xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision afc98d90)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <linux/random.h>
37 #include <linux/workqueue.h>
38 #include <linux/if_vlan.h>
39 #include <linux/bitops.h>
40 #include <linux/mm.h>
41 #include <linux/gfp.h>
42 
43 #include <asm/io.h>
44 #include <asm/byteorder.h>
45 #include <asm/uaccess.h>
46 #include <asm/irq.h>
47 
48 #ifdef CONFIG_SPARC
49 #include <asm/idprom.h>
50 #include <asm/prom.h>
51 #endif
52 
53 #ifdef CONFIG_PPC_PMAC
54 #include <asm/pci-bridge.h>
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
59 
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
62 
63 /* Stripping FCS is causing problems, disabled for now */
64 #undef STRIP_FCS
65 
66 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
67 			 NETIF_MSG_PROBE	| \
68 			 NETIF_MSG_LINK)
69 
70 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
71 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
72 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
73 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 
75 #define DRV_NAME	"sungem"
76 #define DRV_VERSION	"1.0"
77 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
78 
79 static char version[] =
80         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
81 
82 MODULE_AUTHOR(DRV_AUTHOR);
83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
84 MODULE_LICENSE("GPL");
85 
86 #define GEM_MODULE_NAME	"gem"
87 
88 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
89 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
90 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
91 
92 	/* These models only differ from the original GEM in
93 	 * that their tx/rx fifos are of a different size and
94 	 * they only support 10/100 speeds. -DaveM
95 	 *
96 	 * Apple's GMAC does support gigabit on machines with
97 	 * the BCM54xx PHYs. -BenH
98 	 */
99 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
100 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
112 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
117 
118 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
119 {
120 	u32 cmd;
121 	int limit = 10000;
122 
123 	cmd  = (1 << 30);
124 	cmd |= (2 << 28);
125 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
126 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
127 	cmd |= (MIF_FRAME_TAMSB);
128 	writel(cmd, gp->regs + MIF_FRAME);
129 
130 	while (--limit) {
131 		cmd = readl(gp->regs + MIF_FRAME);
132 		if (cmd & MIF_FRAME_TALSB)
133 			break;
134 
135 		udelay(10);
136 	}
137 
138 	if (!limit)
139 		cmd = 0xffff;
140 
141 	return cmd & MIF_FRAME_DATA;
142 }
143 
144 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
145 {
146 	struct gem *gp = netdev_priv(dev);
147 	return __phy_read(gp, mii_id, reg);
148 }
149 
150 static inline u16 phy_read(struct gem *gp, int reg)
151 {
152 	return __phy_read(gp, gp->mii_phy_addr, reg);
153 }
154 
155 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
156 {
157 	u32 cmd;
158 	int limit = 10000;
159 
160 	cmd  = (1 << 30);
161 	cmd |= (1 << 28);
162 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
163 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
164 	cmd |= (MIF_FRAME_TAMSB);
165 	cmd |= (val & MIF_FRAME_DATA);
166 	writel(cmd, gp->regs + MIF_FRAME);
167 
168 	while (limit--) {
169 		cmd = readl(gp->regs + MIF_FRAME);
170 		if (cmd & MIF_FRAME_TALSB)
171 			break;
172 
173 		udelay(10);
174 	}
175 }
176 
177 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
178 {
179 	struct gem *gp = netdev_priv(dev);
180 	__phy_write(gp, mii_id, reg, val & 0xffff);
181 }
182 
183 static inline void phy_write(struct gem *gp, int reg, u16 val)
184 {
185 	__phy_write(gp, gp->mii_phy_addr, reg, val);
186 }
187 
188 static inline void gem_enable_ints(struct gem *gp)
189 {
190 	/* Enable all interrupts but TXDONE */
191 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
192 }
193 
194 static inline void gem_disable_ints(struct gem *gp)
195 {
196 	/* Disable all interrupts, including TXDONE */
197 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
198 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
199 }
200 
201 static void gem_get_cell(struct gem *gp)
202 {
203 	BUG_ON(gp->cell_enabled < 0);
204 	gp->cell_enabled++;
205 #ifdef CONFIG_PPC_PMAC
206 	if (gp->cell_enabled == 1) {
207 		mb();
208 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
209 		udelay(10);
210 	}
211 #endif /* CONFIG_PPC_PMAC */
212 }
213 
214 /* Turn off the chip's clock */
215 static void gem_put_cell(struct gem *gp)
216 {
217 	BUG_ON(gp->cell_enabled <= 0);
218 	gp->cell_enabled--;
219 #ifdef CONFIG_PPC_PMAC
220 	if (gp->cell_enabled == 0) {
221 		mb();
222 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
223 		udelay(10);
224 	}
225 #endif /* CONFIG_PPC_PMAC */
226 }
227 
228 static inline void gem_netif_stop(struct gem *gp)
229 {
230 	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
231 	napi_disable(&gp->napi);
232 	netif_tx_disable(gp->dev);
233 }
234 
235 static inline void gem_netif_start(struct gem *gp)
236 {
237 	/* NOTE: unconditional netif_wake_queue is only
238 	 * appropriate so long as all callers are assured to
239 	 * have free tx slots.
240 	 */
241 	netif_wake_queue(gp->dev);
242 	napi_enable(&gp->napi);
243 }
244 
245 static void gem_schedule_reset(struct gem *gp)
246 {
247 	gp->reset_task_pending = 1;
248 	schedule_work(&gp->reset_task);
249 }
250 
251 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 {
253 	if (netif_msg_intr(gp))
254 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
255 }
256 
257 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 {
259 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
260 	u32 pcs_miistat;
261 
262 	if (netif_msg_intr(gp))
263 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
264 			gp->dev->name, pcs_istat);
265 
266 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
267 		netdev_err(dev, "PCS irq but no link status change???\n");
268 		return 0;
269 	}
270 
271 	/* The link status bit latches on zero, so you must
272 	 * read it twice in such a case to see a transition
273 	 * to the link being up.
274 	 */
275 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
276 	if (!(pcs_miistat & PCS_MIISTAT_LS))
277 		pcs_miistat |=
278 			(readl(gp->regs + PCS_MIISTAT) &
279 			 PCS_MIISTAT_LS);
280 
281 	if (pcs_miistat & PCS_MIISTAT_ANC) {
282 		/* The remote-fault indication is only valid
283 		 * when autoneg has completed.
284 		 */
285 		if (pcs_miistat & PCS_MIISTAT_RF)
286 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
287 		else
288 			netdev_info(dev, "PCS AutoNEG complete\n");
289 	}
290 
291 	if (pcs_miistat & PCS_MIISTAT_LS) {
292 		netdev_info(dev, "PCS link is now up\n");
293 		netif_carrier_on(gp->dev);
294 	} else {
295 		netdev_info(dev, "PCS link is now down\n");
296 		netif_carrier_off(gp->dev);
297 		/* If this happens and the link timer is not running,
298 		 * reset so we re-negotiate.
299 		 */
300 		if (!timer_pending(&gp->link_timer))
301 			return 1;
302 	}
303 
304 	return 0;
305 }
306 
307 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 {
309 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 
311 	if (netif_msg_intr(gp))
312 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
313 			gp->dev->name, txmac_stat);
314 
315 	/* Defer timer expiration is quite normal,
316 	 * don't even log the event.
317 	 */
318 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
319 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
320 		return 0;
321 
322 	if (txmac_stat & MAC_TXSTAT_URUN) {
323 		netdev_err(dev, "TX MAC xmit underrun\n");
324 		dev->stats.tx_fifo_errors++;
325 	}
326 
327 	if (txmac_stat & MAC_TXSTAT_MPE) {
328 		netdev_err(dev, "TX MAC max packet size error\n");
329 		dev->stats.tx_errors++;
330 	}
331 
332 	/* The rest are all cases of one of the 16-bit TX
333 	 * counters expiring.
334 	 */
335 	if (txmac_stat & MAC_TXSTAT_NCE)
336 		dev->stats.collisions += 0x10000;
337 
338 	if (txmac_stat & MAC_TXSTAT_ECE) {
339 		dev->stats.tx_aborted_errors += 0x10000;
340 		dev->stats.collisions += 0x10000;
341 	}
342 
343 	if (txmac_stat & MAC_TXSTAT_LCE) {
344 		dev->stats.tx_aborted_errors += 0x10000;
345 		dev->stats.collisions += 0x10000;
346 	}
347 
348 	/* We do not keep track of MAC_TXSTAT_FCE and
349 	 * MAC_TXSTAT_PCE events.
350 	 */
351 	return 0;
352 }
353 
354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
355  * so we do the following.
356  *
357  * If any part of the reset goes wrong, we return 1 and that causes the
358  * whole chip to be reset.
359  */
360 static int gem_rxmac_reset(struct gem *gp)
361 {
362 	struct net_device *dev = gp->dev;
363 	int limit, i;
364 	u64 desc_dma;
365 	u32 val;
366 
367 	/* First, reset & disable MAC RX. */
368 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
369 	for (limit = 0; limit < 5000; limit++) {
370 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
371 			break;
372 		udelay(10);
373 	}
374 	if (limit == 5000) {
375 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
376 		return 1;
377 	}
378 
379 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
380 	       gp->regs + MAC_RXCFG);
381 	for (limit = 0; limit < 5000; limit++) {
382 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
383 			break;
384 		udelay(10);
385 	}
386 	if (limit == 5000) {
387 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
388 		return 1;
389 	}
390 
391 	/* Second, disable RX DMA. */
392 	writel(0, gp->regs + RXDMA_CFG);
393 	for (limit = 0; limit < 5000; limit++) {
394 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
395 			break;
396 		udelay(10);
397 	}
398 	if (limit == 5000) {
399 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
400 		return 1;
401 	}
402 
403 	mdelay(5);
404 
405 	/* Execute RX reset command. */
406 	writel(gp->swrst_base | GREG_SWRST_RXRST,
407 	       gp->regs + GREG_SWRST);
408 	for (limit = 0; limit < 5000; limit++) {
409 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
410 			break;
411 		udelay(10);
412 	}
413 	if (limit == 5000) {
414 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
415 		return 1;
416 	}
417 
418 	/* Refresh the RX ring. */
419 	for (i = 0; i < RX_RING_SIZE; i++) {
420 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 
422 		if (gp->rx_skbs[i] == NULL) {
423 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
424 			return 1;
425 		}
426 
427 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 	}
429 	gp->rx_new = gp->rx_old = 0;
430 
431 	/* Now we must reprogram the rest of RX unit. */
432 	desc_dma = (u64) gp->gblock_dvma;
433 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
434 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
435 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
436 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
437 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
438 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
439 	writel(val, gp->regs + RXDMA_CFG);
440 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
441 		writel(((5 & RXDMA_BLANK_IPKTS) |
442 			((8 << 12) & RXDMA_BLANK_ITIME)),
443 		       gp->regs + RXDMA_BLANK);
444 	else
445 		writel(((5 & RXDMA_BLANK_IPKTS) |
446 			((4 << 12) & RXDMA_BLANK_ITIME)),
447 		       gp->regs + RXDMA_BLANK);
448 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
449 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
450 	writel(val, gp->regs + RXDMA_PTHRESH);
451 	val = readl(gp->regs + RXDMA_CFG);
452 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
453 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
454 	val = readl(gp->regs + MAC_RXCFG);
455 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
456 
457 	return 0;
458 }
459 
460 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 {
462 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
463 	int ret = 0;
464 
465 	if (netif_msg_intr(gp))
466 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
467 			gp->dev->name, rxmac_stat);
468 
469 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
470 		u32 smac = readl(gp->regs + MAC_SMACHINE);
471 
472 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
473 		dev->stats.rx_over_errors++;
474 		dev->stats.rx_fifo_errors++;
475 
476 		ret = gem_rxmac_reset(gp);
477 	}
478 
479 	if (rxmac_stat & MAC_RXSTAT_ACE)
480 		dev->stats.rx_frame_errors += 0x10000;
481 
482 	if (rxmac_stat & MAC_RXSTAT_CCE)
483 		dev->stats.rx_crc_errors += 0x10000;
484 
485 	if (rxmac_stat & MAC_RXSTAT_LCE)
486 		dev->stats.rx_length_errors += 0x10000;
487 
488 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
489 	 * events.
