xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision da097dcc)
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3  * sungem.c: Sun GEM ethernet driver.
4  *
5  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6  *
7  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10  *
11  * NAPI and NETPOLL support
12  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 #include <linux/of.h>
44 
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <linux/uaccess.h>
48 #include <asm/irq.h>
49 
50 #ifdef CONFIG_SPARC
51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif
54 
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
59 
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
62 
63 #define STRIP_FCS
64 
65 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
66 			 NETIF_MSG_PROBE	| \
67 			 NETIF_MSG_LINK)
68 
69 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
73 
74 #define DRV_NAME	"sungem"
75 #define DRV_VERSION	"1.0"
76 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
77 
78 static char version[] =
79         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
80 
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
84 
85 #define GEM_MODULE_NAME	"gem"
86 
87 static const struct pci_device_id gem_pci_tbl[] = {
88 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
90 
91 	/* These models only differ from the original GEM in
92 	 * that their tx/rx fifos are of a different size and
93 	 * they only support 10/100 speeds. -DaveM
94 	 *
95 	 * Apple's GMAC does support gigabit on machines with
96 	 * the BCM54xx PHYs. -BenH
97 	 */
98 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
116 
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
118 {
119 	u32 cmd;
120 	int limit = 10000;
121 
122 	cmd  = (1 << 30);
123 	cmd |= (2 << 28);
124 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 	cmd |= (MIF_FRAME_TAMSB);
127 	writel(cmd, gp->regs + MIF_FRAME);
128 
129 	while (--limit) {
130 		cmd = readl(gp->regs + MIF_FRAME);
131 		if (cmd & MIF_FRAME_TALSB)
132 			break;
133 
134 		udelay(10);
135 	}
136 
137 	if (!limit)
138 		cmd = 0xffff;
139 
140 	return cmd & MIF_FRAME_DATA;
141 }
142 
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
144 {
145 	struct gem *gp = netdev_priv(dev);
146 	return __sungem_phy_read(gp, mii_id, reg);
147 }
148 
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
150 {
151 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
152 }
153 
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
155 {
156 	u32 cmd;
157 	int limit = 10000;
158 
159 	cmd  = (1 << 30);
160 	cmd |= (1 << 28);
161 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 	cmd |= (MIF_FRAME_TAMSB);
164 	cmd |= (val & MIF_FRAME_DATA);
165 	writel(cmd, gp->regs + MIF_FRAME);
166 
167 	while (limit--) {
168 		cmd = readl(gp->regs + MIF_FRAME);
169 		if (cmd & MIF_FRAME_TALSB)
170 			break;
171 
172 		udelay(10);
173 	}
174 }
175 
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
177 {
178 	struct gem *gp = netdev_priv(dev);
179 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
180 }
181 
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
183 {
184 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
185 }
186 
187 static inline void gem_enable_ints(struct gem *gp)
188 {
189 	/* Enable all interrupts but TXDONE */
190 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
191 }
192 
193 static inline void gem_disable_ints(struct gem *gp)
194 {
195 	/* Disable all interrupts, including TXDONE */
196 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
198 }
199 
200 static void gem_get_cell(struct gem *gp)
201 {
202 	BUG_ON(gp->cell_enabled < 0);
203 	gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 	if (gp->cell_enabled == 1) {
206 		mb();
207 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 		udelay(10);
209 	}
210 #endif /* CONFIG_PPC_PMAC */
211 }
212 
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
215 {
216 	BUG_ON(gp->cell_enabled <= 0);
217 	gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 	if (gp->cell_enabled == 0) {
220 		mb();
221 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 		udelay(10);
223 	}
224 #endif /* CONFIG_PPC_PMAC */
225 }
226 
227 static inline void gem_netif_stop(struct gem *gp)
228 {
229 	netif_trans_update(gp->dev);	/* prevent tx timeout */
230 	napi_disable(&gp->napi);
231 	netif_tx_disable(gp->dev);
232 }
233 
234 static inline void gem_netif_start(struct gem *gp)
235 {
236 	/* NOTE: unconditional netif_wake_queue is only
237 	 * appropriate so long as all callers are assured to
238 	 * have free tx slots.
239 	 */
240 	netif_wake_queue(gp->dev);
241 	napi_enable(&gp->napi);
242 }
243 
244 static void gem_schedule_reset(struct gem *gp)
245 {
246 	gp->reset_task_pending = 1;
247 	schedule_work(&gp->reset_task);
248 }
249 
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251 {
252 	if (netif_msg_intr(gp))
253 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 }
255 
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257 {
258 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 	u32 pcs_miistat;
260 
261 	if (netif_msg_intr(gp))
262 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 			gp->dev->name, pcs_istat);
264 
265 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 		netdev_err(dev, "PCS irq but no link status change???\n");
267 		return 0;
268 	}
269 
270 	/* The link status bit latches on zero, so you must
271 	 * read it twice in such a case to see a transition
272 	 * to the link being up.
273 	 */
274 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 	if (!(pcs_miistat & PCS_MIISTAT_LS))
276 		pcs_miistat |=
277 			(readl(gp->regs + PCS_MIISTAT) &
278 			 PCS_MIISTAT_LS);
279 
280 	if (pcs_miistat & PCS_MIISTAT_ANC) {
281 		/* The remote-fault indication is only valid
282 		 * when autoneg has completed.
283 		 */
284 		if (pcs_miistat & PCS_MIISTAT_RF)
285 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 		else
287 			netdev_info(dev, "PCS AutoNEG complete\n");
288 	}
289 
290 	if (pcs_miistat & PCS_MIISTAT_LS) {
291 		netdev_info(dev, "PCS link is now up\n");
292 		netif_carrier_on(gp->dev);
293 	} else {
294 		netdev_info(dev, "PCS link is now down\n");
295 		netif_carrier_off(gp->dev);
296 		/* If this happens and the link timer is not running,
297 		 * reset so we re-negotiate.
298 		 */
299 		if (!timer_pending(&gp->link_timer))
300 			return 1;
301 	}
302 
303 	return 0;
304 }
305 
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307 {
308 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309 
310 	if (netif_msg_intr(gp))
311 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 			gp->dev->name, txmac_stat);
313 
314 	/* Defer timer expiration is quite normal,
315 	 * don't even log the event.
316 	 */
317 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
319 		return 0;
320 
321 	if (txmac_stat & MAC_TXSTAT_URUN) {
322 		netdev_err(dev, "TX MAC xmit underrun\n");
323 		dev->stats.tx_fifo_errors++;
324 	}
325 
326 	if (txmac_stat & MAC_TXSTAT_MPE) {
327 		netdev_err(dev, "TX MAC max packet size error\n");
328 		dev->stats.tx_errors++;
329 	}
330 
331 	/* The rest are all cases of one of the 16-bit TX
332 	 * counters expiring.
333 	 */
334 	if (txmac_stat & MAC_TXSTAT_NCE)
335 		dev->stats.collisions += 0x10000;
336 
337 	if (txmac_stat & MAC_TXSTAT_ECE) {
338 		dev->stats.tx_aborted_errors += 0x10000;
339 		dev->stats.collisions += 0x10000;
340 	}
341 
342 	if (txmac_stat & MAC_TXSTAT_LCE) {
343 		dev->stats.tx_aborted_errors += 0x10000;
344 		dev->stats.collisions += 0x10000;
345 	}
346 
347 	/* We do not keep track of MAC_TXSTAT_FCE and
348 	 * MAC_TXSTAT_PCE events.
349 	 */
350 	return 0;
351 }
352 
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354  * so we do the following.
355  *
356  * If any part of the reset goes wrong, we return 1 and that causes the
357  * whole chip to be reset.
358  */
359 static int gem_rxmac_reset(struct gem *gp)
360 {
361 	struct net_device *dev = gp->dev;
362 	int limit, i;
363 	u64 desc_dma;
364 	u32 val;
365 
366 	/* First, reset & disable MAC RX. */
367 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 	for (limit = 0; limit < 5000; limit++) {
369 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 			break;
371 		udelay(10);
372 	}
373 	if (limit == 5000) {
374 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 		return 1;
376 	}
377 
378 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 	       gp->regs + MAC_RXCFG);
380 	for (limit = 0; limit < 5000; limit++) {
381 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 			break;
383 		udelay(10);
384 	}
385 	if (limit == 5000) {
386 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 		return 1;
388 	}
389 
390 	/* Second, disable RX DMA. */
391 	writel(0, gp->regs + RXDMA_CFG);
392 	for (limit = 0; limit < 5000; limit++) {
393 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 			break;
395 		udelay(10);
396 	}
397 	if (limit == 5000) {
398 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 		return 1;
400 	}
401 
402 	mdelay(5);
403 
404 	/* Execute RX reset command. */
405 	writel(gp->swrst_base | GREG_SWRST_RXRST,
406 	       gp->regs + GREG_SWRST);
407 	for (limit = 0; limit < 5000; limit++) {
408 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 			break;
410 		udelay(10);
411 	}
412 	if (limit == 5000) {
413 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 		return 1;
415 	}
416 
417 	/* Refresh the RX ring. */
418 	for (i = 0; i < RX_RING_SIZE; i++) {
419 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
420 
421 		if (gp->rx_skbs[i] == NULL) {
422 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 			return 1;
424 		}
425 
426 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427 	}
428 	gp->rx_new = gp->rx_old = 0;
429 
430 	/* Now we must reprogram the rest of RX unit. */
431 	desc_dma = (u64) gp->gblock_dvma;
432 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 	writel(val, gp->regs + RXDMA_CFG);
439 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 		writel(((5 & RXDMA_BLANK_IPKTS) |
441 			((8 << 12) & RXDMA_BLANK_ITIME)),
442 		       gp->regs + RXDMA_BLANK);
443 	else
444 		writel(((5 & RXDMA_BLANK_IPKTS) |
445 			((4 << 12) & RXDMA_BLANK_ITIME)),
446 		       gp->regs + RXDMA_BLANK);
447 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 	writel(val, gp->regs + RXDMA_PTHRESH);
450 	val = readl(gp->regs + RXDMA_CFG);
451 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 	val = readl(gp->regs + MAC_RXCFG);
454 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455 
456 	return 0;
457 }
458 
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460 {
461 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 	int ret = 0;
463 
464 	if (netif_msg_intr(gp))
465 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 			gp->dev->name, rxmac_stat);
467 
468 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 		u32 smac = readl(gp->regs + MAC_SMACHINE);
470 
471 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 		dev->stats.rx_over_errors++;
473 		dev->stats.rx_fifo_errors++;
474 
475 		ret = gem_rxmac_reset(gp);
476 	}
477 
478 	if (rxmac_stat & MAC_RXSTAT_ACE)
479 		dev->stats.rx_frame_errors += 0x10000;
480 
481 	if (rxmac_stat & MAC_RXSTAT_CCE)
482 		dev->stats.rx_crc_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_LCE)
485 		dev->stats.rx_length_errors += 0x10000;
486 
487 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 	 * events.
489 	 */
490 	return ret;
491 }
492 
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494 {
495 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496 
497 	if (netif_msg_intr(gp))
498 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 			gp->dev->name, mac_cstat);
500 
501 	/* This interrupt is just for pause frame and pause
502 	 * tracking.  It is useful for diagnostics and debug
503 	 * but probably by default we will mask these events.
