xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3  * sungem.c: Sun GEM ethernet driver.
4  *
5  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6  *
7  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10  *
11  * NAPI and NETPOLL support
12  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
48 
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
53 
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
59 
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
62 
63 /* Stripping FCS is causing problems, disabled for now */
64 #undef STRIP_FCS
65 
66 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
67 			 NETIF_MSG_PROBE	| \
68 			 NETIF_MSG_LINK)
69 
70 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
71 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
72 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
73 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 
75 #define DRV_NAME	"sungem"
76 #define DRV_VERSION	"1.0"
77 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
78 
79 static char version[] =
80         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
81 
82 MODULE_AUTHOR(DRV_AUTHOR);
83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
84 MODULE_LICENSE("GPL");
85 
86 #define GEM_MODULE_NAME	"gem"
87 
88 static const struct pci_device_id gem_pci_tbl[] = {
89 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
90 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
91 
92 	/* These models only differ from the original GEM in
93 	 * that their tx/rx fifos are of a different size and
94 	 * they only support 10/100 speeds. -DaveM
95 	 *
96 	 * Apple's GMAC does support gigabit on machines with
97 	 * the BCM54xx PHYs. -BenH
98 	 */
99 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
100 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
112 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
117 
118 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
119 {
120 	u32 cmd;
121 	int limit = 10000;
122 
123 	cmd  = (1 << 30);
124 	cmd |= (2 << 28);
125 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
126 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
127 	cmd |= (MIF_FRAME_TAMSB);
128 	writel(cmd, gp->regs + MIF_FRAME);
129 
130 	while (--limit) {
131 		cmd = readl(gp->regs + MIF_FRAME);
132 		if (cmd & MIF_FRAME_TALSB)
133 			break;
134 
135 		udelay(10);
136 	}
137 
138 	if (!limit)
139 		cmd = 0xffff;
140 
141 	return cmd & MIF_FRAME_DATA;
142 }
143 
144 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
145 {
146 	struct gem *gp = netdev_priv(dev);
147 	return __sungem_phy_read(gp, mii_id, reg);
148 }
149 
150 static inline u16 sungem_phy_read(struct gem *gp, int reg)
151 {
152 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
153 }
154 
155 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
156 {
157 	u32 cmd;
158 	int limit = 10000;
159 
160 	cmd  = (1 << 30);
161 	cmd |= (1 << 28);
162 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
163 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
164 	cmd |= (MIF_FRAME_TAMSB);
165 	cmd |= (val & MIF_FRAME_DATA);
166 	writel(cmd, gp->regs + MIF_FRAME);
167 
168 	while (limit--) {
169 		cmd = readl(gp->regs + MIF_FRAME);
170 		if (cmd & MIF_FRAME_TALSB)
171 			break;
172 
173 		udelay(10);
174 	}
175 }
176 
177 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
178 {
179 	struct gem *gp = netdev_priv(dev);
180 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
181 }
182 
183 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
184 {
185 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
186 }
187 
188 static inline void gem_enable_ints(struct gem *gp)
189 {
190 	/* Enable all interrupts but TXDONE */
191 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
192 }
193 
194 static inline void gem_disable_ints(struct gem *gp)
195 {
196 	/* Disable all interrupts, including TXDONE */
197 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
198 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
199 }
200 
201 static void gem_get_cell(struct gem *gp)
202 {
203 	BUG_ON(gp->cell_enabled < 0);
204 	gp->cell_enabled++;
205 #ifdef CONFIG_PPC_PMAC
206 	if (gp->cell_enabled == 1) {
207 		mb();
208 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
209 		udelay(10);
210 	}
211 #endif /* CONFIG_PPC_PMAC */
212 }
213 
214 /* Turn off the chip's clock */
215 static void gem_put_cell(struct gem *gp)
216 {
217 	BUG_ON(gp->cell_enabled <= 0);
218 	gp->cell_enabled--;
219 #ifdef CONFIG_PPC_PMAC
220 	if (gp->cell_enabled == 0) {
221 		mb();
222 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
223 		udelay(10);
224 	}
225 #endif /* CONFIG_PPC_PMAC */
226 }
227 
228 static inline void gem_netif_stop(struct gem *gp)
229 {
230 	netif_trans_update(gp->dev);	/* prevent tx timeout */
231 	napi_disable(&gp->napi);
232 	netif_tx_disable(gp->dev);
233 }
234 
235 static inline void gem_netif_start(struct gem *gp)
236 {
237 	/* NOTE: unconditional netif_wake_queue is only
238 	 * appropriate so long as all callers are assured to
239 	 * have free tx slots.
240 	 */
241 	netif_wake_queue(gp->dev);
242 	napi_enable(&gp->napi);
243 }
244 
245 static void gem_schedule_reset(struct gem *gp)
246 {
247 	gp->reset_task_pending = 1;
248 	schedule_work(&gp->reset_task);
249 }
250 
251 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 {
253 	if (netif_msg_intr(gp))
254 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
255 }
256 
257 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 {
259 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
260 	u32 pcs_miistat;
261 
262 	if (netif_msg_intr(gp))
263 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
264 			gp->dev->name, pcs_istat);
265 
266 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
267 		netdev_err(dev, "PCS irq but no link status change???\n");
268 		return 0;
269 	}
270 
271 	/* The link status bit latches on zero, so you must
272 	 * read it twice in such a case to see a transition
273 	 * to the link being up.
274 	 */
275 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
276 	if (!(pcs_miistat & PCS_MIISTAT_LS))
277 		pcs_miistat |=
278 			(readl(gp->regs + PCS_MIISTAT) &
279 			 PCS_MIISTAT_LS);
280 
281 	if (pcs_miistat & PCS_MIISTAT_ANC) {
282 		/* The remote-fault indication is only valid
283 		 * when autoneg has completed.
284 		 */
285 		if (pcs_miistat & PCS_MIISTAT_RF)
286 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
287 		else
288 			netdev_info(dev, "PCS AutoNEG complete\n");
289 	}
290 
291 	if (pcs_miistat & PCS_MIISTAT_LS) {
292 		netdev_info(dev, "PCS link is now up\n");
293 		netif_carrier_on(gp->dev);
294 	} else {
295 		netdev_info(dev, "PCS link is now down\n");
296 		netif_carrier_off(gp->dev);
297 		/* If this happens and the link timer is not running,
298 		 * reset so we re-negotiate.
299 		 */
300 		if (!timer_pending(&gp->link_timer))
301 			return 1;
302 	}
303 
304 	return 0;
305 }
306 
307 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 {
309 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 
311 	if (netif_msg_intr(gp))
312 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
313 			gp->dev->name, txmac_stat);
314 
315 	/* Defer timer expiration is quite normal,
316 	 * don't even log the event.
317 	 */
318 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
319 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
320 		return 0;
321 
322 	if (txmac_stat & MAC_TXSTAT_URUN) {
323 		netdev_err(dev, "TX MAC xmit underrun\n");
324 		dev->stats.tx_fifo_errors++;
325 	}
326 
327 	if (txmac_stat & MAC_TXSTAT_MPE) {
328 		netdev_err(dev, "TX MAC max packet size error\n");
329 		dev->stats.tx_errors++;
330 	}
331 
332 	/* The rest are all cases of one of the 16-bit TX
333 	 * counters expiring.
334 	 */
335 	if (txmac_stat & MAC_TXSTAT_NCE)
336 		dev->stats.collisions += 0x10000;
337 
338 	if (txmac_stat & MAC_TXSTAT_ECE) {
339 		dev->stats.tx_aborted_errors += 0x10000;
340 		dev->stats.collisions += 0x10000;
341 	}
342 
343 	if (txmac_stat & MAC_TXSTAT_LCE) {
344 		dev->stats.tx_aborted_errors += 0x10000;
345 		dev->stats.collisions += 0x10000;
346 	}
347 
348 	/* We do not keep track of MAC_TXSTAT_FCE and
349 	 * MAC_TXSTAT_PCE events.
350 	 */
351 	return 0;
352 }
353 
354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
355  * so we do the following.
356  *
357  * If any part of the reset goes wrong, we return 1 and that causes the
358  * whole chip to be reset.
359  */
360 static int gem_rxmac_reset(struct gem *gp)
361 {
362 	struct net_device *dev = gp->dev;
363 	int limit, i;
364 	u64 desc_dma;
365 	u32 val;
366 
367 	/* First, reset & disable MAC RX. */
368 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
369 	for (limit = 0; limit < 5000; limit++) {
370 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
371 			break;
372 		udelay(10);
373 	}
374 	if (limit == 5000) {
375 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
376 		return 1;
377 	}
378 
379 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
380 	       gp->regs + MAC_RXCFG);
381 	for (limit = 0; limit < 5000; limit++) {
382 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
383 			break;
384 		udelay(10);
385 	}
386 	if (limit == 5000) {
387 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
388 		return 1;
389 	}
390 
391 	/* Second, disable RX DMA. */
392 	writel(0, gp->regs + RXDMA_CFG);
393 	for (limit = 0; limit < 5000; limit++) {
394 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
395 			break;
396 		udelay(10);
397 	}
398 	if (limit == 5000) {
399 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
400 		return 1;
401 	}
402 
403 	mdelay(5);
404 
405 	/* Execute RX reset command. */
406 	writel(gp->swrst_base | GREG_SWRST_RXRST,
407 	       gp->regs + GREG_SWRST);
408 	for (limit = 0; limit < 5000; limit++) {
409 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
410 			break;
411 		udelay(10);
412 	}
413 	if (limit == 5000) {
414 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
415 		return 1;
416 	}
417 
418 	/* Refresh the RX ring. */
419 	for (i = 0; i < RX_RING_SIZE; i++) {
420 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 
422 		if (gp->rx_skbs[i] == NULL) {
423 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
424 			return 1;
425 		}
426 
427 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 	}
429 	gp->rx_new = gp->rx_old = 0;
430 
431 	/* Now we must reprogram the rest of RX unit. */
432 	desc_dma = (u64) gp->gblock_dvma;
433 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
434 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
435 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
436 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
437 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
438 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
439 	writel(val, gp->regs + RXDMA_CFG);
440 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
441 		writel(((5 & RXDMA_BLANK_IPKTS) |
442 			((8 << 12) & RXDMA_BLANK_ITIME)),
443 		       gp->regs + RXDMA_BLANK);
444 	else
445 		writel(((5 & RXDMA_BLANK_IPKTS) |
446 			((4 << 12) & RXDMA_BLANK_ITIME)),
447 		       gp->regs + RXDMA_BLANK);
448 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
449 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
450 	writel(val, gp->regs + RXDMA_PTHRESH);
451 	val = readl(gp->regs + RXDMA_CFG);
452 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
453 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
454 	val = readl(gp->regs + MAC_RXCFG);
455 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
456 
457 	return 0;
458 }
459 
460 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 {
462 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
463 	int ret = 0;
464 
465 	if (netif_msg_intr(gp))
466 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
467 			gp->dev->name, rxmac_stat);
468 
469 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
470 		u32 smac = readl(gp->regs + MAC_SMACHINE);
471 
472 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
473 		dev->stats.rx_over_errors++;
474 		dev->stats.rx_fifo_errors++;
475 
476 		ret = gem_rxmac_reset(gp);
477 	}
478 
479 	if (rxmac_stat & MAC_RXSTAT_ACE)
480 		dev->stats.rx_frame_errors += 0x10000;
481 
482 	if (rxmac_stat & MAC_RXSTAT_CCE)
483 		dev->stats.rx_crc_errors += 0x10000;
484 
485 	if (rxmac_stat & MAC_RXSTAT_LCE)
486 		dev->stats.rx_length_errors += 0x10000;
487 
488 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
489 	 * events.
490 	 */
491 	return ret;
492 }
493 
494 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 {
496 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 
498 	if (netif_msg_intr(gp))
499 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
500 			gp->dev->name, mac_cstat);
501 
502 	/* This interrupt is just for pause frame and pause
503 	 * tracking.  It is useful for diagnostics and debug
504 	 * but probably by default we will mask these events.