490 	 */
491 	return ret;
492 }
493 
494 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 {
496 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 
498 	if (netif_msg_intr(gp))
499 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
500 			gp->dev->name, mac_cstat);
501 
502 	/* This interrupt is just for pause frame and pause
503 	 * tracking.  It is useful for diagnostics and debug
504 	 * but probably by default we will mask these events.
505 	 */
506 	if (mac_cstat & MAC_CSTAT_PS)
507 		gp->pause_entered++;
508 
509 	if (mac_cstat & MAC_CSTAT_PRCV)
510 		gp->pause_last_time_recvd = (mac_cstat >> 16);
511 
512 	return 0;
513 }
514 
515 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 {
517 	u32 mif_status = readl(gp->regs + MIF_STATUS);
518 	u32 reg_val, changed_bits;
519 
520 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
521 	changed_bits = (mif_status & MIF_STATUS_STAT);
522 
523 	gem_handle_mif_event(gp, reg_val, changed_bits);
524 
525 	return 0;
526 }
527 
528 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 {
530 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 
532 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
533 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
534 		netdev_err(dev, "PCI error [%04x]", pci_estat);
535 
536 		if (pci_estat & GREG_PCIESTAT_BADACK)
537 			pr_cont(" <No ACK64# during ABS64 cycle>");
538 		if (pci_estat & GREG_PCIESTAT_DTRTO)
539 			pr_cont(" <Delayed transaction timeout>");
540 		if (pci_estat & GREG_PCIESTAT_OTHER)
541 			pr_cont(" <other>");
542 		pr_cont("\n");
543 	} else {
544 		pci_estat |= GREG_PCIESTAT_OTHER;
545 		netdev_err(dev, "PCI error\n");
546 	}
547 
548 	if (pci_estat & GREG_PCIESTAT_OTHER) {
549 		u16 pci_cfg_stat;
550 
551 		/* Interrogate PCI config space for the
552 		 * true cause.
553 		 */
554 		pci_read_config_word(gp->pdev, PCI_STATUS,
555 				     &pci_cfg_stat);
556 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
557 			   pci_cfg_stat);
558 		if (pci_cfg_stat & PCI_STATUS_PARITY)
559 			netdev_err(dev, "PCI parity error detected\n");
560 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
561 			netdev_err(dev, "PCI target abort\n");
562 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
563 			netdev_err(dev, "PCI master acks target abort\n");
564 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
565 			netdev_err(dev, "PCI master abort\n");
566 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
567 			netdev_err(dev, "PCI system error SERR#\n");
568 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
569 			netdev_err(dev, "PCI parity error\n");
570 
571 		/* Write the error bits back to clear them. */
572 		pci_cfg_stat &= (PCI_STATUS_PARITY |
573 				 PCI_STATUS_SIG_TARGET_ABORT |
574 				 PCI_STATUS_REC_TARGET_ABORT |
575 				 PCI_STATUS_REC_MASTER_ABORT |
576 				 PCI_STATUS_SIG_SYSTEM_ERROR |
577 				 PCI_STATUS_DETECTED_PARITY);
578 		pci_write_config_word(gp->pdev,
579 				      PCI_STATUS, pci_cfg_stat);
580 	}
581 
582 	/* For all PCI errors, we should reset the chip. */
583 	return 1;
584 }
585 
586 /* All non-normal interrupt conditions get serviced here.
587  * Returns non-zero if we should just exit the interrupt
588  * handler right now (ie. if we reset the card which invalidates
589  * all of the other original irq status bits).
590  */
591 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
592 {
593 	if (gem_status & GREG_STAT_RXNOBUF) {
594 		/* Frame arrived, no free RX buffers available. */
595 		if (netif_msg_rx_err(gp))
596 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
597 				gp->dev->name);
598 		dev->stats.rx_dropped++;
599 	}
600 
601 	if (gem_status & GREG_STAT_RXTAGERR) {
602 		/* corrupt RX tag framing */
603 		if (netif_msg_rx_err(gp))
604 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
605 				gp->dev->name);
606 		dev->stats.rx_errors++;
607 
608 		return 1;
609 	}
610 
611 	if (gem_status & GREG_STAT_PCS) {
612 		if (gem_pcs_interrupt(dev, gp, gem_status))
613 			return 1;
614 	}
615 
616 	if (gem_status & GREG_STAT_TXMAC) {
617 		if (gem_txmac_interrupt(dev, gp, gem_status))
618 			return 1;
619 	}
620 
621 	if (gem_status & GREG_STAT_RXMAC) {
622 		if (gem_rxmac_interrupt(dev, gp, gem_status))
623 			return 1;
624 	}
625 
626 	if (gem_status & GREG_STAT_MAC) {
627 		if (gem_mac_interrupt(dev, gp, gem_status))
628 			return 1;
629 	}
630 
631 	if (gem_status & GREG_STAT_MIF) {
632 		if (gem_mif_interrupt(dev, gp, gem_status))
633 			return 1;
634 	}
635 
636 	if (gem_status & GREG_STAT_PCIERR) {
637 		if (gem_pci_interrupt(dev, gp, gem_status))
638 			return 1;
639 	}
640 
641 	return 0;
642 }
643 
644 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
645 {
646 	int entry, limit;
647 
648 	entry = gp->tx_old;
649 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
650 	while (entry != limit) {
651 		struct sk_buff *skb;
652 		struct gem_txd *txd;
653 		dma_addr_t dma_addr;
654 		u32 dma_len;
655 		int frag;
656 
657 		if (netif_msg_tx_done(gp))
658 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
659 				gp->dev->name, entry);
660 		skb = gp->tx_skbs[entry];
661 		if (skb_shinfo(skb)->nr_frags) {
662 			int last = entry + skb_shinfo(skb)->nr_frags;
663 			int walk = entry;
664 			int incomplete = 0;
665 
666 			last &= (TX_RING_SIZE - 1);
667 			for (;;) {
668 				walk = NEXT_TX(walk);
669 				if (walk == limit)
670 					incomplete = 1;
671 				if (walk == last)
672 					break;
673 			}
674 			if (incomplete)
675 				break;
676 		}
677 		gp->tx_skbs[entry] = NULL;
678 		dev->stats.tx_bytes += skb->len;
679 
680 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
681 			txd = &gp->init_block->txd[entry];
682 
683 			dma_addr = le64_to_cpu(txd->buffer);
684 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
685 
686 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
687 			entry = NEXT_TX(entry);
688 		}
689 
690 		dev->stats.tx_packets++;
691 		dev_kfree_skb(skb);
692 	}
693 	gp->tx_old = entry;
694 
695 	/* Need to make the tx_old update visible to gem_start_xmit()
696 	 * before checking for netif_queue_stopped().  Without the
697 	 * memory barrier, there is a small possibility that gem_start_xmit()
698 	 * will miss it and cause the queue to be stopped forever.
699 	 */
700 	smp_mb();
701 
702 	if (unlikely(netif_queue_stopped(dev) &&
703 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
704 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
705 
706 		__netif_tx_lock(txq, smp_processor_id());
707 		if (netif_queue_stopped(dev) &&
708 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
709 			netif_wake_queue(dev);
710 		__netif_tx_unlock(txq);
711 	}
712 }
713 
714 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
715 {
716 	int cluster_start, curr, count, kick;
717 
718 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
719 	count = 0;
720 	kick = -1;
721 	wmb();
722 	while (curr != limit) {
723 		curr = NEXT_RX(curr);
724 		if (++count == 4) {
725 			struct gem_rxd *rxd =
726 				&gp->init_block->rxd[cluster_start];
727 			for (;;) {
728 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
729 				rxd++;
730 				cluster_start = NEXT_RX(cluster_start);
731 				if (cluster_start == curr)
732 					break;
733 			}
734 			kick = curr;
735 			count = 0;
736 		}
737 	}
738 	if (kick >= 0) {
739 		mb();
740 		writel(kick, gp->regs + RXDMA_KICK);
741 	}
742 }
743 
744 #define ALIGNED_RX_SKB_ADDR(addr) \
745         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
746 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
747 						gfp_t gfp_flags)
748 {
749 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
750 
751 	if (likely(skb)) {
752 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
753 		skb_reserve(skb, offset);
754 	}
755 	return skb;
756 }
757 
758 static int gem_rx(struct gem *gp, int work_to_do)
759 {
760 	struct net_device *dev = gp->dev;
761 	int entry, drops, work_done = 0;
762 	u32 done;
763 	__sum16 csum;
764 
765 	if (netif_msg_rx_status(gp))
766 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
767 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
768 
769 	entry = gp->rx_new;
770 	drops = 0;
771 	done = readl(gp->regs + RXDMA_DONE);
772 	for (;;) {
773 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
774 		struct sk_buff *skb;
775 		u64 status = le64_to_cpu(rxd->status_word);
776 		dma_addr_t dma_addr;
777 		int len;
778 
779 		if ((status & RXDCTRL_OWN) != 0)
780 			break;
781 
782 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
783 			break;
784 
785 		/* When writing back RX descriptor, GEM writes status
786 		 * then buffer address, possibly in separate transactions.
787 		 * If we don't wait for the chip to write both, we could
788 		 * post a new buffer to this descriptor then have GEM spam
789 		 * on the buffer address.  We sync on the RX completion
790 		 * register to prevent this from happening.
791 		 */
792 		if (entry == done) {
793 			done = readl(gp->regs + RXDMA_DONE);
794 			if (entry == done)
795 				break;
796 		}
797 
798 		/* We can now account for the work we're about to do */
799 		work_done++;
800 
801 		skb = gp->rx_skbs[entry];
802 
803 		len = (status & RXDCTRL_BUFSZ) >> 16;
804 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
805 			dev->stats.rx_errors++;
806 			if (len < ETH_ZLEN)
807 				dev->stats.rx_length_errors++;
808 			if (len & RXDCTRL_BAD)
809 				dev->stats.rx_crc_errors++;
810 
811 			/* We'll just return it to GEM. */
812 		drop_it:
813 			dev->stats.rx_dropped++;
814 			goto next;
815 		}
816 
817 		dma_addr = le64_to_cpu(rxd->buffer);
818 		if (len > RX_COPY_THRESHOLD) {
819 			struct sk_buff *new_skb;
820 
821 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
822 			if (new_skb == NULL) {
823 				drops++;
824 				goto drop_it;
825 			}
826 			pci_unmap_page(gp->pdev, dma_addr,
827 				       RX_BUF_ALLOC_SIZE(gp),
828 				       PCI_DMA_FROMDEVICE);
829 			gp->rx_skbs[entry] = new_skb;
830 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 							       virt_to_page(new_skb->data),
833 							       offset_in_page(new_skb->data),
834 							       RX_BUF_ALLOC_SIZE(gp),
835 							       PCI_DMA_FROMDEVICE));
836 			skb_reserve(new_skb, RX_OFFSET);
837 
838 			/* Trim the original skb for the netif. */
839 			skb_trim(skb, len);
840 		} else {
841 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
842 
843 			if (copy_skb == NULL) {
844 				drops++;
845 				goto drop_it;
846 			}
847 
848 			skb_reserve(copy_skb, 2);
849 			skb_put(copy_skb, len);
850 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
851 			skb_copy_from_linear_data(skb, copy_skb->data, len);
852 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 
854 			/* We'll reuse the original ring buffer. */
855 			skb = copy_skb;
856 		}
857 
858 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 		skb->csum = csum_unfold(csum);
860 		skb->ip_summed = CHECKSUM_COMPLETE;
861 		skb->protocol = eth_type_trans(skb, gp->dev);
862 
863 		napi_gro_receive(&gp->napi, skb);
864 
865 		dev->stats.rx_packets++;
866 		dev->stats.rx_bytes += len;
867 
868 	next:
869 		entry = NEXT_RX(entry);
870 	}
871 
872 	gem_post_rxds(gp, entry);
873 
874 	gp->rx_new = entry;
875 
876 	if (drops)
877 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
878 
879 	return work_done;
880 }
881 
882 static int gem_poll(struct napi_struct *napi, int budget)
883 {
884 	struct gem *gp = container_of(napi, struct gem, napi);
885 	struct net_device *dev = gp->dev;
886 	int work_done;
887 
888 	work_done = 0;
889 	do {
890 		/* Handle anomalies */
891 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
892 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
893 			int reset;
894 
895 			/* We run the abnormal interrupt handling code with
896 			 * the Tx lock. It only resets the Rx portion of the
897 			 * chip, but we need to guard it against DMA being
898 			 * restarted by the link poll timer
899 			 */
900 			__netif_tx_lock(txq, smp_processor_id());
901 			reset = gem_abnormal_irq(dev, gp, gp->status);
902 			__netif_tx_unlock(txq);
903 			if (reset) {
904 				gem_schedule_reset(gp);
905 				napi_complete(napi);
906 				return work_done;
907 			}
908 		}
909 
910 		/* Run TX completion thread */
911 		gem_tx(dev, gp, gp->status);
912 
913 		/* Run RX thread. We don't use any locking here,
914 		 * code willing to do bad things - like cleaning the
915 		 * rx ring - must call napi_disable(), which
916 		 * schedule_timeout()'s if polling is already disabled.
