xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3  * sungem.c: Sun GEM ethernet driver.
4  *
5  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6  *
7  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10  *
11  * NAPI and NETPOLL support
12  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
48 
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
53 
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
59 
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
62 
63 #define STRIP_FCS
64 
65 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
66 			 NETIF_MSG_PROBE	| \
67 			 NETIF_MSG_LINK)
68 
69 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
73 
74 #define DRV_NAME	"sungem"
75 #define DRV_VERSION	"1.0"
76 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
77 
78 static char version[] =
79         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
80 
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
84 
85 #define GEM_MODULE_NAME	"gem"
86 
87 static const struct pci_device_id gem_pci_tbl[] = {
88 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
90 
91 	/* These models only differ from the original GEM in
92 	 * that their tx/rx fifos are of a different size and
93 	 * they only support 10/100 speeds. -DaveM
94 	 *
95 	 * Apple's GMAC does support gigabit on machines with
96 	 * the BCM54xx PHYs. -BenH
97 	 */
98 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
116 
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
118 {
119 	u32 cmd;
120 	int limit = 10000;
121 
122 	cmd  = (1 << 30);
123 	cmd |= (2 << 28);
124 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 	cmd |= (MIF_FRAME_TAMSB);
127 	writel(cmd, gp->regs + MIF_FRAME);
128 
129 	while (--limit) {
130 		cmd = readl(gp->regs + MIF_FRAME);
131 		if (cmd & MIF_FRAME_TALSB)
132 			break;
133 
134 		udelay(10);
135 	}
136 
137 	if (!limit)
138 		cmd = 0xffff;
139 
140 	return cmd & MIF_FRAME_DATA;
141 }
142 
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
144 {
145 	struct gem *gp = netdev_priv(dev);
146 	return __sungem_phy_read(gp, mii_id, reg);
147 }
148 
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
150 {
151 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
152 }
153 
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
155 {
156 	u32 cmd;
157 	int limit = 10000;
158 
159 	cmd  = (1 << 30);
160 	cmd |= (1 << 28);
161 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 	cmd |= (MIF_FRAME_TAMSB);
164 	cmd |= (val & MIF_FRAME_DATA);
165 	writel(cmd, gp->regs + MIF_FRAME);
166 
167 	while (limit--) {
168 		cmd = readl(gp->regs + MIF_FRAME);
169 		if (cmd & MIF_FRAME_TALSB)
170 			break;
171 
172 		udelay(10);
173 	}
174 }
175 
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
177 {
178 	struct gem *gp = netdev_priv(dev);
179 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
180 }
181 
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
183 {
184 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
185 }
186 
187 static inline void gem_enable_ints(struct gem *gp)
188 {
189 	/* Enable all interrupts but TXDONE */
190 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
191 }
192 
193 static inline void gem_disable_ints(struct gem *gp)
194 {
195 	/* Disable all interrupts, including TXDONE */
196 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
198 }
199 
200 static void gem_get_cell(struct gem *gp)
201 {
202 	BUG_ON(gp->cell_enabled < 0);
203 	gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 	if (gp->cell_enabled == 1) {
206 		mb();
207 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 		udelay(10);
209 	}
210 #endif /* CONFIG_PPC_PMAC */
211 }
212 
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
215 {
216 	BUG_ON(gp->cell_enabled <= 0);
217 	gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 	if (gp->cell_enabled == 0) {
220 		mb();
221 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 		udelay(10);
223 	}
224 #endif /* CONFIG_PPC_PMAC */
225 }
226 
227 static inline void gem_netif_stop(struct gem *gp)
228 {
229 	netif_trans_update(gp->dev);	/* prevent tx timeout */
230 	napi_disable(&gp->napi);
231 	netif_tx_disable(gp->dev);
232 }
233 
234 static inline void gem_netif_start(struct gem *gp)
235 {
236 	/* NOTE: unconditional netif_wake_queue is only
237 	 * appropriate so long as all callers are assured to
238 	 * have free tx slots.
239 	 */
240 	netif_wake_queue(gp->dev);
241 	napi_enable(&gp->napi);
242 }
243 
244 static void gem_schedule_reset(struct gem *gp)
245 {
246 	gp->reset_task_pending = 1;
247 	schedule_work(&gp->reset_task);
248 }
249 
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251 {
252 	if (netif_msg_intr(gp))
253 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 }
255 
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257 {
258 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 	u32 pcs_miistat;
260 
261 	if (netif_msg_intr(gp))
262 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 			gp->dev->name, pcs_istat);
264 
265 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 		netdev_err(dev, "PCS irq but no link status change???\n");
267 		return 0;
268 	}
269 
270 	/* The link status bit latches on zero, so you must
271 	 * read it twice in such a case to see a transition
272 	 * to the link being up.
273 	 */
274 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 	if (!(pcs_miistat & PCS_MIISTAT_LS))
276 		pcs_miistat |=
277 			(readl(gp->regs + PCS_MIISTAT) &
278 			 PCS_MIISTAT_LS);
279 
280 	if (pcs_miistat & PCS_MIISTAT_ANC) {
281 		/* The remote-fault indication is only valid
282 		 * when autoneg has completed.
283 		 */
284 		if (pcs_miistat & PCS_MIISTAT_RF)
285 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 		else
287 			netdev_info(dev, "PCS AutoNEG complete\n");
288 	}
289 
290 	if (pcs_miistat & PCS_MIISTAT_LS) {
291 		netdev_info(dev, "PCS link is now up\n");
292 		netif_carrier_on(gp->dev);
293 	} else {
294 		netdev_info(dev, "PCS link is now down\n");
295 		netif_carrier_off(gp->dev);
296 		/* If this happens and the link timer is not running,
297 		 * reset so we re-negotiate.
298 		 */
299 		if (!timer_pending(&gp->link_timer))
300 			return 1;
301 	}
302 
303 	return 0;
304 }
305 
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307 {
308 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309 
310 	if (netif_msg_intr(gp))
311 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 			gp->dev->name, txmac_stat);
313 
314 	/* Defer timer expiration is quite normal,
315 	 * don't even log the event.
316 	 */
317 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
319 		return 0;
320 
321 	if (txmac_stat & MAC_TXSTAT_URUN) {
322 		netdev_err(dev, "TX MAC xmit underrun\n");
323 		dev->stats.tx_fifo_errors++;
324 	}
325 
326 	if (txmac_stat & MAC_TXSTAT_MPE) {
327 		netdev_err(dev, "TX MAC max packet size error\n");
328 		dev->stats.tx_errors++;
329 	}
330 
331 	/* The rest are all cases of one of the 16-bit TX
332 	 * counters expiring.
333 	 */
334 	if (txmac_stat & MAC_TXSTAT_NCE)
335 		dev->stats.collisions += 0x10000;
336 
337 	if (txmac_stat & MAC_TXSTAT_ECE) {
338 		dev->stats.tx_aborted_errors += 0x10000;
339 		dev->stats.collisions += 0x10000;
340 	}
341 
342 	if (txmac_stat & MAC_TXSTAT_LCE) {
343 		dev->stats.tx_aborted_errors += 0x10000;
344 		dev->stats.collisions += 0x10000;
345 	}
346 
347 	/* We do not keep track of MAC_TXSTAT_FCE and
348 	 * MAC_TXSTAT_PCE events.
349 	 */
350 	return 0;
351 }
352 
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354  * so we do the following.
355  *
356  * If any part of the reset goes wrong, we return 1 and that causes the
357  * whole chip to be reset.
358  */
359 static int gem_rxmac_reset(struct gem *gp)
360 {
361 	struct net_device *dev = gp->dev;
362 	int limit, i;
363 	u64 desc_dma;
364 	u32 val;
365 
366 	/* First, reset & disable MAC RX. */
367 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 	for (limit = 0; limit < 5000; limit++) {
369 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 			break;
371 		udelay(10);
372 	}
373 	if (limit == 5000) {
374 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 		return 1;
376 	}
377 
378 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 	       gp->regs + MAC_RXCFG);
380 	for (limit = 0; limit < 5000; limit++) {
381 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 			break;
383 		udelay(10);
384 	}
385 	if (limit == 5000) {
386 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 		return 1;
388 	}
389 
390 	/* Second, disable RX DMA. */
391 	writel(0, gp->regs + RXDMA_CFG);
392 	for (limit = 0; limit < 5000; limit++) {
393 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 			break;
395 		udelay(10);
396 	}
397 	if (limit == 5000) {
398 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 		return 1;
400 	}
401 
402 	mdelay(5);
403 
404 	/* Execute RX reset command. */
405 	writel(gp->swrst_base | GREG_SWRST_RXRST,
406 	       gp->regs + GREG_SWRST);
407 	for (limit = 0; limit < 5000; limit++) {
408 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 			break;
410 		udelay(10);
411 	}
412 	if (limit == 5000) {
413 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 		return 1;
415 	}
416 
417 	/* Refresh the RX ring. */
418 	for (i = 0; i < RX_RING_SIZE; i++) {
419 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
420 
421 		if (gp->rx_skbs[i] == NULL) {
422 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 			return 1;
424 		}
425 
426 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427 	}
428 	gp->rx_new = gp->rx_old = 0;
429 
430 	/* Now we must reprogram the rest of RX unit. */
431 	desc_dma = (u64) gp->gblock_dvma;
432 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 	writel(val, gp->regs + RXDMA_CFG);
439 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 		writel(((5 & RXDMA_BLANK_IPKTS) |
441 			((8 << 12) & RXDMA_BLANK_ITIME)),
442 		       gp->regs + RXDMA_BLANK);
443 	else
444 		writel(((5 & RXDMA_BLANK_IPKTS) |
445 			((4 << 12) & RXDMA_BLANK_ITIME)),
446 		       gp->regs + RXDMA_BLANK);
447 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 	writel(val, gp->regs + RXDMA_PTHRESH);
450 	val = readl(gp->regs + RXDMA_CFG);
451 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 	val = readl(gp->regs + MAC_RXCFG);
454 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455 
456 	return 0;
457 }
458 
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460 {
461 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 	int ret = 0;
463 
464 	if (netif_msg_intr(gp))
465 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 			gp->dev->name, rxmac_stat);
467 
468 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 		u32 smac = readl(gp->regs + MAC_SMACHINE);
470 
471 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 		dev->stats.rx_over_errors++;
473 		dev->stats.rx_fifo_errors++;
474 
475 		ret = gem_rxmac_reset(gp);
476 	}
477 
478 	if (rxmac_stat & MAC_RXSTAT_ACE)
479 		dev->stats.rx_frame_errors += 0x10000;
480 
481 	if (rxmac_stat & MAC_RXSTAT_CCE)
482 		dev->stats.rx_crc_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_LCE)
485 		dev->stats.rx_length_errors += 0x10000;
486 
487 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 	 * events.
489 	 */
490 	return ret;
491 }
492 
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494 {
495 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496 
497 	if (netif_msg_intr(gp))
498 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 			gp->dev->name, mac_cstat);
500 
501 	/* This interrupt is just for pause frame and pause
502 	 * tracking.  It is useful for diagnostics and debug
503 	 * but probably by default we will mask these events.
