xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 615c36f5)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h>
48 #include <asm/irq.h>
49 
50 #ifdef CONFIG_SPARC
51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif
54 
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h>
57 #include <asm/prom.h>
58 #include <asm/machdep.h>
59 #include <asm/pmac_feature.h>
60 #endif
61 
62 #include <linux/sungem_phy.h>
63 #include "sungem.h"
64 
65 /* Stripping FCS is causing problems, disabled for now */
66 #undef STRIP_FCS
67 
68 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
69 			 NETIF_MSG_PROBE	| \
70 			 NETIF_MSG_LINK)
71 
72 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
73 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
74 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
75 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
76 
77 #define DRV_NAME	"sungem"
78 #define DRV_VERSION	"1.0"
79 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
80 
81 static char version[] __devinitdata =
82         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
83 
84 MODULE_AUTHOR(DRV_AUTHOR);
85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
86 MODULE_LICENSE("GPL");
87 
88 #define GEM_MODULE_NAME	"gem"
89 
90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
91 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
92 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
93 
94 	/* These models only differ from the original GEM in
95 	 * that their tx/rx fifos are of a different size and
96 	 * they only support 10/100 speeds. -DaveM
97 	 *
98 	 * Apple's GMAC does support gigabit on machines with
99 	 * the BCM54xx PHYs. -BenH
100 	 */
101 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
112 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
114 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 	{0, }
116 };
117 
118 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
119 
120 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
121 {
122 	u32 cmd;
123 	int limit = 10000;
124 
125 	cmd  = (1 << 30);
126 	cmd |= (2 << 28);
127 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
128 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
129 	cmd |= (MIF_FRAME_TAMSB);
130 	writel(cmd, gp->regs + MIF_FRAME);
131 
132 	while (--limit) {
133 		cmd = readl(gp->regs + MIF_FRAME);
134 		if (cmd & MIF_FRAME_TALSB)
135 			break;
136 
137 		udelay(10);
138 	}
139 
140 	if (!limit)
141 		cmd = 0xffff;
142 
143 	return cmd & MIF_FRAME_DATA;
144 }
145 
146 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
147 {
148 	struct gem *gp = netdev_priv(dev);
149 	return __phy_read(gp, mii_id, reg);
150 }
151 
152 static inline u16 phy_read(struct gem *gp, int reg)
153 {
154 	return __phy_read(gp, gp->mii_phy_addr, reg);
155 }
156 
157 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
158 {
159 	u32 cmd;
160 	int limit = 10000;
161 
162 	cmd  = (1 << 30);
163 	cmd |= (1 << 28);
164 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
165 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
166 	cmd |= (MIF_FRAME_TAMSB);
167 	cmd |= (val & MIF_FRAME_DATA);
168 	writel(cmd, gp->regs + MIF_FRAME);
169 
170 	while (limit--) {
171 		cmd = readl(gp->regs + MIF_FRAME);
172 		if (cmd & MIF_FRAME_TALSB)
173 			break;
174 
175 		udelay(10);
176 	}
177 }
178 
179 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
180 {
181 	struct gem *gp = netdev_priv(dev);
182 	__phy_write(gp, mii_id, reg, val & 0xffff);
183 }
184 
185 static inline void phy_write(struct gem *gp, int reg, u16 val)
186 {
187 	__phy_write(gp, gp->mii_phy_addr, reg, val);
188 }
189 
190 static inline void gem_enable_ints(struct gem *gp)
191 {
192 	/* Enable all interrupts but TXDONE */
193 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
194 }
195 
196 static inline void gem_disable_ints(struct gem *gp)
197 {
198 	/* Disable all interrupts, including TXDONE */
199 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
200 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
201 }
202 
203 static void gem_get_cell(struct gem *gp)
204 {
205 	BUG_ON(gp->cell_enabled < 0);
206 	gp->cell_enabled++;
207 #ifdef CONFIG_PPC_PMAC
208 	if (gp->cell_enabled == 1) {
209 		mb();
210 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
211 		udelay(10);
212 	}
213 #endif /* CONFIG_PPC_PMAC */
214 }
215 
216 /* Turn off the chip's clock */
217 static void gem_put_cell(struct gem *gp)
218 {
219 	BUG_ON(gp->cell_enabled <= 0);
220 	gp->cell_enabled--;
221 #ifdef CONFIG_PPC_PMAC
222 	if (gp->cell_enabled == 0) {
223 		mb();
224 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
225 		udelay(10);
226 	}
227 #endif /* CONFIG_PPC_PMAC */
228 }
229 
230 static inline void gem_netif_stop(struct gem *gp)
231 {
232 	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
233 	napi_disable(&gp->napi);
234 	netif_tx_disable(gp->dev);
235 }
236 
237 static inline void gem_netif_start(struct gem *gp)
238 {
239 	/* NOTE: unconditional netif_wake_queue is only
240 	 * appropriate so long as all callers are assured to
241 	 * have free tx slots.
242 	 */
243 	netif_wake_queue(gp->dev);
244 	napi_enable(&gp->napi);
245 }
246 
247 static void gem_schedule_reset(struct gem *gp)
248 {
249 	gp->reset_task_pending = 1;
250 	schedule_work(&gp->reset_task);
251 }
252 
253 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
254 {
255 	if (netif_msg_intr(gp))
256 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
257 }
258 
259 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
260 {
261 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
262 	u32 pcs_miistat;
263 
264 	if (netif_msg_intr(gp))
265 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
266 			gp->dev->name, pcs_istat);
267 
268 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
269 		netdev_err(dev, "PCS irq but no link status change???\n");
270 		return 0;
271 	}
272 
273 	/* The link status bit latches on zero, so you must
274 	 * read it twice in such a case to see a transition
275 	 * to the link being up.
276 	 */
277 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
278 	if (!(pcs_miistat & PCS_MIISTAT_LS))
279 		pcs_miistat |=
280 			(readl(gp->regs + PCS_MIISTAT) &
281 			 PCS_MIISTAT_LS);
282 
283 	if (pcs_miistat & PCS_MIISTAT_ANC) {
284 		/* The remote-fault indication is only valid
285 		 * when autoneg has completed.
286 		 */
287 		if (pcs_miistat & PCS_MIISTAT_RF)
288 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
289 		else
290 			netdev_info(dev, "PCS AutoNEG complete\n");
291 	}
292 
293 	if (pcs_miistat & PCS_MIISTAT_LS) {
294 		netdev_info(dev, "PCS link is now up\n");
295 		netif_carrier_on(gp->dev);
296 	} else {
297 		netdev_info(dev, "PCS link is now down\n");
298 		netif_carrier_off(gp->dev);
299 		/* If this happens and the link timer is not running,
300 		 * reset so we re-negotiate.
301 		 */
302 		if (!timer_pending(&gp->link_timer))
303 			return 1;
304 	}
305 
306 	return 0;
307 }
308 
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
310 {
311 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
312 
313 	if (netif_msg_intr(gp))
314 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 			gp->dev->name, txmac_stat);
316 
317 	/* Defer timer expiration is quite normal,
318 	 * don't even log the event.
319 	 */
320 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
322 		return 0;
323 
324 	if (txmac_stat & MAC_TXSTAT_URUN) {
325 		netdev_err(dev, "TX MAC xmit underrun\n");
326 		dev->stats.tx_fifo_errors++;
327 	}
328 
329 	if (txmac_stat & MAC_TXSTAT_MPE) {
330 		netdev_err(dev, "TX MAC max packet size error\n");
331 		dev->stats.tx_errors++;
332 	}
333 
334 	/* The rest are all cases of one of the 16-bit TX
335 	 * counters expiring.
336 	 */
337 	if (txmac_stat & MAC_TXSTAT_NCE)
338 		dev->stats.collisions += 0x10000;
339 
340 	if (txmac_stat & MAC_TXSTAT_ECE) {
341 		dev->stats.tx_aborted_errors += 0x10000;
342 		dev->stats.collisions += 0x10000;
343 	}
344 
345 	if (txmac_stat & MAC_TXSTAT_LCE) {
346 		dev->stats.tx_aborted_errors += 0x10000;
347 		dev->stats.collisions += 0x10000;
348 	}
349 
350 	/* We do not keep track of MAC_TXSTAT_FCE and
351 	 * MAC_TXSTAT_PCE events.
352 	 */
353 	return 0;
354 }
355 
356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
357  * so we do the following.
358  *
359  * If any part of the reset goes wrong, we return 1 and that causes the
360  * whole chip to be reset.
361  */
362 static int gem_rxmac_reset(struct gem *gp)
363 {
364 	struct net_device *dev = gp->dev;
365 	int limit, i;
366 	u64 desc_dma;
367 	u32 val;
368 
369 	/* First, reset & disable MAC RX. */
370 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
371 	for (limit = 0; limit < 5000; limit++) {
372 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
373 			break;
374 		udelay(10);
375 	}
376 	if (limit == 5000) {
377 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
378 		return 1;
379 	}
380 
381 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
382 	       gp->regs + MAC_RXCFG);
383 	for (limit = 0; limit < 5000; limit++) {
384 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
385 			break;
386 		udelay(10);
387 	}
388 	if (limit == 5000) {
389 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
390 		return 1;
391 	}
392 
393 	/* Second, disable RX DMA. */
394 	writel(0, gp->regs + RXDMA_CFG);
395 	for (limit = 0; limit < 5000; limit++) {
396 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
397 			break;
398 		udelay(10);
399 	}
400 	if (limit == 5000) {
401 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
402 		return 1;
403 	}
404 
405 	udelay(5000);
406 
407 	/* Execute RX reset command. */
408 	writel(gp->swrst_base | GREG_SWRST_RXRST,
409 	       gp->regs + GREG_SWRST);
410 	for (limit = 0; limit < 5000; limit++) {
411 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
412 			break;
413 		udelay(10);
414 	}
415 	if (limit == 5000) {
416 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
417 		return 1;
418 	}
419 
420 	/* Refresh the RX ring. */
421 	for (i = 0; i < RX_RING_SIZE; i++) {
422 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
423 
424 		if (gp->rx_skbs[i] == NULL) {
425 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
426 			return 1;
427 		}
428 
429 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
430 	}
431 	gp->rx_new = gp->rx_old = 0;
432 
433 	/* Now we must reprogram the rest of RX unit. */
434 	desc_dma = (u64) gp->gblock_dvma;
435 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
436 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
437 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
438 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
439 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
440 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
441 	writel(val, gp->regs + RXDMA_CFG);
442 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
443 		writel(((5 & RXDMA_BLANK_IPKTS) |
444 			((8 << 12) & RXDMA_BLANK_ITIME)),
445 		       gp->regs + RXDMA_BLANK);
446 	else
447 		writel(((5 & RXDMA_BLANK_IPKTS) |
448 			((4 << 12) & RXDMA_BLANK_ITIME)),
449 		       gp->regs + RXDMA_BLANK);
450 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
451 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
452 	writel(val, gp->regs + RXDMA_PTHRESH);
453 	val = readl(gp->regs + RXDMA_CFG);
454 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
455 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
456 	val = readl(gp->regs + MAC_RXCFG);
457 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
458 
459 	return 0;
460 }
461 
462 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
463 {
464 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
465 	int ret = 0;
466 
467 	if (netif_msg_intr(gp))
468 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
469 			gp->dev->name, rxmac_stat);
470 
471 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
472 		u32 smac = readl(gp->regs + MAC_SMACHINE);
473 
474 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
475 		dev->stats.rx_over_errors++;
476 		dev->stats.rx_fifo_errors++;
477 
478 		ret = gem_rxmac_reset(gp);
479 	}
480 
481 	if (rxmac_stat & MAC_RXSTAT_ACE)
482 		dev->stats.rx_frame_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_CCE)
485 		dev->stats.rx_crc_errors += 0x10000;
486 
487 	if (rxmac_stat & MAC_RXSTAT_LCE)
488 		dev->stats.rx_length_errors += 0x10000;
489 
490 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
491 	 * events.
