xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 8730046c)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <linux/random.h>
37 #include <linux/workqueue.h>
38 #include <linux/if_vlan.h>
39 #include <linux/bitops.h>
40 #include <linux/mm.h>
41 #include <linux/gfp.h>
42 
43 #include <asm/io.h>
44 #include <asm/byteorder.h>
45 #include <linux/uaccess.h>
46 #include <asm/irq.h>
47 
48 #ifdef CONFIG_SPARC
49 #include <asm/idprom.h>
50 #include <asm/prom.h>
51 #endif
52 
53 #ifdef CONFIG_PPC_PMAC
54 #include <asm/prom.h>
55 #include <asm/machdep.h>
56 #include <asm/pmac_feature.h>
57 #endif
58 
59 #include <linux/sungem_phy.h>
60 #include "sungem.h"
61 
62 /* Stripping FCS is causing problems, disabled for now */
63 #undef STRIP_FCS
64 
65 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
66 			 NETIF_MSG_PROBE	| \
67 			 NETIF_MSG_LINK)
68 
69 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
73 
74 #define DRV_NAME	"sungem"
75 #define DRV_VERSION	"1.0"
76 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
77 
78 static char version[] =
79         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
80 
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
84 
85 #define GEM_MODULE_NAME	"gem"
86 
87 static const struct pci_device_id gem_pci_tbl[] = {
88 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
90 
91 	/* These models only differ from the original GEM in
92 	 * that their tx/rx fifos are of a different size and
93 	 * they only support 10/100 speeds. -DaveM
94 	 *
95 	 * Apple's GMAC does support gigabit on machines with
96 	 * the BCM54xx PHYs. -BenH
97 	 */
98 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
116 
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
118 {
119 	u32 cmd;
120 	int limit = 10000;
121 
122 	cmd  = (1 << 30);
123 	cmd |= (2 << 28);
124 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 	cmd |= (MIF_FRAME_TAMSB);
127 	writel(cmd, gp->regs + MIF_FRAME);
128 
129 	while (--limit) {
130 		cmd = readl(gp->regs + MIF_FRAME);
131 		if (cmd & MIF_FRAME_TALSB)
132 			break;
133 
134 		udelay(10);
135 	}
136 
137 	if (!limit)
138 		cmd = 0xffff;
139 
140 	return cmd & MIF_FRAME_DATA;
141 }
142 
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
144 {
145 	struct gem *gp = netdev_priv(dev);
146 	return __sungem_phy_read(gp, mii_id, reg);
147 }
148 
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
150 {
151 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
152 }
153 
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
155 {
156 	u32 cmd;
157 	int limit = 10000;
158 
159 	cmd  = (1 << 30);
160 	cmd |= (1 << 28);
161 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 	cmd |= (MIF_FRAME_TAMSB);
164 	cmd |= (val & MIF_FRAME_DATA);
165 	writel(cmd, gp->regs + MIF_FRAME);
166 
167 	while (limit--) {
168 		cmd = readl(gp->regs + MIF_FRAME);
169 		if (cmd & MIF_FRAME_TALSB)
170 			break;
171 
172 		udelay(10);
173 	}
174 }
175 
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
177 {
178 	struct gem *gp = netdev_priv(dev);
179 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
180 }
181 
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
183 {
184 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
185 }
186 
187 static inline void gem_enable_ints(struct gem *gp)
188 {
189 	/* Enable all interrupts but TXDONE */
190 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
191 }
192 
193 static inline void gem_disable_ints(struct gem *gp)
194 {
195 	/* Disable all interrupts, including TXDONE */
196 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
198 }
199 
200 static void gem_get_cell(struct gem *gp)
201 {
202 	BUG_ON(gp->cell_enabled < 0);
203 	gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 	if (gp->cell_enabled == 1) {
206 		mb();
207 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 		udelay(10);
209 	}
210 #endif /* CONFIG_PPC_PMAC */
211 }
212 
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
215 {
216 	BUG_ON(gp->cell_enabled <= 0);
217 	gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 	if (gp->cell_enabled == 0) {
220 		mb();
221 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 		udelay(10);
223 	}
224 #endif /* CONFIG_PPC_PMAC */
225 }
226 
227 static inline void gem_netif_stop(struct gem *gp)
228 {
229 	netif_trans_update(gp->dev);	/* prevent tx timeout */
230 	napi_disable(&gp->napi);
231 	netif_tx_disable(gp->dev);
232 }
233 
234 static inline void gem_netif_start(struct gem *gp)
235 {
236 	/* NOTE: unconditional netif_wake_queue is only
237 	 * appropriate so long as all callers are assured to
238 	 * have free tx slots.
239 	 */
240 	netif_wake_queue(gp->dev);
241 	napi_enable(&gp->napi);
242 }
243 
244 static void gem_schedule_reset(struct gem *gp)
245 {
246 	gp->reset_task_pending = 1;
247 	schedule_work(&gp->reset_task);
248 }
249 
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251 {
252 	if (netif_msg_intr(gp))
253 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 }
255 
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257 {
258 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 	u32 pcs_miistat;
260 
261 	if (netif_msg_intr(gp))
262 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 			gp->dev->name, pcs_istat);
264 
265 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 		netdev_err(dev, "PCS irq but no link status change???\n");
267 		return 0;
268 	}
269 
270 	/* The link status bit latches on zero, so you must
271 	 * read it twice in such a case to see a transition
272 	 * to the link being up.
273 	 */
274 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 	if (!(pcs_miistat & PCS_MIISTAT_LS))
276 		pcs_miistat |=
277 			(readl(gp->regs + PCS_MIISTAT) &
278 			 PCS_MIISTAT_LS);
279 
280 	if (pcs_miistat & PCS_MIISTAT_ANC) {
281 		/* The remote-fault indication is only valid
282 		 * when autoneg has completed.
283 		 */
284 		if (pcs_miistat & PCS_MIISTAT_RF)
285 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 		else
287 			netdev_info(dev, "PCS AutoNEG complete\n");
288 	}
289 
290 	if (pcs_miistat & PCS_MIISTAT_LS) {
291 		netdev_info(dev, "PCS link is now up\n");
292 		netif_carrier_on(gp->dev);
293 	} else {
294 		netdev_info(dev, "PCS link is now down\n");
295 		netif_carrier_off(gp->dev);
296 		/* If this happens and the link timer is not running,
297 		 * reset so we re-negotiate.
298 		 */
299 		if (!timer_pending(&gp->link_timer))
300 			return 1;
301 	}
302 
303 	return 0;
304 }
305 
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307 {
308 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309 
310 	if (netif_msg_intr(gp))
311 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 			gp->dev->name, txmac_stat);
313 
314 	/* Defer timer expiration is quite normal,
315 	 * don't even log the event.
316 	 */
317 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
319 		return 0;
320 
321 	if (txmac_stat & MAC_TXSTAT_URUN) {
322 		netdev_err(dev, "TX MAC xmit underrun\n");
323 		dev->stats.tx_fifo_errors++;
324 	}
325 
326 	if (txmac_stat & MAC_TXSTAT_MPE) {
327 		netdev_err(dev, "TX MAC max packet size error\n");
328 		dev->stats.tx_errors++;
329 	}
330 
331 	/* The rest are all cases of one of the 16-bit TX
332 	 * counters expiring.
333 	 */
334 	if (txmac_stat & MAC_TXSTAT_NCE)
335 		dev->stats.collisions += 0x10000;
336 
337 	if (txmac_stat & MAC_TXSTAT_ECE) {
338 		dev->stats.tx_aborted_errors += 0x10000;
339 		dev->stats.collisions += 0x10000;
340 	}
341 
342 	if (txmac_stat & MAC_TXSTAT_LCE) {
343 		dev->stats.tx_aborted_errors += 0x10000;
344 		dev->stats.collisions += 0x10000;
345 	}
346 
347 	/* We do not keep track of MAC_TXSTAT_FCE and
348 	 * MAC_TXSTAT_PCE events.
349 	 */
350 	return 0;
351 }
352 
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354  * so we do the following.
355  *
356  * If any part of the reset goes wrong, we return 1 and that causes the
357  * whole chip to be reset.
358  */
359 static int gem_rxmac_reset(struct gem *gp)
360 {
361 	struct net_device *dev = gp->dev;
362 	int limit, i;
363 	u64 desc_dma;
364 	u32 val;
365 
366 	/* First, reset & disable MAC RX. */
367 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 	for (limit = 0; limit < 5000; limit++) {
369 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 			break;
371 		udelay(10);
372 	}
373 	if (limit == 5000) {
374 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 		return 1;
376 	}
377 
378 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 	       gp->regs + MAC_RXCFG);
380 	for (limit = 0; limit < 5000; limit++) {
381 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 			break;
383 		udelay(10);
384 	}
385 	if (limit == 5000) {
386 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 		return 1;
388 	}
389 
390 	/* Second, disable RX DMA. */
391 	writel(0, gp->regs + RXDMA_CFG);
392 	for (limit = 0; limit < 5000; limit++) {
393 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 			break;
395 		udelay(10);
396 	}
397 	if (limit == 5000) {
398 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 		return 1;
400 	}
401 
402 	mdelay(5);
403 
404 	/* Execute RX reset command. */
405 	writel(gp->swrst_base | GREG_SWRST_RXRST,
406 	       gp->regs + GREG_SWRST);
407 	for (limit = 0; limit < 5000; limit++) {
408 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 			break;
410 		udelay(10);
411 	}
412 	if (limit == 5000) {
413 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 		return 1;
415 	}
416 
417 	/* Refresh the RX ring. */
418 	for (i = 0; i < RX_RING_SIZE; i++) {
419 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
420 
421 		if (gp->rx_skbs[i] == NULL) {
422 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 			return 1;
424 		}
425 
426 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427 	}
428 	gp->rx_new = gp->rx_old = 0;
429 
430 	/* Now we must reprogram the rest of RX unit. */
431 	desc_dma = (u64) gp->gblock_dvma;
432 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
438 	writel(val, gp->regs + RXDMA_CFG);
439 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 		writel(((5 & RXDMA_BLANK_IPKTS) |
441 			((8 << 12) & RXDMA_BLANK_ITIME)),
442 		       gp->regs + RXDMA_BLANK);
443 	else
444 		writel(((5 & RXDMA_BLANK_IPKTS) |
445 			((4 << 12) & RXDMA_BLANK_ITIME)),
446 		       gp->regs + RXDMA_BLANK);
447 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 	writel(val, gp->regs + RXDMA_PTHRESH);
450 	val = readl(gp->regs + RXDMA_CFG);
451 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 	val = readl(gp->regs + MAC_RXCFG);
454 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455 
456 	return 0;
457 }
458 
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460 {
461 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 	int ret = 0;
463 
464 	if (netif_msg_intr(gp))
465 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 			gp->dev->name, rxmac_stat);
467 
468 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 		u32 smac = readl(gp->regs + MAC_SMACHINE);
470 
471 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 		dev->stats.rx_over_errors++;
473 		dev->stats.rx_fifo_errors++;
474 
475 		ret = gem_rxmac_reset(gp);
476 	}
477 
478 	if (rxmac_stat & MAC_RXSTAT_ACE)
479 		dev->stats.rx_frame_errors += 0x10000;
480 
481 	if (rxmac_stat & MAC_RXSTAT_CCE)
482 		dev->stats.rx_crc_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_LCE)
485 		dev->stats.rx_length_errors += 0x10000;
486 
487 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 	 * events.
489 	 */
490 	return ret;
491 }
492 
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494 {
495 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496 
497 	if (netif_msg_intr(gp))
498 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 			gp->dev->name, mac_cstat);
500 
501 	/* This interrupt is just for pause frame and pause
502 	 * tracking.  It is useful for diagnostics and debug
503 	 * but probably by default we will mask these events.
