1 // SPDX-License-Identifier: GPL-2.0 2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 3 * sungem.c: Sun GEM ethernet driver. 4 * 5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 6 * 7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 10 * 11 * NAPI and NETPOLL support 12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/fcntl.h> 22 #include <linux/interrupt.h> 23 #include <linux/ioport.h> 24 #include <linux/in.h> 25 #include <linux/sched.h> 26 #include <linux/string.h> 27 #include <linux/delay.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 44 #include <asm/io.h> 45 #include <asm/byteorder.h> 46 #include <linux/uaccess.h> 47 #include <asm/irq.h> 48 49 #ifdef CONFIG_SPARC 50 #include <asm/idprom.h> 51 #include <asm/prom.h> 52 #endif 53 54 #ifdef CONFIG_PPC_PMAC 55 #include <asm/prom.h> 56 #include <asm/machdep.h> 57 #include <asm/pmac_feature.h> 58 #endif 59 60 #include <linux/sungem_phy.h> 61 #include "sungem.h" 62 63 #define STRIP_FCS 64 65 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 66 NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK) 68 69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 72 SUPPORTED_Pause | SUPPORTED_Autoneg) 73 74 #define DRV_NAME "sungem" 75 #define DRV_VERSION "1.0" 76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 77 78 static char version[] = 79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 80 81 MODULE_AUTHOR(DRV_AUTHOR); 82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 83 MODULE_LICENSE("GPL"); 84 85 #define GEM_MODULE_NAME "gem" 86 87 static const struct pci_device_id gem_pci_tbl[] = { 88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 90 91 /* These models only differ from the original GEM in 92 * that their tx/rx fifos are of a different size and 93 * they only support 10/100 speeds. -DaveM 94 * 95 * Apple's GMAC does support gigabit on machines with 96 * the BCM54xx PHYs. -BenH 97 */ 98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 112 {0, } 113 }; 114 115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 116 117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 118 { 119 u32 cmd; 120 int limit = 10000; 121 122 cmd = (1 << 30); 123 cmd |= (2 << 28); 124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 125 cmd |= (reg << 18) & MIF_FRAME_REGAD; 126 cmd |= (MIF_FRAME_TAMSB); 127 writel(cmd, gp->regs + MIF_FRAME); 128 129 while (--limit) { 130 cmd = readl(gp->regs + MIF_FRAME); 131 if (cmd & MIF_FRAME_TALSB) 132 break; 133 134 udelay(10); 135 } 136 137 if (!limit) 138 cmd = 0xffff; 139 140 return cmd & MIF_FRAME_DATA; 141 } 142 143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 144 { 145 struct gem *gp = netdev_priv(dev); 146 return __sungem_phy_read(gp, mii_id, reg); 147 } 148 149 static inline u16 sungem_phy_read(struct gem *gp, int reg) 150 { 151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 152 } 153 154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 155 { 156 u32 cmd; 157 int limit = 10000; 158 159 cmd = (1 << 30); 160 cmd |= (1 << 28); 161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 162 cmd |= (reg << 18) & MIF_FRAME_REGAD; 163 cmd |= (MIF_FRAME_TAMSB); 164 cmd |= (val & MIF_FRAME_DATA); 165 writel(cmd, gp->regs + MIF_FRAME); 166 167 while (limit--) { 168 cmd = readl(gp->regs + MIF_FRAME); 169 if (cmd & MIF_FRAME_TALSB) 170 break; 171 172 udelay(10); 173 } 174 } 175 176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 177 { 178 struct gem *gp = netdev_priv(dev); 179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 180 } 181 182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 183 { 184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 185 } 186 187 static inline void gem_enable_ints(struct gem *gp) 188 { 189 /* Enable all interrupts but TXDONE */ 190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 191 } 192 193 static inline void gem_disable_ints(struct gem *gp) 194 { 195 /* Disable all interrupts, including TXDONE */ 196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 197 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 198 } 199 200 static void gem_get_cell(struct gem *gp) 201 { 202 BUG_ON(gp->cell_enabled < 0); 203 gp->cell_enabled++; 204 #ifdef CONFIG_PPC_PMAC 205 if (gp->cell_enabled == 1) { 206 mb(); 207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 208 udelay(10); 209 } 210 #endif /* CONFIG_PPC_PMAC */ 211 } 212 213 /* Turn off the chip's clock */ 214 static void gem_put_cell(struct gem *gp) 215 { 216 BUG_ON(gp->cell_enabled <= 0); 217 gp->cell_enabled--; 218 #ifdef CONFIG_PPC_PMAC 219 if (gp->cell_enabled == 0) { 220 mb(); 221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 222 udelay(10); 223 } 224 #endif /* CONFIG_PPC_PMAC */ 225 } 226 227 static inline void gem_netif_stop(struct gem *gp) 228 { 229 netif_trans_update(gp->dev); /* prevent tx timeout */ 230 napi_disable(&gp->napi); 231 netif_tx_disable(gp->dev); 232 } 233 234 static inline void gem_netif_start(struct gem *gp) 235 { 236 /* NOTE: unconditional netif_wake_queue is only 237 * appropriate so long as all callers are assured to 238 * have free tx slots. 239 */ 240 netif_wake_queue(gp->dev); 241 napi_enable(&gp->napi); 242 } 243 244 static void gem_schedule_reset(struct gem *gp) 245 { 246 gp->reset_task_pending = 1; 247 schedule_work(&gp->reset_task); 248 } 249 250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 251 { 252 if (netif_msg_intr(gp)) 253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 254 } 255 256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 257 { 258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 259 u32 pcs_miistat; 260 261 if (netif_msg_intr(gp)) 262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 263 gp->dev->name, pcs_istat); 264 265 if (!(pcs_istat & PCS_ISTAT_LSC)) { 266 netdev_err(dev, "PCS irq but no link status change???\n"); 267 return 0; 268 } 269 270 /* The link status bit latches on zero, so you must 271 * read it twice in such a case to see a transition 272 * to the link being up. 273 */ 274 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 275 if (!(pcs_miistat & PCS_MIISTAT_LS)) 276 pcs_miistat |= 277 (readl(gp->regs + PCS_MIISTAT) & 278 PCS_MIISTAT_LS); 279 280 if (pcs_miistat & PCS_MIISTAT_ANC) { 281 /* The remote-fault indication is only valid 282 * when autoneg has completed. 283 */ 284 if (pcs_miistat & PCS_MIISTAT_RF) 285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 286 else 287 netdev_info(dev, "PCS AutoNEG complete\n"); 288 } 289 290 if (pcs_miistat & PCS_MIISTAT_LS) { 291 netdev_info(dev, "PCS link is now up\n"); 292 netif_carrier_on(gp->dev); 293 } else { 294 netdev_info(dev, "PCS link is now down\n"); 295 netif_carrier_off(gp->dev); 296 /* If this happens and the link timer is not running, 297 * reset so we re-negotiate. 298 */ 299 if (!timer_pending(&gp->link_timer)) 300 return 1; 301 } 302 303 return 0; 304 } 305 306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 307 { 308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 309 310 if (netif_msg_intr(gp)) 311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 312 gp->dev->name, txmac_stat); 313 314 /* Defer timer expiration is quite normal, 315 * don't even log the event. 316 */ 317 if ((txmac_stat & MAC_TXSTAT_DTE) && 318 !(txmac_stat & ~MAC_TXSTAT_DTE)) 319 return 0; 320 321 if (txmac_stat & MAC_TXSTAT_URUN) { 322 netdev_err(dev, "TX MAC xmit underrun\n"); 323 dev->stats.tx_fifo_errors++; 324 } 325 326 if (txmac_stat & MAC_TXSTAT_MPE) { 327 netdev_err(dev, "TX MAC max packet size error\n"); 328 dev->stats.tx_errors++; 329 } 330 331 /* The rest are all cases of one of the 16-bit TX 332 * counters expiring. 333 */ 334 if (txmac_stat & MAC_TXSTAT_NCE) 335 dev->stats.collisions += 0x10000; 336 337 if (txmac_stat & MAC_TXSTAT_ECE) { 338 dev->stats.tx_aborted_errors += 0x10000; 339 dev->stats.collisions += 0x10000; 340 } 341 342 if (txmac_stat & MAC_TXSTAT_LCE) { 343 dev->stats.tx_aborted_errors += 0x10000; 344 dev->stats.collisions += 0x10000; 345 } 346 347 /* We do not keep track of MAC_TXSTAT_FCE and 348 * MAC_TXSTAT_PCE events. 349 */ 350 return 0; 351 } 352 353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 354 * so we do the following. 355 * 356 * If any part of the reset goes wrong, we return 1 and that causes the 357 * whole chip to be reset. 358 */ 359 static int gem_rxmac_reset(struct gem *gp) 360 { 361 struct net_device *dev = gp->dev; 362 int limit, i; 363 u64 desc_dma; 364 u32 val; 365 366 /* First, reset & disable MAC RX. */ 367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 368 for (limit = 0; limit < 5000; limit++) { 369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 370 break; 371 udelay(10); 372 } 373 if (limit == 5000) { 374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 375 return 1; 376 } 377 378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 379 gp->regs + MAC_RXCFG); 380 for (limit = 0; limit < 5000; limit++) { 381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 382 break; 383 udelay(10); 384 } 385 if (limit == 5000) { 386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 387 return 1; 388 } 389 390 /* Second, disable RX DMA. */ 391 writel(0, gp->regs + RXDMA_CFG); 392 for (limit = 0; limit < 5000; limit++) { 393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 394 break; 395 udelay(10); 396 } 397 if (limit == 5000) { 398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 399 return 1; 400 } 401 402 mdelay(5); 403 404 /* Execute RX reset command. */ 405 writel(gp->swrst_base | GREG_SWRST_RXRST, 406 gp->regs + GREG_SWRST); 407 for (limit = 0; limit < 5000; limit++) { 408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 409 break; 410 udelay(10); 411 } 412 if (limit == 5000) { 413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 414 return 1; 415 } 416 417 /* Refresh the RX ring. */ 418 for (i = 0; i < RX_RING_SIZE; i++) { 419 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 420 421 if (gp->rx_skbs[i] == NULL) { 422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 423 return 1; 424 } 425 426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 427 } 428 gp->rx_new = gp->rx_old = 0; 429 430 /* Now we must reprogram the rest of RX unit. */ 431 desc_dma = (u64) gp->gblock_dvma; 432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 438 writel(val, gp->regs + RXDMA_CFG); 439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 440 writel(((5 & RXDMA_BLANK_IPKTS) | 441 ((8 << 12) & RXDMA_BLANK_ITIME)), 442 gp->regs + RXDMA_BLANK); 443 else 444 writel(((5 & RXDMA_BLANK_IPKTS) | 445 ((4 << 12) & RXDMA_BLANK_ITIME)), 446 gp->regs + RXDMA_BLANK); 447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 449 writel(val, gp->regs + RXDMA_PTHRESH); 450 val = readl(gp->regs + RXDMA_CFG); 451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 453 val = readl(gp->regs + MAC_RXCFG); 454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 455 456 return 0; 457 } 458 459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 460 { 461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 462 int ret = 0; 463 464 if (netif_msg_intr(gp)) 465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 466 gp->dev->name, rxmac_stat); 467 468 if (rxmac_stat & MAC_RXSTAT_OFLW) { 469 u32 smac = readl(gp->regs + MAC_SMACHINE); 470 471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 472 dev->stats.rx_over_errors++; 473 dev->stats.rx_fifo_errors++; 474 475 ret = gem_rxmac_reset(gp); 476 } 477 478 if (rxmac_stat & MAC_RXSTAT_ACE) 479 dev->stats.rx_frame_errors += 0x10000; 480 481 if (rxmac_stat & MAC_RXSTAT_CCE) 482 dev->stats.rx_crc_errors += 0x10000; 483 484 if (rxmac_stat & MAC_RXSTAT_LCE) 485 dev->stats.rx_length_errors += 0x10000; 486 487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 488 * events. 