504 	 */
505 	if (mac_cstat & MAC_CSTAT_PS)
506 		gp->pause_entered++;
507 
508 	if (mac_cstat & MAC_CSTAT_PRCV)
509 		gp->pause_last_time_recvd = (mac_cstat >> 16);
510 
511 	return 0;
512 }
513 
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515 {
516 	u32 mif_status = readl(gp->regs + MIF_STATUS);
517 	u32 reg_val, changed_bits;
518 
519 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 	changed_bits = (mif_status & MIF_STATUS_STAT);
521 
522 	gem_handle_mif_event(gp, reg_val, changed_bits);
523 
524 	return 0;
525 }
526 
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528 {
529 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530 
531 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 		netdev_err(dev, "PCI error [%04x]", pci_estat);
534 
535 		if (pci_estat & GREG_PCIESTAT_BADACK)
536 			pr_cont(" <No ACK64# during ABS64 cycle>");
537 		if (pci_estat & GREG_PCIESTAT_DTRTO)
538 			pr_cont(" <Delayed transaction timeout>");
539 		if (pci_estat & GREG_PCIESTAT_OTHER)
540 			pr_cont(" <other>");
541 		pr_cont("\n");
542 	} else {
543 		pci_estat |= GREG_PCIESTAT_OTHER;
544 		netdev_err(dev, "PCI error\n");
545 	}
546 
547 	if (pci_estat & GREG_PCIESTAT_OTHER) {
548 		int pci_errs;
549 
550 		/* Interrogate PCI config space for the
551 		 * true cause.
552 		 */
553 		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554 		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555 		if (pci_errs & PCI_STATUS_PARITY)
556 			netdev_err(dev, "PCI parity error detected\n");
557 		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558 			netdev_err(dev, "PCI target abort\n");
559 		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560 			netdev_err(dev, "PCI master acks target abort\n");
561 		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562 			netdev_err(dev, "PCI master abort\n");
563 		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564 			netdev_err(dev, "PCI system error SERR#\n");
565 		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566 			netdev_err(dev, "PCI parity error\n");
567 	}
568 
569 	/* For all PCI errors, we should reset the chip. */
570 	return 1;
571 }
572 
573 /* All non-normal interrupt conditions get serviced here.
574  * Returns non-zero if we should just exit the interrupt
575  * handler right now (ie. if we reset the card which invalidates
576  * all of the other original irq status bits).
577  */
578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
579 {
580 	if (gem_status & GREG_STAT_RXNOBUF) {
581 		/* Frame arrived, no free RX buffers available. */
582 		if (netif_msg_rx_err(gp))
583 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
584 				gp->dev->name);
585 		dev->stats.rx_dropped++;
586 	}
587 
588 	if (gem_status & GREG_STAT_RXTAGERR) {
589 		/* corrupt RX tag framing */
590 		if (netif_msg_rx_err(gp))
591 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
592 				gp->dev->name);
593 		dev->stats.rx_errors++;
594 
595 		return 1;
596 	}
597 
598 	if (gem_status & GREG_STAT_PCS) {
599 		if (gem_pcs_interrupt(dev, gp, gem_status))
600 			return 1;
601 	}
602 
603 	if (gem_status & GREG_STAT_TXMAC) {
604 		if (gem_txmac_interrupt(dev, gp, gem_status))
605 			return 1;
606 	}
607 
608 	if (gem_status & GREG_STAT_RXMAC) {
609 		if (gem_rxmac_interrupt(dev, gp, gem_status))
610 			return 1;
611 	}
612 
613 	if (gem_status & GREG_STAT_MAC) {
614 		if (gem_mac_interrupt(dev, gp, gem_status))
615 			return 1;
616 	}
617 
618 	if (gem_status & GREG_STAT_MIF) {
619 		if (gem_mif_interrupt(dev, gp, gem_status))
620 			return 1;
621 	}
622 
623 	if (gem_status & GREG_STAT_PCIERR) {
624 		if (gem_pci_interrupt(dev, gp, gem_status))
625 			return 1;
626 	}
627 
628 	return 0;
629 }
630 
631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
632 {
633 	int entry, limit;
634 
635 	entry = gp->tx_old;
636 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637 	while (entry != limit) {
638 		struct sk_buff *skb;
639 		struct gem_txd *txd;
640 		dma_addr_t dma_addr;
641 		u32 dma_len;
642 		int frag;
643 
644 		if (netif_msg_tx_done(gp))
645 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
646 				gp->dev->name, entry);
647 		skb = gp->tx_skbs[entry];
648 		if (skb_shinfo(skb)->nr_frags) {
649 			int last = entry + skb_shinfo(skb)->nr_frags;
650 			int walk = entry;
651 			int incomplete = 0;
652 
653 			last &= (TX_RING_SIZE - 1);
654 			for (;;) {
655 				walk = NEXT_TX(walk);
656 				if (walk == limit)
657 					incomplete = 1;
658 				if (walk == last)
659 					break;
660 			}
661 			if (incomplete)
662 				break;
663 		}
664 		gp->tx_skbs[entry] = NULL;
665 		dev->stats.tx_bytes += skb->len;
666 
667 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668 			txd = &gp->init_block->txd[entry];
669 
670 			dma_addr = le64_to_cpu(txd->buffer);
671 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
672 
673 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
674 			entry = NEXT_TX(entry);
675 		}
676 
677 		dev->stats.tx_packets++;
678 		dev_consume_skb_any(skb);
679 	}
680 	gp->tx_old = entry;
681 
682 	/* Need to make the tx_old update visible to gem_start_xmit()
683 	 * before checking for netif_queue_stopped().  Without the
684 	 * memory barrier, there is a small possibility that gem_start_xmit()
685 	 * will miss it and cause the queue to be stopped forever.
686 	 */
687 	smp_mb();
688 
689 	if (unlikely(netif_queue_stopped(dev) &&
690 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
691 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
692 
693 		__netif_tx_lock(txq, smp_processor_id());
694 		if (netif_queue_stopped(dev) &&
695 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
696 			netif_wake_queue(dev);
697 		__netif_tx_unlock(txq);
698 	}
699 }
700 
701 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
702 {
703 	int cluster_start, curr, count, kick;
704 
705 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
706 	count = 0;
707 	kick = -1;
708 	dma_wmb();
709 	while (curr != limit) {
710 		curr = NEXT_RX(curr);
711 		if (++count == 4) {
712 			struct gem_rxd *rxd =
713 				&gp->init_block->rxd[cluster_start];
714 			for (;;) {
715 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
716 				rxd++;
717 				cluster_start = NEXT_RX(cluster_start);
718 				if (cluster_start == curr)
719 					break;
720 			}
721 			kick = curr;
722 			count = 0;
723 		}
724 	}
725 	if (kick >= 0) {
726 		mb();
727 		writel(kick, gp->regs + RXDMA_KICK);
728 	}
729 }
730 
731 #define ALIGNED_RX_SKB_ADDR(addr) \
732         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
733 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
734 						gfp_t gfp_flags)
735 {
736 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
737 
738 	if (likely(skb)) {
739 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
740 		skb_reserve(skb, offset);
741 	}
742 	return skb;
743 }
744 
745 static int gem_rx(struct gem *gp, int work_to_do)
746 {
747 	struct net_device *dev = gp->dev;
748 	int entry, drops, work_done = 0;
749 	u32 done;
750 
751 	if (netif_msg_rx_status(gp))
752 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
753 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
754 
755 	entry = gp->rx_new;
756 	drops = 0;
757 	done = readl(gp->regs + RXDMA_DONE);
758 	for (;;) {
759 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
760 		struct sk_buff *skb;
761 		u64 status = le64_to_cpu(rxd->status_word);
762 		dma_addr_t dma_addr;
763 		int len;
764 
765 		if ((status & RXDCTRL_OWN) != 0)
766 			break;
767 
768 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
769 			break;
770 
771 		/* When writing back RX descriptor, GEM writes status
772 		 * then buffer address, possibly in separate transactions.
773 		 * If we don't wait for the chip to write both, we could
774 		 * post a new buffer to this descriptor then have GEM spam
775 		 * on the buffer address.  We sync on the RX completion
776 		 * register to prevent this from happening.
777 		 */
778 		if (entry == done) {
779 			done = readl(gp->regs + RXDMA_DONE);
780 			if (entry == done)
781 				break;
782 		}
783 
784 		/* We can now account for the work we're about to do */
785 		work_done++;
786 
787 		skb = gp->rx_skbs[entry];
788 
789 		len = (status & RXDCTRL_BUFSZ) >> 16;
790 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
791 			dev->stats.rx_errors++;
792 			if (len < ETH_ZLEN)
793 				dev->stats.rx_length_errors++;
794 			if (len & RXDCTRL_BAD)
795 				dev->stats.rx_crc_errors++;
796 
797 			/* We'll just return it to GEM. */
798 		drop_it:
799 			dev->stats.rx_dropped++;
800 			goto next;
801 		}
802 
803 		dma_addr = le64_to_cpu(rxd->buffer);
804 		if (len > RX_COPY_THRESHOLD) {
805 			struct sk_buff *new_skb;
806 
807 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
808 			if (new_skb == NULL) {
809 				drops++;
810 				goto drop_it;
811 			}
812 			pci_unmap_page(gp->pdev, dma_addr,
813 				       RX_BUF_ALLOC_SIZE(gp),
814 				       PCI_DMA_FROMDEVICE);
815 			gp->rx_skbs[entry] = new_skb;
816 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
818 							       virt_to_page(new_skb->data),
819 							       offset_in_page(new_skb->data),
820 							       RX_BUF_ALLOC_SIZE(gp),
821 							       PCI_DMA_FROMDEVICE));
822 			skb_reserve(new_skb, RX_OFFSET);
823 
824 			/* Trim the original skb for the netif. */
825 			skb_trim(skb, len);
826 		} else {
827 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
828 
829 			if (copy_skb == NULL) {
830 				drops++;
831 				goto drop_it;
832 			}
833 
834 			skb_reserve(copy_skb, 2);
835 			skb_put(copy_skb, len);
836 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
837 			skb_copy_from_linear_data(skb, copy_skb->data, len);
838 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
839 
840 			/* We'll reuse the original ring buffer. */
841 			skb = copy_skb;
842 		}
843 
844 		if (likely(dev->features & NETIF_F_RXCSUM)) {
845 			__sum16 csum;
846 
847 			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
848 			skb->csum = csum_unfold(csum);
849 			skb->ip_summed = CHECKSUM_COMPLETE;
850 		}
851 		skb->protocol = eth_type_trans(skb, gp->dev);
852 
853 		napi_gro_receive(&gp->napi, skb);
854 
855 		dev->stats.rx_packets++;
856 		dev->stats.rx_bytes += len;
857 
858 	next:
859 		entry = NEXT_RX(entry);
860 	}
861 
862 	gem_post_rxds(gp, entry);
863 
864 	gp->rx_new = entry;
865 
866 	if (drops)
867 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
868 
869 	return work_done;
870 }
871 
872 static int gem_poll(struct napi_struct *napi, int budget)
873 {
874 	struct gem *gp = container_of(napi, struct gem, napi);
875 	struct net_device *dev = gp->dev;
876 	int work_done;
877 
878 	work_done = 0;
879 	do {
880 		/* Handle anomalies */
881 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
882 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
883 			int reset;
884 
885 			/* We run the abnormal interrupt handling code with
886 			 * the Tx lock. It only resets the Rx portion of the
887 			 * chip, but we need to guard it against DMA being
888 			 * restarted by the link poll timer
889 			 */
890 			__netif_tx_lock(txq, smp_processor_id());
891 			reset = gem_abnormal_irq(dev, gp, gp->status);
892 			__netif_tx_unlock(txq);
893 			if (reset) {
894 				gem_schedule_reset(gp);
895 				napi_complete(napi);
896 				return work_done;
897 			}
898 		}
899 
900 		/* Run TX completion thread */
901 		gem_tx(dev, gp, gp->status);
902 
903 		/* Run RX thread. We don't use any locking here,
904 		 * code willing to do bad things - like cleaning the
905 		 * rx ring - must call napi_disable(), which
906 		 * schedule_timeout()'s if polling is already disabled.