492 	 */
493 	return ret;
494 }
495 
496 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
497 {
498 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
499 
500 	if (netif_msg_intr(gp))
501 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
502 			gp->dev->name, mac_cstat);
503 
504 	/* This interrupt is just for pause frame and pause
505 	 * tracking.  It is useful for diagnostics and debug
506 	 * but probably by default we will mask these events.
507 	 */
508 	if (mac_cstat & MAC_CSTAT_PS)
509 		gp->pause_entered++;
510 
511 	if (mac_cstat & MAC_CSTAT_PRCV)
512 		gp->pause_last_time_recvd = (mac_cstat >> 16);
513 
514 	return 0;
515 }
516 
517 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
518 {
519 	u32 mif_status = readl(gp->regs + MIF_STATUS);
520 	u32 reg_val, changed_bits;
521 
522 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
523 	changed_bits = (mif_status & MIF_STATUS_STAT);
524 
525 	gem_handle_mif_event(gp, reg_val, changed_bits);
526 
527 	return 0;
528 }
529 
530 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
531 {
532 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
533 
534 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
535 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
536 		netdev_err(dev, "PCI error [%04x]", pci_estat);
537 
538 		if (pci_estat & GREG_PCIESTAT_BADACK)
539 			pr_cont(" <No ACK64# during ABS64 cycle>");
540 		if (pci_estat & GREG_PCIESTAT_DTRTO)
541 			pr_cont(" <Delayed transaction timeout>");
542 		if (pci_estat & GREG_PCIESTAT_OTHER)
543 			pr_cont(" <other>");
544 		pr_cont("\n");
545 	} else {
546 		pci_estat |= GREG_PCIESTAT_OTHER;
547 		netdev_err(dev, "PCI error\n");
548 	}
549 
550 	if (pci_estat & GREG_PCIESTAT_OTHER) {
551 		u16 pci_cfg_stat;
552 
553 		/* Interrogate PCI config space for the
554 		 * true cause.
555 		 */
556 		pci_read_config_word(gp->pdev, PCI_STATUS,
557 				     &pci_cfg_stat);
558 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
559 			   pci_cfg_stat);
560 		if (pci_cfg_stat & PCI_STATUS_PARITY)
561 			netdev_err(dev, "PCI parity error detected\n");
562 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
563 			netdev_err(dev, "PCI target abort\n");
564 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
565 			netdev_err(dev, "PCI master acks target abort\n");
566 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
567 			netdev_err(dev, "PCI master abort\n");
568 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
569 			netdev_err(dev, "PCI system error SERR#\n");
570 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
571 			netdev_err(dev, "PCI parity error\n");
572 
573 		/* Write the error bits back to clear them. */
574 		pci_cfg_stat &= (PCI_STATUS_PARITY |
575 				 PCI_STATUS_SIG_TARGET_ABORT |
576 				 PCI_STATUS_REC_TARGET_ABORT |
577 				 PCI_STATUS_REC_MASTER_ABORT |
578 				 PCI_STATUS_SIG_SYSTEM_ERROR |
579 				 PCI_STATUS_DETECTED_PARITY);
580 		pci_write_config_word(gp->pdev,
581 				      PCI_STATUS, pci_cfg_stat);
582 	}
583 
584 	/* For all PCI errors, we should reset the chip. */
585 	return 1;
586 }
587 
588 /* All non-normal interrupt conditions get serviced here.
589  * Returns non-zero if we should just exit the interrupt
590  * handler right now (ie. if we reset the card which invalidates
591  * all of the other original irq status bits).
592  */
593 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
594 {
595 	if (gem_status & GREG_STAT_RXNOBUF) {
596 		/* Frame arrived, no free RX buffers available. */
597 		if (netif_msg_rx_err(gp))
598 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
599 				gp->dev->name);
600 		dev->stats.rx_dropped++;
601 	}
602 
603 	if (gem_status & GREG_STAT_RXTAGERR) {
604 		/* corrupt RX tag framing */
605 		if (netif_msg_rx_err(gp))
606 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
607 				gp->dev->name);
608 		dev->stats.rx_errors++;
609 
610 		return 1;
611 	}
612 
613 	if (gem_status & GREG_STAT_PCS) {
614 		if (gem_pcs_interrupt(dev, gp, gem_status))
615 			return 1;
616 	}
617 
618 	if (gem_status & GREG_STAT_TXMAC) {
619 		if (gem_txmac_interrupt(dev, gp, gem_status))
620 			return 1;
621 	}
622 
623 	if (gem_status & GREG_STAT_RXMAC) {
624 		if (gem_rxmac_interrupt(dev, gp, gem_status))
625 			return 1;
626 	}
627 
628 	if (gem_status & GREG_STAT_MAC) {
629 		if (gem_mac_interrupt(dev, gp, gem_status))
630 			return 1;
631 	}
632 
633 	if (gem_status & GREG_STAT_MIF) {
634 		if (gem_mif_interrupt(dev, gp, gem_status))
635 			return 1;
636 	}
637 
638 	if (gem_status & GREG_STAT_PCIERR) {
639 		if (gem_pci_interrupt(dev, gp, gem_status))
640 			return 1;
641 	}
642 
643 	return 0;
644 }
645 
646 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
647 {
648 	int entry, limit;
649 
650 	entry = gp->tx_old;
651 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
652 	while (entry != limit) {
653 		struct sk_buff *skb;
654 		struct gem_txd *txd;
655 		dma_addr_t dma_addr;
656 		u32 dma_len;
657 		int frag;
658 
659 		if (netif_msg_tx_done(gp))
660 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
661 				gp->dev->name, entry);
662 		skb = gp->tx_skbs[entry];
663 		if (skb_shinfo(skb)->nr_frags) {
664 			int last = entry + skb_shinfo(skb)->nr_frags;
665 			int walk = entry;
666 			int incomplete = 0;
667 
668 			last &= (TX_RING_SIZE - 1);
669 			for (;;) {
670 				walk = NEXT_TX(walk);
671 				if (walk == limit)
672 					incomplete = 1;
673 				if (walk == last)
674 					break;
675 			}
676 			if (incomplete)
677 				break;
678 		}
679 		gp->tx_skbs[entry] = NULL;
680 		dev->stats.tx_bytes += skb->len;
681 
682 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
683 			txd = &gp->init_block->txd[entry];
684 
685 			dma_addr = le64_to_cpu(txd->buffer);
686 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
687 
688 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
689 			entry = NEXT_TX(entry);
690 		}
691 
692 		dev->stats.tx_packets++;
693 		dev_kfree_skb(skb);
694 	}
695 	gp->tx_old = entry;
696 
697 	/* Need to make the tx_old update visible to gem_start_xmit()
698 	 * before checking for netif_queue_stopped().  Without the
699 	 * memory barrier, there is a small possibility that gem_start_xmit()
700 	 * will miss it and cause the queue to be stopped forever.
701 	 */
702 	smp_mb();
703 
704 	if (unlikely(netif_queue_stopped(dev) &&
705 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
706 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
707 
708 		__netif_tx_lock(txq, smp_processor_id());
709 		if (netif_queue_stopped(dev) &&
710 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
711 			netif_wake_queue(dev);
712 		__netif_tx_unlock(txq);
713 	}
714 }
715 
716 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
717 {
718 	int cluster_start, curr, count, kick;
719 
720 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
721 	count = 0;
722 	kick = -1;
723 	wmb();
724 	while (curr != limit) {
725 		curr = NEXT_RX(curr);
726 		if (++count == 4) {
727 			struct gem_rxd *rxd =
728 				&gp->init_block->rxd[cluster_start];
729 			for (;;) {
730 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
731 				rxd++;
732 				cluster_start = NEXT_RX(cluster_start);
733 				if (cluster_start == curr)
734 					break;
735 			}
736 			kick = curr;
737 			count = 0;
738 		}
739 	}
740 	if (kick >= 0) {
741 		mb();
742 		writel(kick, gp->regs + RXDMA_KICK);
743 	}
744 }
745 
746 #define ALIGNED_RX_SKB_ADDR(addr) \
747         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
748 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
749 						gfp_t gfp_flags)
750 {
751 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
752 
753 	if (likely(skb)) {
754 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
755 		skb_reserve(skb, offset);
756 		skb->dev = dev;
757 	}
758 	return skb;
759 }
760 
761 static int gem_rx(struct gem *gp, int work_to_do)
762 {
763 	struct net_device *dev = gp->dev;
764 	int entry, drops, work_done = 0;
765 	u32 done;
766 	__sum16 csum;
767 
768 	if (netif_msg_rx_status(gp))
769 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
770 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
771 
772 	entry = gp->rx_new;
773 	drops = 0;
774 	done = readl(gp->regs + RXDMA_DONE);
775 	for (;;) {
776 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
777 		struct sk_buff *skb;
778 		u64 status = le64_to_cpu(rxd->status_word);
779 		dma_addr_t dma_addr;
780 		int len;
781 
782 		if ((status & RXDCTRL_OWN) != 0)
783 			break;
784 
785 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
786 			break;
787 
788 		/* When writing back RX descriptor, GEM writes status
789 		 * then buffer address, possibly in separate transactions.
790 		 * If we don't wait for the chip to write both, we could
791 		 * post a new buffer to this descriptor then have GEM spam
792 		 * on the buffer address.  We sync on the RX completion
793 		 * register to prevent this from happening.