489 */ 490 return ret; 491 } 492 493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 494 { 495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 496 497 if (netif_msg_intr(gp)) 498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 499 gp->dev->name, mac_cstat); 500 501 /* This interrupt is just for pause frame and pause 502 * tracking. It is useful for diagnostics and debug 503 * but probably by default we will mask these events. 504 */ 505 if (mac_cstat & MAC_CSTAT_PS) 506 gp->pause_entered++; 507 508 if (mac_cstat & MAC_CSTAT_PRCV) 509 gp->pause_last_time_recvd = (mac_cstat >> 16); 510 511 return 0; 512 } 513 514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 515 { 516 u32 mif_status = readl(gp->regs + MIF_STATUS); 517 u32 reg_val, changed_bits; 518 519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 520 changed_bits = (mif_status & MIF_STATUS_STAT); 521 522 gem_handle_mif_event(gp, reg_val, changed_bits); 523 524 return 0; 525 } 526 527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 528 { 529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 530 531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 533 netdev_err(dev, "PCI error [%04x]", pci_estat); 534 535 if (pci_estat & GREG_PCIESTAT_BADACK) 536 pr_cont(" <No ACK64# during ABS64 cycle>"); 537 if (pci_estat & GREG_PCIESTAT_DTRTO) 538 pr_cont(" <Delayed transaction timeout>"); 539 if (pci_estat & GREG_PCIESTAT_OTHER) 540 pr_cont(" <other>"); 541 pr_cont("\n"); 542 } else { 543 pci_estat |= GREG_PCIESTAT_OTHER; 544 netdev_err(dev, "PCI error\n"); 545 } 546 547 if (pci_estat & GREG_PCIESTAT_OTHER) { 548 u16 pci_cfg_stat; 549 550 /* Interrogate PCI config space for the 551 * true cause. 552 */ 553 pci_read_config_word(gp->pdev, PCI_STATUS, 554 &pci_cfg_stat); 555 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 556 pci_cfg_stat); 557 if (pci_cfg_stat & PCI_STATUS_PARITY) 558 netdev_err(dev, "PCI parity error detected\n"); 559 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 560 netdev_err(dev, "PCI target abort\n"); 561 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 562 netdev_err(dev, "PCI master acks target abort\n"); 563 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 564 netdev_err(dev, "PCI master abort\n"); 565 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 566 netdev_err(dev, "PCI system error SERR#\n"); 567 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 568 netdev_err(dev, "PCI parity error\n"); 569 570 /* Write the error bits back to clear them. */ 571 pci_cfg_stat &= (PCI_STATUS_PARITY | 572 PCI_STATUS_SIG_TARGET_ABORT | 573 PCI_STATUS_REC_TARGET_ABORT | 574 PCI_STATUS_REC_MASTER_ABORT | 575 PCI_STATUS_SIG_SYSTEM_ERROR | 576 PCI_STATUS_DETECTED_PARITY); 577 pci_write_config_word(gp->pdev, 578 PCI_STATUS, pci_cfg_stat); 579 } 580 581 /* For all PCI errors, we should reset the chip. */ 582 return 1; 583 } 584 585 /* All non-normal interrupt conditions get serviced here. 586 * Returns non-zero if we should just exit the interrupt 587 * handler right now (ie. if we reset the card which invalidates 588 * all of the other original irq status bits). 589 */ 590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 591 { 592 if (gem_status & GREG_STAT_RXNOBUF) { 593 /* Frame arrived, no free RX buffers available. */ 594 if (netif_msg_rx_err(gp)) 595 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 596 gp->dev->name); 597 dev->stats.rx_dropped++; 598 } 599 600 if (gem_status & GREG_STAT_RXTAGERR) { 601 /* corrupt RX tag framing */ 602 if (netif_msg_rx_err(gp)) 603 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 604 gp->dev->name); 605 dev->stats.rx_errors++; 606 607 return 1; 608 } 609 610 if (gem_status & GREG_STAT_PCS) { 611 if (gem_pcs_interrupt(dev, gp, gem_status)) 612 return 1; 613 } 614 615 if (gem_status & GREG_STAT_TXMAC) { 616 if (gem_txmac_interrupt(dev, gp, gem_status)) 617 return 1; 618 } 619 620 if (gem_status & GREG_STAT_RXMAC) { 621 if (gem_rxmac_interrupt(dev, gp, gem_status)) 622 return 1; 623 } 624 625 if (gem_status & GREG_STAT_MAC) { 626 if (gem_mac_interrupt(dev, gp, gem_status)) 627 return 1; 628 } 629 630 if (gem_status & GREG_STAT_MIF) { 631 if (gem_mif_interrupt(dev, gp, gem_status)) 632 return 1; 633 } 634 635 if (gem_status & GREG_STAT_PCIERR) { 636 if (gem_pci_interrupt(dev, gp, gem_status)) 637 return 1; 638 } 639 640 return 0; 641 } 642 643 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 644 { 645 int entry, limit; 646 647 entry = gp->tx_old; 648 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 649 while (entry != limit) { 650 struct sk_buff *skb; 651 struct gem_txd *txd; 652 dma_addr_t dma_addr; 653 u32 dma_len; 654 int frag; 655 656 if (netif_msg_tx_done(gp)) 657 printk(KERN_DEBUG "%s: tx done, slot %d\n", 658 gp->dev->name, entry); 659 skb = gp->tx_skbs[entry]; 660 if (skb_shinfo(skb)->nr_frags) { 661 int last = entry + skb_shinfo(skb)->nr_frags; 662 int walk = entry; 663 int incomplete = 0; 664 665 last &= (TX_RING_SIZE - 1); 666 for (;;) { 667 walk = NEXT_TX(walk); 668 if (walk == limit) 669 incomplete = 1; 670 if (walk == last) 671 break; 672 } 673 if (incomplete) 674 break; 675 } 676 gp->tx_skbs[entry] = NULL; 677 dev->stats.tx_bytes += skb->len; 678 679 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 680 txd = &gp->init_block->txd[entry]; 681 682 dma_addr = le64_to_cpu(txd->buffer); 683 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 684 685 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 686 entry = NEXT_TX(entry); 687 } 688 689 dev->stats.tx_packets++; 690 dev_consume_skb_any(skb); 691 } 692 gp->tx_old = entry; 693 694 /* Need to make the tx_old update visible to gem_start_xmit() 695 * before checking for netif_queue_stopped(). Without the 696 * memory barrier, there is a small possibility that gem_start_xmit() 697 * will miss it and cause the queue to be stopped forever. 698 */ 699 smp_mb(); 700 701 if (unlikely(netif_queue_stopped(dev) && 702 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 703 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 704 705 __netif_tx_lock(txq, smp_processor_id()); 706 if (netif_queue_stopped(dev) && 707 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 708 netif_wake_queue(dev); 709 __netif_tx_unlock(txq); 710 } 711 } 712 713 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 714 { 715 int cluster_start, curr, count, kick; 716 717 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 718 count = 0; 719 kick = -1; 720 dma_wmb(); 721 while (curr != limit) { 722 curr = NEXT_RX(curr); 723 if (++count == 4) { 724 struct gem_rxd *rxd = 725 &gp->init_block->rxd[cluster_start]; 726 for (;;) { 727 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 728 rxd++; 729 cluster_start = NEXT_RX(cluster_start); 730 if (cluster_start == curr) 731 break; 732 } 733 kick = curr; 734 count = 0; 735 } 736 } 737 if (kick >= 0) { 738 mb(); 739 writel(kick, gp->regs + RXDMA_KICK); 740 } 741 } 742 743 #define ALIGNED_RX_SKB_ADDR(addr) \ 744 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 745 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 746 gfp_t gfp_flags) 747 { 748 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 749 750 if (likely(skb)) { 751 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 752 skb_reserve(skb, offset); 753 } 754 return skb; 755 } 756 757 static int gem_rx(struct gem *gp, int work_to_do) 758 { 759 struct net_device *dev = gp->dev; 760 int entry, drops, work_done = 0; 761 u32 done; 762 763 if (netif_msg_rx_status(gp)) 764 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 765 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 766 767 entry = gp->rx_new; 768 drops = 0; 769 done = readl(gp->regs + RXDMA_DONE); 770 for (;;) { 771 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 772 struct sk_buff *skb; 773 u64 status = le64_to_cpu(rxd->status_word); 774 dma_addr_t dma_addr; 775 int len; 776 777 if ((status & RXDCTRL_OWN) != 0) 778 break; 779 780 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 781 break; 782 783 /* When writing back RX descriptor, GEM writes status 784 * then buffer address, possibly in separate transactions. 785 * If we don't wait for the chip to write both, we could 786 * post a new buffer to this descriptor then have GEM spam 787 * on the buffer address. We sync on the RX completion 788 * register to prevent this from happening. 