917 		 */
918 		work_done += gem_rx(gp, budget - work_done);
919 
920 		if (work_done >= budget)
921 			return work_done;
922 
923 		gp->status = readl(gp->regs + GREG_STAT);
924 	} while (gp->status & GREG_STAT_NAPI);
925 
926 	napi_complete(napi);
927 	gem_enable_ints(gp);
928 
929 	return work_done;
930 }
931 
932 static irqreturn_t gem_interrupt(int irq, void *dev_id)
933 {
934 	struct net_device *dev = dev_id;
935 	struct gem *gp = netdev_priv(dev);
936 
937 	if (napi_schedule_prep(&gp->napi)) {
938 		u32 gem_status = readl(gp->regs + GREG_STAT);
939 
940 		if (unlikely(gem_status == 0)) {
941 			napi_enable(&gp->napi);
942 			return IRQ_NONE;
943 		}
944 		if (netif_msg_intr(gp))
945 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
946 			       gp->dev->name, gem_status);
947 
948 		gp->status = gem_status;
949 		gem_disable_ints(gp);
950 		__napi_schedule(&gp->napi);
951 	}
952 
953 	/* If polling was disabled at the time we received that
954 	 * interrupt, we may return IRQ_HANDLED here while we
955 	 * should return IRQ_NONE. No big deal...
956 	 */
957 	return IRQ_HANDLED;
958 }
959 
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 static void gem_poll_controller(struct net_device *dev)
962 {
963 	struct gem *gp = netdev_priv(dev);
964 
965 	disable_irq(gp->pdev->irq);
966 	gem_interrupt(gp->pdev->irq, dev);
967 	enable_irq(gp->pdev->irq);
968 }
969 #endif
970 
971 static void gem_tx_timeout(struct net_device *dev)
972 {
973 	struct gem *gp = netdev_priv(dev);
974 
975 	netdev_err(dev, "transmit timed out, resetting\n");
976 
977 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
978 		   readl(gp->regs + TXDMA_CFG),
979 		   readl(gp->regs + MAC_TXSTAT),
980 		   readl(gp->regs + MAC_TXCFG));
981 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
982 		   readl(gp->regs + RXDMA_CFG),
983 		   readl(gp->regs + MAC_RXSTAT),
984 		   readl(gp->regs + MAC_RXCFG));
985 
986 	gem_schedule_reset(gp);
987 }
988 
989 static __inline__ int gem_intme(int entry)
990 {
991 	/* Algorithm: IRQ every 1/2 of descriptors. */
992 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
993 		return 1;
994 
995 	return 0;
996 }
997 
998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
999 				  struct net_device *dev)
1000 {
1001 	struct gem *gp = netdev_priv(dev);
1002 	int entry;
1003 	u64 ctrl;
1004 
1005 	ctrl = 0;
1006 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1007 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1008 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1009 
1010 		ctrl = (TXDCTRL_CENAB |
1011 			(csum_start_off << 15) |
1012 			(csum_stuff_off << 21));
1013 	}
1014 
1015 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1016 		/* This is a hard error, log it. */
1017 		if (!netif_queue_stopped(dev)) {
1018 			netif_stop_queue(dev);
1019 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1020 		}
1021 		return NETDEV_TX_BUSY;
1022 	}
1023 
1024 	entry = gp->tx_new;
1025 	gp->tx_skbs[entry] = skb;
1026 
1027 	if (skb_shinfo(skb)->nr_frags == 0) {
1028 		struct gem_txd *txd = &gp->init_block->txd[entry];
1029 		dma_addr_t mapping;
1030 		u32 len;
1031 
1032 		len = skb->len;
1033 		mapping = pci_map_page(gp->pdev,
1034 				       virt_to_page(skb->data),
1035 				       offset_in_page(skb->data),
1036 				       len, PCI_DMA_TODEVICE);
1037 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1038 		if (gem_intme(entry))
1039 			ctrl |= TXDCTRL_INTME;
1040 		txd->buffer = cpu_to_le64(mapping);
1041 		wmb();
1042 		txd->control_word = cpu_to_le64(ctrl);
1043 		entry = NEXT_TX(entry);
1044 	} else {
1045 		struct gem_txd *txd;
1046 		u32 first_len;
1047 		u64 intme;
1048 		dma_addr_t first_mapping;
1049 		int frag, first_entry = entry;
1050 
1051 		intme = 0;
1052 		if (gem_intme(entry))
1053 			intme |= TXDCTRL_INTME;
1054 
1055 		/* We must give this initial chunk to the device last.
1056 		 * Otherwise we could race with the device.
1057 		 */
1058 		first_len = skb_headlen(skb);
1059 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1060 					     offset_in_page(skb->data),
1061 					     first_len, PCI_DMA_TODEVICE);
1062 		entry = NEXT_TX(entry);
1063 
1064 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1065 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1066 			u32 len;
1067 			dma_addr_t mapping;
1068 			u64 this_ctrl;
1069 
1070 			len = skb_frag_size(this_frag);
1071 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1072 						   0, len, DMA_TO_DEVICE);
1073 			this_ctrl = ctrl;
1074 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1075 				this_ctrl |= TXDCTRL_EOF;
1076 
1077 			txd = &gp->init_block->txd[entry];
1078 			txd->buffer = cpu_to_le64(mapping);
1079 			wmb();
1080 			txd->control_word = cpu_to_le64(this_ctrl | len);
1081 
1082 			if (gem_intme(entry))
1083 				intme |= TXDCTRL_INTME;
1084 
1085 			entry = NEXT_TX(entry);
1086 		}
1087 		txd = &gp->init_block->txd[first_entry];
1088 		txd->buffer = cpu_to_le64(first_mapping);
1089 		wmb();
1090 		txd->control_word =
1091 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1092 	}
1093 
1094 	gp->tx_new = entry;
1095 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1096 		netif_stop_queue(dev);
1097 
1098 		/* netif_stop_queue() must be done before checking
1099 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1100 		 * in gem_tx(), we update tx_old before checking for
1101 		 * netif_queue_stopped().
1102 		 */
1103 		smp_mb();
1104 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1105 			netif_wake_queue(dev);
1106 	}
1107 	if (netif_msg_tx_queued(gp))
1108 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1109 		       dev->name, entry, skb->len);
1110 	mb();
1111 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1112 
1113 	return NETDEV_TX_OK;
1114 }
1115 
1116 static void gem_pcs_reset(struct gem *gp)
1117 {
1118 	int limit;
1119 	u32 val;
1120 
1121 	/* Reset PCS unit. */
1122 	val = readl(gp->regs + PCS_MIICTRL);
1123 	val |= PCS_MIICTRL_RST;
1124 	writel(val, gp->regs + PCS_MIICTRL);
1125 
1126 	limit = 32;
1127 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1128 		udelay(100);
1129 		if (limit-- <= 0)
1130 			break;
1131 	}
1132 	if (limit < 0)
1133 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1134 }
1135 
1136 static void gem_pcs_reinit_adv(struct gem *gp)
1137 {
1138 	u32 val;
1139 
1140 	/* Make sure PCS is disabled while changing advertisement
1141 	 * configuration.
1142 	 */
1143 	val = readl(gp->regs + PCS_CFG);
1144 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1145 	writel(val, gp->regs + PCS_CFG);
1146 
1147 	/* Advertise all capabilities except asymmetric
1148 	 * pause.
1149 	 */
1150 	val = readl(gp->regs + PCS_MIIADV);
1151 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1152 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1153 	writel(val, gp->regs + PCS_MIIADV);
1154 
1155 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1156 	 * and re-enable PCS.
1157 	 */
1158 	val = readl(gp->regs + PCS_MIICTRL);
1159 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1160 	val &= ~PCS_MIICTRL_WB;
1161 	writel(val, gp->regs + PCS_MIICTRL);
1162 
1163 	val = readl(gp->regs + PCS_CFG);
1164 	val |= PCS_CFG_ENABLE;
1165 	writel(val, gp->regs + PCS_CFG);
1166 
1167 	/* Make sure serialink loopback is off.  The meaning
1168 	 * of this bit is logically inverted based upon whether
1169 	 * you are in Serialink or SERDES mode.
1170 	 */
1171 	val = readl(gp->regs + PCS_SCTRL);
1172 	if (gp->phy_type == phy_serialink)
1173 		val &= ~PCS_SCTRL_LOOP;
1174 	else
1175 		val |= PCS_SCTRL_LOOP;
1176 	writel(val, gp->regs + PCS_SCTRL);
1177 }
1178 
1179 #define STOP_TRIES 32
1180 
1181 static void gem_reset(struct gem *gp)
1182 {
1183 	int limit;
1184 	u32 val;
1185 
1186 	/* Make sure we won't get any more interrupts */
1187 	writel(0xffffffff, gp->regs + GREG_IMASK);
1188 
1189 	/* Reset the chip */
1190 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1191 	       gp->regs + GREG_SWRST);
1192 
1193 	limit = STOP_TRIES;
1194 
1195 	do {
1196 		udelay(20);
1197 		val = readl(gp->regs + GREG_SWRST);
1198 		if (limit-- <= 0)
1199 			break;
1200 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1201 
1202 	if (limit < 0)
1203 		netdev_err(gp->dev, "SW reset is ghetto\n");
1204 
1205 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1206 		gem_pcs_reinit_adv(gp);
1207 }
1208 
1209 static void gem_start_dma(struct gem *gp)
1210 {
1211 	u32 val;
1212 
1213 	/* We are ready to rock, turn everything on. */
1214 	val = readl(gp->regs + TXDMA_CFG);
1215 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1216 	val = readl(gp->regs + RXDMA_CFG);
1217 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1218 	val = readl(gp->regs + MAC_TXCFG);
1219 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1220 	val = readl(gp->regs + MAC_RXCFG);
1221 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1222 
1223 	(void) readl(gp->regs + MAC_RXCFG);
1224 	udelay(100);
1225 
1226 	gem_enable_ints(gp);
1227 
1228 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1229 }
1230 
1231 /* DMA won't be actually stopped before about 4ms tho ...