505 	 */
506 	if (mac_cstat & MAC_CSTAT_PS)
507 		gp->pause_entered++;
508 
509 	if (mac_cstat & MAC_CSTAT_PRCV)
510 		gp->pause_last_time_recvd = (mac_cstat >> 16);
511 
512 	return 0;
513 }
514 
515 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 {
517 	u32 mif_status = readl(gp->regs + MIF_STATUS);
518 	u32 reg_val, changed_bits;
519 
520 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
521 	changed_bits = (mif_status & MIF_STATUS_STAT);
522 
523 	gem_handle_mif_event(gp, reg_val, changed_bits);
524 
525 	return 0;
526 }
527 
528 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 {
530 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 
532 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
533 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
534 		netdev_err(dev, "PCI error [%04x]", pci_estat);
535 
536 		if (pci_estat & GREG_PCIESTAT_BADACK)
537 			pr_cont(" <No ACK64# during ABS64 cycle>");
538 		if (pci_estat & GREG_PCIESTAT_DTRTO)
539 			pr_cont(" <Delayed transaction timeout>");
540 		if (pci_estat & GREG_PCIESTAT_OTHER)
541 			pr_cont(" <other>");
542 		pr_cont("\n");
543 	} else {
544 		pci_estat |= GREG_PCIESTAT_OTHER;
545 		netdev_err(dev, "PCI error\n");
546 	}
547 
548 	if (pci_estat & GREG_PCIESTAT_OTHER) {
549 		u16 pci_cfg_stat;
550 
551 		/* Interrogate PCI config space for the
552 		 * true cause.
553 		 */
554 		pci_read_config_word(gp->pdev, PCI_STATUS,
555 				     &pci_cfg_stat);
556 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
557 			   pci_cfg_stat);
558 		if (pci_cfg_stat & PCI_STATUS_PARITY)
559 			netdev_err(dev, "PCI parity error detected\n");
560 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
561 			netdev_err(dev, "PCI target abort\n");
562 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
563 			netdev_err(dev, "PCI master acks target abort\n");
564 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
565 			netdev_err(dev, "PCI master abort\n");
566 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
567 			netdev_err(dev, "PCI system error SERR#\n");
568 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
569 			netdev_err(dev, "PCI parity error\n");
570 
571 		/* Write the error bits back to clear them. */
572 		pci_cfg_stat &= (PCI_STATUS_PARITY |
573 				 PCI_STATUS_SIG_TARGET_ABORT |
574 				 PCI_STATUS_REC_TARGET_ABORT |
575 				 PCI_STATUS_REC_MASTER_ABORT |
576 				 PCI_STATUS_SIG_SYSTEM_ERROR |
577 				 PCI_STATUS_DETECTED_PARITY);
578 		pci_write_config_word(gp->pdev,
579 				      PCI_STATUS, pci_cfg_stat);
580 	}
581 
582 	/* For all PCI errors, we should reset the chip. */
583 	return 1;
584 }
585 
586 /* All non-normal interrupt conditions get serviced here.
587  * Returns non-zero if we should just exit the interrupt
588  * handler right now (ie. if we reset the card which invalidates
589  * all of the other original irq status bits).
590  */
591 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
592 {
593 	if (gem_status & GREG_STAT_RXNOBUF) {
594 		/* Frame arrived, no free RX buffers available. */
595 		if (netif_msg_rx_err(gp))
596 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
597 				gp->dev->name);
598 		dev->stats.rx_dropped++;
599 	}
600 
601 	if (gem_status & GREG_STAT_RXTAGERR) {
602 		/* corrupt RX tag framing */
603 		if (netif_msg_rx_err(gp))
604 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
605 				gp->dev->name);
606 		dev->stats.rx_errors++;
607 
608 		return 1;
609 	}
610 
611 	if (gem_status & GREG_STAT_PCS) {
612 		if (gem_pcs_interrupt(dev, gp, gem_status))
613 			return 1;
614 	}
615 
616 	if (gem_status & GREG_STAT_TXMAC) {
617 		if (gem_txmac_interrupt(dev, gp, gem_status))
618 			return 1;
619 	}
620 
621 	if (gem_status & GREG_STAT_RXMAC) {
622 		if (gem_rxmac_interrupt(dev, gp, gem_status))
623 			return 1;
624 	}
625 
626 	if (gem_status & GREG_STAT_MAC) {
627 		if (gem_mac_interrupt(dev, gp, gem_status))
628 			return 1;
629 	}
630 
631 	if (gem_status & GREG_STAT_MIF) {
632 		if (gem_mif_interrupt(dev, gp, gem_status))
633 			return 1;
634 	}
635 
636 	if (gem_status & GREG_STAT_PCIERR) {
637 		if (gem_pci_interrupt(dev, gp, gem_status))
638 			return 1;
639 	}
640 
641 	return 0;
642 }
643 
644 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
645 {
646 	int entry, limit;
647 
648 	entry = gp->tx_old;
649 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
650 	while (entry != limit) {
651 		struct sk_buff *skb;
652 		struct gem_txd *txd;
653 		dma_addr_t dma_addr;
654 		u32 dma_len;
655 		int frag;
656 
657 		if (netif_msg_tx_done(gp))
658 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
659 				gp->dev->name, entry);
660 		skb = gp->tx_skbs[entry];
661 		if (skb_shinfo(skb)->nr_frags) {
662 			int last = entry + skb_shinfo(skb)->nr_frags;
663 			int walk = entry;
664 			int incomplete = 0;
665 
666 			last &= (TX_RING_SIZE - 1);
667 			for (;;) {
668 				walk = NEXT_TX(walk);
669 				if (walk == limit)
670 					incomplete = 1;
671 				if (walk == last)
672 					break;
673 			}
674 			if (incomplete)
675 				break;
676 		}
677 		gp->tx_skbs[entry] = NULL;
678 		dev->stats.tx_bytes += skb->len;
679 
680 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
681 			txd = &gp->init_block->txd[entry];
682 
683 			dma_addr = le64_to_cpu(txd->buffer);
684 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
685 
686 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
687 			entry = NEXT_TX(entry);
688 		}
689 
690 		dev->stats.tx_packets++;
691 		dev_consume_skb_any(skb);
692 	}
693 	gp->tx_old = entry;
694 
695 	/* Need to make the tx_old update visible to gem_start_xmit()
696 	 * before checking for netif_queue_stopped().  Without the
697 	 * memory barrier, there is a small possibility that gem_start_xmit()
698 	 * will miss it and cause the queue to be stopped forever.
699 	 */
700 	smp_mb();
701 
702 	if (unlikely(netif_queue_stopped(dev) &&
703 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
704 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
705 
706 		__netif_tx_lock(txq, smp_processor_id());
707 		if (netif_queue_stopped(dev) &&
708 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
709 			netif_wake_queue(dev);
710 		__netif_tx_unlock(txq);
711 	}
712 }
713 
714 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
715 {
716 	int cluster_start, curr, count, kick;
717 
718 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
719 	count = 0;
720 	kick = -1;
721 	dma_wmb();
722 	while (curr != limit) {
723 		curr = NEXT_RX(curr);
724 		if (++count == 4) {
725 			struct gem_rxd *rxd =
726 				&gp->init_block->rxd[cluster_start];
727 			for (;;) {
728 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
729 				rxd++;
730 				cluster_start = NEXT_RX(cluster_start);
731 				if (cluster_start == curr)
732 					break;
733 			}
734 			kick = curr;
735 			count = 0;
736 		}
737 	}
738 	if (kick >= 0) {
739 		mb();
740 		writel(kick, gp->regs + RXDMA_KICK);
741 	}
742 }
743 
744 #define ALIGNED_RX_SKB_ADDR(addr) \
745         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
746 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
747 						gfp_t gfp_flags)
748 {
749 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
750 
751 	if (likely(skb)) {
752 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
753 		skb_reserve(skb, offset);
754 	}
755 	return skb;
756 }
757 
758 static int gem_rx(struct gem *gp, int work_to_do)
759 {
760 	struct net_device *dev = gp->dev;
761 	int entry, drops, work_done = 0;
762 	u32 done;
763 	__sum16 csum;
764 
765 	if (netif_msg_rx_status(gp))
766 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
767 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
768 
769 	entry = gp->rx_new;
770 	drops = 0;
771 	done = readl(gp->regs + RXDMA_DONE);
772 	for (;;) {
773 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
774 		struct sk_buff *skb;
775 		u64 status = le64_to_cpu(rxd->status_word);
776 		dma_addr_t dma_addr;
777 		int len;
778 
779 		if ((status & RXDCTRL_OWN) != 0)
780 			break;
781 
782 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
783 			break;
784 
785 		/* When writing back RX descriptor, GEM writes status
786 		 * then buffer address, possibly in separate transactions.
787 		 * If we don't wait for the chip to write both, we could
788 		 * post a new buffer to this descriptor then have GEM spam
789 		 * on the buffer address.  We sync on the RX completion
790 		 * register to prevent this from happening.
791 		 */
792 		if (entry == done) {
793 			done = readl(gp->regs + RXDMA_DONE);
794 			if (entry == done)
795 				break;
796 		}
797 
798 		/* We can now account for the work we're about to do */
799 		work_done++;
800 
801 		skb = gp->rx_skbs[entry];
802 
803 		len = (status & RXDCTRL_BUFSZ) >> 16;
804 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
805 			dev->stats.rx_errors++;
806 			if (len < ETH_ZLEN)
807 				dev->stats.rx_length_errors++;
808 			if (len & RXDCTRL_BAD)
809 				dev->stats.rx_crc_errors++;
810 
811 			/* We'll just return it to GEM. */
812 		drop_it:
813 			dev->stats.rx_dropped++;
814 			goto next;
815 		}
816 
817 		dma_addr = le64_to_cpu(rxd->buffer);
818 		if (len > RX_COPY_THRESHOLD) {
819 			struct sk_buff *new_skb;
820 
821 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
822 			if (new_skb == NULL) {
823 				drops++;
824 				goto drop_it;
825 			}
826 			pci_unmap_page(gp->pdev, dma_addr,
827 				       RX_BUF_ALLOC_SIZE(gp),
828 				       PCI_DMA_FROMDEVICE);
829 			gp->rx_skbs[entry] = new_skb;
830 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 							       virt_to_page(new_skb->data),
833 							       offset_in_page(new_skb->data),
834 							       RX_BUF_ALLOC_SIZE(gp),
835 							       PCI_DMA_FROMDEVICE));
836 			skb_reserve(new_skb, RX_OFFSET);
837 
838 			/* Trim the original skb for the netif. */
839 			skb_trim(skb, len);
840 		} else {
841 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
842 
843 			if (copy_skb == NULL) {
844 				drops++;
845 				goto drop_it;
846 			}
847 
848 			skb_reserve(copy_skb, 2);
849 			skb_put(copy_skb, len);
850 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
851 			skb_copy_from_linear_data(skb, copy_skb->data, len);
852 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 
854 			/* We'll reuse the original ring buffer. */
855 			skb = copy_skb;
856 		}
857 
858 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 		skb->csum = csum_unfold(csum);
860 		skb->ip_summed = CHECKSUM_COMPLETE;
861 		skb->protocol = eth_type_trans(skb, gp->dev);
862 
863 		napi_gro_receive(&gp->napi, skb);
864 
865 		dev->stats.rx_packets++;
866 		dev->stats.rx_bytes += len;
867 
868 	next:
869 		entry = NEXT_RX(entry);
870 	}
871 
872 	gem_post_rxds(gp, entry);
873 
874 	gp->rx_new = entry;
875 
876 	if (drops)
877 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
878 
879 	return work_done;
880 }
881 
882 static int gem_poll(struct napi_struct *napi, int budget)
883 {
884 	struct gem *gp = container_of(napi, struct gem, napi);
885 	struct net_device *dev = gp->dev;
886 	int work_done;
887 
888 	work_done = 0;
889 	do {
890 		/* Handle anomalies */
891 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
892 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
893 			int reset;
894 
895 			/* We run the abnormal interrupt handling code with
896 			 * the Tx lock. It only resets the Rx portion of the
897 			 * chip, but we need to guard it against DMA being
898 			 * restarted by the link poll timer
899 			 */
900 			__netif_tx_lock(txq, smp_processor_id());
901 			reset = gem_abnormal_irq(dev, gp, gp->status);
902 			__netif_tx_unlock(txq);
903 			if (reset) {
904 				gem_schedule_reset(gp);
905 				napi_complete(napi);
906 				return work_done;
907 			}
908 		}
909 
910 		/* Run TX completion thread */
911 		gem_tx(dev, gp, gp->status);
912 
913 		/* Run RX thread. We don't use any locking here,
914 		 * code willing to do bad things - like cleaning the
915 		 * rx ring - must call napi_disable(), which
916 		 * schedule_timeout()'s if polling is already disabled.