789 */ 790 if (entry == done) { 791 done = readl(gp->regs + RXDMA_DONE); 792 if (entry == done) 793 break; 794 } 795 796 /* We can now account for the work we're about to do */ 797 work_done++; 798 799 skb = gp->rx_skbs[entry]; 800 801 len = (status & RXDCTRL_BUFSZ) >> 16; 802 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 803 dev->stats.rx_errors++; 804 if (len < ETH_ZLEN) 805 dev->stats.rx_length_errors++; 806 if (len & RXDCTRL_BAD) 807 dev->stats.rx_crc_errors++; 808 809 /* We'll just return it to GEM. */ 810 drop_it: 811 dev->stats.rx_dropped++; 812 goto next; 813 } 814 815 dma_addr = le64_to_cpu(rxd->buffer); 816 if (len > RX_COPY_THRESHOLD) { 817 struct sk_buff *new_skb; 818 819 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 820 if (new_skb == NULL) { 821 drops++; 822 goto drop_it; 823 } 824 pci_unmap_page(gp->pdev, dma_addr, 825 RX_BUF_ALLOC_SIZE(gp), 826 PCI_DMA_FROMDEVICE); 827 gp->rx_skbs[entry] = new_skb; 828 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 829 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 830 virt_to_page(new_skb->data), 831 offset_in_page(new_skb->data), 832 RX_BUF_ALLOC_SIZE(gp), 833 PCI_DMA_FROMDEVICE)); 834 skb_reserve(new_skb, RX_OFFSET); 835 836 /* Trim the original skb for the netif. */ 837 skb_trim(skb, len); 838 } else { 839 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 840 841 if (copy_skb == NULL) { 842 drops++; 843 goto drop_it; 844 } 845 846 skb_reserve(copy_skb, 2); 847 skb_put(copy_skb, len); 848 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 849 skb_copy_from_linear_data(skb, copy_skb->data, len); 850 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 851 852 /* We'll reuse the original ring buffer. */ 853 skb = copy_skb; 854 } 855 856 if (likely(dev->features & NETIF_F_RXCSUM)) { 857 __sum16 csum; 858 859 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 860 skb->csum = csum_unfold(csum); 861 skb->ip_summed = CHECKSUM_COMPLETE; 862 } 863 skb->protocol = eth_type_trans(skb, gp->dev); 864 865 napi_gro_receive(&gp->napi, skb); 866 867 dev->stats.rx_packets++; 868 dev->stats.rx_bytes += len; 869 870 next: 871 entry = NEXT_RX(entry); 872 } 873 874 gem_post_rxds(gp, entry); 875 876 gp->rx_new = entry; 877 878 if (drops) 879 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 880 881 return work_done; 882 } 883 884 static int gem_poll(struct napi_struct *napi, int budget) 885 { 886 struct gem *gp = container_of(napi, struct gem, napi); 887 struct net_device *dev = gp->dev; 888 int work_done; 889 890 work_done = 0; 891 do { 892 /* Handle anomalies */ 893 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 894 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 895 int reset; 896 897 /* We run the abnormal interrupt handling code with 898 * the Tx lock. It only resets the Rx portion of the 899 * chip, but we need to guard it against DMA being 900 * restarted by the link poll timer 901 */ 902 __netif_tx_lock(txq, smp_processor_id()); 903 reset = gem_abnormal_irq(dev, gp, gp->status); 904 __netif_tx_unlock(txq); 905 if (reset) { 906 gem_schedule_reset(gp); 907 napi_complete(napi); 908 return work_done; 909 } 910 } 911 912 /* Run TX completion thread */ 913 gem_tx(dev, gp, gp->status); 914 915 /* Run RX thread. We don't use any locking here, 916 * code willing to do bad things - like cleaning the 917 * rx ring - must call napi_disable(), which 918 * schedule_timeout()'s if polling is already disabled. 919 */ 920 work_done += gem_rx(gp, budget - work_done); 921 922 if (work_done >= budget) 923 return work_done; 924 925 gp->status = readl(gp->regs + GREG_STAT); 926 } while (gp->status & GREG_STAT_NAPI); 927 928 napi_complete_done(napi, work_done); 929 gem_enable_ints(gp); 930 931 return work_done; 932 } 933 934 static irqreturn_t gem_interrupt(int irq, void *dev_id) 935 { 936 struct net_device *dev = dev_id; 937 struct gem *gp = netdev_priv(dev); 938 939 if (napi_schedule_prep(&gp->napi)) { 940 u32 gem_status = readl(gp->regs + GREG_STAT); 941 942 if (unlikely(gem_status == 0)) { 943 napi_enable(&gp->napi); 944 return IRQ_NONE; 945 } 946 if (netif_msg_intr(gp)) 947 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 948 gp->dev->name, gem_status); 949 950 gp->status = gem_status; 951 gem_disable_ints(gp); 952 __napi_schedule(&gp->napi); 953 } 954 955 /* If polling was disabled at the time we received that 956 * interrupt, we may return IRQ_HANDLED here while we 957 * should return IRQ_NONE. No big deal... 958 */ 959 return IRQ_HANDLED; 960 } 961 962 #ifdef CONFIG_NET_POLL_CONTROLLER 963 static void gem_poll_controller(struct net_device *dev) 964 { 965 struct gem *gp = netdev_priv(dev); 966 967 disable_irq(gp->pdev->irq); 968 gem_interrupt(gp->pdev->irq, dev); 969 enable_irq(gp->pdev->irq); 970 } 971 #endif 972 973 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue) 974 { 975 struct gem *gp = netdev_priv(dev); 976 977 netdev_err(dev, "transmit timed out, resetting\n"); 978 979 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 980 readl(gp->regs + TXDMA_CFG), 981 readl(gp->regs + MAC_TXSTAT), 982 readl(gp->regs + MAC_TXCFG)); 983 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 984 readl(gp->regs + RXDMA_CFG), 985 readl(gp->regs + MAC_RXSTAT), 986 readl(gp->regs + MAC_RXCFG)); 987 988 gem_schedule_reset(gp); 989 } 990 991 static __inline__ int gem_intme(int entry) 992 { 993 /* Algorithm: IRQ every 1/2 of descriptors. */ 994 if (!(entry & ((TX_RING_SIZE>>1)-1))) 995 return 1; 996 997 return 0; 998 } 999 1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 1001 struct net_device *dev) 1002 { 1003 struct gem *gp = netdev_priv(dev); 1004 int entry; 1005 u64 ctrl; 1006 1007 ctrl = 0; 1008 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1009 const u64 csum_start_off = skb_checksum_start_offset(skb); 1010 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1011 1012 ctrl = (TXDCTRL_CENAB | 1013 (csum_start_off << 15) | 1014 (csum_stuff_off << 21)); 1015 } 1016 1017 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1018 /* This is a hard error, log it. */ 1019 if (!netif_queue_stopped(dev)) { 1020 netif_stop_queue(dev); 1021 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1022 } 1023 return NETDEV_TX_BUSY; 1024 } 1025 1026 entry = gp->tx_new; 1027 gp->tx_skbs[entry] = skb; 1028 1029 if (skb_shinfo(skb)->nr_frags == 0) { 1030 struct gem_txd *txd = &gp->init_block->txd[entry]; 1031 dma_addr_t mapping; 1032 u32 len; 1033 1034 len = skb->len; 1035 mapping = pci_map_page(gp->pdev, 1036 virt_to_page(skb->data), 1037 offset_in_page(skb->data), 1038 len, PCI_DMA_TODEVICE); 1039 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1040 if (gem_intme(entry)) 1041 ctrl |= TXDCTRL_INTME; 1042 txd->buffer = cpu_to_le64(mapping); 1043 dma_wmb(); 1044 txd->control_word = cpu_to_le64(ctrl); 1045 entry = NEXT_TX(entry); 1046 } else { 1047 struct gem_txd *txd; 1048 u32 first_len; 1049 u64 intme; 1050 dma_addr_t first_mapping; 1051 int frag, first_entry = entry; 1052 1053 intme = 0; 1054 if (gem_intme(entry)) 1055 intme |= TXDCTRL_INTME; 1056 1057 /* We must give this initial chunk to the device last. 1058 * Otherwise we could race with the device. 1059 */ 1060 first_len = skb_headlen(skb); 1061 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1062 offset_in_page(skb->data), 1063 first_len, PCI_DMA_TODEVICE); 1064 entry = NEXT_TX(entry); 1065 1066 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1067 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1068 u32 len; 1069 dma_addr_t mapping; 1070 u64 this_ctrl; 1071 1072 len = skb_frag_size(this_frag); 1073 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1074 0, len, DMA_TO_DEVICE); 1075 this_ctrl = ctrl; 1076 if (frag == skb_shinfo(skb)->nr_frags - 1) 1077 this_ctrl |= TXDCTRL_EOF; 1078 1079 txd = &gp->init_block->txd[entry]; 1080 txd->buffer = cpu_to_le64(mapping); 1081 dma_wmb(); 1082 txd->control_word = cpu_to_le64(this_ctrl | len); 1083 1084 if (gem_intme(entry)) 1085 intme |= TXDCTRL_INTME; 1086 1087 entry = NEXT_TX(entry); 1088 } 1089 txd = &gp->init_block->txd[first_entry]; 1090 txd->buffer = cpu_to_le64(first_mapping); 1091 dma_wmb(); 1092 txd->control_word = 1093 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1094 } 1095 1096 gp->tx_new = entry; 1097 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1098 netif_stop_queue(dev); 1099 1100 /* netif_stop_queue() must be done before checking 1101 * checking tx index in TX_BUFFS_AVAIL() below, because 1102 * in gem_tx(), we update tx_old before checking for 1103 * netif_queue_stopped(). 1104 */ 1105 smp_mb(); 1106 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1107 netif_wake_queue(dev); 1108 } 1109 if (netif_msg_tx_queued(gp)) 1110 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1111 dev->name, entry, skb->len); 1112 mb(); 1113 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1114 1115 return NETDEV_TX_OK; 1116 } 1117 1118 static void gem_pcs_reset(struct gem *gp) 1119 { 1120 int limit; 1121 u32 val; 1122 1123 /* Reset PCS unit. */ 1124 val = readl(gp->regs + PCS_MIICTRL); 1125 val |= PCS_MIICTRL_RST; 1126 writel(val, gp->regs + PCS_MIICTRL); 1127 1128 limit = 32; 1129 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1130 udelay(100); 1131 if (limit-- <= 0) 1132 break; 1133 } 1134 if (limit < 0) 1135 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1136 } 1137 1138 static void gem_pcs_reinit_adv(struct gem *gp) 1139 { 1140 u32 val; 1141 1142 /* Make sure PCS is disabled while changing advertisement 1143 * configuration. 1144 */ 1145 val = readl(gp->regs + PCS_CFG); 1146 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1147 writel(val, gp->regs + PCS_CFG); 1148 1149 /* Advertise all capabilities except asymmetric 1150 * pause. 1151 */ 1152 val = readl(gp->regs + PCS_MIIADV); 1153 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1154 PCS_MIIADV_SP | PCS_MIIADV_AP); 1155 writel(val, gp->regs + PCS_MIIADV); 1156 1157 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1158 * and re-enable PCS. 1159 */ 1160 val = readl(gp->regs + PCS_MIICTRL); 1161 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1162 val &= ~PCS_MIICTRL_WB; 1163 writel(val, gp->regs + PCS_MIICTRL); 1164 1165 val = readl(gp->regs + PCS_CFG); 1166 val |= PCS_CFG_ENABLE; 1167 writel(val, gp->regs + PCS_CFG); 1168 1169 /* Make sure serialink loopback is off. The meaning 1170 * of this bit is logically inverted based upon whether 1171 * you are in Serialink or SERDES mode. 1172 */ 1173 val = readl(gp->regs + PCS_SCTRL); 1174 if (gp->phy_type == phy_serialink) 1175 val &= ~PCS_SCTRL_LOOP; 1176 else 1177 val |= PCS_SCTRL_LOOP; 1178 writel(val, gp->regs + PCS_SCTRL); 1179 } 1180 1181 #define STOP_TRIES 32 1182 1183 static void gem_reset(struct gem *gp) 1184 { 1185 int limit; 1186 u32 val; 1187 1188 /* Make sure we won't get any more interrupts */ 1189 writel(0xffffffff, gp->regs + GREG_IMASK); 1190 1191 /* Reset the chip */ 1192 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1193 gp->regs + GREG_SWRST); 1194 1195 limit = STOP_TRIES; 1196 1197 do { 1198 udelay(20); 1199 val = readl(gp->regs + GREG_SWRST); 1200 if (limit-- <= 0) 1201 break; 1202 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1203 1204 if (limit < 0) 1205 netdev_err(gp->dev, "SW reset is ghetto\n"); 1206 1207 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1208 gem_pcs_reinit_adv(gp); 1209 } 1210 1211 static void gem_start_dma(struct gem *gp) 1212 { 1213 u32 val; 1214 1215 /* We are ready to rock, turn everything on. */ 1216 val = readl(gp->regs + TXDMA_CFG); 1217 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1218 val = readl(gp->regs + RXDMA_CFG); 1219 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1220 val = readl(gp->regs + MAC_TXCFG); 1221 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1222 val = readl(gp->regs + MAC_RXCFG); 1223 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1224 1225 (void) readl(gp->regs + MAC_RXCFG); 1226 udelay(100); 1227 1228 gem_enable_ints(gp); 1229 1230 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1231 } 1232 1233 /* DMA won't be actually stopped before about 4ms tho ... 