794 		 */
795 		if (entry == done) {
796 			done = readl(gp->regs + RXDMA_DONE);
797 			if (entry == done)
798 				break;
799 		}
800 
801 		/* We can now account for the work we're about to do */
802 		work_done++;
803 
804 		skb = gp->rx_skbs[entry];
805 
806 		len = (status & RXDCTRL_BUFSZ) >> 16;
807 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
808 			dev->stats.rx_errors++;
809 			if (len < ETH_ZLEN)
810 				dev->stats.rx_length_errors++;
811 			if (len & RXDCTRL_BAD)
812 				dev->stats.rx_crc_errors++;
813 
814 			/* We'll just return it to GEM. */
815 		drop_it:
816 			dev->stats.rx_dropped++;
817 			goto next;
818 		}
819 
820 		dma_addr = le64_to_cpu(rxd->buffer);
821 		if (len > RX_COPY_THRESHOLD) {
822 			struct sk_buff *new_skb;
823 
824 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
825 			if (new_skb == NULL) {
826 				drops++;
827 				goto drop_it;
828 			}
829 			pci_unmap_page(gp->pdev, dma_addr,
830 				       RX_BUF_ALLOC_SIZE(gp),
831 				       PCI_DMA_FROMDEVICE);
832 			gp->rx_skbs[entry] = new_skb;
833 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
834 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
835 							       virt_to_page(new_skb->data),
836 							       offset_in_page(new_skb->data),
837 							       RX_BUF_ALLOC_SIZE(gp),
838 							       PCI_DMA_FROMDEVICE));
839 			skb_reserve(new_skb, RX_OFFSET);
840 
841 			/* Trim the original skb for the netif. */
842 			skb_trim(skb, len);
843 		} else {
844 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
845 
846 			if (copy_skb == NULL) {
847 				drops++;
848 				goto drop_it;
849 			}
850 
851 			skb_reserve(copy_skb, 2);
852 			skb_put(copy_skb, len);
853 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
854 			skb_copy_from_linear_data(skb, copy_skb->data, len);
855 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
856 
857 			/* We'll reuse the original ring buffer. */
858 			skb = copy_skb;
859 		}
860 
861 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
862 		skb->csum = csum_unfold(csum);
863 		skb->ip_summed = CHECKSUM_COMPLETE;
864 		skb->protocol = eth_type_trans(skb, gp->dev);
865 
866 		napi_gro_receive(&gp->napi, skb);
867 
868 		dev->stats.rx_packets++;
869 		dev->stats.rx_bytes += len;
870 
871 	next:
872 		entry = NEXT_RX(entry);
873 	}
874 
875 	gem_post_rxds(gp, entry);
876 
877 	gp->rx_new = entry;
878 
879 	if (drops)
880 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
881 
882 	return work_done;
883 }
884 
885 static int gem_poll(struct napi_struct *napi, int budget)
886 {
887 	struct gem *gp = container_of(napi, struct gem, napi);
888 	struct net_device *dev = gp->dev;
889 	int work_done;
890 
891 	work_done = 0;
892 	do {
893 		/* Handle anomalies */
894 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
895 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
896 			int reset;
897 
898 			/* We run the abnormal interrupt handling code with
899 			 * the Tx lock. It only resets the Rx portion of the
900 			 * chip, but we need to guard it against DMA being
901 			 * restarted by the link poll timer
902 			 */
903 			__netif_tx_lock(txq, smp_processor_id());
904 			reset = gem_abnormal_irq(dev, gp, gp->status);
905 			__netif_tx_unlock(txq);
906 			if (reset) {
907 				gem_schedule_reset(gp);
908 				napi_complete(napi);
909 				return work_done;
910 			}
911 		}
912 
913 		/* Run TX completion thread */
914 		gem_tx(dev, gp, gp->status);
915 
916 		/* Run RX thread. We don't use any locking here,
917 		 * code willing to do bad things - like cleaning the
918 		 * rx ring - must call napi_disable(), which
919 		 * schedule_timeout()'s if polling is already disabled.
920 		 */
921 		work_done += gem_rx(gp, budget - work_done);
922 
923 		if (work_done >= budget)
924 			return work_done;
925 
926 		gp->status = readl(gp->regs + GREG_STAT);
927 	} while (gp->status & GREG_STAT_NAPI);
928 
929 	napi_complete(napi);
930 	gem_enable_ints(gp);
931 
932 	return work_done;
933 }
934 
935 static irqreturn_t gem_interrupt(int irq, void *dev_id)
936 {
937 	struct net_device *dev = dev_id;
938 	struct gem *gp = netdev_priv(dev);
939 
940 	if (napi_schedule_prep(&gp->napi)) {
941 		u32 gem_status = readl(gp->regs + GREG_STAT);
942 
943 		if (unlikely(gem_status == 0)) {
944 			napi_enable(&gp->napi);
945 			return IRQ_NONE;
946 		}
947 		if (netif_msg_intr(gp))
948 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
949 			       gp->dev->name, gem_status);
950 
951 		gp->status = gem_status;
952 		gem_disable_ints(gp);
953 		__napi_schedule(&gp->napi);
954 	}
955 
956 	/* If polling was disabled at the time we received that
957 	 * interrupt, we may return IRQ_HANDLED here while we
958 	 * should return IRQ_NONE. No big deal...
959 	 */
960 	return IRQ_HANDLED;
961 }
962 
963 #ifdef CONFIG_NET_POLL_CONTROLLER
964 static void gem_poll_controller(struct net_device *dev)
965 {
966 	struct gem *gp = netdev_priv(dev);
967 
968 	disable_irq(gp->pdev->irq);
969 	gem_interrupt(gp->pdev->irq, dev);
970 	enable_irq(gp->pdev->irq);
971 }
972 #endif
973 
974 static void gem_tx_timeout(struct net_device *dev)
975 {
976 	struct gem *gp = netdev_priv(dev);
977 
978 	netdev_err(dev, "transmit timed out, resetting\n");
979 
980 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
981 		   readl(gp->regs + TXDMA_CFG),
982 		   readl(gp->regs + MAC_TXSTAT),
983 		   readl(gp->regs + MAC_TXCFG));
984 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
985 		   readl(gp->regs + RXDMA_CFG),
986 		   readl(gp->regs + MAC_RXSTAT),
987 		   readl(gp->regs + MAC_RXCFG));
988 
989 	gem_schedule_reset(gp);
990 }
991 
992 static __inline__ int gem_intme(int entry)
993 {
994 	/* Algorithm: IRQ every 1/2 of descriptors. */
995 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
996 		return 1;
997 
998 	return 0;
999 }
1000 
1001 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1002 				  struct net_device *dev)
1003 {
1004 	struct gem *gp = netdev_priv(dev);
1005 	int entry;
1006 	u64 ctrl;
1007 
1008 	ctrl = 0;
1009 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1010 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1011 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1012 
1013 		ctrl = (TXDCTRL_CENAB |
1014 			(csum_start_off << 15) |
1015 			(csum_stuff_off << 21));
1016 	}
1017 
1018 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1019 		/* This is a hard error, log it. */
1020 		if (!netif_queue_stopped(dev)) {
1021 			netif_stop_queue(dev);
1022 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1023 		}
1024 		return NETDEV_TX_BUSY;
1025 	}
1026 
1027 	entry = gp->tx_new;
1028 	gp->tx_skbs[entry] = skb;
1029 
1030 	if (skb_shinfo(skb)->nr_frags == 0) {
1031 		struct gem_txd *txd = &gp->init_block->txd[entry];
1032 		dma_addr_t mapping;
1033 		u32 len;
1034 
1035 		len = skb->len;
1036 		mapping = pci_map_page(gp->pdev,
1037 				       virt_to_page(skb->data),
1038 				       offset_in_page(skb->data),
1039 				       len, PCI_DMA_TODEVICE);
1040 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1041 		if (gem_intme(entry))
1042 			ctrl |= TXDCTRL_INTME;
1043 		txd->buffer = cpu_to_le64(mapping);
1044 		wmb();
1045 		txd->control_word = cpu_to_le64(ctrl);
1046 		entry = NEXT_TX(entry);
1047 	} else {
1048 		struct gem_txd *txd;
1049 		u32 first_len;
1050 		u64 intme;
1051 		dma_addr_t first_mapping;
1052 		int frag, first_entry = entry;
1053 
1054 		intme = 0;
1055 		if (gem_intme(entry))
1056 			intme |= TXDCTRL_INTME;
1057 
1058 		/* We must give this initial chunk to the device last.
1059 		 * Otherwise we could race with the device.
1060 		 */
1061 		first_len = skb_headlen(skb);
1062 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1063 					     offset_in_page(skb->data),
1064 					     first_len, PCI_DMA_TODEVICE);
1065 		entry = NEXT_TX(entry);
1066 
1067 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1068 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1069 			u32 len;
1070 			dma_addr_t mapping;
1071 			u64 this_ctrl;
1072 
1073 			len = skb_frag_size(this_frag);
1074 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1075 						   0, len, DMA_TO_DEVICE);
1076 			this_ctrl = ctrl;
1077 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1078 				this_ctrl |= TXDCTRL_EOF;
1079 
1080 			txd = &gp->init_block->txd[entry];
1081 			txd->buffer = cpu_to_le64(mapping);
1082 			wmb();
1083 			txd->control_word = cpu_to_le64(this_ctrl | len);
1084 
1085 			if (gem_intme(entry))
1086 				intme |= TXDCTRL_INTME;
1087 
1088 			entry = NEXT_TX(entry);
1089 		}
1090 		txd = &gp->init_block->txd[first_entry];
1091 		txd->buffer = cpu_to_le64(first_mapping);
1092 		wmb();
1093 		txd->control_word =
1094 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1095 	}
1096 
1097 	gp->tx_new = entry;
1098 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1099 		netif_stop_queue(dev);
1100 
1101 		/* netif_stop_queue() must be done before checking
1102 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1103 		 * in gem_tx(), we update tx_old before checking for
1104 		 * netif_queue_stopped().