917 		 */
918 		work_done += gem_rx(gp, budget - work_done);
919 
920 		if (work_done >= budget)
921 			return work_done;
922 
923 		gp->status = readl(gp->regs + GREG_STAT);
924 	} while (gp->status & GREG_STAT_NAPI);
925 
926 	napi_complete_done(napi, work_done);
927 	gem_enable_ints(gp);
928 
929 	return work_done;
930 }
931 
932 static irqreturn_t gem_interrupt(int irq, void *dev_id)
933 {
934 	struct net_device *dev = dev_id;
935 	struct gem *gp = netdev_priv(dev);
936 
937 	if (napi_schedule_prep(&gp->napi)) {
938 		u32 gem_status = readl(gp->regs + GREG_STAT);
939 
940 		if (unlikely(gem_status == 0)) {
941 			napi_enable(&gp->napi);
942 			return IRQ_NONE;
943 		}
944 		if (netif_msg_intr(gp))
945 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
946 			       gp->dev->name, gem_status);
947 
948 		gp->status = gem_status;
949 		gem_disable_ints(gp);
950 		__napi_schedule(&gp->napi);
951 	}
952 
953 	/* If polling was disabled at the time we received that
954 	 * interrupt, we may return IRQ_HANDLED here while we
955 	 * should return IRQ_NONE. No big deal...
956 	 */
957 	return IRQ_HANDLED;
958 }
959 
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 static void gem_poll_controller(struct net_device *dev)
962 {
963 	struct gem *gp = netdev_priv(dev);
964 
965 	disable_irq(gp->pdev->irq);
966 	gem_interrupt(gp->pdev->irq, dev);
967 	enable_irq(gp->pdev->irq);
968 }
969 #endif
970 
971 static void gem_tx_timeout(struct net_device *dev)
972 {
973 	struct gem *gp = netdev_priv(dev);
974 
975 	netdev_err(dev, "transmit timed out, resetting\n");
976 
977 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
978 		   readl(gp->regs + TXDMA_CFG),
979 		   readl(gp->regs + MAC_TXSTAT),
980 		   readl(gp->regs + MAC_TXCFG));
981 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
982 		   readl(gp->regs + RXDMA_CFG),
983 		   readl(gp->regs + MAC_RXSTAT),
984 		   readl(gp->regs + MAC_RXCFG));
985 
986 	gem_schedule_reset(gp);
987 }
988 
989 static __inline__ int gem_intme(int entry)
990 {
991 	/* Algorithm: IRQ every 1/2 of descriptors. */
992 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
993 		return 1;
994 
995 	return 0;
996 }
997 
998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
999 				  struct net_device *dev)
1000 {
1001 	struct gem *gp = netdev_priv(dev);
1002 	int entry;
1003 	u64 ctrl;
1004 
1005 	ctrl = 0;
1006 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1007 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1008 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1009 
1010 		ctrl = (TXDCTRL_CENAB |
1011 			(csum_start_off << 15) |
1012 			(csum_stuff_off << 21));
1013 	}
1014 
1015 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1016 		/* This is a hard error, log it. */
1017 		if (!netif_queue_stopped(dev)) {
1018 			netif_stop_queue(dev);
1019 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1020 		}
1021 		return NETDEV_TX_BUSY;
1022 	}
1023 
1024 	entry = gp->tx_new;
1025 	gp->tx_skbs[entry] = skb;
1026 
1027 	if (skb_shinfo(skb)->nr_frags == 0) {
1028 		struct gem_txd *txd = &gp->init_block->txd[entry];
1029 		dma_addr_t mapping;
1030 		u32 len;
1031 
1032 		len = skb->len;
1033 		mapping = pci_map_page(gp->pdev,
1034 				       virt_to_page(skb->data),
1035 				       offset_in_page(skb->data),
1036 				       len, PCI_DMA_TODEVICE);
1037 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1038 		if (gem_intme(entry))
1039 			ctrl |= TXDCTRL_INTME;
1040 		txd->buffer = cpu_to_le64(mapping);
1041 		dma_wmb();
1042 		txd->control_word = cpu_to_le64(ctrl);
1043 		entry = NEXT_TX(entry);
1044 	} else {
1045 		struct gem_txd *txd;
1046 		u32 first_len;
1047 		u64 intme;
1048 		dma_addr_t first_mapping;
1049 		int frag, first_entry = entry;
1050 
1051 		intme = 0;
1052 		if (gem_intme(entry))
1053 			intme |= TXDCTRL_INTME;
1054 
1055 		/* We must give this initial chunk to the device last.
1056 		 * Otherwise we could race with the device.
1057 		 */
1058 		first_len = skb_headlen(skb);
1059 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1060 					     offset_in_page(skb->data),
1061 					     first_len, PCI_DMA_TODEVICE);
1062 		entry = NEXT_TX(entry);
1063 
1064 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1065 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1066 			u32 len;
1067 			dma_addr_t mapping;
1068 			u64 this_ctrl;
1069 
1070 			len = skb_frag_size(this_frag);
1071 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1072 						   0, len, DMA_TO_DEVICE);
1073 			this_ctrl = ctrl;
1074 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1075 				this_ctrl |= TXDCTRL_EOF;
1076 
1077 			txd = &gp->init_block->txd[entry];
1078 			txd->buffer = cpu_to_le64(mapping);
1079 			dma_wmb();
1080 			txd->control_word = cpu_to_le64(this_ctrl | len);
1081 
1082 			if (gem_intme(entry))
1083 				intme |= TXDCTRL_INTME;
1084 
1085 			entry = NEXT_TX(entry);
1086 		}
1087 		txd = &gp->init_block->txd[first_entry];
1088 		txd->buffer = cpu_to_le64(first_mapping);
1089 		dma_wmb();
1090 		txd->control_word =
1091 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1092 	}
1093 
1094 	gp->tx_new = entry;
1095 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1096 		netif_stop_queue(dev);
1097 
1098 		/* netif_stop_queue() must be done before checking
1099 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1100 		 * in gem_tx(), we update tx_old before checking for
1101 		 * netif_queue_stopped().
1102 		 */
1103 		smp_mb();
1104 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1105 			netif_wake_queue(dev);
1106 	}
1107 	if (netif_msg_tx_queued(gp))
1108 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1109 		       dev->name, entry, skb->len);
1110 	mb();
1111 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1112 
1113 	return NETDEV_TX_OK;
1114 }
1115 
1116 static void gem_pcs_reset(struct gem *gp)
1117 {
1118 	int limit;
1119 	u32 val;
1120 
1121 	/* Reset PCS unit. */
1122 	val = readl(gp->regs + PCS_MIICTRL);
1123 	val |= PCS_MIICTRL_RST;
1124 	writel(val, gp->regs + PCS_MIICTRL);
1125 
1126 	limit = 32;
1127 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1128 		udelay(100);
1129 		if (limit-- <= 0)
1130 			break;
1131 	}
1132 	if (limit < 0)
1133 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1134 }
1135 
1136 static void gem_pcs_reinit_adv(struct gem *gp)
1137 {
1138 	u32 val;
1139 
1140 	/* Make sure PCS is disabled while changing advertisement
1141 	 * configuration.
1142 	 */
1143 	val = readl(gp->regs + PCS_CFG);
1144 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1145 	writel(val, gp->regs + PCS_CFG);
1146 
1147 	/* Advertise all capabilities except asymmetric
1148 	 * pause.
1149 	 */
1150 	val = readl(gp->regs + PCS_MIIADV);
1151 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1152 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1153 	writel(val, gp->regs + PCS_MIIADV);
1154 
1155 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1156 	 * and re-enable PCS.
1157 	 */
1158 	val = readl(gp->regs + PCS_MIICTRL);
1159 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1160 	val &= ~PCS_MIICTRL_WB;
1161 	writel(val, gp->regs + PCS_MIICTRL);
1162 
1163 	val = readl(gp->regs + PCS_CFG);
1164 	val |= PCS_CFG_ENABLE;
1165 	writel(val, gp->regs + PCS_CFG);
1166 
1167 	/* Make sure serialink loopback is off.  The meaning
1168 	 * of this bit is logically inverted based upon whether
1169 	 * you are in Serialink or SERDES mode.
1170 	 */
1171 	val = readl(gp->regs + PCS_SCTRL);
1172 	if (gp->phy_type == phy_serialink)
1173 		val &= ~PCS_SCTRL_LOOP;
1174 	else
1175 		val |= PCS_SCTRL_LOOP;
1176 	writel(val, gp->regs + PCS_SCTRL);
1177 }
1178 
1179 #define STOP_TRIES 32
1180 
1181 static void gem_reset(struct gem *gp)
1182 {
1183 	int limit;
1184 	u32 val;
1185 
1186 	/* Make sure we won't get any more interrupts */
1187 	writel(0xffffffff, gp->regs + GREG_IMASK);
1188 
1189 	/* Reset the chip */
1190 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1191 	       gp->regs + GREG_SWRST);
1192 
1193 	limit = STOP_TRIES;
1194 
1195 	do {
1196 		udelay(20);
1197 		val = readl(gp->regs + GREG_SWRST);
1198 		if (limit-- <= 0)
1199 			break;
1200 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1201 
1202 	if (limit < 0)
1203 		netdev_err(gp->dev, "SW reset is ghetto\n");
1204 
1205 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1206 		gem_pcs_reinit_adv(gp);
1207 }
1208 
1209 static void gem_start_dma(struct gem *gp)
1210 {
1211 	u32 val;
1212 
1213 	/* We are ready to rock, turn everything on. */
1214 	val = readl(gp->regs + TXDMA_CFG);
1215 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1216 	val = readl(gp->regs + RXDMA_CFG);
1217 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1218 	val = readl(gp->regs + MAC_TXCFG);
1219 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1220 	val = readl(gp->regs + MAC_RXCFG);
1221 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1222 
1223 	(void) readl(gp->regs + MAC_RXCFG);
1224 	udelay(100);
1225 
1226 	gem_enable_ints(gp);
1227 
1228 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1229 }
1230 
1231 /* DMA won't be actually stopped before about 4ms tho ...