1232  */
1233 static void gem_stop_dma(struct gem *gp)
1234 {
1235 	u32 val;
1236 
1237 	/* We are done rocking, turn everything off. */
1238 	val = readl(gp->regs + TXDMA_CFG);
1239 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1240 	val = readl(gp->regs + RXDMA_CFG);
1241 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1242 	val = readl(gp->regs + MAC_TXCFG);
1243 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1244 	val = readl(gp->regs + MAC_RXCFG);
1245 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1246 
1247 	(void) readl(gp->regs + MAC_RXCFG);
1248 
1249 	/* Need to wait a bit ... done by the caller */
1250 }
1251 
1252 
1253 // XXX dbl check what that function should do when called on PCS PHY
1254 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1255 {
1256 	u32 advertise, features;
1257 	int autoneg;
1258 	int speed;
1259 	int duplex;
1260 
1261 	if (gp->phy_type != phy_mii_mdio0 &&
1262      	    gp->phy_type != phy_mii_mdio1)
1263      	    	goto non_mii;
1264 
1265 	/* Setup advertise */
1266 	if (found_mii_phy(gp))
1267 		features = gp->phy_mii.def->features;
1268 	else
1269 		features = 0;
1270 
1271 	advertise = features & ADVERTISE_MASK;
1272 	if (gp->phy_mii.advertising != 0)
1273 		advertise &= gp->phy_mii.advertising;
1274 
1275 	autoneg = gp->want_autoneg;
1276 	speed = gp->phy_mii.speed;
1277 	duplex = gp->phy_mii.duplex;
1278 
1279 	/* Setup link parameters */
1280 	if (!ep)
1281 		goto start_aneg;
1282 	if (ep->autoneg == AUTONEG_ENABLE) {
1283 		advertise = ep->advertising;
1284 		autoneg = 1;
1285 	} else {
1286 		autoneg = 0;
1287 		speed = ethtool_cmd_speed(ep);
1288 		duplex = ep->duplex;
1289 	}
1290 
1291 start_aneg:
1292 	/* Sanitize settings based on PHY capabilities */
1293 	if ((features & SUPPORTED_Autoneg) == 0)
1294 		autoneg = 0;
1295 	if (speed == SPEED_1000 &&
1296 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1297 		speed = SPEED_100;
1298 	if (speed == SPEED_100 &&
1299 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1300 		speed = SPEED_10;
1301 	if (duplex == DUPLEX_FULL &&
1302 	    !(features & (SUPPORTED_1000baseT_Full |
1303 	    		  SUPPORTED_100baseT_Full |
1304 	    		  SUPPORTED_10baseT_Full)))
1305 	    	duplex = DUPLEX_HALF;
1306 	if (speed == 0)
1307 		speed = SPEED_10;
1308 
1309 	/* If we are asleep, we don't try to actually setup the PHY, we
1310 	 * just store the settings
1311 	 */
1312 	if (!netif_device_present(gp->dev)) {
1313 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1314 		gp->phy_mii.speed = speed;
1315 		gp->phy_mii.duplex = duplex;
1316 		return;
1317 	}
1318 
1319 	/* Configure PHY & start aneg */
1320 	gp->want_autoneg = autoneg;
1321 	if (autoneg) {
1322 		if (found_mii_phy(gp))
1323 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1324 		gp->lstate = link_aneg;
1325 	} else {
1326 		if (found_mii_phy(gp))
1327 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1328 		gp->lstate = link_force_ok;
1329 	}
1330 
1331 non_mii:
1332 	gp->timer_ticks = 0;
1333 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1334 }
1335 
1336 /* A link-up condition has occurred, initialize and enable the
1337  * rest of the chip.
1338  */
1339 static int gem_set_link_modes(struct gem *gp)
1340 {
1341 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1342 	int full_duplex, speed, pause;
1343 	u32 val;
1344 
1345 	full_duplex = 0;
1346 	speed = SPEED_10;
1347 	pause = 0;
1348 
1349 	if (found_mii_phy(gp)) {
1350 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1351 	    		return 1;
1352 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1353 		speed = gp->phy_mii.speed;
1354 		pause = gp->phy_mii.pause;
1355 	} else if (gp->phy_type == phy_serialink ||
1356 	    	   gp->phy_type == phy_serdes) {
1357 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1358 
1359 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1360 			full_duplex = 1;
1361 		speed = SPEED_1000;
1362 	}
1363 
1364 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1365 		   speed, (full_duplex ? "full" : "half"));
1366 
1367 
1368 	/* We take the tx queue lock to avoid collisions between
1369 	 * this code, the tx path and the NAPI-driven error path
1370 	 */
1371 	__netif_tx_lock(txq, smp_processor_id());
1372 
1373 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1374 	if (full_duplex) {
1375 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1376 	} else {
1377 		/* MAC_TXCFG_NBO must be zero. */
1378 	}
1379 	writel(val, gp->regs + MAC_TXCFG);
1380 
1381 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1382 	if (!full_duplex &&
1383 	    (gp->phy_type == phy_mii_mdio0 ||
1384 	     gp->phy_type == phy_mii_mdio1)) {
1385 		val |= MAC_XIFCFG_DISE;
1386 	} else if (full_duplex) {
1387 		val |= MAC_XIFCFG_FLED;
1388 	}
1389 
1390 	if (speed == SPEED_1000)
1391 		val |= (MAC_XIFCFG_GMII);
1392 
1393 	writel(val, gp->regs + MAC_XIFCFG);
1394 
1395 	/* If gigabit and half-duplex, enable carrier extension
1396 	 * mode.  Else, disable it.
1397 	 */
1398 	if (speed == SPEED_1000 && !full_duplex) {
1399 		val = readl(gp->regs + MAC_TXCFG);
1400 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1401 
1402 		val = readl(gp->regs + MAC_RXCFG);
1403 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1404 	} else {
1405 		val = readl(gp->regs + MAC_TXCFG);
1406 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1407 
1408 		val = readl(gp->regs + MAC_RXCFG);
1409 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1410 	}
1411 
1412 	if (gp->phy_type == phy_serialink ||
1413 	    gp->phy_type == phy_serdes) {
1414  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1415 
1416 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1417 			pause = 1;
1418 	}
1419 
1420 	if (!full_duplex)
1421 		writel(512, gp->regs + MAC_STIME);
1422 	else
1423 		writel(64, gp->regs + MAC_STIME);
1424 	val = readl(gp->regs + MAC_MCCFG);
1425 	if (pause)
1426 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1427 	else
1428 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1429 	writel(val, gp->regs + MAC_MCCFG);
1430 
1431 	gem_start_dma(gp);
1432 
1433 	__netif_tx_unlock(txq);
1434 
1435 	if (netif_msg_link(gp)) {
1436 		if (pause) {
1437 			netdev_info(gp->dev,
1438 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1439 				    gp->rx_fifo_sz,
1440 				    gp->rx_pause_off,
1441 				    gp->rx_pause_on);
1442 		} else {
1443 			netdev_info(gp->dev, "Pause is disabled\n");
1444 		}
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int gem_mdio_link_not_up(struct gem *gp)
1451 {
1452 	switch (gp->lstate) {
1453 	case link_force_ret:
1454 		netif_info(gp, link, gp->dev,
1455 			   "Autoneg failed again, keeping forced mode\n");
1456 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1457 			gp->last_forced_speed, DUPLEX_HALF);
1458 		gp->timer_ticks = 5;
1459 		gp->lstate = link_force_ok;
1460 		return 0;
1461 	case link_aneg:
1462 		/* We try forced modes after a failed aneg only on PHYs that don't
1463 		 * have "magic_aneg" bit set, which means they internally do the
1464 		 * while forced-mode thingy. On these, we just restart aneg
1465 		 */
1466 		if (gp->phy_mii.def->magic_aneg)
1467 			return 1;
1468 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1469 		/* Try forced modes. */
1470 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1471 			DUPLEX_HALF);
1472 		gp->timer_ticks = 5;
1473 		gp->lstate = link_force_try;
1474 		return 0;
1475 	case link_force_try:
1476 		/* Downgrade from 100 to 10 Mbps if necessary.
1477 		 * If already at 10Mbps, warn user about the
1478 		 * situation every 10 ticks.
1479 		 */
1480 		if (gp->phy_mii.speed == SPEED_100) {
1481 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1482 				DUPLEX_HALF);
1483 			gp->timer_ticks = 5;
1484 			netif_info(gp, link, gp->dev,
1485 				   "switching to forced 10bt\n");
1486 			return 0;
1487 		} else
1488 			return 1;
1489 	default:
1490 		return 0;
1491 	}
1492 }
1493 
1494 static void gem_link_timer(unsigned long data)
1495 {
1496 	struct gem *gp = (struct gem *) data;
1497 	struct net_device *dev = gp->dev;
1498 	int restart_aneg = 0;
1499 
1500 	/* There's no point doing anything if we're going to be reset */
1501 	if (gp->reset_task_pending)
1502 		return;
1503 
1504 	if (gp->phy_type == phy_serialink ||
1505 	    gp->phy_type == phy_serdes) {
1506 		u32 val = readl(gp->regs + PCS_MIISTAT);
1507 
1508 		if (!(val & PCS_MIISTAT_LS))
1509 			val = readl(gp->regs + PCS_MIISTAT);
1510 
1511 		if ((val & PCS_MIISTAT_LS) != 0) {
1512 			if (gp->lstate == link_up)
1513 				goto restart;
1514 
1515 			gp->lstate = link_up;
1516 			netif_carrier_on(dev);
1517 			(void)gem_set_link_modes(gp);
1518 		}
1519 		goto restart;
1520 	}
1521 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1522 		/* Ok, here we got a link. If we had it due to a forced
1523 		 * fallback, and we were configured for autoneg, we do
1524 		 * retry a short autoneg pass. If you know your hub is
1525 		 * broken, use ethtool ;)
1526 		 */
1527 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1528 			gp->lstate = link_force_ret;
1529 			gp->last_forced_speed = gp->phy_mii.speed;
1530 			gp->timer_ticks = 5;
1531 			if (netif_msg_link(gp))
1532 				netdev_info(dev,
1533 					    "Got link after fallback, retrying autoneg once...\n");
1534 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1535 		} else if (gp->lstate != link_up) {
1536 			gp->lstate = link_up;
1537 			netif_carrier_on(dev);
1538 			if (gem_set_link_modes(gp))
1539 				restart_aneg = 1;
1540 		}
1541 	} else {
1542 		/* If the link was previously up, we restart the
1543 		 * whole process
1544 		 */
1545 		if (gp->lstate == link_up) {
1546 			gp->lstate = link_down;
1547 			netif_info(gp, link, dev, "Link down\n");
1548 			netif_carrier_off(dev);
1549 			gem_schedule_reset(gp);
1550 			/* The reset task will restart the timer */
1551 			return;
1552 		} else if (++gp->timer_ticks > 10) {
1553 			if (found_mii_phy(gp))
1554 				restart_aneg = gem_mdio_link_not_up(gp);
1555 			else
1556 				restart_aneg = 1;
1557 		}
1558 	}
1559 	if (restart_aneg) {
1560 		gem_begin_auto_negotiation(gp, NULL);
1561 		return;
1562 	}
1563 restart:
1564 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1565 }
1566 
1567 static void gem_clean_rings(struct gem *gp)
1568 {
1569 	struct gem_init_block *gb = gp->init_block;
1570 	struct sk_buff *skb;
1571 	int i;
1572 	dma_addr_t dma_addr;
1573 
1574 	for (i = 0; i < RX_RING_SIZE; i++) {
1575 		struct gem_rxd *rxd;
1576 
1577 		rxd = &gb->rxd[i];
1578 		if (gp->rx_skbs[i] != NULL) {
1579 			skb = gp->rx_skbs[i];
1580 			dma_addr = le64_to_cpu(rxd->buffer);
1581 			pci_unmap_page(gp->pdev, dma_addr,
1582 				       RX_BUF_ALLOC_SIZE(gp),
1583 				       PCI_DMA_FROMDEVICE);
1584 			dev_kfree_skb_any(skb);
1585 			gp->rx_skbs[i] = NULL;
1586 		}
1587 		rxd->status_word = 0;
1588 		wmb();
1589 		rxd->buffer = 0;
1590 	}
1591 
1592 	for (i = 0; i < TX_RING_SIZE; i++) {
1593 		if (gp->tx_skbs[i] != NULL) {
1594 			struct gem_txd *txd;
1595 			int frag;
1596 
1597 			skb = gp->tx_skbs[i];
1598 			gp->tx_skbs[i] = NULL;
1599 