504 	 */
505 	if (mac_cstat & MAC_CSTAT_PS)
506 		gp->pause_entered++;
507 
508 	if (mac_cstat & MAC_CSTAT_PRCV)
509 		gp->pause_last_time_recvd = (mac_cstat >> 16);
510 
511 	return 0;
512 }
513 
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515 {
516 	u32 mif_status = readl(gp->regs + MIF_STATUS);
517 	u32 reg_val, changed_bits;
518 
519 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 	changed_bits = (mif_status & MIF_STATUS_STAT);
521 
522 	gem_handle_mif_event(gp, reg_val, changed_bits);
523 
524 	return 0;
525 }
526 
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528 {
529 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530 
531 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 		netdev_err(dev, "PCI error [%04x]", pci_estat);
534 
535 		if (pci_estat & GREG_PCIESTAT_BADACK)
536 			pr_cont(" <No ACK64# during ABS64 cycle>");
537 		if (pci_estat & GREG_PCIESTAT_DTRTO)
538 			pr_cont(" <Delayed transaction timeout>");
539 		if (pci_estat & GREG_PCIESTAT_OTHER)
540 			pr_cont(" <other>");
541 		pr_cont("\n");
542 	} else {
543 		pci_estat |= GREG_PCIESTAT_OTHER;
544 		netdev_err(dev, "PCI error\n");
545 	}
546 
547 	if (pci_estat & GREG_PCIESTAT_OTHER) {
548 		int pci_errs;
549 
550 		/* Interrogate PCI config space for the
551 		 * true cause.
552 		 */
553 		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554 		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555 		if (pci_errs & PCI_STATUS_PARITY)
556 			netdev_err(dev, "PCI parity error detected\n");
557 		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558 			netdev_err(dev, "PCI target abort\n");
559 		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560 			netdev_err(dev, "PCI master acks target abort\n");
561 		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562 			netdev_err(dev, "PCI master abort\n");
563 		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564 			netdev_err(dev, "PCI system error SERR#\n");
565 		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566 			netdev_err(dev, "PCI parity error\n");
567 	}
568 
569 	/* For all PCI errors, we should reset the chip. */
570 	return 1;
571 }
572 
573 /* All non-normal interrupt conditions get serviced here.
574  * Returns non-zero if we should just exit the interrupt
575  * handler right now (ie. if we reset the card which invalidates
576  * all of the other original irq status bits).
577  */
578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
579 {
580 	if (gem_status & GREG_STAT_RXNOBUF) {
581 		/* Frame arrived, no free RX buffers available. */
582 		if (netif_msg_rx_err(gp))
583 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
584 				gp->dev->name);
585 		dev->stats.rx_dropped++;
586 	}
587 
588 	if (gem_status & GREG_STAT_RXTAGERR) {
589 		/* corrupt RX tag framing */
590 		if (netif_msg_rx_err(gp))
591 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
592 				gp->dev->name);
593 		dev->stats.rx_errors++;
594 
595 		return 1;
596 	}
597 
598 	if (gem_status & GREG_STAT_PCS) {
599 		if (gem_pcs_interrupt(dev, gp, gem_status))
600 			return 1;
601 	}
602 
603 	if (gem_status & GREG_STAT_TXMAC) {
604 		if (gem_txmac_interrupt(dev, gp, gem_status))
605 			return 1;
606 	}
607 
608 	if (gem_status & GREG_STAT_RXMAC) {
609 		if (gem_rxmac_interrupt(dev, gp, gem_status))
610 			return 1;
611 	}
612 
613 	if (gem_status & GREG_STAT_MAC) {
614 		if (gem_mac_interrupt(dev, gp, gem_status))
615 			return 1;
616 	}
617 
618 	if (gem_status & GREG_STAT_MIF) {
619 		if (gem_mif_interrupt(dev, gp, gem_status))
620 			return 1;
621 	}
622 
623 	if (gem_status & GREG_STAT_PCIERR) {
624 		if (gem_pci_interrupt(dev, gp, gem_status))
625 			return 1;
626 	}
627 
628 	return 0;
629 }
630 
631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
632 {
633 	int entry, limit;
634 
635 	entry = gp->tx_old;
636 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637 	while (entry != limit) {
638 		struct sk_buff *skb;
639 		struct gem_txd *txd;
640 		dma_addr_t dma_addr;
641 		u32 dma_len;
642 		int frag;
643 
644 		if (netif_msg_tx_done(gp))
645 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
646 				gp->dev->name, entry);
647 		skb = gp->tx_skbs[entry];
648 		if (skb_shinfo(skb)->nr_frags) {
649 			int last = entry + skb_shinfo(skb)->nr_frags;
650 			int walk = entry;
651 			int incomplete = 0;
652 
653 			last &= (TX_RING_SIZE - 1);
654 			for (;;) {
655 				walk = NEXT_TX(walk);
656 				if (walk == limit)
657 					incomplete = 1;
658 				if (walk == last)
659 					break;
660 			}
661 			if (incomplete)
662 				break;
663 		}
664 		gp->tx_skbs[entry] = NULL;
665 		dev->stats.tx_bytes += skb->len;
666 
667 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668 			txd = &gp->init_block->txd[entry];
669 
670 			dma_addr = le64_to_cpu(txd->buffer);
671 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
672 
673 			dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
674 				       DMA_TO_DEVICE);
675 			entry = NEXT_TX(entry);
676 		}
677 
678 		dev->stats.tx_packets++;
679 		dev_consume_skb_any(skb);
680 	}
681 	gp->tx_old = entry;
682 
683 	/* Need to make the tx_old update visible to gem_start_xmit()
684 	 * before checking for netif_queue_stopped().  Without the
685 	 * memory barrier, there is a small possibility that gem_start_xmit()
686 	 * will miss it and cause the queue to be stopped forever.
687 	 */
688 	smp_mb();
689 
690 	if (unlikely(netif_queue_stopped(dev) &&
691 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
692 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
693 
694 		__netif_tx_lock(txq, smp_processor_id());
695 		if (netif_queue_stopped(dev) &&
696 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
697 			netif_wake_queue(dev);
698 		__netif_tx_unlock(txq);
699 	}
700 }
701 
702 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
703 {
704 	int cluster_start, curr, count, kick;
705 
706 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
707 	count = 0;
708 	kick = -1;
709 	dma_wmb();
710 	while (curr != limit) {
711 		curr = NEXT_RX(curr);
712 		if (++count == 4) {
713 			struct gem_rxd *rxd =
714 				&gp->init_block->rxd[cluster_start];
715 			for (;;) {
716 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
717 				rxd++;
718 				cluster_start = NEXT_RX(cluster_start);
719 				if (cluster_start == curr)
720 					break;
721 			}
722 			kick = curr;
723 			count = 0;
724 		}
725 	}
726 	if (kick >= 0) {
727 		mb();
728 		writel(kick, gp->regs + RXDMA_KICK);
729 	}
730 }
731 
732 #define ALIGNED_RX_SKB_ADDR(addr) \
733         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
734 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
735 						gfp_t gfp_flags)
736 {
737 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
738 
739 	if (likely(skb)) {
740 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
741 		skb_reserve(skb, offset);
742 	}
743 	return skb;
744 }
745 
746 static int gem_rx(struct gem *gp, int work_to_do)
747 {
748 	struct net_device *dev = gp->dev;
749 	int entry, drops, work_done = 0;
750 	u32 done;
751 
752 	if (netif_msg_rx_status(gp))
753 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
754 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
755 
756 	entry = gp->rx_new;
757 	drops = 0;
758 	done = readl(gp->regs + RXDMA_DONE);
759 	for (;;) {
760 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
761 		struct sk_buff *skb;
762 		u64 status = le64_to_cpu(rxd->status_word);
763 		dma_addr_t dma_addr;
764 		int len;
765 
766 		if ((status & RXDCTRL_OWN) != 0)
767 			break;
768 
769 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
770 			break;
771 
772 		/* When writing back RX descriptor, GEM writes status
773 		 * then buffer address, possibly in separate transactions.
774 		 * If we don't wait for the chip to write both, we could
775 		 * post a new buffer to this descriptor then have GEM spam
776 		 * on the buffer address.  We sync on the RX completion
777 		 * register to prevent this from happening.
778 		 */
779 		if (entry == done) {
780 			done = readl(gp->regs + RXDMA_DONE);
781 			if (entry == done)
782 				break;
783 		}
784 
785 		/* We can now account for the work we're about to do */
786 		work_done++;
787 
788 		skb = gp->rx_skbs[entry];
789 
790 		len = (status & RXDCTRL_BUFSZ) >> 16;
791 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
792 			dev->stats.rx_errors++;
793 			if (len < ETH_ZLEN)
794 				dev->stats.rx_length_errors++;
795 			if (len & RXDCTRL_BAD)
796 				dev->stats.rx_crc_errors++;
797 
798 			/* We'll just return it to GEM. */
799 		drop_it:
800 			dev->stats.rx_dropped++;
801 			goto next;
802 		}
803 
804 		dma_addr = le64_to_cpu(rxd->buffer);
805 		if (len > RX_COPY_THRESHOLD) {
806 			struct sk_buff *new_skb;
807 
808 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
809 			if (new_skb == NULL) {
810 				drops++;
811 				goto drop_it;
812 			}
813 			dma_unmap_page(&gp->pdev->dev, dma_addr,
814 				       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
815 			gp->rx_skbs[entry] = new_skb;
816 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817 			rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
818 							       virt_to_page(new_skb->data),
819 							       offset_in_page(new_skb->data),
820 							       RX_BUF_ALLOC_SIZE(gp),
821 							       DMA_FROM_DEVICE));
822 			skb_reserve(new_skb, RX_OFFSET);
823 
824 			/* Trim the original skb for the netif. */
825 			skb_trim(skb, len);
826 		} else {
827 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
828 
829 			if (copy_skb == NULL) {
830 				drops++;
831 				goto drop_it;
832 			}
833 
834 			skb_reserve(copy_skb, 2);
835 			skb_put(copy_skb, len);
836 			dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
837 						DMA_FROM_DEVICE);
838 			skb_copy_from_linear_data(skb, copy_skb->data, len);
839 			dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
840 						   len, DMA_FROM_DEVICE);
841 
842 			/* We'll reuse the original ring buffer. */
843 			skb = copy_skb;
844 		}
845 
846 		if (likely(dev->features & NETIF_F_RXCSUM)) {
847 			__sum16 csum;
848 
849 			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
850 			skb->csum = csum_unfold(csum);
851 			skb->ip_summed = CHECKSUM_COMPLETE;
852 		}
853 		skb->protocol = eth_type_trans(skb, gp->dev);
854 
855 		napi_gro_receive(&gp->napi, skb);
856 
857 		dev->stats.rx_packets++;
858 		dev->stats.rx_bytes += len;
859 
860 	next:
861 		entry = NEXT_RX(entry);
862 	}
863 
864 	gem_post_rxds(gp, entry);
865 
866 	gp->rx_new = entry;
867 
868 	if (drops)
869 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
870 
871 	return work_done;
872 }
873 
874 static int gem_poll(struct napi_struct *napi, int budget)
875 {
876 	struct gem *gp = container_of(napi, struct gem, napi);
877 	struct net_device *dev = gp->dev;
878 	int work_done;
879 
880 	work_done = 0;
881 	do {
882 		/* Handle anomalies */
883 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
884 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
885 			int reset;
886 
887 			/* We run the abnormal interrupt handling code with
888 			 * the Tx lock. It only resets the Rx portion of the
889 			 * chip, but we need to guard it against DMA being
890 			 * restarted by the link poll timer
891 			 */
892 			__netif_tx_lock(txq, smp_processor_id());
893 			reset = gem_abnormal_irq(dev, gp, gp->status);
894 			__netif_tx_unlock(txq);
895 			if (reset) {
896 				gem_schedule_reset(gp);
897 				napi_complete(napi);
898 				return work_done;
899 			}
900 		}
901 
902 		/* Run TX completion thread */
903 		gem_tx(dev, gp, gp->status);
904 
905 		/* Run RX thread. We don't use any locking here,
906 		 * code willing to do bad things - like cleaning the
907 		 * rx ring - must call napi_disable(), which
908 		 * schedule_timeout()'s if polling is already disabled.