1105 		 */
1106 		smp_mb();
1107 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1108 			netif_wake_queue(dev);
1109 	}
1110 	if (netif_msg_tx_queued(gp))
1111 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1112 		       dev->name, entry, skb->len);
1113 	mb();
1114 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1115 
1116 	return NETDEV_TX_OK;
1117 }
1118 
1119 static void gem_pcs_reset(struct gem *gp)
1120 {
1121 	int limit;
1122 	u32 val;
1123 
1124 	/* Reset PCS unit. */
1125 	val = readl(gp->regs + PCS_MIICTRL);
1126 	val |= PCS_MIICTRL_RST;
1127 	writel(val, gp->regs + PCS_MIICTRL);
1128 
1129 	limit = 32;
1130 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1131 		udelay(100);
1132 		if (limit-- <= 0)
1133 			break;
1134 	}
1135 	if (limit < 0)
1136 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1137 }
1138 
1139 static void gem_pcs_reinit_adv(struct gem *gp)
1140 {
1141 	u32 val;
1142 
1143 	/* Make sure PCS is disabled while changing advertisement
1144 	 * configuration.
1145 	 */
1146 	val = readl(gp->regs + PCS_CFG);
1147 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1148 	writel(val, gp->regs + PCS_CFG);
1149 
1150 	/* Advertise all capabilities except asymmetric
1151 	 * pause.
1152 	 */
1153 	val = readl(gp->regs + PCS_MIIADV);
1154 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1155 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1156 	writel(val, gp->regs + PCS_MIIADV);
1157 
1158 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1159 	 * and re-enable PCS.
1160 	 */
1161 	val = readl(gp->regs + PCS_MIICTRL);
1162 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1163 	val &= ~PCS_MIICTRL_WB;
1164 	writel(val, gp->regs + PCS_MIICTRL);
1165 
1166 	val = readl(gp->regs + PCS_CFG);
1167 	val |= PCS_CFG_ENABLE;
1168 	writel(val, gp->regs + PCS_CFG);
1169 
1170 	/* Make sure serialink loopback is off.  The meaning
1171 	 * of this bit is logically inverted based upon whether
1172 	 * you are in Serialink or SERDES mode.
1173 	 */
1174 	val = readl(gp->regs + PCS_SCTRL);
1175 	if (gp->phy_type == phy_serialink)
1176 		val &= ~PCS_SCTRL_LOOP;
1177 	else
1178 		val |= PCS_SCTRL_LOOP;
1179 	writel(val, gp->regs + PCS_SCTRL);
1180 }
1181 
1182 #define STOP_TRIES 32
1183 
1184 static void gem_reset(struct gem *gp)
1185 {
1186 	int limit;
1187 	u32 val;
1188 
1189 	/* Make sure we won't get any more interrupts */
1190 	writel(0xffffffff, gp->regs + GREG_IMASK);
1191 
1192 	/* Reset the chip */
1193 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1194 	       gp->regs + GREG_SWRST);
1195 
1196 	limit = STOP_TRIES;
1197 
1198 	do {
1199 		udelay(20);
1200 		val = readl(gp->regs + GREG_SWRST);
1201 		if (limit-- <= 0)
1202 			break;
1203 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1204 
1205 	if (limit < 0)
1206 		netdev_err(gp->dev, "SW reset is ghetto\n");
1207 
1208 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1209 		gem_pcs_reinit_adv(gp);
1210 }
1211 
1212 static void gem_start_dma(struct gem *gp)
1213 {
1214 	u32 val;
1215 
1216 	/* We are ready to rock, turn everything on. */
1217 	val = readl(gp->regs + TXDMA_CFG);
1218 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1219 	val = readl(gp->regs + RXDMA_CFG);
1220 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1221 	val = readl(gp->regs + MAC_TXCFG);
1222 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1223 	val = readl(gp->regs + MAC_RXCFG);
1224 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1225 
1226 	(void) readl(gp->regs + MAC_RXCFG);
1227 	udelay(100);
1228 
1229 	gem_enable_ints(gp);
1230 
1231 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1232 }
1233 
1234 /* DMA won't be actually stopped before about 4ms tho ...
1235  */
1236 static void gem_stop_dma(struct gem *gp)
1237 {
1238 	u32 val;
1239 
1240 	/* We are done rocking, turn everything off. */
1241 	val = readl(gp->regs + TXDMA_CFG);
1242 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1243 	val = readl(gp->regs + RXDMA_CFG);
1244 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1245 	val = readl(gp->regs + MAC_TXCFG);
1246 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1247 	val = readl(gp->regs + MAC_RXCFG);
1248 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1249 
1250 	(void) readl(gp->regs + MAC_RXCFG);
1251 
1252 	/* Need to wait a bit ... done by the caller */
1253 }
1254 
1255 
1256 // XXX dbl check what that function should do when called on PCS PHY
1257 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1258 {
1259 	u32 advertise, features;
1260 	int autoneg;
1261 	int speed;
1262 	int duplex;
1263 
1264 	if (gp->phy_type != phy_mii_mdio0 &&
1265      	    gp->phy_type != phy_mii_mdio1)
1266      	    	goto non_mii;
1267 
1268 	/* Setup advertise */
1269 	if (found_mii_phy(gp))
1270 		features = gp->phy_mii.def->features;
1271 	else
1272 		features = 0;
1273 
1274 	advertise = features & ADVERTISE_MASK;
1275 	if (gp->phy_mii.advertising != 0)
1276 		advertise &= gp->phy_mii.advertising;
1277 
1278 	autoneg = gp->want_autoneg;
1279 	speed = gp->phy_mii.speed;
1280 	duplex = gp->phy_mii.duplex;
1281 
1282 	/* Setup link parameters */
1283 	if (!ep)
1284 		goto start_aneg;
1285 	if (ep->autoneg == AUTONEG_ENABLE) {
1286 		advertise = ep->advertising;
1287 		autoneg = 1;
1288 	} else {
1289 		autoneg = 0;
1290 		speed = ethtool_cmd_speed(ep);
1291 		duplex = ep->duplex;
1292 	}
1293 
1294 start_aneg:
1295 	/* Sanitize settings based on PHY capabilities */
1296 	if ((features & SUPPORTED_Autoneg) == 0)
1297 		autoneg = 0;
1298 	if (speed == SPEED_1000 &&
1299 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1300 		speed = SPEED_100;
1301 	if (speed == SPEED_100 &&
1302 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1303 		speed = SPEED_10;
1304 	if (duplex == DUPLEX_FULL &&
1305 	    !(features & (SUPPORTED_1000baseT_Full |
1306 	    		  SUPPORTED_100baseT_Full |
1307 	    		  SUPPORTED_10baseT_Full)))
1308 	    	duplex = DUPLEX_HALF;
1309 	if (speed == 0)
1310 		speed = SPEED_10;
1311 
1312 	/* If we are asleep, we don't try to actually setup the PHY, we
1313 	 * just store the settings
1314 	 */
1315 	if (!netif_device_present(gp->dev)) {
1316 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1317 		gp->phy_mii.speed = speed;
1318 		gp->phy_mii.duplex = duplex;
1319 		return;
1320 	}
1321 
1322 	/* Configure PHY & start aneg */
1323 	gp->want_autoneg = autoneg;
1324 	if (autoneg) {
1325 		if (found_mii_phy(gp))
1326 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1327 		gp->lstate = link_aneg;
1328 	} else {
1329 		if (found_mii_phy(gp))
1330 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1331 		gp->lstate = link_force_ok;
1332 	}
1333 
1334 non_mii:
1335 	gp->timer_ticks = 0;
1336 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1337 }
1338 
1339 /* A link-up condition has occurred, initialize and enable the
1340  * rest of the chip.
1341  */
1342 static int gem_set_link_modes(struct gem *gp)
1343 {
1344 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1345 	int full_duplex, speed, pause;
1346 	u32 val;
1347 
1348 	full_duplex = 0;
1349 	speed = SPEED_10;
1350 	pause = 0;
1351 
1352 	if (found_mii_phy(gp)) {
1353 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1354 	    		return 1;
1355 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1356 		speed = gp->phy_mii.speed;
1357 		pause = gp->phy_mii.pause;
1358 	} else if (gp->phy_type == phy_serialink ||
1359 	    	   gp->phy_type == phy_serdes) {
1360 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1361 
1362 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1363 			full_duplex = 1;
1364 		speed = SPEED_1000;
1365 	}
1366 
1367 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1368 		   speed, (full_duplex ? "full" : "half"));
1369 
1370 
1371 	/* We take the tx queue lock to avoid collisions between
1372 	 * this code, the tx path and the NAPI-driven error path
1373 	 */
1374 	__netif_tx_lock(txq, smp_processor_id());
1375 
1376 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1377 	if (full_duplex) {
1378 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1379 	} else {
1380 		/* MAC_TXCFG_NBO must be zero. */
1381 	}
1382 	writel(val, gp->regs + MAC_TXCFG);
1383 
1384 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1385 	if (!full_duplex &&
1386 	    (gp->phy_type == phy_mii_mdio0 ||
1387 	     gp->phy_type == phy_mii_mdio1)) {
1388 		val |= MAC_XIFCFG_DISE;
1389 	} else if (full_duplex) {
1390 		val |= MAC_XIFCFG_FLED;
1391 	}
1392 
1393 	if (speed == SPEED_1000)
1394 		val |= (MAC_XIFCFG_GMII);
1395 
1396 	writel(val, gp->regs + MAC_XIFCFG);
1397 
1398 	/* If gigabit and half-duplex, enable carrier extension
1399 	 * mode.  Else, disable it.
1400 	 */
1401 	if (speed == SPEED_1000 && !full_duplex) {
1402 		val = readl(gp->regs + MAC_TXCFG);
1403 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1404 
1405 		val = readl(gp->regs + MAC_RXCFG);
1406 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1407 	} else {
1408 		val = readl(gp->regs + MAC_TXCFG);
1409 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1410 
1411 		val = readl(gp->regs + MAC_RXCFG);
1412 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1413 	}
1414 
1415 	if (gp->phy_type == phy_serialink ||
1416 	    gp->phy_type == phy_serdes) {
1417  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1418 
1419 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1420 			pause = 1;
1421 	}
1422 
1423 	if (!full_duplex)
1424 		writel(512, gp->regs + MAC_STIME);
1425 	else
1426 		writel(64, gp->regs + MAC_STIME);
1427 	val = readl(gp->regs + MAC_MCCFG);
1428 	if (pause)
1429 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1430 	else
1431 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1432 	writel(val, gp->regs + MAC_MCCFG);
1433 
1434 	gem_start_dma(gp);
1435 
1436 	__netif_tx_unlock(txq);
1437 
1438 	if (netif_msg_link(gp)) {
1439 		if (pause) {
1440 			netdev_info(gp->dev,
1441 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1442 				    gp->rx_fifo_sz,
1443 				    gp->rx_pause_off,
1444 				    gp->rx_pause_on);
1445 		} else {
1446 			netdev_info(gp->dev, "Pause is disabled\n");
1447 		}
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int gem_mdio_link_not_up(struct gem *gp)
1454 {
1455 	switch (gp->lstate) {
1456 	case link_force_ret:
1457 		netif_info(gp, link, gp->dev,
1458 			   "Autoneg failed again, keeping forced mode\n");
1459 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1460 			gp->last_forced_speed, DUPLEX_HALF);
1461 		gp->timer_ticks = 5;
1462 		gp->lstate = link_force_ok;
1463 		return 0;
1464 	case link_aneg:
1465 		/* We try forced modes after a failed aneg only on PHYs that don't
1466 		 * have "magic_aneg" bit set, which means they internally do the
1467 		 * while forced-mode thingy. On these, we just restart aneg
1468 		 */
1469 		if (gp->phy_mii.def->magic_aneg)
1470 			return 1;
1471 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1472 		/* Try forced modes. */
1473 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1474 			DUPLEX_HALF);
1475 		gp->timer_ticks = 5;
1476 		gp->lstate = link_force_try;
1477 		return 0;
1478 	case link_force_try:
1479 		/* Downgrade from 100 to 10 Mbps if necessary.