1232  */
1233 static void gem_stop_dma(struct gem *gp)
1234 {
1235 	u32 val;
1236 
1237 	/* We are done rocking, turn everything off. */
1238 	val = readl(gp->regs + TXDMA_CFG);
1239 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1240 	val = readl(gp->regs + RXDMA_CFG);
1241 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1242 	val = readl(gp->regs + MAC_TXCFG);
1243 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1244 	val = readl(gp->regs + MAC_RXCFG);
1245 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1246 
1247 	(void) readl(gp->regs + MAC_RXCFG);
1248 
1249 	/* Need to wait a bit ... done by the caller */
1250 }
1251 
1252 
1253 // XXX dbl check what that function should do when called on PCS PHY
1254 static void gem_begin_auto_negotiation(struct gem *gp,
1255 				       const struct ethtool_link_ksettings *ep)
1256 {
1257 	u32 advertise, features;
1258 	int autoneg;
1259 	int speed;
1260 	int duplex;
1261 	u32 advertising;
1262 
1263 	if (ep)
1264 		ethtool_convert_link_mode_to_legacy_u32(
1265 			&advertising, ep->link_modes.advertising);
1266 
1267 	if (gp->phy_type != phy_mii_mdio0 &&
1268      	    gp->phy_type != phy_mii_mdio1)
1269      	    	goto non_mii;
1270 
1271 	/* Setup advertise */
1272 	if (found_mii_phy(gp))
1273 		features = gp->phy_mii.def->features;
1274 	else
1275 		features = 0;
1276 
1277 	advertise = features & ADVERTISE_MASK;
1278 	if (gp->phy_mii.advertising != 0)
1279 		advertise &= gp->phy_mii.advertising;
1280 
1281 	autoneg = gp->want_autoneg;
1282 	speed = gp->phy_mii.speed;
1283 	duplex = gp->phy_mii.duplex;
1284 
1285 	/* Setup link parameters */
1286 	if (!ep)
1287 		goto start_aneg;
1288 	if (ep->base.autoneg == AUTONEG_ENABLE) {
1289 		advertise = advertising;
1290 		autoneg = 1;
1291 	} else {
1292 		autoneg = 0;
1293 		speed = ep->base.speed;
1294 		duplex = ep->base.duplex;
1295 	}
1296 
1297 start_aneg:
1298 	/* Sanitize settings based on PHY capabilities */
1299 	if ((features & SUPPORTED_Autoneg) == 0)
1300 		autoneg = 0;
1301 	if (speed == SPEED_1000 &&
1302 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1303 		speed = SPEED_100;
1304 	if (speed == SPEED_100 &&
1305 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1306 		speed = SPEED_10;
1307 	if (duplex == DUPLEX_FULL &&
1308 	    !(features & (SUPPORTED_1000baseT_Full |
1309 	    		  SUPPORTED_100baseT_Full |
1310 	    		  SUPPORTED_10baseT_Full)))
1311 	    	duplex = DUPLEX_HALF;
1312 	if (speed == 0)
1313 		speed = SPEED_10;
1314 
1315 	/* If we are asleep, we don't try to actually setup the PHY, we
1316 	 * just store the settings
1317 	 */
1318 	if (!netif_device_present(gp->dev)) {
1319 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1320 		gp->phy_mii.speed = speed;
1321 		gp->phy_mii.duplex = duplex;
1322 		return;
1323 	}
1324 
1325 	/* Configure PHY & start aneg */
1326 	gp->want_autoneg = autoneg;
1327 	if (autoneg) {
1328 		if (found_mii_phy(gp))
1329 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1330 		gp->lstate = link_aneg;
1331 	} else {
1332 		if (found_mii_phy(gp))
1333 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1334 		gp->lstate = link_force_ok;
1335 	}
1336 
1337 non_mii:
1338 	gp->timer_ticks = 0;
1339 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1340 }
1341 
1342 /* A link-up condition has occurred, initialize and enable the
1343  * rest of the chip.
1344  */
1345 static int gem_set_link_modes(struct gem *gp)
1346 {
1347 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1348 	int full_duplex, speed, pause;
1349 	u32 val;
1350 
1351 	full_duplex = 0;
1352 	speed = SPEED_10;
1353 	pause = 0;
1354 
1355 	if (found_mii_phy(gp)) {
1356 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1357 	    		return 1;
1358 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1359 		speed = gp->phy_mii.speed;
1360 		pause = gp->phy_mii.pause;
1361 	} else if (gp->phy_type == phy_serialink ||
1362 	    	   gp->phy_type == phy_serdes) {
1363 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1364 
1365 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1366 			full_duplex = 1;
1367 		speed = SPEED_1000;
1368 	}
1369 
1370 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1371 		   speed, (full_duplex ? "full" : "half"));
1372 
1373 
1374 	/* We take the tx queue lock to avoid collisions between
1375 	 * this code, the tx path and the NAPI-driven error path
1376 	 */
1377 	__netif_tx_lock(txq, smp_processor_id());
1378 
1379 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1380 	if (full_duplex) {
1381 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1382 	} else {
1383 		/* MAC_TXCFG_NBO must be zero. */
1384 	}
1385 	writel(val, gp->regs + MAC_TXCFG);
1386 
1387 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1388 	if (!full_duplex &&
1389 	    (gp->phy_type == phy_mii_mdio0 ||
1390 	     gp->phy_type == phy_mii_mdio1)) {
1391 		val |= MAC_XIFCFG_DISE;
1392 	} else if (full_duplex) {
1393 		val |= MAC_XIFCFG_FLED;
1394 	}
1395 
1396 	if (speed == SPEED_1000)
1397 		val |= (MAC_XIFCFG_GMII);
1398 
1399 	writel(val, gp->regs + MAC_XIFCFG);
1400 
1401 	/* If gigabit and half-duplex, enable carrier extension
1402 	 * mode.  Else, disable it.
1403 	 */
1404 	if (speed == SPEED_1000 && !full_duplex) {
1405 		val = readl(gp->regs + MAC_TXCFG);
1406 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1407 
1408 		val = readl(gp->regs + MAC_RXCFG);
1409 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1410 	} else {
1411 		val = readl(gp->regs + MAC_TXCFG);
1412 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1413 
1414 		val = readl(gp->regs + MAC_RXCFG);
1415 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1416 	}
1417 
1418 	if (gp->phy_type == phy_serialink ||
1419 	    gp->phy_type == phy_serdes) {
1420  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1421 
1422 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1423 			pause = 1;
1424 	}
1425 
1426 	if (!full_duplex)
1427 		writel(512, gp->regs + MAC_STIME);
1428 	else
1429 		writel(64, gp->regs + MAC_STIME);
1430 	val = readl(gp->regs + MAC_MCCFG);
1431 	if (pause)
1432 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1433 	else
1434 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1435 	writel(val, gp->regs + MAC_MCCFG);
1436 
1437 	gem_start_dma(gp);
1438 
1439 	__netif_tx_unlock(txq);
1440 
1441 	if (netif_msg_link(gp)) {
1442 		if (pause) {
1443 			netdev_info(gp->dev,
1444 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1445 				    gp->rx_fifo_sz,
1446 				    gp->rx_pause_off,
1447 				    gp->rx_pause_on);
1448 		} else {
1449 			netdev_info(gp->dev, "Pause is disabled\n");
1450 		}
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int gem_mdio_link_not_up(struct gem *gp)
1457 {
1458 	switch (gp->lstate) {
1459 	case link_force_ret:
1460 		netif_info(gp, link, gp->dev,
1461 			   "Autoneg failed again, keeping forced mode\n");
1462 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1463 			gp->last_forced_speed, DUPLEX_HALF);
1464 		gp->timer_ticks = 5;
1465 		gp->lstate = link_force_ok;
1466 		return 0;
1467 	case link_aneg:
1468 		/* We try forced modes after a failed aneg only on PHYs that don't
1469 		 * have "magic_aneg" bit set, which means they internally do the
1470 		 * while forced-mode thingy. On these, we just restart aneg
1471 		 */
1472 		if (gp->phy_mii.def->magic_aneg)
1473 			return 1;
1474 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1475 		/* Try forced modes. */
1476 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1477 			DUPLEX_HALF);
1478 		gp->timer_ticks = 5;
1479 		gp->lstate = link_force_try;
1480 		return 0;
1481 	case link_force_try:
1482 		/* Downgrade from 100 to 10 Mbps if necessary.
1483 		 * If already at 10Mbps, warn user about the
1484 		 * situation every 10 ticks.
1485 		 */
1486 		if (gp->phy_mii.speed == SPEED_100) {
1487 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1488 				DUPLEX_HALF);
1489 			gp->timer_ticks = 5;
1490 			netif_info(gp, link, gp->dev,
1491 				   "switching to forced 10bt\n");
1492 			return 0;
1493 		} else
1494 			return 1;
1495 	default:
1496 		return 0;
1497 	}
1498 }
1499 
1500 static void gem_link_timer(struct timer_list *t)
1501 {
1502 	struct gem *gp = from_timer(gp, t, link_timer);
1503 	struct net_device *dev = gp->dev;
1504 	int restart_aneg = 0;
1505 
1506 	/* There's no point doing anything if we're going to be reset */
1507 	if (gp->reset_task_pending)
1508 		return;
1509 
1510 	if (gp->phy_type == phy_serialink ||
1511 	    gp->phy_type == phy_serdes) {
1512 		u32 val = readl(gp->regs + PCS_MIISTAT);
1513 
1514 		if (!(val & PCS_MIISTAT_LS))
1515 			val = readl(gp->regs + PCS_MIISTAT);
1516 
1517 		if ((val & PCS_MIISTAT_LS) != 0) {
1518 			if (gp->lstate == link_up)
1519 				goto restart;
1520 
1521 			gp->lstate = link_up;
1522 			netif_carrier_on(dev);
1523 			(void)gem_set_link_modes(gp);
1524 		}
1525 		goto restart;
1526 	}
1527 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1528 		/* Ok, here we got a link. If we had it due to a forced
1529 		 * fallback, and we were configured for autoneg, we do
1530 		 * retry a short autoneg pass. If you know your hub is
1531 		 * broken, use ethtool ;)
1532 		 */
1533 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1534 			gp->lstate = link_force_ret;
1535 			gp->last_forced_speed = gp->phy_mii.speed;
1536 			gp->timer_ticks = 5;
1537 			if (netif_msg_link(gp))
1538 				netdev_info(dev,
1539 					    "Got link after fallback, retrying autoneg once...\n");
1540 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1541 		} else if (gp->lstate != link_up) {
1542 			gp->lstate = link_up;
1543 			netif_carrier_on(dev);
1544 			if (gem_set_link_modes(gp))
1545 				restart_aneg = 1;
1546 		}
1547 	} else {
1548 		/* If the link was previously up, we restart the
1549 		 * whole process
1550 		 */
1551 		if (gp->lstate == link_up) {
1552 			gp->lstate = link_down;
1553 			netif_info(gp, link, dev, "Link down\n");
1554 			netif_carrier_off(dev);
1555 			gem_schedule_reset(gp);
1556 			/* The reset task will restart the timer */
1557 			return;
1558 		} else if (++gp->timer_ticks > 10) {
1559 			if (found_mii_phy(gp))
1560 				restart_aneg = gem_mdio_link_not_up(gp);
1561 			else
1562 				restart_aneg = 1;
1563 		}
1564 	}
1565 	if (restart_aneg) {
1566 		gem_begin_auto_negotiation(gp, NULL);
1567 		return;
1568 	}
1569 restart:
1570 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1571 }
1572 
1573 static void gem_clean_rings(struct gem *gp)
1574 {
1575 	struct gem_init_block *gb = gp->init_block;
1576 	struct sk_buff *skb;
1577 	int i;
1578 	dma_addr_t dma_addr;
1579 
1580 	for (i = 0; i < RX_RING_SIZE; i++) {
1581 		struct gem_rxd *rxd;
1582 
1583 		rxd = &gb->rxd[i];
1584 		if (gp->rx_skbs[i] != NULL) {
1585 			skb = gp->rx_skbs[i];
1586 			dma_addr = le64_to_cpu(rxd->buffer);
1587 			pci_unmap_page(gp->pdev, dma_addr,
1588 				       RX_BUF_ALLOC_SIZE(gp),
1589 				       PCI_DMA_FROMDEVICE);
1590 			dev_kfree_skb_any(skb);
1591 			gp->rx_skbs[i] = NULL;
1592 		}
1593 		rxd->status_word = 0;
1594 		dma_wmb();
1595 		rxd->buffer = 0;
1596 	}
1597 
1598 	for (i = 0; i < TX_RING_SIZE; i++) {
1599 		if (gp->tx_skbs[i] != NULL) {
1600 			struct gem_txd *txd;
1601 			int frag;