909 		 */
910 		work_done += gem_rx(gp, budget - work_done);
911 
912 		if (work_done >= budget)
913 			return work_done;
914 
915 		gp->status = readl(gp->regs + GREG_STAT);
916 	} while (gp->status & GREG_STAT_NAPI);
917 
918 	napi_complete_done(napi, work_done);
919 	gem_enable_ints(gp);
920 
921 	return work_done;
922 }
923 
924 static irqreturn_t gem_interrupt(int irq, void *dev_id)
925 {
926 	struct net_device *dev = dev_id;
927 	struct gem *gp = netdev_priv(dev);
928 
929 	if (napi_schedule_prep(&gp->napi)) {
930 		u32 gem_status = readl(gp->regs + GREG_STAT);
931 
932 		if (unlikely(gem_status == 0)) {
933 			napi_enable(&gp->napi);
934 			return IRQ_NONE;
935 		}
936 		if (netif_msg_intr(gp))
937 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
938 			       gp->dev->name, gem_status);
939 
940 		gp->status = gem_status;
941 		gem_disable_ints(gp);
942 		__napi_schedule(&gp->napi);
943 	}
944 
945 	/* If polling was disabled at the time we received that
946 	 * interrupt, we may return IRQ_HANDLED here while we
947 	 * should return IRQ_NONE. No big deal...
948 	 */
949 	return IRQ_HANDLED;
950 }
951 
952 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
953 {
954 	struct gem *gp = netdev_priv(dev);
955 
956 	netdev_err(dev, "transmit timed out, resetting\n");
957 
958 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
959 		   readl(gp->regs + TXDMA_CFG),
960 		   readl(gp->regs + MAC_TXSTAT),
961 		   readl(gp->regs + MAC_TXCFG));
962 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
963 		   readl(gp->regs + RXDMA_CFG),
964 		   readl(gp->regs + MAC_RXSTAT),
965 		   readl(gp->regs + MAC_RXCFG));
966 
967 	gem_schedule_reset(gp);
968 }
969 
970 static __inline__ int gem_intme(int entry)
971 {
972 	/* Algorithm: IRQ every 1/2 of descriptors. */
973 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
974 		return 1;
975 
976 	return 0;
977 }
978 
979 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
980 				  struct net_device *dev)
981 {
982 	struct gem *gp = netdev_priv(dev);
983 	int entry;
984 	u64 ctrl;
985 
986 	ctrl = 0;
987 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
988 		const u64 csum_start_off = skb_checksum_start_offset(skb);
989 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
990 
991 		ctrl = (TXDCTRL_CENAB |
992 			(csum_start_off << 15) |
993 			(csum_stuff_off << 21));
994 	}
995 
996 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
997 		/* This is a hard error, log it. */
998 		if (!netif_queue_stopped(dev)) {
999 			netif_stop_queue(dev);
1000 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1001 		}
1002 		return NETDEV_TX_BUSY;
1003 	}
1004 
1005 	entry = gp->tx_new;
1006 	gp->tx_skbs[entry] = skb;
1007 
1008 	if (skb_shinfo(skb)->nr_frags == 0) {
1009 		struct gem_txd *txd = &gp->init_block->txd[entry];
1010 		dma_addr_t mapping;
1011 		u32 len;
1012 
1013 		len = skb->len;
1014 		mapping = dma_map_page(&gp->pdev->dev,
1015 				       virt_to_page(skb->data),
1016 				       offset_in_page(skb->data),
1017 				       len, DMA_TO_DEVICE);
1018 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1019 		if (gem_intme(entry))
1020 			ctrl |= TXDCTRL_INTME;
1021 		txd->buffer = cpu_to_le64(mapping);
1022 		dma_wmb();
1023 		txd->control_word = cpu_to_le64(ctrl);
1024 		entry = NEXT_TX(entry);
1025 	} else {
1026 		struct gem_txd *txd;
1027 		u32 first_len;
1028 		u64 intme;
1029 		dma_addr_t first_mapping;
1030 		int frag, first_entry = entry;
1031 
1032 		intme = 0;
1033 		if (gem_intme(entry))
1034 			intme |= TXDCTRL_INTME;
1035 
1036 		/* We must give this initial chunk to the device last.
1037 		 * Otherwise we could race with the device.
1038 		 */
1039 		first_len = skb_headlen(skb);
1040 		first_mapping = dma_map_page(&gp->pdev->dev,
1041 					     virt_to_page(skb->data),
1042 					     offset_in_page(skb->data),
1043 					     first_len, DMA_TO_DEVICE);
1044 		entry = NEXT_TX(entry);
1045 
1046 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1047 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1048 			u32 len;
1049 			dma_addr_t mapping;
1050 			u64 this_ctrl;
1051 
1052 			len = skb_frag_size(this_frag);
1053 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1054 						   0, len, DMA_TO_DEVICE);
1055 			this_ctrl = ctrl;
1056 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1057 				this_ctrl |= TXDCTRL_EOF;
1058 
1059 			txd = &gp->init_block->txd[entry];
1060 			txd->buffer = cpu_to_le64(mapping);
1061 			dma_wmb();
1062 			txd->control_word = cpu_to_le64(this_ctrl | len);
1063 
1064 			if (gem_intme(entry))
1065 				intme |= TXDCTRL_INTME;
1066 
1067 			entry = NEXT_TX(entry);
1068 		}
1069 		txd = &gp->init_block->txd[first_entry];
1070 		txd->buffer = cpu_to_le64(first_mapping);
1071 		dma_wmb();
1072 		txd->control_word =
1073 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1074 	}
1075 
1076 	gp->tx_new = entry;
1077 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1078 		netif_stop_queue(dev);
1079 
1080 		/* netif_stop_queue() must be done before checking
1081 		 * tx index in TX_BUFFS_AVAIL() below, because
1082 		 * in gem_tx(), we update tx_old before checking for
1083 		 * netif_queue_stopped().
1084 		 */
1085 		smp_mb();
1086 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1087 			netif_wake_queue(dev);
1088 	}
1089 	if (netif_msg_tx_queued(gp))
1090 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1091 		       dev->name, entry, skb->len);
1092 	mb();
1093 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1094 
1095 	return NETDEV_TX_OK;
1096 }
1097 
1098 static void gem_pcs_reset(struct gem *gp)
1099 {
1100 	int limit;
1101 	u32 val;
1102 
1103 	/* Reset PCS unit. */
1104 	val = readl(gp->regs + PCS_MIICTRL);
1105 	val |= PCS_MIICTRL_RST;
1106 	writel(val, gp->regs + PCS_MIICTRL);
1107 
1108 	limit = 32;
1109 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1110 		udelay(100);
1111 		if (limit-- <= 0)
1112 			break;
1113 	}
1114 	if (limit < 0)
1115 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1116 }
1117 
1118 static void gem_pcs_reinit_adv(struct gem *gp)
1119 {
1120 	u32 val;
1121 
1122 	/* Make sure PCS is disabled while changing advertisement
1123 	 * configuration.
1124 	 */
1125 	val = readl(gp->regs + PCS_CFG);
1126 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1127 	writel(val, gp->regs + PCS_CFG);
1128 
1129 	/* Advertise all capabilities except asymmetric
1130 	 * pause.
1131 	 */
1132 	val = readl(gp->regs + PCS_MIIADV);
1133 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1134 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1135 	writel(val, gp->regs + PCS_MIIADV);
1136 
1137 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1138 	 * and re-enable PCS.
1139 	 */
1140 	val = readl(gp->regs + PCS_MIICTRL);
1141 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1142 	val &= ~PCS_MIICTRL_WB;
1143 	writel(val, gp->regs + PCS_MIICTRL);
1144 
1145 	val = readl(gp->regs + PCS_CFG);
1146 	val |= PCS_CFG_ENABLE;
1147 	writel(val, gp->regs + PCS_CFG);
1148 
1149 	/* Make sure serialink loopback is off.  The meaning
1150 	 * of this bit is logically inverted based upon whether
1151 	 * you are in Serialink or SERDES mode.
1152 	 */
1153 	val = readl(gp->regs + PCS_SCTRL);
1154 	if (gp->phy_type == phy_serialink)
1155 		val &= ~PCS_SCTRL_LOOP;
1156 	else
1157 		val |= PCS_SCTRL_LOOP;
1158 	writel(val, gp->regs + PCS_SCTRL);
1159 }
1160 
1161 #define STOP_TRIES 32
1162 
1163 static void gem_reset(struct gem *gp)
1164 {
1165 	int limit;
1166 	u32 val;
1167 
1168 	/* Make sure we won't get any more interrupts */
1169 	writel(0xffffffff, gp->regs + GREG_IMASK);
1170 
1171 	/* Reset the chip */
1172 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1173 	       gp->regs + GREG_SWRST);
1174 
1175 	limit = STOP_TRIES;
1176 
1177 	do {
1178 		udelay(20);
1179 		val = readl(gp->regs + GREG_SWRST);
1180 		if (limit-- <= 0)
1181 			break;
1182 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1183 
1184 	if (limit < 0)
1185 		netdev_err(gp->dev, "SW reset is ghetto\n");
1186 
1187 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1188 		gem_pcs_reinit_adv(gp);
1189 }
1190 
1191 static void gem_start_dma(struct gem *gp)
1192 {
1193 	u32 val;
1194 
1195 	/* We are ready to rock, turn everything on. */
1196 	val = readl(gp->regs + TXDMA_CFG);
1197 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1198 	val = readl(gp->regs + RXDMA_CFG);
1199 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1200 	val = readl(gp->regs + MAC_TXCFG);
1201 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1202 	val = readl(gp->regs + MAC_RXCFG);
1203 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1204 
1205 	(void) readl(gp->regs + MAC_RXCFG);
1206 	udelay(100);
1207 
1208 	gem_enable_ints(gp);
1209 
1210 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1211 }
1212 
1213 /* DMA won't be actually stopped before about 4ms tho ...
1214  */
1215 static void gem_stop_dma(struct gem *gp)
1216 {
1217 	u32 val;
1218 
1219 	/* We are done rocking, turn everything off. */
1220 	val = readl(gp->regs + TXDMA_CFG);
1221 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1222 	val = readl(gp->regs + RXDMA_CFG);
1223 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1224 	val = readl(gp->regs + MAC_TXCFG);
1225 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1226 	val = readl(gp->regs + MAC_RXCFG);
1227 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1228 
1229 	(void) readl(gp->regs + MAC_RXCFG);
1230 
1231 	/* Need to wait a bit ... done by the caller */
1232 }
1233 
1234 
1235 // XXX dbl check what that function should do when called on PCS PHY
1236 static void gem_begin_auto_negotiation(struct gem *gp,
1237 				       const struct ethtool_link_ksettings *ep)
1238 {
1239 	u32 advertise, features;
1240 	int autoneg;
1241 	int speed;
1242 	int duplex;
1243 	u32 advertising;
1244 
1245 	if (ep)
1246 		ethtool_convert_link_mode_to_legacy_u32(
1247 			&advertising, ep->link_modes.advertising);
1248 
1249 	if (gp->phy_type != phy_mii_mdio0 &&
1250 	    gp->phy_type != phy_mii_mdio1)
1251 		goto non_mii;
1252 
1253 	/* Setup advertise */
1254 	if (found_mii_phy(gp))
1255 		features = gp->phy_mii.def->features;
1256 	else
1257 		features = 0;
1258 
1259 	advertise = features & ADVERTISE_MASK;
1260 	if (gp->phy_mii.advertising != 0)
1261 		advertise &= gp->phy_mii.advertising;
1262 
1263 	autoneg = gp->want_autoneg;
1264 	speed = gp->phy_mii.speed;
1265 	duplex = gp->phy_mii.duplex;
1266 
1267 	/* Setup link parameters */
1268 	if (!ep)
1269 		goto start_aneg;
1270 	if (ep->base.autoneg == AUTONEG_ENABLE) {
1271 		advertise = advertising;
1272 		autoneg = 1;
1273 	} else {
1274 		autoneg = 0;
1275 		speed = ep->base.speed;
1276 		duplex = ep->base.duplex;
1277 	}
1278 
1279 start_aneg:
1280 	/* Sanitize settings based on PHY capabilities */
1281 	if ((features & SUPPORTED_Autoneg) == 0)
1282 		autoneg = 0;
1283 	if (speed == SPEED_1000 &&
1284 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1285 		speed = SPEED_100;
1286 	if (speed == SPEED_100 &&
1287 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1288 		speed = SPEED_10;
1289 	if (duplex == DUPLEX_FULL &&
1290 	    !(features & (SUPPORTED_1000baseT_Full |
1291 	    		  SUPPORTED_100baseT_Full |
1292 	    		  SUPPORTED_10baseT_Full)))
1293 	    	duplex = DUPLEX_HALF;
1294 	if (speed == 0)
1295 		speed = SPEED_10;
1296 
1297 	/* If we are asleep, we don't try to actually setup the PHY, we
1298 	 * just store the settings
1299 	 */
1300 	if (!netif_device_present(gp->dev)) {
1301 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1302 		gp->phy_mii.speed = speed;
1303 		gp->phy_mii.duplex = duplex;
1304 		return;
1305 	}
1306 
1307 	/* Configure PHY & start aneg */
1308 	gp->want_autoneg = autoneg;
1309 	if (autoneg) {
1310 		if (found_mii_phy(gp))
1311 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1312 		gp->lstate = link_aneg;
1313 	} else {
1314 		if (found_mii_phy(gp))
1315 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1316 		gp->lstate = link_force_ok;
1317 	}
1318 
1319 non_mii:
1320 	gp->timer_ticks = 0;
1321 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1322 }
1323 
1324 /* A link-up condition has occurred, initialize and enable the
1325  * rest of the chip.