1480 		 * If already at 10Mbps, warn user about the
1481 		 * situation every 10 ticks.
1482 		 */
1483 		if (gp->phy_mii.speed == SPEED_100) {
1484 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1485 				DUPLEX_HALF);
1486 			gp->timer_ticks = 5;
1487 			netif_info(gp, link, gp->dev,
1488 				   "switching to forced 10bt\n");
1489 			return 0;
1490 		} else
1491 			return 1;
1492 	default:
1493 		return 0;
1494 	}
1495 }
1496 
1497 static void gem_link_timer(unsigned long data)
1498 {
1499 	struct gem *gp = (struct gem *) data;
1500 	struct net_device *dev = gp->dev;
1501 	int restart_aneg = 0;
1502 
1503 	/* There's no point doing anything if we're going to be reset */
1504 	if (gp->reset_task_pending)
1505 		return;
1506 
1507 	if (gp->phy_type == phy_serialink ||
1508 	    gp->phy_type == phy_serdes) {
1509 		u32 val = readl(gp->regs + PCS_MIISTAT);
1510 
1511 		if (!(val & PCS_MIISTAT_LS))
1512 			val = readl(gp->regs + PCS_MIISTAT);
1513 
1514 		if ((val & PCS_MIISTAT_LS) != 0) {
1515 			if (gp->lstate == link_up)
1516 				goto restart;
1517 
1518 			gp->lstate = link_up;
1519 			netif_carrier_on(dev);
1520 			(void)gem_set_link_modes(gp);
1521 		}
1522 		goto restart;
1523 	}
1524 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1525 		/* Ok, here we got a link. If we had it due to a forced
1526 		 * fallback, and we were configured for autoneg, we do
1527 		 * retry a short autoneg pass. If you know your hub is
1528 		 * broken, use ethtool ;)
1529 		 */
1530 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1531 			gp->lstate = link_force_ret;
1532 			gp->last_forced_speed = gp->phy_mii.speed;
1533 			gp->timer_ticks = 5;
1534 			if (netif_msg_link(gp))
1535 				netdev_info(dev,
1536 					    "Got link after fallback, retrying autoneg once...\n");
1537 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1538 		} else if (gp->lstate != link_up) {
1539 			gp->lstate = link_up;
1540 			netif_carrier_on(dev);
1541 			if (gem_set_link_modes(gp))
1542 				restart_aneg = 1;
1543 		}
1544 	} else {
1545 		/* If the link was previously up, we restart the
1546 		 * whole process
1547 		 */
1548 		if (gp->lstate == link_up) {
1549 			gp->lstate = link_down;
1550 			netif_info(gp, link, dev, "Link down\n");
1551 			netif_carrier_off(dev);
1552 			gem_schedule_reset(gp);
1553 			/* The reset task will restart the timer */
1554 			return;
1555 		} else if (++gp->timer_ticks > 10) {
1556 			if (found_mii_phy(gp))
1557 				restart_aneg = gem_mdio_link_not_up(gp);
1558 			else
1559 				restart_aneg = 1;
1560 		}
1561 	}
1562 	if (restart_aneg) {
1563 		gem_begin_auto_negotiation(gp, NULL);
1564 		return;
1565 	}
1566 restart:
1567 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1568 }
1569 
1570 static void gem_clean_rings(struct gem *gp)
1571 {
1572 	struct gem_init_block *gb = gp->init_block;
1573 	struct sk_buff *skb;
1574 	int i;
1575 	dma_addr_t dma_addr;
1576 
1577 	for (i = 0; i < RX_RING_SIZE; i++) {
1578 		struct gem_rxd *rxd;
1579 
1580 		rxd = &gb->rxd[i];
1581 		if (gp->rx_skbs[i] != NULL) {
1582 			skb = gp->rx_skbs[i];
1583 			dma_addr = le64_to_cpu(rxd->buffer);
1584 			pci_unmap_page(gp->pdev, dma_addr,
1585 				       RX_BUF_ALLOC_SIZE(gp),
1586 				       PCI_DMA_FROMDEVICE);
1587 			dev_kfree_skb_any(skb);
1588 			gp->rx_skbs[i] = NULL;
1589 		}
1590 		rxd->status_word = 0;
1591 		wmb();
1592 		rxd->buffer = 0;
1593 	}
1594 
1595 	for (i = 0; i < TX_RING_SIZE; i++) {
1596 		if (gp->tx_skbs[i] != NULL) {
1597 			struct gem_txd *txd;
1598 			int frag;
1599 
1600 			skb = gp->tx_skbs[i];
1601 			gp->tx_skbs[i] = NULL;
1602 
1603 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1604 				int ent = i & (TX_RING_SIZE - 1);
1605 
1606 				txd = &gb->txd[ent];
1607 				dma_addr = le64_to_cpu(txd->buffer);
1608 				pci_unmap_page(gp->pdev, dma_addr,
1609 					       le64_to_cpu(txd->control_word) &
1610 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1611 
1612 				if (frag != skb_shinfo(skb)->nr_frags)
1613 					i++;
1614 			}
1615 			dev_kfree_skb_any(skb);
1616 		}
1617 	}
1618 }
1619 
1620 static void gem_init_rings(struct gem *gp)
1621 {
1622 	struct gem_init_block *gb = gp->init_block;
1623 	struct net_device *dev = gp->dev;
1624 	int i;
1625 	dma_addr_t dma_addr;
1626 
1627 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1628 
1629 	gem_clean_rings(gp);
1630 
1631 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1632 			    (unsigned)VLAN_ETH_FRAME_LEN);
1633 
1634 	for (i = 0; i < RX_RING_SIZE; i++) {
1635 		struct sk_buff *skb;
1636 		struct gem_rxd *rxd = &gb->rxd[i];
1637 
1638 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1639 		if (!skb) {
1640 			rxd->buffer = 0;
1641 			rxd->status_word = 0;
1642 			continue;
1643 		}
1644 
1645 		gp->rx_skbs[i] = skb;
1646 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1647 		dma_addr = pci_map_page(gp->pdev,
1648 					virt_to_page(skb->data),
1649 					offset_in_page(skb->data),
1650 					RX_BUF_ALLOC_SIZE(gp),
1651 					PCI_DMA_FROMDEVICE);
1652 		rxd->buffer = cpu_to_le64(dma_addr);
1653 		wmb();
1654 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1655 		skb_reserve(skb, RX_OFFSET);
1656 	}
1657 
1658 	for (i = 0; i < TX_RING_SIZE; i++) {
1659 		struct gem_txd *txd = &gb->txd[i];
1660 
1661 		txd->control_word = 0;
1662 		wmb();
1663 		txd->buffer = 0;
1664 	}
1665 	wmb();
1666 }
1667 
1668 /* Init PHY interface and start link poll state machine */
1669 static void gem_init_phy(struct gem *gp)
1670 {
1671 	u32 mifcfg;
1672 
1673 	/* Revert MIF CFG setting done on stop_phy */
1674 	mifcfg = readl(gp->regs + MIF_CFG);
1675 	mifcfg &= ~MIF_CFG_BBMODE;
1676 	writel(mifcfg, gp->regs + MIF_CFG);
1677 
1678 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1679 		int i;
1680 
1681 		/* Those delay sucks, the HW seem to love them though, I'll
1682 		 * serisouly consider breaking some locks here to be able
1683 		 * to schedule instead
1684 		 */
1685 		for (i = 0; i < 3; i++) {
1686 #ifdef CONFIG_PPC_PMAC
1687 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1688 			msleep(20);
1689 #endif
1690 			/* Some PHYs used by apple have problem getting back to us,
1691 			 * we do an additional reset here
1692 			 */
1693 			phy_write(gp, MII_BMCR, BMCR_RESET);
1694 			msleep(20);
1695 			if (phy_read(gp, MII_BMCR) != 0xffff)
1696 				break;
1697 			if (i == 2)
1698 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1699 		}
1700 	}
1701 
1702 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1703 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1704 		u32 val;
1705 
1706 		/* Init datapath mode register. */
1707 		if (gp->phy_type == phy_mii_mdio0 ||
1708 		    gp->phy_type == phy_mii_mdio1) {
1709 			val = PCS_DMODE_MGM;
1710 		} else if (gp->phy_type == phy_serialink) {
1711 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1712 		} else {
1713 			val = PCS_DMODE_ESM;
1714 		}
1715 
1716 		writel(val, gp->regs + PCS_DMODE);
1717 	}
1718 
1719 	if (gp->phy_type == phy_mii_mdio0 ||
1720 	    gp->phy_type == phy_mii_mdio1) {
1721 		/* Reset and detect MII PHY */
1722 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1723 
1724 		/* Init PHY */
1725 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1726 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1727 	} else {
1728 		gem_pcs_reset(gp);
1729 		gem_pcs_reinit_adv(gp);
1730 	}
1731 
1732 	/* Default aneg parameters */
1733 	gp->timer_ticks = 0;
1734 	gp->lstate = link_down;
1735 	netif_carrier_off(gp->dev);
1736 
1737 	/* Print things out */
1738 	if (gp->phy_type == phy_mii_mdio0 ||
1739 	    gp->phy_type == phy_mii_mdio1)
1740 		netdev_info(gp->dev, "Found %s PHY\n",
1741 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1742 
1743 	gem_begin_auto_negotiation(gp, NULL);
1744 }
1745 
1746 static void gem_init_dma(struct gem *gp)
1747 {
1748 	u64 desc_dma = (u64) gp->gblock_dvma;
1749 	u32 val;
1750 
1751 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1752 	writel(val, gp->regs + TXDMA_CFG);
1753 
1754 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1755 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1756 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1757 