1602 
1603 			skb = gp->tx_skbs[i];
1604 			gp->tx_skbs[i] = NULL;
1605 
1606 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1607 				int ent = i & (TX_RING_SIZE - 1);
1608 
1609 				txd = &gb->txd[ent];
1610 				dma_addr = le64_to_cpu(txd->buffer);
1611 				pci_unmap_page(gp->pdev, dma_addr,
1612 					       le64_to_cpu(txd->control_word) &
1613 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1614 
1615 				if (frag != skb_shinfo(skb)->nr_frags)
1616 					i++;
1617 			}
1618 			dev_kfree_skb_any(skb);
1619 		}
1620 	}
1621 }
1622 
1623 static void gem_init_rings(struct gem *gp)
1624 {
1625 	struct gem_init_block *gb = gp->init_block;
1626 	struct net_device *dev = gp->dev;
1627 	int i;
1628 	dma_addr_t dma_addr;
1629 
1630 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1631 
1632 	gem_clean_rings(gp);
1633 
1634 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1635 			    (unsigned)VLAN_ETH_FRAME_LEN);
1636 
1637 	for (i = 0; i < RX_RING_SIZE; i++) {
1638 		struct sk_buff *skb;
1639 		struct gem_rxd *rxd = &gb->rxd[i];
1640 
1641 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1642 		if (!skb) {
1643 			rxd->buffer = 0;
1644 			rxd->status_word = 0;
1645 			continue;
1646 		}
1647 
1648 		gp->rx_skbs[i] = skb;
1649 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1650 		dma_addr = pci_map_page(gp->pdev,
1651 					virt_to_page(skb->data),
1652 					offset_in_page(skb->data),
1653 					RX_BUF_ALLOC_SIZE(gp),
1654 					PCI_DMA_FROMDEVICE);
1655 		rxd->buffer = cpu_to_le64(dma_addr);
1656 		dma_wmb();
1657 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1658 		skb_reserve(skb, RX_OFFSET);
1659 	}
1660 
1661 	for (i = 0; i < TX_RING_SIZE; i++) {
1662 		struct gem_txd *txd = &gb->txd[i];
1663 
1664 		txd->control_word = 0;
1665 		dma_wmb();
1666 		txd->buffer = 0;
1667 	}
1668 	wmb();
1669 }
1670 
1671 /* Init PHY interface and start link poll state machine */
1672 static void gem_init_phy(struct gem *gp)
1673 {
1674 	u32 mifcfg;
1675 
1676 	/* Revert MIF CFG setting done on stop_phy */
1677 	mifcfg = readl(gp->regs + MIF_CFG);
1678 	mifcfg &= ~MIF_CFG_BBMODE;
1679 	writel(mifcfg, gp->regs + MIF_CFG);
1680 
1681 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1682 		int i;
1683 
1684 		/* Those delay sucks, the HW seem to love them though, I'll
1685 		 * serisouly consider breaking some locks here to be able
1686 		 * to schedule instead
1687 		 */
1688 		for (i = 0; i < 3; i++) {
1689 #ifdef CONFIG_PPC_PMAC
1690 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1691 			msleep(20);
1692 #endif
1693 			/* Some PHYs used by apple have problem getting back to us,
1694 			 * we do an additional reset here
1695 			 */
1696 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1697 			msleep(20);
1698 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1699 				break;
1700 			if (i == 2)
1701 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1702 		}
1703 	}
1704 
1705 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1706 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1707 		u32 val;
1708 
1709 		/* Init datapath mode register. */
1710 		if (gp->phy_type == phy_mii_mdio0 ||
1711 		    gp->phy_type == phy_mii_mdio1) {
1712 			val = PCS_DMODE_MGM;
1713 		} else if (gp->phy_type == phy_serialink) {
1714 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1715 		} else {
1716 			val = PCS_DMODE_ESM;
1717 		}
1718 
1719 		writel(val, gp->regs + PCS_DMODE);
1720 	}
1721 
1722 	if (gp->phy_type == phy_mii_mdio0 ||
1723 	    gp->phy_type == phy_mii_mdio1) {
1724 		/* Reset and detect MII PHY */
1725 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1726 
1727 		/* Init PHY */
1728 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1729 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1730 	} else {
1731 		gem_pcs_reset(gp);
1732 		gem_pcs_reinit_adv(gp);
1733 	}
1734 
1735 	/* Default aneg parameters */
1736 	gp->timer_ticks = 0;
1737 	gp->lstate = link_down;
1738 	netif_carrier_off(gp->dev);
1739 
1740 	/* Print things out */
1741 	if (gp->phy_type == phy_mii_mdio0 ||
1742 	    gp->phy_type == phy_mii_mdio1)
1743 		netdev_info(gp->dev, "Found %s PHY\n",
1744 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1745 
1746 	gem_begin_auto_negotiation(gp, NULL);
1747 }
1748 
1749 static void gem_init_dma(struct gem *gp)
1750 {
1751 	u64 desc_dma = (u64) gp->gblock_dvma;
1752 	u32 val;
1753 
1754 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1755 	writel(val, gp->regs + TXDMA_CFG);
1756 
1757 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1758 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1759 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1760 
1761 	writel(0, gp->regs + TXDMA_KICK);
1762 
1763 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1764 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1765 	writel(val, gp->regs + RXDMA_CFG);
1766 
1767 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1768 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1769 
1770 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1771 
1772 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1773 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1774 	writel(val, gp->regs + RXDMA_PTHRESH);
1775 
1776 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1777 		writel(((5 & RXDMA_BLANK_IPKTS) |
1778 			((8 << 12) & RXDMA_BLANK_ITIME)),
1779 		       gp->regs + RXDMA_BLANK);
1780 	else
1781 		writel(((5 & RXDMA_BLANK_IPKTS) |
1782 			((4 << 12) & RXDMA_BLANK_ITIME)),
1783 		       gp->regs + RXDMA_BLANK);
1784 }
1785 
1786 static u32 gem_setup_multicast(struct gem *gp)
1787 {
1788 	u32 rxcfg = 0;
1789 	int i;
1790 
1791 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1792 	    (netdev_mc_count(gp->dev) > 256)) {
1793 	    	for (i=0; i<16; i++)
1794 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1795 		rxcfg |= MAC_RXCFG_HFE;
1796 	} else if (gp->dev->flags & IFF_PROMISC) {
1797 		rxcfg |= MAC_RXCFG_PROM;
1798 	} else {
1799 		u16 hash_table[16];
1800 		u32 crc;
1801 		struct netdev_hw_addr *ha;
1802 		int i;
1803 
1804 		memset(hash_table, 0, sizeof(hash_table));
1805 		netdev_for_each_mc_addr(ha, gp->dev) {
1806 			crc = ether_crc_le(6, ha->addr);
1807 			crc >>= 24;
1808 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1809 		}
1810 	    	for (i=0; i<16; i++)
1811 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1812 		rxcfg |= MAC_RXCFG_HFE;
1813 	}
1814 
1815 	return rxcfg;
1816 }
1817 
1818 static void gem_init_mac(struct gem *gp)
1819 {
1820 	unsigned char *e = &gp->dev->dev_addr[0];
1821 
1822 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1823 
1824 	writel(0x00, gp->regs + MAC_IPG0);
1825 	writel(0x08, gp->regs + MAC_IPG1);
1826 	writel(0x04, gp->regs + MAC_IPG2);
1827 	writel(0x40, gp->regs + MAC_STIME);
1828 	writel(0x40, gp->regs + MAC_MINFSZ);
1829 
1830 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1831 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1832 
1833 	writel(0x07, gp->regs + MAC_PASIZE);
1834 	writel(0x04, gp->regs + MAC_JAMSIZE);
1835 	writel(0x10, gp->regs + MAC_ATTLIM);
1836 	writel(0x8808, gp->regs + MAC_MCTYPE);
1837 
1838 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1839 
1840 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1841 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1842 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1843 
1844 	writel(0, gp->regs + MAC_ADDR3);
1845 	writel(0, gp->regs + MAC_ADDR4);
1846 	writel(0, gp->regs + MAC_ADDR5);
1847 
1848 	writel(0x0001, gp->regs + MAC_ADDR6);
1849 	writel(0xc200, gp->regs + MAC_ADDR7);
1850 	writel(0x0180, gp->regs + MAC_ADDR8);
1851 
1852 	writel(0, gp->regs + MAC_AFILT0);
1853 	writel(0, gp->regs + MAC_AFILT1);
1854 	writel(0, gp->regs + MAC_AFILT2);
1855 	writel(0, gp->regs + MAC_AF21MSK);
1856 	writel(0, gp->regs + MAC_AF0MSK);
1857 
1858 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1859 #ifdef STRIP_FCS
1860 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1861 #endif
1862 	writel(0, gp->regs + MAC_NCOLL);
1863 	writel(0, gp->regs + MAC_FASUCC);
1864 	writel(0, gp->regs + MAC_ECOLL);
1865 	writel(0, gp->regs + MAC_LCOLL);
1866 	writel(0, gp->regs + MAC_DTIMER);
1867 	writel(0, gp->regs + MAC_PATMPS);
1868 	writel(0, gp->regs + MAC_RFCTR);
1869 	writel(0, gp->regs + MAC_LERR);
1870 	writel(0, gp->regs + MAC_AERR);
1871 	writel(0, gp->regs + MAC_FCSERR);
1872 	writel(0, gp->regs + MAC_RXCVERR);
1873 
1874 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1875 	 * them once a link is established.
1876 	 */
1877 	writel(0, gp->regs + MAC_TXCFG);
1878 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1879 	writel(0, gp->regs + MAC_MCCFG);
1880 	writel(0, gp->regs + MAC_XIFCFG);
1881 
1882 	/* Setup MAC interrupts.  We want to get all of the interesting
1883 	 * counter expiration events, but we do not want to hear about
1884 	 * normal rx/tx as the DMA engine tells us that.
1885 	 */
1886 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1887 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1888 
1889 	/* Don't enable even the PAUSE interrupts for now, we
1890 	 * make no use of those events other than to record them.
1891 	 */
1892 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1893 
1894 	/* Don't enable GEM's WOL in normal operations
1895 	 */
1896 	if (gp->has_wol)
1897 		writel(0, gp->regs + WOL_WAKECSR);
1898 }
1899 
1900 static void gem_init_pause_thresholds(struct gem *gp)
1901 {
1902        	u32 cfg;
1903 
1904 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1905 	 * full RX fifo size effectively disables PAUSE generation which
1906 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1907 	 * to make real gains from PAUSE.
1908 	 */
1909 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1910 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1911 	} else {
1912 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1913 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1914 		int on = off - max_frame;
1915 
1916 		gp->rx_pause_off = off;
1917 		gp->rx_pause_on = on;
1918 	}
1919 
1920 
1921 	/* Configure the chip "burst" DMA mode & enable some
1922 	 * HW bug fixes on Apple version
1923 	 */
1924        	cfg  = 0;
1925        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1926 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1927 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1928        	cfg |= GREG_CFG_IBURST;
1929 #endif
1930        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1931        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1932        	writel(cfg, gp->regs + GREG_CFG);
1933 
1934 	/* If Infinite Burst didn't stick, then use different
1935 	 * thresholds (and Apple bug fixes don't exist)
1936 	 */
1937 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1938 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1939 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1940 		writel(cfg, gp->regs + GREG_CFG);
1941 	}
1942 }
1943 
1944 static int gem_check_invariants(struct gem *gp)
1945 {
1946 	struct pci_dev *pdev = gp->pdev;
1947 	u32 mif_cfg;
1948 
1949 	/* On Apple's sungem, we can't rely on registers as the chip
1950 	 * was been powered down by the firmware. The PHY is looked
1951 	 * up later on.