1234 */ 1235 static void gem_stop_dma(struct gem *gp) 1236 { 1237 u32 val; 1238 1239 /* We are done rocking, turn everything off. */ 1240 val = readl(gp->regs + TXDMA_CFG); 1241 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1242 val = readl(gp->regs + RXDMA_CFG); 1243 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1244 val = readl(gp->regs + MAC_TXCFG); 1245 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1246 val = readl(gp->regs + MAC_RXCFG); 1247 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1248 1249 (void) readl(gp->regs + MAC_RXCFG); 1250 1251 /* Need to wait a bit ... done by the caller */ 1252 } 1253 1254 1255 // XXX dbl check what that function should do when called on PCS PHY 1256 static void gem_begin_auto_negotiation(struct gem *gp, 1257 const struct ethtool_link_ksettings *ep) 1258 { 1259 u32 advertise, features; 1260 int autoneg; 1261 int speed; 1262 int duplex; 1263 u32 advertising; 1264 1265 if (ep) 1266 ethtool_convert_link_mode_to_legacy_u32( 1267 &advertising, ep->link_modes.advertising); 1268 1269 if (gp->phy_type != phy_mii_mdio0 && 1270 gp->phy_type != phy_mii_mdio1) 1271 goto non_mii; 1272 1273 /* Setup advertise */ 1274 if (found_mii_phy(gp)) 1275 features = gp->phy_mii.def->features; 1276 else 1277 features = 0; 1278 1279 advertise = features & ADVERTISE_MASK; 1280 if (gp->phy_mii.advertising != 0) 1281 advertise &= gp->phy_mii.advertising; 1282 1283 autoneg = gp->want_autoneg; 1284 speed = gp->phy_mii.speed; 1285 duplex = gp->phy_mii.duplex; 1286 1287 /* Setup link parameters */ 1288 if (!ep) 1289 goto start_aneg; 1290 if (ep->base.autoneg == AUTONEG_ENABLE) { 1291 advertise = advertising; 1292 autoneg = 1; 1293 } else { 1294 autoneg = 0; 1295 speed = ep->base.speed; 1296 duplex = ep->base.duplex; 1297 } 1298 1299 start_aneg: 1300 /* Sanitize settings based on PHY capabilities */ 1301 if ((features & SUPPORTED_Autoneg) == 0) 1302 autoneg = 0; 1303 if (speed == SPEED_1000 && 1304 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1305 speed = SPEED_100; 1306 if (speed == SPEED_100 && 1307 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1308 speed = SPEED_10; 1309 if (duplex == DUPLEX_FULL && 1310 !(features & (SUPPORTED_1000baseT_Full | 1311 SUPPORTED_100baseT_Full | 1312 SUPPORTED_10baseT_Full))) 1313 duplex = DUPLEX_HALF; 1314 if (speed == 0) 1315 speed = SPEED_10; 1316 1317 /* If we are asleep, we don't try to actually setup the PHY, we 1318 * just store the settings 1319 */ 1320 if (!netif_device_present(gp->dev)) { 1321 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1322 gp->phy_mii.speed = speed; 1323 gp->phy_mii.duplex = duplex; 1324 return; 1325 } 1326 1327 /* Configure PHY & start aneg */ 1328 gp->want_autoneg = autoneg; 1329 if (autoneg) { 1330 if (found_mii_phy(gp)) 1331 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1332 gp->lstate = link_aneg; 1333 } else { 1334 if (found_mii_phy(gp)) 1335 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1336 gp->lstate = link_force_ok; 1337 } 1338 1339 non_mii: 1340 gp->timer_ticks = 0; 1341 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1342 } 1343 1344 /* A link-up condition has occurred, initialize and enable the 1345 * rest of the chip. 1346 */ 1347 static int gem_set_link_modes(struct gem *gp) 1348 { 1349 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1350 int full_duplex, speed, pause; 1351 u32 val; 1352 1353 full_duplex = 0; 1354 speed = SPEED_10; 1355 pause = 0; 1356 1357 if (found_mii_phy(gp)) { 1358 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1359 return 1; 1360 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1361 speed = gp->phy_mii.speed; 1362 pause = gp->phy_mii.pause; 1363 } else if (gp->phy_type == phy_serialink || 1364 gp->phy_type == phy_serdes) { 1365 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1366 1367 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1368 full_duplex = 1; 1369 speed = SPEED_1000; 1370 } 1371 1372 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1373 speed, (full_duplex ? "full" : "half")); 1374 1375 1376 /* We take the tx queue lock to avoid collisions between 1377 * this code, the tx path and the NAPI-driven error path 1378 */ 1379 __netif_tx_lock(txq, smp_processor_id()); 1380 1381 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1382 if (full_duplex) { 1383 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1384 } else { 1385 /* MAC_TXCFG_NBO must be zero. */ 1386 } 1387 writel(val, gp->regs + MAC_TXCFG); 1388 1389 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1390 if (!full_duplex && 1391 (gp->phy_type == phy_mii_mdio0 || 1392 gp->phy_type == phy_mii_mdio1)) { 1393 val |= MAC_XIFCFG_DISE; 1394 } else if (full_duplex) { 1395 val |= MAC_XIFCFG_FLED; 1396 } 1397 1398 if (speed == SPEED_1000) 1399 val |= (MAC_XIFCFG_GMII); 1400 1401 writel(val, gp->regs + MAC_XIFCFG); 1402 1403 /* If gigabit and half-duplex, enable carrier extension 1404 * mode. Else, disable it. 1405 */ 1406 if (speed == SPEED_1000 && !full_duplex) { 1407 val = readl(gp->regs + MAC_TXCFG); 1408 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1409 1410 val = readl(gp->regs + MAC_RXCFG); 1411 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1412 } else { 1413 val = readl(gp->regs + MAC_TXCFG); 1414 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1415 1416 val = readl(gp->regs + MAC_RXCFG); 1417 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1418 } 1419 1420 if (gp->phy_type == phy_serialink || 1421 gp->phy_type == phy_serdes) { 1422 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1423 1424 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1425 pause = 1; 1426 } 1427 1428 if (!full_duplex) 1429 writel(512, gp->regs + MAC_STIME); 1430 else 1431 writel(64, gp->regs + MAC_STIME); 1432 val = readl(gp->regs + MAC_MCCFG); 1433 if (pause) 1434 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1435 else 1436 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1437 writel(val, gp->regs + MAC_MCCFG); 1438 1439 gem_start_dma(gp); 1440 1441 __netif_tx_unlock(txq); 1442 1443 if (netif_msg_link(gp)) { 1444 if (pause) { 1445 netdev_info(gp->dev, 1446 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1447 gp->rx_fifo_sz, 1448 gp->rx_pause_off, 1449 gp->rx_pause_on); 1450 } else { 1451 netdev_info(gp->dev, "Pause is disabled\n"); 1452 } 1453 } 1454 1455 return 0; 1456 } 1457 1458 static int gem_mdio_link_not_up(struct gem *gp) 1459 { 1460 switch (gp->lstate) { 1461 case link_force_ret: 1462 netif_info(gp, link, gp->dev, 1463 "Autoneg failed again, keeping forced mode\n"); 1464 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1465 gp->last_forced_speed, DUPLEX_HALF); 1466 gp->timer_ticks = 5; 1467 gp->lstate = link_force_ok; 1468 return 0; 1469 case link_aneg: 1470 /* We try forced modes after a failed aneg only on PHYs that don't 1471 * have "magic_aneg" bit set, which means they internally do the 1472 * while forced-mode thingy. On these, we just restart aneg 1473 */ 1474 if (gp->phy_mii.def->magic_aneg) 1475 return 1; 1476 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1477 /* Try forced modes. */ 1478 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1479 DUPLEX_HALF); 1480 gp->timer_ticks = 5; 1481 gp->lstate = link_force_try; 1482 return 0; 1483 case link_force_try: 1484 /* Downgrade from 100 to 10 Mbps if necessary. 1485 * If already at 10Mbps, warn user about the 1486 * situation every 10 ticks. 1487 */ 1488 if (gp->phy_mii.speed == SPEED_100) { 1489 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1490 DUPLEX_HALF); 1491 gp->timer_ticks = 5; 1492 netif_info(gp, link, gp->dev, 1493 "switching to forced 10bt\n"); 1494 return 0; 1495 } else 1496 return 1; 1497 default: 1498 return 0; 1499 } 1500 } 1501 1502 static void gem_link_timer(struct timer_list *t) 1503 { 1504 struct gem *gp = from_timer(gp, t, link_timer); 1505 struct net_device *dev = gp->dev; 1506 int restart_aneg = 0; 1507 1508 /* There's no point doing anything if we're going to be reset */ 1509 if (gp->reset_task_pending) 1510 return; 1511 1512 if (gp->phy_type == phy_serialink || 1513 gp->phy_type == phy_serdes) { 1514 u32 val = readl(gp->regs + PCS_MIISTAT); 1515 1516 if (!(val & PCS_MIISTAT_LS)) 1517 val = readl(gp->regs + PCS_MIISTAT); 1518 1519 if ((val & PCS_MIISTAT_LS) != 0) { 1520 if (gp->lstate == link_up) 1521 goto restart; 1522 1523 gp->lstate = link_up; 1524 netif_carrier_on(dev); 1525 (void)gem_set_link_modes(gp); 1526 } 1527 goto restart; 1528 } 1529 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1530 /* Ok, here we got a link. If we had it due to a forced 1531 * fallback, and we were configured for autoneg, we do 1532 * retry a short autoneg pass. If you know your hub is 1533 * broken, use ethtool ;) 1534 */ 1535 if (gp->lstate == link_force_try && gp->want_autoneg) { 1536 gp->lstate = link_force_ret; 1537 gp->last_forced_speed = gp->phy_mii.speed; 1538 gp->timer_ticks = 5; 1539 if (netif_msg_link(gp)) 1540 netdev_info(dev, 1541 "Got link after fallback, retrying autoneg once...