504 	 */
505 	if (mac_cstat & MAC_CSTAT_PS)
506 		gp->pause_entered++;
507 
508 	if (mac_cstat & MAC_CSTAT_PRCV)
509 		gp->pause_last_time_recvd = (mac_cstat >> 16);
510 
511 	return 0;
512 }
513 
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515 {
516 	u32 mif_status = readl(gp->regs + MIF_STATUS);
517 	u32 reg_val, changed_bits;
518 
519 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 	changed_bits = (mif_status & MIF_STATUS_STAT);
521 
522 	gem_handle_mif_event(gp, reg_val, changed_bits);
523 
524 	return 0;
525 }
526 
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528 {
529 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530 
531 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 		netdev_err(dev, "PCI error [%04x]", pci_estat);
534 
535 		if (pci_estat & GREG_PCIESTAT_BADACK)
536 			pr_cont(" <No ACK64# during ABS64 cycle>");
537 		if (pci_estat & GREG_PCIESTAT_DTRTO)
538 			pr_cont(" <Delayed transaction timeout>");
539 		if (pci_estat & GREG_PCIESTAT_OTHER)
540 			pr_cont(" <other>");
541 		pr_cont("\n");
542 	} else {
543 		pci_estat |= GREG_PCIESTAT_OTHER;
544 		netdev_err(dev, "PCI error\n");
545 	}
546 
547 	if (pci_estat & GREG_PCIESTAT_OTHER) {
548 		u16 pci_cfg_stat;
549 
550 		/* Interrogate PCI config space for the
551 		 * true cause.
552 		 */
553 		pci_read_config_word(gp->pdev, PCI_STATUS,
554 				     &pci_cfg_stat);
555 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
556 			   pci_cfg_stat);
557 		if (pci_cfg_stat & PCI_STATUS_PARITY)
558 			netdev_err(dev, "PCI parity error detected\n");
559 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
560 			netdev_err(dev, "PCI target abort\n");
561 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
562 			netdev_err(dev, "PCI master acks target abort\n");
563 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
564 			netdev_err(dev, "PCI master abort\n");
565 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
566 			netdev_err(dev, "PCI system error SERR#\n");
567 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
568 			netdev_err(dev, "PCI parity error\n");
569 
570 		/* Write the error bits back to clear them. */
571 		pci_cfg_stat &= (PCI_STATUS_PARITY |
572 				 PCI_STATUS_SIG_TARGET_ABORT |
573 				 PCI_STATUS_REC_TARGET_ABORT |
574 				 PCI_STATUS_REC_MASTER_ABORT |
575 				 PCI_STATUS_SIG_SYSTEM_ERROR |
576 				 PCI_STATUS_DETECTED_PARITY);
577 		pci_write_config_word(gp->pdev,
578 				      PCI_STATUS, pci_cfg_stat);
579 	}
580 
581 	/* For all PCI errors, we should reset the chip. */
582 	return 1;
583 }
584 
585 /* All non-normal interrupt conditions get serviced here.
586  * Returns non-zero if we should just exit the interrupt
587  * handler right now (ie. if we reset the card which invalidates
588  * all of the other original irq status bits).
589  */
590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
591 {
592 	if (gem_status & GREG_STAT_RXNOBUF) {
593 		/* Frame arrived, no free RX buffers available. */
594 		if (netif_msg_rx_err(gp))
595 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
596 				gp->dev->name);
597 		dev->stats.rx_dropped++;
598 	}
599 
600 	if (gem_status & GREG_STAT_RXTAGERR) {
601 		/* corrupt RX tag framing */
602 		if (netif_msg_rx_err(gp))
603 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
604 				gp->dev->name);
605 		dev->stats.rx_errors++;
606 
607 		return 1;
608 	}
609 
610 	if (gem_status & GREG_STAT_PCS) {
611 		if (gem_pcs_interrupt(dev, gp, gem_status))
612 			return 1;
613 	}
614 
615 	if (gem_status & GREG_STAT_TXMAC) {
616 		if (gem_txmac_interrupt(dev, gp, gem_status))
617 			return 1;
618 	}
619 
620 	if (gem_status & GREG_STAT_RXMAC) {
621 		if (gem_rxmac_interrupt(dev, gp, gem_status))
622 			return 1;
623 	}
624 
625 	if (gem_status & GREG_STAT_MAC) {
626 		if (gem_mac_interrupt(dev, gp, gem_status))
627 			return 1;
628 	}
629 
630 	if (gem_status & GREG_STAT_MIF) {
631 		if (gem_mif_interrupt(dev, gp, gem_status))
632 			return 1;
633 	}
634 
635 	if (gem_status & GREG_STAT_PCIERR) {
636 		if (gem_pci_interrupt(dev, gp, gem_status))
637 			return 1;
638 	}
639 
640 	return 0;
641 }
642 
643 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
644 {
645 	int entry, limit;
646 
647 	entry = gp->tx_old;
648 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
649 	while (entry != limit) {
650 		struct sk_buff *skb;
651 		struct gem_txd *txd;
652 		dma_addr_t dma_addr;
653 		u32 dma_len;
654 		int frag;
655 
656 		if (netif_msg_tx_done(gp))
657 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
658 				gp->dev->name, entry);
659 		skb = gp->tx_skbs[entry];
660 		if (skb_shinfo(skb)->nr_frags) {
661 			int last = entry + skb_shinfo(skb)->nr_frags;
662 			int walk = entry;
663 			int incomplete = 0;
664 
665 			last &= (TX_RING_SIZE - 1);
666 			for (;;) {
667 				walk = NEXT_TX(walk);
668 				if (walk == limit)
669 					incomplete = 1;
670 				if (walk == last)
671 					break;
672 			}
673 			if (incomplete)
674 				break;
675 		}
676 		gp->tx_skbs[entry] = NULL;
677 		dev->stats.tx_bytes += skb->len;
678 
679 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
680 			txd = &gp->init_block->txd[entry];
681 
682 			dma_addr = le64_to_cpu(txd->buffer);
683 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
684 
685 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
686 			entry = NEXT_TX(entry);
687 		}
688 
689 		dev->stats.tx_packets++;
690 		dev_consume_skb_any(skb);
691 	}
692 	gp->tx_old = entry;
693 
694 	/* Need to make the tx_old update visible to gem_start_xmit()
695 	 * before checking for netif_queue_stopped().  Without the
696 	 * memory barrier, there is a small possibility that gem_start_xmit()
697 	 * will miss it and cause the queue to be stopped forever.
698 	 */
699 	smp_mb();
700 
701 	if (unlikely(netif_queue_stopped(dev) &&
702 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
703 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
704 
705 		__netif_tx_lock(txq, smp_processor_id());
706 		if (netif_queue_stopped(dev) &&
707 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
708 			netif_wake_queue(dev);
709 		__netif_tx_unlock(txq);
710 	}
711 }
712 
713 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
714 {
715 	int cluster_start, curr, count, kick;
716 
717 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
718 	count = 0;
719 	kick = -1;
720 	dma_wmb();
721 	while (curr != limit) {
722 		curr = NEXT_RX(curr);
723 		if (++count == 4) {
724 			struct gem_rxd *rxd =
725 				&gp->init_block->rxd[cluster_start];
726 			for (;;) {
727 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
728 				rxd++;
729 				cluster_start = NEXT_RX(cluster_start);
730 				if (cluster_start == curr)
731 					break;
732 			}
733 			kick = curr;
734 			count = 0;
735 		}
736 	}
737 	if (kick >= 0) {
738 		mb();
739 		writel(kick, gp->regs + RXDMA_KICK);
740 	}
741 }
742 
743 #define ALIGNED_RX_SKB_ADDR(addr) \
744         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
745 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
746 						gfp_t gfp_flags)
747 {
748 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
749 
750 	if (likely(skb)) {
751 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
752 		skb_reserve(skb, offset);
753 	}
754 	return skb;
755 }
756 
757 static int gem_rx(struct gem *gp, int work_to_do)
758 {
759 	struct net_device *dev = gp->dev;
760 	int entry, drops, work_done = 0;
761 	u32 done;
762 	__sum16 csum;
763 
764 	if (netif_msg_rx_status(gp))
765 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
766 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767 
768 	entry = gp->rx_new;
769 	drops = 0;
770 	done = readl(gp->regs + RXDMA_DONE);
771 	for (;;) {
772 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
773 		struct sk_buff *skb;
774 		u64 status = le64_to_cpu(rxd->status_word);
775 		dma_addr_t dma_addr;
776 		int len;
777 
778 		if ((status & RXDCTRL_OWN) != 0)
779 			break;
780 
781 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
782 			break;
783 
784 		/* When writing back RX descriptor, GEM writes status
785 		 * then buffer address, possibly in separate transactions.
786 		 * If we don't wait for the chip to write both, we could
787 		 * post a new buffer to this descriptor then have GEM spam
788 		 * on the buffer address.  We sync on the RX completion
789 		 * register to prevent this from happening.
790 		 */
791 		if (entry == done) {
792 			done = readl(gp->regs + RXDMA_DONE);
793 			if (entry == done)
794 				break;
795 		}
796 
797 		/* We can now account for the work we're about to do */
798 		work_done++;
799 
800 		skb = gp->rx_skbs[entry];
801 
802 		len = (status & RXDCTRL_BUFSZ) >> 16;
803 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
804 			dev->stats.rx_errors++;
805 			if (len < ETH_ZLEN)
806 				dev->stats.rx_length_errors++;
807 			if (len & RXDCTRL_BAD)
808 				dev->stats.rx_crc_errors++;
809 
810 			/* We'll just return it to GEM. */
811 		drop_it:
812 			dev->stats.rx_dropped++;
813 			goto next;
814 		}
815 
816 		dma_addr = le64_to_cpu(rxd->buffer);
817 		if (len > RX_COPY_THRESHOLD) {
818 			struct sk_buff *new_skb;
819 
820 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
821 			if (new_skb == NULL) {
822 				drops++;
823 				goto drop_it;
824 			}
825 			pci_unmap_page(gp->pdev, dma_addr,
826 				       RX_BUF_ALLOC_SIZE(gp),
827 				       PCI_DMA_FROMDEVICE);
828 			gp->rx_skbs[entry] = new_skb;
829 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
830 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
831 							       virt_to_page(new_skb->data),
832 							       offset_in_page(new_skb->data),
833 							       RX_BUF_ALLOC_SIZE(gp),
834 							       PCI_DMA_FROMDEVICE));
835 			skb_reserve(new_skb, RX_OFFSET);
836 
837 			/* Trim the original skb for the netif. */
838 			skb_trim(skb, len);
839 		} else {
840 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
841 
842 			if (copy_skb == NULL) {
843 				drops++;
844 				goto drop_it;
845 			}
846 
847 			skb_reserve(copy_skb, 2);
848 			skb_put(copy_skb, len);
849 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850 			skb_copy_from_linear_data(skb, copy_skb->data, len);
851 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 
853 			/* We'll reuse the original ring buffer. */
854 			skb = copy_skb;
855 		}
856 
857 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
858 		skb->csum = csum_unfold(csum);
859 		skb->ip_summed = CHECKSUM_COMPLETE;
860 		skb->protocol = eth_type_trans(skb, gp->dev);
861 
862 		napi_gro_receive(&gp->napi, skb);
863 
864 		dev->stats.rx_packets++;
865 		dev->stats.rx_bytes += len;
866 
867 	next:
868 		entry = NEXT_RX(entry);
869 	}
870 
871 	gem_post_rxds(gp, entry);
872 
873 	gp->rx_new = entry;
874 
875 	if (drops)
876 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
877 
878 	return work_done;
879 }
880 
881 static int gem_poll(struct napi_struct *napi, int budget)
882 {
883 	struct gem *gp = container_of(napi, struct gem, napi);
884 	struct net_device *dev = gp->dev;
885 	int work_done;
886 
887 	work_done = 0;
888 	do {
889 		/* Handle anomalies */
890 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
891 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
892 			int reset;
893 
894 			/* We run the abnormal interrupt handling code with
895 			 * the Tx lock. It only resets the Rx portion of the
896 			 * chip, but we need to guard it against DMA being
897 			 * restarted by the link poll timer
898 			 */
899 			__netif_tx_lock(txq, smp_processor_id());
900 			reset = gem_abnormal_irq(dev, gp, gp->status);
901 			__netif_tx_unlock(txq);
902 			if (reset) {
903 				gem_schedule_reset(gp);
904 				napi_complete(napi);
905 				return work_done;
906 			}
907 		}
908 
909 		/* Run TX completion thread */
910 		gem_tx(dev, gp, gp->status);
911 
912 		/* Run RX thread. We don't use any locking here,
913 		 * code willing to do bad things - like cleaning the
914 		 * rx ring - must call napi_disable(), which
915 		 * schedule_timeout()'s if polling is already disabled.