1326  */
1327 static int gem_set_link_modes(struct gem *gp)
1328 {
1329 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1330 	int full_duplex, speed, pause;
1331 	u32 val;
1332 
1333 	full_duplex = 0;
1334 	speed = SPEED_10;
1335 	pause = 0;
1336 
1337 	if (found_mii_phy(gp)) {
1338 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1339 	    		return 1;
1340 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1341 		speed = gp->phy_mii.speed;
1342 		pause = gp->phy_mii.pause;
1343 	} else if (gp->phy_type == phy_serialink ||
1344 	    	   gp->phy_type == phy_serdes) {
1345 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1346 
1347 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1348 			full_duplex = 1;
1349 		speed = SPEED_1000;
1350 	}
1351 
1352 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1353 		   speed, (full_duplex ? "full" : "half"));
1354 
1355 
1356 	/* We take the tx queue lock to avoid collisions between
1357 	 * this code, the tx path and the NAPI-driven error path
1358 	 */
1359 	__netif_tx_lock(txq, smp_processor_id());
1360 
1361 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1362 	if (full_duplex) {
1363 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1364 	} else {
1365 		/* MAC_TXCFG_NBO must be zero. */
1366 	}
1367 	writel(val, gp->regs + MAC_TXCFG);
1368 
1369 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1370 	if (!full_duplex &&
1371 	    (gp->phy_type == phy_mii_mdio0 ||
1372 	     gp->phy_type == phy_mii_mdio1)) {
1373 		val |= MAC_XIFCFG_DISE;
1374 	} else if (full_duplex) {
1375 		val |= MAC_XIFCFG_FLED;
1376 	}
1377 
1378 	if (speed == SPEED_1000)
1379 		val |= (MAC_XIFCFG_GMII);
1380 
1381 	writel(val, gp->regs + MAC_XIFCFG);
1382 
1383 	/* If gigabit and half-duplex, enable carrier extension
1384 	 * mode.  Else, disable it.
1385 	 */
1386 	if (speed == SPEED_1000 && !full_duplex) {
1387 		val = readl(gp->regs + MAC_TXCFG);
1388 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1389 
1390 		val = readl(gp->regs + MAC_RXCFG);
1391 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1392 	} else {
1393 		val = readl(gp->regs + MAC_TXCFG);
1394 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1395 
1396 		val = readl(gp->regs + MAC_RXCFG);
1397 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1398 	}
1399 
1400 	if (gp->phy_type == phy_serialink ||
1401 	    gp->phy_type == phy_serdes) {
1402 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1403 
1404 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1405 			pause = 1;
1406 	}
1407 
1408 	if (!full_duplex)
1409 		writel(512, gp->regs + MAC_STIME);
1410 	else
1411 		writel(64, gp->regs + MAC_STIME);
1412 	val = readl(gp->regs + MAC_MCCFG);
1413 	if (pause)
1414 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1415 	else
1416 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1417 	writel(val, gp->regs + MAC_MCCFG);
1418 
1419 	gem_start_dma(gp);
1420 
1421 	__netif_tx_unlock(txq);
1422 
1423 	if (netif_msg_link(gp)) {
1424 		if (pause) {
1425 			netdev_info(gp->dev,
1426 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1427 				    gp->rx_fifo_sz,
1428 				    gp->rx_pause_off,
1429 				    gp->rx_pause_on);
1430 		} else {
1431 			netdev_info(gp->dev, "Pause is disabled\n");
1432 		}
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int gem_mdio_link_not_up(struct gem *gp)
1439 {
1440 	switch (gp->lstate) {
1441 	case link_force_ret:
1442 		netif_info(gp, link, gp->dev,
1443 			   "Autoneg failed again, keeping forced mode\n");
1444 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1445 			gp->last_forced_speed, DUPLEX_HALF);
1446 		gp->timer_ticks = 5;
1447 		gp->lstate = link_force_ok;
1448 		return 0;
1449 	case link_aneg:
1450 		/* We try forced modes after a failed aneg only on PHYs that don't
1451 		 * have "magic_aneg" bit set, which means they internally do the
1452 		 * while forced-mode thingy. On these, we just restart aneg
1453 		 */
1454 		if (gp->phy_mii.def->magic_aneg)
1455 			return 1;
1456 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1457 		/* Try forced modes. */
1458 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1459 			DUPLEX_HALF);
1460 		gp->timer_ticks = 5;
1461 		gp->lstate = link_force_try;
1462 		return 0;
1463 	case link_force_try:
1464 		/* Downgrade from 100 to 10 Mbps if necessary.
1465 		 * If already at 10Mbps, warn user about the
1466 		 * situation every 10 ticks.
1467 		 */
1468 		if (gp->phy_mii.speed == SPEED_100) {
1469 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1470 				DUPLEX_HALF);
1471 			gp->timer_ticks = 5;
1472 			netif_info(gp, link, gp->dev,
1473 				   "switching to forced 10bt\n");
1474 			return 0;
1475 		} else
1476 			return 1;
1477 	default:
1478 		return 0;
1479 	}
1480 }
1481 
1482 static void gem_link_timer(struct timer_list *t)
1483 {
1484 	struct gem *gp = from_timer(gp, t, link_timer);
1485 	struct net_device *dev = gp->dev;
1486 	int restart_aneg = 0;
1487 
1488 	/* There's no point doing anything if we're going to be reset */
1489 	if (gp->reset_task_pending)
1490 		return;
1491 
1492 	if (gp->phy_type == phy_serialink ||
1493 	    gp->phy_type == phy_serdes) {
1494 		u32 val = readl(gp->regs + PCS_MIISTAT);
1495 
1496 		if (!(val & PCS_MIISTAT_LS))
1497 			val = readl(gp->regs + PCS_MIISTAT);
1498 
1499 		if ((val & PCS_MIISTAT_LS) != 0) {
1500 			if (gp->lstate == link_up)
1501 				goto restart;
1502 
1503 			gp->lstate = link_up;
1504 			netif_carrier_on(dev);
1505 			(void)gem_set_link_modes(gp);
1506 		}
1507 		goto restart;
1508 	}
1509 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1510 		/* Ok, here we got a link. If we had it due to a forced
1511 		 * fallback, and we were configured for autoneg, we do
1512 		 * retry a short autoneg pass. If you know your hub is
1513 		 * broken, use ethtool ;)
1514 		 */
1515 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1516 			gp->lstate = link_force_ret;
1517 			gp->last_forced_speed = gp->phy_mii.speed;
1518 			gp->timer_ticks = 5;
1519 			if (netif_msg_link(gp))
1520 				netdev_info(dev,
1521 					    "Got link after fallback, retrying autoneg once...\n");
1522 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1523 		} else if (gp->lstate != link_up) {
1524 			gp->lstate = link_up;
1525 			netif_carrier_on(dev);
1526 			if (gem_set_link_modes(gp))
1527 				restart_aneg = 1;
1528 		}
1529 	} else {
1530 		/* If the link was previously up, we restart the
1531 		 * whole process
1532 		 */
1533 		if (gp->lstate == link_up) {
1534 			gp->lstate = link_down;
1535 			netif_info(gp, link, dev, "Link down\n");
1536 			netif_carrier_off(dev);
1537 			gem_schedule_reset(gp);
1538 			/* The reset task will restart the timer */
1539 			return;
1540 		} else if (++gp->timer_ticks > 10) {
1541 			if (found_mii_phy(gp))
1542 				restart_aneg = gem_mdio_link_not_up(gp);
1543 			else
1544 				restart_aneg = 1;
1545 		}
1546 	}
1547 	if (restart_aneg) {
1548 		gem_begin_auto_negotiation(gp, NULL);
1549 		return;
1550 	}
1551 restart:
1552 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1553 }
1554 
1555 static void gem_clean_rings(struct gem *gp)
1556 {
1557 	struct gem_init_block *gb = gp->init_block;
1558 	struct sk_buff *skb;
1559 	int i;
1560 	dma_addr_t dma_addr;
1561 
1562 	for (i = 0; i < RX_RING_SIZE; i++) {
1563 		struct gem_rxd *rxd;
1564 
1565 		rxd = &gb->rxd[i];
1566 		if (gp->rx_skbs[i] != NULL) {
1567 			skb = gp->rx_skbs[i];
1568 			dma_addr = le64_to_cpu(rxd->buffer);
1569 			dma_unmap_page(&gp->pdev->dev, dma_addr,
1570 				       RX_BUF_ALLOC_SIZE(gp),
1571 				       DMA_FROM_DEVICE);
1572 			dev_kfree_skb_any(skb);
1573 			gp->rx_skbs[i] = NULL;
1574 		}
1575 		rxd->status_word = 0;
1576 		dma_wmb();
1577 		rxd->buffer = 0;
1578 	}
1579 
1580 	for (i = 0; i < TX_RING_SIZE; i++) {
1581 		if (gp->tx_skbs[i] != NULL) {
1582 			struct gem_txd *txd;
1583 			int frag;
1584 
1585 			skb = gp->tx_skbs[i];
1586 			gp->tx_skbs[i] = NULL;
1587 
1588 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1589 				int ent = i & (TX_RING_SIZE - 1);
1590 
1591 				txd = &gb->txd[ent];
1592 				dma_addr = le64_to_cpu(txd->buffer);
1593 				dma_unmap_page(&gp->pdev->dev, dma_addr,
1594 					       le64_to_cpu(txd->control_word) &
1595 					       TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1596 
1597 				if (frag != skb_shinfo(skb)->nr_frags)
1598 					i++;
1599 			}
1600 			dev_kfree_skb_any(skb);
1601 		}
1602 	}
1603 }
1604 
1605 static void gem_init_rings(struct gem *gp)
1606 {
1607 	struct gem_init_block *gb = gp->init_block;
1608 	struct net_device *dev = gp->dev;
1609 	int i;
1610 	dma_addr_t dma_addr;
1611 
1612 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1613 
1614 	gem_clean_rings(gp);
1615 
1616 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1617 			    (unsigned)VLAN_ETH_FRAME_LEN);
1618 
1619 	for (i = 0; i < RX_RING_SIZE; i++) {
1620 		struct sk_buff *skb;
1621 		struct gem_rxd *rxd = &gb->rxd[i];
1622 
1623 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1624 		if (!skb) {
1625 			rxd->buffer = 0;
1626 			rxd->status_word = 0;
1627 			continue;
1628 		}
1629 
1630 		gp->rx_skbs[i] = skb;
1631 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1632 		dma_addr = dma_map_page(&gp->pdev->dev,
1633 					virt_to_page(skb->data),
1634 					offset_in_page(skb->data),
1635 					RX_BUF_ALLOC_SIZE(gp),
1636 					DMA_FROM_DEVICE);
1637 		rxd->buffer = cpu_to_le64(dma_addr);
1638 		dma_wmb();
1639 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1640 		skb_reserve(skb, RX_OFFSET);
1641 	}
1642 
1643 	for (i = 0; i < TX_RING_SIZE; i++) {
1644 		struct gem_txd *txd = &gb->txd[i];
1645 
1646 		txd->control_word = 0;
1647 		dma_wmb();
1648 		txd->buffer = 0;
1649 	}
1650 	wmb();
1651 }
1652 
1653 /* Init PHY interface and start link poll state machine */
1654 static void gem_init_phy(struct gem *gp)
1655 {
1656 	u32 mifcfg;
1657 
1658 	/* Revert MIF CFG setting done on stop_phy */
1659 	mifcfg = readl(gp->regs + MIF_CFG);
1660 	mifcfg &= ~MIF_CFG_BBMODE;
1661 	writel(mifcfg, gp->regs + MIF_CFG);
1662 
1663 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1664 		int i;
1665 
