(skb->data), 1652 offset_in_page(skb->data), 1653 RX_BUF_ALLOC_SIZE(gp), 1654 PCI_DMA_FROMDEVICE); 1655 rxd->buffer = cpu_to_le64(dma_addr); 1656 dma_wmb(); 1657 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1658 skb_reserve(skb, RX_OFFSET); 1659 } 1660 1661 for (i = 0; i < TX_RING_SIZE; i++) { 1662 struct gem_txd *txd = &gb->txd[i]; 1663 1664 txd->control_word = 0; 1665 dma_wmb(); 1666 txd->buffer = 0; 1667 } 1668 wmb(); 1669 } 1670 1671 /* Init PHY interface and start link poll state machine */ 1672 static void gem_init_phy(struct gem *gp) 1673 { 1674 u32 mifcfg; 1675 1676 /* Revert MIF CFG setting done on stop_phy */ 1677 mifcfg = readl(gp->regs + MIF_CFG); 1678 mifcfg &= ~MIF_CFG_BBMODE; 1679 writel(mifcfg, gp->regs + MIF_CFG); 1680 1681 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1682 int i; 1683 1684 /* Those delay sucks, the HW seem to love them though, I'll 1685 * serisouly consider breaking some locks here to be able 1686 * to schedule instead 1687 */ 1688 for (i = 0; i < 3; i++) { 1689 #ifdef CONFIG_PPC_PMAC 1690 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1691 msleep(20); 1692 #endif 1693 /* Some PHYs used by apple have problem getting back to us, 1694 * we do an additional reset here 1695 */ 1696 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1697 msleep(20); 1698 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1699 break; 1700 if (i == 2) 1701 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1702 } 1703 } 1704 1705 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1706 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1707 u32 val; 1708 1709 /* Init datapath mode register. */ 1710 if (gp->phy_type == phy_mii_mdio0 || 1711 gp->phy_type == phy_mii_mdio1) { 1712 val = PCS_DMODE_MGM; 1713 } else if (gp->phy_type == phy_serialink) { 1714 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1715 } else { 1716 val = PCS_DMODE_ESM; 1717 } 1718 1719 writel(val, gp->regs + PCS_DMODE); 1720 } 1721 1722 if (gp->phy_type == phy_mii_mdio0 || 1723 gp->phy_type == phy_mii_mdio1) { 1724 /* Reset and detect MII PHY */ 1725 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1726 1727 /* Init PHY */ 1728 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1729 gp->phy_mii.def->ops->init(&gp->phy_mii); 1730 } else { 1731 gem_pcs_reset(gp); 1732 gem_pcs_reinit_adv(gp); 1733 } 1734 1735 /* Default aneg parameters */ 1736 gp->timer_ticks = 0; 1737 gp->lstate = link_down; 1738 netif_carrier_off(gp->dev); 1739 1740 /* Print things out */ 1741 if (gp->phy_type == phy_mii_mdio0 || 1742 gp->phy_type == phy_mii_mdio1) 1743 netdev_info(gp->dev, "Found %s PHY\n", 1744 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1745 1746 gem_begin_auto_negotiation(gp, NULL); 1747 } 1748 1749 static void gem_init_dma(struct gem *gp) 1750 { 1751 u64 desc_dma = (u64) gp->gblock_dvma; 1752 u32 val; 1753 1754 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1755 writel(val, gp->regs + TXDMA_CFG); 1756 1757 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1758 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1759 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1760 1761 writel(0, gp->regs + TXDMA_KICK); 1762 1763 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1764 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1765 writel(val, gp->regs + RXDMA_CFG); 1766 1767 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1768 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1769 1770 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1771 1772 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1773 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1774 writel(val, gp->regs + RXDMA_PTHRESH); 1775 1776 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1777 writel(((5 & RXDMA_BLANK_IPKTS) | 1778 ((8 << 12) & RXDMA_BLANK_ITIME)), 1779 gp->regs + RXDMA_BLANK); 1780 else 1781 writel(((5 & RXDMA_BLANK_IPKTS) | 1782 ((4 << 12) & RXDMA_BLANK_ITIME)), 1783 gp->regs + RXDMA_BLANK); 1784 } 1785 1786 static u32 gem_setup_multicast(struct gem *gp) 1787 { 1788 u32 rxcfg = 0; 1789 int i; 1790 1791 if ((gp->dev->flags & IFF_ALLMULTI) || 1792 (netdev_mc_count(gp->dev) > 256)) { 1793 for (i=0; i<16; i++) 1794 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1795 rxcfg |= MAC_RXCFG_HFE; 1796 } else if (gp->dev->flags & IFF_PROMISC) { 1797 rxcfg |= MAC_RXCFG_PROM; 1798 } else { 1799 u16 hash_table[16]; 1800 u32 crc; 1801 struct netdev_hw_addr *ha; 1802 int i; 1803 1804 memset(hash_table, 0, sizeof(hash_table)); 1805 netdev_for_each_mc_addr(ha, gp->dev) { 1806 crc = ether_crc_le(6, ha->addr); 1807 crc >>= 24; 1808 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1809 } 1810 for (i=0; i<16; i++) 1811 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1812 rxcfg |= MAC_RXCFG_HFE; 1813 } 1814 1815 return rxcfg; 1816 } 1817 1818 static void gem_init_mac(struct gem *gp) 1819 { 1820 unsigned char *e = &gp->dev->dev_addr[0]; 1821 1822 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1823 1824 writel(0x00, gp->regs + MAC_IPG0); 