1952 	 */
1953 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1954 		gp->phy_type = phy_mii_mdio0;
1955 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1956 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1957 		gp->swrst_base = 0;
1958 
1959 		mif_cfg = readl(gp->regs + MIF_CFG);
1960 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1961 		mif_cfg |= MIF_CFG_MDI0;
1962 		writel(mif_cfg, gp->regs + MIF_CFG);
1963 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1964 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1965 
1966 		/* We hard-code the PHY address so we can properly bring it out of
1967 		 * reset later on, we can't really probe it at this point, though
1968 		 * that isn't an issue.
1969 		 */
1970 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1971 			gp->mii_phy_addr = 1;
1972 		else
1973 			gp->mii_phy_addr = 0;
1974 
1975 		return 0;
1976 	}
1977 
1978 	mif_cfg = readl(gp->regs + MIF_CFG);
1979 
1980 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1981 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1982 		/* One of the MII PHYs _must_ be present
1983 		 * as this chip has no gigabit PHY.
1984 		 */
1985 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1986 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1987 			       mif_cfg);
1988 			return -1;
1989 		}
1990 	}
1991 
1992 	/* Determine initial PHY interface type guess.  MDIO1 is the
1993 	 * external PHY and thus takes precedence over MDIO0.
1994 	 */
1995 
1996 	if (mif_cfg & MIF_CFG_MDI1) {
1997 		gp->phy_type = phy_mii_mdio1;
1998 		mif_cfg |= MIF_CFG_PSELECT;
1999 		writel(mif_cfg, gp->regs + MIF_CFG);
2000 	} else if (mif_cfg & MIF_CFG_MDI0) {
2001 		gp->phy_type = phy_mii_mdio0;
2002 		mif_cfg &= ~MIF_CFG_PSELECT;
2003 		writel(mif_cfg, gp->regs + MIF_CFG);
2004 	} else {
2005 #ifdef CONFIG_SPARC
2006 		const char *p;
2007 
2008 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2009 		if (p && !strcmp(p, "serdes"))
2010 			gp->phy_type = phy_serdes;
2011 		else
2012 #endif
2013 			gp->phy_type = phy_serialink;
2014 	}
2015 	if (gp->phy_type == phy_mii_mdio1 ||
2016 	    gp->phy_type == phy_mii_mdio0) {
2017 		int i;
2018 
2019 		for (i = 0; i < 32; i++) {
2020 			gp->mii_phy_addr = i;
2021 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2022 				break;
2023 		}
2024 		if (i == 32) {
2025 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2026 				pr_err("RIO MII phy will not respond\n");
2027 				return -1;
2028 			}
2029 			gp->phy_type = phy_serdes;
2030 		}
2031 	}
2032 
2033 	/* Fetch the FIFO configurations now too. */
2034 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2035 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2036 
2037 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2038 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2039 			if (gp->tx_fifo_sz != (9 * 1024) ||
2040 			    gp->rx_fifo_sz != (20 * 1024)) {
2041 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2042 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2043 				return -1;
2044 			}
2045 			gp->swrst_base = 0;
2046 		} else {
2047 			if (gp->tx_fifo_sz != (2 * 1024) ||
2048 			    gp->rx_fifo_sz != (2 * 1024)) {
2049 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2050 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2051 				return -1;
2052 			}
2053 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2054 		}
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static void gem_reinit_chip(struct gem *gp)
2061 {
2062 	/* Reset the chip */
2063 	gem_reset(gp);
2064 
2065 	/* Make sure ints are disabled */
2066 	gem_disable_ints(gp);
2067 
2068 	/* Allocate & setup ring buffers */
2069 	gem_init_rings(gp);
2070 
2071 	/* Configure pause thresholds */
2072 	gem_init_pause_thresholds(gp);
2073 
2074 	/* Init DMA & MAC engines */
2075 	gem_init_dma(gp);
2076 	gem_init_mac(gp);
2077 }
2078 
2079 
2080 static void gem_stop_phy(struct gem *gp, int wol)
2081 {
2082 	u32 mifcfg;
2083 
2084 	/* Let the chip settle down a bit, it seems that helps
2085 	 * for sleep mode on some models
2086 	 */
2087 	msleep(10);
2088 
2089 	/* Make sure we aren't polling PHY status change. We
2090 	 * don't currently use that feature though
2091 	 */
2092 	mifcfg = readl(gp->regs + MIF_CFG);
2093 	mifcfg &= ~MIF_CFG_POLL;
2094 	writel(mifcfg, gp->regs + MIF_CFG);
2095 
2096 	if (wol && gp->has_wol) {
2097 		unsigned char *e = &gp->dev->dev_addr[0];
2098 		u32 csr;
2099 
2100 		/* Setup wake-on-lan for MAGIC packet */
2101 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2102 		       gp->regs + MAC_RXCFG);
2103 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2104 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2105 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2106 
2107 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2108 		csr = WOL_WAKECSR_ENABLE;
2109 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2110 			csr |= WOL_WAKECSR_MII;
2111 		writel(csr, gp->regs + WOL_WAKECSR);
2112 	} else {
2113 		writel(0, gp->regs + MAC_RXCFG);
2114 		(void)readl(gp->regs + MAC_RXCFG);
2115 		/* Machine sleep will die in strange ways if we
2116 		 * dont wait a bit here, looks like the chip takes
2117 		 * some time to really shut down
2118 		 */
2119 		msleep(10);
2120 	}
2121 
2122 	writel(0, gp->regs + MAC_TXCFG);
2123 	writel(0, gp->regs + MAC_XIFCFG);
2124 	writel(0, gp->regs + TXDMA_CFG);
2125 	writel(0, gp->regs + RXDMA_CFG);
2126 
2127 	if (!wol) {
2128 		gem_reset(gp);
2129 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2130 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2131 
2132 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2133 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2134 
2135 		/* According to Apple, we must set the MDIO pins to this begnign
2136 		 * state or we may 1) eat more current, 2) damage some PHYs
2137 		 */
2138 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2139 		writel(0, gp->regs + MIF_BBCLK);
2140 		writel(0, gp->regs + MIF_BBDATA);
2141 		writel(0, gp->regs + MIF_BBOENAB);
2142 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2143 		(void) readl(gp->regs + MAC_XIFCFG);
2144 	}
2145 }
2146 
2147 static int gem_do_start(struct net_device *dev)
2148 {
2149 	struct gem *gp = netdev_priv(dev);
2150 	int rc;
2151 
2152 	/* Enable the cell */
2153 	gem_get_cell(gp);
2154 
2155 	/* Make sure PCI access and bus master are enabled */
2156 	rc = pci_enable_device(gp->pdev);
2157 	if (rc) {
2158 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2159 
2160 		/* Put cell and forget it for now, it will be considered as
2161 		 * still asleep, a new sleep cycle may bring it back
2162 		 */
2163 		gem_put_cell(gp);
2164 		return -ENXIO;
2165 	}
2166 	pci_set_master(gp->pdev);
2167 
2168 	/* Init & setup chip hardware */
2169 	gem_reinit_chip(gp);
2170 
2171 	/* An interrupt might come in handy */
2172 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2173 			 IRQF_SHARED, dev->name, (void *)dev);
2174 	if (rc) {
2175 		netdev_err(dev, "failed to request irq !\n");
2176 
2177 		gem_reset(gp);
2178 		gem_clean_rings(gp);
2179 		gem_put_cell(gp);
2180 		return rc;
2181 	}
2182 
2183 	/* Mark us as attached again if we come from resume(), this has
2184 	 * no effect if we weren't detached and needs to be done now.
2185 	 */
2186 	netif_device_attach(dev);
2187 
2188 	/* Restart NAPI & queues */
2189 	gem_netif_start(gp);
2190 
2191 	/* Detect & init PHY, start autoneg etc... this will
2192 	 * eventually result in starting DMA operations when
2193 	 * the link is up
2194 	 */
2195 	gem_init_phy(gp);
2196 
2197 	return 0;
2198 }
2199 
2200 static void gem_do_stop(struct net_device *dev, int wol)
2201 {
2202 	struct gem *gp = netdev_priv(dev);
2203 
2204 	/* Stop NAPI and stop tx queue */
2205 	gem_netif_stop(gp);
2206 
2207 	/* Make sure ints are disabled. We don't care about
2208 	 * synchronizing as NAPI is disabled, thus a stray
2209 	 * interrupt will do nothing bad (our irq handler
2210 	 * just schedules NAPI)
2211 	 */
2212 	gem_disable_ints(gp);
2213 
2214 	/* Stop the link timer */
2215 	del_timer_sync(&gp->link_timer);
2216 
2217 	/* We cannot cancel the reset task while holding the
2218 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2219 	 * if we did. This is not an issue however as the reset
2220 	 * task is synchronized vs. us (rtnl_lock) and will do
2221 	 * nothing if the device is down or suspended. We do
2222 	 * still clear reset_task_pending to avoid a spurrious
2223 	 * reset later on in case we do resume before it gets
2224 	 * scheduled.
2225 	 */
2226 	gp->reset_task_pending = 0;
2227 
2228 	/* If we are going to sleep with WOL */
2229 	gem_stop_dma(gp);
2230 	msleep(10);
2231 	if (!wol)
2232 		gem_reset(gp);
2233 	msleep(10);
2234 
2235 	/* Get rid of rings */
2236 	gem_clean_rings(gp);
2237 
2238 	/* No irq needed anymore */
2239 	free_irq(gp->pdev->irq, (void *) dev);
2240 
2241 	/* Shut the PHY down eventually and setup WOL */
2242 	gem_stop_phy(gp, wol);
2243 
2244 	/* Make sure bus master is disabled */
2245 	pci_disable_device(gp->pdev);
2246 
2247 	/* Cell not needed neither if no WOL */
2248 	if (!wol)
2249 		gem_put_cell(gp);
2250 }
2251 
2252 static void gem_reset_task(struct work_struct *work)
2253 {
2254 	struct gem *gp = container_of(work, struct gem, reset_task);
2255 
2256 	/* Lock out the network stack (essentially shield ourselves
2257 	 * against a racing open, close, control call, or suspend
2258 	 */
2259 	rtnl_lock();
2260 
2261 	/* Skip the reset task if suspended or closed, or if it's
2262 	 * been cancelled by gem_do_stop (see comment there)
2263 	 */
2264 	if (!netif_device_present(gp->dev) ||
2265 	    !netif_running(gp->dev) ||
2266 	    !gp->reset_task_pending) {
2267 		rtnl_unlock();
2268 		return;
2269 	}
2270 
2271 	/* Stop the link timer */
2272 	del_timer_sync(&gp->link_timer);
2273 
2274 	/* Stop NAPI and tx */
2275 	gem_netif_stop(gp);
2276 
2277 	/* Reset the chip & rings */
2278 	gem_reinit_chip(gp);
2279 	if (gp->lstate == link_up)
2280 		gem_set_link_modes(gp);
2281 
2282 	/* Restart NAPI and Tx */
2283 	gem_netif_start(gp);
2284 
2285 	/* We are back ! */
2286 	gp->reset_task_pending = 0;
2287 
2288 	/* If the link is not up, restart autoneg, else restart the
2289 	 * polling timer
2290 	 */
2291 	if (gp->lstate != link_up)
2292 		gem_begin_auto_negotiation(gp, NULL);
2293 	else
2294 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2295 
2296 	rtnl_unlock();
2297 }
2298 
2299 static int gem_open(struct net_device *dev)
2300 {
2301 	/* We allow open while suspended, we just do nothing,
2302 	 * the chip will be initialized in resume()
2303 	 */
2304 	if (netif_device_present(dev))
2305 		return gem_do_start(dev);
2306 	return 0;
2307 }
2308 
2309 static int gem_close(struct net_device *dev)
2310 {
2311 	if (netif_device_present(dev))
2312 		gem_do_stop(dev, 0);
2313 
2314 	return 0;
2315 }
2316 
2317 #ifdef CONFIG_PM
2318 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2319 {
2320 	struct net_device *dev = pci_get_drvdata(pdev);
2321 	struct gem *gp = netdev_priv(dev);
2322 
2323 	/* Lock the network stack first to avoid racing with open/close,
2324 	 * reset task and setting calls
2325 	 */
2326 	rtnl_lock();
2327 
2328 	/* Not running, mark ourselves non-present, no need for
2329 	 * a lock here
2330 	 */
2331 	if (!netif_running(dev)) {
2332 		netif_device_detach(dev);
2333 		rtnl_unlock();
2334 		return 0;
2335 	}
2336 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2337 		    (gp->wake_on_lan && netif_running(dev)) ?