1600 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1601 				int ent = i & (TX_RING_SIZE - 1);
1602 
1603 				txd = &gb->txd[ent];
1604 				dma_addr = le64_to_cpu(txd->buffer);
1605 				pci_unmap_page(gp->pdev, dma_addr,
1606 					       le64_to_cpu(txd->control_word) &
1607 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1608 
1609 				if (frag != skb_shinfo(skb)->nr_frags)
1610 					i++;
1611 			}
1612 			dev_kfree_skb_any(skb);
1613 		}
1614 	}
1615 }
1616 
1617 static void gem_init_rings(struct gem *gp)
1618 {
1619 	struct gem_init_block *gb = gp->init_block;
1620 	struct net_device *dev = gp->dev;
1621 	int i;
1622 	dma_addr_t dma_addr;
1623 
1624 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1625 
1626 	gem_clean_rings(gp);
1627 
1628 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1629 			    (unsigned)VLAN_ETH_FRAME_LEN);
1630 
1631 	for (i = 0; i < RX_RING_SIZE; i++) {
1632 		struct sk_buff *skb;
1633 		struct gem_rxd *rxd = &gb->rxd[i];
1634 
1635 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1636 		if (!skb) {
1637 			rxd->buffer = 0;
1638 			rxd->status_word = 0;
1639 			continue;
1640 		}
1641 
1642 		gp->rx_skbs[i] = skb;
1643 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1644 		dma_addr = pci_map_page(gp->pdev,
1645 					virt_to_page(skb->data),
1646 					offset_in_page(skb->data),
1647 					RX_BUF_ALLOC_SIZE(gp),
1648 					PCI_DMA_FROMDEVICE);
1649 		rxd->buffer = cpu_to_le64(dma_addr);
1650 		wmb();
1651 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1652 		skb_reserve(skb, RX_OFFSET);
1653 	}
1654 
1655 	for (i = 0; i < TX_RING_SIZE; i++) {
1656 		struct gem_txd *txd = &gb->txd[i];
1657 
1658 		txd->control_word = 0;
1659 		wmb();
1660 		txd->buffer = 0;
1661 	}
1662 	wmb();
1663 }
1664 
1665 /* Init PHY interface and start link poll state machine */
1666 static void gem_init_phy(struct gem *gp)
1667 {
1668 	u32 mifcfg;
1669 
1670 	/* Revert MIF CFG setting done on stop_phy */
1671 	mifcfg = readl(gp->regs + MIF_CFG);
1672 	mifcfg &= ~MIF_CFG_BBMODE;
1673 	writel(mifcfg, gp->regs + MIF_CFG);
1674 
1675 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1676 		int i;
1677 
1678 		/* Those delay sucks, the HW seem to love them though, I'll
1679 		 * serisouly consider breaking some locks here to be able
1680 		 * to schedule instead
1681 		 */
1682 		for (i = 0; i < 3; i++) {
1683 #ifdef CONFIG_PPC_PMAC
1684 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1685 			msleep(20);
1686 #endif
1687 			/* Some PHYs used by apple have problem getting back to us,
1688 			 * we do an additional reset here
1689 			 */
1690 			phy_write(gp, MII_BMCR, BMCR_RESET);
1691 			msleep(20);
1692 			if (phy_read(gp, MII_BMCR) != 0xffff)
1693 				break;
1694 			if (i == 2)
1695 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1696 		}
1697 	}
1698 
1699 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1700 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1701 		u32 val;
1702 
1703 		/* Init datapath mode register. */
1704 		if (gp->phy_type == phy_mii_mdio0 ||
1705 		    gp->phy_type == phy_mii_mdio1) {
1706 			val = PCS_DMODE_MGM;
1707 		} else if (gp->phy_type == phy_serialink) {
1708 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1709 		} else {
1710 			val = PCS_DMODE_ESM;
1711 		}
1712 
1713 		writel(val, gp->regs + PCS_DMODE);
1714 	}
1715 
1716 	if (gp->phy_type == phy_mii_mdio0 ||
1717 	    gp->phy_type == phy_mii_mdio1) {
1718 		/* Reset and detect MII PHY */
1719 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1720 
1721 		/* Init PHY */
1722 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1723 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1724 	} else {
1725 		gem_pcs_reset(gp);
1726 		gem_pcs_reinit_adv(gp);
1727 	}
1728 
1729 	/* Default aneg parameters */
1730 	gp->timer_ticks = 0;
1731 	gp->lstate = link_down;
1732 	netif_carrier_off(gp->dev);
1733 
1734 	/* Print things out */
1735 	if (gp->phy_type == phy_mii_mdio0 ||
1736 	    gp->phy_type == phy_mii_mdio1)
1737 		netdev_info(gp->dev, "Found %s PHY\n",
1738 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1739 
1740 	gem_begin_auto_negotiation(gp, NULL);
1741 }
1742 
1743 static void gem_init_dma(struct gem *gp)
1744 {
1745 	u64 desc_dma = (u64) gp->gblock_dvma;
1746 	u32 val;
1747 
1748 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1749 	writel(val, gp->regs + TXDMA_CFG);
1750 
1751 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1752 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1753 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1754 
1755 	writel(0, gp->regs + TXDMA_KICK);
1756 
1757 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1758 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1759 	writel(val, gp->regs + RXDMA_CFG);
1760 
1761 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1762 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1763 
1764 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1765 
1766 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1767 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1768 	writel(val, gp->regs + RXDMA_PTHRESH);
1769 
1770 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1771 		writel(((5 & RXDMA_BLANK_IPKTS) |
1772 			((8 << 12) & RXDMA_BLANK_ITIME)),
1773 		       gp->regs + RXDMA_BLANK);
1774 	else
1775 		writel(((5 & RXDMA_BLANK_IPKTS) |
1776 			((4 << 12) & RXDMA_BLANK_ITIME)),
1777 		       gp->regs + RXDMA_BLANK);
1778 }
1779 
1780 static u32 gem_setup_multicast(struct gem *gp)
1781 {
1782 	u32 rxcfg = 0;
1783 	int i;
1784 
1785 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1786 	    (netdev_mc_count(gp->dev) > 256)) {
1787 	    	for (i=0; i<16; i++)
1788 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1789 		rxcfg |= MAC_RXCFG_HFE;
1790 	} else if (gp->dev->flags & IFF_PROMISC) {
1791 		rxcfg |= MAC_RXCFG_PROM;
1792 	} else {
1793 		u16 hash_table[16];
1794 		u32 crc;
1795 		struct netdev_hw_addr *ha;
1796 		int i;
1797 
1798 		memset(hash_table, 0, sizeof(hash_table));
1799 		netdev_for_each_mc_addr(ha, gp->dev) {
1800 			crc = ether_crc_le(6, ha->addr);
1801 			crc >>= 24;
1802 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1803 		}
1804 	    	for (i=0; i<16; i++)
1805 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1806 		rxcfg |= MAC_RXCFG_HFE;
1807 	}
1808 
1809 	return rxcfg;
1810 }
1811 
1812 static void gem_init_mac(struct gem *gp)
1813 {
1814 	unsigned char *e = &gp->dev->dev_addr[0];
1815 
1816 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1817 
1818 	writel(0x00, gp->regs + MAC_IPG0);
1819 	writel(0x08, gp->regs + MAC_IPG1);
1820 	writel(0x04, gp->regs + MAC_IPG2);
1821 	writel(0x40, gp->regs + MAC_STIME);
1822 	writel(0x40, gp->regs + MAC_MINFSZ);
1823 
1824 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1825 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1826 
1827 	writel(0x07, gp->regs + MAC_PASIZE);
1828 	writel(0x04, gp->regs + MAC_JAMSIZE);
1829 	writel(0x10, gp->regs + MAC_ATTLIM);
1830 	writel(0x8808, gp->regs + MAC_MCTYPE);
1831 
1832 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1833 
1834 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1835 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1836 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1837 
1838 	writel(0, gp->regs + MAC_ADDR3);
1839 	writel(0, gp->regs + MAC_ADDR4);
1840 	writel(0, gp->regs + MAC_ADDR5);
1841 
1842 	writel(0x0001, gp->regs + MAC_ADDR6);
1843 	writel(0xc200, gp->regs + MAC_ADDR7);
1844 	writel(0x0180, gp->regs + MAC_ADDR8);
1845 
1846 	writel(0, gp->regs + MAC_AFILT0);
1847 	writel(0, gp->regs + MAC_AFILT1);
1848 	writel(0, gp->regs + MAC_AFILT2);
1849 	writel(0, gp->regs + MAC_AF21MSK);
1850 	writel(0, gp->regs + MAC_AF0MSK);
1851 
1852 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1853 #ifdef STRIP_FCS
1854 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1855 #endif
1856 	writel(0, gp->regs + MAC_NCOLL);
1857 	writel(0, gp->regs + MAC_FASUCC);
1858 	writel(0, gp->regs + MAC_ECOLL);
1859 	writel(0, gp->regs + MAC_LCOLL);
1860 	writel(0, gp->regs + MAC_DTIMER);
1861 	writel(0, gp->regs + MAC_PATMPS);
1862 	writel(0, gp->regs + MAC_RFCTR);
1863 	writel(0, gp->regs + MAC_LERR);
1864 	writel(0, gp->regs + MAC_AERR);
1865 	writel(0, gp->regs + MAC_FCSERR);
1866 	writel(0, gp->regs + MAC_RXCVERR);
1867 
1868 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1869 	 * them once a link is established.
1870 	 */
1871 	writel(0, gp->regs + MAC_TXCFG);
1872 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1873 	writel(0, gp->regs + MAC_MCCFG);
1874 	writel(0, gp->regs + MAC_XIFCFG);
1875 
1876 	/* Setup MAC interrupts.  We want to get all of the interesting
1877 	 * counter expiration events, but we do not want to hear about
1878 	 * normal rx/tx as the DMA engine tells us that.
1879 	 */
1880 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1881 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1882 
1883 	/* Don't enable even the PAUSE interrupts for now, we
1884 	 * make no use of those events other than to record them.
1885 	 */
1886 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1887 
1888 	/* Don't enable GEM's WOL in normal operations
1889 	 */
1890 	if (gp->has_wol)
1891 		writel(0, gp->regs + WOL_WAKECSR);
1892 }
1893 
1894 static void gem_init_pause_thresholds(struct gem *gp)
1895 {
1896        	u32 cfg;
1897 
1898 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1899 	 * full RX fifo size effectively disables PAUSE generation which
1900 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1901 	 * to make real gains from PAUSE.
1902 	 */
1903 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1904 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1905 	} else {
1906 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1907 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1908 		int on = off - max_frame;
1909 
1910 		gp->rx_pause_off = off;
1911 		gp->rx_pause_on = on;
1912 	}
1913 
1914 
1915 	/* Configure the chip "burst" DMA mode & enable some
1916 	 * HW bug fixes on Apple version
1917 	 */
1918        	cfg  = 0;
1919        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1920 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1921 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1922        	cfg |= GREG_CFG_IBURST;
1923 #endif
1924        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1925        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1926        	writel(cfg, gp->regs + GREG_CFG);
1927 
1928 	/* If Infinite Burst didn't stick, then use different
1929 	 * thresholds (and Apple bug fixes don't exist)
1930 	 */
1931 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1932 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1933 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1934 		writel(cfg, gp->regs + GREG_CFG);
1935 	}
1936 }
1937 
1938 static int gem_check_invariants(struct gem *gp)
1939 {
1940 	struct pci_dev *pdev = gp->pdev;
1941 	u32 mif_cfg;
1942 
1943 	/* On Apple's sungem, we can't rely on registers as the chip
1944 	 * was been powered down by the firmware. The PHY is looked
1945 	 * up later on.