1825 writel(0x08, gp->regs + MAC_IPG1); 1826 writel(0x04, gp->regs + MAC_IPG2); 1827 writel(0x40, gp->regs + MAC_STIME); 1828 writel(0x40, gp->regs + MAC_MINFSZ); 1829 1830 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1831 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1832 1833 writel(0x07, gp->regs + MAC_PASIZE); 1834 writel(0x04, gp->regs + MAC_JAMSIZE); 1835 writel(0x10, gp->regs + MAC_ATTLIM); 1836 writel(0x8808, gp->regs + MAC_MCTYPE); 1837 1838 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1839 1840 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1841 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1842 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1843 1844 writel(0, gp->regs + MAC_ADDR3); 1845 writel(0, gp->regs + MAC_ADDR4); 1846 writel(0, gp->regs + MAC_ADDR5); 1847 1848 writel(0x0001, gp->regs + MAC_ADDR6); 1849 writel(0xc200, gp->regs + MAC_ADDR7); 1850 writel(0x0180, gp->regs + MAC_ADDR8); 1851 1852 writel(0, gp->regs + MAC_AFILT0); 1853 writel(0, gp->regs + MAC_AFILT1); 1854 writel(0, gp->regs + MAC_AFILT2); 1855 writel(0, gp->regs + MAC_AF21MSK); 1856 writel(0, gp->regs + MAC_AF0MSK); 1857 1858 gp->mac_rx_cfg = gem_setup_multicast(gp); 1859 #ifdef STRIP_FCS 1860 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1861 #endif 1862 writel(0, gp->regs + MAC_NCOLL); 1863 writel(0, gp->regs + MAC_FASUCC); 1864 writel(0, gp->regs + MAC_ECOLL); 1865 writel(0, gp->regs + MAC_LCOLL); 1866 writel(0, gp->regs + MAC_DTIMER); 1867 writel(0, gp->regs + MAC_PATMPS); 1868 writel(0, gp->regs + MAC_RFCTR); 1869 writel(0, gp->regs + MAC_LERR); 1870 writel(0, gp->regs + MAC_AERR); 1871 writel(0, gp->regs + MAC_FCSERR); 1872 writel(0, gp->regs + MAC_RXCVERR); 1873 1874 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1875 * them once a link is established. 1876 */ 1877 writel(0, gp->regs + MAC_TXCFG); 1878 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1879 writel(0, gp->regs + MAC_MCCFG); 1880 writel(0, gp->regs + MAC_XIFCFG); 1881 1882 /* Setup MAC interrupts. We want to get all of the interesting 1883 * counter expiration events, but we do not want to hear about 1884 * normal rx/tx as the DMA engine tells us that. 1885 */ 1886 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1887 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1888 1889 /* Don't enable even the PAUSE interrupts for now, we 1890 * make no use of those events other than to record them. 1891 */ 1892 writel(0xffffffff, gp->regs + MAC_MCMASK); 1893 1894 /* Don't enable GEM's WOL in normal operations 1895 */ 1896 if (gp->has_wol) 1897 writel(0, gp->regs + WOL_WAKECSR); 1898 } 1899 1900 static void gem_init_pause_thresholds(struct gem *gp) 1901 { 1902 u32 cfg; 1903 1904 /* Calculate pause thresholds. Setting the OFF threshold to the 1905 * full RX fifo size effectively disables PAUSE generation which 1906 * is what we do for 10/100 only GEMs which have FIFOs too small 1907 * to make real gains from PAUSE. 1908 */ 1909 if (gp->rx_fifo_sz <= (2 * 1024)) { 1910 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1911 } else { 1912 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1913 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1914 int on = off - max_frame; 1915 1916 gp->rx_pause_off = off; 1917 gp->rx_pause_on = on; 1918 } 1919 1920 1921 /* Configure the chip "burst" DMA mode & enable some 1922 * HW bug fixes on Apple version 1923 */ 1924 cfg = 0; 1925 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1926 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1927 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1928 cfg |= GREG_CFG_IBURST; 1929 #endif 1930 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1931 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1932 writel(cfg, gp->regs + GREG_CFG); 1933 1934 /* If Infinite Burst didn't stick, then use different 1935 * thresholds (and Apple bug fixes don't exist) 1936 */ 1937 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1938 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1939 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1940 writel(cfg, gp->regs + GREG_CFG); 1941 } 1942 } 1943 1944 static int gem_check_invariants(struct gem *gp) 1945 { 1946 struct pci_dev *pdev = gp->pdev; 1947 u32 mif_cfg; 1948 1949 /* On Apple's sungem, we can't rely on registers as the chip 1950 * was been powered down by the firmware. The PHY is looked 1951 * up later on. 1952 */ 1953 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1954 gp->phy_type = phy_mii_mdio0; 1955 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1956 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1957 gp->swrst_base = 0; 1958 1959 mif_cfg = readl(gp->regs + MIF_CFG); 1960 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1961 mif_cfg |= MIF_CFG_MDI0; 1962 writel(mif_cfg, gp->regs + MIF_CFG); 1963 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1964 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1965 1966 /* We hard-code the PHY address so we can properly bring it out of 1967 * reset later on, we can't really probe it at this point, though 1968 * that isn't an issue. 