1666 		/* Those delays sucks, the HW seems to love them though, I'll
1667 		 * seriously consider breaking some locks here to be able
1668 		 * to schedule instead
1669 		 */
1670 		for (i = 0; i < 3; i++) {
1671 #ifdef CONFIG_PPC_PMAC
1672 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1673 			msleep(20);
1674 #endif
1675 			/* Some PHYs used by apple have problem getting back to us,
1676 			 * we do an additional reset here
1677 			 */
1678 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1679 			msleep(20);
1680 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1681 				break;
1682 			if (i == 2)
1683 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1684 		}
1685 	}
1686 
1687 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1688 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1689 		u32 val;
1690 
1691 		/* Init datapath mode register. */
1692 		if (gp->phy_type == phy_mii_mdio0 ||
1693 		    gp->phy_type == phy_mii_mdio1) {
1694 			val = PCS_DMODE_MGM;
1695 		} else if (gp->phy_type == phy_serialink) {
1696 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1697 		} else {
1698 			val = PCS_DMODE_ESM;
1699 		}
1700 
1701 		writel(val, gp->regs + PCS_DMODE);
1702 	}
1703 
1704 	if (gp->phy_type == phy_mii_mdio0 ||
1705 	    gp->phy_type == phy_mii_mdio1) {
1706 		/* Reset and detect MII PHY */
1707 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1708 
1709 		/* Init PHY */
1710 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1711 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1712 	} else {
1713 		gem_pcs_reset(gp);
1714 		gem_pcs_reinit_adv(gp);
1715 	}
1716 
1717 	/* Default aneg parameters */
1718 	gp->timer_ticks = 0;
1719 	gp->lstate = link_down;
1720 	netif_carrier_off(gp->dev);
1721 
1722 	/* Print things out */
1723 	if (gp->phy_type == phy_mii_mdio0 ||
1724 	    gp->phy_type == phy_mii_mdio1)
1725 		netdev_info(gp->dev, "Found %s PHY\n",
1726 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1727 
1728 	gem_begin_auto_negotiation(gp, NULL);
1729 }
1730 
1731 static void gem_init_dma(struct gem *gp)
1732 {
1733 	u64 desc_dma = (u64) gp->gblock_dvma;
1734 	u32 val;
1735 
1736 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1737 	writel(val, gp->regs + TXDMA_CFG);
1738 
1739 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1740 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1741 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1742 
1743 	writel(0, gp->regs + TXDMA_KICK);
1744 
1745 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1746 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1747 	writel(val, gp->regs + RXDMA_CFG);
1748 
1749 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1750 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1751 
1752 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1753 
1754 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1755 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1756 	writel(val, gp->regs + RXDMA_PTHRESH);
1757 
1758 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1759 		writel(((5 & RXDMA_BLANK_IPKTS) |
1760 			((8 << 12) & RXDMA_BLANK_ITIME)),
1761 		       gp->regs + RXDMA_BLANK);
1762 	else
1763 		writel(((5 & RXDMA_BLANK_IPKTS) |
1764 			((4 << 12) & RXDMA_BLANK_ITIME)),
1765 		       gp->regs + RXDMA_BLANK);
1766 }
1767 
1768 static u32 gem_setup_multicast(struct gem *gp)
1769 {
1770 	u32 rxcfg = 0;
1771 	int i;
1772 
1773 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1774 	    (netdev_mc_count(gp->dev) > 256)) {
1775 	    	for (i=0; i<16; i++)
1776 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1777 		rxcfg |= MAC_RXCFG_HFE;
1778 	} else if (gp->dev->flags & IFF_PROMISC) {
1779 		rxcfg |= MAC_RXCFG_PROM;
1780 	} else {
1781 		u16 hash_table[16];
1782 		u32 crc;
1783 		struct netdev_hw_addr *ha;
1784 		int i;
1785 
1786 		memset(hash_table, 0, sizeof(hash_table));
1787 		netdev_for_each_mc_addr(ha, gp->dev) {
1788 			crc = ether_crc_le(6, ha->addr);
1789 			crc >>= 24;
1790 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1791 		}
1792 	    	for (i=0; i<16; i++)
1793 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1794 		rxcfg |= MAC_RXCFG_HFE;
1795 	}
1796 
1797 	return rxcfg;
1798 }
1799 
1800 static void gem_init_mac(struct gem *gp)
1801 {
1802 	const unsigned char *e = &gp->dev->dev_addr[0];
1803 
1804 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1805 
1806 	writel(0x00, gp->regs + MAC_IPG0);
1807 	writel(0x08, gp->regs + MAC_IPG1);
1808 	writel(0x04, gp->regs + MAC_IPG2);
1809 	writel(0x40, gp->regs + MAC_STIME);
1810 	writel(0x40, gp->regs + MAC_MINFSZ);
1811 
1812 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1813 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1814 
1815 	writel(0x07, gp->regs + MAC_PASIZE);
1816 	writel(0x04, gp->regs + MAC_JAMSIZE);
1817 	writel(0x10, gp->regs + MAC_ATTLIM);
1818 	writel(0x8808, gp->regs + MAC_MCTYPE);
1819 
1820 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1821 
1822 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1823 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1824 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1825 
1826 	writel(0, gp->regs + MAC_ADDR3);
1827 	writel(0, gp->regs + MAC_ADDR4);
1828 	writel(0, gp->regs + MAC_ADDR5);
1829 
1830 	writel(0x0001, gp->regs + MAC_ADDR6);
1831 	writel(0xc200, gp->regs + MAC_ADDR7);
1832 	writel(0x0180, gp->regs + MAC_ADDR8);
1833 
1834 	writel(0, gp->regs + MAC_AFILT0);
1835 	writel(0, gp->regs + MAC_AFILT1);
1836 	writel(0, gp->regs + MAC_AFILT2);
1837 	writel(0, gp->regs + MAC_AF21MSK);
1838 	writel(0, gp->regs + MAC_AF0MSK);
1839 
1840 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1841 #ifdef STRIP_FCS
1842 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1843 #endif
1844 	writel(0, gp->regs + MAC_NCOLL);
1845 	writel(0, gp->regs + MAC_FASUCC);
1846 	writel(0, gp->regs + MAC_ECOLL);
1847 	writel(0, gp->regs + MAC_LCOLL);
1848 	writel(0, gp->regs + MAC_DTIMER);
1849 	writel(0, gp->regs + MAC_PATMPS);
1850 	writel(0, gp->regs + MAC_RFCTR);
1851 	writel(0, gp->regs + MAC_LERR);
1852 	writel(0, gp->regs + MAC_AERR);
1853 	writel(0, gp->regs + MAC_FCSERR);
1854 	writel(0, gp->regs + MAC_RXCVERR);
1855 
1856 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1857 	 * them once a link is established.
1858 	 */
1859 	writel(0, gp->regs + MAC_TXCFG);
1860 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1861 	writel(0, gp->regs + MAC_MCCFG);
1862 	writel(0, gp->regs + MAC_XIFCFG);
1863 
1864 	/* Setup MAC interrupts.  We want to get all of the interesting
1865 	 * counter expiration events, but we do not want to hear about
1866 	 * normal rx/tx as the DMA engine tells us that.
1867 	 */
1868 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1869 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1870 
1871 	/* Don't enable even the PAUSE interrupts for now, we
1872 	 * make no use of those events other than to record them.
1873 	 */
1874 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1875 
1876 	/* Don't enable GEM's WOL in normal operations
1877 	 */
1878 	if (gp->has_wol)
1879 		writel(0, gp->regs + WOL_WAKECSR);
1880 }
1881 
1882 static void gem_init_pause_thresholds(struct gem *gp)
1883 {
1884 	u32 cfg;
1885 
1886 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1887 	 * full RX fifo size effectively disables PAUSE generation which
1888 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1889 	 * to make real gains from PAUSE.
1890 	 */
1891 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1892 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1893 	} else {
1894 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1895 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1896 		int on = off - max_frame;
1897 
1898 		gp->rx_pause_off = off;
1899 		gp->rx_pause_on = on;
1900 	}
1901 
1902 
1903 	/* Configure the chip "burst" DMA mode & enable some
1904 	 * HW bug fixes on Apple version
1905 	 */
1906 	cfg  = 0;
1907 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1908 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1909 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1910 	cfg |= GREG_CFG_IBURST;
1911 #endif
1912 	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1913 	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1914 	writel(cfg, gp->regs + GREG_CFG);
1915 
1916 	/* If Infinite Burst didn't stick, then use different
1917 	 * thresholds (and Apple bug fixes don't exist)
1918 	 */
1919 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1920 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1921 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1922 		writel(cfg, gp->regs + GREG_CFG);
1923 	}
1924 }
1925 
1926 static int gem_check_invariants(struct gem *gp)
1927 {
1928 	struct pci_dev *pdev = gp->pdev;
1929 	u32 mif_cfg;
1930 
1931 	/* On Apple's sungem, we can't rely on registers as the chip
1932 	 * was been powered down by the firmware. The PHY is looked
1933 	 * up later on.
1934 	 */
1935 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1936 		gp->phy_type = phy_mii_mdio0;
1937 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1938 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1939 		gp->swrst_base = 0;
1940 
1941 		mif_cfg = readl(gp->regs + MIF_CFG);
1942 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1943 		mif_cfg |= MIF_CFG_MDI0;
1944 		writel(mif_cfg, gp->regs + MIF_CFG);
1945 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1946 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1947 
1948 		/* We hard-code the PHY address so we can properly bring it out of
1949 		 * reset later on, we can't really probe it at this point, though
1950 		 * that isn't an issue.
1951 		 */
1952 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1953 			gp->mii_phy_addr = 1;
1954 		else
1955 			gp->mii_phy_addr = 0;
1956 
1957 		return 0;
1958 	}
1959 
1960 	mif_cfg = readl(gp->regs + MIF_CFG);
1961 
1962 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1963 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1964 		/* One of the MII PHYs _must_ be present
1965 		 * as this chip has no gigabit PHY.