916 		 */
917 		work_done += gem_rx(gp, budget - work_done);
918 
919 		if (work_done >= budget)
920 			return work_done;
921 
922 		gp->status = readl(gp->regs + GREG_STAT);
923 	} while (gp->status & GREG_STAT_NAPI);
924 
925 	napi_complete(napi);
926 	gem_enable_ints(gp);
927 
928 	return work_done;
929 }
930 
931 static irqreturn_t gem_interrupt(int irq, void *dev_id)
932 {
933 	struct net_device *dev = dev_id;
934 	struct gem *gp = netdev_priv(dev);
935 
936 	if (napi_schedule_prep(&gp->napi)) {
937 		u32 gem_status = readl(gp->regs + GREG_STAT);
938 
939 		if (unlikely(gem_status == 0)) {
940 			napi_enable(&gp->napi);
941 			return IRQ_NONE;
942 		}
943 		if (netif_msg_intr(gp))
944 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
945 			       gp->dev->name, gem_status);
946 
947 		gp->status = gem_status;
948 		gem_disable_ints(gp);
949 		__napi_schedule(&gp->napi);
950 	}
951 
952 	/* If polling was disabled at the time we received that
953 	 * interrupt, we may return IRQ_HANDLED here while we
954 	 * should return IRQ_NONE. No big deal...
955 	 */
956 	return IRQ_HANDLED;
957 }
958 
959 #ifdef CONFIG_NET_POLL_CONTROLLER
960 static void gem_poll_controller(struct net_device *dev)
961 {
962 	struct gem *gp = netdev_priv(dev);
963 
964 	disable_irq(gp->pdev->irq);
965 	gem_interrupt(gp->pdev->irq, dev);
966 	enable_irq(gp->pdev->irq);
967 }
968 #endif
969 
970 static void gem_tx_timeout(struct net_device *dev)
971 {
972 	struct gem *gp = netdev_priv(dev);
973 
974 	netdev_err(dev, "transmit timed out, resetting\n");
975 
976 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
977 		   readl(gp->regs + TXDMA_CFG),
978 		   readl(gp->regs + MAC_TXSTAT),
979 		   readl(gp->regs + MAC_TXCFG));
980 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
981 		   readl(gp->regs + RXDMA_CFG),
982 		   readl(gp->regs + MAC_RXSTAT),
983 		   readl(gp->regs + MAC_RXCFG));
984 
985 	gem_schedule_reset(gp);
986 }
987 
988 static __inline__ int gem_intme(int entry)
989 {
990 	/* Algorithm: IRQ every 1/2 of descriptors. */
991 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
992 		return 1;
993 
994 	return 0;
995 }
996 
997 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
998 				  struct net_device *dev)
999 {
1000 	struct gem *gp = netdev_priv(dev);
1001 	int entry;
1002 	u64 ctrl;
1003 
1004 	ctrl = 0;
1005 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1006 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1007 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1008 
1009 		ctrl = (TXDCTRL_CENAB |
1010 			(csum_start_off << 15) |
1011 			(csum_stuff_off << 21));
1012 	}
1013 
1014 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1015 		/* This is a hard error, log it. */
1016 		if (!netif_queue_stopped(dev)) {
1017 			netif_stop_queue(dev);
1018 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1019 		}
1020 		return NETDEV_TX_BUSY;
1021 	}
1022 
1023 	entry = gp->tx_new;
1024 	gp->tx_skbs[entry] = skb;
1025 
1026 	if (skb_shinfo(skb)->nr_frags == 0) {
1027 		struct gem_txd *txd = &gp->init_block->txd[entry];
1028 		dma_addr_t mapping;
1029 		u32 len;
1030 
1031 		len = skb->len;
1032 		mapping = pci_map_page(gp->pdev,
1033 				       virt_to_page(skb->data),
1034 				       offset_in_page(skb->data),
1035 				       len, PCI_DMA_TODEVICE);
1036 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1037 		if (gem_intme(entry))
1038 			ctrl |= TXDCTRL_INTME;
1039 		txd->buffer = cpu_to_le64(mapping);
1040 		dma_wmb();
1041 		txd->control_word = cpu_to_le64(ctrl);
1042 		entry = NEXT_TX(entry);
1043 	} else {
1044 		struct gem_txd *txd;
1045 		u32 first_len;
1046 		u64 intme;
1047 		dma_addr_t first_mapping;
1048 		int frag, first_entry = entry;
1049 
1050 		intme = 0;
1051 		if (gem_intme(entry))
1052 			intme |= TXDCTRL_INTME;
1053 
1054 		/* We must give this initial chunk to the device last.
1055 		 * Otherwise we could race with the device.
1056 		 */
1057 		first_len = skb_headlen(skb);
1058 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1059 					     offset_in_page(skb->data),
1060 					     first_len, PCI_DMA_TODEVICE);
1061 		entry = NEXT_TX(entry);
1062 
1063 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1064 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1065 			u32 len;
1066 			dma_addr_t mapping;
1067 			u64 this_ctrl;
1068 
1069 			len = skb_frag_size(this_frag);
1070 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1071 						   0, len, DMA_TO_DEVICE);
1072 			this_ctrl = ctrl;
1073 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1074 				this_ctrl |= TXDCTRL_EOF;
1075 
1076 			txd = &gp->init_block->txd[entry];
1077 			txd->buffer = cpu_to_le64(mapping);
1078 			dma_wmb();
1079 			txd->control_word = cpu_to_le64(this_ctrl | len);
1080 
1081 			if (gem_intme(entry))
1082 				intme |= TXDCTRL_INTME;
1083 
1084 			entry = NEXT_TX(entry);
1085 		}
1086 		txd = &gp->init_block->txd[first_entry];
1087 		txd->buffer = cpu_to_le64(first_mapping);
1088 		dma_wmb();
1089 		txd->control_word =
1090 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1091 	}
1092 
1093 	gp->tx_new = entry;
1094 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1095 		netif_stop_queue(dev);
1096 
1097 		/* netif_stop_queue() must be done before checking
1098 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1099 		 * in gem_tx(), we update tx_old before checking for
1100 		 * netif_queue_stopped().
1101 		 */
1102 		smp_mb();
1103 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1104 			netif_wake_queue(dev);
1105 	}
1106 	if (netif_msg_tx_queued(gp))
1107 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1108 		       dev->name, entry, skb->len);
1109 	mb();
1110 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1111 
1112 	return NETDEV_TX_OK;
1113 }
1114 
1115 static void gem_pcs_reset(struct gem *gp)
1116 {
1117 	int limit;
1118 	u32 val;
1119 
1120 	/* Reset PCS unit. */
1121 	val = readl(gp->regs + PCS_MIICTRL);
1122 	val |= PCS_MIICTRL_RST;
1123 	writel(val, gp->regs + PCS_MIICTRL);
1124 
1125 	limit = 32;
1126 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1127 		udelay(100);
1128 		if (limit-- <= 0)
1129 			break;
1130 	}
1131 	if (limit < 0)
1132 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1133 }
1134 
1135 static void gem_pcs_reinit_adv(struct gem *gp)
1136 {
1137 	u32 val;
1138 
1139 	/* Make sure PCS is disabled while changing advertisement
1140 	 * configuration.
1141 	 */
1142 	val = readl(gp->regs + PCS_CFG);
1143 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1144 	writel(val, gp->regs + PCS_CFG);
1145 
1146 	/* Advertise all capabilities except asymmetric
1147 	 * pause.
1148 	 */
1149 	val = readl(gp->regs + PCS_MIIADV);
1150 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1151 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1152 	writel(val, gp->regs + PCS_MIIADV);
1153 
1154 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1155 	 * and re-enable PCS.
1156 	 */
1157 	val = readl(gp->regs + PCS_MIICTRL);
1158 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1159 	val &= ~PCS_MIICTRL_WB;
1160 	writel(val, gp->regs + PCS_MIICTRL);
1161 
1162 	val = readl(gp->regs + PCS_CFG);
1163 	val |= PCS_CFG_ENABLE;
1164 	writel(val, gp->regs + PCS_CFG);
1165 
1166 	/* Make sure serialink loopback is off.  The meaning
1167 	 * of this bit is logically inverted based upon whether
1168 	 * you are in Serialink or SERDES mode.
1169 	 */
1170 	val = readl(gp->regs + PCS_SCTRL);
1171 	if (gp->phy_type == phy_serialink)
1172 		val &= ~PCS_SCTRL_LOOP;
1173 	else
1174 		val |= PCS_SCTRL_LOOP;
1175 	writel(val, gp->regs + PCS_SCTRL);
1176 }
1177 
1178 #define STOP_TRIES 32
1179 
1180 static void gem_reset(struct gem *gp)
1181 {
1182 	int limit;
1183 	u32 val;
1184 
1185 	/* Make sure we won't get any more interrupts */
1186 	writel(0xffffffff, gp->regs + GREG_IMASK);
1187 
1188 	/* Reset the chip */
1189 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1190 	       gp->regs + GREG_SWRST);
1191 
1192 	limit = STOP_TRIES;
1193 
1194 	do {
1195 		udelay(20);
1196 		val = readl(gp->regs + GREG_SWRST);
1197 		if (limit-- <= 0)
1198 			break;
1199 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1200 
1201 	if (limit < 0)
1202 		netdev_err(gp->dev, "SW reset is ghetto\n");
1203 
1204 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1205 		gem_pcs_reinit_adv(gp);
1206 }
1207 
1208 static void gem_start_dma(struct gem *gp)
1209 {
1210 	u32 val;
1211 
1212 	/* We are ready to rock, turn everything on. */
1213 	val = readl(gp->regs + TXDMA_CFG);
1214 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1215 	val = readl(gp->regs + RXDMA_CFG);
1216 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1217 	val = readl(gp->regs + MAC_TXCFG);
1218 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1219 	val = readl(gp->regs + MAC_RXCFG);
1220 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1221 
1222 	(void) readl(gp->regs + MAC_RXCFG);
1223 	udelay(100);
1224 
1225 	gem_enable_ints(gp);
1226 
1227 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1228 }
1229 
1230 /* DMA won't be actually stopped before about 4ms tho ...