1969 */ 1970 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1971 gp->mii_phy_addr = 1; 1972 else 1973 gp->mii_phy_addr = 0; 1974 1975 return 0; 1976 } 1977 1978 mif_cfg = readl(gp->regs + MIF_CFG); 1979 1980 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1981 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1982 /* One of the MII PHYs _must_ be present 1983 * as this chip has no gigabit PHY. 1984 */ 1985 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1986 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1987 mif_cfg); 1988 return -1; 1989 } 1990 } 1991 1992 /* Determine initial PHY interface type guess. MDIO1 is the 1993 * external PHY and thus takes precedence over MDIO0. 1994 */ 1995 1996 if (mif_cfg & MIF_CFG_MDI1) { 1997 gp->phy_type = phy_mii_mdio1; 1998 mif_cfg |= MIF_CFG_PSELECT; 1999 writel(mif_cfg, gp->regs + MIF_CFG); 2000 } else if (mif_cfg & MIF_CFG_MDI0) { 2001 gp->phy_type = phy_mii_mdio0; 2002 mif_cfg &= ~MIF_CFG_PSELECT; 2003 writel(mif_cfg, gp->regs + MIF_CFG); 2004 } else { 2005 #ifdef CONFIG_SPARC 2006 const char *p; 2007 2008 p = of_get_property(gp->of_node, "shared-pins", NULL); 2009 if (p && !strcmp(p, "serdes")) 2010 gp->phy_type = phy_serdes; 2011 else 2012 #endif 2013 gp->phy_type = phy_serialink; 2014 } 2015 if (gp->phy_type == phy_mii_mdio1 || 2016 gp->phy_type == phy_mii_mdio0) { 2017 int i; 2018 2019 for (i = 0; i < 32; i++) { 2020 gp->mii_phy_addr = i; 2021 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2022 break; 2023 } 2024 if (i == 32) { 2025 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2026 pr_err("RIO MII phy will not respond\n"); 2027 return -1; 2028 } 2029 gp->phy_type = phy_serdes; 2030 } 2031 } 2032 2033 /* Fetch the FIFO configurations now too. */ 2034 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2035 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2036 2037 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2038 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2039 if (gp->tx_fifo_sz != (9 * 1024) || 2040 gp->rx_fifo_sz != (20 * 1024)) { 2041 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2042 gp->tx_fifo_sz, gp->rx_fifo_sz); 2043 return -1; 2044 } 2045 gp->swrst_base = 0; 2046 } else { 2047 if (gp->tx_fifo_sz != (2 * 1024) || 2048 gp->rx_fifo_sz != (2 * 1024)) { 2049 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2050 gp->tx_fifo_sz, gp->rx_fifo_sz); 2051 return -1; 2052 } 2053 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2054 } 2055 } 2056 2057 return 0; 2058 } 2059 2060 static void gem_reinit_chip(struct gem *gp) 2061 { 2062 /* Reset the chip */ 2063 gem_reset(gp); 2064 2065 /* Make sure ints are disabled */ 2066 gem_disable_ints(gp); 2067 2068 /* Allocate & setup ring buffers */ 2069 gem_init_rings(gp); 2070 2071 /* Configure pause thresholds */ 2072 gem_init_pause_thresholds(gp); 2073 2074 /* Init DMA & MAC engines */ 2075 gem_init_dma(gp); 2076 gem_init_mac(gp); 2077 } 2078 2079 2080 static void gem_stop_phy(struct gem *gp, int wol) 2081 { 2082 u32 mifcfg; 2083 2084 /* Let the chip settle down a bit, it seems that helps 2085 * for sleep mode on some models 2086 */ 2087 msleep(10); 2088 2089 /* Make sure we aren't polling PHY status change. We 2090 * don't currently use that feature though 2091 */ 2092 mifcfg = readl(gp->regs + MIF_CFG); 2093 mifcfg &= ~MIF_CFG_POLL; 2094 writel(mifcfg, gp->regs + MIF_CFG); 2095 2096 if (wol && gp->has_wol) { 2097 unsigned char *e = &gp->dev->dev_addr[0]; 2098 u32 csr; 2099 2100 /* Setup wake-on-lan for MAGIC packet */ 2101 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2102 gp->regs + MAC_RXCFG); 2103 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2104 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2105 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2106 2107 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2108 csr = WOL_WAKECSR_ENABLE; 2109 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2110 csr |= WOL_WAKECSR_MII; 2111 writel(csr, gp->regs + WOL_WAKECSR); 2112 } else { 2113 writel(0, gp->regs + MAC_RXCFG); 2114 (void)readl(gp->regs + MAC_RXCFG); 2115 /* Machine sleep will die in strange ways if we 2116 * dont wait a bit here, looks like the chip takes 2117 * some time to really shut down 2118 */ 2119 msleep(10); 2120 } 2121 2122 writel(0, gp->regs + MAC_TXCFG); 2123 writel(0, gp->regs + MAC_XIFCFG); 2124 writel(0, gp->regs + TXDMA_CFG); 2125 writel(0, gp->regs + RXDMA_CFG); 2126 2127 if (!wol) { 2128 gem_reset(gp); 2129 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2130 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2131 2132 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2133 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2134 2135 /* According to Apple, we must set the MDIO pins to this begnign 2136 * state or we may 1) eat more current, 2) damage some PHYs 2137 */ 2138 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2139 writel(0, gp->regs + MIF_BBCLK); 2140 writel(0, gp->regs + MIF_BBDATA); 2141 writel(0, gp->regs + MIF_BBOENAB); 2142 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2143 (void) readl(gp->regs + MAC_XIFCFG); 2144 } 2145 } 2146 2147 static int gem_do_start(struct net_device *dev) 2148 { 2149 struct gem *gp = netdev_priv(dev); 2150 int rc; 2151 2152 /* Enable the cell */ 2153 gem_get_cell(gp); 2154 2155 /* Make sure PCI access and bus master are enabled */ 2156 rc = pci_enable_device(gp->pdev); 2157 if (rc) { 2158 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2159 2160 /* Put cell and forget it for now, it will be considered as 2161 * still asleep, a new sleep cycle may bring it back 2162 */ 2163 gem_put_cell(gp); 2164 return -ENXIO; 2165 } 2166 pci_set_master(gp->pdev); 2167 2168 /* Init & setup chip hardware */ 2169 gem_reinit_chip(gp); 2170 2171 /* An interrupt might come in handy */ 2172 rc = request_irq(gp->pdev->irq, gem_interrupt, 2173 IRQF_SHARED, dev->name, (void *)dev); 2174 if (rc) { 2175 netdev_err(dev, "failed to request irq !\n"); 2176 2177 gem_reset(gp); 2178 gem_clean_rings(gp); 2179 gem_put_cell(gp); 2180 return rc; 2181 } 2182 2183 /* Mark us as attached again if we come from resume(), this has 2184 * no effect if we weren't detached and needs to be done now. 2185 */ 2186 netif_device_attach(dev); 2187 2188 /* Restart NAPI & queues */ 2189 gem_netif_start(gp); 2190 2191 /* Detect & init PHY, start autoneg etc... this will 2192 * eventually result in starting DMA operations when 2193 * the link is up 2194 */ 2195 gem_init_phy(gp); 2196 2197 return 0; 2198 } 2199 2200 static void gem_do_stop(struct net_device *dev, int wol) 2201 { 2202 struct gem *gp = netdev_priv(dev); 2203 2204 /* Stop NAPI and stop tx queue */ 2205 gem_netif_stop(gp); 2206 2207 /* Make sure ints are disabled. We don't care about 2208 * synchronizing as NAPI is disabled, thus a stray 2209 * interrupt will do nothing bad (our irq handler 2210 * just schedules NAPI) 2211 */ 2212 gem_disable_ints(gp); 2213 2214 /* Stop the link timer */ 2215 del_timer_sync(&gp->link_timer); 2216 2217 /* We cannot cancel the reset task while holding the 2218 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2219 * if we did. This is not an issue however as the reset 2220 * task is synchronized vs. us (rtnl_lock) and will do 2221 * nothing if the device is down or suspended. We do 2222 * still clear reset_task_pending to avoid a spurrious 2223 * reset later on in case we do resume before it gets 2224 * scheduled. 2225 */ 2226 gp->reset_task_pending = 0; 2227 2228 /* If we are going to sleep with WOL */ 2229 gem_stop_dma(gp); 2230 msleep(10); 2231 if (!wol) 2232 gem_reset(gp); 2233 msleep(10); 2234 2235 /* Get rid of rings */ 2236 gem_clean_rings(gp); 2237 2238 /* No irq needed anymore */ 2239 free_irq(gp->pdev->irq, (void *) dev); 2240 2241 /* Shut the PHY down eventually and setup WOL */ 2242 gem_stop_phy(gp, wol); 2243 2244 /* Make sure bus master is disabled */ 2245 pci_disable_device(gp->pdev); 2246 2247 /* Cell not needed neither if no WOL */ 2248 if (!wol) 2249 gem_put_cell(gp); 2250 } 2251 2252 static void gem_reset_task(struct work_struct *work) 2253 { 2254 struct gem *gp = container_of(work, struct gem, reset_task); 2255 2256 /* Lock out the network stack (essentially shield ourselves 2257 * against a racing open, close, control call, or suspend 2258 */ 2259 rtnl_lock(); 2260 2261 /* Skip the reset task if suspended or closed, or if it's 2262 * been cancelled by gem_do_stop (see comment there) 2263 */ 2264 if (!netif_device_present(gp->dev) || 2265 !netif_running(gp->dev) || 2266 !gp->reset_task_pending) { 2267 rtnl_unlock(); 2268 return; 2269 } 2270 2271 /* Stop the link timer */ 2272 del_timer_sync(&gp->link_timer); 2273 2274 /* Stop NAPI and tx */ 2275 gem_netif_stop(gp); 2276 2277 /* Reset the chip & rings */ 2278 gem_reinit_chip(gp); 2279 if (gp->lstate == link_up) 2280 gem_set_link_modes(gp); 2281 2282 /* Restart NAPI and Tx */ 2283 gem_netif_start(gp); 2284 2285 /* We are back ! */ 2286 gp->reset_task_pending = 0; 2287 2288 /* If the link is not up, restart autoneg, else restart the 2289 * polling timer 2290 */ 2291 if (gp->lstate != link_up) 2292 gem_begin_auto_negotiation(gp, NULL); 2293 else 2294 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2295 2296 rtnl_unlock(); 2297 } 2298 2299 static int gem_open(struct net_device *dev) 2300 { 2301 /* We allow open while suspended, we just do nothing, 2302 * the chip will be initialized in resume() 2303 */ 2304 if (netif_device_present(dev)) 2305 return gem_do_start(dev); 2306 return 0; 2307 } 2308 2309 static int gem_close(struct net_device *dev) 2310 { 2311 if (netif_device_present(dev)) 2312 gem_do_stop(dev, 0); 2313 2314 return 0; 2315 } 2316 2317 #ifdef CONFIG_PM 2318 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2319 { 2320 struct net_device *dev = pci_get_drvdata(pdev); 2321 struct gem *gp = netdev_priv(dev); 2322 2323 /* Lock the network stack first to avoid racing with open/close, 2324 * reset task and setting calls 2325 */ 2326 rtnl_lock(); 2327 2328 /* Not running, mark ourselves non-present, no need for 2329 * a lock here 2330 */ 2331 if (!netif_running(dev)) { 2332 netif_device_detach(dev); 2333 rtnl_unlock(); 2334 return 0; 2335 } 2336 netdev_info(dev, "suspending, WakeOnLan %s\n", 2337 (gp->wake_on_lan && netif_running(dev)) ? 