1946 	 */
1947 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1948 		gp->phy_type = phy_mii_mdio0;
1949 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1950 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1951 		gp->swrst_base = 0;
1952 
1953 		mif_cfg = readl(gp->regs + MIF_CFG);
1954 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1955 		mif_cfg |= MIF_CFG_MDI0;
1956 		writel(mif_cfg, gp->regs + MIF_CFG);
1957 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1958 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1959 
1960 		/* We hard-code the PHY address so we can properly bring it out of
1961 		 * reset later on, we can't really probe it at this point, though
1962 		 * that isn't an issue.
1963 		 */
1964 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1965 			gp->mii_phy_addr = 1;
1966 		else
1967 			gp->mii_phy_addr = 0;
1968 
1969 		return 0;
1970 	}
1971 
1972 	mif_cfg = readl(gp->regs + MIF_CFG);
1973 
1974 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1975 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1976 		/* One of the MII PHYs _must_ be present
1977 		 * as this chip has no gigabit PHY.
1978 		 */
1979 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1980 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1981 			       mif_cfg);
1982 			return -1;
1983 		}
1984 	}
1985 
1986 	/* Determine initial PHY interface type guess.  MDIO1 is the
1987 	 * external PHY and thus takes precedence over MDIO0.
1988 	 */
1989 
1990 	if (mif_cfg & MIF_CFG_MDI1) {
1991 		gp->phy_type = phy_mii_mdio1;
1992 		mif_cfg |= MIF_CFG_PSELECT;
1993 		writel(mif_cfg, gp->regs + MIF_CFG);
1994 	} else if (mif_cfg & MIF_CFG_MDI0) {
1995 		gp->phy_type = phy_mii_mdio0;
1996 		mif_cfg &= ~MIF_CFG_PSELECT;
1997 		writel(mif_cfg, gp->regs + MIF_CFG);
1998 	} else {
1999 #ifdef CONFIG_SPARC
2000 		const char *p;
2001 
2002 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2003 		if (p && !strcmp(p, "serdes"))
2004 			gp->phy_type = phy_serdes;
2005 		else
2006 #endif
2007 			gp->phy_type = phy_serialink;
2008 	}
2009 	if (gp->phy_type == phy_mii_mdio1 ||
2010 	    gp->phy_type == phy_mii_mdio0) {
2011 		int i;
2012 
2013 		for (i = 0; i < 32; i++) {
2014 			gp->mii_phy_addr = i;
2015 			if (phy_read(gp, MII_BMCR) != 0xffff)
2016 				break;
2017 		}
2018 		if (i == 32) {
2019 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2020 				pr_err("RIO MII phy will not respond\n");
2021 				return -1;
2022 			}
2023 			gp->phy_type = phy_serdes;
2024 		}
2025 	}
2026 
2027 	/* Fetch the FIFO configurations now too. */
2028 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2029 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2030 
2031 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2032 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2033 			if (gp->tx_fifo_sz != (9 * 1024) ||
2034 			    gp->rx_fifo_sz != (20 * 1024)) {
2035 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2036 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2037 				return -1;
2038 			}
2039 			gp->swrst_base = 0;
2040 		} else {
2041 			if (gp->tx_fifo_sz != (2 * 1024) ||
2042 			    gp->rx_fifo_sz != (2 * 1024)) {
2043 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2044 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2045 				return -1;
2046 			}
2047 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2048 		}
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static void gem_reinit_chip(struct gem *gp)
2055 {
2056 	/* Reset the chip */
2057 	gem_reset(gp);
2058 
2059 	/* Make sure ints are disabled */
2060 	gem_disable_ints(gp);
2061 
2062 	/* Allocate & setup ring buffers */
2063 	gem_init_rings(gp);
2064 
2065 	/* Configure pause thresholds */
2066 	gem_init_pause_thresholds(gp);
2067 
2068 	/* Init DMA & MAC engines */
2069 	gem_init_dma(gp);
2070 	gem_init_mac(gp);
2071 }
2072 
2073 
2074 static void gem_stop_phy(struct gem *gp, int wol)
2075 {
2076 	u32 mifcfg;
2077 
2078 	/* Let the chip settle down a bit, it seems that helps
2079 	 * for sleep mode on some models
2080 	 */
2081 	msleep(10);
2082 
2083 	/* Make sure we aren't polling PHY status change. We
2084 	 * don't currently use that feature though
2085 	 */
2086 	mifcfg = readl(gp->regs + MIF_CFG);
2087 	mifcfg &= ~MIF_CFG_POLL;
2088 	writel(mifcfg, gp->regs + MIF_CFG);
2089 
2090 	if (wol && gp->has_wol) {
2091 		unsigned char *e = &gp->dev->dev_addr[0];
2092 		u32 csr;
2093 
2094 		/* Setup wake-on-lan for MAGIC packet */
2095 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2096 		       gp->regs + MAC_RXCFG);
2097 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2098 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2099 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2100 
2101 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2102 		csr = WOL_WAKECSR_ENABLE;
2103 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2104 			csr |= WOL_WAKECSR_MII;
2105 		writel(csr, gp->regs + WOL_WAKECSR);
2106 	} else {
2107 		writel(0, gp->regs + MAC_RXCFG);
2108 		(void)readl(gp->regs + MAC_RXCFG);
2109 		/* Machine sleep will die in strange ways if we
2110 		 * dont wait a bit here, looks like the chip takes
2111 		 * some time to really shut down
2112 		 */
2113 		msleep(10);
2114 	}
2115 
2116 	writel(0, gp->regs + MAC_TXCFG);
2117 	writel(0, gp->regs + MAC_XIFCFG);
2118 	writel(0, gp->regs + TXDMA_CFG);
2119 	writel(0, gp->regs + RXDMA_CFG);
2120 
2121 	if (!wol) {
2122 		gem_reset(gp);
2123 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2124 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2125 
2126 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2127 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2128 
2129 		/* According to Apple, we must set the MDIO pins to this begnign
2130 		 * state or we may 1) eat more current, 2) damage some PHYs
2131 		 */
2132 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2133 		writel(0, gp->regs + MIF_BBCLK);
2134 		writel(0, gp->regs + MIF_BBDATA);
2135 		writel(0, gp->regs + MIF_BBOENAB);
2136 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2137 		(void) readl(gp->regs + MAC_XIFCFG);
2138 	}
2139 }
2140 
2141 static int gem_do_start(struct net_device *dev)
2142 {
2143 	struct gem *gp = netdev_priv(dev);
2144 	int rc;
2145 
2146 	/* Enable the cell */
2147 	gem_get_cell(gp);
2148 
2149 	/* Make sure PCI access and bus master are enabled */
2150 	rc = pci_enable_device(gp->pdev);
2151 	if (rc) {
2152 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2153 
2154 		/* Put cell and forget it for now, it will be considered as
2155 		 * still asleep, a new sleep cycle may bring it back
2156 		 */
2157 		gem_put_cell(gp);
2158 		return -ENXIO;
2159 	}
2160 	pci_set_master(gp->pdev);
2161 
2162 	/* Init & setup chip hardware */
2163 	gem_reinit_chip(gp);
2164 
2165 	/* An interrupt might come in handy */
2166 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2167 			 IRQF_SHARED, dev->name, (void *)dev);
2168 	if (rc) {
2169 		netdev_err(dev, "failed to request irq !\n");
2170 
2171 		gem_reset(gp);
2172 		gem_clean_rings(gp);
2173 		gem_put_cell(gp);
2174 		return rc;
2175 	}
2176 
2177 	/* Mark us as attached again if we come from resume(), this has
2178 	 * no effect if we weren't detatched and needs to be done now.
2179 	 */
2180 	netif_device_attach(dev);
2181 
2182 	/* Restart NAPI & queues */
2183 	gem_netif_start(gp);
2184 
2185 	/* Detect & init PHY, start autoneg etc... this will
2186 	 * eventually result in starting DMA operations when
2187 	 * the link is up
2188 	 */
2189 	gem_init_phy(gp);
2190 
2191 	return 0;
2192 }
2193 
2194 static void gem_do_stop(struct net_device *dev, int wol)
2195 {
2196 	struct gem *gp = netdev_priv(dev);
2197 
2198 	/* Stop NAPI and stop tx queue */
2199 	gem_netif_stop(gp);
2200 
2201 	/* Make sure ints are disabled. We don't care about
2202 	 * synchronizing as NAPI is disabled, thus a stray
2203 	 * interrupt will do nothing bad (our irq handler
2204 	 * just schedules NAPI)
2205 	 */
2206 	gem_disable_ints(gp);
2207 
2208 	/* Stop the link timer */
2209 	del_timer_sync(&gp->link_timer);
2210 
2211 	/* We cannot cancel the reset task while holding the
2212 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2213 	 * if we did. This is not an issue however as the reset
2214 	 * task is synchronized vs. us (rtnl_lock) and will do
2215 	 * nothing if the device is down or suspended. We do
2216 	 * still clear reset_task_pending to avoid a spurrious
2217 	 * reset later on in case we do resume before it gets
2218 	 * scheduled.
2219 	 */
2220 	gp->reset_task_pending = 0;
2221 
2222 	/* If we are going to sleep with WOL */
2223 	gem_stop_dma(gp);
2224 	msleep(10);
2225 	if (!wol)
2226 		gem_reset(gp);
2227 	msleep(10);
2228 
2229 	/* Get rid of rings */
2230 	gem_clean_rings(gp);
2231 
2232 	/* No irq needed anymore */
2233 	free_irq(gp->pdev->irq, (void *) dev);
2234 
2235 	/* Shut the PHY down eventually and setup WOL */
2236 	gem_stop_phy(gp, wol);
2237 
2238 	/* Make sure bus master is disabled */
2239 	pci_disable_device(gp->pdev);
2240 
2241 	/* Cell not needed neither if no WOL */
2242 	if (!wol)
2243 		gem_put_cell(gp);
2244 }
2245 
2246 static void gem_reset_task(struct work_struct *work)
2247 {
2248 	struct gem *gp = container_of(work, struct gem, reset_task);
2249 
2250 	/* Lock out the network stack (essentially shield ourselves
2251 	 * against a racing open, close, control call, or suspend
2252 	 */
2253 	rtnl_lock();
2254 
2255 	/* Skip the reset task if suspended or closed, or if it's
2256 	 * been cancelled by gem_do_stop (see comment there)
2257 	 */
2258 	if (!netif_device_present(gp->dev) ||
2259 	    !netif_running(gp->dev) ||
2260 	    !gp->reset_task_pending) {
2261 		rtnl_unlock();
2262 		return;
2263 	}
2264 
2265 	/* Stop the link timer */
2266 	del_timer_sync(&gp->link_timer);
2267 
2268 	/* Stop NAPI and tx */
2269 	gem_netif_stop(gp);
2270 
2271 	/* Reset the chip & rings */
2272 	gem_reinit_chip(gp);
2273 	if (gp->lstate == link_up)
2274 		gem_set_link_modes(gp);
2275 
2276 	/* Restart NAPI and Tx */
2277 	gem_netif_start(gp);
2278 
2279 	/* We are back ! */
2280 	gp->reset_task_pending = 0;
2281 
2282 	/* If the link is not up, restart autoneg, else restart the
2283 	 * polling timer
2284 	 */
2285 	if (gp->lstate != link_up)
2286 		gem_begin_auto_negotiation(gp, NULL);
2287 	else
2288 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2289 
2290 	rtnl_unlock();
2291 }
2292 
2293 static int gem_open(struct net_device *dev)
2294 {
2295 	/* We allow open while suspended, we just do nothing,
2296 	 * the chip will be initialized in resume()
2297 	 */
2298 	if (netif_device_present(dev))
2299 		return gem_do_start(dev);
2300 	return 0;
2301 }
2302 
2303 static int gem_close(struct net_device *dev)
2304 {
2305 	if (netif_device_present(dev))
2306 		gem_do_stop(dev, 0);
2307 
2308 	return 0;
2309 }
2310 
2311 #ifdef CONFIG_PM
2312 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2313 {
2314 	struct net_device *dev = pci_get_drvdata(pdev);
2315 	struct gem *gp = netdev_priv(dev);
2316 
2317 	/* Lock the network stack first to avoid racing with open/close,
2318 	 * reset task and setting calls
2319 	 */
2320 	rtnl_lock();
2321 
2322 	/* Not running, mark ourselves non-present, no need for
2323 	 * a lock here
2324 	 */
2325 	if (!netif_running(dev)) {
2326 		netif_device_detach(dev);
2327 		rtnl_unlock();
2328 		return 0;
2329 	}
2330 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2331 		    (gp->wake_on_lan && netif_running(dev)) ?