\n"); 1542 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1543 } else if (gp->lstate != link_up) { 1544 gp->lstate = link_up; 1545 netif_carrier_on(dev); 1546 if (gem_set_link_modes(gp)) 1547 restart_aneg = 1; 1548 } 1549 } else { 1550 /* If the link was previously up, we restart the 1551 * whole process 1552 */ 1553 if (gp->lstate == link_up) { 1554 gp->lstate = link_down; 1555 netif_info(gp, link, dev, "Link down\n"); 1556 netif_carrier_off(dev); 1557 gem_schedule_reset(gp); 1558 /* The reset task will restart the timer */ 1559 return; 1560 } else if (++gp->timer_ticks > 10) { 1561 if (found_mii_phy(gp)) 1562 restart_aneg = gem_mdio_link_not_up(gp); 1563 else 1564 restart_aneg = 1; 1565 } 1566 } 1567 if (restart_aneg) { 1568 gem_begin_auto_negotiation(gp, NULL); 1569 return; 1570 } 1571 restart: 1572 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1573 } 1574 1575 static void gem_clean_rings(struct gem *gp) 1576 { 1577 struct gem_init_block *gb = gp->init_block; 1578 struct sk_buff *skb; 1579 int i; 1580 dma_addr_t dma_addr; 1581 1582 for (i = 0; i < RX_RING_SIZE; i++) { 1583 struct gem_rxd *rxd; 1584 1585 rxd = &gb->rxd[i]; 1586 if (gp->rx_skbs[i] != NULL) { 1587 skb = gp->rx_skbs[i]; 1588 dma_addr = le64_to_cpu(rxd->buffer); 1589 pci_unmap_page(gp->pdev, dma_addr, 1590 RX_BUF_ALLOC_SIZE(gp), 1591 PCI_DMA_FROMDEVICE); 1592 dev_kfree_skb_any(skb); 1593 gp->rx_skbs[i] = NULL; 1594 } 1595 rxd->status_word = 0; 1596 dma_wmb(); 1597 rxd->buffer = 0; 1598 } 1599 1600 for (i = 0; i < TX_RING_SIZE; i++) { 1601 if (gp->tx_skbs[i] != NULL) { 1602 struct gem_txd *txd; 1603 int frag; 1604 1605 skb = gp->tx_skbs[i]; 1606 gp->tx_skbs[i] = NULL; 1607 1608 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1609 int ent = i & (TX_RING_SIZE - 1); 1610 1611 txd = &gb->txd[ent]; 1612 dma_addr = le64_to_cpu(txd->buffer); 1613 pci_unmap_page(gp->pdev, dma_addr, 1614 le64_to_cpu(txd->control_word) & 1615 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1616 1617 if (frag != skb_shinfo(skb)->nr_frags) 1618 i++; 1619 } 1620 dev_kfree_skb_any(skb); 1621 } 1622 } 1623 } 1624 1625 static void gem_init_rings(struct gem *gp) 1626 { 1627 struct gem_init_block *gb = gp->init_block; 1628 struct net_device *dev = gp->dev; 1629 int i; 1630 dma_addr_t dma_addr; 1631 1632 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1633 1634 gem_clean_rings(gp); 1635 1636 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1637 (unsigned)VLAN_ETH_FRAME_LEN); 1638 1639 for (i = 0; i < RX_RING_SIZE; i++) { 1640 struct sk_buff *skb; 1641 struct gem_rxd *rxd = &gb->rxd[i]; 1642 1643 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1644 if (!skb) { 1645 rxd->buffer = 0; 1646 rxd->status_word = 0; 1647 continue; 1648 } 1649 1650 gp->rx_skbs[i] = skb; 1651 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1652 dma_addr = pci_map_page(gp->pdev, 1653 virt_to_page(skb->data), 1654 offset_in_page(skb->data), 1655 RX_BUF_ALLOC_SIZE(gp), 1656 PCI_DMA_FROMDEVICE); 1657 rxd->buffer = cpu_to_le64(dma_addr); 1658 dma_wmb(); 1659 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1660 skb_reserve(skb, RX_OFFSET); 1661 } 1662 1663 for (i = 0; i < TX_RING_SIZE; i++) { 1664 struct gem_txd *txd = &gb->txd[i]; 1665 1666 txd->control_word = 0; 1667 dma_wmb(); 1668 txd->buffer = 0; 1669 } 1670 wmb(); 1671 } 1672 1673 /* Init PHY interface and start link poll state machine */ 1674 static void gem_init_phy(struct gem *gp) 1675 { 1676 u32 mifcfg; 1677 1678 /* Revert MIF CFG setting done on stop_phy */ 1679 mifcfg = readl(gp->regs + MIF_CFG); 1680 mifcfg &= ~MIF_CFG_BBMODE; 1681 writel(mifcfg, gp->regs + MIF_CFG); 1682 1683 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1684 int i; 1685 1686 /* Those delay sucks, the HW seem to love them though, I'll 1687 * serisouly consider breaking some locks here to be able 1688 * to schedule instead 1689 */ 1690 for (i = 0; i < 3; i++) { 1691 #ifdef CONFIG_PPC_PMAC 1692 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1693 msleep(20); 1694 #endif 1695 /* Some PHYs used by apple have problem getting back to us, 1696 * we do an additional reset here 1697 */ 1698 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1699 msleep(20); 1700 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1701 break; 1702 if (i == 2) 1703 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1704 } 1705 } 1706 1707 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1708 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1709 u32 val; 1710 1711 /* Init datapath mode register. */ 1712 if (gp->phy_type == phy_mii_mdio0 || 1713 gp->phy_type == phy_mii_mdio1) { 1714 val = PCS_DMODE_MGM; 1715 } else if (gp->phy_type == phy_serialink) { 1716 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1717 } else { 1718 val = PCS_DMODE_ESM; 1719 } 1720 1721 writel(val, gp->regs + PCS_DMODE); 1722 } 1723 1724 if (gp->phy_type == phy_mii_mdio0 || 1725 gp->phy_type == phy_mii_mdio1) { 1726 /* Reset and detect MII PHY */ 1727 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1728 1729 /* Init PHY */ 1730 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1731 gp->phy_mii.def->ops->init(&gp->phy_mii); 1732 } else { 1733 gem_pcs_reset(gp); 1734 gem_pcs_reinit_adv(gp); 1735 } 1736 1737 /* Default aneg parameters */ 1738 gp->timer_ticks = 0; 1739 gp->lstate = link_down; 1740 netif_carrier_off(gp->dev); 1741 1742 /* Print things out */ 1743 if (gp->phy_type == phy_mii_mdio0 || 1744 gp->phy_type == phy_mii_mdio1) 1745 netdev_info(gp->dev, "Found %s PHY\n", 1746 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1747 1748 gem_begin_auto_negotiation(gp, NULL); 1749 } 1750 1751 static void gem_init_dma(struct gem *gp) 1752 { 1753 u64 desc_dma = (u64) gp->gblock_dvma; 1754 u32 val; 1755 1756 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1757 writel(val, gp->regs + TXDMA_CFG); 1758 1759 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1760 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1761 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1762 1763 writel(0, gp->regs + TXDMA_KICK); 1764 1765 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1766 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 1767 writel(val, gp->regs + RXDMA_CFG); 1768 1769 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1770 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1771 1772 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1773 1774 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1775 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1776 writel(val, gp->regs + RXDMA_PTHRESH); 1777 1778 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1779 writel(((5 & RXDMA_BLANK_IPKTS) | 1780 ((8 << 12) & RXDMA_BLANK_ITIME)), 1781 gp->regs + RXDMA_BLANK); 1782 else 1783 writel(((5 & RXDMA_BLANK_IPKTS) | 1784 ((4 << 12) & RXDMA_BLANK_ITIME)), 1785 gp->regs + RXDMA_BLANK); 1786 } 1787 1788 static u32 gem_setup_multicast(struct gem *gp) 1789 { 1790 u32 rxcfg = 0; 1791 int i; 1792 1793 if ((gp->dev->flags & IFF_ALLMULTI) || 1794 (netdev_mc_count(gp->dev) > 256)) { 1795 for (i=0; i<16; i++) 1796 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1797 rxcfg |= MAC_RXCFG_HFE; 1798 } else if (gp->dev->flags & IFF_PROMISC) { 1799 rxcfg |= MAC_RXCFG_PROM; 1800 } else { 1801 u16 hash_table[16]; 1802 u32 crc; 1803 struct netdev_hw_addr *ha; 1804 int i; 1805 1806 memset(hash_table, 0, sizeof(hash_table)); 1807 netdev_for_each_mc_addr(ha, gp->dev) { 1808 crc = ether_crc_le(6, ha->addr); 1809 crc >>= 24; 1810 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1811 } 1812 for (i=0; i<16; i++) 1813 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1814 rxcfg |= MAC_RXCFG_HFE; 1815 } 1816 1817 return rxcfg; 1818 } 1819 1820 static void gem_init_mac(struct gem *gp) 1821 { 1822 unsigned char *e = &gp->dev->dev_addr[0]; 1823 1824 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1825 1826 writel(0x00, gp->regs + MAC_IPG0); 1827 writel(0x08, gp->regs + MAC_IPG1); 1828 writel(0x04, gp->regs + MAC_IPG2); 1829 writel(0x40, gp->regs + MAC_STIME); 1830 writel(0x40, gp->regs + MAC_MINFSZ); 1831 1832 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1833 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1834 1835 writel(0x07, gp->regs + MAC_PASIZE); 1836 writel(0x04, gp->regs + MAC_JAMSIZE); 1837 writel(0x10, gp->regs + MAC_ATTLIM); 1838 writel(0x8808, gp->regs + MAC_MCTYPE); 1839 1840 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1841 1842 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1843 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1844 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1845 1846 writel(0, gp->regs + MAC_ADDR3); 1847 writel(0, gp->regs + MAC_ADDR4); 1848 writel(0, gp->regs + MAC_ADDR5); 1849 1850 writel(0x0001, gp->regs + MAC_ADDR6); 1851 writel(0xc200, gp->regs + MAC_ADDR7); 1852 writel(0x0180, gp->regs + MAC_ADDR8); 1853 1854 writel(0, gp->regs + MAC_AFILT0); 1855 writel(0, gp->regs + MAC_AFILT1); 1856 writel(0, gp->regs + MAC_AFILT2); 1857 writel(0, gp->regs + MAC_AF21MSK); 1858 writel(0, gp->regs + MAC_AF0MSK); 1859 1860 gp->mac_rx_cfg = gem_setup_multicast(gp); 1861 #ifdef STRIP_FCS 1862 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1863 #endif 1864 writel(0, gp->regs + MAC_NCOLL); 1865 writel(0, gp->regs + MAC_FASUCC); 1866 writel(0, gp->regs + MAC_ECOLL); 1867 writel(0, gp->regs + MAC_LCOLL); 1868 writel(0, gp->regs + MAC_DTIMER); 1869 writel(0, gp->regs + MAC_PATMPS); 1870 writel(0, gp->regs + MAC_RFCTR); 1871 writel(0, gp->regs + MAC_LERR); 1872 writel(0, gp->regs + MAC_AERR); 1873 writel(0, gp->regs + MAC_FCSERR); 1874 writel(0, gp->regs + MAC_RXCVERR); 1875 1876 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1877 * them once a link is established. 1878 */ 1879 writel(0, gp->regs + MAC_TXCFG); 1880 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1881 writel(0, gp->regs + MAC_MCCFG); 1882 writel(0, gp->regs + MAC_XIFCFG); 1883 1884 /* Setup MAC interrupts. We want to get all of the interesting 1885 * counter expiration events, but we do not want to hear about 1886 * normal rx/tx as the DMA engine tells us that. 1887 */ 1888 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1889 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1890 1891 /* Don't enable even the PAUSE interrupts for now, we 1892 * make no use of those events other than to record them. 1893 */ 1894 writel(0xffffffff, gp->regs + MAC_MCMASK); 1895 1896 /* Don't enable GEM's WOL in normal operations 1897 */ 1898 if (gp->has_wol) 1899 writel(0, gp->regs + WOL_WAKECSR); 1900 } 1901 1902 static void gem_init_pause_thresholds(struct gem *gp) 1903 { 1904 u32 cfg; 1905 1906 /* Calculate pause thresholds. Setting the OFF threshold to the 1907 * full RX fifo size effectively disables PAUSE generation which 1908 * is what we do for 10/100 only GEMs which have FIFOs too small 1909 * to make real gains from PAUSE. 