1966 		 */
1967 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1968 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1969 			       mif_cfg);
1970 			return -1;
1971 		}
1972 	}
1973 
1974 	/* Determine initial PHY interface type guess.  MDIO1 is the
1975 	 * external PHY and thus takes precedence over MDIO0.
1976 	 */
1977 
1978 	if (mif_cfg & MIF_CFG_MDI1) {
1979 		gp->phy_type = phy_mii_mdio1;
1980 		mif_cfg |= MIF_CFG_PSELECT;
1981 		writel(mif_cfg, gp->regs + MIF_CFG);
1982 	} else if (mif_cfg & MIF_CFG_MDI0) {
1983 		gp->phy_type = phy_mii_mdio0;
1984 		mif_cfg &= ~MIF_CFG_PSELECT;
1985 		writel(mif_cfg, gp->regs + MIF_CFG);
1986 	} else {
1987 #ifdef CONFIG_SPARC
1988 		const char *p;
1989 
1990 		p = of_get_property(gp->of_node, "shared-pins", NULL);
1991 		if (p && !strcmp(p, "serdes"))
1992 			gp->phy_type = phy_serdes;
1993 		else
1994 #endif
1995 			gp->phy_type = phy_serialink;
1996 	}
1997 	if (gp->phy_type == phy_mii_mdio1 ||
1998 	    gp->phy_type == phy_mii_mdio0) {
1999 		int i;
2000 
2001 		for (i = 0; i < 32; i++) {
2002 			gp->mii_phy_addr = i;
2003 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2004 				break;
2005 		}
2006 		if (i == 32) {
2007 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2008 				pr_err("RIO MII phy will not respond\n");
2009 				return -1;
2010 			}
2011 			gp->phy_type = phy_serdes;
2012 		}
2013 	}
2014 
2015 	/* Fetch the FIFO configurations now too. */
2016 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2017 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2018 
2019 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2020 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2021 			if (gp->tx_fifo_sz != (9 * 1024) ||
2022 			    gp->rx_fifo_sz != (20 * 1024)) {
2023 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2024 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2025 				return -1;
2026 			}
2027 			gp->swrst_base = 0;
2028 		} else {
2029 			if (gp->tx_fifo_sz != (2 * 1024) ||
2030 			    gp->rx_fifo_sz != (2 * 1024)) {
2031 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2032 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2033 				return -1;
2034 			}
2035 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2036 		}
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 static void gem_reinit_chip(struct gem *gp)
2043 {
2044 	/* Reset the chip */
2045 	gem_reset(gp);
2046 
2047 	/* Make sure ints are disabled */
2048 	gem_disable_ints(gp);
2049 
2050 	/* Allocate & setup ring buffers */
2051 	gem_init_rings(gp);
2052 
2053 	/* Configure pause thresholds */
2054 	gem_init_pause_thresholds(gp);
2055 
2056 	/* Init DMA & MAC engines */
2057 	gem_init_dma(gp);
2058 	gem_init_mac(gp);
2059 }
2060 
2061 
2062 static void gem_stop_phy(struct gem *gp, int wol)
2063 {
2064 	u32 mifcfg;
2065 
2066 	/* Let the chip settle down a bit, it seems that helps
2067 	 * for sleep mode on some models
2068 	 */
2069 	msleep(10);
2070 
2071 	/* Make sure we aren't polling PHY status change. We
2072 	 * don't currently use that feature though
2073 	 */
2074 	mifcfg = readl(gp->regs + MIF_CFG);
2075 	mifcfg &= ~MIF_CFG_POLL;
2076 	writel(mifcfg, gp->regs + MIF_CFG);
2077 
2078 	if (wol && gp->has_wol) {
2079 		const unsigned char *e = &gp->dev->dev_addr[0];
2080 		u32 csr;
2081 
2082 		/* Setup wake-on-lan for MAGIC packet */
2083 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2084 		       gp->regs + MAC_RXCFG);
2085 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2086 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2087 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2088 
2089 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2090 		csr = WOL_WAKECSR_ENABLE;
2091 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2092 			csr |= WOL_WAKECSR_MII;
2093 		writel(csr, gp->regs + WOL_WAKECSR);
2094 	} else {
2095 		writel(0, gp->regs + MAC_RXCFG);
2096 		(void)readl(gp->regs + MAC_RXCFG);
2097 		/* Machine sleep will die in strange ways if we
2098 		 * dont wait a bit here, looks like the chip takes
2099 		 * some time to really shut down
2100 		 */
2101 		msleep(10);
2102 	}
2103 
2104 	writel(0, gp->regs + MAC_TXCFG);
2105 	writel(0, gp->regs + MAC_XIFCFG);
2106 	writel(0, gp->regs + TXDMA_CFG);
2107 	writel(0, gp->regs + RXDMA_CFG);
2108 
2109 	if (!wol) {
2110 		gem_reset(gp);
2111 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2112 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2113 
2114 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2115 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2116 
2117 		/* According to Apple, we must set the MDIO pins to this begnign
2118 		 * state or we may 1) eat more current, 2) damage some PHYs
2119 		 */
2120 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2121 		writel(0, gp->regs + MIF_BBCLK);
2122 		writel(0, gp->regs + MIF_BBDATA);
2123 		writel(0, gp->regs + MIF_BBOENAB);
2124 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2125 		(void) readl(gp->regs + MAC_XIFCFG);
2126 	}
2127 }
2128 
2129 static int gem_do_start(struct net_device *dev)
2130 {
2131 	struct gem *gp = netdev_priv(dev);
2132 	int rc;
2133 
2134 	pci_set_master(gp->pdev);
2135 
2136 	/* Init & setup chip hardware */
2137 	gem_reinit_chip(gp);
2138 
2139 	/* An interrupt might come in handy */
2140 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2141 			 IRQF_SHARED, dev->name, (void *)dev);
2142 	if (rc) {
2143 		netdev_err(dev, "failed to request irq !\n");
2144 
2145 		gem_reset(gp);
2146 		gem_clean_rings(gp);
2147 		gem_put_cell(gp);
2148 		return rc;
2149 	}
2150 
2151 	/* Mark us as attached again if we come from resume(), this has
2152 	 * no effect if we weren't detached and needs to be done now.
2153 	 */
2154 	netif_device_attach(dev);
2155 
2156 	/* Restart NAPI & queues */
2157 	gem_netif_start(gp);
2158 
2159 	/* Detect & init PHY, start autoneg etc... this will
2160 	 * eventually result in starting DMA operations when
2161 	 * the link is up
2162 	 */
2163 	gem_init_phy(gp);
2164 
2165 	return 0;
2166 }
2167 
2168 static void gem_do_stop(struct net_device *dev, int wol)
2169 {
2170 	struct gem *gp = netdev_priv(dev);
2171 
2172 	/* Stop NAPI and stop tx queue */
2173 	gem_netif_stop(gp);
2174 
2175 	/* Make sure ints are disabled. We don't care about
2176 	 * synchronizing as NAPI is disabled, thus a stray
2177 	 * interrupt will do nothing bad (our irq handler
2178 	 * just schedules NAPI)
2179 	 */
2180 	gem_disable_ints(gp);
2181 
2182 	/* Stop the link timer */
2183 	del_timer_sync(&gp->link_timer);
2184 
2185 	/* We cannot cancel the reset task while holding the
2186 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2187 	 * if we did. This is not an issue however as the reset
2188 	 * task is synchronized vs. us (rtnl_lock) and will do
2189 	 * nothing if the device is down or suspended. We do
2190 	 * still clear reset_task_pending to avoid a spurrious
2191 	 * reset later on in case we do resume before it gets
2192 	 * scheduled.
2193 	 */
2194 	gp->reset_task_pending = 0;
2195 
2196 	/* If we are going to sleep with WOL */
2197 	gem_stop_dma(gp);
2198 	msleep(10);
2199 	if (!wol)
2200 		gem_reset(gp);
2201 	msleep(10);
2202 
2203 	/* Get rid of rings */
2204 	gem_clean_rings(gp);
2205 
2206 	/* No irq needed anymore */
2207 	free_irq(gp->pdev->irq, (void *) dev);
2208 
2209 	/* Shut the PHY down eventually and setup WOL */
2210 	gem_stop_phy(gp, wol);
2211 }
2212 
2213 static void gem_reset_task(struct work_struct *work)
2214 {
2215 	struct gem *gp = container_of(work, struct gem, reset_task);
2216 
2217 	/* Lock out the network stack (essentially shield ourselves
2218 	 * against a racing open, close, control call, or suspend
2219 	 */
2220 	rtnl_lock();
2221 
2222 	/* Skip the reset task if suspended or closed, or if it's
2223 	 * been cancelled by gem_do_stop (see comment there)
2224 	 */
2225 	if (!netif_device_present(gp->dev) ||
2226 	    !netif_running(gp->dev) ||
2227 	    !gp->reset_task_pending) {
2228 		rtnl_unlock();
2229 		return;
2230 	}
2231 
2232 	/* Stop the link timer */
2233 	del_timer_sync(&gp->link_timer);
2234 
2235 	/* Stop NAPI and tx */
2236 	gem_netif_stop(gp);
2237 
2238 	/* Reset the chip & rings */
2239 	gem_reinit_chip(gp);
2240 	if (gp->lstate == link_up)
2241 		gem_set_link_modes(gp);
2242 
2243 	/* Restart NAPI and Tx */
2244 	gem_netif_start(gp);
2245 
2246 	/* We are back ! */
2247 	gp->reset_task_pending = 0;
2248 
2249 	/* If the link is not up, restart autoneg, else restart the
2250 	 * polling timer
2251 	 */
2252 	if (gp->lstate != link_up)
2253 		gem_begin_auto_negotiation(gp, NULL);
2254 	else
2255 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2256 
2257 	rtnl_unlock();
2258 }
2259 
2260 static int gem_open(struct net_device *dev)
2261 {
2262 	struct gem *gp = netdev_priv(dev);
2263 	int rc;
2264 
2265 	/* We allow open while suspended, we just do nothing,
2266 	 * the chip will be initialized in resume()
2267 	 */
2268 	if (netif_device_present(dev)) {
2269 		/* Enable the cell */
2270 		gem_get_cell(gp);
2271 
2272 		/* Make sure PCI access and bus master are enabled */
2273 		rc = pci_enable_device(gp->pdev);
2274 		if (rc) {
2275 			netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2276 
2277 			/* Put cell and forget it for now, it will be considered
2278 			 *as still asleep, a new sleep cycle may bring it back
2279 			 */
2280 			gem_put_cell(gp);
2281 			return -ENXIO;
2282 		}
2283 		return gem_do_start(dev);
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int gem_close(struct net_device *dev)
2290 {
2291 	struct gem *gp = netdev_priv(dev);
2292 
2293 	if (netif_device_present(dev)) {
2294 		gem_do_stop(dev, 0);
2295 
2296 		/* Make sure bus master is disabled */
2297 		pci_disable_device(gp->pdev);
2298 
2299 		/* Cell not needed neither if no WOL */
2300 		if (!gp->asleep_wol)
2301 			gem_put_cell(gp);
2302 	}
2303 	return 0;
2304 }
2305 
2306 static int __maybe_unused gem_suspend(struct device *dev_d)
2307 {
2308 	struct net_device *dev = dev_get_drvdata(dev_d);
2309 	struct gem *gp = netdev_priv(dev);
2310 
2311 	/* Lock the network stack first to avoid racing with open/close,
2312 	 * reset task and setting calls
2313 	 */
2314 	rtnl_lock();
2315 
2316 	/* Not running, mark ourselves non-present, no need for
2317 	 * a lock here
2318 	 */
2319 	if (!netif_running(dev)) {
2320 		netif_device_detach(dev);
2321 		rtnl_unlock();
2322 		return 0;
2323 	}
2324 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2325 		    (gp->wake_on_lan && netif_running(dev)) ?