1758 	writel(0, gp->regs + TXDMA_KICK);
1759 
1760 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1761 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1762 	writel(val, gp->regs + RXDMA_CFG);
1763 
1764 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1765 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1766 
1767 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1768 
1769 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1770 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1771 	writel(val, gp->regs + RXDMA_PTHRESH);
1772 
1773 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1774 		writel(((5 & RXDMA_BLANK_IPKTS) |
1775 			((8 << 12) & RXDMA_BLANK_ITIME)),
1776 		       gp->regs + RXDMA_BLANK);
1777 	else
1778 		writel(((5 & RXDMA_BLANK_IPKTS) |
1779 			((4 << 12) & RXDMA_BLANK_ITIME)),
1780 		       gp->regs + RXDMA_BLANK);
1781 }
1782 
1783 static u32 gem_setup_multicast(struct gem *gp)
1784 {
1785 	u32 rxcfg = 0;
1786 	int i;
1787 
1788 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1789 	    (netdev_mc_count(gp->dev) > 256)) {
1790 	    	for (i=0; i<16; i++)
1791 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1792 		rxcfg |= MAC_RXCFG_HFE;
1793 	} else if (gp->dev->flags & IFF_PROMISC) {
1794 		rxcfg |= MAC_RXCFG_PROM;
1795 	} else {
1796 		u16 hash_table[16];
1797 		u32 crc;
1798 		struct netdev_hw_addr *ha;
1799 		int i;
1800 
1801 		memset(hash_table, 0, sizeof(hash_table));
1802 		netdev_for_each_mc_addr(ha, gp->dev) {
1803 			crc = ether_crc_le(6, ha->addr);
1804 			crc >>= 24;
1805 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1806 		}
1807 	    	for (i=0; i<16; i++)
1808 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1809 		rxcfg |= MAC_RXCFG_HFE;
1810 	}
1811 
1812 	return rxcfg;
1813 }
1814 
1815 static void gem_init_mac(struct gem *gp)
1816 {
1817 	unsigned char *e = &gp->dev->dev_addr[0];
1818 
1819 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1820 
1821 	writel(0x00, gp->regs + MAC_IPG0);
1822 	writel(0x08, gp->regs + MAC_IPG1);
1823 	writel(0x04, gp->regs + MAC_IPG2);
1824 	writel(0x40, gp->regs + MAC_STIME);
1825 	writel(0x40, gp->regs + MAC_MINFSZ);
1826 
1827 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1828 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1829 
1830 	writel(0x07, gp->regs + MAC_PASIZE);
1831 	writel(0x04, gp->regs + MAC_JAMSIZE);
1832 	writel(0x10, gp->regs + MAC_ATTLIM);
1833 	writel(0x8808, gp->regs + MAC_MCTYPE);
1834 
1835 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1836 
1837 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1838 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1839 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1840 
1841 	writel(0, gp->regs + MAC_ADDR3);
1842 	writel(0, gp->regs + MAC_ADDR4);
1843 	writel(0, gp->regs + MAC_ADDR5);
1844 
1845 	writel(0x0001, gp->regs + MAC_ADDR6);
1846 	writel(0xc200, gp->regs + MAC_ADDR7);
1847 	writel(0x0180, gp->regs + MAC_ADDR8);
1848 
1849 	writel(0, gp->regs + MAC_AFILT0);
1850 	writel(0, gp->regs + MAC_AFILT1);
1851 	writel(0, gp->regs + MAC_AFILT2);
1852 	writel(0, gp->regs + MAC_AF21MSK);
1853 	writel(0, gp->regs + MAC_AF0MSK);
1854 
1855 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1856 #ifdef STRIP_FCS
1857 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1858 #endif
1859 	writel(0, gp->regs + MAC_NCOLL);
1860 	writel(0, gp->regs + MAC_FASUCC);
1861 	writel(0, gp->regs + MAC_ECOLL);
1862 	writel(0, gp->regs + MAC_LCOLL);
1863 	writel(0, gp->regs + MAC_DTIMER);
1864 	writel(0, gp->regs + MAC_PATMPS);
1865 	writel(0, gp->regs + MAC_RFCTR);
1866 	writel(0, gp->regs + MAC_LERR);
1867 	writel(0, gp->regs + MAC_AERR);
1868 	writel(0, gp->regs + MAC_FCSERR);
1869 	writel(0, gp->regs + MAC_RXCVERR);
1870 
1871 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1872 	 * them once a link is established.
1873 	 */
1874 	writel(0, gp->regs + MAC_TXCFG);
1875 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1876 	writel(0, gp->regs + MAC_MCCFG);
1877 	writel(0, gp->regs + MAC_XIFCFG);
1878 
1879 	/* Setup MAC interrupts.  We want to get all of the interesting
1880 	 * counter expiration events, but we do not want to hear about
1881 	 * normal rx/tx as the DMA engine tells us that.
1882 	 */
1883 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1884 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1885 
1886 	/* Don't enable even the PAUSE interrupts for now, we
1887 	 * make no use of those events other than to record them.
1888 	 */
1889 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1890 
1891 	/* Don't enable GEM's WOL in normal operations
1892 	 */
1893 	if (gp->has_wol)
1894 		writel(0, gp->regs + WOL_WAKECSR);
1895 }
1896 
1897 static void gem_init_pause_thresholds(struct gem *gp)
1898 {
1899        	u32 cfg;
1900 
1901 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1902 	 * full RX fifo size effectively disables PAUSE generation which
1903 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1904 	 * to make real gains from PAUSE.
1905 	 */
1906 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1907 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1908 	} else {
1909 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1910 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1911 		int on = off - max_frame;
1912 
1913 		gp->rx_pause_off = off;
1914 		gp->rx_pause_on = on;
1915 	}
1916 
1917 
1918 	/* Configure the chip "burst" DMA mode & enable some
1919 	 * HW bug fixes on Apple version
1920 	 */
1921        	cfg  = 0;
1922        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1923 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1924 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1925        	cfg |= GREG_CFG_IBURST;
1926 #endif
1927        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1928        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1929        	writel(cfg, gp->regs + GREG_CFG);
1930 
1931 	/* If Infinite Burst didn't stick, then use different
1932 	 * thresholds (and Apple bug fixes don't exist)
1933 	 */
1934 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1935 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1936 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1937 		writel(cfg, gp->regs + GREG_CFG);
1938 	}
1939 }
1940 
1941 static int gem_check_invariants(struct gem *gp)
1942 {
1943 	struct pci_dev *pdev = gp->pdev;
1944 	u32 mif_cfg;
1945 
1946 	/* On Apple's sungem, we can't rely on registers as the chip
1947 	 * was been powered down by the firmware. The PHY is looked
1948 	 * up later on.
1949 	 */
1950 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1951 		gp->phy_type = phy_mii_mdio0;
1952 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1953 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1954 		gp->swrst_base = 0;
1955 
1956 		mif_cfg = readl(gp->regs + MIF_CFG);
1957 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1958 		mif_cfg |= MIF_CFG_MDI0;
1959 		writel(mif_cfg, gp->regs + MIF_CFG);
1960 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1961 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1962 
1963 		/* We hard-code the PHY address so we can properly bring it out of
1964 		 * reset later on, we can't really probe it at this point, though
1965 		 * that isn't an issue.
1966 		 */
1967 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1968 			gp->mii_phy_addr = 1;
1969 		else
1970 			gp->mii_phy_addr = 0;
1971 
1972 		return 0;
1973 	}
1974 
1975 	mif_cfg = readl(gp->regs + MIF_CFG);
1976 
1977 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1978 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1979 		/* One of the MII PHYs _must_ be present
1980 		 * as this chip has no gigabit PHY.
1981 		 */
1982 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1983 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1984 			       mif_cfg);
1985 			return -1;
1986 		}
1987 	}
1988 
1989 	/* Determine initial PHY interface type guess.  MDIO1 is the
1990 	 * external PHY and thus takes precedence over MDIO0.