1910 */ 1911 if (gp->rx_fifo_sz <= (2 * 1024)) { 1912 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1913 } else { 1914 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1915 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1916 int on = off - max_frame; 1917 1918 gp->rx_pause_off = off; 1919 gp->rx_pause_on = on; 1920 } 1921 1922 1923 /* Configure the chip "burst" DMA mode & enable some 1924 * HW bug fixes on Apple version 1925 */ 1926 cfg = 0; 1927 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1928 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1929 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1930 cfg |= GREG_CFG_IBURST; 1931 #endif 1932 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1933 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1934 writel(cfg, gp->regs + GREG_CFG); 1935 1936 /* If Infinite Burst didn't stick, then use different 1937 * thresholds (and Apple bug fixes don't exist) 1938 */ 1939 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1940 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1941 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1942 writel(cfg, gp->regs + GREG_CFG); 1943 } 1944 } 1945 1946 static int gem_check_invariants(struct gem *gp) 1947 { 1948 struct pci_dev *pdev = gp->pdev; 1949 u32 mif_cfg; 1950 1951 /* On Apple's sungem, we can't rely on registers as the chip 1952 * was been powered down by the firmware. The PHY is looked 1953 * up later on. 1954 */ 1955 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1956 gp->phy_type = phy_mii_mdio0; 1957 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1958 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1959 gp->swrst_base = 0; 1960 1961 mif_cfg = readl(gp->regs + MIF_CFG); 1962 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1963 mif_cfg |= MIF_CFG_MDI0; 1964 writel(mif_cfg, gp->regs + MIF_CFG); 1965 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1966 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1967 1968 /* We hard-code the PHY address so we can properly bring it out of 1969 * reset later on, we can't really probe it at this point, though 1970 * that isn't an issue. 1971 */ 1972 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1973 gp->mii_phy_addr = 1; 1974 else 1975 gp->mii_phy_addr = 0; 1976 1977 return 0; 1978 } 1979 1980 mif_cfg = readl(gp->regs + MIF_CFG); 1981 1982 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1983 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1984 /* One of the MII PHYs _must_ be present 1985 * as this chip has no gigabit PHY. 1986 */ 1987 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1988 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1989 mif_cfg); 1990 return -1; 1991 } 1992 } 1993 1994 /* Determine initial PHY interface type guess. MDIO1 is the 1995 * external PHY and thus takes precedence over MDIO0. 1996 */ 1997 1998 if (mif_cfg & MIF_CFG_MDI1) { 1999 gp->phy_type = phy_mii_mdio1; 2000 mif_cfg |= MIF_CFG_PSELECT; 2001 writel(mif_cfg, gp->regs + MIF_CFG); 2002 } else if (mif_cfg & MIF_CFG_MDI0) { 2003 gp->phy_type = phy_mii_mdio0; 2004 mif_cfg &= ~MIF_CFG_PSELECT; 2005 writel(mif_cfg, gp->regs + MIF_CFG); 2006 } else { 2007 #ifdef CONFIG_SPARC 2008 const char *p; 2009 2010 p = of_get_property(gp->of_node, "shared-pins", NULL); 2011 if (p && !strcmp(p, "serdes")) 2012 gp->phy_type = phy_serdes; 2013 else 2014 #endif 2015 gp->phy_type = phy_serialink; 2016 } 2017 if (gp->phy_type == phy_mii_mdio1 || 2018 gp->phy_type == phy_mii_mdio0) { 2019 int i; 2020 2021 for (i = 0; i < 32; i++) { 2022 gp->mii_phy_addr = i; 2023 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2024 break; 2025 } 2026 if (i == 32) { 2027 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2028 pr_err("RIO MII phy will not respond\n"); 2029 return -1; 2030 } 2031 gp->phy_type = phy_serdes; 2032 } 2033 } 2034 2035 /* Fetch the FIFO configurations now too. */ 2036 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2037 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2038 2039 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2040 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2041 if (gp->tx_fifo_sz != (9 * 1024) || 2042 gp->rx_fifo_sz != (20 * 1024)) { 2043 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2044 gp->tx_fifo_sz, gp->rx_fifo_sz); 2045 return -1; 2046 } 2047 gp->swrst_base = 0; 2048 } else { 2049 if (gp->tx_fifo_sz != (2 * 1024) || 2050 gp->rx_fifo_sz != (2 * 1024)) { 2051 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2052 gp->tx_fifo_sz, gp->rx_fifo_sz); 2053 return -1; 2054 } 2055 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2056 } 2057 } 2058 2059 return 0; 2060 } 2061 2062 static void gem_reinit_chip(struct gem *gp) 2063 { 2064 /* Reset the chip */ 2065 gem_reset(gp); 2066 2067 /* Make sure ints are disabled */ 2068 gem_disable_ints(gp); 2069 2070 /* Allocate & setup ring buffers */ 2071 gem_init_rings(gp); 2072 2073 /* Configure pause thresholds */ 2074 gem_init_pause_thresholds(gp); 2075 2076 /* Init DMA & MAC engines */ 2077 gem_init_dma(gp); 2078 gem_init_mac(gp); 2079 } 2080 2081 2082 static void gem_stop_phy(struct gem *gp, int wol) 2083 { 2084 u32 mifcfg; 2085 2086 /* Let the chip settle down a bit, it seems that helps 2087 * for sleep mode on some models 2088 */ 2089 msleep(10); 2090 2091 /* Make sure we aren't polling PHY status change. We 2092 * don't currently use that feature though 2093 */ 2094 mifcfg = readl(gp->regs + MIF_CFG); 2095 mifcfg &= ~MIF_CFG_POLL; 2096 writel(mifcfg, gp->regs + MIF_CFG); 2097 2098 if (wol && gp->has_wol) { 2099 unsigned char *e = &gp->dev->dev_addr[0]; 2100 u32 csr; 2101 2102 /* Setup wake-on-lan for MAGIC packet */ 2103 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2104 gp->regs + MAC_RXCFG); 2105 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2106 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2107 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2108 2109 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2110 csr = WOL_WAKECSR_ENABLE; 2111 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2112 csr |= WOL_WAKECSR_MII; 2113 writel(csr, gp->regs + WOL_WAKECSR); 2114 } else { 2115 writel(0, gp->regs + MAC_RXCFG); 2116 (void)readl(gp->regs + MAC_RXCFG); 2117 /* Machine sleep will die in strange ways if we 2118 * dont wait a bit here, looks like the chip takes 2119 * some time to really shut down 2120 */ 2121 msleep(10); 2122 } 2123 2124 writel(0, gp->regs + MAC_TXCFG); 2125 writel(0, gp->regs + MAC_XIFCFG); 2126 writel(0, gp->regs + TXDMA_CFG); 2127 writel(0, gp->regs + RXDMA_CFG); 2128 2129 if (!wol) { 2130 gem_reset(gp); 2131 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2132 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2133 2134 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2135 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2136 2137 /* According to Apple, we must set the MDIO pins to this begnign 2138 * state or we may 1) eat more current, 2) damage some PHYs 2139 */ 2140 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2141 writel(0, gp->regs + MIF_BBCLK); 2142 writel(0, gp->regs + MIF_BBDATA); 2143 writel(0, gp->regs + MIF_BBOENAB); 2144 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2145 (void) readl(gp->regs + MAC_XIFCFG); 2146 } 2147 } 2148 2149 static int gem_do_start(struct net_device *dev) 2150 { 2151 struct gem *gp = netdev_priv(dev); 2152 int rc; 2153 2154 /* Enable the cell */ 2155 gem_get_cell(gp); 2156 2157 /* Make sure PCI access and bus master are enabled */ 2158 rc = pci_enable_device(gp->pdev); 2159 if (rc) { 2160 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2161 2162 /* Put cell and forget it for now, it will be considered as 2163 * still asleep, a new sleep cycle may bring it back 2164 */ 2165 gem_put_cell(gp); 2166 return -ENXIO; 2167 } 2168 pci_set_master(gp->pdev); 2169 2170 /* Init & setup chip hardware */ 2171 gem_reinit_chip(gp); 2172 2173 /* An interrupt might come in handy */ 2174 rc = request_irq(gp->pdev->irq, gem_interrupt, 2175 IRQF_SHARED, dev->name, (void *)dev); 2176 if (rc) { 2177 netdev_err(dev, "failed to request irq !\n"); 2178 2179 gem_reset(gp); 2180 gem_clean_rings(gp); 2181 gem_put_cell(gp); 2182 return rc; 2183 } 2184 2185 /* Mark us as attached again if we come from resume(), this has 2186 * no effect if we weren't detached and needs to be done now. 2187 */ 2188 netif_device_attach(dev); 2189 2190 /* Restart NAPI & queues */ 2191 gem_netif_start(gp); 2192 2193 /* Detect & init PHY, start autoneg etc... this will 2194 * eventually result in starting DMA operations when 2195 * the link is up 2196 */ 2197 gem_init_phy(gp); 2198 2199 return 0; 2200 } 2201 2202 static void gem_do_stop(struct net_device *dev, int wol) 2203 { 2204 struct gem *gp = netdev_priv(dev); 2205 2206 /* Stop NAPI and stop tx queue */ 2207 gem_netif_stop(gp); 2208 2209 /* Make sure ints are disabled. We don't care about 2210 * synchronizing as NAPI is disabled, thus a stray 2211 * interrupt will do nothing bad (our irq handler 2212 * just schedules NAPI) 2213 */ 2214 gem_disable_ints(gp); 2215 2216 /* Stop the link timer */ 2217 del_timer_sync(&gp->link_timer); 2218 2219 /* We cannot cancel the reset task while holding the 2220 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2221 * if we did. This is not an issue however as the reset 2222 * task is synchronized vs. us (rtnl_lock) and will do 2223 * nothing if the device is down or suspended. We do 2224 * still clear reset_task_pending to avoid a spurrious 2225 * reset later on in case we do resume before it gets 2226 * scheduled. 2227 */ 2228 gp->reset_task_pending = 0; 2229 2230 /* If we are going to sleep with WOL */ 2231 gem_stop_dma(gp); 2232 msleep(10); 2233 if (!wol) 2234 gem_reset(gp); 2235 msleep(10); 2236 2237 /* Get rid of rings */ 2238 gem_clean_rings(gp); 2239 2240 /* No irq needed anymore */ 2241 free_irq(gp->pdev->irq, (void *) dev); 2242 2243 /* Shut the PHY down eventually and setup WOL */ 2244 gem_stop_phy(gp, wol); 2245 2246 /* Make sure bus master is disabled */ 2247 pci_disable_device(gp->pdev); 2248 2249 /* Cell not needed neither if no WOL */ 2250 if (!wol) 2251 gem_put_cell(gp); 2252 } 2253 2254 static void gem_reset_task(struct work_struct *work) 2255 { 2256 struct gem *gp = container_of(work, struct gem, reset_task); 2257 2258 /* Lock out the network stack (essentially shield ourselves 2259 * against a racing open, close, control call, or suspend 2260 */ 2261 rtnl_lock(); 2262 2263 /* Skip the reset task if suspended or closed, or if it's 2264 * been cancelled by gem_do_stop (see comment there) 2265 */ 2266 if (!netif_device_present(gp->dev) || 2267 !netif_running(gp->dev) || 2268 !gp->reset_task_pending) { 2269 rtnl_unlock(); 2270 return; 2271 } 2272 2273 /* Stop the link timer */ 2274 del_timer_sync(&gp->link_timer); 2275 2276 /* Stop NAPI and tx */ 2277 gem_netif_stop(gp); 2278 2279 /* Reset the chip & rings */ 2280 gem_reinit_chip(gp); 2281 if (gp->lstate == link_up) 2282 gem_set_link_modes(gp); 2283 2284 /* Restart NAPI and Tx */ 2285 gem_netif_start(gp); 2286 2287 /* We are back ! */ 2288 gp->reset_task_pending = 0; 2289 2290 /* If the link is not up, restart autoneg, else restart the 2291 * polling timer 2292 */ 2293 if (gp->lstate != link_up) 2294 gem_begin_auto_negotiation(gp, NULL); 2295 else 2296 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2297 2298 rtnl_unlock(); 2299 } 2300 2301 static int gem_open(struct net_device *dev) 2302 { 2303 /* We allow open while suspended, we just do nothing, 2304 * the chip will be initialized in resume() 2305 */ 2306 if (netif_device_present(dev)) 2307 return gem_do_start(dev); 2308 return 0; 2309 } 2310 2311 static int gem_close(struct net_device *dev) 2312 { 2313 if (netif_device_present(dev)) 2314 gem_do_stop(dev, 0); 2315 2316 return 0; 2317 } 2318 2319 #ifdef CONFIG_PM 2320 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2321 { 2322 struct net_device *dev = pci_get_drvdata(pdev); 2323 struct gem *gp = netdev_priv(dev); 2324 2325 /* Lock the network stack first to avoid racing with open/close, 2326 * reset task and setting calls 2327 */ 2328 rtnl_lock(); 2329 2330 /* Not running, mark ourselves non-present, no need for 2331 * a lock here 2332 */ 2333 if (!netif_running(dev)) { 2334 netif_device_detach(dev); 2335 rtnl_unlock(); 2336 return 0; 2337 } 2338 netdev_info(dev, "suspending, WakeOnLan %s\n", 2339 (gp->wake_on_lan && netif_running(dev)) ? 