2326 		    "enabled" : "disabled");
2327 
2328 	/* Tell the network stack we're gone. gem_do_stop() below will
2329 	 * synchronize with TX, stop NAPI etc...
2330 	 */
2331 	netif_device_detach(dev);
2332 
2333 	/* Switch off chip, remember WOL setting */
2334 	gp->asleep_wol = !!gp->wake_on_lan;
2335 	gem_do_stop(dev, gp->asleep_wol);
2336 
2337 	/* Cell not needed neither if no WOL */
2338 	if (!gp->asleep_wol)
2339 		gem_put_cell(gp);
2340 
2341 	/* Unlock the network stack */
2342 	rtnl_unlock();
2343 
2344 	return 0;
2345 }
2346 
2347 static int __maybe_unused gem_resume(struct device *dev_d)
2348 {
2349 	struct net_device *dev = dev_get_drvdata(dev_d);
2350 	struct gem *gp = netdev_priv(dev);
2351 
2352 	/* See locking comment in gem_suspend */
2353 	rtnl_lock();
2354 
2355 	/* Not running, mark ourselves present, no need for
2356 	 * a lock here
2357 	 */
2358 	if (!netif_running(dev)) {
2359 		netif_device_attach(dev);
2360 		rtnl_unlock();
2361 		return 0;
2362 	}
2363 
2364 	/* Enable the cell */
2365 	gem_get_cell(gp);
2366 
2367 	/* Restart chip. If that fails there isn't much we can do, we
2368 	 * leave things stopped.
2369 	 */
2370 	gem_do_start(dev);
2371 
2372 	/* If we had WOL enabled, the cell clock was never turned off during
2373 	 * sleep, so we end up beeing unbalanced. Fix that here
2374 	 */
2375 	if (gp->asleep_wol)
2376 		gem_put_cell(gp);
2377 
2378 	/* Unlock the network stack */
2379 	rtnl_unlock();
2380 
2381 	return 0;
2382 }
2383 
2384 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2385 {
2386 	struct gem *gp = netdev_priv(dev);
2387 
2388 	/* I have seen this being called while the PM was in progress,
2389 	 * so we shield against this. Let's also not poke at registers
2390 	 * while the reset task is going on.
2391 	 *
2392 	 * TODO: Move stats collection elsewhere (link timer ?) and
2393 	 * make this a nop to avoid all those synchro issues
2394 	 */
2395 	if (!netif_device_present(dev) || !netif_running(dev))
2396 		goto bail;
2397 
2398 	/* Better safe than sorry... */
2399 	if (WARN_ON(!gp->cell_enabled))
2400 		goto bail;
2401 
2402 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2403 	writel(0, gp->regs + MAC_FCSERR);
2404 
2405 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2406 	writel(0, gp->regs + MAC_AERR);
2407 
2408 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2409 	writel(0, gp->regs + MAC_LERR);
2410 
2411 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2412 	dev->stats.collisions +=
2413 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2414 	writel(0, gp->regs + MAC_ECOLL);
2415 	writel(0, gp->regs + MAC_LCOLL);
2416  bail:
2417 	return &dev->stats;
2418 }
2419 
2420 static int gem_set_mac_address(struct net_device *dev, void *addr)
2421 {
2422 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2423 	const unsigned char *e = &dev->dev_addr[0];
2424 	struct gem *gp = netdev_priv(dev);
2425 
2426 	if (!is_valid_ether_addr(macaddr->sa_data))
2427 		return -EADDRNOTAVAIL;
2428 
2429 	eth_hw_addr_set(dev, macaddr->sa_data);
2430 
2431 	/* We'll just catch it later when the device is up'd or resumed */
2432 	if (!netif_running(dev) || !netif_device_present(dev))
2433 		return 0;
2434 
2435 	/* Better safe than sorry... */
2436 	if (WARN_ON(!gp->cell_enabled))
2437 		return 0;
2438 
2439 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2440 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2441 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2442 
2443 	return 0;
2444 }
2445 
2446 static void gem_set_multicast(struct net_device *dev)
2447 {
2448 	struct gem *gp = netdev_priv(dev);
2449 	u32 rxcfg, rxcfg_new;
2450 	int limit = 10000;
2451 
2452 	if (!netif_running(dev) || !netif_device_present(dev))
2453 		return;
2454 
2455 	/* Better safe than sorry... */
2456 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2457 		return;
2458 
2459 	rxcfg = readl(gp->regs + MAC_RXCFG);
2460 	rxcfg_new = gem_setup_multicast(gp);
2461 #ifdef STRIP_FCS
2462 	rxcfg_new |= MAC_RXCFG_SFCS;
2463 #endif
2464 	gp->mac_rx_cfg = rxcfg_new;
2465 
2466 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2467 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2468 		if (!limit--)
2469 			break;
2470 		udelay(10);
2471 	}
2472 
2473 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2474 	rxcfg |= rxcfg_new;
2475 
2476 	writel(rxcfg, gp->regs + MAC_RXCFG);
2477 }
2478 
2479 /* Jumbo-grams don't seem to work :-( */
2480 #define GEM_MIN_MTU	ETH_MIN_MTU
2481 #if 1
2482 #define GEM_MAX_MTU	ETH_DATA_LEN
2483 #else
2484 #define GEM_MAX_MTU	9000
2485 #endif
2486 
2487 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2488 {
2489 	struct gem *gp = netdev_priv(dev);
2490 
2491 	dev->mtu = new_mtu;
2492 
2493 	/* We'll just catch it later when the device is up'd or resumed */
2494 	if (!netif_running(dev) || !netif_device_present(dev))
2495 		return 0;
2496 
2497 	/* Better safe than sorry... */
2498 	if (WARN_ON(!gp->cell_enabled))
2499 		return 0;
2500 
2501 	gem_netif_stop(gp);
2502 	gem_reinit_chip(gp);
2503 	if (gp->lstate == link_up)
2504 		gem_set_link_modes(gp);
2505 	gem_netif_start(gp);
2506 
2507 	return 0;
2508 }
2509 
2510 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511 {
2512 	struct gem *gp = netdev_priv(dev);
2513 
2514 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2515 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2516 	strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2517 }
2518 
2519 static int gem_get_link_ksettings(struct net_device *dev,
2520 				  struct ethtool_link_ksettings *cmd)
2521 {
2522 	struct gem *gp = netdev_priv(dev);
2523 	u32 supported, advertising;
2524 
2525 	if (gp->phy_type == phy_mii_mdio0 ||
2526 	    gp->phy_type == phy_mii_mdio1) {
2527 		if (gp->phy_mii.def)
2528 			supported = gp->phy_mii.def->features;
2529 		else
2530 			supported = (SUPPORTED_10baseT_Half |
2531 					  SUPPORTED_10baseT_Full);
2532 
2533 		/* XXX hardcoded stuff for now */
2534 		cmd->base.port = PORT_MII;
2535 		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2536 
2537 		/* Return current PHY settings */
2538 		cmd->base.autoneg = gp->want_autoneg;
2539 		cmd->base.speed = gp->phy_mii.speed;
2540 		cmd->base.duplex = gp->phy_mii.duplex;
2541 		advertising = gp->phy_mii.advertising;
2542 
2543 		/* If we started with a forced mode, we don't have a default
2544 		 * advertise set, we need to return something sensible so
2545 		 * userland can re-enable autoneg properly.
2546 		 */
2547 		if (advertising == 0)
2548 			advertising = supported;
2549 	} else { // XXX PCS ?
2550 		supported =
2551 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2552 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2553 			 SUPPORTED_Autoneg);
2554 		advertising = supported;
2555 		cmd->base.speed = 0;
2556 		cmd->base.duplex = 0;
2557 		cmd->base.port = 0;
2558 		cmd->base.phy_address = 0;
2559 		cmd->base.autoneg = 0;
2560 
2561 		/* serdes means usually a Fibre connector, with most fixed */
2562 		if (gp->phy_type == phy_serdes) {
2563 			cmd->base.port = PORT_FIBRE;
2564 			supported = (SUPPORTED_1000baseT_Half |
2565 				SUPPORTED_1000baseT_Full |
2566 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2567 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2568 			advertising = supported;
2569 			if (gp->lstate == link_up)
2570 				cmd->base.speed = SPEED_1000;
2571 			cmd->base.duplex = DUPLEX_FULL;
2572 			cmd->base.autoneg = 1;
2573 		}
2574 	}
2575 
2576 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2577 						supported);
2578 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2579 						advertising);
2580 
2581 	return 0;
2582 }
2583 
2584 static int gem_set_link_ksettings(struct net_device *dev,
2585 				  const struct ethtool_link_ksettings *cmd)
2586 {
2587 	struct gem *gp = netdev_priv(dev);
2588 	u32 speed = cmd->base.speed;
2589 	u32 advertising;
2590 
2591 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2592 						cmd->link_modes.advertising);
2593 
2594 	/* Verify the settings we care about. */
2595 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2596 	    cmd->base.autoneg != AUTONEG_DISABLE)
2597 		return -EINVAL;
2598 
2599 	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2600 	    advertising == 0)
2601 		return -EINVAL;
2602 
2603 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2604 	    ((speed != SPEED_1000 &&
2605 	      speed != SPEED_100 &&
2606 	      speed != SPEED_10) ||
2607 	     (cmd->base.duplex != DUPLEX_HALF &&
2608 	      cmd->base.duplex != DUPLEX_FULL)))
2609 		return -EINVAL;
2610 
2611 	/* Apply settings and restart link process. */
2612 	if (netif_device_present(gp->dev)) {
2613 		del_timer_sync(&gp->link_timer);
2614 		gem_begin_auto_negotiation(gp, cmd);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static int gem_nway_reset(struct net_device *dev)
2621 {
2622 	struct gem *gp = netdev_priv(dev);
2623 
2624 	if (!gp->want_autoneg)
2625 		return -EINVAL;
2626 
2627 	/* Restart link process  */
2628 	if (netif_device_present(gp->dev)) {
2629 		del_timer_sync(&gp->link_timer);
2630 		gem_begin_auto_negotiation(gp, NULL);
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static u32 gem_get_msglevel(struct net_device *dev)
2637 {
2638 	struct gem *gp = netdev_priv(dev);
2639 	return gp->msg_enable;
2640 }
2641 
2642 static void gem_set_msglevel(struct net_device *dev, u32 value)
2643 {
2644 	struct gem *gp = netdev_priv(dev);
2645 	gp->msg_enable = value;
2646 }
2647 
2648 
2649 /* Add more when I understand how to program the chip */
2650 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2651 
2652 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2653 
2654 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2655 {
2656 	struct gem *gp = netdev_priv(dev);
2657 
2658 	/* Add more when I understand how to program the chip */
2659 	if (gp->has_wol) {
2660 		wol->supported = WOL_SUPPORTED_MASK;
2661 		wol->wolopts = gp->wake_on_lan;
2662 	} else {
2663 		wol->supported = 0;
2664 		wol->wolopts = 0;
2665 	}
2666 }
2667 
2668 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2669 {
2670 	struct gem *gp = netdev_priv(dev);
2671 
2672 	if (!gp->has_wol)
2673 		return -EOPNOTSUPP;
2674 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2675 	return 0;
2676 }
2677 
2678 static const struct ethtool_ops gem_ethtool_ops = {