907 		 */
908 		work_done += gem_rx(gp, budget - work_done);
909 
910 		if (work_done >= budget)
911 			return work_done;
912 
913 		gp->status = readl(gp->regs + GREG_STAT);
914 	} while (gp->status & GREG_STAT_NAPI);
915 
916 	napi_complete_done(napi, work_done);
917 	gem_enable_ints(gp);
918 
919 	return work_done;
920 }
921 
922 static irqreturn_t gem_interrupt(int irq, void *dev_id)
923 {
924 	struct net_device *dev = dev_id;
925 	struct gem *gp = netdev_priv(dev);
926 
927 	if (napi_schedule_prep(&gp->napi)) {
928 		u32 gem_status = readl(gp->regs + GREG_STAT);
929 
930 		if (unlikely(gem_status == 0)) {
931 			napi_enable(&gp->napi);
932 			return IRQ_NONE;
933 		}
934 		if (netif_msg_intr(gp))
935 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
936 			       gp->dev->name, gem_status);
937 
938 		gp->status = gem_status;
939 		gem_disable_ints(gp);
940 		__napi_schedule(&gp->napi);
941 	}
942 
943 	/* If polling was disabled at the time we received that
944 	 * interrupt, we may return IRQ_HANDLED here while we
945 	 * should return IRQ_NONE. No big deal...
946 	 */
947 	return IRQ_HANDLED;
948 }
949 
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951 static void gem_poll_controller(struct net_device *dev)
952 {
953 	struct gem *gp = netdev_priv(dev);
954 
955 	disable_irq(gp->pdev->irq);
956 	gem_interrupt(gp->pdev->irq, dev);
957 	enable_irq(gp->pdev->irq);
958 }
959 #endif
960 
961 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
962 {
963 	struct gem *gp = netdev_priv(dev);
964 
965 	netdev_err(dev, "transmit timed out, resetting\n");
966 
967 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
968 		   readl(gp->regs + TXDMA_CFG),
969 		   readl(gp->regs + MAC_TXSTAT),
970 		   readl(gp->regs + MAC_TXCFG));
971 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
972 		   readl(gp->regs + RXDMA_CFG),
973 		   readl(gp->regs + MAC_RXSTAT),
974 		   readl(gp->regs + MAC_RXCFG));
975 
976 	gem_schedule_reset(gp);
977 }
978 
979 static __inline__ int gem_intme(int entry)
980 {
981 	/* Algorithm: IRQ every 1/2 of descriptors. */
982 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
983 		return 1;
984 
985 	return 0;
986 }
987 
988 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
989 				  struct net_device *dev)
990 {
991 	struct gem *gp = netdev_priv(dev);
992 	int entry;
993 	u64 ctrl;
994 
995 	ctrl = 0;
996 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
997 		const u64 csum_start_off = skb_checksum_start_offset(skb);
998 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
999 
1000 		ctrl = (TXDCTRL_CENAB |
1001 			(csum_start_off << 15) |
1002 			(csum_stuff_off << 21));
1003 	}
1004 
1005 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1006 		/* This is a hard error, log it. */
1007 		if (!netif_queue_stopped(dev)) {
1008 			netif_stop_queue(dev);
1009 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1010 		}
1011 		return NETDEV_TX_BUSY;
1012 	}
1013 
1014 	entry = gp->tx_new;
1015 	gp->tx_skbs[entry] = skb;
1016 
1017 	if (skb_shinfo(skb)->nr_frags == 0) {
1018 		struct gem_txd *txd = &gp->init_block->txd[entry];
1019 		dma_addr_t mapping;
1020 		u32 len;
1021 
1022 		len = skb->len;
1023 		mapping = pci_map_page(gp->pdev,
1024 				       virt_to_page(skb->data),
1025 				       offset_in_page(skb->data),
1026 				       len, PCI_DMA_TODEVICE);
1027 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1028 		if (gem_intme(entry))
1029 			ctrl |= TXDCTRL_INTME;
1030 		txd->buffer = cpu_to_le64(mapping);
1031 		dma_wmb();
1032 		txd->control_word = cpu_to_le64(ctrl);
1033 		entry = NEXT_TX(entry);
1034 	} else {
1035 		struct gem_txd *txd;
1036 		u32 first_len;
1037 		u64 intme;
1038 		dma_addr_t first_mapping;
1039 		int frag, first_entry = entry;
1040 
1041 		intme = 0;
1042 		if (gem_intme(entry))
1043 			intme |= TXDCTRL_INTME;
1044 
1045 		/* We must give this initial chunk to the device last.
1046 		 * Otherwise we could race with the device.
1047 		 */
1048 		first_len = skb_headlen(skb);
1049 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1050 					     offset_in_page(skb->data),
1051 					     first_len, PCI_DMA_TODEVICE);
1052 		entry = NEXT_TX(entry);
1053 
1054 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1055 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1056 			u32 len;
1057 			dma_addr_t mapping;
1058 			u64 this_ctrl;
1059 
1060 			len = skb_frag_size(this_frag);
1061 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1062 						   0, len, DMA_TO_DEVICE);
1063 			this_ctrl = ctrl;
1064 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1065 				this_ctrl |= TXDCTRL_EOF;
1066 
1067 			txd = &gp->init_block->txd[entry];
1068 			txd->buffer = cpu_to_le64(mapping);
1069 			dma_wmb();
1070 			txd->control_word = cpu_to_le64(this_ctrl | len);
1071 
1072 			if (gem_intme(entry))
1073 				intme |= TXDCTRL_INTME;
1074 
1075 			entry = NEXT_TX(entry);
1076 		}
1077 		txd = &gp->init_block->txd[first_entry];
1078 		txd->buffer = cpu_to_le64(first_mapping);
1079 		dma_wmb();
1080 		txd->control_word =
1081 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1082 	}
1083 
1084 	gp->tx_new = entry;
1085 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1086 		netif_stop_queue(dev);
1087 
1088 		/* netif_stop_queue() must be done before checking
1089 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1090 		 * in gem_tx(), we update tx_old before checking for
1091 		 * netif_queue_stopped().
1092 		 */
1093 		smp_mb();
1094 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1095 			netif_wake_queue(dev);
1096 	}
1097 	if (netif_msg_tx_queued(gp))
1098 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1099 		       dev->name, entry, skb->len);
1100 	mb();
1101 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1102 
1103 	return NETDEV_TX_OK;
1104 }
1105 
1106 static void gem_pcs_reset(struct gem *gp)
1107 {
1108 	int limit;
1109 	u32 val;
1110 
1111 	/* Reset PCS unit. */
1112 	val = readl(gp->regs + PCS_MIICTRL);
1113 	val |= PCS_MIICTRL_RST;
1114 	writel(val, gp->regs + PCS_MIICTRL);
1115 
1116 	limit = 32;
1117 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1118 		udelay(100);
1119 		if (limit-- <= 0)
1120 			break;
1121 	}
1122 	if (limit < 0)
1123 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1124 }
1125 
1126 static void gem_pcs_reinit_adv(struct gem *gp)
1127 {
1128 	u32 val;
1129 
1130 	/* Make sure PCS is disabled while changing advertisement
1131 	 * configuration.
1132 	 */
1133 	val = readl(gp->regs + PCS_CFG);
1134 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1135 	writel(val, gp->regs + PCS_CFG);
1136 
1137 	/* Advertise all capabilities except asymmetric
1138 	 * pause.
1139 	 */
1140 	val = readl(gp->regs + PCS_MIIADV);
1141 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1142 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1143 	writel(val, gp->regs + PCS_MIIADV);
1144 
1145 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1146 	 * and re-enable PCS.
1147 	 */
1148 	val = readl(gp->regs + PCS_MIICTRL);
1149 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1150 	val &= ~PCS_MIICTRL_WB;
1151 	writel(val, gp->regs + PCS_MIICTRL);
1152 
1153 	val = readl(gp->regs + PCS_CFG);
1154 	val |= PCS_CFG_ENABLE;
1155 	writel(val, gp->regs + PCS_CFG);
1156 
1157 	/* Make sure serialink loopback is off.  The meaning
1158 	 * of this bit is logically inverted based upon whether
1159 	 * you are in Serialink or SERDES mode.
1160 	 */
1161 	val = readl(gp->regs + PCS_SCTRL);
1162 	if (gp->phy_type == phy_serialink)
1163 		val &= ~PCS_SCTRL_LOOP;
1164 	else
1165 		val |= PCS_SCTRL_LOOP;
1166 	writel(val, gp->regs + PCS_SCTRL);
1167 }
1168 
1169 #define STOP_TRIES 32
1170 
1171 static void gem_reset(struct gem *gp)
1172 {
1173 	int limit;
1174 	u32 val;
1175 
1176 	/* Make sure we won't get any more interrupts */
1177 	writel(0xffffffff, gp->regs + GREG_IMASK);
1178 
1179 	/* Reset the chip */
1180 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1181 	       gp->regs + GREG_SWRST);
1182 
1183 	limit = STOP_TRIES;
1184 
1185 	do {
1186 		udelay(20);
1187 		val = readl(gp->regs + GREG_SWRST);
1188 		if (limit-- <= 0)
1189 			break;
1190 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1191 
1192 	if (limit < 0)
1193 		netdev_err(gp->dev, "SW reset is ghetto\n");
1194 
1195 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1196 		gem_pcs_reinit_adv(gp);
1197 }
1198 
1199 static void gem_start_dma(struct gem *gp)
1200 {
1201 	u32 val;
1202 
1203 	/* We are ready to rock, turn everything on. */
1204 	val = readl(gp->regs + TXDMA_CFG);
1205 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1206 	val = readl(gp->regs + RXDMA_CFG);
1207 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1208 	val = readl(gp->regs + MAC_TXCFG);
1209 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1210 	val = readl(gp->regs + MAC_RXCFG);
1211 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1212 
1213 	(void) readl(gp->regs + MAC_RXCFG);
1214 	udelay(100);
1215 
1216 	gem_enable_ints(gp);
1217 
1218 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1219 }
1220 
1221 /* DMA won't be actually stopped before about 4ms tho ...