2340 "enabled" : "disabled"); 2341 2342 /* Tell the network stack we're gone. gem_do_stop() below will 2343 * synchronize with TX, stop NAPI etc... 2344 */ 2345 netif_device_detach(dev); 2346 2347 /* Switch off chip, remember WOL setting */ 2348 gp->asleep_wol = !!gp->wake_on_lan; 2349 gem_do_stop(dev, gp->asleep_wol); 2350 2351 /* Unlock the network stack */ 2352 rtnl_unlock(); 2353 2354 return 0; 2355 } 2356 2357 static int gem_resume(struct pci_dev *pdev) 2358 { 2359 struct net_device *dev = pci_get_drvdata(pdev); 2360 struct gem *gp = netdev_priv(dev); 2361 2362 /* See locking comment in gem_suspend */ 2363 rtnl_lock(); 2364 2365 /* Not running, mark ourselves present, no need for 2366 * a lock here 2367 */ 2368 if (!netif_running(dev)) { 2369 netif_device_attach(dev); 2370 rtnl_unlock(); 2371 return 0; 2372 } 2373 2374 /* Restart chip. If that fails there isn't much we can do, we 2375 * leave things stopped. 2376 */ 2377 gem_do_start(dev); 2378 2379 /* If we had WOL enabled, the cell clock was never turned off during 2380 * sleep, so we end up beeing unbalanced. Fix that here 2381 */ 2382 if (gp->asleep_wol) 2383 gem_put_cell(gp); 2384 2385 /* Unlock the network stack */ 2386 rtnl_unlock(); 2387 2388 return 0; 2389 } 2390 #endif /* CONFIG_PM */ 2391 2392 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2393 { 2394 struct gem *gp = netdev_priv(dev); 2395 2396 /* I have seen this being called while the PM was in progress, 2397 * so we shield against this. Let's also not poke at registers 2398 * while the reset task is going on. 2399 * 2400 * TODO: Move stats collection elsewhere (link timer ?) and 2401 * make this a nop to avoid all those synchro issues 2402 */ 2403 if (!netif_device_present(dev) || !netif_running(dev)) 2404 goto bail; 2405 2406 /* Better safe than sorry... */ 2407 if (WARN_ON(!gp->cell_enabled)) 2408 goto bail; 2409 2410 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2411 writel(0, gp->regs + MAC_FCSERR); 2412 2413 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2414 writel(0, gp->regs + MAC_AERR); 2415 2416 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2417 writel(0, gp->regs + MAC_LERR); 2418 2419 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2420 dev->stats.collisions += 2421 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2422 writel(0, gp->regs + MAC_ECOLL); 2423 writel(0, gp->regs + MAC_LCOLL); 2424 bail: 2425 return &dev->stats; 2426 } 2427 2428 static int gem_set_mac_address(struct net_device *dev, void *addr) 2429 { 2430 struct sockaddr *macaddr = (struct sockaddr *) addr; 2431 struct gem *gp = netdev_priv(dev); 2432 unsigned char *e = &dev->dev_addr[0]; 2433 2434 if (!is_valid_ether_addr(macaddr->sa_data)) 2435 return -EADDRNOTAVAIL; 2436 2437 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2438 2439 /* We'll just catch it later when the device is up'd or resumed */ 2440 if (!netif_running(dev) || !netif_device_present(dev)) 2441 return 0; 2442 2443 /* Better safe than sorry... */ 2444 if (WARN_ON(!gp->cell_enabled)) 2445 return 0; 2446 2447 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2448 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2449 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2450 2451 return 0; 2452 } 2453 2454 static void gem_set_multicast(struct net_device *dev) 2455 { 2456 struct gem *gp = netdev_priv(dev); 2457 u32 rxcfg, rxcfg_new; 2458 int limit = 10000; 2459 2460 if (!netif_running(dev) || !netif_device_present(dev)) 2461 return; 2462 2463 /* Better safe than sorry... */ 2464 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2465 return; 2466 2467 rxcfg = readl(gp->regs + MAC_RXCFG); 2468 rxcfg_new = gem_setup_multicast(gp); 2469 #ifdef STRIP_FCS 2470 rxcfg_new |= MAC_RXCFG_SFCS; 2471 #endif 2472 gp->mac_rx_cfg = rxcfg_new; 2473 2474 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2475 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2476 if (!limit--) 2477 break; 2478 udelay(10); 2479 } 2480 2481 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2482 rxcfg |= rxcfg_new; 2483 2484 writel(rxcfg, gp->regs + MAC_RXCFG); 2485 } 2486 2487 /* Jumbo-grams don't seem to work :-( */ 2488 #define GEM_MIN_MTU ETH_MIN_MTU 2489 #if 1 2490 #define GEM_MAX_MTU ETH_DATA_LEN 2491 #else 2492 #define GEM_MAX_MTU 9000 2493 #endif 2494 2495 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2496 { 2497 struct gem *gp = netdev_priv(dev); 2498 2499 dev->mtu = new_mtu; 2500 2501 /* We'll just catch it later when the device is up'd or resumed */ 2502 if (!netif_running(dev) || !netif_device_present(dev)) 2503 return 0; 2504 2505 /* Better safe than sorry... */ 2506 if (WARN_ON(!gp->cell_enabled)) 2507 return 0; 2508 2509 gem_netif_stop(gp); 2510 gem_reinit_chip(gp); 2511 if (gp->lstate == link_up) 2512 gem_set_link_modes(gp); 2513 gem_netif_start(gp); 2514 2515 return 0; 2516 } 2517 2518 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2519 { 2520 struct gem *gp = netdev_priv(dev); 2521 2522 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2523 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2524 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2525 } 2526 2527 static int gem_get_link_ksettings(struct net_device *dev, 2528 struct ethtool_link_ksettings *cmd) 2529 { 2530 struct gem *gp = netdev_priv(dev); 2531 u32 supported, advertising; 2532 2533 if (gp->phy_type == phy_mii_mdio0 || 2534 gp->phy_type == phy_mii_mdio1) { 2535 if (gp->phy_mii.def) 2536 supported = gp->phy_mii.def->features; 2537 else 2538 supported = (SUPPORTED_10baseT_Half | 2539 SUPPORTED_10baseT_Full); 2540 2541 /* XXX hardcoded stuff for now */ 2542 cmd->base.port = PORT_MII; 2543 cmd->base.phy_address = 0; /* XXX fixed PHYAD */ 2544 2545 /* Return current PHY settings */ 2546 cmd->base.autoneg = gp->want_autoneg; 2547 cmd->base.speed = gp->phy_mii.speed; 2548 cmd->base.duplex = gp->phy_mii.duplex; 2549 advertising = gp->phy_mii.advertising; 2550 2551 /* If we started with a forced mode, we don't have a default 2552 * advertise set, we need to return something sensible so 2553 * userland can re-enable autoneg properly. 2554 */ 2555 if (advertising == 0) 2556 advertising = supported; 2557 } else { // XXX PCS ? 2558 supported = 2559 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2560 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2561 SUPPORTED_Autoneg); 2562 advertising = supported; 2563 cmd->base.speed = 0; 2564 cmd->base.duplex = 0; 2565 cmd->base.port = 0; 2566 cmd->base.phy_address = 0; 2567 cmd->base.autoneg = 0; 2568 2569 /* serdes means usually a Fibre connector, with most fixed */ 2570 if (gp->phy_type == phy_serdes) { 2571 cmd->base.port = PORT_FIBRE; 2572 supported = (SUPPORTED_1000baseT_Half | 2573 SUPPORTED_1000baseT_Full | 2574 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2575 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2576 advertising = supported; 2577 if (gp->lstate == link_up) 2578 cmd->base.speed = SPEED_1000; 2579 cmd->base.duplex = DUPLEX_FULL; 2580 cmd->base.autoneg = 1; 2581 } 2582 } 2583 2584 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2585 supported); 2586 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 2587 advertising); 2588 2589 return 0; 2590 } 2591 2592 static int gem_set_link_ksettings(struct net_device *dev, 2593 const struct ethtool_link_ksettings *cmd) 2594 { 2595 struct gem *gp = netdev_priv(dev); 2596 u32 speed = cmd->base.speed; 2597 u32 advertising; 2598 2599 ethtool_convert_link_mode_to_legacy_u32(&advertising, 2600 cmd->link_modes.advertising); 2601 2602 /* Verify the settings we care about. */ 2603 if (cmd->base.autoneg != AUTONEG_ENABLE && 2604 cmd->base.autoneg != AUTONEG_DISABLE) 2605 return -EINVAL; 2606 2607 if (cmd->base.autoneg == AUTONEG_ENABLE && 2608 advertising == 0) 2609 return -EINVAL; 2610 2611 if (cmd->base.autoneg == AUTONEG_DISABLE && 2612 ((speed != SPEED_1000 && 2613 speed != SPEED_100 && 2614 speed != SPEED_10) || 2615 (cmd->base.duplex != DUPLEX_HALF && 2616 cmd->base.duplex != DUPLEX_FULL))) 2617 return -EINVAL; 2618 2619 /* Apply settings and restart link process. */ 2620 if (netif_device_present(gp->dev)) { 2621 del_timer_sync(&gp->link_timer); 2622 gem_begin_auto_negotiation(gp, cmd); 2623 } 2624 2625 return 0; 2626 } 2627 2628 static int gem_nway_reset(struct net_device *dev) 2629 { 2630 struct gem *gp = netdev_priv(dev); 2631 2632 if (!gp->want_autoneg) 2633 return -EINVAL; 2634 2635 /* Restart link process */ 2636 if (netif_device_present(gp->dev)) { 2637 del_timer_sync(&gp->link_timer); 2638 gem_begin_auto_negotiation(gp, NULL); 2639 } 2640 2641 return 0; 2642 } 2643 2644 static u32 gem_get_msglevel(struct net_device *dev) 2645 { 2646 struct gem *gp = netdev_priv(dev); 2647 return gp->msg_enable; 2648 } 2649 2650 static void gem_set_msglevel(struct net_device *dev, u32 value) 2651 { 2652 struct gem *gp = netdev_priv(dev); 2653 gp->msg_enable = value; 2654 } 2655 2656 2657 /* Add more when I understand how to program the chip */ 2658 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2659 2660 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2661 2662 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2663 { 2664 struct gem *gp = netdev_priv(dev); 2665 2666 /* Add more when I understand how to program