1231  */
1232 static void gem_stop_dma(struct gem *gp)
1233 {
1234 	u32 val;
1235 
1236 	/* We are done rocking, turn everything off. */
1237 	val = readl(gp->regs + TXDMA_CFG);
1238 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1239 	val = readl(gp->regs + RXDMA_CFG);
1240 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1241 	val = readl(gp->regs + MAC_TXCFG);
1242 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1243 	val = readl(gp->regs + MAC_RXCFG);
1244 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1245 
1246 	(void) readl(gp->regs + MAC_RXCFG);
1247 
1248 	/* Need to wait a bit ... done by the caller */
1249 }
1250 
1251 
1252 // XXX dbl check what that function should do when called on PCS PHY
1253 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1254 {
1255 	u32 advertise, features;
1256 	int autoneg;
1257 	int speed;
1258 	int duplex;
1259 
1260 	if (gp->phy_type != phy_mii_mdio0 &&
1261      	    gp->phy_type != phy_mii_mdio1)
1262      	    	goto non_mii;
1263 
1264 	/* Setup advertise */
1265 	if (found_mii_phy(gp))
1266 		features = gp->phy_mii.def->features;
1267 	else
1268 		features = 0;
1269 
1270 	advertise = features & ADVERTISE_MASK;
1271 	if (gp->phy_mii.advertising != 0)
1272 		advertise &= gp->phy_mii.advertising;
1273 
1274 	autoneg = gp->want_autoneg;
1275 	speed = gp->phy_mii.speed;
1276 	duplex = gp->phy_mii.duplex;
1277 
1278 	/* Setup link parameters */
1279 	if (!ep)
1280 		goto start_aneg;
1281 	if (ep->autoneg == AUTONEG_ENABLE) {
1282 		advertise = ep->advertising;
1283 		autoneg = 1;
1284 	} else {
1285 		autoneg = 0;
1286 		speed = ethtool_cmd_speed(ep);
1287 		duplex = ep->duplex;
1288 	}
1289 
1290 start_aneg:
1291 	/* Sanitize settings based on PHY capabilities */
1292 	if ((features & SUPPORTED_Autoneg) == 0)
1293 		autoneg = 0;
1294 	if (speed == SPEED_1000 &&
1295 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1296 		speed = SPEED_100;
1297 	if (speed == SPEED_100 &&
1298 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1299 		speed = SPEED_10;
1300 	if (duplex == DUPLEX_FULL &&
1301 	    !(features & (SUPPORTED_1000baseT_Full |
1302 	    		  SUPPORTED_100baseT_Full |
1303 	    		  SUPPORTED_10baseT_Full)))
1304 	    	duplex = DUPLEX_HALF;
1305 	if (speed == 0)
1306 		speed = SPEED_10;
1307 
1308 	/* If we are asleep, we don't try to actually setup the PHY, we
1309 	 * just store the settings
1310 	 */
1311 	if (!netif_device_present(gp->dev)) {
1312 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313 		gp->phy_mii.speed = speed;
1314 		gp->phy_mii.duplex = duplex;
1315 		return;
1316 	}
1317 
1318 	/* Configure PHY & start aneg */
1319 	gp->want_autoneg = autoneg;
1320 	if (autoneg) {
1321 		if (found_mii_phy(gp))
1322 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323 		gp->lstate = link_aneg;
1324 	} else {
1325 		if (found_mii_phy(gp))
1326 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327 		gp->lstate = link_force_ok;
1328 	}
1329 
1330 non_mii:
1331 	gp->timer_ticks = 0;
1332 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1333 }
1334 
1335 /* A link-up condition has occurred, initialize and enable the
1336  * rest of the chip.
1337  */
1338 static int gem_set_link_modes(struct gem *gp)
1339 {
1340 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341 	int full_duplex, speed, pause;
1342 	u32 val;
1343 
1344 	full_duplex = 0;
1345 	speed = SPEED_10;
1346 	pause = 0;
1347 
1348 	if (found_mii_phy(gp)) {
1349 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1350 	    		return 1;
1351 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352 		speed = gp->phy_mii.speed;
1353 		pause = gp->phy_mii.pause;
1354 	} else if (gp->phy_type == phy_serialink ||
1355 	    	   gp->phy_type == phy_serdes) {
1356 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1357 
1358 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1359 			full_duplex = 1;
1360 		speed = SPEED_1000;
1361 	}
1362 
1363 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364 		   speed, (full_duplex ? "full" : "half"));
1365 
1366 
1367 	/* We take the tx queue lock to avoid collisions between
1368 	 * this code, the tx path and the NAPI-driven error path
1369 	 */
1370 	__netif_tx_lock(txq, smp_processor_id());
1371 
1372 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1373 	if (full_duplex) {
1374 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1375 	} else {
1376 		/* MAC_TXCFG_NBO must be zero. */
1377 	}
1378 	writel(val, gp->regs + MAC_TXCFG);
1379 
1380 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1381 	if (!full_duplex &&
1382 	    (gp->phy_type == phy_mii_mdio0 ||
1383 	     gp->phy_type == phy_mii_mdio1)) {
1384 		val |= MAC_XIFCFG_DISE;
1385 	} else if (full_duplex) {
1386 		val |= MAC_XIFCFG_FLED;
1387 	}
1388 
1389 	if (speed == SPEED_1000)
1390 		val |= (MAC_XIFCFG_GMII);
1391 
1392 	writel(val, gp->regs + MAC_XIFCFG);
1393 
1394 	/* If gigabit and half-duplex, enable carrier extension
1395 	 * mode.  Else, disable it.
1396 	 */
1397 	if (speed == SPEED_1000 && !full_duplex) {
1398 		val = readl(gp->regs + MAC_TXCFG);
1399 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1400 
1401 		val = readl(gp->regs + MAC_RXCFG);
1402 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1403 	} else {
1404 		val = readl(gp->regs + MAC_TXCFG);
1405 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406 
1407 		val = readl(gp->regs + MAC_RXCFG);
1408 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409 	}
1410 
1411 	if (gp->phy_type == phy_serialink ||
1412 	    gp->phy_type == phy_serdes) {
1413  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1414 
1415 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1416 			pause = 1;
1417 	}
1418 
1419 	if (!full_duplex)
1420 		writel(512, gp->regs + MAC_STIME);
1421 	else
1422 		writel(64, gp->regs + MAC_STIME);
1423 	val = readl(gp->regs + MAC_MCCFG);
1424 	if (pause)
1425 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1426 	else
1427 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428 	writel(val, gp->regs + MAC_MCCFG);
1429 
1430 	gem_start_dma(gp);
1431 
1432 	__netif_tx_unlock(txq);
1433 
1434 	if (netif_msg_link(gp)) {
1435 		if (pause) {
1436 			netdev_info(gp->dev,
1437 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1438 				    gp->rx_fifo_sz,
1439 				    gp->rx_pause_off,
1440 				    gp->rx_pause_on);
1441 		} else {
1442 			netdev_info(gp->dev, "Pause is disabled\n");
1443 		}
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static int gem_mdio_link_not_up(struct gem *gp)
1450 {
1451 	switch (gp->lstate) {
1452 	case link_force_ret:
1453 		netif_info(gp, link, gp->dev,
1454 			   "Autoneg failed again, keeping forced mode\n");
1455 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456 			gp->last_forced_speed, DUPLEX_HALF);
1457 		gp->timer_ticks = 5;
1458 		gp->lstate = link_force_ok;
1459 		return 0;
1460 	case link_aneg:
1461 		/* We try forced modes after a failed aneg only on PHYs that don't
1462 		 * have "magic_aneg" bit set, which means they internally do the
1463 		 * while forced-mode thingy. On these, we just restart aneg
1464 		 */
1465 		if (gp->phy_mii.def->magic_aneg)
1466 			return 1;
1467 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468 		/* Try forced modes. */
1469 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1470 			DUPLEX_HALF);
1471 		gp->timer_ticks = 5;
1472 		gp->lstate = link_force_try;
1473 		return 0;
1474 	case link_force_try:
1475 		/* Downgrade from 100 to 10 Mbps if necessary.
1476 		 * If already at 10Mbps, warn user about the
1477 		 * situation every 10 ticks.
1478 		 */
1479 		if (gp->phy_mii.speed == SPEED_100) {
1480 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1481 				DUPLEX_HALF);
1482 			gp->timer_ticks = 5;
1483 			netif_info(gp, link, gp->dev,
1484 				   "switching to forced 10bt\n");
1485 			return 0;
1486 		} else
1487 			return 1;
1488 	default:
1489 		return 0;
1490 	}
1491 }
1492 
1493 static void gem_link_timer(unsigned long data)
1494 {
1495 	struct gem *gp = (struct gem *) data;
1496 	struct net_device *dev = gp->dev;
1497 	int restart_aneg = 0;
1498 
1499 	/* There's no point doing anything if we're going to be reset */
1500 	if (gp->reset_task_pending)
1501 		return;
1502 
1503 	if (gp->phy_type == phy_serialink ||
1504 	    gp->phy_type == phy_serdes) {
1505 		u32 val = readl(gp->regs + PCS_MIISTAT);
1506 
1507 		if (!(val & PCS_MIISTAT_LS))
1508 			val = readl(gp->regs + PCS_MIISTAT);
1509 
1510 		if ((val & PCS_MIISTAT_LS) != 0) {
1511 			if (gp->lstate == link_up)
1512 				goto restart;
1513 
1514 			gp->lstate = link_up;
1515 			netif_carrier_on(dev);
1516 			(void)gem_set_link_modes(gp);
1517 		}
1518 		goto restart;
1519 	}
1520 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521 		/* Ok, here we got a link. If we had it due to a forced
1522 		 * fallback, and we were configured for autoneg, we do
1523 		 * retry a short autoneg pass. If you know your hub is
1524 		 * broken, use ethtool ;)
1525 		 */
1526 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1527 			gp->lstate = link_force_ret;
1528 			gp->last_forced_speed = gp->phy_mii.speed;
1529 			gp->timer_ticks = 5;
1530 			if (netif_msg_link(gp))
1531 				netdev_info(dev,
1532 					    "Got link after fallback, retrying autoneg once...\n");
1533 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534 		} else if (gp->lstate != link_up) {
1535 			gp->lstate = link_up;
1536 			netif_carrier_on(dev);
1537 			if (gem_set_link_modes(gp))
1538 				restart_aneg = 1;
1539 		}
1540 	} else {
1541 		/* If the link was previously up, we restart the
1542 		 * whole process
1543 		 */
1544 		if (gp->lstate == link_up) {
1545 			gp->lstate = link_down;
1546 			netif_info(gp, link, dev, "Link down\n");
1547 			netif_carrier_off(dev);
1548 			gem_schedule_reset(gp);
1549 			/* The reset task will restart the timer */
1550 			return;
1551 		} else if (++gp->timer_ticks > 10) {
1552 			if (found_mii_phy(gp))
1553 				restart_aneg = gem_mdio_link_not_up(gp);
1554 			else
1555 				restart_aneg = 1;
1556 		}
1557 	}
1558 	if (restart_aneg) {
1559 		gem_begin_auto_negotiation(gp, NULL);
1560 		return;
1561 	}
1562 restart:
1563 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1564 }
1565 
1566 static void gem_clean_rings(struct gem *gp)
1567 {
1568 	struct gem_init_block *gb = gp->init_block;
1569 	struct sk_buff *skb;
1570 	int i;
1571 	dma_addr_t dma_addr;
1572 
1573 	for (i = 0; i < RX_RING_SIZE; i++) {
1574 		struct gem_rxd *rxd;
1575 
1576 		rxd = &gb->rxd[i];
1577 		if (gp->rx_skbs[i] != NULL) {
1578 			skb = gp->rx_skbs[i];
1579 			dma_addr = le64_to_cpu(rxd->buffer);
1580 			pci_unmap_page(gp->pdev, dma_addr,
1581 				       RX_BUF_ALLOC_SIZE(gp),
1582 				       PCI_DMA_FROMDEVICE);
1583 			dev_kfree_skb_any(skb);
1584 			gp->rx_skbs[i] = NULL;
1585 		}
1586 		rxd->status_word = 0;
1587 		dma_wmb();
1588 		rxd->buffer = 0;
1589 	}
1590 
1591 	for (i = 0; i < TX_RING_SIZE; i++) {
1592 		if (gp->tx_skbs[i] != NULL) {