2332 		    "enabled" : "disabled");
2333 
2334 	/* Tell the network stack we're gone. gem_do_stop() below will
2335 	 * synchronize with TX, stop NAPI etc...
2336 	 */
2337 	netif_device_detach(dev);
2338 
2339 	/* Switch off chip, remember WOL setting */
2340 	gp->asleep_wol = !!gp->wake_on_lan;
2341 	gem_do_stop(dev, gp->asleep_wol);
2342 
2343 	/* Unlock the network stack */
2344 	rtnl_unlock();
2345 
2346 	return 0;
2347 }
2348 
2349 static int gem_resume(struct pci_dev *pdev)
2350 {
2351 	struct net_device *dev = pci_get_drvdata(pdev);
2352 	struct gem *gp = netdev_priv(dev);
2353 
2354 	/* See locking comment in gem_suspend */
2355 	rtnl_lock();
2356 
2357 	/* Not running, mark ourselves present, no need for
2358 	 * a lock here
2359 	 */
2360 	if (!netif_running(dev)) {
2361 		netif_device_attach(dev);
2362 		rtnl_unlock();
2363 		return 0;
2364 	}
2365 
2366 	/* Restart chip. If that fails there isn't much we can do, we
2367 	 * leave things stopped.
2368 	 */
2369 	gem_do_start(dev);
2370 
2371 	/* If we had WOL enabled, the cell clock was never turned off during
2372 	 * sleep, so we end up beeing unbalanced. Fix that here
2373 	 */
2374 	if (gp->asleep_wol)
2375 		gem_put_cell(gp);
2376 
2377 	/* Unlock the network stack */
2378 	rtnl_unlock();
2379 
2380 	return 0;
2381 }
2382 #endif /* CONFIG_PM */
2383 
2384 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2385 {
2386 	struct gem *gp = netdev_priv(dev);
2387 
2388 	/* I have seen this being called while the PM was in progress,
2389 	 * so we shield against this. Let's also not poke at registers
2390 	 * while the reset task is going on.
2391 	 *
2392 	 * TODO: Move stats collection elsewhere (link timer ?) and
2393 	 * make this a nop to avoid all those synchro issues
2394 	 */
2395 	if (!netif_device_present(dev) || !netif_running(dev))
2396 		goto bail;
2397 
2398 	/* Better safe than sorry... */
2399 	if (WARN_ON(!gp->cell_enabled))
2400 		goto bail;
2401 
2402 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2403 	writel(0, gp->regs + MAC_FCSERR);
2404 
2405 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2406 	writel(0, gp->regs + MAC_AERR);
2407 
2408 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2409 	writel(0, gp->regs + MAC_LERR);
2410 
2411 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2412 	dev->stats.collisions +=
2413 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2414 	writel(0, gp->regs + MAC_ECOLL);
2415 	writel(0, gp->regs + MAC_LCOLL);
2416  bail:
2417 	return &dev->stats;
2418 }
2419 
2420 static int gem_set_mac_address(struct net_device *dev, void *addr)
2421 {
2422 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2423 	struct gem *gp = netdev_priv(dev);
2424 	unsigned char *e = &dev->dev_addr[0];
2425 
2426 	if (!is_valid_ether_addr(macaddr->sa_data))
2427 		return -EADDRNOTAVAIL;
2428 
2429 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2430 
2431 	/* We'll just catch it later when the device is up'd or resumed */
2432 	if (!netif_running(dev) || !netif_device_present(dev))
2433 		return 0;
2434 
2435 	/* Better safe than sorry... */
2436 	if (WARN_ON(!gp->cell_enabled))
2437 		return 0;
2438 
2439 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2440 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2441 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2442 
2443 	return 0;
2444 }
2445 
2446 static void gem_set_multicast(struct net_device *dev)
2447 {
2448 	struct gem *gp = netdev_priv(dev);
2449 	u32 rxcfg, rxcfg_new;
2450 	int limit = 10000;
2451 
2452 	if (!netif_running(dev) || !netif_device_present(dev))
2453 		return;
2454 
2455 	/* Better safe than sorry... */
2456 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2457 		return;
2458 
2459 	rxcfg = readl(gp->regs + MAC_RXCFG);
2460 	rxcfg_new = gem_setup_multicast(gp);
2461 #ifdef STRIP_FCS
2462 	rxcfg_new |= MAC_RXCFG_SFCS;
2463 #endif
2464 	gp->mac_rx_cfg = rxcfg_new;
2465 
2466 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2467 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2468 		if (!limit--)
2469 			break;
2470 		udelay(10);
2471 	}
2472 
2473 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2474 	rxcfg |= rxcfg_new;
2475 
2476 	writel(rxcfg, gp->regs + MAC_RXCFG);
2477 }
2478 
2479 /* Jumbo-grams don't seem to work :-( */
2480 #define GEM_MIN_MTU	68
2481 #if 1
2482 #define GEM_MAX_MTU	1500
2483 #else
2484 #define GEM_MAX_MTU	9000
2485 #endif
2486 
2487 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2488 {
2489 	struct gem *gp = netdev_priv(dev);
2490 
2491 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2492 		return -EINVAL;
2493 
2494 	dev->mtu = new_mtu;
2495 
2496 	/* We'll just catch it later when the device is up'd or resumed */
2497 	if (!netif_running(dev) || !netif_device_present(dev))
2498 		return 0;
2499 
2500 	/* Better safe than sorry... */
2501 	if (WARN_ON(!gp->cell_enabled))
2502 		return 0;
2503 
2504 	gem_netif_stop(gp);
2505 	gem_reinit_chip(gp);
2506 	if (gp->lstate == link_up)
2507 		gem_set_link_modes(gp);
2508 	gem_netif_start(gp);
2509 
2510 	return 0;
2511 }
2512 
2513 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2514 {
2515 	struct gem *gp = netdev_priv(dev);
2516 
2517 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2518 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2519 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2520 }
2521 
2522 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2523 {
2524 	struct gem *gp = netdev_priv(dev);
2525 
2526 	if (gp->phy_type == phy_mii_mdio0 ||
2527 	    gp->phy_type == phy_mii_mdio1) {
2528 		if (gp->phy_mii.def)
2529 			cmd->supported = gp->phy_mii.def->features;
2530 		else
2531 			cmd->supported = (SUPPORTED_10baseT_Half |
2532 					  SUPPORTED_10baseT_Full);
2533 
2534 		/* XXX hardcoded stuff for now */
2535 		cmd->port = PORT_MII;
2536 		cmd->transceiver = XCVR_EXTERNAL;
2537 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2538 
2539 		/* Return current PHY settings */
2540 		cmd->autoneg = gp->want_autoneg;
2541 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2542 		cmd->duplex = gp->phy_mii.duplex;
2543 		cmd->advertising = gp->phy_mii.advertising;
2544 
2545 		/* If we started with a forced mode, we don't have a default
2546 		 * advertise set, we need to return something sensible so
2547 		 * userland can re-enable autoneg properly.
2548 		 */
2549 		if (cmd->advertising == 0)
2550 			cmd->advertising = cmd->supported;
2551 	} else { // XXX PCS ?
2552 		cmd->supported =
2553 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2554 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2555 			 SUPPORTED_Autoneg);
2556 		cmd->advertising = cmd->supported;
2557 		ethtool_cmd_speed_set(cmd, 0);
2558 		cmd->duplex = cmd->port = cmd->phy_address =
2559 			cmd->transceiver = cmd->autoneg = 0;
2560 
2561 		/* serdes means usually a Fibre connector, with most fixed */
2562 		if (gp->phy_type == phy_serdes) {
2563 			cmd->port = PORT_FIBRE;
2564 			cmd->supported = (SUPPORTED_1000baseT_Half |
2565 				SUPPORTED_1000baseT_Full |
2566 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2567 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2568 			cmd->advertising = cmd->supported;
2569 			cmd->transceiver = XCVR_INTERNAL;
2570 			if (gp->lstate == link_up)
2571 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2572 			cmd->duplex = DUPLEX_FULL;
2573 			cmd->autoneg = 1;
2574 		}
2575 	}
2576 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2577 
2578 	return 0;
2579 }
2580 
2581 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2582 {
2583 	struct gem *gp = netdev_priv(dev);
2584 	u32 speed = ethtool_cmd_speed(cmd);
2585 
2586 	/* Verify the settings we care about. */
2587 	if (cmd->autoneg != AUTONEG_ENABLE &&
2588 	    cmd->autoneg != AUTONEG_DISABLE)
2589 		return -EINVAL;
2590 
2591 	if (cmd->autoneg == AUTONEG_ENABLE &&
2592 	    cmd->advertising == 0)
2593 		return -EINVAL;
2594 
2595 	if (cmd->autoneg == AUTONEG_DISABLE &&
2596 	    ((speed != SPEED_1000 &&
2597 	      speed != SPEED_100 &&
2598 	      speed != SPEED_10) ||
2599 	     (cmd->duplex != DUPLEX_HALF &&
2600 	      cmd->duplex != DUPLEX_FULL)))
2601 		return -EINVAL;
2602 
2603 	/* Apply settings and restart link process. */
2604 	if (netif_device_present(gp->dev)) {
2605 		del_timer_sync(&gp->link_timer);
2606 		gem_begin_auto_negotiation(gp, cmd);
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static int gem_nway_reset(struct net_device *dev)
2613 {
2614 	struct gem *gp = netdev_priv(dev);
2615 
2616 	if (!gp->want_autoneg)
2617 		return -EINVAL;
2618 
2619 	/* Restart link process  */
2620 	if (netif_device_present(gp->dev)) {
2621 		del_timer_sync(&gp->link_timer);
2622 		gem_begin_auto_negotiation(gp, NULL);
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static u32 gem_get_msglevel(struct net_device *dev)
2629 {
2630 	struct gem *gp = netdev_priv(dev);
2631 	return gp->msg_enable;
2632 }
2633 
2634 static void gem_set_msglevel(struct net_device *dev, u32 value)
2635 {
2636 	struct gem *gp = netdev_priv(dev);
2637 	gp->msg_enable = value;
2638 }
2639 
2640 
2641 /* Add more when I understand how to program the chip */
2642 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2643 
2644 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2645 
2646 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2647 {
2648 	struct gem *gp = netdev_priv(dev);
2649 
2650 	/* Add more when I understand how to program the chip */
2651 	if (gp->has_wol) {
2652 		wol->supported = WOL_SUPPORTED_MASK;
2653 		wol->wolopts = gp->wake_on_lan;
2654 	} else {
2655 		wol->supported = 0;
2656 		wol->wolopts = 0;
2657 	}
2658 }
2659 
2660 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2661 {
2662 	struct gem *gp = netdev_priv(dev);
2663 
2664 	if (!gp->has_wol)
2665 		return -EOPNOTSUPP;
2666 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2667 	return 0;
2668 }
2669 
2670 static const struct ethtool_ops gem_ethtool_ops = {
2671 	.get_drvinfo		= gem_get_drvinfo,
2672 	.get_link		= ethtool_op_get_link,
2673 	.get_settings		= gem_get_settings,
2674 	.set_settings		= gem_set_settings,
2675 	.nway_reset		= gem_nway_reset,
2676 	.get_msglevel		= gem_get_msglevel,