2338 "enabled" : "disabled"); 2339 2340 /* Tell the network stack we're gone. gem_do_stop() below will 2341 * synchronize with TX, stop NAPI etc... 2342 */ 2343 netif_device_detach(dev); 2344 2345 /* Switch off chip, remember WOL setting */ 2346 gp->asleep_wol = !!gp->wake_on_lan; 2347 gem_do_stop(dev, gp->asleep_wol); 2348 2349 /* Unlock the network stack */ 2350 rtnl_unlock(); 2351 2352 return 0; 2353 } 2354 2355 static int gem_resume(struct pci_dev *pdev) 2356 { 2357 struct net_device *dev = pci_get_drvdata(pdev); 2358 struct gem *gp = netdev_priv(dev); 2359 2360 /* See locking comment in gem_suspend */ 2361 rtnl_lock(); 2362 2363 /* Not running, mark ourselves present, no need for 2364 * a lock here 2365 */ 2366 if (!netif_running(dev)) { 2367 netif_device_attach(dev); 2368 rtnl_unlock(); 2369 return 0; 2370 } 2371 2372 /* Restart chip. If that fails there isn't much we can do, we 2373 * leave things stopped. 2374 */ 2375 gem_do_start(dev); 2376 2377 /* If we had WOL enabled, the cell clock was never turned off during 2378 * sleep, so we end up beeing unbalanced. Fix that here 2379 */ 2380 if (gp->asleep_wol) 2381 gem_put_cell(gp); 2382 2383 /* Unlock the network stack */ 2384 rtnl_unlock(); 2385 2386 return 0; 2387 } 2388 #endif /* CONFIG_PM */ 2389 2390 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2391 { 2392 struct gem *gp = netdev_priv(dev); 2393 2394 /* I have seen this being called while the PM was in progress, 2395 * so we shield against this. Let's also not poke at registers 2396 * while the reset task is going on. 2397 * 2398 * TODO: Move stats collection elsewhere (link timer ?) and 2399 * make this a nop to avoid all those synchro issues 2400 */ 2401 if (!netif_device_present(dev) || !netif_running(dev)) 2402 goto bail; 2403 2404 /* Better safe than sorry... */ 2405 if (WARN_ON(!gp->cell_enabled)) 2406 goto bail; 2407 2408 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2409 writel(0, gp->regs + MAC_FCSERR); 2410 2411 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2412 writel(0, gp->regs + MAC_AERR); 2413 2414 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2415 writel(0, gp->regs + MAC_LERR); 2416 2417 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2418 dev->stats.collisions += 2419 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2420 writel(0, gp->regs + MAC_ECOLL); 2421 writel(0, gp->regs + MAC_LCOLL); 2422 bail: 2423 return &dev->stats; 2424 } 2425 2426 static int gem_set_mac_address(struct net_device *dev, void *addr) 2427 { 2428 struct sockaddr *macaddr = (struct sockaddr *) addr; 2429 struct gem *gp = netdev_priv(dev); 2430 unsigned char *e = &dev->dev_addr[0]; 2431 2432 if (!is_valid_ether_addr(macaddr->sa_data)) 2433 return -EADDRNOTAVAIL; 2434 2435 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2436 2437 /* We'll just catch it later when the device is up'd or resumed */ 2438 if (!netif_running(dev) || !netif_device_present(dev)) 2439 return 0; 2440 2441 /* Better safe than sorry... */ 2442 if (WARN_ON(!gp->cell_enabled)) 2443 return 0; 2444 2445 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2446 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2447 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2448 2449 return 0; 2450 } 2451 2452 static void gem_set_multicast(struct net_device *dev) 2453 { 2454 struct gem *gp = netdev_priv(dev); 2455 u32 rxcfg, rxcfg_new; 2456 int limit = 10000; 2457 2458 if (!netif_running(dev) || !netif_device_present(dev)) 2459 return; 2460 2461 /* Better safe than sorry... */ 2462 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2463 return; 2464 2465 rxcfg = readl(gp->regs + MAC_RXCFG); 2466 rxcfg_new = gem_setup_multicast(gp); 2467 #ifdef STRIP_FCS 2468 rxcfg_new |= MAC_RXCFG_SFCS; 2469 #endif 2470 gp->mac_rx_cfg = rxcfg_new; 2471 2472 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2473 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2474 if (!limit--) 2475 break; 2476 udelay(10); 2477 } 2478 2479 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2480 rxcfg |= rxcfg_new; 2481 2482 writel(rxcfg, gp->regs + MAC_RXCFG); 2483 } 2484 2485 /* Jumbo-grams don't seem to work :-( */ 2486 #define GEM_MIN_MTU ETH_MIN_MTU 2487 #if 1 2488 #define GEM_MAX_MTU ETH_DATA_LEN 2489 #else 2490 #define GEM_MAX_MTU 9000 2491 #endif 2492 2493 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2494 { 2495 struct gem *gp = netdev_priv(dev); 2496 2497 dev->mtu = new_mtu; 2498 2499 /* We'll just catch it later when the device is up'd or resumed */ 2500 if (!netif_running(dev) || !netif_device_present(dev)) 2501 return 0; 2502 2503 /* Better safe than sorry... */ 2504 if (WARN_ON(!gp->cell_enabled)) 2505 return 0; 2506 2507 gem_netif_stop(gp); 