1222  */
1223 static void gem_stop_dma(struct gem *gp)
1224 {
1225 	u32 val;
1226 
1227 	/* We are done rocking, turn everything off. */
1228 	val = readl(gp->regs + TXDMA_CFG);
1229 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1230 	val = readl(gp->regs + RXDMA_CFG);
1231 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1232 	val = readl(gp->regs + MAC_TXCFG);
1233 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1234 	val = readl(gp->regs + MAC_RXCFG);
1235 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1236 
1237 	(void) readl(gp->regs + MAC_RXCFG);
1238 
1239 	/* Need to wait a bit ... done by the caller */
1240 }
1241 
1242 
1243 // XXX dbl check what that function should do when called on PCS PHY
1244 static void gem_begin_auto_negotiation(struct gem *gp,
1245 				       const struct ethtool_link_ksettings *ep)
1246 {
1247 	u32 advertise, features;
1248 	int autoneg;
1249 	int speed;
1250 	int duplex;
1251 	u32 advertising;
1252 
1253 	if (ep)
1254 		ethtool_convert_link_mode_to_legacy_u32(
1255 			&advertising, ep->link_modes.advertising);
1256 
1257 	if (gp->phy_type != phy_mii_mdio0 &&
1258      	    gp->phy_type != phy_mii_mdio1)
1259      	    	goto non_mii;
1260 
1261 	/* Setup advertise */
1262 	if (found_mii_phy(gp))
1263 		features = gp->phy_mii.def->features;
1264 	else
1265 		features = 0;
1266 
1267 	advertise = features & ADVERTISE_MASK;
1268 	if (gp->phy_mii.advertising != 0)
1269 		advertise &= gp->phy_mii.advertising;
1270 
1271 	autoneg = gp->want_autoneg;
1272 	speed = gp->phy_mii.speed;
1273 	duplex = gp->phy_mii.duplex;
1274 
1275 	/* Setup link parameters */
1276 	if (!ep)
1277 		goto start_aneg;
1278 	if (ep->base.autoneg == AUTONEG_ENABLE) {
1279 		advertise = advertising;
1280 		autoneg = 1;
1281 	} else {
1282 		autoneg = 0;
1283 		speed = ep->base.speed;
1284 		duplex = ep->base.duplex;
1285 	}
1286 
1287 start_aneg:
1288 	/* Sanitize settings based on PHY capabilities */
1289 	if ((features & SUPPORTED_Autoneg) == 0)
1290 		autoneg = 0;
1291 	if (speed == SPEED_1000 &&
1292 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1293 		speed = SPEED_100;
1294 	if (speed == SPEED_100 &&
1295 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1296 		speed = SPEED_10;
1297 	if (duplex == DUPLEX_FULL &&
1298 	    !(features & (SUPPORTED_1000baseT_Full |
1299 	    		  SUPPORTED_100baseT_Full |
1300 	    		  SUPPORTED_10baseT_Full)))
1301 	    	duplex = DUPLEX_HALF;
1302 	if (speed == 0)
1303 		speed = SPEED_10;
1304 
1305 	/* If we are asleep, we don't try to actually setup the PHY, we
1306 	 * just store the settings
1307 	 */
1308 	if (!netif_device_present(gp->dev)) {
1309 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1310 		gp->phy_mii.speed = speed;
1311 		gp->phy_mii.duplex = duplex;
1312 		return;
1313 	}
1314 
1315 	/* Configure PHY & start aneg */
1316 	gp->want_autoneg = autoneg;
1317 	if (autoneg) {
1318 		if (found_mii_phy(gp))
1319 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1320 		gp->lstate = link_aneg;
1321 	} else {
1322 		if (found_mii_phy(gp))
1323 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1324 		gp->lstate = link_force_ok;
1325 	}
1326 
1327 non_mii:
1328 	gp->timer_ticks = 0;
1329 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1330 }
1331 
1332 /* A link-up condition has occurred, initialize and enable the
1333  * rest of the chip.
1334  */
1335 static int gem_set_link_modes(struct gem *gp)
1336 {
1337 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1338 	int full_duplex, speed, pause;
1339 	u32 val;
1340 
1341 	full_duplex = 0;
1342 	speed = SPEED_10;
1343 	pause = 0;
1344 
1345 	if (found_mii_phy(gp)) {
1346 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1347 	    		return 1;
1348 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1349 		speed = gp->phy_mii.speed;
1350 		pause = gp->phy_mii.pause;
1351 	} else if (gp->phy_type == phy_serialink ||
1352 	    	   gp->phy_type == phy_serdes) {
1353 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1354 
1355 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1356 			full_duplex = 1;
1357 		speed = SPEED_1000;
1358 	}
1359 
1360 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1361 		   speed, (full_duplex ? "full" : "half"));
1362 
1363 
1364 	/* We take the tx queue lock to avoid collisions between
1365 	 * this code, the tx path and the NAPI-driven error path
1366 	 */
1367 	__netif_tx_lock(txq, smp_processor_id());
1368 
1369 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1370 	if (full_duplex) {
1371 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1372 	} else {
1373 		/* MAC_TXCFG_NBO must be zero. */
1374 	}
1375 	writel(val, gp->regs + MAC_TXCFG);
1376 
1377 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1378 	if (!full_duplex &&
1379 	    (gp->phy_type == phy_mii_mdio0 ||
1380 	     gp->phy_type == phy_mii_mdio1)) {
1381 		val |= MAC_XIFCFG_DISE;
1382 	} else if (full_duplex) {
1383 		val |= MAC_XIFCFG_FLED;
1384 	}
1385 
1386 	if (speed == SPEED_1000)
1387 		val |= (MAC_XIFCFG_GMII);
1388 
1389 	writel(val, gp->regs + MAC_XIFCFG);
1390 
1391 	/* If gigabit and half-duplex, enable carrier extension
1392 	 * mode.  Else, disable it.
1393 	 */
1394 	if (speed == SPEED_1000 && !full_duplex) {
1395 		val = readl(gp->regs + MAC_TXCFG);
1396 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1397 
1398 		val = readl(gp->regs + MAC_RXCFG);
1399 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1400 	} else {
1401 		val = readl(gp->regs + MAC_TXCFG);
1402 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1403 
1404 		val = readl(gp->regs + MAC_RXCFG);
1405 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1406 	}
1407 
1408 	if (gp->phy_type == phy_serialink ||
1409 	    gp->phy_type == phy_serdes) {
1410  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1411 
1412 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1413 			pause = 1;
1414 	}
1415 
1416 	if (!full_duplex)
1417 		writel(512, gp->regs + MAC_STIME);
1418 	else
1419 		writel(64, gp->regs + MAC_STIME);
1420 	val = readl(gp->regs + MAC_MCCFG);
1421 	if (pause)
1422 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1423 	else
1424 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1425 	writel(val, gp->regs + MAC_MCCFG);
1426 
1427 	gem_start_dma(gp);
1428 
1429 	__netif_tx_unlock(txq);
1430 
1431 	if (netif_msg_link(gp)) {
1432 		if (pause) {
1433 			netdev_info(gp->dev,
1434 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1435 				    gp->rx_fifo_sz,
1436 				    gp->rx_pause_off,
1437 				    gp->rx_pause_on);
1438 		} else {
1439 			netdev_info(gp->dev, "Pause is disabled\n");
1440 		}
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int gem_mdio_link_not_up(struct gem *gp)
1447 {
1448 	switch (gp->lstate) {
1449 	case link_force_ret:
1450 		netif_info(gp, link, gp->dev,
1451 			   "Autoneg failed again, keeping forced mode\n");
1452 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1453 			gp->last_forced_speed, DUPLEX_HALF);
1454 		gp->timer_ticks = 5;
1455 		gp->lstate = link_force_ok;
1456 		return 0;
1457 	case link_aneg:
1458 		/* We try forced modes after a failed aneg only on PHYs that don't
1459 		 * have "magic_aneg" bit set, which means they internally do the
1460 		 * while forced-mode thingy. On these, we just restart aneg
1461 		 */
1462 		if (gp->phy_mii.def->magic_aneg)
1463 			return 1;
1464 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1465 		/* Try forced modes. */
1466 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1467 			DUPLEX_HALF);
1468 		gp->timer_ticks = 5;
1469 		gp->lstate = link_force_try;
1470 		return 0;
1471 	case link_force_try:
1472 		/* Downgrade from 100 to 10 Mbps if necessary.
1473 		 * If already at 10Mbps, warn user about the
1474 		 * situation every 10 ticks.
1475 		 */
1476 		if (gp->phy_mii.speed == SPEED_100) {
1477 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1478 				DUPLEX_HALF);
1479 			gp->timer_ticks = 5;
1480 			netif_info(gp, link, gp->dev,
1481 				   "switching to forced 10bt\n");
1482 			return 0;
1483 		} else
1484 			return 1;
1485 	default:
1486 		return 0;
1487 	}
1488 }
1489 
1490 static void gem_link_timer(struct timer_list *t)
1491 {
1492 	struct gem *gp = from_timer(gp, t, link_timer);
1493 	struct net_device *dev = gp->dev;
1494 	int restart_aneg = 0;
1495 
1496 	/* There's no point doing anything if we're going to be reset */
1497 	if (gp->reset_task_pending)
1498 		return;
1499 
1500 	if (gp->phy_type == phy_serialink ||
1501 	    gp->phy_type == phy_serdes) {
1502 		u32 val = readl(gp->regs + PCS_MIISTAT);
1503 
1504 		if (!(val & PCS_MIISTAT_LS))
1505 			val = readl(gp->regs + PCS_MIISTAT);
1506 
1507 		if ((val & PCS_MIISTAT_LS) != 0) {
1508 			if (gp->lstate == link_up)
1509 				goto restart;
1510 
1511 			gp->lstate = link_up;
1512 			netif_carrier_on(dev);
1513 			(void)gem_set_link_modes(gp);
1514 		}
1515 		goto restart;
1516 	}
1517 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1518 		/* Ok, here we got a link. If we had it due to a forced
1519 		 * fallback, and we were configured for autoneg, we do
1520 		 * retry a short autoneg pass. If you know your hub is
1521 		 * broken, use ethtool ;)
1522 		 */
1523 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1524 			gp->lstate = link_force_ret;
1525 			gp->last_forced_speed = gp->phy_mii.speed;
1526 			gp->timer_ticks = 5;
1527 			if (netif_msg_link(gp))
1528 				netdev_info(dev,
1529 					    "Got link after fallback, retrying autoneg once...\n");
1530 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1531 		} else if (gp->lstate != link_up) {
1532 			gp->lstate = link_up;
1533 			netif_carrier_on(dev);
1534 			if (gem_set_link_modes(gp))
1535 				restart_aneg = 1;
1536 		}
1537 	} else {
1538 		/* If the link was previously up, we restart the
1539 		 * whole process
1540 		 */
1541 		if (gp->lstate == link_up) {
1542 			gp->lstate = link_down;
1543 			netif_info(gp, link, dev, "Link down\n");
1544 			netif_carrier_off(dev);
1545 			gem_schedule_reset(gp);
1546 			/* The reset task will restart the timer */
1547 			return;
1548 		} else if (++gp->timer_ticks > 10) {
1549 			if (found_mii_phy(gp))
1550 				restart_aneg = gem_mdio_link_not_up(gp);
1551 			else
1552 				restart_aneg = 1;
1553 		}
1554 	}
1555 	if (restart_aneg) {
1556 		gem_begin_auto_negotiation(gp, NULL);
1557 		return;
1558 	}
1559 restart:
1560 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1561 }
1562 
1563 static void gem_clean_rings(struct gem *gp)
1564 {
1565 	struct gem_init_block *gb = gp->init_block;
1566 	struct sk_buff *skb;
1567 	int i;
1568 	dma_addr_t dma_addr;
1569 
1570 	for (i = 0; i < RX_RING_SIZE; i++) {
1571 		struct gem_rxd *rxd;
1572 
1573 		rxd = &gb->rxd[i];
1574 		if (gp->rx_skbs[i] != NULL) {
1575 			skb = gp->rx_skbs[i];
1576 			dma_addr = le64_to_cpu(rxd->buffer);
1577 			pci_unmap_page(gp->pdev, dma_addr,
1578 				       RX_BUF_ALLOC_SIZE(gp),
1579 				       PCI_DMA_FROMDEVICE);
1580 			dev_kfree_skb_any(skb);
1581 			gp->rx_skbs[i] = NULL;
1582 		}
1583 		rxd->status_word = 0;
1584 		dma_wmb();
1585 		rxd->buffer = 0;
1586 	}
1587 
1588 	for (i = 0; i < TX_RING_SIZE; i++) {
1589 		if (gp->tx_skbs[i] != NULL) {
1590 			struct gem_txd *txd;
1591 			int frag;
1592 
1593 			skb = gp->tx_skbs[i];
1594 			gp->tx_skbs[i] = NULL;
1595 
1596 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1597 				int ent = i & (TX_RING_SIZE - 1);
1598 
1599 				txd = &gb->txd[ent];
1600 				dma_addr = le64_to_cpu(txd->buffer);
1601 				pci_unmap_page(gp->pdev, dma_addr,
1602 					       le64_to_cpu(txd->control_word) &
1603 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1604 
1605 				if (frag != skb_shinfo(skb)->nr_frags)
1606 					i++;
1607 			}
1608 			dev_kfree_skb_any(skb);
1609 		}
1610 	}
1611 }
1612 
1613 static void gem_init_rings(struct gem *gp)