1991 	 */
1992 
1993 	if (mif_cfg & MIF_CFG_MDI1) {
1994 		gp->phy_type = phy_mii_mdio1;
1995 		mif_cfg |= MIF_CFG_PSELECT;
1996 		writel(mif_cfg, gp->regs + MIF_CFG);
1997 	} else if (mif_cfg & MIF_CFG_MDI0) {
1998 		gp->phy_type = phy_mii_mdio0;
1999 		mif_cfg &= ~MIF_CFG_PSELECT;
2000 		writel(mif_cfg, gp->regs + MIF_CFG);
2001 	} else {
2002 #ifdef CONFIG_SPARC
2003 		const char *p;
2004 
2005 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2006 		if (p && !strcmp(p, "serdes"))
2007 			gp->phy_type = phy_serdes;
2008 		else
2009 #endif
2010 			gp->phy_type = phy_serialink;
2011 	}
2012 	if (gp->phy_type == phy_mii_mdio1 ||
2013 	    gp->phy_type == phy_mii_mdio0) {
2014 		int i;
2015 
2016 		for (i = 0; i < 32; i++) {
2017 			gp->mii_phy_addr = i;
2018 			if (phy_read(gp, MII_BMCR) != 0xffff)
2019 				break;
2020 		}
2021 		if (i == 32) {
2022 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2023 				pr_err("RIO MII phy will not respond\n");
2024 				return -1;
2025 			}
2026 			gp->phy_type = phy_serdes;
2027 		}
2028 	}
2029 
2030 	/* Fetch the FIFO configurations now too. */
2031 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2032 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2033 
2034 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2035 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2036 			if (gp->tx_fifo_sz != (9 * 1024) ||
2037 			    gp->rx_fifo_sz != (20 * 1024)) {
2038 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2039 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2040 				return -1;
2041 			}
2042 			gp->swrst_base = 0;
2043 		} else {
2044 			if (gp->tx_fifo_sz != (2 * 1024) ||
2045 			    gp->rx_fifo_sz != (2 * 1024)) {
2046 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2047 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2048 				return -1;
2049 			}
2050 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2051 		}
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 static void gem_reinit_chip(struct gem *gp)
2058 {
2059 	/* Reset the chip */
2060 	gem_reset(gp);
2061 
2062 	/* Make sure ints are disabled */
2063 	gem_disable_ints(gp);
2064 
2065 	/* Allocate & setup ring buffers */
2066 	gem_init_rings(gp);
2067 
2068 	/* Configure pause thresholds */
2069 	gem_init_pause_thresholds(gp);
2070 
2071 	/* Init DMA & MAC engines */
2072 	gem_init_dma(gp);
2073 	gem_init_mac(gp);
2074 }
2075 
2076 
2077 static void gem_stop_phy(struct gem *gp, int wol)
2078 {
2079 	u32 mifcfg;
2080 
2081 	/* Let the chip settle down a bit, it seems that helps
2082 	 * for sleep mode on some models
2083 	 */
2084 	msleep(10);
2085 
2086 	/* Make sure we aren't polling PHY status change. We
2087 	 * don't currently use that feature though
2088 	 */
2089 	mifcfg = readl(gp->regs + MIF_CFG);
2090 	mifcfg &= ~MIF_CFG_POLL;
2091 	writel(mifcfg, gp->regs + MIF_CFG);
2092 
2093 	if (wol && gp->has_wol) {
2094 		unsigned char *e = &gp->dev->dev_addr[0];
2095 		u32 csr;
2096 
2097 		/* Setup wake-on-lan for MAGIC packet */
2098 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2099 		       gp->regs + MAC_RXCFG);
2100 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2101 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2102 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2103 
2104 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2105 		csr = WOL_WAKECSR_ENABLE;
2106 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2107 			csr |= WOL_WAKECSR_MII;
2108 		writel(csr, gp->regs + WOL_WAKECSR);
2109 	} else {
2110 		writel(0, gp->regs + MAC_RXCFG);
2111 		(void)readl(gp->regs + MAC_RXCFG);
2112 		/* Machine sleep will die in strange ways if we
2113 		 * dont wait a bit here, looks like the chip takes
2114 		 * some time to really shut down
2115 		 */
2116 		msleep(10);
2117 	}
2118 
2119 	writel(0, gp->regs + MAC_TXCFG);
2120 	writel(0, gp->regs + MAC_XIFCFG);
2121 	writel(0, gp->regs + TXDMA_CFG);
2122 	writel(0, gp->regs + RXDMA_CFG);
2123 
2124 	if (!wol) {
2125 		gem_reset(gp);
2126 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2127 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2128 
2129 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2130 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2131 
2132 		/* According to Apple, we must set the MDIO pins to this begnign
2133 		 * state or we may 1) eat more current, 2) damage some PHYs
2134 		 */
2135 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2136 		writel(0, gp->regs + MIF_BBCLK);
2137 		writel(0, gp->regs + MIF_BBDATA);
2138 		writel(0, gp->regs + MIF_BBOENAB);
2139 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2140 		(void) readl(gp->regs + MAC_XIFCFG);
2141 	}
2142 }
2143 
2144 static int gem_do_start(struct net_device *dev)
2145 {
2146 	struct gem *gp = netdev_priv(dev);
2147 	int rc;
2148 
2149 	/* Enable the cell */
2150 	gem_get_cell(gp);
2151 
2152 	/* Make sure PCI access and bus master are enabled */
2153 	rc = pci_enable_device(gp->pdev);
2154 	if (rc) {
2155 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2156 
2157 		/* Put cell and forget it for now, it will be considered as
2158 		 * still asleep, a new sleep cycle may bring it back
2159 		 */
2160 		gem_put_cell(gp);
2161 		return -ENXIO;
2162 	}
2163 	pci_set_master(gp->pdev);
2164 
2165 	/* Init & setup chip hardware */
2166 	gem_reinit_chip(gp);
2167 
2168 	/* An interrupt might come in handy */
2169 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2170 			 IRQF_SHARED, dev->name, (void *)dev);
2171 	if (rc) {
2172 		netdev_err(dev, "failed to request irq !\n");
2173 
2174 		gem_reset(gp);
2175 		gem_clean_rings(gp);
2176 		gem_put_cell(gp);
2177 		return rc;
2178 	}
2179 
2180 	/* Mark us as attached again if we come from resume(), this has
2181 	 * no effect if we weren't detatched and needs to be done now.
2182 	 */
2183 	netif_device_attach(dev);
2184 
2185 	/* Restart NAPI & queues */
2186 	gem_netif_start(gp);
2187 
2188 	/* Detect & init PHY, start autoneg etc... this will
2189 	 * eventually result in starting DMA operations when
2190 	 * the link is up
2191 	 */
2192 	gem_init_phy(gp);
2193 
2194 	return 0;
2195 }
2196 
2197 static void gem_do_stop(struct net_device *dev, int wol)
2198 {
2199 	struct gem *gp = netdev_priv(dev);
2200 
2201 	/* Stop NAPI and stop tx queue */
2202 	gem_netif_stop(gp);
2203 
2204 	/* Make sure ints are disabled. We don't care about
2205 	 * synchronizing as NAPI is disabled, thus a stray
2206 	 * interrupt will do nothing bad (our irq handler
2207 	 * just schedules NAPI)
2208 	 */
2209 	gem_disable_ints(gp);
2210 
2211 	/* Stop the link timer */
2212 	del_timer_sync(&gp->link_timer);
2213 
2214 	/* We cannot cancel the reset task while holding the
2215 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2216 	 * if we did. This is not an issue however as the reset
2217 	 * task is synchronized vs. us (rtnl_lock) and will do
2218 	 * nothing if the device is down or suspended. We do
2219 	 * still clear reset_task_pending to avoid a spurrious
2220 	 * reset later on in case we do resume before it gets
2221 	 * scheduled.
2222 	 */
2223 	gp->reset_task_pending = 0;
2224 
2225 	/* If we are going to sleep with WOL */
2226 	gem_stop_dma(gp);
2227 	msleep(10);
2228 	if (!wol)
2229 		gem_reset(gp);
2230 	msleep(10);
2231 
2232 	/* Get rid of rings */
2233 	gem_clean_rings(gp);
2234 
2235 	/* No irq needed anymore */
2236 	free_irq(gp->pdev->irq, (void *) dev);
2237 
2238 	/* Shut the PHY down eventually and setup WOL */
2239 	gem_stop_phy(gp, wol);
2240 
2241 	/* Make sure bus master is disabled */
2242 	pci_disable_device(gp->pdev);
2243 
2244 	/* Cell not needed neither if no WOL */
2245 	if (!wol)
2246 		gem_put_cell(gp);
2247 }
2248 
2249 static void gem_reset_task(struct work_struct *work)
2250 {
2251 	struct gem *gp = container_of(work, struct gem, reset_task);
2252 
2253 	/* Lock out the network stack (essentially shield ourselves
2254 	 * against a racing open, close, control call, or suspend
2255 	 */
2256 	rtnl_lock();
2257 
2258 	/* Skip the reset task if suspended or closed, or if it's
2259 	 * been cancelled by gem_do_stop (see comment there)
2260 	 */
2261 	if (!netif_device_present(gp->dev) ||
2262 	    !netif_running(gp->dev) ||
2263 	    !gp->reset_task_pending) {
2264 		rtnl_unlock();
2265 		return;
2266 	}
2267 
2268 	/* Stop the link timer */
2269 	del_timer_sync(&gp->link_timer);
2270 
2271 	/* Stop NAPI and tx */
2272 	gem_netif_stop(gp);
2273 
2274 	/* Reset the chip & rings */
2275 	gem_reinit_chip(gp);
2276 	if (gp->lstate == link_up)
2277 		gem_set_link_modes(gp);
2278 
2279 	/* Restart NAPI and Tx */
2280 	gem_netif_start(gp);
2281 
2282 	/* We are back ! */
2283 	gp->reset_task_pending = 0;
2284 
2285 	/* If the link is not up, restart autoneg, else restart the
2286 	 * polling timer
2287 	 */
2288 	if (gp->lstate != link_up)
2289 		gem_begin_auto_negotiation(gp, NULL);
2290 	else
2291 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2292 
2293 	rtnl_unlock();
2294 }
2295 
2296 static int gem_open(struct net_device *dev)
2297 {
2298 	/* We allow open while suspended, we just do nothing,
2299 	 * the chip will be initialized in resume()
2300 	 */
2301 	if (netif_device_present(dev))
2302 		return gem_do_start(dev);
2303 	return 0;
2304 }
2305 
2306 static int gem_close(struct net_device *dev)
2307 {
2308 	if (netif_device_present(dev))
2309 		gem_do_stop(dev, 0);
2310 
2311 	return 0;
2312 }
2313 
2314 #ifdef CONFIG_PM
2315 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2316 {
2317 	struct net_device *dev = pci_get_drvdata(pdev);
2318 	struct gem *gp = netdev_priv(dev);
2319 
2320 	/* Lock the network stack first to avoid racing with open/close,
2321 	 * reset task and setting calls
2322 	 */
2323 	rtnl_lock();
2324 
2325 	/* Not running, mark ourselves non-present, no need for
2326 	 * a lock here
2327 	 */
2328 	if (!netif_running(dev)) {
2329 		netif_device_detach(dev);
2330 		rtnl_unlock();
2331 		return 0;
2332 	}
2333 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2334 		    (gp->wake_on_lan && netif_running(dev)) ?
2335 		    "enabled" : "disabled");
2336 
2337 	/* Tell the network stack we're gone. gem_do_stop() below will
2338 	 * synchronize with TX, stop NAPI etc...
2339 	 */
2340 	netif_device_detach(dev);
2341 
2342 	/* Switch off chip, remember WOL setting */
2343 	gp->asleep_wol = gp->wake_on_lan;
2344 	gem_do_stop(dev, gp->asleep_wol);
2345 
2346 	/* Unlock the network stack */
2347 	rtnl_unlock();
2348 
2349 	return 0;
2350 }
2351 
2352 static int gem_resume(struct pci_dev *pdev)
2353 {
2354 	struct net_device *dev = pci_get_drvdata(pdev);
2355 	struct gem *gp = netdev_priv(dev);
2356 
2357 	/* See locking comment in gem_suspend */
2358 	rtnl_lock();
2359 
2360 	/* Not running, mark ourselves present, no need for
2361 	 * a lock here
2362 	 */
2363 	if (!netif_running(dev)) {
2364 		netif_device_attach(dev);
2365 		rtnl_unlock();
2366 		return 0;
2367 	}
2368 
2369 	/* Restart chip. If that fails there isn't much we can do, we
2370 	 * leave things stopped.
2371 	 */
2372 	gem_do_start(dev);
2373 
2374 	/* If we had WOL enabled, the cell clock was never turned off during
2375 	 * sleep, so we end up beeing unbalanced. Fix that here
2376 	 */
2377 	if (gp->asleep_wol)
2378 		gem_put_cell(gp);
2379 
2380 	/* Unlock the network stack */
2381 	rtnl_unlock();
2382 
2383 	return 0;
2384 }
2385 #endif /* CONFIG_PM */
2386 
2387 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2388 {
2389 	struct gem *gp = netdev_priv(dev);
2390 
2391 	/* I have seen this being called while the PM was in progress,
2392 	 * so we shield against this. Let's also not poke at registers
2393 	 * while the reset task is going on.