2677 	.set_msglevel		= gem_set_msglevel,
2678 	.get_wol		= gem_get_wol,
2679 	.set_wol		= gem_set_wol,
2680 };
2681 
2682 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2683 {
2684 	struct gem *gp = netdev_priv(dev);
2685 	struct mii_ioctl_data *data = if_mii(ifr);
2686 	int rc = -EOPNOTSUPP;
2687 
2688 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2689 	 * netif_device_present() is true and holds rtnl_lock for us
2690 	 * so we have nothing to worry about
2691 	 */
2692 
2693 	switch (cmd) {
2694 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2695 		data->phy_id = gp->mii_phy_addr;
2696 		/* Fallthrough... */
2697 
2698 	case SIOCGMIIREG:		/* Read MII PHY register. */
2699 		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2700 					   data->reg_num & 0x1f);
2701 		rc = 0;
2702 		break;
2703 
2704 	case SIOCSMIIREG:		/* Write MII PHY register. */
2705 		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2706 			    data->val_in);
2707 		rc = 0;
2708 		break;
2709 	}
2710 	return rc;
2711 }
2712 
2713 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2714 /* Fetch MAC address from vital product data of PCI ROM. */
2715 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2716 {
2717 	int this_offset;
2718 
2719 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2720 		void __iomem *p = rom_base + this_offset;
2721 		int i;
2722 
2723 		if (readb(p + 0) != 0x90 ||
2724 		    readb(p + 1) != 0x00 ||
2725 		    readb(p + 2) != 0x09 ||
2726 		    readb(p + 3) != 0x4e ||
2727 		    readb(p + 4) != 0x41 ||
2728 		    readb(p + 5) != 0x06)
2729 			continue;
2730 
2731 		this_offset += 6;
2732 		p += 6;
2733 
2734 		for (i = 0; i < 6; i++)
2735 			dev_addr[i] = readb(p + i);
2736 		return 1;
2737 	}
2738 	return 0;
2739 }
2740 
2741 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2742 {
2743 	size_t size;
2744 	void __iomem *p = pci_map_rom(pdev, &size);
2745 
2746 	if (p) {
2747 			int found;
2748 
2749 		found = readb(p) == 0x55 &&
2750 			readb(p + 1) == 0xaa &&
2751 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2752 		pci_unmap_rom(pdev, p);
2753 		if (found)
2754 			return;
2755 	}
2756 
2757 	/* Sun MAC prefix then 3 random bytes. */
2758 	dev_addr[0] = 0x08;
2759 	dev_addr[1] = 0x00;
2760 	dev_addr[2] = 0x20;
2761 	get_random_bytes(dev_addr + 3, 3);
2762 }
2763 #endif /* not Sparc and not PPC */
2764 
2765 static int gem_get_device_address(struct gem *gp)
2766 {
2767 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2768 	struct net_device *dev = gp->dev;
2769 	const unsigned char *addr;
2770 
2771 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2772 	if (addr == NULL) {
2773 #ifdef CONFIG_SPARC
2774 		addr = idprom->id_ethaddr;
2775 #else
2776 		printk("\n");
2777 		pr_err("%s: can't get mac-address\n", dev->name);
2778 		return -1;
2779 #endif
2780 	}
2781 	memcpy(dev->dev_addr, addr, ETH_ALEN);
2782 #else
2783 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2784 #endif
2785 	return 0;
2786 }
2787 
2788 static void gem_remove_one(struct pci_dev *pdev)
2789 {
2790 	struct net_device *dev = pci_get_drvdata(pdev);
2791 
2792 	if (dev) {
2793 		struct gem *gp = netdev_priv(dev);
2794 
2795 		unregister_netdev(dev);
2796 
2797 		/* Ensure reset task is truely gone */
2798 		cancel_work_sync(&gp->reset_task);
2799 
2800 		/* Free resources */
2801 		pci_free_consistent(pdev,
2802 				    sizeof(struct gem_init_block),
2803 				    gp->init_block,
2804 				    gp->gblock_dvma);
2805 		iounmap(gp->regs);
2806 		pci_release_regions(pdev);
2807 		free_netdev(dev);
2808 	}
2809 }
2810 
2811 static const struct net_device_ops gem_netdev_ops = {
2812 	.ndo_open		= gem_open,
2813 	.ndo_stop		= gem_close,
2814 	.ndo_start_xmit		= gem_start_xmit,
2815 	.ndo_get_stats		= gem_get_stats,
2816 	.ndo_set_rx_mode	= gem_set_multicast,
2817 	.ndo_do_ioctl		= gem_ioctl,
2818 	.ndo_tx_timeout		= gem_tx_timeout,
2819 	.ndo_change_mtu		= gem_change_mtu,
2820 	.ndo_validate_addr	= eth_validate_addr,
2821 	.ndo_set_mac_address    = gem_set_mac_address,
2822 #ifdef CONFIG_NET_POLL_CONTROLLER
2823 	.ndo_poll_controller    = gem_poll_controller,
2824 #endif
2825 };
2826 
2827 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2828 {
2829 	unsigned long gemreg_base, gemreg_len;
2830 	struct net_device *dev;
2831 	struct gem *gp;
2832 	int err, pci_using_dac;
2833 
2834 	printk_once(KERN_INFO "%s", version);
2835 
2836 	/* Apple gmac note: during probe, the chip is powered up by
2837 	 * the arch code to allow the code below to work (and to let
2838 	 * the chip be probed on the config space. It won't stay powered
2839 	 * up until the interface is brought up however, so we can't rely
2840 	 * on register configuration done at this point.
2841 	 */
2842 	err = pci_enable_device(pdev);
2843 	if (err) {
2844 		pr_err("Cannot enable MMIO operation, aborting\n");
2845 		return err;
2846 	}
2847 	pci_set_master(pdev);
2848 
2849 	/* Configure DMA attributes. */
2850 
2851 	/* All of the GEM documentation states that 64-bit DMA addressing
2852 	 * is fully supported and should work just fine.  However the
2853 	 * front end for RIO based GEMs is different and only supports
2854 	 * 32-bit addressing.
2855 	 *
2856 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2857 	 */
2858 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2859 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2860 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2861 		pci_using_dac = 1;
2862 	} else {
2863 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2864 		if (err) {
2865 			pr_err("No usable DMA configuration, aborting\n");
2866 			goto err_disable_device;
2867 		}
2868 		pci_using_dac = 0;
2869 	}
2870 
2871 	gemreg_base = pci_resource_start(pdev, 0);
2872 	gemreg_len = pci_resource_len(pdev, 0);
2873 
2874 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2875 		pr_err("Cannot find proper PCI device base address, aborting\n");
2876 		err = -ENODEV;
2877 		goto err_disable_device;
2878 	}
2879 
2880 	dev = alloc_etherdev(sizeof(*gp));
2881 	if (!dev) {
2882 		err = -ENOMEM;
2883 		goto err_disable_device;
2884 	}
2885 	SET_NETDEV_DEV(dev, &pdev->dev);
2886 
2887 	gp = netdev_priv(dev);
2888 
2889 	err = pci_request_regions(pdev, DRV_NAME);
2890 	if (err) {
2891 		pr_err("Cannot obtain PCI resources, aborting\n");
2892 		goto err_out_free_netdev;
2893 	}
2894 
2895 	gp->pdev = pdev;
2896 	gp->dev = dev;
2897 
2898 	gp->msg_enable = DEFAULT_MSG;
2899 
2900 	init_timer(&gp->link_timer);
2901 	gp->link_timer.function = gem_link_timer;
2902 	gp->link_timer.data = (unsigned long) gp;
2903 
2904 	INIT_WORK(&gp->reset_task, gem_reset_task);
2905 
2906 	gp->lstate = link_down;
2907 	gp->timer_ticks = 0;
2908 	netif_carrier_off(dev);
2909 
2910 	gp->regs = ioremap(gemreg_base, gemreg_len);
2911 	if (!gp->regs) {
2912 		pr_err("Cannot map device registers, aborting\n");
2913 		err = -EIO;
2914 		goto err_out_free_res;
2915 	}
2916 
2917 	/* On Apple, we want a reference to the Open Firmware device-tree
2918 	 * node. We use it for clock control.
2919 	 */
2920 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2921 	gp->of_node = pci_device_to_OF_node(pdev);
2922 #endif
2923 
2924 	/* Only Apple version supports WOL afaik */
2925 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2926 		gp->has_wol = 1;
2927 
2928 	/* Make sure cell is enabled */
2929 	gem_get_cell(gp);
2930 
2931 	/* Make sure everything is stopped and in init state */
2932 	gem_reset(gp);
2933 
2934 	/* Fill up the mii_phy structure (even if we won't use it) */
2935 	gp->phy_mii.dev = dev;
2936 	gp->phy_mii.mdio_read = _phy_read;
2937 	gp->phy_mii.mdio_write = _phy_write;
2938 #ifdef CONFIG_PPC_PMAC
2939 	gp->phy_mii.platform_data = gp->of_node;
2940 #endif
2941 	/* By default, we start with autoneg */
2942 	gp->want_autoneg = 1;
2943 
2944 	/* Check fifo sizes, PHY type, etc... */
2945 	if (gem_check_invariants(gp)) {
2946 		err = -ENODEV;
2947 		goto err_out_iounmap;
2948 	}
2949 
2950 	/* It is guaranteed that the returned buffer will be at least
2951 	 * PAGE_SIZE aligned.
2952 	 */
2953 	gp->init_block = (struct gem_init_block *)
2954 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2955 				     &gp->gblock_dvma);
2956 	if (!gp->init_block) {
2957 		pr_err("Cannot allocate init block, aborting\n");
2958 		err = -ENOMEM;
2959 		goto err_out_iounmap;
2960 	}
2961 
2962 	err = gem_get_device_address(gp);
2963 	if (err)
2964 		goto err_out_free_consistent;
2965 
2966 	dev->netdev_ops = &gem_netdev_ops;
2967 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2968 	dev->ethtool_ops = &gem_ethtool_ops;
2969 	dev->watchdog_timeo = 5 * HZ;
2970 	dev->dma = 0;
2971 
2972 	/* Set that now, in case PM kicks in now */
2973 	pci_set_drvdata(pdev, dev);
2974 
2975 	/* We can do scatter/gather and HW checksum */
2976 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2977 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2978 	if (pci_using_dac)
2979 		dev->features |= NETIF_F_HIGHDMA;
2980 
2981 	/* Register with kernel */
2982 	if (register_netdev(dev)) {
2983 		pr_err("Cannot register net device, aborting\n");
2984 		err = -ENOMEM;
2985 		goto err_out_free_consistent;
2986 	}
2987 
2988 	/* Undo the get_cell with appropriate locking (we could use
2989 	 * ndo_init/uninit but that would be even more clumsy imho)
2990 	 */
2991 	rtnl_lock();
2992 	gem_put_cell(gp);
2993 	rtnl_unlock();
2994 
2995 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
2996 		    dev->dev_addr);
2997 	return 0;
2998 
2999 err_out_free_consistent:
3000 	gem_remove_one(pdev);
3001 err_out_iounmap:
3002 	gem_put_cell(gp);
3003 	iounmap(gp->regs);
3004 
3005 err_out_free_res:
3006 	pci_release_regions(pdev);
3007 
3008 err_out_free_netdev:
3009 	free_netdev(dev);
3010 err_disable_device:
3011 	pci_disable_device(pdev);
3012 	return err;
3013 
3014 }
3015 
3016 
3017 static struct pci_driver gem_driver = {
3018 	.name		= GEM_MODULE_NAME,
3019 	.id_table	= gem_pci_tbl,
3020 	.probe		= gem_init_one,
3021 	.remove		= gem_remove_one,
3022 #ifdef CONFIG_PM
3023 	.suspend	= gem_suspend,
3024 	.resume		= gem_resume,
3025 #endif /* CONFIG_PM */
3026 };
3027 
3028 module_pci_driver(gem_driver);
3029