1614 {
1615 	struct gem_init_block *gb = gp->init_block;
1616 	struct net_device *dev = gp->dev;
1617 	int i;
1618 	dma_addr_t dma_addr;
1619 
1620 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1621 
1622 	gem_clean_rings(gp);
1623 
1624 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1625 			    (unsigned)VLAN_ETH_FRAME_LEN);
1626 
1627 	for (i = 0; i < RX_RING_SIZE; i++) {
1628 		struct sk_buff *skb;
1629 		struct gem_rxd *rxd = &gb->rxd[i];
1630 
1631 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1632 		if (!skb) {
1633 			rxd->buffer = 0;
1634 			rxd->status_word = 0;
1635 			continue;
1636 		}
1637 
1638 		gp->rx_skbs[i] = skb;
1639 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1640 		dma_addr = pci_map_page(gp->pdev,
1641 					virt_to_page(skb->data),
1642 					offset_in_page(skb->data),
1643 					RX_BUF_ALLOC_SIZE(gp),
1644 					PCI_DMA_FROMDEVICE);
1645 		rxd->buffer = cpu_to_le64(dma_addr);
1646 		dma_wmb();
1647 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1648 		skb_reserve(skb, RX_OFFSET);
1649 	}
1650 
1651 	for (i = 0; i < TX_RING_SIZE; i++) {
1652 		struct gem_txd *txd = &gb->txd[i];
1653 
1654 		txd->control_word = 0;
1655 		dma_wmb();
1656 		txd->buffer = 0;
1657 	}
1658 	wmb();
1659 }
1660 
1661 /* Init PHY interface and start link poll state machine */
1662 static void gem_init_phy(struct gem *gp)
1663 {
1664 	u32 mifcfg;
1665 
1666 	/* Revert MIF CFG setting done on stop_phy */
1667 	mifcfg = readl(gp->regs + MIF_CFG);
1668 	mifcfg &= ~MIF_CFG_BBMODE;
1669 	writel(mifcfg, gp->regs + MIF_CFG);
1670 
1671 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1672 		int i;
1673 
1674 		/* Those delay sucks, the HW seem to love them though, I'll
1675 		 * serisouly consider breaking some locks here to be able
1676 		 * to schedule instead
1677 		 */
1678 		for (i = 0; i < 3; i++) {
1679 #ifdef CONFIG_PPC_PMAC
1680 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1681 			msleep(20);
1682 #endif
1683 			/* Some PHYs used by apple have problem getting back to us,
1684 			 * we do an additional reset here
1685 			 */
1686 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1687 			msleep(20);
1688 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1689 				break;
1690 			if (i == 2)
1691 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1692 		}
1693 	}
1694 
1695 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1696 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1697 		u32 val;
1698 
1699 		/* Init datapath mode register. */
1700 		if (gp->phy_type == phy_mii_mdio0 ||
1701 		    gp->phy_type == phy_mii_mdio1) {
1702 			val = PCS_DMODE_MGM;
1703 		} else if (gp->phy_type == phy_serialink) {
1704 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1705 		} else {
1706 			val = PCS_DMODE_ESM;
1707 		}
1708 
1709 		writel(val, gp->regs + PCS_DMODE);
1710 	}
1711 
1712 	if (gp->phy_type == phy_mii_mdio0 ||
1713 	    gp->phy_type == phy_mii_mdio1) {
1714 		/* Reset and detect MII PHY */
1715 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1716 
1717 		/* Init PHY */
1718 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1719 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1720 	} else {
1721 		gem_pcs_reset(gp);
1722 		gem_pcs_reinit_adv(gp);
1723 	}
1724 
1725 	/* Default aneg parameters */
1726 	gp->timer_ticks = 0;
1727 	gp->lstate = link_down;
1728 	netif_carrier_off(gp->dev);
1729 
1730 	/* Print things out */
1731 	if (gp->phy_type == phy_mii_mdio0 ||
1732 	    gp->phy_type == phy_mii_mdio1)
1733 		netdev_info(gp->dev, "Found %s PHY\n",
1734 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1735 
1736 	gem_begin_auto_negotiation(gp, NULL);
1737 }
1738 
1739 static void gem_init_dma(struct gem *gp)
1740 {
1741 	u64 desc_dma = (u64) gp->gblock_dvma;
1742 	u32 val;
1743 
1744 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1745 	writel(val, gp->regs + TXDMA_CFG);
1746 
1747 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1748 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1749 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1750 
1751 	writel(0, gp->regs + TXDMA_KICK);
1752 
1753 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1754 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1755 	writel(val, gp->regs + RXDMA_CFG);
1756 
1757 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1758 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1759 
1760 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1761 
1762 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1763 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1764 	writel(val, gp->regs + RXDMA_PTHRESH);
1765 
1766 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1767 		writel(((5 & RXDMA_BLANK_IPKTS) |
1768 			((8 << 12) & RXDMA_BLANK_ITIME)),
1769 		       gp->regs + RXDMA_BLANK);
1770 	else
1771 		writel(((5 & RXDMA_BLANK_IPKTS) |
1772 			((4 << 12) & RXDMA_BLANK_ITIME)),
1773 		       gp->regs + RXDMA_BLANK);
1774 }
1775 
1776 static u32 gem_setup_multicast(struct gem *gp)
1777 {
1778 	u32 rxcfg = 0;
1779 	int i;
1780 
1781 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1782 	    (netdev_mc_count(gp->dev) > 256)) {
1783 	    	for (i=0; i<16; i++)
1784 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1785 		rxcfg |= MAC_RXCFG_HFE;
1786 	} else if (gp->dev->flags & IFF_PROMISC) {
1787 		rxcfg |= MAC_RXCFG_PROM;
1788 	} else {
1789 		u16 hash_table[16];
1790 		u32 crc;
1791 		struct netdev_hw_addr *ha;
1792 		int i;
1793 
1794 		memset(hash_table, 0, sizeof(hash_table));
1795 		netdev_for_each_mc_addr(ha, gp->dev) {
1796 			crc = ether_crc_le(6, ha->addr);
1797 			crc >>= 24;
1798 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1799 		}
1800 	    	for (i=0; i<16; i++)
1801 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1802 		rxcfg |= MAC_RXCFG_HFE;
1803 	}
1804 
1805 	return rxcfg;
1806 }
1807 
1808 static void gem_init_mac(struct gem *gp)
1809 {
1810 	unsigned char *e = &gp->dev->dev_addr[0];
1811 
1812 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1813 
1814 	writel(0x00, gp->regs + MAC_IPG0);
1815 	writel(0x08, gp->regs + MAC_IPG1);
1816 	writel(0x04, gp->regs + MAC_IPG2);
1817 	writel(0x40, gp->regs + MAC_STIME);
1818 	writel(0x40, gp->regs + MAC_MINFSZ);
1819 
1820 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1821 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1822 
1823 	writel(0x07, gp->regs + MAC_PASIZE);
1824 	writel(0x04, gp->regs + MAC_JAMSIZE);
1825 	writel(0x10, gp->regs + MAC_ATTLIM);
1826 	writel(0x8808, gp->regs + MAC_MCTYPE);
1827 
1828 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1829 
1830 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1831 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1832 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1833 
1834 	writel(0, gp->regs + MAC_ADDR3);
1835 	writel(0, gp->regs + MAC_ADDR4);
1836 	writel(0, gp->regs + MAC_ADDR5);
1837 
1838 	writel(0x0001, gp->regs + MAC_ADDR6);
1839 	writel(0xc200, gp->regs + MAC_ADDR7);
1840 	writel(0x0180, gp->regs + MAC_ADDR8);
1841 
1842 	writel(0, gp->regs + MAC_AFILT0);
1843 	writel(0, gp->regs + MAC_AFILT1);
1844 	writel(0, gp->regs + MAC_AFILT2);
1845 	writel(0, gp->regs + MAC_AF21MSK);
1846 	writel(0, gp->regs + MAC_AF0MSK);
1847 
1848 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1849 #ifdef STRIP_FCS
1850 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1851 #endif
1852 	writel(0, gp->regs + MAC_NCOLL);
1853 	writel(0, gp->regs + MAC_FASUCC);
1854 	writel(0, gp->regs + MAC_ECOLL);
1855 	writel(0, gp->regs + MAC_LCOLL);
1856 	writel(0, gp->regs + MAC_DTIMER);
1857 	writel(0, gp->regs + MAC_PATMPS);
1858 	writel(0, gp->regs + MAC_RFCTR);
1859 	writel(0, gp->regs + MAC_LERR);
1860 	writel(0, gp->regs + MAC_AERR);
1861 	writel(0, gp->regs + MAC_FCSERR);
1862 	writel(0, gp->regs + MAC_RXCVERR);
1863 
1864 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1865 	 * them once a link is established.
1866 	 */
1867 	writel(0, gp->regs + MAC_TXCFG);
1868 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1869 	writel(0, gp->regs + MAC_MCCFG);
1870 	writel(0, gp->regs + MAC_XIFCFG);
1871 
1872 	/* Setup MAC interrupts.  We want to get all of the interesting
1873 	 * counter expiration events, but we do not want to hear about
1874 	 * normal rx/tx as the DMA engine tells us that.
1875 	 */
1876 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1877 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1878 
1879 	/* Don't enable even the PAUSE interrupts for now, we
1880 	 * make no use of those events other than to record them.
1881 	 */
1882 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1883 
1884 	/* Don't enable GEM's WOL in normal operations
1885 	 */
1886 	if (gp->has_wol)
1887 		writel(0, gp->regs + WOL_WAKECSR);
1888 }
1889 
1890 static void gem_init_pause_thresholds(struct gem *gp)
1891 {
1892        	u32 cfg;
1893 
1894 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1895 	 * full RX fifo size effectively disables PAUSE generation which
1896 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1897 	 * to make real gains from PAUSE.
1898 	 */
1899 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1900 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1901 	} else {
1902 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1903 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1904 		int on = off - max_frame;
1905 
1906 		gp->rx_pause_off = off;
1907 		gp->rx_pause_on = on;
1908 	}
1909 
1910 
1911 	/* Configure the chip "burst" DMA mode & enable some
1912 	 * HW bug fixes on Apple version
1913 	 */
1914        	cfg  = 0;
1915        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1916 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1917 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1918        	cfg |= GREG_CFG_IBURST;
1919 #endif
1920        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1921        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1922        	writel(cfg, gp->regs + GREG_CFG);
1923 
1924 	/* If Infinite Burst didn't stick, then use different
1925 	 * thresholds (and Apple bug fixes don't exist)
1926 	 */
1927 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1928 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1929 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1930 		writel(cfg, gp->regs + GREG_CFG);
1931 	}
1932 }
1933 
1934 static int gem_check_invariants(struct gem *gp)
1935 {
1936 	struct pci_dev *pdev = gp->pdev;
1937 	u32 mif_cfg;
1938 
1939 	/* On Apple's sungem, we can't rely on registers as the chip
1940 	 * was been powered down by the firmware. The PHY is looked
1941 	 * up later on.
1942 	 */
1943 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1944 		gp->phy_type = phy_mii_mdio0;
1945 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1946 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1947 		gp->swrst_base = 0;
1948 
1949 		mif_cfg = readl(gp->regs + MIF_CFG);
1950 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1951 		mif_cfg |= MIF_CFG_MDI0;
1952 		writel(mif_cfg, gp->regs + MIF_CFG);
1953 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1954 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1955 
1956 		/* We hard-code the PHY address so we can properly bring it out of
1957 		 * reset later on, we can't really probe it at this point, though
1958 		 * that isn't an issue.
1959 		 */
1960 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1961 			gp->mii_phy_addr = 1;
1962 		else
1963 			gp->mii_phy_addr = 0;
1964 
1965 		return 0;
1966 	}
1967 
1968 	mif_cfg = readl(gp->regs + MIF_CFG);
1969 
1970 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1971 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1972 		/* One of the MII PHYs _must_ be present
1973 		 * as this chip has no gigabit PHY.