1593 			struct gem_txd *txd;
1594 			int frag;
1595 
1596 			skb = gp->tx_skbs[i];
1597 			gp->tx_skbs[i] = NULL;
1598 
1599 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600 				int ent = i & (TX_RING_SIZE - 1);
1601 
1602 				txd = &gb->txd[ent];
1603 				dma_addr = le64_to_cpu(txd->buffer);
1604 				pci_unmap_page(gp->pdev, dma_addr,
1605 					       le64_to_cpu(txd->control_word) &
1606 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1607 
1608 				if (frag != skb_shinfo(skb)->nr_frags)
1609 					i++;
1610 			}
1611 			dev_kfree_skb_any(skb);
1612 		}
1613 	}
1614 }
1615 
1616 static void gem_init_rings(struct gem *gp)
1617 {
1618 	struct gem_init_block *gb = gp->init_block;
1619 	struct net_device *dev = gp->dev;
1620 	int i;
1621 	dma_addr_t dma_addr;
1622 
1623 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1624 
1625 	gem_clean_rings(gp);
1626 
1627 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628 			    (unsigned)VLAN_ETH_FRAME_LEN);
1629 
1630 	for (i = 0; i < RX_RING_SIZE; i++) {
1631 		struct sk_buff *skb;
1632 		struct gem_rxd *rxd = &gb->rxd[i];
1633 
1634 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1635 		if (!skb) {
1636 			rxd->buffer = 0;
1637 			rxd->status_word = 0;
1638 			continue;
1639 		}
1640 
1641 		gp->rx_skbs[i] = skb;
1642 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643 		dma_addr = pci_map_page(gp->pdev,
1644 					virt_to_page(skb->data),
1645 					offset_in_page(skb->data),
1646 					RX_BUF_ALLOC_SIZE(gp),
1647 					PCI_DMA_FROMDEVICE);
1648 		rxd->buffer = cpu_to_le64(dma_addr);
1649 		dma_wmb();
1650 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651 		skb_reserve(skb, RX_OFFSET);
1652 	}
1653 
1654 	for (i = 0; i < TX_RING_SIZE; i++) {
1655 		struct gem_txd *txd = &gb->txd[i];
1656 
1657 		txd->control_word = 0;
1658 		dma_wmb();
1659 		txd->buffer = 0;
1660 	}
1661 	wmb();
1662 }
1663 
1664 /* Init PHY interface and start link poll state machine */
1665 static void gem_init_phy(struct gem *gp)
1666 {
1667 	u32 mifcfg;
1668 
1669 	/* Revert MIF CFG setting done on stop_phy */
1670 	mifcfg = readl(gp->regs + MIF_CFG);
1671 	mifcfg &= ~MIF_CFG_BBMODE;
1672 	writel(mifcfg, gp->regs + MIF_CFG);
1673 
1674 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1675 		int i;
1676 
1677 		/* Those delay sucks, the HW seem to love them though, I'll
1678 		 * serisouly consider breaking some locks here to be able
1679 		 * to schedule instead
1680 		 */
1681 		for (i = 0; i < 3; i++) {
1682 #ifdef CONFIG_PPC_PMAC
1683 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1684 			msleep(20);
1685 #endif
1686 			/* Some PHYs used by apple have problem getting back to us,
1687 			 * we do an additional reset here
1688 			 */
1689 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1690 			msleep(20);
1691 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1692 				break;
1693 			if (i == 2)
1694 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695 		}
1696 	}
1697 
1698 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1700 		u32 val;
1701 
1702 		/* Init datapath mode register. */
1703 		if (gp->phy_type == phy_mii_mdio0 ||
1704 		    gp->phy_type == phy_mii_mdio1) {
1705 			val = PCS_DMODE_MGM;
1706 		} else if (gp->phy_type == phy_serialink) {
1707 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1708 		} else {
1709 			val = PCS_DMODE_ESM;
1710 		}
1711 
1712 		writel(val, gp->regs + PCS_DMODE);
1713 	}
1714 
1715 	if (gp->phy_type == phy_mii_mdio0 ||
1716 	    gp->phy_type == phy_mii_mdio1) {
1717 		/* Reset and detect MII PHY */
1718 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1719 
1720 		/* Init PHY */
1721 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1723 	} else {
1724 		gem_pcs_reset(gp);
1725 		gem_pcs_reinit_adv(gp);
1726 	}
1727 
1728 	/* Default aneg parameters */
1729 	gp->timer_ticks = 0;
1730 	gp->lstate = link_down;
1731 	netif_carrier_off(gp->dev);
1732 
1733 	/* Print things out */
1734 	if (gp->phy_type == phy_mii_mdio0 ||
1735 	    gp->phy_type == phy_mii_mdio1)
1736 		netdev_info(gp->dev, "Found %s PHY\n",
1737 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1738 
1739 	gem_begin_auto_negotiation(gp, NULL);
1740 }
1741 
1742 static void gem_init_dma(struct gem *gp)
1743 {
1744 	u64 desc_dma = (u64) gp->gblock_dvma;
1745 	u32 val;
1746 
1747 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748 	writel(val, gp->regs + TXDMA_CFG);
1749 
1750 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1753 
1754 	writel(0, gp->regs + TXDMA_KICK);
1755 
1756 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1758 	writel(val, gp->regs + RXDMA_CFG);
1759 
1760 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1762 
1763 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1764 
1765 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767 	writel(val, gp->regs + RXDMA_PTHRESH);
1768 
1769 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770 		writel(((5 & RXDMA_BLANK_IPKTS) |
1771 			((8 << 12) & RXDMA_BLANK_ITIME)),
1772 		       gp->regs + RXDMA_BLANK);
1773 	else
1774 		writel(((5 & RXDMA_BLANK_IPKTS) |
1775 			((4 << 12) & RXDMA_BLANK_ITIME)),
1776 		       gp->regs + RXDMA_BLANK);
1777 }
1778 
1779 static u32 gem_setup_multicast(struct gem *gp)
1780 {
1781 	u32 rxcfg = 0;
1782 	int i;
1783 
1784 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1785 	    (netdev_mc_count(gp->dev) > 256)) {
1786 	    	for (i=0; i<16; i++)
1787 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788 		rxcfg |= MAC_RXCFG_HFE;
1789 	} else if (gp->dev->flags & IFF_PROMISC) {
1790 		rxcfg |= MAC_RXCFG_PROM;
1791 	} else {
1792 		u16 hash_table[16];
1793 		u32 crc;
1794 		struct netdev_hw_addr *ha;
1795 		int i;
1796 
1797 		memset(hash_table, 0, sizeof(hash_table));
1798 		netdev_for_each_mc_addr(ha, gp->dev) {
1799 			crc = ether_crc_le(6, ha->addr);
1800 			crc >>= 24;
1801 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1802 		}
1803 	    	for (i=0; i<16; i++)
1804 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805 		rxcfg |= MAC_RXCFG_HFE;
1806 	}
1807 
1808 	return rxcfg;
1809 }
1810 
1811 static void gem_init_mac(struct gem *gp)
1812 {
1813 	unsigned char *e = &gp->dev->dev_addr[0];
1814 
1815 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1816 
1817 	writel(0x00, gp->regs + MAC_IPG0);
1818 	writel(0x08, gp->regs + MAC_IPG1);
1819 	writel(0x04, gp->regs + MAC_IPG2);
1820 	writel(0x40, gp->regs + MAC_STIME);
1821 	writel(0x40, gp->regs + MAC_MINFSZ);
1822 
1823 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1824 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1825 
1826 	writel(0x07, gp->regs + MAC_PASIZE);
1827 	writel(0x04, gp->regs + MAC_JAMSIZE);
1828 	writel(0x10, gp->regs + MAC_ATTLIM);
1829 	writel(0x8808, gp->regs + MAC_MCTYPE);
1830 
1831 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1832 
1833 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1836 
1837 	writel(0, gp->regs + MAC_ADDR3);
1838 	writel(0, gp->regs + MAC_ADDR4);
1839 	writel(0, gp->regs + MAC_ADDR5);
1840 
1841 	writel(0x0001, gp->regs + MAC_ADDR6);
1842 	writel(0xc200, gp->regs + MAC_ADDR7);
1843 	writel(0x0180, gp->regs + MAC_ADDR8);
1844 
1845 	writel(0, gp->regs + MAC_AFILT0);
1846 	writel(0, gp->regs + MAC_AFILT1);
1847 	writel(0, gp->regs + MAC_AFILT2);
1848 	writel(0, gp->regs + MAC_AF21MSK);
1849 	writel(0, gp->regs + MAC_AF0MSK);
1850 
1851 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1852 #ifdef STRIP_FCS
1853 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1854 #endif
1855 	writel(0, gp->regs + MAC_NCOLL);
1856 	writel(0, gp->regs + MAC_FASUCC);
1857 	writel(0, gp->regs + MAC_ECOLL);
1858 	writel(0, gp->regs + MAC_LCOLL);
1859 	writel(0, gp->regs + MAC_DTIMER);
1860 	writel(0, gp->regs + MAC_PATMPS);
1861 	writel(0, gp->regs + MAC_RFCTR);
1862 	writel(0, gp->regs + MAC_LERR);
1863 	writel(0, gp->regs + MAC_AERR);
1864 	writel(0, gp->regs + MAC_FCSERR);
1865 	writel(0, gp->regs + MAC_RXCVERR);
1866 
1867 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868 	 * them once a link is established.
1869 	 */
1870 	writel(0, gp->regs + MAC_TXCFG);
1871 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872 	writel(0, gp->regs + MAC_MCCFG);
1873 	writel(0, gp->regs + MAC_XIFCFG);
1874 
1875 	/* Setup MAC interrupts.  We want to get all of the interesting
1876 	 * counter expiration events, but we do not want to hear about
1877 	 * normal rx/tx as the DMA engine tells us that.
1878 	 */
1879 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1881 
1882 	/* Don't enable even the PAUSE interrupts for now, we
1883 	 * make no use of those events other than to record them.
1884 	 */
1885 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1886 
1887 	/* Don't enable GEM's WOL in normal operations
1888 	 */
1889 	if (gp->has_wol)
1890 		writel(0, gp->regs + WOL_WAKECSR);
1891 }
1892 
1893 static void gem_init_pause_thresholds(struct gem *gp)
1894 {
1895        	u32 cfg;
1896 
1897 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1898 	 * full RX fifo size effectively disables PAUSE generation which
1899 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1900 	 * to make real gains from PAUSE.
1901 	 */
1902 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1903 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1904 	} else {
1905 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1907 		int on = off - max_frame;
1908 
1909 		gp->rx_pause_off = off;
1910 		gp->rx_pause_on = on;
1911 	}
1912 
1913 
1914 	/* Configure the chip "burst" DMA mode & enable some
1915 	 * HW bug fixes on Apple version
1916 	 */
1917        	cfg  = 0;
1918        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921        	cfg |= GREG_CFG_IBURST;
1922 #endif
1923        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925        	writel(cfg, gp->regs + GREG_CFG);
1926 
1927 	/* If Infinite Burst didn't stick, then use different
1928 	 * thresholds (and Apple bug fixes don't exist)
1929 	 */
1930 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933 		writel(cfg, gp->regs + GREG_CFG);
1934 	}
1935 }
1936 
1937 static int gem_check_invariants(struct gem *gp)
1938 {
1939 	struct pci_dev *pdev = gp->pdev;
1940 	u32 mif_cfg;
1941 
1942 	/* On Apple's sungem, we can't rely on registers as the chip
1943 	 * was been powered down by the firmware. The PHY is looked
1944 	 * up later on.
1945 	 */
1946 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947 		gp->phy_type = phy_mii_mdio0;
1948 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1950 		gp->swrst_base = 0;
1951 
1952 		mif_cfg = readl(gp->regs + MIF_CFG);
1953 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954 		mif_cfg |= MIF_CFG_MDI0;
1955 		writel(mif_cfg, gp->regs + MIF_CFG);
1956 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1958 
1959 		/* We hard-code the PHY address so we can properly bring it out of
1960 		 * reset later on, we can't really probe it at this point, though
1961 		 * that isn't an issue.