2508 gem_reinit_chip(gp); 2509 if (gp->lstate == link_up) 2510 gem_set_link_modes(gp); 2511 gem_netif_start(gp); 2512 2513 return 0; 2514 } 2515 2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2517 { 2518 struct gem *gp = netdev_priv(dev); 2519 2520 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2521 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2522 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2523 } 2524 2525 static int gem_get_link_ksettings(struct net_device *dev, 2526 struct ethtool_link_ksettings *cmd) 2527 { 2528 struct gem *gp = netdev_priv(dev); 2529 u32 supported, advertising; 2530 2531 if (gp->phy_type == phy_mii_mdio0 || 2532 gp->phy_type == phy_mii_mdio1) { 2533 if (gp->phy_mii.def) 2534 supported = gp->phy_mii.def->features; 2535 else 2536 supported = (SUPPORTED_10baseT_Half | 2537 SUPPORTED_10baseT_Full); 2538 2539 /* XXX hardcoded stuff for now */ 2540 cmd->base.port = PORT_MII; 2541 cmd->base.phy_address = 0; /* XXX fixed PHYAD */ 2542 2543 /* Return current PHY settings */ 2544 cmd->base.autoneg = gp->want_autoneg; 2545 cmd->base.speed = gp->phy_mii.speed; 2546 cmd->base.duplex = gp->phy_mii.duplex; 2547 advertising = gp->phy_mii.advertising; 2548 2549 /* If we started with a forced mode, we don't have a default 2550 * advertise set, we need to return something sensible so 2551 * userland can re-enable autoneg properly. 2552 */ 2553 if (advertising == 0) 2554 advertising = supported; 2555 } else { // XXX PCS ? 2556 supported = 2557 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2558 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2559 SUPPORTED_Autoneg); 2560 advertising = supported; 2561 cmd->base.speed = 0; 2562 cmd->base.duplex = 0; 2563 cmd->base.port = 0; 2564 cmd->base.phy_address = 0; 2565 cmd->base.autoneg = 0; 2566 2567 /* serdes means usually a Fibre connector, with most fixed */ 2568 if (gp->phy_type == phy_serdes) { 2569 cmd->base.port = PORT_FIBRE; 2570 supported = (SUPPORTED_1000baseT_Half | 2571 SUPPORTED_1000baseT_Full | 2572 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2573 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2574 advertising = supported; 2575 if (gp->lstate == link_up) 2576 cmd->base.speed = SPEED_1000; 2577 cmd->base.duplex = DUPLEX_FULL; 2578 cmd->base.autoneg = 1; 2579 } 2580 } 2581 2582 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2583 supported); 2584 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 2585 advertising); 2586 2587 return 0; 2588 } 2589 2590 static int gem_set_link_ksettings(struct net_device *dev, 2591 const struct ethtool_link_ksettings *cmd) 2592 { 2593 struct gem *gp = netdev_priv(dev); 2594 u32 speed = cmd->base.speed; 2595 u32 advertising; 2596 2597 ethtool_convert_link_mode_to_legacy_u32(&advertising, 2598 cmd->link_modes.advertising); 2599 2600 /* Verify the settings we care about. */ 2601 if (cmd->base.autoneg != AUTONEG_ENABLE && 2602 cmd->base.autoneg != AUTONEG_DISABLE) 2603 return -EINVAL; 2604 2605 if (cmd->base.autoneg == AUTONEG_ENABLE && 2606 advertising == 0) 2607 return -EINVAL; 2608 2609 if (cmd->base.autoneg == AUTONEG_DISABLE && 2610 ((speed != SPEED_1000 && 2611 speed != SPEED_100 && 2612 speed != SPEED_10) || 2613 (cmd->base.duplex != DUPLEX_HALF && 2614 cmd->base.duplex != DUPLEX_FULL))) 2615 return -EINVAL; 2616 2617 /* Apply settings and restart link process. */ 2618 if (netif_device_present(gp->dev)) { 2619 del_timer_sync(&gp->link_timer); 2620 gem_begin_auto_negotiation(gp, cmd); 2621 } 2622 2623 return 0; 2624 } 2625 2626 static int gem_nway_reset(struct net_device *dev) 2627 { 2628 struct gem *gp = netdev_priv(dev); 2629 2630 if (!gp->want_autoneg) 2631 return -EINVAL; 2632 2633 /* Restart link process */ 2634 if (netif_device_present(gp->dev)) { 2635 del_timer_sync(&gp->link_timer); 2636 gem_begin_auto_negotiation(gp, NULL); 2637 } 2638 2639 return 0; 2640 } 2641 2642 static u32 gem_get_msglevel(struct net_device *dev) 2643 { 2644 struct gem *gp = netdev_priv(dev); 2645 return gp->msg_enable; 2646 } 2647 2648 static void gem_set_msglevel(struct net_device *dev, u32 value) 2649 { 2650 struct gem *gp = netdev_priv(dev); 2651 gp->msg_enable = value; 2652 } 2653 2654 2655 /* Add more when I understand how to program the chip */ 2656 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2657 2658 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2659 2660 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2661 { 2662 struct gem *gp = netdev_priv(dev); 2663 2664 /* Add more when I understand how to program the chip */ 2665 if (gp->has_wol) { 2666 wol->supported = WOL_SUPPORTED_MASK; 2667 wol->wolopts = gp->wake_on_lan; 2668 } else { 2669 wol->supported = 0; 2670 wol->wolopts = 0; 2671 } 2672 } 2673 2674 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2675 { 2676 struct gem *gp = netdev_priv(dev); 2677 2678 if (!gp->has_wol) 2679 return -EOPNOTSUPP; 2680 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2681 return 0; 2682 } 2683 2684 static const struct ethtool_ops gem_ethtool_ops = { 