1974 		 */
1975 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1976 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1977 			       mif_cfg);
1978 			return -1;
1979 		}
1980 	}
1981 
1982 	/* Determine initial PHY interface type guess.  MDIO1 is the
1983 	 * external PHY and thus takes precedence over MDIO0.
1984 	 */
1985 
1986 	if (mif_cfg & MIF_CFG_MDI1) {
1987 		gp->phy_type = phy_mii_mdio1;
1988 		mif_cfg |= MIF_CFG_PSELECT;
1989 		writel(mif_cfg, gp->regs + MIF_CFG);
1990 	} else if (mif_cfg & MIF_CFG_MDI0) {
1991 		gp->phy_type = phy_mii_mdio0;
1992 		mif_cfg &= ~MIF_CFG_PSELECT;
1993 		writel(mif_cfg, gp->regs + MIF_CFG);
1994 	} else {
1995 #ifdef CONFIG_SPARC
1996 		const char *p;
1997 
1998 		p = of_get_property(gp->of_node, "shared-pins", NULL);
1999 		if (p && !strcmp(p, "serdes"))
2000 			gp->phy_type = phy_serdes;
2001 		else
2002 #endif
2003 			gp->phy_type = phy_serialink;
2004 	}
2005 	if (gp->phy_type == phy_mii_mdio1 ||
2006 	    gp->phy_type == phy_mii_mdio0) {
2007 		int i;
2008 
2009 		for (i = 0; i < 32; i++) {
2010 			gp->mii_phy_addr = i;
2011 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2012 				break;
2013 		}
2014 		if (i == 32) {
2015 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2016 				pr_err("RIO MII phy will not respond\n");
2017 				return -1;
2018 			}
2019 			gp->phy_type = phy_serdes;
2020 		}
2021 	}
2022 
2023 	/* Fetch the FIFO configurations now too. */
2024 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2025 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2026 
2027 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2028 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2029 			if (gp->tx_fifo_sz != (9 * 1024) ||
2030 			    gp->rx_fifo_sz != (20 * 1024)) {
2031 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2032 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2033 				return -1;
2034 			}
2035 			gp->swrst_base = 0;
2036 		} else {
2037 			if (gp->tx_fifo_sz != (2 * 1024) ||
2038 			    gp->rx_fifo_sz != (2 * 1024)) {
2039 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2040 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2041 				return -1;
2042 			}
2043 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2044 		}
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static void gem_reinit_chip(struct gem *gp)
2051 {
2052 	/* Reset the chip */
2053 	gem_reset(gp);
2054 
2055 	/* Make sure ints are disabled */
2056 	gem_disable_ints(gp);
2057 
2058 	/* Allocate & setup ring buffers */
2059 	gem_init_rings(gp);
2060 
2061 	/* Configure pause thresholds */
2062 	gem_init_pause_thresholds(gp);
2063 
2064 	/* Init DMA & MAC engines */
2065 	gem_init_dma(gp);
2066 	gem_init_mac(gp);
2067 }
2068 
2069 
2070 static void gem_stop_phy(struct gem *gp, int wol)
2071 {
2072 	u32 mifcfg;
2073 
2074 	/* Let the chip settle down a bit, it seems that helps
2075 	 * for sleep mode on some models
2076 	 */
2077 	msleep(10);
2078 
2079 	/* Make sure we aren't polling PHY status change. We
2080 	 * don't currently use that feature though
2081 	 */
2082 	mifcfg = readl(gp->regs + MIF_CFG);
2083 	mifcfg &= ~MIF_CFG_POLL;
2084 	writel(mifcfg, gp->regs + MIF_CFG);
2085 
2086 	if (wol && gp->has_wol) {
2087 		unsigned char *e = &gp->dev->dev_addr[0];
2088 		u32 csr;
2089 
2090 		/* Setup wake-on-lan for MAGIC packet */
2091 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2092 		       gp->regs + MAC_RXCFG);
2093 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2094 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2095 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2096 
2097 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2098 		csr = WOL_WAKECSR_ENABLE;
2099 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2100 			csr |= WOL_WAKECSR_MII;
2101 		writel(csr, gp->regs + WOL_WAKECSR);
2102 	} else {
2103 		writel(0, gp->regs + MAC_RXCFG);
2104 		(void)readl(gp->regs + MAC_RXCFG);
2105 		/* Machine sleep will die in strange ways if we
2106 		 * dont wait a bit here, looks like the chip takes
2107 		 * some time to really shut down
2108 		 */
2109 		msleep(10);
2110 	}
2111 
2112 	writel(0, gp->regs + MAC_TXCFG);
2113 	writel(0, gp->regs + MAC_XIFCFG);
2114 	writel(0, gp->regs + TXDMA_CFG);
2115 	writel(0, gp->regs + RXDMA_CFG);
2116 
2117 	if (!wol) {
2118 		gem_reset(gp);
2119 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2120 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2121 
2122 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2123 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2124 
2125 		/* According to Apple, we must set the MDIO pins to this begnign
2126 		 * state or we may 1) eat more current, 2) damage some PHYs
2127 		 */
2128 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2129 		writel(0, gp->regs + MIF_BBCLK);
2130 		writel(0, gp->regs + MIF_BBDATA);
2131 		writel(0, gp->regs + MIF_BBOENAB);
2132 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2133 		(void) readl(gp->regs + MAC_XIFCFG);
2134 	}
2135 }
2136 
2137 static int gem_do_start(struct net_device *dev)
2138 {
2139 	struct gem *gp = netdev_priv(dev);
2140 	int rc;
2141 
2142 	/* Enable the cell */
2143 	gem_get_cell(gp);
2144 
2145 	/* Make sure PCI access and bus master are enabled */
2146 	rc = pci_enable_device(gp->pdev);
2147 	if (rc) {
2148 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2149 
2150 		/* Put cell and forget it for now, it will be considered as
2151 		 * still asleep, a new sleep cycle may bring it back
2152 		 */
2153 		gem_put_cell(gp);
2154 		return -ENXIO;
2155 	}
2156 	pci_set_master(gp->pdev);
2157 
2158 	/* Init & setup chip hardware */
2159 	gem_reinit_chip(gp);
2160 
2161 	/* An interrupt might come in handy */
2162 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2163 			 IRQF_SHARED, dev->name, (void *)dev);
2164 	if (rc) {
2165 		netdev_err(dev, "failed to request irq !\n");
2166 
2167 		gem_reset(gp);
2168 		gem_clean_rings(gp);
2169 		gem_put_cell(gp);
2170 		return rc;
2171 	}
2172 
2173 	/* Mark us as attached again if we come from resume(), this has
2174 	 * no effect if we weren't detached and needs to be done now.
2175 	 */
2176 	netif_device_attach(dev);
2177 
2178 	/* Restart NAPI & queues */
2179 	gem_netif_start(gp);
2180 
2181 	/* Detect & init PHY, start autoneg etc... this will
2182 	 * eventually result in starting DMA operations when
2183 	 * the link is up
2184 	 */
2185 	gem_init_phy(gp);
2186 
2187 	return 0;
2188 }
2189 
2190 static void gem_do_stop(struct net_device *dev, int wol)
2191 {
2192 	struct gem *gp = netdev_priv(dev);
2193 
2194 	/* Stop NAPI and stop tx queue */
2195 	gem_netif_stop(gp);
2196 
2197 	/* Make sure ints are disabled. We don't care about
2198 	 * synchronizing as NAPI is disabled, thus a stray
2199 	 * interrupt will do nothing bad (our irq handler
2200 	 * just schedules NAPI)
2201 	 */
2202 	gem_disable_ints(gp);
2203 
2204 	/* Stop the link timer */
2205 	del_timer_sync(&gp->link_timer);
2206 
2207 	/* We cannot cancel the reset task while holding the
2208 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2209 	 * if we did. This is not an issue however as the reset
2210 	 * task is synchronized vs. us (rtnl_lock) and will do
2211 	 * nothing if the device is down or suspended. We do
2212 	 * still clear reset_task_pending to avoid a spurrious
2213 	 * reset later on in case we do resume before it gets
2214 	 * scheduled.
2215 	 */
2216 	gp->reset_task_pending = 0;
2217 
2218 	/* If we are going to sleep with WOL */
2219 	gem_stop_dma(gp);
2220 	msleep(10);
2221 	if (!wol)
2222 		gem_reset(gp);
2223 	msleep(10);
2224 
2225 	/* Get rid of rings */
2226 	gem_clean_rings(gp);
2227 
2228 	/* No irq needed anymore */
2229 	free_irq(gp->pdev->irq, (void *) dev);
2230 
2231 	/* Shut the PHY down eventually and setup WOL */
2232 	gem_stop_phy(gp, wol);
2233 
2234 	/* Make sure bus master is disabled */
2235 	pci_disable_device(gp->pdev);
2236 
2237 	/* Cell not needed neither if no WOL */
2238 	if (!wol)
2239 		gem_put_cell(gp);
2240 }
2241 
2242 static void gem_reset_task(struct work_struct *work)
2243 {
2244 	struct gem *gp = container_of(work, struct gem, reset_task);
2245 
2246 	/* Lock out the network stack (essentially shield ourselves
2247 	 * against a racing open, close, control call, or suspend
2248 	 */
2249 	rtnl_lock();
2250 
2251 	/* Skip the reset task if suspended or closed, or if it's
2252 	 * been cancelled by gem_do_stop (see comment there)
2253 	 */
2254 	if (!netif_device_present(gp->dev) ||
2255 	    !netif_running(gp->dev) ||
2256 	    !gp->reset_task_pending) {
2257 		rtnl_unlock();
2258 		return;
2259 	}
2260 
2261 	/* Stop the link timer */
2262 	del_timer_sync(&gp->link_timer);
2263 
2264 	/* Stop NAPI and tx */
2265 	gem_netif_stop(gp);
2266 
2267 	/* Reset the chip & rings */
2268 	gem_reinit_chip(gp);
2269 	if (gp->lstate == link_up)
2270 		gem_set_link_modes(gp);
2271 
2272 	/* Restart NAPI and Tx */
2273 	gem_netif_start(gp);
2274 
2275 	/* We are back ! */
2276 	gp->reset_task_pending = 0;
2277 
2278 	/* If the link is not up, restart autoneg, else restart the
2279 	 * polling timer
2280 	 */
2281 	if (gp->lstate != link_up)
2282 		gem_begin_auto_negotiation(gp, NULL);
2283 	else
2284 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2285 
2286 	rtnl_unlock();
2287 }
2288 
2289 static int gem_open(struct net_device *dev)
2290 {
2291 	/* We allow open while suspended, we just do nothing,
2292 	 * the chip will be initialized in resume()
2293 	 */
2294 	if (netif_device_present(dev))
2295 		return gem_do_start(dev);
2296 	return 0;
2297 }
2298 
2299 static int gem_close(struct net_device *dev)
2300 {
2301 	if (netif_device_present(dev))
2302 		gem_do_stop(dev, 0);
2303 
2304 	return 0;
2305 }
2306 
2307 #ifdef CONFIG_PM
2308 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2309 {
2310 	struct net_device *dev = pci_get_drvdata(pdev);
2311 	struct gem *gp = netdev_priv(dev);
2312 
2313 	/* Lock the network stack first to avoid racing with open/close,
2314 	 * reset task and setting calls
2315 	 */
2316 	rtnl_lock();
2317 
2318 	/* Not running, mark ourselves non-present, no need for
2319 	 * a lock here
2320 	 */
2321 	if (!netif_running(dev)) {
2322 		netif_device_detach(dev);
2323 		rtnl_unlock();
2324 		return 0;
2325 	}
2326 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2327 		    (gp->wake_on_lan && netif_running(dev)) ?