2338 		    "enabled" : "disabled");
2339 
2340 	/* Tell the network stack we're gone. gem_do_stop() below will
2341 	 * synchronize with TX, stop NAPI etc...
2342 	 */
2343 	netif_device_detach(dev);
2344 
2345 	/* Switch off chip, remember WOL setting */
2346 	gp->asleep_wol = !!gp->wake_on_lan;
2347 	gem_do_stop(dev, gp->asleep_wol);
2348 
2349 	/* Unlock the network stack */
2350 	rtnl_unlock();
2351 
2352 	return 0;
2353 }
2354 
2355 static int gem_resume(struct pci_dev *pdev)
2356 {
2357 	struct net_device *dev = pci_get_drvdata(pdev);
2358 	struct gem *gp = netdev_priv(dev);
2359 
2360 	/* See locking comment in gem_suspend */
2361 	rtnl_lock();
2362 
2363 	/* Not running, mark ourselves present, no need for
2364 	 * a lock here
2365 	 */
2366 	if (!netif_running(dev)) {
2367 		netif_device_attach(dev);
2368 		rtnl_unlock();
2369 		return 0;
2370 	}
2371 
2372 	/* Restart chip. If that fails there isn't much we can do, we
2373 	 * leave things stopped.
2374 	 */
2375 	gem_do_start(dev);
2376 
2377 	/* If we had WOL enabled, the cell clock was never turned off during
2378 	 * sleep, so we end up beeing unbalanced. Fix that here
2379 	 */
2380 	if (gp->asleep_wol)
2381 		gem_put_cell(gp);
2382 
2383 	/* Unlock the network stack */
2384 	rtnl_unlock();
2385 
2386 	return 0;
2387 }
2388 #endif /* CONFIG_PM */
2389 
2390 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2391 {
2392 	struct gem *gp = netdev_priv(dev);
2393 
2394 	/* I have seen this being called while the PM was in progress,
2395 	 * so we shield against this. Let's also not poke at registers
2396 	 * while the reset task is going on.
2397 	 *
2398 	 * TODO: Move stats collection elsewhere (link timer ?) and
2399 	 * make this a nop to avoid all those synchro issues
2400 	 */
2401 	if (!netif_device_present(dev) || !netif_running(dev))
2402 		goto bail;
2403 
2404 	/* Better safe than sorry... */
2405 	if (WARN_ON(!gp->cell_enabled))
2406 		goto bail;
2407 
2408 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2409 	writel(0, gp->regs + MAC_FCSERR);
2410 
2411 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2412 	writel(0, gp->regs + MAC_AERR);
2413 
2414 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2415 	writel(0, gp->regs + MAC_LERR);
2416 
2417 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2418 	dev->stats.collisions +=
2419 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2420 	writel(0, gp->regs + MAC_ECOLL);
2421 	writel(0, gp->regs + MAC_LCOLL);
2422  bail:
2423 	return &dev->stats;
2424 }
2425 
2426 static int gem_set_mac_address(struct net_device *dev, void *addr)
2427 {
2428 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2429 	struct gem *gp = netdev_priv(dev);
2430 	unsigned char *e = &dev->dev_addr[0];
2431 
2432 	if (!is_valid_ether_addr(macaddr->sa_data))
2433 		return -EADDRNOTAVAIL;
2434 
2435 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2436 
2437 	/* We'll just catch it later when the device is up'd or resumed */
2438 	if (!netif_running(dev) || !netif_device_present(dev))
2439 		return 0;
2440 
2441 	/* Better safe than sorry... */
2442 	if (WARN_ON(!gp->cell_enabled))
2443 		return 0;
2444 
2445 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2446 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2447 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2448 
2449 	return 0;
2450 }
2451 
2452 static void gem_set_multicast(struct net_device *dev)
2453 {
2454 	struct gem *gp = netdev_priv(dev);
2455 	u32 rxcfg, rxcfg_new;
2456 	int limit = 10000;
2457 
2458 	if (!netif_running(dev) || !netif_device_present(dev))
2459 		return;
2460 
2461 	/* Better safe than sorry... */
2462 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2463 		return;
2464 
2465 	rxcfg = readl(gp->regs + MAC_RXCFG);
2466 	rxcfg_new = gem_setup_multicast(gp);
2467 #ifdef STRIP_FCS
2468 	rxcfg_new |= MAC_RXCFG_SFCS;
2469 #endif
2470 	gp->mac_rx_cfg = rxcfg_new;
2471 
2472 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2473 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2474 		if (!limit--)
2475 			break;
2476 		udelay(10);
2477 	}
2478 
2479 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2480 	rxcfg |= rxcfg_new;
2481 
2482 	writel(rxcfg, gp->regs + MAC_RXCFG);
2483 }
2484 
2485 /* Jumbo-grams don't seem to work :-( */
2486 #define GEM_MIN_MTU	ETH_MIN_MTU
2487 #if 1
2488 #define GEM_MAX_MTU	ETH_DATA_LEN
2489 #else
2490 #define GEM_MAX_MTU	9000
2491 #endif
2492 
2493 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2494 {
2495 	struct gem *gp = netdev_priv(dev);
2496 
2497 	dev->mtu = new_mtu;
2498 
2499 	/* We'll just catch it later when the device is up'd or resumed */
2500 	if (!netif_running(dev) || !netif_device_present(dev))
2501 		return 0;
2502 
2503 	/* Better safe than sorry... */
2504 	if (WARN_ON(!gp->cell_enabled))
2505 		return 0;
2506 
2507 	gem_netif_stop(gp);
2508 	gem_reinit_chip(gp);
2509 	if (gp->lstate == link_up)
2510 		gem_set_link_modes(gp);
2511 	gem_netif_start(gp);
2512 
2513 	return 0;
2514 }
2515 
2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2517 {
2518 	struct gem *gp = netdev_priv(dev);
2519 
2520 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2521 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2522 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2523 }
2524 
2525 static int gem_get_link_ksettings(struct net_device *dev,
2526 				  struct ethtool_link_ksettings *cmd)
2527 {
2528 	struct gem *gp = netdev_priv(dev);
2529 	u32 supported, advertising;
2530 
2531 	if (gp->phy_type == phy_mii_mdio0 ||
2532 	    gp->phy_type == phy_mii_mdio1) {
2533 		if (gp->phy_mii.def)
2534 			supported = gp->phy_mii.def->features;
2535 		else
2536 			supported = (SUPPORTED_10baseT_Half |
2537 					  SUPPORTED_10baseT_Full);
2538 
2539 		/* XXX hardcoded stuff for now */
2540 		cmd->base.port = PORT_MII;
2541 		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2542 
2543 		/* Return current PHY settings */
2544 		cmd->base.autoneg = gp->want_autoneg;
2545 		cmd->base.speed = gp->phy_mii.speed;
2546 		cmd->base.duplex = gp->phy_mii.duplex;
2547 		advertising = gp->phy_mii.advertising;
2548 
2549 		/* If we started with a forced mode, we don't have a default
2550 		 * advertise set, we need to return something sensible so
2551 		 * userland can re-enable autoneg properly.
2552 		 */
2553 		if (advertising == 0)
2554 			advertising = supported;
2555 	} else { // XXX PCS ?
2556 		supported =
2557 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2558 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2559 			 SUPPORTED_Autoneg);
2560 		advertising = supported;
2561 		cmd->base.speed = 0;
2562 		cmd->base.duplex = 0;
2563 		cmd->base.port = 0;
2564 		cmd->base.phy_address = 0;
2565 		cmd->base.autoneg = 0;
2566 
2567 		/* serdes means usually a Fibre connector, with most fixed */
2568 		if (gp->phy_type == phy_serdes) {
2569 			cmd->base.port = PORT_FIBRE;
2570 			supported = (SUPPORTED_1000baseT_Half |
2571 				SUPPORTED_1000baseT_Full |
2572 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2573 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2574 			advertising = supported;
2575 			if (gp->lstate == link_up)
2576 				cmd->base.speed = SPEED_1000;
2577 			cmd->base.duplex = DUPLEX_FULL;
2578 			cmd->base.autoneg = 1;
2579 		}
2580 	}
2581 
2582 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2583 						supported);
2584 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2585 						advertising);
2586 
2587 	return 0;
2588 }
2589 
2590 static int gem_set_link_ksettings(struct net_device *dev,
2591 				  const struct ethtool_link_ksettings *cmd)
2592 {
2593 	struct gem *gp = netdev_priv(dev);
2594 	u32 speed = cmd->base.speed;
2595 	u32 advertising;
2596 
2597 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2598 						cmd->link_modes.advertising);
2599 
2600 	/* Verify the settings we care about. */
2601 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2602 	    cmd->base.autoneg != AUTONEG_DISABLE)
2603 		return -EINVAL;
2604 
2605 	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2606 	    advertising == 0)
2607 		return -EINVAL;
2608 
2609 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2610 	    ((speed != SPEED_1000 &&
2611 	      speed != SPEED_100 &&
2612 	      speed != SPEED_10) ||
2613 	     (cmd->base.duplex != DUPLEX_HALF &&
2614 	      cmd->base.duplex != DUPLEX_FULL)))
2615 		return -EINVAL;
2616 
2617 	/* Apply settings and restart link process. */
2618 	if (netif_device_present(gp->dev)) {
2619 		del_timer_sync(&gp->link_timer);
2620 		gem_begin_auto_negotiation(gp, cmd);
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 static int gem_nway_reset(struct net_device *dev)
2627 {
2628 	struct gem *gp = netdev_priv(dev);
2629 
2630 	if (!gp->want_autoneg)
2631 		return -EINVAL;
2632 
2633 	/* Restart link process  */
2634 	if (netif_device_present(gp->dev)) {
2635 		del_timer_sync(&gp->link_timer);
2636 		gem_begin_auto_negotiation(gp, NULL);
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static u32 gem_get_msglevel(struct net_device *dev)
2643 {
2644 	struct gem *gp = netdev_priv(dev);
2645 	return gp->msg_enable;
2646 }
2647 
2648 static void gem_set_msglevel(struct net_device *dev, u32 value)
2649 {
2650 	struct gem *gp = netdev_priv(dev);
2651 	gp->msg_enable = value;
2652 }
2653 
2654 
2655 /* Add more when I understand how to program the chip */
2656 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2657 
2658 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2659 
2660 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2661 {
2662 	struct gem *gp = netdev_priv(dev);
2663 
2664 	/* Add more when I understand how to program the chip */
2665 	if (gp->has_wol) {
2666 		wol->supported = WOL_SUPPORTED_MASK;
2667 		wol->wolopts = gp->wake_on_lan;
2668 	} else {
2669 		wol->supported = 0;
2670 		wol->wolopts = 0;
2671 	}
2672 }
2673 
2674 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2675 {
2676 	struct gem *gp = netdev_priv(dev);
2677 
2678 	if (!gp->has_wol)
2679 		return -EOPNOTSUPP;
2680 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2681 	return 0;
2682 }
2683 
2684 static const struct ethtool_ops gem_ethtool_ops = {
2685 	.get_drvinfo		= gem_get_drvinfo,
2686 	.get_link		= ethtool_op_get_link,
2687 	.nway_reset		= gem_nway_reset,
2688 	.get_msglevel		= gem_get_msglevel,