2685 .get_drvinfo = gem_get_drvinfo, 2686 .get_link = ethtool_op_get_link, 2687 .nway_reset = gem_nway_reset, 2688 .get_msglevel = gem_get_msglevel, 2689 .set_msglevel = gem_set_msglevel, 2690 .get_wol = gem_get_wol, 2691 .set_wol = gem_set_wol, 2692 .get_link_ksettings = gem_get_link_ksettings, 2693 .set_link_ksettings = gem_set_link_ksettings, 2694 }; 2695 2696 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2697 { 2698 struct gem *gp = netdev_priv(dev); 2699 struct mii_ioctl_data *data = if_mii(ifr); 2700 int rc = -EOPNOTSUPP; 2701 2702 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2703 * netif_device_present() is true and holds rtnl_lock for us 2704 * so we have nothing to worry about 2705 */ 2706 2707 switch (cmd) { 2708 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2709 data->phy_id = gp->mii_phy_addr; 2710 /* Fallthrough... */ 2711 2712 case SIOCGMIIREG: /* Read MII PHY register. */ 2713 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2714 data->reg_num & 0x1f); 2715 rc = 0; 2716 break; 2717 2718 case SIOCSMIIREG: /* Write MII PHY register. */ 2719 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2720 data->val_in); 2721 rc = 0; 2722 break; 2723 } 2724 return rc; 2725 } 2726 2727 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2728 /* Fetch MAC address from vital product data of PCI ROM. */ 2729 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2730 { 2731 int this_offset; 2732 2733 for (this_offset = 0x20; this_offset < len; this_offset++) { 2734 void __iomem *p = rom_base + this_offset; 2735 int i; 2736 2737 if (readb(p + 0) != 0x90 || 2738 readb(p + 1) != 0x00 || 2739 readb(p + 2) != 0x09 || 2740 readb(p + 3) != 0x4e || 2741 readb(p + 4) != 0x41 || 2742 readb(p + 5) != 0x06) 2743 continue; 2744 2745 this_offset += 6; 2746 p += 6; 2747 2748 for (i = 0; i < 6; i++) 2749 dev_addr[i] = readb(p + i); 2750 return 1; 2751 } 2752 return 0; 2753 } 2754 2755 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2756 { 2757 size_t size; 2758 void __iomem *p = pci_map_rom(pdev, &size); 2759 2760 if (p) { 2761 int found; 2762 2763 found = readb(p) == 0x55 && 2764 readb(p + 1) == 0xaa && 2765 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2766 pci_unmap_rom(pdev, p); 2767 if (found) 2768 return; 2769 } 2770 2771 /* Sun MAC prefix then 3 random bytes. */ 2772 dev_addr[0] = 0x08; 2773 dev_addr[1] = 0x00; 2774 dev_addr[2] = 0x20; 2775 get_random_bytes(dev_addr + 3, 3); 2776 } 2777 #endif /* not Sparc and not PPC */ 2778 2779 static int gem_get_device_address(struct gem *gp) 2780 { 2781 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2782 struct net_device *dev = gp->dev; 2783 const unsigned char *addr; 2784 2785 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2786 if (addr == NULL) { 2787 #ifdef CONFIG_SPARC 2788 addr = idprom->id_ethaddr; 2789 #else 2790 printk("\n"); 2791 pr_err("%s: can't get mac-address\n", dev->name); 2792 return -1; 2793 #endif 2794 } 2795 memcpy(dev->dev_addr, addr, ETH_ALEN); 2796 #else 2797 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2798 #endif 2799 return 0; 2800 } 2801 2802 static void gem_remove_one(struct pci_dev *pdev) 2803 { 2804 struct net_device *dev = pci_get_drvdata(pdev); 2805 2806 if (dev) { 2807 struct gem *gp = netdev_priv(dev); 2808 2809 unregister_netdev(dev); 2810 2811 /* Ensure reset task is truly gone */ 2812 cancel_work_sync(&gp->reset_task); 2813 2814 /* Free resources */ 2815 pci_free_consistent(pdev, 2816 sizeof(struct gem_init_block), 2817 gp->init_block, 2818 gp->gblock_dvma); 2819 iounmap(gp->regs); 2820 pci_release_regions(pdev); 2821 free_netdev(dev); 2822 } 2823 } 2824 2825 static const struct net_device_ops gem_netdev_ops = { 2826 .ndo_open = gem_open, 2827 .ndo_stop = gem_close, 2828 .ndo_start_xmit = gem_start_xmit, 2829 .ndo_get_stats = gem_get_stats, 2830 .ndo_set_rx_mode = gem_set_multicast, 2831 .ndo_do_ioctl = gem_ioctl, 2832 .ndo_tx_timeout = gem_tx_timeout, 2833 .ndo_change_mtu = gem_change_mtu, 2834 .ndo_validate_addr = eth_validate_addr, 2835 .ndo_set_mac_address = gem_set_mac_address, 2836 #ifdef CONFIG_NET_POLL_CONTROLLER 2837 .ndo_poll_controller = gem_poll_controller, 2838 #endif 2839 }; 2840 2841 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2842 { 2843 unsigned long gemreg_base, gemreg_len; 2844 struct net_device *dev; 2845 struct gem *gp; 2846 int err, pci_using_dac; 2847 2848 printk_once(KERN_INFO "%s", version); 2849 2850 /* Apple gmac note: during probe, the chip is powered up by 2851 * the arch code to allow the code below to work (and to let 2852 * the chip be probed on the config space. It won't stay powered 2853 * up until the interface is brought up however, so we can't rely 2854 * on register configuration done at this point. 2855 */ 2856 err = pci_enable_device(pdev); 2857 if (err) { 2858 pr_err("Cannot enable MMIO operation, aborting\n"); 2859 return err; 2860 } 2861 pci_set_master(pdev); 2862 2863 /* Configure DMA attributes. */ 2864 2865 /* All of the GEM documentation states that 64-bit DMA addressing 2866 * is fully supported and should work just fine. However the 2867 * front end for RIO based GEMs is different and only supports 2868 * 32-bit addressing. 