2328 		    "enabled" : "disabled");
2329 
2330 	/* Tell the network stack we're gone. gem_do_stop() below will
2331 	 * synchronize with TX, stop NAPI etc...
2332 	 */
2333 	netif_device_detach(dev);
2334 
2335 	/* Switch off chip, remember WOL setting */
2336 	gp->asleep_wol = !!gp->wake_on_lan;
2337 	gem_do_stop(dev, gp->asleep_wol);
2338 
2339 	/* Unlock the network stack */
2340 	rtnl_unlock();
2341 
2342 	return 0;
2343 }
2344 
2345 static int gem_resume(struct pci_dev *pdev)
2346 {
2347 	struct net_device *dev = pci_get_drvdata(pdev);
2348 	struct gem *gp = netdev_priv(dev);
2349 
2350 	/* See locking comment in gem_suspend */
2351 	rtnl_lock();
2352 
2353 	/* Not running, mark ourselves present, no need for
2354 	 * a lock here
2355 	 */
2356 	if (!netif_running(dev)) {
2357 		netif_device_attach(dev);
2358 		rtnl_unlock();
2359 		return 0;
2360 	}
2361 
2362 	/* Restart chip. If that fails there isn't much we can do, we
2363 	 * leave things stopped.
2364 	 */
2365 	gem_do_start(dev);
2366 
2367 	/* If we had WOL enabled, the cell clock was never turned off during
2368 	 * sleep, so we end up beeing unbalanced. Fix that here
2369 	 */
2370 	if (gp->asleep_wol)
2371 		gem_put_cell(gp);
2372 
2373 	/* Unlock the network stack */
2374 	rtnl_unlock();
2375 
2376 	return 0;
2377 }
2378 #endif /* CONFIG_PM */
2379 
2380 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2381 {
2382 	struct gem *gp = netdev_priv(dev);
2383 
2384 	/* I have seen this being called while the PM was in progress,
2385 	 * so we shield against this. Let's also not poke at registers
2386 	 * while the reset task is going on.
2387 	 *
2388 	 * TODO: Move stats collection elsewhere (link timer ?) and
2389 	 * make this a nop to avoid all those synchro issues
2390 	 */
2391 	if (!netif_device_present(dev) || !netif_running(dev))
2392 		goto bail;
2393 
2394 	/* Better safe than sorry... */
2395 	if (WARN_ON(!gp->cell_enabled))
2396 		goto bail;
2397 
2398 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2399 	writel(0, gp->regs + MAC_FCSERR);
2400 
2401 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2402 	writel(0, gp->regs + MAC_AERR);
2403 
2404 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2405 	writel(0, gp->regs + MAC_LERR);
2406 
2407 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2408 	dev->stats.collisions +=
2409 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2410 	writel(0, gp->regs + MAC_ECOLL);
2411 	writel(0, gp->regs + MAC_LCOLL);
2412  bail:
2413 	return &dev->stats;
2414 }
2415 
2416 static int gem_set_mac_address(struct net_device *dev, void *addr)
2417 {
2418 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2419 	struct gem *gp = netdev_priv(dev);
2420 	unsigned char *e = &dev->dev_addr[0];
2421 
2422 	if (!is_valid_ether_addr(macaddr->sa_data))
2423 		return -EADDRNOTAVAIL;
2424 
2425 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2426 
2427 	/* We'll just catch it later when the device is up'd or resumed */
2428 	if (!netif_running(dev) || !netif_device_present(dev))
2429 		return 0;
2430 
2431 	/* Better safe than sorry... */
2432 	if (WARN_ON(!gp->cell_enabled))
2433 		return 0;
2434 
2435 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2436 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2437 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2438 
2439 	return 0;
2440 }
2441 
2442 static void gem_set_multicast(struct net_device *dev)
2443 {
2444 	struct gem *gp = netdev_priv(dev);
2445 	u32 rxcfg, rxcfg_new;
2446 	int limit = 10000;
2447 
2448 	if (!netif_running(dev) || !netif_device_present(dev))
2449 		return;
2450 
2451 	/* Better safe than sorry... */
2452 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2453 		return;
2454 
2455 	rxcfg = readl(gp->regs + MAC_RXCFG);
2456 	rxcfg_new = gem_setup_multicast(gp);
2457 #ifdef STRIP_FCS
2458 	rxcfg_new |= MAC_RXCFG_SFCS;
2459 #endif
2460 	gp->mac_rx_cfg = rxcfg_new;
2461 
2462 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2463 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2464 		if (!limit--)
2465 			break;
2466 		udelay(10);
2467 	}
2468 
2469 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2470 	rxcfg |= rxcfg_new;
2471 
2472 	writel(rxcfg, gp->regs + MAC_RXCFG);
2473 }
2474 
2475 /* Jumbo-grams don't seem to work :-( */
2476 #define GEM_MIN_MTU	ETH_MIN_MTU
2477 #if 1
2478 #define GEM_MAX_MTU	ETH_DATA_LEN
2479 #else
2480 #define GEM_MAX_MTU	9000
2481 #endif
2482 
2483 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2484 {
2485 	struct gem *gp = netdev_priv(dev);
2486 
2487 	dev->mtu = new_mtu;
2488 
2489 	/* We'll just catch it later when the device is up'd or resumed */
2490 	if (!netif_running(dev) || !netif_device_present(dev))
2491 		return 0;
2492 
2493 	/* Better safe than sorry... */
2494 	if (WARN_ON(!gp->cell_enabled))
2495 		return 0;
2496 
2497 	gem_netif_stop(gp);
2498 	gem_reinit_chip(gp);
2499 	if (gp->lstate == link_up)
2500 		gem_set_link_modes(gp);
2501 	gem_netif_start(gp);
2502 
2503 	return 0;
2504 }
2505 
2506 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2507 {
2508 	struct gem *gp = netdev_priv(dev);
2509 
2510 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2511 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2512 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2513 }
2514 
2515 static int gem_get_link_ksettings(struct net_device *dev,
2516 				  struct ethtool_link_ksettings *cmd)
2517 {
2518 	struct gem *gp = netdev_priv(dev);
2519 	u32 supported, advertising;
2520 
2521 	if (gp->phy_type == phy_mii_mdio0 ||
2522 	    gp->phy_type == phy_mii_mdio1) {
2523 		if (gp->phy_mii.def)
2524 			supported = gp->phy_mii.def->features;
2525 		else
2526 			supported = (SUPPORTED_10baseT_Half |
2527 					  SUPPORTED_10baseT_Full);
2528 
2529 		/* XXX hardcoded stuff for now */
2530 		cmd->base.port = PORT_MII;
2531 		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2532 
2533 		/* Return current PHY settings */
2534 		cmd->base.autoneg = gp->want_autoneg;
2535 		cmd->base.speed = gp->phy_mii.speed;
2536 		cmd->base.duplex = gp->phy_mii.duplex;
2537 		advertising = gp->phy_mii.advertising;
2538 
2539 		/* If we started with a forced mode, we don't have a default
2540 		 * advertise set, we need to return something sensible so
2541 		 * userland can re-enable autoneg properly.
2542 		 */
2543 		if (advertising == 0)
2544 			advertising = supported;
2545 	} else { // XXX PCS ?
2546 		supported =
2547 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2548 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2549 			 SUPPORTED_Autoneg);
2550 		advertising = supported;
2551 		cmd->base.speed = 0;
2552 		cmd->base.duplex = 0;
2553 		cmd->base.port = 0;
2554 		cmd->base.phy_address = 0;
2555 		cmd->base.autoneg = 0;
2556 
2557 		/* serdes means usually a Fibre connector, with most fixed */
2558 		if (gp->phy_type == phy_serdes) {
2559 			cmd->base.port = PORT_FIBRE;
2560 			supported = (SUPPORTED_1000baseT_Half |
2561 				SUPPORTED_1000baseT_Full |
2562 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2563 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2564 			advertising = supported;
2565 			if (gp->lstate == link_up)
2566 				cmd->base.speed = SPEED_1000;
2567 			cmd->base.duplex = DUPLEX_FULL;
2568 			cmd->base.autoneg = 1;
2569 		}
2570 	}
2571 
2572 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2573 						supported);
2574 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2575 						advertising);
2576 
2577 	return 0;
2578 }
2579 
2580 static int gem_set_link_ksettings(struct net_device *dev,
2581 				  const struct ethtool_link_ksettings *cmd)
2582 {
2583 	struct gem *gp = netdev_priv(dev);
2584 	u32 speed = cmd->base.speed;
2585 	u32 advertising;
2586 
2587 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2588 						cmd->link_modes.advertising);
2589 
2590 	/* Verify the settings we care about. */
2591 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2592 	    cmd->base.autoneg != AUTONEG_DISABLE)
2593 		return -EINVAL;
2594 
2595 	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2596 	    advertising == 0)
2597 		return -EINVAL;
2598 
2599 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2600 	    ((speed != SPEED_1000 &&
2601 	      speed != SPEED_100 &&
2602 	      speed != SPEED_10) ||
2603 	     (cmd->base.duplex != DUPLEX_HALF &&
2604 	      cmd->base.duplex != DUPLEX_FULL)))
2605 		return -EINVAL;
2606 
2607 	/* Apply settings and restart link process. */
2608 	if (netif_device_present(gp->dev)) {
2609 		del_timer_sync(&gp->link_timer);
2610 		gem_begin_auto_negotiation(gp, cmd);
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 static int gem_nway_reset(struct net_device *dev)
2617 {
2618 	struct gem *gp = netdev_priv(dev);
2619 
2620 	if (!gp->want_autoneg)
2621 		return -EINVAL;
2622 
2623 	/* Restart link process  */
2624 	if (netif_device_present(gp->dev)) {
2625 		del_timer_sync(&gp->link_timer);
2626 		gem_begin_auto_negotiation(gp, NULL);
2627 	}
2628 
2629 	return 0;
2630 }
2631 
2632 static u32 gem_get_msglevel(struct net_device *dev)
2633 {
2634 	struct gem *gp = netdev_priv(dev);
2635 	return gp->msg_enable;
2636 }
2637 
2638 static void gem_set_msglevel(struct net_device *dev, u32 value)
2639 {
2640 	struct gem *gp = netdev_priv(dev);
2641 	gp->msg_enable = value;
2642 }
2643 
2644 
2645 /* Add more when I understand how to program the chip */
2646 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2647 
2648 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2649 
2650 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2651 {
2652 	struct gem *gp = netdev_priv(dev);
2653 
2654 	/* Add more when I understand how to program the chip */
2655 	if (gp->has_wol) {
2656 		wol->supported = WOL_SUPPORTED_MASK;
2657 		wol->wolopts = gp->wake_on_lan;
2658 	} else {
2659 		wol->supported = 0;
2660 		wol->wolopts = 0;
2661 	}
2662 }
2663 
2664 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666 	struct gem *gp = netdev_priv(dev);
2667 
2668 	if (!gp->has_wol)
2669 		return -EOPNOTSUPP;
2670 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2671 	return 0;
2672 }
2673 
2674 static const struct ethtool_ops gem_ethtool_ops = {
2675 	.get_drvinfo		= gem_get_drvinfo,
2676 	.get_link		= ethtool_op_get_link,
2677 	.nway_reset		= gem_nway_reset,
2678 	.get_msglevel		= gem_get_msglevel,