2679 	.get_drvinfo		= gem_get_drvinfo,
2680 	.get_link		= ethtool_op_get_link,
2681 	.nway_reset		= gem_nway_reset,
2682 	.get_msglevel		= gem_get_msglevel,
2683 	.set_msglevel		= gem_set_msglevel,
2684 	.get_wol		= gem_get_wol,
2685 	.set_wol		= gem_set_wol,
2686 	.get_link_ksettings	= gem_get_link_ksettings,
2687 	.set_link_ksettings	= gem_set_link_ksettings,
2688 };
2689 
2690 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2691 {
2692 	struct gem *gp = netdev_priv(dev);
2693 	struct mii_ioctl_data *data = if_mii(ifr);
2694 	int rc = -EOPNOTSUPP;
2695 
2696 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2697 	 * netif_device_present() is true and holds rtnl_lock for us
2698 	 * so we have nothing to worry about
2699 	 */
2700 
2701 	switch (cmd) {
2702 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2703 		data->phy_id = gp->mii_phy_addr;
2704 		fallthrough;
2705 
2706 	case SIOCGMIIREG:		/* Read MII PHY register. */
2707 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2708 					   data->reg_num & 0x1f);
2709 		rc = 0;
2710 		break;
2711 
2712 	case SIOCSMIIREG:		/* Write MII PHY register. */
2713 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2714 			    data->val_in);
2715 		rc = 0;
2716 		break;
2717 	}
2718 	return rc;
2719 }
2720 
2721 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2722 /* Fetch MAC address from vital product data of PCI ROM. */
2723 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2724 {
2725 	int this_offset;
2726 
2727 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2728 		void __iomem *p = rom_base + this_offset;
2729 		int i;
2730 
2731 		if (readb(p + 0) != 0x90 ||
2732 		    readb(p + 1) != 0x00 ||
2733 		    readb(p + 2) != 0x09 ||
2734 		    readb(p + 3) != 0x4e ||
2735 		    readb(p + 4) != 0x41 ||
2736 		    readb(p + 5) != 0x06)
2737 			continue;
2738 
2739 		this_offset += 6;
2740 		p += 6;
2741 
2742 		for (i = 0; i < 6; i++)
2743 			dev_addr[i] = readb(p + i);
2744 		return 1;
2745 	}
2746 	return 0;
2747 }
2748 
2749 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2750 {
2751 	size_t size;
2752 	void __iomem *p = pci_map_rom(pdev, &size);
2753 
2754 	if (p) {
2755 		int found;
2756 
2757 		found = readb(p) == 0x55 &&
2758 			readb(p + 1) == 0xaa &&
2759 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2760 		pci_unmap_rom(pdev, p);
2761 		if (found)
2762 			return;
2763 	}
2764 
2765 	/* Sun MAC prefix then 3 random bytes. */
2766 	dev_addr[0] = 0x08;
2767 	dev_addr[1] = 0x00;
2768 	dev_addr[2] = 0x20;
2769 	get_random_bytes(dev_addr + 3, 3);
2770 }
2771 #endif /* not Sparc and not PPC */
2772 
2773 static int gem_get_device_address(struct gem *gp)
2774 {
2775 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2776 	struct net_device *dev = gp->dev;
2777 	const unsigned char *addr;
2778 
2779 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2780 	if (addr == NULL) {
2781 #ifdef CONFIG_SPARC
2782 		addr = idprom->id_ethaddr;
2783 #else
2784 		printk("\n");
2785 		pr_err("%s: can't get mac-address\n", dev->name);
2786 		return -1;
2787 #endif
2788 	}
2789 	eth_hw_addr_set(dev, addr);
2790 #else
2791 	u8 addr[ETH_ALEN];
2792 
2793 	get_gem_mac_nonobp(gp->pdev, addr);
2794 	eth_hw_addr_set(gp->dev, addr);
2795 #endif
2796 	return 0;
2797 }
2798 
2799 static void gem_remove_one(struct pci_dev *pdev)
2800 {
2801 	struct net_device *dev = pci_get_drvdata(pdev);
2802 
2803 	if (dev) {
2804 		struct gem *gp = netdev_priv(dev);
2805 
2806 		unregister_netdev(dev);
2807 
2808 		/* Ensure reset task is truly gone */
2809 		cancel_work_sync(&gp->reset_task);
2810 
2811 		/* Free resources */
2812 		dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2813 				  gp->init_block, gp->gblock_dvma);
2814 		iounmap(gp->regs);
2815 		pci_release_regions(pdev);
2816 		free_netdev(dev);
2817 	}
2818 }
2819 
2820 static const struct net_device_ops gem_netdev_ops = {
2821 	.ndo_open		= gem_open,
2822 	.ndo_stop		= gem_close,
2823 	.ndo_start_xmit		= gem_start_xmit,
2824 	.ndo_get_stats		= gem_get_stats,
2825 	.ndo_set_rx_mode	= gem_set_multicast,
2826 	.ndo_eth_ioctl		= gem_ioctl,
2827 	.ndo_tx_timeout		= gem_tx_timeout,
2828 	.ndo_change_mtu		= gem_change_mtu,
2829 	.ndo_validate_addr	= eth_validate_addr,
2830 	.ndo_set_mac_address    = gem_set_mac_address,
2831 };
2832 
2833 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2834 {
2835 	unsigned long gemreg_base, gemreg_len;
2836 	struct net_device *dev;
2837 	struct gem *gp;
2838 	int err, pci_using_dac;
2839 
2840 	printk_once(KERN_INFO "%s", version);
2841 
2842 	/* Apple gmac note: during probe, the chip is powered up by
2843 	 * the arch code to allow the code below to work (and to let
2844 	 * the chip be probed on the config space. It won't stay powered
2845 	 * up until the interface is brought up however, so we can't rely
2846 	 * on register configuration done at this point.
2847 	 */
2848 	err = pci_enable_device(pdev);
2849 	if (err) {
2850 		pr_err("Cannot enable MMIO operation, aborting\n");
2851 		return err;
2852 	}
2853 	pci_set_master(pdev);
2854 
2855 	/* Configure DMA attributes. */
2856 
2857 	/* All of the GEM documentation states that 64-bit DMA addressing
2858 	 * is fully supported and should work just fine.  However the
2859 	 * front end for RIO based GEMs is different and only supports
2860 	 * 32-bit addressing.
2861 	 *
2862 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2863 	 */
2864 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2865 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2866 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2867 		pci_using_dac = 1;
2868 	} else {
2869 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2870 		if (err) {
2871 			pr_err("No usable DMA configuration, aborting\n");
2872 			goto err_disable_device;
2873 		}
2874 		pci_using_dac = 0;
2875 	}
2876 
2877 	gemreg_base = pci_resource_start(pdev, 0);
2878 	gemreg_len = pci_resource_len(pdev, 0);
2879 
2880 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2881 		pr_err("Cannot find proper PCI device base address, aborting\n");
2882 		err = -ENODEV;
2883 		goto err_disable_device;
2884 	}
2885 
2886 	dev = alloc_etherdev(sizeof(*gp));
2887 	if (!dev) {
2888 		err = -ENOMEM;
2889 		goto err_disable_device;
2890 	}
2891 	SET_NETDEV_DEV(dev, &pdev->dev);
2892 
2893 	gp = netdev_priv(dev);
2894 
2895 	err = pci_request_regions(pdev, DRV_NAME);
2896 	if (err) {
2897 		pr_err("Cannot obtain PCI resources, aborting\n");
2898 		goto err_out_free_netdev;
2899 	}
2900 
2901 	gp->pdev = pdev;
2902 	gp->dev = dev;
2903 
2904 	gp->msg_enable = DEFAULT_MSG;
2905 
2906 	timer_setup(&gp->link_timer, gem_link_timer, 0);
2907 
2908 	INIT_WORK(&gp->reset_task, gem_reset_task);
2909 
2910 	gp->lstate = link_down;
2911 	gp->timer_ticks = 0;
2912 	netif_carrier_off(dev);
2913 
2914 	gp->regs = ioremap(gemreg_base, gemreg_len);
2915 	if (!gp->regs) {
2916 		pr_err("Cannot map device registers, aborting\n");
2917 		err = -EIO;
2918 		goto err_out_free_res;
2919 	}
2920 
2921 	/* On Apple, we want a reference to the Open Firmware device-tree
2922 	 * node. We use it for clock control.
2923 	 */
2924 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2925 	gp->of_node = pci_device_to_OF_node(pdev);
2926 #endif
2927 
2928 	/* Only Apple version supports WOL afaik */
2929 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2930 		gp->has_wol = 1;
2931 
2932 	/* Make sure cell is enabled */
2933 	gem_get_cell(gp);
2934 
2935 	/* Make sure everything is stopped and in init state */
2936 	gem_reset(gp);
2937 
2938 	/* Fill up the mii_phy structure (even if we won't use it) */
2939 	gp->phy_mii.dev = dev;
2940 	gp->phy_mii.mdio_read = _sungem_phy_read;
2941 	gp->phy_mii.mdio_write = _sungem_phy_write;
2942 #ifdef CONFIG_PPC_PMAC
2943 	gp->phy_mii.platform_data = gp->of_node;
2944 #endif
2945 	/* By default, we start with autoneg */
2946 	gp->want_autoneg = 1;
2947 
2948 	/* Check fifo sizes, PHY type, etc... */
2949 	if (gem_check_invariants(gp)) {
2950 		err = -ENODEV;
2951 		goto err_out_iounmap;
2952 	}
2953 
2954 	/* It is guaranteed that the returned buffer will be at least
2955 	 * PAGE_SIZE aligned.
2956 	 */
2957 	gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2958 					    &gp->gblock_dvma, GFP_KERNEL);
2959 	if (!gp->init_block) {
2960 		pr_err("Cannot allocate init block, aborting\n");
2961 		err = -ENOMEM;
2962 		goto err_out_iounmap;
2963 	}
2964 
2965 	err = gem_get_device_address(gp);
2966 	if (err)
2967 		goto err_out_free_consistent;
2968 
2969 	dev->netdev_ops = &gem_netdev_ops;
2970 	netif_napi_add(dev, &gp->napi, gem_poll);
2971 	dev->ethtool_ops = &gem_ethtool_ops;
2972 	dev->watchdog_timeo = 5 * HZ;
2973 	dev->dma = 0;
2974 
2975 	/* Set that now, in case PM kicks in now */
2976 	pci_set_drvdata(pdev, dev);
2977 
2978 	/* We can do scatter/gather and HW checksum */
2979 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2980 	dev->features = dev->hw_features;
2981 	if (pci_using_dac)
2982 		dev->features |= NETIF_F_HIGHDMA;
2983 
2984 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2985 	dev->min_mtu = GEM_MIN_MTU;
2986 	dev->max_mtu = GEM_MAX_MTU;
2987 
2988 	/* Register with kernel */
2989 	if (register_netdev(dev)) {
2990 		pr_err("Cannot register net device, aborting\n");
2991 		err = -ENOMEM;
2992 		goto err_out_free_consistent;
2993 	}
2994 
2995 	/* Undo the get_cell with appropriate locking (we could use
2996 	 * ndo_init/uninit but that would be even more clumsy imho)
2997 	 */
2998 	rtnl_lock();
2999 	gem_put_cell(gp);
3000 	rtnl_unlock();
3001 
3002 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3003 		    dev->dev_addr);
3004 	return 0;
3005 
3006 err_out_free_consistent:
3007 	gem_remove_one(pdev);
3008 err_out_iounmap:
3009 	gem_put_cell(gp);
3010 	iounmap(gp->regs);
3011 
3012 err_out_free_res:
3013 	pci_release_regions(pdev);
3014 
3015 err_out_free_netdev:
3016 	free_netdev(dev);
3017 err_disable_device:
3018 	pci_disable_device(pdev);
3019 	return err;
3020 
3021 }
3022 
3023 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3024 
3025 static struct pci_driver gem_driver = {
3026 	.name		= GEM_MODULE_NAME,
3027 	.id_table	= gem_pci_tbl,
3028 	.probe		= gem_init_one,
3029 	.remove		= gem_remove_one,
3030 	.driver.pm	= &gem_pm_ops,
3031 };
3032 
3033 module_pci_driver(gem_driver);
3034