1962 		 */
1963 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964 			gp->mii_phy_addr = 1;
1965 		else
1966 			gp->mii_phy_addr = 0;
1967 
1968 		return 0;
1969 	}
1970 
1971 	mif_cfg = readl(gp->regs + MIF_CFG);
1972 
1973 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975 		/* One of the MII PHYs _must_ be present
1976 		 * as this chip has no gigabit PHY.
1977 		 */
1978 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1980 			       mif_cfg);
1981 			return -1;
1982 		}
1983 	}
1984 
1985 	/* Determine initial PHY interface type guess.  MDIO1 is the
1986 	 * external PHY and thus takes precedence over MDIO0.
1987 	 */
1988 
1989 	if (mif_cfg & MIF_CFG_MDI1) {
1990 		gp->phy_type = phy_mii_mdio1;
1991 		mif_cfg |= MIF_CFG_PSELECT;
1992 		writel(mif_cfg, gp->regs + MIF_CFG);
1993 	} else if (mif_cfg & MIF_CFG_MDI0) {
1994 		gp->phy_type = phy_mii_mdio0;
1995 		mif_cfg &= ~MIF_CFG_PSELECT;
1996 		writel(mif_cfg, gp->regs + MIF_CFG);
1997 	} else {
1998 #ifdef CONFIG_SPARC
1999 		const char *p;
2000 
2001 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2002 		if (p && !strcmp(p, "serdes"))
2003 			gp->phy_type = phy_serdes;
2004 		else
2005 #endif
2006 			gp->phy_type = phy_serialink;
2007 	}
2008 	if (gp->phy_type == phy_mii_mdio1 ||
2009 	    gp->phy_type == phy_mii_mdio0) {
2010 		int i;
2011 
2012 		for (i = 0; i < 32; i++) {
2013 			gp->mii_phy_addr = i;
2014 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2015 				break;
2016 		}
2017 		if (i == 32) {
2018 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019 				pr_err("RIO MII phy will not respond\n");
2020 				return -1;
2021 			}
2022 			gp->phy_type = phy_serdes;
2023 		}
2024 	}
2025 
2026 	/* Fetch the FIFO configurations now too. */
2027 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2029 
2030 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032 			if (gp->tx_fifo_sz != (9 * 1024) ||
2033 			    gp->rx_fifo_sz != (20 * 1024)) {
2034 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2036 				return -1;
2037 			}
2038 			gp->swrst_base = 0;
2039 		} else {
2040 			if (gp->tx_fifo_sz != (2 * 1024) ||
2041 			    gp->rx_fifo_sz != (2 * 1024)) {
2042 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2044 				return -1;
2045 			}
2046 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047 		}
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static void gem_reinit_chip(struct gem *gp)
2054 {
2055 	/* Reset the chip */
2056 	gem_reset(gp);
2057 
2058 	/* Make sure ints are disabled */
2059 	gem_disable_ints(gp);
2060 
2061 	/* Allocate & setup ring buffers */
2062 	gem_init_rings(gp);
2063 
2064 	/* Configure pause thresholds */
2065 	gem_init_pause_thresholds(gp);
2066 
2067 	/* Init DMA & MAC engines */
2068 	gem_init_dma(gp);
2069 	gem_init_mac(gp);
2070 }
2071 
2072 
2073 static void gem_stop_phy(struct gem *gp, int wol)
2074 {
2075 	u32 mifcfg;
2076 
2077 	/* Let the chip settle down a bit, it seems that helps
2078 	 * for sleep mode on some models
2079 	 */
2080 	msleep(10);
2081 
2082 	/* Make sure we aren't polling PHY status change. We
2083 	 * don't currently use that feature though
2084 	 */
2085 	mifcfg = readl(gp->regs + MIF_CFG);
2086 	mifcfg &= ~MIF_CFG_POLL;
2087 	writel(mifcfg, gp->regs + MIF_CFG);
2088 
2089 	if (wol && gp->has_wol) {
2090 		unsigned char *e = &gp->dev->dev_addr[0];
2091 		u32 csr;
2092 
2093 		/* Setup wake-on-lan for MAGIC packet */
2094 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095 		       gp->regs + MAC_RXCFG);
2096 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2099 
2100 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101 		csr = WOL_WAKECSR_ENABLE;
2102 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103 			csr |= WOL_WAKECSR_MII;
2104 		writel(csr, gp->regs + WOL_WAKECSR);
2105 	} else {
2106 		writel(0, gp->regs + MAC_RXCFG);
2107 		(void)readl(gp->regs + MAC_RXCFG);
2108 		/* Machine sleep will die in strange ways if we
2109 		 * dont wait a bit here, looks like the chip takes
2110 		 * some time to really shut down
2111 		 */
2112 		msleep(10);
2113 	}
2114 
2115 	writel(0, gp->regs + MAC_TXCFG);
2116 	writel(0, gp->regs + MAC_XIFCFG);
2117 	writel(0, gp->regs + TXDMA_CFG);
2118 	writel(0, gp->regs + RXDMA_CFG);
2119 
2120 	if (!wol) {
2121 		gem_reset(gp);
2122 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2124 
2125 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2127 
2128 		/* According to Apple, we must set the MDIO pins to this begnign
2129 		 * state or we may 1) eat more current, 2) damage some PHYs
2130 		 */
2131 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132 		writel(0, gp->regs + MIF_BBCLK);
2133 		writel(0, gp->regs + MIF_BBDATA);
2134 		writel(0, gp->regs + MIF_BBOENAB);
2135 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136 		(void) readl(gp->regs + MAC_XIFCFG);
2137 	}
2138 }
2139 
2140 static int gem_do_start(struct net_device *dev)
2141 {
2142 	struct gem *gp = netdev_priv(dev);
2143 	int rc;
2144 
2145 	/* Enable the cell */
2146 	gem_get_cell(gp);
2147 
2148 	/* Make sure PCI access and bus master are enabled */
2149 	rc = pci_enable_device(gp->pdev);
2150 	if (rc) {
2151 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2152 
2153 		/* Put cell and forget it for now, it will be considered as
2154 		 * still asleep, a new sleep cycle may bring it back
2155 		 */
2156 		gem_put_cell(gp);
2157 		return -ENXIO;
2158 	}
2159 	pci_set_master(gp->pdev);
2160 
2161 	/* Init & setup chip hardware */
2162 	gem_reinit_chip(gp);
2163 
2164 	/* An interrupt might come in handy */
2165 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2166 			 IRQF_SHARED, dev->name, (void *)dev);
2167 	if (rc) {
2168 		netdev_err(dev, "failed to request irq !\n");
2169 
2170 		gem_reset(gp);
2171 		gem_clean_rings(gp);
2172 		gem_put_cell(gp);
2173 		return rc;
2174 	}
2175 
2176 	/* Mark us as attached again if we come from resume(), this has
2177 	 * no effect if we weren't detached and needs to be done now.
2178 	 */
2179 	netif_device_attach(dev);
2180 
2181 	/* Restart NAPI & queues */
2182 	gem_netif_start(gp);
2183 
2184 	/* Detect & init PHY, start autoneg etc... this will
2185 	 * eventually result in starting DMA operations when
2186 	 * the link is up
2187 	 */
2188 	gem_init_phy(gp);
2189 
2190 	return 0;
2191 }
2192 
2193 static void gem_do_stop(struct net_device *dev, int wol)
2194 {
2195 	struct gem *gp = netdev_priv(dev);
2196 
2197 	/* Stop NAPI and stop tx queue */
2198 	gem_netif_stop(gp);
2199 
2200 	/* Make sure ints are disabled. We don't care about
2201 	 * synchronizing as NAPI is disabled, thus a stray
2202 	 * interrupt will do nothing bad (our irq handler
2203 	 * just schedules NAPI)
2204 	 */
2205 	gem_disable_ints(gp);
2206 
2207 	/* Stop the link timer */
2208 	del_timer_sync(&gp->link_timer);
2209 
2210 	/* We cannot cancel the reset task while holding the
2211 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2212 	 * if we did. This is not an issue however as the reset
2213 	 * task is synchronized vs. us (rtnl_lock) and will do
2214 	 * nothing if the device is down or suspended. We do
2215 	 * still clear reset_task_pending to avoid a spurrious
2216 	 * reset later on in case we do resume before it gets
2217 	 * scheduled.
2218 	 */
2219 	gp->reset_task_pending = 0;
2220 
2221 	/* If we are going to sleep with WOL */
2222 	gem_stop_dma(gp);
2223 	msleep(10);
2224 	if (!wol)
2225 		gem_reset(gp);
2226 	msleep(10);
2227 
2228 	/* Get rid of rings */
2229 	gem_clean_rings(gp);
2230 
2231 	/* No irq needed anymore */
2232 	free_irq(gp->pdev->irq, (void *) dev);
2233 
2234 	/* Shut the PHY down eventually and setup WOL */
2235 	gem_stop_phy(gp, wol);
2236 
2237 	/* Make sure bus master is disabled */
2238 	pci_disable_device(gp->pdev);
2239 
2240 	/* Cell not needed neither if no WOL */
2241 	if (!wol)
2242 		gem_put_cell(gp);
2243 }
2244 
2245 static void gem_reset_task(struct work_struct *work)
2246 {
2247 	struct gem *gp = container_of(work, struct gem, reset_task);
2248 
2249 	/* Lock out the network stack (essentially shield ourselves
2250 	 * against a racing open, close, control call, or suspend
2251 	 */
2252 	rtnl_lock();
2253 
2254 	/* Skip the reset task if suspended or closed, or if it's
2255 	 * been cancelled by gem_do_stop (see comment there)
2256 	 */
2257 	if (!netif_device_present(gp->dev) ||
2258 	    !netif_running(gp->dev) ||
2259 	    !gp->reset_task_pending) {
2260 		rtnl_unlock();
2261 		return;
2262 	}
2263 
2264 	/* Stop the link timer */
2265 	del_timer_sync(&gp->link_timer);
2266 
2267 	/* Stop NAPI and tx */
2268 	gem_netif_stop(gp);
2269 
2270 	/* Reset the chip & rings */
2271 	gem_reinit_chip(gp);
2272 	if (gp->lstate == link_up)
2273 		gem_set_link_modes(gp);
2274 
2275 	/* Restart NAPI and Tx */
2276 	gem_netif_start(gp);
2277 
2278 	/* We are back ! */
2279 	gp->reset_task_pending = 0;
2280 
2281 	/* If the link is not up, restart autoneg, else restart the
2282 	 * polling timer
2283 	 */
2284 	if (gp->lstate != link_up)
2285 		gem_begin_auto_negotiation(gp, NULL);
2286 	else
2287 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2288 
2289 	rtnl_unlock();
2290 }
2291 
2292 static int gem_open(struct net_device *dev)
2293 {
2294 	/* We allow open while suspended, we just do nothing,
2295 	 * the chip will be initialized in resume()
2296 	 */
2297 	if (netif_device_present(dev))
2298 		return gem_do_start(dev);
2299 	return 0;
2300 }
2301 
2302 static int gem_close(struct net_device *dev)
2303 {
2304 	if (netif_device_present(dev))
2305 		gem_do_stop(dev, 0);
2306 
2307 	return 0;
2308 }
2309 
2310 #ifdef CONFIG_PM
2311 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2312 {
2313 	struct net_device *dev = pci_get_drvdata(pdev);
2314 	struct gem *gp = netdev_priv(dev);
2315 
2316 	/* Lock the network stack first to avoid racing with open/close,
2317 	 * reset task and setting calls
2318 	 */
2319 	rtnl_lock();
2320 
2321 	/* Not running, mark ourselves non-present, no need for
2322 	 * a lock here
2323 	 */
2324 	if (!netif_running(dev)) {
2325 		netif_device_detach(dev);
2326 		rtnl_unlock();
2327 		return 0;
2328 	}
2329 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2330 		    (gp->wake_on_lan && netif_running(dev)) ?