2679 	.set_msglevel		= gem_set_msglevel,
2680 	.get_wol		= gem_get_wol,
2681 	.set_wol		= gem_set_wol,
2682 	.get_link_ksettings	= gem_get_link_ksettings,
2683 	.set_link_ksettings	= gem_set_link_ksettings,
2684 };
2685 
2686 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2687 {
2688 	struct gem *gp = netdev_priv(dev);
2689 	struct mii_ioctl_data *data = if_mii(ifr);
2690 	int rc = -EOPNOTSUPP;
2691 
2692 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2693 	 * netif_device_present() is true and holds rtnl_lock for us
2694 	 * so we have nothing to worry about
2695 	 */
2696 
2697 	switch (cmd) {
2698 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2699 		data->phy_id = gp->mii_phy_addr;
2700 		/* Fallthrough... */
2701 
2702 	case SIOCGMIIREG:		/* Read MII PHY register. */
2703 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2704 					   data->reg_num & 0x1f);
2705 		rc = 0;
2706 		break;
2707 
2708 	case SIOCSMIIREG:		/* Write MII PHY register. */
2709 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2710 			    data->val_in);
2711 		rc = 0;
2712 		break;
2713 	}
2714 	return rc;
2715 }
2716 
2717 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2718 /* Fetch MAC address from vital product data of PCI ROM. */
2719 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2720 {
2721 	int this_offset;
2722 
2723 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2724 		void __iomem *p = rom_base + this_offset;
2725 		int i;
2726 
2727 		if (readb(p + 0) != 0x90 ||
2728 		    readb(p + 1) != 0x00 ||
2729 		    readb(p + 2) != 0x09 ||
2730 		    readb(p + 3) != 0x4e ||
2731 		    readb(p + 4) != 0x41 ||
2732 		    readb(p + 5) != 0x06)
2733 			continue;
2734 
2735 		this_offset += 6;
2736 		p += 6;
2737 
2738 		for (i = 0; i < 6; i++)
2739 			dev_addr[i] = readb(p + i);
2740 		return 1;
2741 	}
2742 	return 0;
2743 }
2744 
2745 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2746 {
2747 	size_t size;
2748 	void __iomem *p = pci_map_rom(pdev, &size);
2749 
2750 	if (p) {
2751 		int found;
2752 
2753 		found = readb(p) == 0x55 &&
2754 			readb(p + 1) == 0xaa &&
2755 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2756 		pci_unmap_rom(pdev, p);
2757 		if (found)
2758 			return;
2759 	}
2760 
2761 	/* Sun MAC prefix then 3 random bytes. */
2762 	dev_addr[0] = 0x08;
2763 	dev_addr[1] = 0x00;
2764 	dev_addr[2] = 0x20;
2765 	get_random_bytes(dev_addr + 3, 3);
2766 }
2767 #endif /* not Sparc and not PPC */
2768 
2769 static int gem_get_device_address(struct gem *gp)
2770 {
2771 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2772 	struct net_device *dev = gp->dev;
2773 	const unsigned char *addr;
2774 
2775 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2776 	if (addr == NULL) {
2777 #ifdef CONFIG_SPARC
2778 		addr = idprom->id_ethaddr;
2779 #else
2780 		printk("\n");
2781 		pr_err("%s: can't get mac-address\n", dev->name);
2782 		return -1;
2783 #endif
2784 	}
2785 	memcpy(dev->dev_addr, addr, ETH_ALEN);
2786 #else
2787 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2788 #endif
2789 	return 0;
2790 }
2791 
2792 static void gem_remove_one(struct pci_dev *pdev)
2793 {
2794 	struct net_device *dev = pci_get_drvdata(pdev);
2795 
2796 	if (dev) {
2797 		struct gem *gp = netdev_priv(dev);
2798 
2799 		unregister_netdev(dev);
2800 
2801 		/* Ensure reset task is truly gone */
2802 		cancel_work_sync(&gp->reset_task);
2803 
2804 		/* Free resources */
2805 		pci_free_consistent(pdev,
2806 				    sizeof(struct gem_init_block),
2807 				    gp->init_block,
2808 				    gp->gblock_dvma);
2809 		iounmap(gp->regs);
2810 		pci_release_regions(pdev);
2811 		free_netdev(dev);
2812 	}
2813 }
2814 
2815 static const struct net_device_ops gem_netdev_ops = {
2816 	.ndo_open		= gem_open,
2817 	.ndo_stop		= gem_close,
2818 	.ndo_start_xmit		= gem_start_xmit,
2819 	.ndo_get_stats		= gem_get_stats,
2820 	.ndo_set_rx_mode	= gem_set_multicast,
2821 	.ndo_do_ioctl		= gem_ioctl,
2822 	.ndo_tx_timeout		= gem_tx_timeout,
2823 	.ndo_change_mtu		= gem_change_mtu,
2824 	.ndo_validate_addr	= eth_validate_addr,
2825 	.ndo_set_mac_address    = gem_set_mac_address,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 	.ndo_poll_controller    = gem_poll_controller,
2828 #endif
2829 };
2830 
2831 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2832 {
2833 	unsigned long gemreg_base, gemreg_len;
2834 	struct net_device *dev;
2835 	struct gem *gp;
2836 	int err, pci_using_dac;
2837 
2838 	printk_once(KERN_INFO "%s", version);
2839 
2840 	/* Apple gmac note: during probe, the chip is powered up by
2841 	 * the arch code to allow the code below to work (and to let
2842 	 * the chip be probed on the config space. It won't stay powered
2843 	 * up until the interface is brought up however, so we can't rely
2844 	 * on register configuration done at this point.
2845 	 */
2846 	err = pci_enable_device(pdev);
2847 	if (err) {
2848 		pr_err("Cannot enable MMIO operation, aborting\n");
2849 		return err;
2850 	}
2851 	pci_set_master(pdev);
2852 
2853 	/* Configure DMA attributes. */
2854 
2855 	/* All of the GEM documentation states that 64-bit DMA addressing
2856 	 * is fully supported and should work just fine.  However the
2857 	 * front end for RIO based GEMs is different and only supports
2858 	 * 32-bit addressing.
2859 	 *
2860 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2861 	 */
2862 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2863 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2864 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2865 		pci_using_dac = 1;
2866 	} else {
2867 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2868 		if (err) {
2869 			pr_err("No usable DMA configuration, aborting\n");
2870 			goto err_disable_device;
2871 		}
2872 		pci_using_dac = 0;
2873 	}
2874 
2875 	gemreg_base = pci_resource_start(pdev, 0);
2876 	gemreg_len = pci_resource_len(pdev, 0);
2877 
2878 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2879 		pr_err("Cannot find proper PCI device base address, aborting\n");
2880 		err = -ENODEV;
2881 		goto err_disable_device;
2882 	}
2883 
2884 	dev = alloc_etherdev(sizeof(*gp));
2885 	if (!dev) {
2886 		err = -ENOMEM;
2887 		goto err_disable_device;
2888 	}
2889 	SET_NETDEV_DEV(dev, &pdev->dev);
2890 
2891 	gp = netdev_priv(dev);
2892 
2893 	err = pci_request_regions(pdev, DRV_NAME);
2894 	if (err) {
2895 		pr_err("Cannot obtain PCI resources, aborting\n");
2896 		goto err_out_free_netdev;
2897 	}
2898 
2899 	gp->pdev = pdev;
2900 	gp->dev = dev;
2901 
2902 	gp->msg_enable = DEFAULT_MSG;
2903 
2904 	timer_setup(&gp->link_timer, gem_link_timer, 0);
2905 
2906 	INIT_WORK(&gp->reset_task, gem_reset_task);
2907 
2908 	gp->lstate = link_down;
2909 	gp->timer_ticks = 0;
2910 	netif_carrier_off(dev);
2911 
2912 	gp->regs = ioremap(gemreg_base, gemreg_len);
2913 	if (!gp->regs) {
2914 		pr_err("Cannot map device registers, aborting\n");
2915 		err = -EIO;
2916 		goto err_out_free_res;
2917 	}
2918 
2919 	/* On Apple, we want a reference to the Open Firmware device-tree
2920 	 * node. We use it for clock control.
2921 	 */
2922 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2923 	gp->of_node = pci_device_to_OF_node(pdev);
2924 #endif
2925 
2926 	/* Only Apple version supports WOL afaik */
2927 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2928 		gp->has_wol = 1;
2929 
2930 	/* Make sure cell is enabled */
2931 	gem_get_cell(gp);
2932 
2933 	/* Make sure everything is stopped and in init state */
2934 	gem_reset(gp);
2935 
2936 	/* Fill up the mii_phy structure (even if we won't use it) */
2937 	gp->phy_mii.dev = dev;
2938 	gp->phy_mii.mdio_read = _sungem_phy_read;
2939 	gp->phy_mii.mdio_write = _sungem_phy_write;
2940 #ifdef CONFIG_PPC_PMAC
2941 	gp->phy_mii.platform_data = gp->of_node;
2942 #endif
2943 	/* By default, we start with autoneg */
2944 	gp->want_autoneg = 1;
2945 
2946 	/* Check fifo sizes, PHY type, etc... */
2947 	if (gem_check_invariants(gp)) {
2948 		err = -ENODEV;
2949 		goto err_out_iounmap;
2950 	}
2951 
2952 	/* It is guaranteed that the returned buffer will be at least
2953 	 * PAGE_SIZE aligned.
2954 	 */
2955 	gp->init_block = (struct gem_init_block *)
2956 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2957 				     &gp->gblock_dvma);
2958 	if (!gp->init_block) {
2959 		pr_err("Cannot allocate init block, aborting\n");
2960 		err = -ENOMEM;
2961 		goto err_out_iounmap;
2962 	}
2963 
2964 	err = gem_get_device_address(gp);
2965 	if (err)
2966 		goto err_out_free_consistent;
2967 
2968 	dev->netdev_ops = &gem_netdev_ops;
2969 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2970 	dev->ethtool_ops = &gem_ethtool_ops;
2971 	dev->watchdog_timeo = 5 * HZ;
2972 	dev->dma = 0;
2973 
2974 	/* Set that now, in case PM kicks in now */
2975 	pci_set_drvdata(pdev, dev);
2976 
2977 	/* We can do scatter/gather and HW checksum */
2978 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2979 	dev->features = dev->hw_features;
2980 	if (pci_using_dac)
2981 		dev->features |= NETIF_F_HIGHDMA;
2982 
2983 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2984 	dev->min_mtu = GEM_MIN_MTU;
2985 	dev->max_mtu = GEM_MAX_MTU;
2986 
2987 	/* Register with kernel */
2988 	if (register_netdev(dev)) {
2989 		pr_err("Cannot register net device, aborting\n");
2990 		err = -ENOMEM;
2991 		goto err_out_free_consistent;
2992 	}
2993 
2994 	/* Undo the get_cell with appropriate locking (we could use
2995 	 * ndo_init/uninit but that would be even more clumsy imho)
2996 	 */
2997 	rtnl_lock();
2998 	gem_put_cell(gp);
2999 	rtnl_unlock();
3000 
3001 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3002 		    dev->dev_addr);
3003 	return 0;
3004 
3005 err_out_free_consistent:
3006 	gem_remove_one(pdev);
3007 err_out_iounmap:
3008 	gem_put_cell(gp);
3009 	iounmap(gp->regs);
3010 
3011 err_out_free_res:
3012 	pci_release_regions(pdev);
3013 
3014 err_out_free_netdev:
3015 	free_netdev(dev);
3016 err_disable_device:
3017 	pci_disable_device(pdev);
3018 	return err;
3019 
3020 }
3021 
3022 
3023 static struct pci_driver gem_driver = {
3024 	.name		= GEM_MODULE_NAME,
3025 	.id_table	= gem_pci_tbl,
3026 	.probe		= gem_init_one,
3027 	.remove		= gem_remove_one,
3028 #ifdef CONFIG_PM
3029 	.suspend	= gem_suspend,
3030 	.resume		= gem_resume,
3031 #endif /* CONFIG_PM */
3032 };
3033 
3034 module_pci_driver(gem_driver);
3035