the chip */ 2667 if (gp->has_wol) { 2668 wol->supported = WOL_SUPPORTED_MASK; 2669 wol->wolopts = gp->wake_on_lan; 2670 } else { 2671 wol->supported = 0; 2672 wol->wolopts = 0; 2673 } 2674 } 2675 2676 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2677 { 2678 struct gem *gp = netdev_priv(dev); 2679 2680 if (!gp->has_wol) 2681 return -EOPNOTSUPP; 2682 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2683 return 0; 2684 } 2685 2686 static const struct ethtool_ops gem_ethtool_ops = { 2687 .get_drvinfo = gem_get_drvinfo, 2688 .get_link = ethtool_op_get_link, 2689 .nway_reset = gem_nway_reset, 2690 .get_msglevel = gem_get_msglevel, 2691 .set_msglevel = gem_set_msglevel, 2692 .get_wol = gem_get_wol, 2693 .set_wol = gem_set_wol, 2694 .get_link_ksettings = gem_get_link_ksettings, 2695 .set_link_ksettings = gem_set_link_ksettings, 2696 }; 2697 2698 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2699 { 2700 struct gem *gp = netdev_priv(dev); 2701 struct mii_ioctl_data *data = if_mii(ifr); 2702 int rc = -EOPNOTSUPP; 2703 2704 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2705 * netif_device_present() is true and holds rtnl_lock for us 2706 * so we have nothing to worry about 2707 */ 2708 2709 switch (cmd) { 2710 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2711 data->phy_id = gp->mii_phy_addr; 2712 /* Fallthrough... */ 2713 2714 case SIOCGMIIREG: /* Read MII PHY register. */ 2715 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2716 data->reg_num & 0x1f); 2717 rc = 0; 2718 break; 2719 2720 case SIOCSMIIREG: /* Write MII PHY register. */ 2721 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2722 data->val_in); 2723 rc = 0; 2724 break; 2725 } 2726 return rc; 2727 } 2728 2729 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2730 /* Fetch MAC address from vital product data of PCI ROM. */ 2731 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2732 { 2733 int this_offset; 2734 2735 for (this_offset = 0x20; this_offset < len; this_offset++) { 2736 void __iomem *p = rom_base + this_offset; 2737 int i; 2738 2739 if (readb(p + 0) != 0x90 || 2740 readb(p + 1) != 0x00 || 2741 readb(p + 2) != 0x09 || 2742 readb(p + 3) != 0x4e || 2743 readb(p + 4) != 0x41 || 2744 readb(p + 5) != 0x06) 2745 continue; 2746 2747 this_offset += 6; 2748 p += 6; 2749 2750 for (i = 0; i < 6; i++) 2751 dev_addr[i] = readb(p + i); 2752 return 1; 2753 } 2754 return 0; 2755 } 2756 2757 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2758 { 2759 size_t size; 2760 void __iomem *p = pci_map_rom(pdev, &size); 2761 2762 if (p) { 2763 int found; 2764 2765 found = readb(p) == 0x55 && 2766 readb(p + 1) == 0xaa && 2767 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2768 pci_unmap_rom(pdev, p); 2769 if (found) 2770 return; 2771 } 2772 2773 /* Sun MAC prefix then 3 random bytes. */ 2774 dev_addr[0] = 0x08; 2775 dev_addr[1] = 0x00; 2776 dev_addr[2] = 0x20; 2777 get_random_bytes(dev_addr + 3, 3); 2778 } 2779 #endif /* not Sparc and not PPC */ 2780 2781 static int gem_get_device_address(struct gem *gp) 2782 { 2783 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2784 struct net_device *dev = gp->dev; 2785 const unsigned char *addr; 2786 2787 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2788 if (addr == NULL) { 2789 #ifdef CONFIG_SPARC 2790 addr = idprom->id_ethaddr; 2791 #else 2792 printk("\n"); 2793 pr_err("%s: can't get mac-address\n", dev->name); 2794 return -1; 2795 #endif 2796 } 2797 memcpy(dev->dev_addr, addr, ETH_ALEN); 2798 #else 2799 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2800 #endif 2801 return 0; 2802 } 2803 2804 static void gem_remove_one(struct pci_dev *pdev) 2805 { 2806 struct net_device *dev = pci_get_drvdata(pdev); 2807 2808 if (dev) { 2809 struct gem *gp = netdev_priv(dev); 2810 2811 unregister_netdev(dev); 2812 2813 /* Ensure reset task is truly gone */ 2814 cancel_work_sync(&gp->reset_task); 2815 2816 /* Free resources */ 2817 pci_free_consistent(pdev, 2818 sizeof(struct gem_init_block), 2819 gp->init_block, 2820 gp->gblock_dvma); 2821 iounmap(gp->regs); 2822 pci_release_regions(pdev); 2823 free_netdev(dev); 2824 } 2825 } 2826 2827 static const struct net_device_ops gem_netdev_ops = { 2828 .ndo_open = gem_open, 2829 .ndo_stop = gem_close, 2830 .ndo_start_xmit = gem_start_xmit, 2831 .ndo_get_stats = gem_get_stats, 2832 .ndo_set_rx_mode = gem_set_multicast, 2833 .ndo_do_ioctl = gem_ioctl, 2834 .ndo_tx_timeout = gem_tx_timeout, 2835 .ndo_change_mtu = gem_change_mtu, 2836 .ndo_validate_addr = eth_validate_addr, 2837 .ndo_set_mac_address = gem_set_mac_address, 2838 #ifdef CONFIG_NET_POLL_CONTROLLER 2839 .ndo_poll_controller = gem_poll_controller, 2840 #endif 2841 }; 2842 2843 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2844 { 2845 unsigned long gemreg_base, gemreg_len; 2846 struct net_device *dev; 2847 struct gem *gp; 2848 int err, pci_using_dac; 2849 2850 printk_once(KERN_INFO "%s", version); 2851 2852 /* Apple gmac note: during probe, the chip is powered up by 2853 * the arch code to allow the code below to work (and to let 2854 * the chip be probed on the config space. It won't stay powered 2855 * up until the interface is brought up however, so we can't rely 2856 * on register configuration done at this point. 2857 */ 2858 err = pci_enable_device(pdev); 2859 if (err) { 2860 pr_err("Cannot enable MMIO operation, aborting\n"); 2861 return err; 2862 } 2863 pci_set_master(pdev); 2864 2865 /* Configure DMA attributes. */ 2866 2867 /* All of the GEM documentation states that 64-bit DMA addressing 2868 * is fully supported and should work just fine. However the 2869 * front end for RIO based GEMs is different and only supports 2870 * 32-bit addressing. 2871 * 2872 * For now we assume the various PPC GEMs are 32-bit only as well. 2873 */ 2874 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2875 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2876 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2877 pci_using_dac = 1; 2878 } else { 2879 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2880 if (err) { 2881 pr_err("No usable DMA configuration, aborting\n"); 2882 goto err_disable_device; 2883 } 2884 pci_using_dac = 0; 2885 } 2886 2887 gemreg_base = pci_resource_start(pdev, 0); 2888 gemreg_len = pci_resource_len(pdev, 0); 2889 2890 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2891 pr_err("Cannot find proper PCI device base address, aborting\n"); 2892 err = -ENODEV; 2893 goto err_disable_device; 2894 } 2895 2896 dev = alloc_etherdev(sizeof(*gp)); 2897 if (!dev) { 2898 err = -ENOMEM; 2899 goto err_disable_device; 2900 } 2901 SET_NETDEV_DEV(dev, &pdev->dev); 2902 2903 gp = netdev_priv(dev); 2904 2905 err = pci_request_regions(pdev, DRV_NAME); 2906 if (err) { 2907 pr_err("Cannot obtain PCI resources, aborting\n"); 2908 goto err_out_free_netdev; 2909 } 2910 2911 gp->pdev = pdev; 2912 gp->dev = dev; 2913 2914 gp->msg_enable = DEFAULT_MSG; 2915 2916 timer_setup(&gp->link_timer, gem_link_timer, 0); 2917 2918 INIT_WORK(&gp->reset_task, gem_reset_task); 2919 2920 gp->lstate = link_down; 2921 gp->timer_ticks = 0; 2922 netif_carrier_off(dev); 2923 2924 gp->regs = ioremap(gemreg_base, gemreg_len); 2925 if (!gp->regs) { 2926 pr_err("Cannot map device registers, aborting\n"); 2927 err = -EIO; 2928 goto err_out_free_res; 2929 } 2930 2931 /* On Apple, we want a reference to the Open Firmware device-tree 2932 * node. We use it for clock control. 2933 */ 2934 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2935 gp->of_node = pci_device_to_OF_node(pdev); 2936 #endif 2937 2938 /* Only Apple version supports WOL afaik */ 2939 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2940 gp->has_wol = 1; 2941 2942 /* Make sure cell is enabled */ 2943 gem_get_cell(gp); 2944 2945 /* Make sure everything is stopped and in init state */ 2946 gem_reset(gp); 2947 2948 /* Fill up the mii_phy structure (even if we won't use it) */ 2949 gp->phy_mii.dev = dev; 2950 gp->phy_mii.mdio_read = _sungem_phy_read; 2951 gp->phy_mii.mdio_write = _sungem_phy_write; 2952 #ifdef CONFIG_PPC_PMAC 2953 gp->phy_mii.platform_data = gp->of_node; 2954 #endif 2955 /* By default, we start with autoneg */ 2956 gp->want_autoneg = 1; 2957 2958 /* Check fifo sizes, PHY type, etc... */ 2959 if (gem_check_invariants(gp)) { 2960 err = -ENODEV; 2961 goto err_out_iounmap; 2962 } 2963 2964 /* It is guaranteed that the returned buffer will be at least 2965 * PAGE_SIZE aligned. 2966 */ 2967 gp->init_block = (struct gem_init_block *) 2968 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2969 &gp->gblock_dvma); 2970 if (!gp->init_block) { 2971 pr_err("Cannot allocate init block, aborting\n"); 2972 err = -ENOMEM; 2973 goto err_out_iounmap; 2974 } 2975 2976 err = gem_get_device_address(gp); 2977 if (err) 2978 goto err_out_free_consistent; 2979 2980 dev->netdev_ops = &gem_netdev_ops; 2981 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2982 dev->ethtool_ops = &gem_ethtool_ops; 2983 dev->watchdog_timeo = 5 * HZ; 2984 dev->dma = 0; 2985 2986 /* Set that now, in case PM kicks in now */ 2987 pci_set_drvdata(pdev, dev); 2988 2989 /* We can do scatter/gather and HW checksum */ 2990 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 2991 dev->features = dev->hw_features; 2992 if (pci_using_dac) 2993 dev->features |= NETIF_F_HIGHDMA; 2994 2995 /* MTU range: 68 - 1500 (Jumbo mode is broken) */ 2996 dev->min_mtu = GEM_MIN_MTU; 2997 dev->max_mtu = GEM_MAX_MTU; 2998 2999 /* Register with kernel */ 3000 if (register_netdev(dev)) { 3001 pr_err("Cannot register net device, aborting\n"); 3002 err = -ENOMEM; 3003 goto err_out_free_consistent; 3004 } 3005 3006 /* Undo the get_cell with appropriate locking (we could use 3007 * ndo_init/uninit but that would be even more clumsy imho) 3008 */ 3009 rtnl_lock(); 3010 gem_put_cell(gp); 3011 rtnl_unlock(); 3012 3013 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3014 dev->dev_addr); 3015 return 0; 3016 3017 err_out_free_consistent: 3018 gem_remove_one(pdev); 3019 err_out_iounmap: 3020 gem_put_cell(gp); 3021 iounmap(gp->regs); 3022 3023 err_out_free_res: 3024 pci_release_regions(pdev); 3025 3026 err_out_free_netdev: 3027 free_netdev(dev); 3028 err_disable_device: 3029 pci_disable_device(pdev); 3030 return err; 3031 3032 } 3033 3034 3035 static struct pci_driver gem_driver = { 3036 .name = GEM_MODULE_NAME, 3037 .id_table = gem_pci_tbl, 3038 .probe = gem_init_one, 3039 .remove = gem_remove_one, 3040 #ifdef CONFIG_PM 3041 .suspend = gem_suspend, 3042 .resume = gem_resume, 3043 #endif /* CONFIG_PM */ 3044 }; 3045 3046 module_pci_driver(gem_driver); 3047