2331 		    "enabled" : "disabled");
2332 
2333 	/* Tell the network stack we're gone. gem_do_stop() below will
2334 	 * synchronize with TX, stop NAPI etc...
2335 	 */
2336 	netif_device_detach(dev);
2337 
2338 	/* Switch off chip, remember WOL setting */
2339 	gp->asleep_wol = !!gp->wake_on_lan;
2340 	gem_do_stop(dev, gp->asleep_wol);
2341 
2342 	/* Unlock the network stack */
2343 	rtnl_unlock();
2344 
2345 	return 0;
2346 }
2347 
2348 static int gem_resume(struct pci_dev *pdev)
2349 {
2350 	struct net_device *dev = pci_get_drvdata(pdev);
2351 	struct gem *gp = netdev_priv(dev);
2352 
2353 	/* See locking comment in gem_suspend */
2354 	rtnl_lock();
2355 
2356 	/* Not running, mark ourselves present, no need for
2357 	 * a lock here
2358 	 */
2359 	if (!netif_running(dev)) {
2360 		netif_device_attach(dev);
2361 		rtnl_unlock();
2362 		return 0;
2363 	}
2364 
2365 	/* Restart chip. If that fails there isn't much we can do, we
2366 	 * leave things stopped.
2367 	 */
2368 	gem_do_start(dev);
2369 
2370 	/* If we had WOL enabled, the cell clock was never turned off during
2371 	 * sleep, so we end up beeing unbalanced. Fix that here
2372 	 */
2373 	if (gp->asleep_wol)
2374 		gem_put_cell(gp);
2375 
2376 	/* Unlock the network stack */
2377 	rtnl_unlock();
2378 
2379 	return 0;
2380 }
2381 #endif /* CONFIG_PM */
2382 
2383 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2384 {
2385 	struct gem *gp = netdev_priv(dev);
2386 
2387 	/* I have seen this being called while the PM was in progress,
2388 	 * so we shield against this. Let's also not poke at registers
2389 	 * while the reset task is going on.
2390 	 *
2391 	 * TODO: Move stats collection elsewhere (link timer ?) and
2392 	 * make this a nop to avoid all those synchro issues
2393 	 */
2394 	if (!netif_device_present(dev) || !netif_running(dev))
2395 		goto bail;
2396 
2397 	/* Better safe than sorry... */
2398 	if (WARN_ON(!gp->cell_enabled))
2399 		goto bail;
2400 
2401 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2402 	writel(0, gp->regs + MAC_FCSERR);
2403 
2404 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2405 	writel(0, gp->regs + MAC_AERR);
2406 
2407 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2408 	writel(0, gp->regs + MAC_LERR);
2409 
2410 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2411 	dev->stats.collisions +=
2412 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2413 	writel(0, gp->regs + MAC_ECOLL);
2414 	writel(0, gp->regs + MAC_LCOLL);
2415  bail:
2416 	return &dev->stats;
2417 }
2418 
2419 static int gem_set_mac_address(struct net_device *dev, void *addr)
2420 {
2421 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2422 	struct gem *gp = netdev_priv(dev);
2423 	unsigned char *e = &dev->dev_addr[0];
2424 
2425 	if (!is_valid_ether_addr(macaddr->sa_data))
2426 		return -EADDRNOTAVAIL;
2427 
2428 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2429 
2430 	/* We'll just catch it later when the device is up'd or resumed */
2431 	if (!netif_running(dev) || !netif_device_present(dev))
2432 		return 0;
2433 
2434 	/* Better safe than sorry... */
2435 	if (WARN_ON(!gp->cell_enabled))
2436 		return 0;
2437 
2438 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2439 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2440 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2441 
2442 	return 0;
2443 }
2444 
2445 static void gem_set_multicast(struct net_device *dev)
2446 {
2447 	struct gem *gp = netdev_priv(dev);
2448 	u32 rxcfg, rxcfg_new;
2449 	int limit = 10000;
2450 
2451 	if (!netif_running(dev) || !netif_device_present(dev))
2452 		return;
2453 
2454 	/* Better safe than sorry... */
2455 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2456 		return;
2457 
2458 	rxcfg = readl(gp->regs + MAC_RXCFG);
2459 	rxcfg_new = gem_setup_multicast(gp);
2460 #ifdef STRIP_FCS
2461 	rxcfg_new |= MAC_RXCFG_SFCS;
2462 #endif
2463 	gp->mac_rx_cfg = rxcfg_new;
2464 
2465 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2466 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2467 		if (!limit--)
2468 			break;
2469 		udelay(10);
2470 	}
2471 
2472 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2473 	rxcfg |= rxcfg_new;
2474 
2475 	writel(rxcfg, gp->regs + MAC_RXCFG);
2476 }
2477 
2478 /* Jumbo-grams don't seem to work :-( */
2479 #define GEM_MIN_MTU	ETH_MIN_MTU
2480 #if 1
2481 #define GEM_MAX_MTU	ETH_DATA_LEN
2482 #else
2483 #define GEM_MAX_MTU	9000
2484 #endif
2485 
2486 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2487 {
2488 	struct gem *gp = netdev_priv(dev);
2489 
2490 	dev->mtu = new_mtu;
2491 
2492 	/* We'll just catch it later when the device is up'd or resumed */
2493 	if (!netif_running(dev) || !netif_device_present(dev))
2494 		return 0;
2495 
2496 	/* Better safe than sorry... */
2497 	if (WARN_ON(!gp->cell_enabled))
2498 		return 0;
2499 
2500 	gem_netif_stop(gp);
2501 	gem_reinit_chip(gp);
2502 	if (gp->lstate == link_up)
2503 		gem_set_link_modes(gp);
2504 	gem_netif_start(gp);
2505 
2506 	return 0;
2507 }
2508 
2509 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2510 {
2511 	struct gem *gp = netdev_priv(dev);
2512 
2513 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2514 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2515 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2516 }
2517 
2518 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2519 {
2520 	struct gem *gp = netdev_priv(dev);
2521 
2522 	if (gp->phy_type == phy_mii_mdio0 ||
2523 	    gp->phy_type == phy_mii_mdio1) {
2524 		if (gp->phy_mii.def)
2525 			cmd->supported = gp->phy_mii.def->features;
2526 		else
2527 			cmd->supported = (SUPPORTED_10baseT_Half |
2528 					  SUPPORTED_10baseT_Full);
2529 
2530 		/* XXX hardcoded stuff for now */
2531 		cmd->port = PORT_MII;
2532 		cmd->transceiver = XCVR_EXTERNAL;
2533 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2534 
2535 		/* Return current PHY settings */
2536 		cmd->autoneg = gp->want_autoneg;
2537 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2538 		cmd->duplex = gp->phy_mii.duplex;
2539 		cmd->advertising = gp->phy_mii.advertising;
2540 
2541 		/* If we started with a forced mode, we don't have a default
2542 		 * advertise set, we need to return something sensible so
2543 		 * userland can re-enable autoneg properly.
2544 		 */
2545 		if (cmd->advertising == 0)
2546 			cmd->advertising = cmd->supported;
2547 	} else { // XXX PCS ?
2548 		cmd->supported =
2549 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2550 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2551 			 SUPPORTED_Autoneg);
2552 		cmd->advertising = cmd->supported;
2553 		ethtool_cmd_speed_set(cmd, 0);
2554 		cmd->duplex = cmd->port = cmd->phy_address =
2555 			cmd->transceiver = cmd->autoneg = 0;
2556 
2557 		/* serdes means usually a Fibre connector, with most fixed */
2558 		if (gp->phy_type == phy_serdes) {
2559 			cmd->port = PORT_FIBRE;
2560 			cmd->supported = (SUPPORTED_1000baseT_Half |
2561 				SUPPORTED_1000baseT_Full |
2562 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2563 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2564 			cmd->advertising = cmd->supported;
2565 			cmd->transceiver = XCVR_INTERNAL;
2566 			if (gp->lstate == link_up)
2567 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2568 			cmd->duplex = DUPLEX_FULL;
2569 			cmd->autoneg = 1;
2570 		}
2571 	}
2572 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2573 
2574 	return 0;
2575 }
2576 
2577 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2578 {
2579 	struct gem *gp = netdev_priv(dev);
2580 	u32 speed = ethtool_cmd_speed(cmd);
2581 
2582 	/* Verify the settings we care about. */
2583 	if (cmd->autoneg != AUTONEG_ENABLE &&
2584 	    cmd->autoneg != AUTONEG_DISABLE)
2585 		return -EINVAL;
2586 
2587 	if (cmd->autoneg == AUTONEG_ENABLE &&
2588 	    cmd->advertising == 0)
2589 		return -EINVAL;
2590 
2591 	if (cmd->autoneg == AUTONEG_DISABLE &&
2592 	    ((speed != SPEED_1000 &&
2593 	      speed != SPEED_100 &&
2594 	      speed != SPEED_10) ||
2595 	     (cmd->duplex != DUPLEX_HALF &&
2596 	      cmd->duplex != DUPLEX_FULL)))
2597 		return -EINVAL;
2598 
2599 	/* Apply settings and restart link process. */
2600 	if (netif_device_present(gp->dev)) {
2601 		del_timer_sync(&gp->link_timer);
2602 		gem_begin_auto_negotiation(gp, cmd);
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static int gem_nway_reset(struct net_device *dev)
2609 {
2610 	struct gem *gp = netdev_priv(dev);
2611 
2612 	if (!gp->want_autoneg)
2613 		return -EINVAL;
2614 
2615 	/* Restart link process  */
2616 	if (netif_device_present(gp->dev)) {
2617 		del_timer_sync(&gp->link_timer);
2618 		gem_begin_auto_negotiation(gp, NULL);
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static u32 gem_get_msglevel(struct net_device *dev)
2625 {
2626 	struct gem *gp = netdev_priv(dev);
2627 	return gp->msg_enable;
2628 }
2629 
2630 static void gem_set_msglevel(struct net_device *dev, u32 value)
2631 {
2632 	struct gem *gp = netdev_priv(dev);
2633 	gp->msg_enable = value;
2634 }
2635 
2636 
2637 /* Add more when I understand how to program the chip */
2638 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2639 
2640 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2641 
2642 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2643 {
2644 	struct gem *gp = netdev_priv(dev);
2645 
2646 	/* Add more when I understand how to program the chip */
2647 	if (gp->has_wol) {
2648 		wol->supported = WOL_SUPPORTED_MASK;
2649 		wol->wolopts = gp->wake_on_lan;
2650 	} else {
2651 		wol->supported = 0;
2652 		wol->wolopts = 0;
2653 	}
2654 }
2655 
2656 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2657 {
2658 	struct gem *gp = netdev_priv(dev);
2659 
2660 	if (!gp->has_wol)
2661 		return -EOPNOTSUPP;
2662 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2663 	return 0;
2664 }
2665 
2666 static const struct ethtool_ops gem_ethtool_ops = {
2667 	.get_drvinfo		= gem_get_drvinfo,
2668 	.get_link		= ethtool_op_get_link,
2669 	.get_settings		= gem_get_settings,
2670 	.set_settings		= gem_set_settings,
2671 	.nway_reset		= gem_nway_reset,
2672 	.get_msglevel		= gem_get_msglevel,
2673 	.set_msglevel		= gem_set_msglevel,
2674 	.get_wol		= gem_get_wol,
2675 	.set_wol		= gem_set_wol,