2689 	.set_msglevel		= gem_set_msglevel,
2690 	.get_wol		= gem_get_wol,
2691 	.set_wol		= gem_set_wol,
2692 	.get_link_ksettings	= gem_get_link_ksettings,
2693 	.set_link_ksettings	= gem_set_link_ksettings,
2694 };
2695 
2696 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2697 {
2698 	struct gem *gp = netdev_priv(dev);
2699 	struct mii_ioctl_data *data = if_mii(ifr);
2700 	int rc = -EOPNOTSUPP;
2701 
2702 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2703 	 * netif_device_present() is true and holds rtnl_lock for us
2704 	 * so we have nothing to worry about
2705 	 */
2706 
2707 	switch (cmd) {
2708 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2709 		data->phy_id = gp->mii_phy_addr;
2710 		/* Fallthrough... */
2711 
2712 	case SIOCGMIIREG:		/* Read MII PHY register. */
2713 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2714 					   data->reg_num & 0x1f);
2715 		rc = 0;
2716 		break;
2717 
2718 	case SIOCSMIIREG:		/* Write MII PHY register. */
2719 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2720 			    data->val_in);
2721 		rc = 0;
2722 		break;
2723 	}
2724 	return rc;
2725 }
2726 
2727 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2728 /* Fetch MAC address from vital product data of PCI ROM. */
2729 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2730 {
2731 	int this_offset;
2732 
2733 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2734 		void __iomem *p = rom_base + this_offset;
2735 		int i;
2736 
2737 		if (readb(p + 0) != 0x90 ||
2738 		    readb(p + 1) != 0x00 ||
2739 		    readb(p + 2) != 0x09 ||
2740 		    readb(p + 3) != 0x4e ||
2741 		    readb(p + 4) != 0x41 ||
2742 		    readb(p + 5) != 0x06)
2743 			continue;
2744 
2745 		this_offset += 6;
2746 		p += 6;
2747 
2748 		for (i = 0; i < 6; i++)
2749 			dev_addr[i] = readb(p + i);
2750 		return 1;
2751 	}
2752 	return 0;
2753 }
2754 
2755 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2756 {
2757 	size_t size;
2758 	void __iomem *p = pci_map_rom(pdev, &size);
2759 
2760 	if (p) {
2761 			int found;
2762 
2763 		found = readb(p) == 0x55 &&
2764 			readb(p + 1) == 0xaa &&
2765 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2766 		pci_unmap_rom(pdev, p);
2767 		if (found)
2768 			return;
2769 	}
2770 
2771 	/* Sun MAC prefix then 3 random bytes. */
2772 	dev_addr[0] = 0x08;
2773 	dev_addr[1] = 0x00;
2774 	dev_addr[2] = 0x20;
2775 	get_random_bytes(dev_addr + 3, 3);
2776 }
2777 #endif /* not Sparc and not PPC */
2778 
2779 static int gem_get_device_address(struct gem *gp)
2780 {
2781 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2782 	struct net_device *dev = gp->dev;
2783 	const unsigned char *addr;
2784 
2785 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2786 	if (addr == NULL) {
2787 #ifdef CONFIG_SPARC
2788 		addr = idprom->id_ethaddr;
2789 #else
2790 		printk("\n");
2791 		pr_err("%s: can't get mac-address\n", dev->name);
2792 		return -1;
2793 #endif
2794 	}
2795 	memcpy(dev->dev_addr, addr, ETH_ALEN);
2796 #else
2797 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2798 #endif
2799 	return 0;
2800 }
2801 
2802 static void gem_remove_one(struct pci_dev *pdev)
2803 {
2804 	struct net_device *dev = pci_get_drvdata(pdev);
2805 
2806 	if (dev) {
2807 		struct gem *gp = netdev_priv(dev);
2808 
2809 		unregister_netdev(dev);
2810 
2811 		/* Ensure reset task is truly gone */
2812 		cancel_work_sync(&gp->reset_task);
2813 
2814 		/* Free resources */
2815 		pci_free_consistent(pdev,
2816 				    sizeof(struct gem_init_block),
2817 				    gp->init_block,
2818 				    gp->gblock_dvma);
2819 		iounmap(gp->regs);
2820 		pci_release_regions(pdev);
2821 		free_netdev(dev);
2822 	}
2823 }
2824 
2825 static const struct net_device_ops gem_netdev_ops = {
2826 	.ndo_open		= gem_open,
2827 	.ndo_stop		= gem_close,
2828 	.ndo_start_xmit		= gem_start_xmit,
2829 	.ndo_get_stats		= gem_get_stats,
2830 	.ndo_set_rx_mode	= gem_set_multicast,
2831 	.ndo_do_ioctl		= gem_ioctl,
2832 	.ndo_tx_timeout		= gem_tx_timeout,
2833 	.ndo_change_mtu		= gem_change_mtu,
2834 	.ndo_validate_addr	= eth_validate_addr,
2835 	.ndo_set_mac_address    = gem_set_mac_address,
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2837 	.ndo_poll_controller    = gem_poll_controller,
2838 #endif
2839 };
2840 
2841 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2842 {
2843 	unsigned long gemreg_base, gemreg_len;
2844 	struct net_device *dev;
2845 	struct gem *gp;
2846 	int err, pci_using_dac;
2847 
2848 	printk_once(KERN_INFO "%s", version);
2849 
2850 	/* Apple gmac note: during probe, the chip is powered up by
2851 	 * the arch code to allow the code below to work (and to let
2852 	 * the chip be probed on the config space. It won't stay powered
2853 	 * up until the interface is brought up however, so we can't rely
2854 	 * on register configuration done at this point.
2855 	 */
2856 	err = pci_enable_device(pdev);
2857 	if (err) {
2858 		pr_err("Cannot enable MMIO operation, aborting\n");
2859 		return err;
2860 	}
2861 	pci_set_master(pdev);
2862 
2863 	/* Configure DMA attributes. */
2864 
2865 	/* All of the GEM documentation states that 64-bit DMA addressing
2866 	 * is fully supported and should work just fine.  However the
2867 	 * front end for RIO based GEMs is different and only supports
2868 	 * 32-bit addressing.
2869 	 *
2870 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2871 	 */
2872 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2873 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2874 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2875 		pci_using_dac = 1;
2876 	} else {
2877 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2878 		if (err) {
2879 			pr_err("No usable DMA configuration, aborting\n");
2880 			goto err_disable_device;
2881 		}
2882 		pci_using_dac = 0;
2883 	}
2884 
2885 	gemreg_base = pci_resource_start(pdev, 0);
2886 	gemreg_len = pci_resource_len(pdev, 0);
2887 
2888 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2889 		pr_err("Cannot find proper PCI device base address, aborting\n");
2890 		err = -ENODEV;
2891 		goto err_disable_device;
2892 	}
2893 
2894 	dev = alloc_etherdev(sizeof(*gp));
2895 	if (!dev) {
2896 		err = -ENOMEM;
2897 		goto err_disable_device;
2898 	}
2899 	SET_NETDEV_DEV(dev, &pdev->dev);
2900 
2901 	gp = netdev_priv(dev);
2902 
2903 	err = pci_request_regions(pdev, DRV_NAME);
2904 	if (err) {
2905 		pr_err("Cannot obtain PCI resources, aborting\n");
2906 		goto err_out_free_netdev;
2907 	}
2908 
2909 	gp->pdev = pdev;
2910 	gp->dev = dev;
2911 
2912 	gp->msg_enable = DEFAULT_MSG;
2913 
2914 	timer_setup(&gp->link_timer, gem_link_timer, 0);
2915 
2916 	INIT_WORK(&gp->reset_task, gem_reset_task);
2917 
2918 	gp->lstate = link_down;
2919 	gp->timer_ticks = 0;
2920 	netif_carrier_off(dev);
2921 
2922 	gp->regs = ioremap(gemreg_base, gemreg_len);
2923 	if (!gp->regs) {
2924 		pr_err("Cannot map device registers, aborting\n");
2925 		err = -EIO;
2926 		goto err_out_free_res;
2927 	}
2928 
2929 	/* On Apple, we want a reference to the Open Firmware device-tree
2930 	 * node. We use it for clock control.
2931 	 */
2932 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2933 	gp->of_node = pci_device_to_OF_node(pdev);
2934 #endif
2935 
2936 	/* Only Apple version supports WOL afaik */
2937 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2938 		gp->has_wol = 1;
2939 
2940 	/* Make sure cell is enabled */
2941 	gem_get_cell(gp);
2942 
2943 	/* Make sure everything is stopped and in init state */
2944 	gem_reset(gp);
2945 
2946 	/* Fill up the mii_phy structure (even if we won't use it) */
2947 	gp->phy_mii.dev = dev;
2948 	gp->phy_mii.mdio_read = _sungem_phy_read;
2949 	gp->phy_mii.mdio_write = _sungem_phy_write;
2950 #ifdef CONFIG_PPC_PMAC
2951 	gp->phy_mii.platform_data = gp->of_node;
2952 #endif
2953 	/* By default, we start with autoneg */
2954 	gp->want_autoneg = 1;
2955 
2956 	/* Check fifo sizes, PHY type, etc... */
2957 	if (gem_check_invariants(gp)) {
2958 		err = -ENODEV;
2959 		goto err_out_iounmap;
2960 	}
2961 
2962 	/* It is guaranteed that the returned buffer will be at least
2963 	 * PAGE_SIZE aligned.
2964 	 */
2965 	gp->init_block = (struct gem_init_block *)
2966 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2967 				     &gp->gblock_dvma);
2968 	if (!gp->init_block) {
2969 		pr_err("Cannot allocate init block, aborting\n");
2970 		err = -ENOMEM;
2971 		goto err_out_iounmap;
2972 	}
2973 
2974 	err = gem_get_device_address(gp);
2975 	if (err)
2976 		goto err_out_free_consistent;
2977 
2978 	dev->netdev_ops = &gem_netdev_ops;
2979 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2980 	dev->ethtool_ops = &gem_ethtool_ops;
2981 	dev->watchdog_timeo = 5 * HZ;
2982 	dev->dma = 0;
2983 
2984 	/* Set that now, in case PM kicks in now */
2985 	pci_set_drvdata(pdev, dev);
2986 
2987 	/* We can do scatter/gather and HW checksum */
2988 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2989 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2990 	if (pci_using_dac)
2991 		dev->features |= NETIF_F_HIGHDMA;
2992 
2993 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2994 	dev->min_mtu = GEM_MIN_MTU;
2995 	dev->max_mtu = GEM_MAX_MTU;
2996 
2997 	/* Register with kernel */
2998 	if (register_netdev(dev)) {
2999 		pr_err("Cannot register net device, aborting\n");
3000 		err = -ENOMEM;
3001 		goto err_out_free_consistent;
3002 	}
3003 
3004 	/* Undo the get_cell with appropriate locking (we could use
3005 	 * ndo_init/uninit but that would be even more clumsy imho)
3006 	 */
3007 	rtnl_lock();
3008 	gem_put_cell(gp);
3009 	rtnl_unlock();
3010 
3011 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3012 		    dev->dev_addr);
3013 	return 0;
3014 
3015 err_out_free_consistent:
3016 	gem_remove_one(pdev);
3017 err_out_iounmap:
3018 	gem_put_cell(gp);
3019 	iounmap(gp->regs);
3020 
3021 err_out_free_res:
3022 	pci_release_regions(pdev);
3023 
3024 err_out_free_netdev:
3025 	free_netdev(dev);
3026 err_disable_device:
3027 	pci_disable_device(pdev);
3028 	return err;
3029 
3030 }
3031 
3032 
3033 static struct pci_driver gem_driver = {
3034 	.name		= GEM_MODULE_NAME,
3035 	.id_table	= gem_pci_tbl,
3036 	.probe		= gem_init_one,
3037 	.remove		= gem_remove_one,
3038 #ifdef CONFIG_PM
3039 	.suspend	= gem_suspend,
3040 	.resume		= gem_resume,
3041 #endif /* CONFIG_PM */
3042 };
3043 
3044 module_pci_driver(gem_driver);
3045