2869 * 2870 * For now we assume the various PPC GEMs are 32-bit only as well. 2871 */ 2872 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2873 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2874 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2875 pci_using_dac = 1; 2876 } else { 2877 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2878 if (err) { 2879 pr_err("No usable DMA configuration, aborting\n"); 2880 goto err_disable_device; 2881 } 2882 pci_using_dac = 0; 2883 } 2884 2885 gemreg_base = pci_resource_start(pdev, 0); 2886 gemreg_len = pci_resource_len(pdev, 0); 2887 2888 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2889 pr_err("Cannot find proper PCI device base address, aborting\n"); 2890 err = -ENODEV; 2891 goto err_disable_device; 2892 } 2893 2894 dev = alloc_etherdev(sizeof(*gp)); 2895 if (!dev) { 2896 err = -ENOMEM; 2897 goto err_disable_device; 2898 } 2899 SET_NETDEV_DEV(dev, &pdev->dev); 2900 2901 gp = netdev_priv(dev); 2902 2903 err = pci_request_regions(pdev, DRV_NAME); 2904 if (err) { 2905 pr_err("Cannot obtain PCI resources, aborting\n"); 2906 goto err_out_free_netdev; 2907 } 2908 2909 gp->pdev = pdev; 2910 gp->dev = dev; 2911 2912 gp->msg_enable = DEFAULT_MSG; 2913 2914 timer_setup(&gp->link_timer, gem_link_timer, 0); 2915 2916 INIT_WORK(&gp->reset_task, gem_reset_task); 2917 2918 gp->lstate = link_down; 2919 gp->timer_ticks = 0; 2920 netif_carrier_off(dev); 2921 2922 gp->regs = ioremap(gemreg_base, gemreg_len); 2923 if (!gp->regs) { 2924 pr_err("Cannot map device registers, aborting\n"); 2925 err = -EIO; 2926 goto err_out_free_res; 2927 } 2928 2929 /* On Apple, we want a reference to the Open Firmware device-tree 2930 * node. We use it for clock control. 2931 */ 2932 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2933 gp->of_node = pci_device_to_OF_node(pdev); 2934 #endif 2935 2936 /* Only Apple version supports WOL afaik */ 2937 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2938 gp->has_wol = 1; 2939 2940 /* Make sure cell is enabled */ 2941 gem_get_cell(gp); 2942 2943 /* Make sure everything is stopped and in init state */ 2944 gem_reset(gp); 2945 2946 /* Fill up the mii_phy structure (even if we won't use it) */ 2947 gp->phy_mii.dev = dev; 2948 gp->phy_mii.mdio_read = _sungem_phy_read; 2949 gp->phy_mii.mdio_write = _sungem_phy_write; 2950 #ifdef CONFIG_PPC_PMAC 2951 gp->phy_mii.platform_data = gp->of_node; 2952 #endif 2953 /* By default, we start with autoneg */ 2954 gp->want_autoneg = 1; 2955 2956 /* Check fifo sizes, PHY type, etc... */ 2957 if (gem_check_invariants(gp)) { 2958 err = -ENODEV; 2959 goto err_out_iounmap; 2960 } 2961 2962 /* It is guaranteed that the returned buffer will be at least 2963 * PAGE_SIZE aligned. 2964 */ 2965 gp->init_block = (struct gem_init_block *) 2966 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2967 &gp->gblock_dvma); 2968 if (!gp->init_block) { 2969 pr_err("Cannot allocate init block, aborting\n"); 2970 err = -ENOMEM; 2971 goto err_out_iounmap; 2972 } 2973 2974 err = gem_get_device_address(gp); 2975 if (err) 2976 goto err_out_free_consistent; 2977 2978 dev->netdev_ops = &gem_netdev_ops; 2979 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2980 dev->ethtool_ops = &gem_ethtool_ops; 2981 dev->watchdog_timeo = 5 * HZ; 2982 dev->dma = 0; 2983 2984 /* Set that now, in case PM kicks in now */ 2985 pci_set_drvdata(pdev, dev); 2986 2987 /* We can do scatter/gather and HW checksum */ 2988 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2989 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2990 if (pci_using_dac) 2991 dev->features |= NETIF_F_HIGHDMA; 2992 2993 /* MTU range: 68 - 1500 (Jumbo mode is broken) */ 2994 dev->min_mtu = GEM_MIN_MTU; 2995 dev->max_mtu = GEM_MAX_MTU; 2996 2997 /* Register with kernel */ 2998 if (register_netdev(dev)) { 2999 pr_err("Cannot register net device, aborting\n"); 3000 err = -ENOMEM; 3001 goto err_out_free_consistent; 3002 } 3003 3004 /* Undo the get_cell with appropriate locking (we could use 3005 * ndo_init/uninit but that would be even more clumsy imho) 3006 */ 3007 rtnl_lock(); 3008 gem_put_cell(gp); 3009 rtnl_unlock(); 3010 3011 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3012 dev->dev_addr); 3013 return 0; 3014 3015 err_out_free_consistent: 3016 gem_remove_one(pdev); 3017 err_out_iounmap: 3018 gem_put_cell(gp); 3019 iounmap(gp->regs); 3020 3021 err_out_free_res: 3022 pci_release_regions(pdev); 3023 3024 err_out_free_netdev: 3025 free_netdev(dev); 3026 err_disable_device: 3027 pci_disable_device(pdev); 3028 return err; 3029 3030 } 3031 3032 3033 static struct pci_driver gem_driver = { 3034 .name = GEM_MODULE_NAME, 3035 .id_table = gem_pci_tbl, 3036 .probe = gem_init_one, 3037 .remove = gem_remove_one, 3038 #ifdef CONFIG_PM 3039 .suspend = gem_suspend, 3040 .resume = gem_resume, 3041 #endif /* CONFIG_PM */ 3042 }; 3043 3044 module_pci_driver(gem_driver); 3045