2676 };
2677 
2678 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2679 {
2680 	struct gem *gp = netdev_priv(dev);
2681 	struct mii_ioctl_data *data = if_mii(ifr);
2682 	int rc = -EOPNOTSUPP;
2683 
2684 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2685 	 * netif_device_present() is true and holds rtnl_lock for us
2686 	 * so we have nothing to worry about
2687 	 */
2688 
2689 	switch (cmd) {
2690 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2691 		data->phy_id = gp->mii_phy_addr;
2692 		/* Fallthrough... */
2693 
2694 	case SIOCGMIIREG:		/* Read MII PHY register. */
2695 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2696 					   data->reg_num & 0x1f);
2697 		rc = 0;
2698 		break;
2699 
2700 	case SIOCSMIIREG:		/* Write MII PHY register. */
2701 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2702 			    data->val_in);
2703 		rc = 0;
2704 		break;
2705 	}
2706 	return rc;
2707 }
2708 
2709 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2710 /* Fetch MAC address from vital product data of PCI ROM. */
2711 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2712 {
2713 	int this_offset;
2714 
2715 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2716 		void __iomem *p = rom_base + this_offset;
2717 		int i;
2718 
2719 		if (readb(p + 0) != 0x90 ||
2720 		    readb(p + 1) != 0x00 ||
2721 		    readb(p + 2) != 0x09 ||
2722 		    readb(p + 3) != 0x4e ||
2723 		    readb(p + 4) != 0x41 ||
2724 		    readb(p + 5) != 0x06)
2725 			continue;
2726 
2727 		this_offset += 6;
2728 		p += 6;
2729 
2730 		for (i = 0; i < 6; i++)
2731 			dev_addr[i] = readb(p + i);
2732 		return 1;
2733 	}
2734 	return 0;
2735 }
2736 
2737 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2738 {
2739 	size_t size;
2740 	void __iomem *p = pci_map_rom(pdev, &size);
2741 
2742 	if (p) {
2743 			int found;
2744 
2745 		found = readb(p) == 0x55 &&
2746 			readb(p + 1) == 0xaa &&
2747 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2748 		pci_unmap_rom(pdev, p);
2749 		if (found)
2750 			return;
2751 	}
2752 
2753 	/* Sun MAC prefix then 3 random bytes. */
2754 	dev_addr[0] = 0x08;
2755 	dev_addr[1] = 0x00;
2756 	dev_addr[2] = 0x20;
2757 	get_random_bytes(dev_addr + 3, 3);
2758 }
2759 #endif /* not Sparc and not PPC */
2760 
2761 static int gem_get_device_address(struct gem *gp)
2762 {
2763 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2764 	struct net_device *dev = gp->dev;
2765 	const unsigned char *addr;
2766 
2767 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2768 	if (addr == NULL) {
2769 #ifdef CONFIG_SPARC
2770 		addr = idprom->id_ethaddr;
2771 #else
2772 		printk("\n");
2773 		pr_err("%s: can't get mac-address\n", dev->name);
2774 		return -1;
2775 #endif
2776 	}
2777 	memcpy(dev->dev_addr, addr, ETH_ALEN);
2778 #else
2779 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2780 #endif
2781 	return 0;
2782 }
2783 
2784 static void gem_remove_one(struct pci_dev *pdev)
2785 {
2786 	struct net_device *dev = pci_get_drvdata(pdev);
2787 
2788 	if (dev) {
2789 		struct gem *gp = netdev_priv(dev);
2790 
2791 		unregister_netdev(dev);
2792 
2793 		/* Ensure reset task is truly gone */
2794 		cancel_work_sync(&gp->reset_task);
2795 
2796 		/* Free resources */
2797 		pci_free_consistent(pdev,
2798 				    sizeof(struct gem_init_block),
2799 				    gp->init_block,
2800 				    gp->gblock_dvma);
2801 		iounmap(gp->regs);
2802 		pci_release_regions(pdev);
2803 		free_netdev(dev);
2804 	}
2805 }
2806 
2807 static const struct net_device_ops gem_netdev_ops = {
2808 	.ndo_open		= gem_open,
2809 	.ndo_stop		= gem_close,
2810 	.ndo_start_xmit		= gem_start_xmit,
2811 	.ndo_get_stats		= gem_get_stats,
2812 	.ndo_set_rx_mode	= gem_set_multicast,
2813 	.ndo_do_ioctl		= gem_ioctl,
2814 	.ndo_tx_timeout		= gem_tx_timeout,
2815 	.ndo_change_mtu		= gem_change_mtu,
2816 	.ndo_validate_addr	= eth_validate_addr,
2817 	.ndo_set_mac_address    = gem_set_mac_address,
2818 #ifdef CONFIG_NET_POLL_CONTROLLER
2819 	.ndo_poll_controller    = gem_poll_controller,
2820 #endif
2821 };
2822 
2823 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2824 {
2825 	unsigned long gemreg_base, gemreg_len;
2826 	struct net_device *dev;
2827 	struct gem *gp;
2828 	int err, pci_using_dac;
2829 
2830 	printk_once(KERN_INFO "%s", version);
2831 
2832 	/* Apple gmac note: during probe, the chip is powered up by
2833 	 * the arch code to allow the code below to work (and to let
2834 	 * the chip be probed on the config space. It won't stay powered
2835 	 * up until the interface is brought up however, so we can't rely
2836 	 * on register configuration done at this point.
2837 	 */
2838 	err = pci_enable_device(pdev);
2839 	if (err) {
2840 		pr_err("Cannot enable MMIO operation, aborting\n");
2841 		return err;
2842 	}
2843 	pci_set_master(pdev);
2844 
2845 	/* Configure DMA attributes. */
2846 
2847 	/* All of the GEM documentation states that 64-bit DMA addressing
2848 	 * is fully supported and should work just fine.  However the
2849 	 * front end for RIO based GEMs is different and only supports
2850 	 * 32-bit addressing.
2851 	 *
2852 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2853 	 */
2854 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2855 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2856 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2857 		pci_using_dac = 1;
2858 	} else {
2859 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2860 		if (err) {
2861 			pr_err("No usable DMA configuration, aborting\n");
2862 			goto err_disable_device;
2863 		}
2864 		pci_using_dac = 0;
2865 	}
2866 
2867 	gemreg_base = pci_resource_start(pdev, 0);
2868 	gemreg_len = pci_resource_len(pdev, 0);
2869 
2870 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2871 		pr_err("Cannot find proper PCI device base address, aborting\n");
2872 		err = -ENODEV;
2873 		goto err_disable_device;
2874 	}
2875 
2876 	dev = alloc_etherdev(sizeof(*gp));
2877 	if (!dev) {
2878 		err = -ENOMEM;
2879 		goto err_disable_device;
2880 	}
2881 	SET_NETDEV_DEV(dev, &pdev->dev);
2882 
2883 	gp = netdev_priv(dev);
2884 
2885 	err = pci_request_regions(pdev, DRV_NAME);
2886 	if (err) {
2887 		pr_err("Cannot obtain PCI resources, aborting\n");
2888 		goto err_out_free_netdev;
2889 	}
2890 
2891 	gp->pdev = pdev;
2892 	gp->dev = dev;
2893 
2894 	gp->msg_enable = DEFAULT_MSG;
2895 
2896 	init_timer(&gp->link_timer);
2897 	gp->link_timer.function = gem_link_timer;
2898 	gp->link_timer.data = (unsigned long) gp;
2899 
2900 	INIT_WORK(&gp->reset_task, gem_reset_task);
2901 
2902 	gp->lstate = link_down;
2903 	gp->timer_ticks = 0;
2904 	netif_carrier_off(dev);
2905 
2906 	gp->regs = ioremap(gemreg_base, gemreg_len);
2907 	if (!gp->regs) {
2908 		pr_err("Cannot map device registers, aborting\n");
2909 		err = -EIO;
2910 		goto err_out_free_res;
2911 	}
2912 
2913 	/* On Apple, we want a reference to the Open Firmware device-tree
2914 	 * node. We use it for clock control.
2915 	 */
2916 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2917 	gp->of_node = pci_device_to_OF_node(pdev);
2918 #endif
2919 
2920 	/* Only Apple version supports WOL afaik */
2921 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2922 		gp->has_wol = 1;
2923 
2924 	/* Make sure cell is enabled */
2925 	gem_get_cell(gp);
2926 
2927 	/* Make sure everything is stopped and in init state */
2928 	gem_reset(gp);
2929 
2930 	/* Fill up the mii_phy structure (even if we won't use it) */
2931 	gp->phy_mii.dev = dev;
2932 	gp->phy_mii.mdio_read = _sungem_phy_read;
2933 	gp->phy_mii.mdio_write = _sungem_phy_write;
2934 #ifdef CONFIG_PPC_PMAC
2935 	gp->phy_mii.platform_data = gp->of_node;
2936 #endif
2937 	/* By default, we start with autoneg */
2938 	gp->want_autoneg = 1;
2939 
2940 	/* Check fifo sizes, PHY type, etc... */
2941 	if (gem_check_invariants(gp)) {
2942 		err = -ENODEV;
2943 		goto err_out_iounmap;
2944 	}
2945 
2946 	/* It is guaranteed that the returned buffer will be at least
2947 	 * PAGE_SIZE aligned.
2948 	 */
2949 	gp->init_block = (struct gem_init_block *)
2950 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2951 				     &gp->gblock_dvma);
2952 	if (!gp->init_block) {
2953 		pr_err("Cannot allocate init block, aborting\n");
2954 		err = -ENOMEM;
2955 		goto err_out_iounmap;
2956 	}
2957 
2958 	err = gem_get_device_address(gp);
2959 	if (err)
2960 		goto err_out_free_consistent;
2961 
2962 	dev->netdev_ops = &gem_netdev_ops;
2963 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2964 	dev->ethtool_ops = &gem_ethtool_ops;
2965 	dev->watchdog_timeo = 5 * HZ;
2966 	dev->dma = 0;
2967 
2968 	/* Set that now, in case PM kicks in now */
2969 	pci_set_drvdata(pdev, dev);
2970 
2971 	/* We can do scatter/gather and HW checksum */
2972 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2973 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2974 	if (pci_using_dac)
2975 		dev->features |= NETIF_F_HIGHDMA;
2976 
2977 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2978 	dev->min_mtu = GEM_MIN_MTU;
2979 	dev->max_mtu = GEM_MAX_MTU;
2980 
2981 	/* Register with kernel */
2982 	if (register_netdev(dev)) {
2983 		pr_err("Cannot register net device, aborting\n");
2984 		err = -ENOMEM;
2985 		goto err_out_free_consistent;
2986 	}
2987 
2988 	/* Undo the get_cell with appropriate locking (we could use
2989 	 * ndo_init/uninit but that would be even more clumsy imho)
2990 	 */
2991 	rtnl_lock();
2992 	gem_put_cell(gp);
2993 	rtnl_unlock();
2994 
2995 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
2996 		    dev->dev_addr);
2997 	return 0;
2998 
2999 err_out_free_consistent:
3000 	gem_remove_one(pdev);
3001 err_out_iounmap:
3002 	gem_put_cell(gp);
3003 	iounmap(gp->regs);
3004 
3005 err_out_free_res:
3006 	pci_release_regions(pdev);
3007 
3008 err_out_free_netdev:
3009 	free_netdev(dev);
3010 err_disable_device:
3011 	pci_disable_device(pdev);
3012 	return err;
3013 
3014 }
3015 
3016 
3017 static struct pci_driver gem_driver = {
3018 	.name		= GEM_MODULE_NAME,
3019 	.id_table	= gem_pci_tbl,
3020 	.probe		= gem_init_one,
3021 	.remove		= gem_remove_one,
3022 #ifdef CONFIG_PM
3023 	.suspend	= gem_suspend,
3024 	.resume		= gem_resume,
3025 #endif /* CONFIG_PM */
3026 };
3027 
3028 module_pci_driver(gem_driver);
3029