2394 	 *
2395 	 * TODO: Move stats collection elsewhere (link timer ?) and
2396 	 * make this a nop to avoid all those synchro issues
2397 	 */
2398 	if (!netif_device_present(dev) || !netif_running(dev))
2399 		goto bail;
2400 
2401 	/* Better safe than sorry... */
2402 	if (WARN_ON(!gp->cell_enabled))
2403 		goto bail;
2404 
2405 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2406 	writel(0, gp->regs + MAC_FCSERR);
2407 
2408 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2409 	writel(0, gp->regs + MAC_AERR);
2410 
2411 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2412 	writel(0, gp->regs + MAC_LERR);
2413 
2414 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2415 	dev->stats.collisions +=
2416 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2417 	writel(0, gp->regs + MAC_ECOLL);
2418 	writel(0, gp->regs + MAC_LCOLL);
2419  bail:
2420 	return &dev->stats;
2421 }
2422 
2423 static int gem_set_mac_address(struct net_device *dev, void *addr)
2424 {
2425 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2426 	struct gem *gp = netdev_priv(dev);
2427 	unsigned char *e = &dev->dev_addr[0];
2428 
2429 	if (!is_valid_ether_addr(macaddr->sa_data))
2430 		return -EADDRNOTAVAIL;
2431 
2432 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2433 
2434 	/* We'll just catch it later when the device is up'd or resumed */
2435 	if (!netif_running(dev) || !netif_device_present(dev))
2436 		return 0;
2437 
2438 	/* Better safe than sorry... */
2439 	if (WARN_ON(!gp->cell_enabled))
2440 		return 0;
2441 
2442 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2443 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2444 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2445 
2446 	return 0;
2447 }
2448 
2449 static void gem_set_multicast(struct net_device *dev)
2450 {
2451 	struct gem *gp = netdev_priv(dev);
2452 	u32 rxcfg, rxcfg_new;
2453 	int limit = 10000;
2454 
2455 	if (!netif_running(dev) || !netif_device_present(dev))
2456 		return;
2457 
2458 	/* Better safe than sorry... */
2459 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2460 		return;
2461 
2462 	rxcfg = readl(gp->regs + MAC_RXCFG);
2463 	rxcfg_new = gem_setup_multicast(gp);
2464 #ifdef STRIP_FCS
2465 	rxcfg_new |= MAC_RXCFG_SFCS;
2466 #endif
2467 	gp->mac_rx_cfg = rxcfg_new;
2468 
2469 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2470 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2471 		if (!limit--)
2472 			break;
2473 		udelay(10);
2474 	}
2475 
2476 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2477 	rxcfg |= rxcfg_new;
2478 
2479 	writel(rxcfg, gp->regs + MAC_RXCFG);
2480 }
2481 
2482 /* Jumbo-grams don't seem to work :-( */
2483 #define GEM_MIN_MTU	68
2484 #if 1
2485 #define GEM_MAX_MTU	1500
2486 #else
2487 #define GEM_MAX_MTU	9000
2488 #endif
2489 
2490 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2491 {
2492 	struct gem *gp = netdev_priv(dev);
2493 
2494 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2495 		return -EINVAL;
2496 
2497 	dev->mtu = new_mtu;
2498 
2499 	/* We'll just catch it later when the device is up'd or resumed */
2500 	if (!netif_running(dev) || !netif_device_present(dev))
2501 		return 0;
2502 
2503 	/* Better safe than sorry... */
2504 	if (WARN_ON(!gp->cell_enabled))
2505 		return 0;
2506 
2507 	gem_netif_stop(gp);
2508 	gem_reinit_chip(gp);
2509 	if (gp->lstate == link_up)
2510 		gem_set_link_modes(gp);
2511 	gem_netif_start(gp);
2512 
2513 	return 0;
2514 }
2515 
2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2517 {
2518 	struct gem *gp = netdev_priv(dev);
2519 
2520 	strcpy(info->driver, DRV_NAME);
2521 	strcpy(info->version, DRV_VERSION);
2522 	strcpy(info->bus_info, pci_name(gp->pdev));
2523 }
2524 
2525 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2526 {
2527 	struct gem *gp = netdev_priv(dev);
2528 
2529 	if (gp->phy_type == phy_mii_mdio0 ||
2530 	    gp->phy_type == phy_mii_mdio1) {
2531 		if (gp->phy_mii.def)
2532 			cmd->supported = gp->phy_mii.def->features;
2533 		else
2534 			cmd->supported = (SUPPORTED_10baseT_Half |
2535 					  SUPPORTED_10baseT_Full);
2536 
2537 		/* XXX hardcoded stuff for now */
2538 		cmd->port = PORT_MII;
2539 		cmd->transceiver = XCVR_EXTERNAL;
2540 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2541 
2542 		/* Return current PHY settings */
2543 		cmd->autoneg = gp->want_autoneg;
2544 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2545 		cmd->duplex = gp->phy_mii.duplex;
2546 		cmd->advertising = gp->phy_mii.advertising;
2547 
2548 		/* If we started with a forced mode, we don't have a default
2549 		 * advertise set, we need to return something sensible so
2550 		 * userland can re-enable autoneg properly.
2551 		 */
2552 		if (cmd->advertising == 0)
2553 			cmd->advertising = cmd->supported;
2554 	} else { // XXX PCS ?
2555 		cmd->supported =
2556 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2557 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2558 			 SUPPORTED_Autoneg);
2559 		cmd->advertising = cmd->supported;
2560 		ethtool_cmd_speed_set(cmd, 0);
2561 		cmd->duplex = cmd->port = cmd->phy_address =
2562 			cmd->transceiver = cmd->autoneg = 0;
2563 
2564 		/* serdes means usually a Fibre connector, with most fixed */
2565 		if (gp->phy_type == phy_serdes) {
2566 			cmd->port = PORT_FIBRE;
2567 			cmd->supported = (SUPPORTED_1000baseT_Half |
2568 				SUPPORTED_1000baseT_Full |
2569 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2570 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2571 			cmd->advertising = cmd->supported;
2572 			cmd->transceiver = XCVR_INTERNAL;
2573 			if (gp->lstate == link_up)
2574 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2575 			cmd->duplex = DUPLEX_FULL;
2576 			cmd->autoneg = 1;
2577 		}
2578 	}
2579 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2580 
2581 	return 0;
2582 }
2583 
2584 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2585 {
2586 	struct gem *gp = netdev_priv(dev);
2587 	u32 speed = ethtool_cmd_speed(cmd);
2588 
2589 	/* Verify the settings we care about. */
2590 	if (cmd->autoneg != AUTONEG_ENABLE &&
2591 	    cmd->autoneg != AUTONEG_DISABLE)
2592 		return -EINVAL;
2593 
2594 	if (cmd->autoneg == AUTONEG_ENABLE &&
2595 	    cmd->advertising == 0)
2596 		return -EINVAL;
2597 
2598 	if (cmd->autoneg == AUTONEG_DISABLE &&
2599 	    ((speed != SPEED_1000 &&
2600 	      speed != SPEED_100 &&
2601 	      speed != SPEED_10) ||
2602 	     (cmd->duplex != DUPLEX_HALF &&
2603 	      cmd->duplex != DUPLEX_FULL)))
2604 		return -EINVAL;
2605 
2606 	/* Apply settings and restart link process. */
2607 	if (netif_device_present(gp->dev)) {
2608 		del_timer_sync(&gp->link_timer);
2609 		gem_begin_auto_negotiation(gp, cmd);
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 static int gem_nway_reset(struct net_device *dev)
2616 {
2617 	struct gem *gp = netdev_priv(dev);
2618 
2619 	if (!gp->want_autoneg)
2620 		return -EINVAL;
2621 
2622 	/* Restart link process  */
2623 	if (netif_device_present(gp->dev)) {
2624 		del_timer_sync(&gp->link_timer);
2625 		gem_begin_auto_negotiation(gp, NULL);
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 static u32 gem_get_msglevel(struct net_device *dev)
2632 {
2633 	struct gem *gp = netdev_priv(dev);
2634 	return gp->msg_enable;
2635 }
2636 
2637 static void gem_set_msglevel(struct net_device *dev, u32 value)
2638 {
2639 	struct gem *gp = netdev_priv(dev);
2640 	gp->msg_enable = value;
2641 }
2642 
2643 
2644 /* Add more when I understand how to program the chip */
2645 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2646 
2647 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2648 
2649 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2650 {
2651 	struct gem *gp = netdev_priv(dev);
2652 
2653 	/* Add more when I understand how to program the chip */
2654 	if (gp->has_wol) {
2655 		wol->supported = WOL_SUPPORTED_MASK;
2656 		wol->wolopts = gp->wake_on_lan;
2657 	} else {
2658 		wol->supported = 0;
2659 		wol->wolopts = 0;
2660 	}
2661 }
2662 
2663 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2664 {
2665 	struct gem *gp = netdev_priv(dev);
2666 
2667 	if (!gp->has_wol)
2668 		return -EOPNOTSUPP;
2669 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2670 	return 0;
2671 }
2672 
2673 static const struct ethtool_ops gem_ethtool_ops = {
2674 	.get_drvinfo		= gem_get_drvinfo,
2675 	.get_link		= ethtool_op_get_link,
2676 	.get_settings		= gem_get_settings,
2677 	.set_settings		= gem_set_settings,
2678 	.nway_reset		= gem_nway_reset,
2679 	.get_msglevel		= gem_get_msglevel,
2680 	.set_msglevel		= gem_set_msglevel,
2681 	.get_wol		= gem_get_wol,
2682 	.set_wol		= gem_set_wol,
2683 };
2684 
2685 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2686 {
2687 	struct gem *gp = netdev_priv(dev);
2688 	struct mii_ioctl_data *data = if_mii(ifr);
2689 	int rc = -EOPNOTSUPP;
2690 
2691 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2692 	 * netif_device_present() is true and holds rtnl_lock for us
2693 	 * so we have nothing to worry about
2694 	 */
2695 
2696 	switch (cmd) {
2697 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2698 		data->phy_id = gp->mii_phy_addr;
2699 		/* Fallthrough... */
2700 
2701 	case SIOCGMIIREG:		/* Read MII PHY register. */
2702 		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2703 					   data->reg_num & 0x1f);
2704 		rc = 0;
2705 		break;
2706 
2707 	case SIOCSMIIREG:		/* Write MII PHY register. */
2708 		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2709 			    data->val_in);
2710 		rc = 0;
2711 		break;
2712 	}
2713 	return rc;
2714 }
2715 
2716 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2717 /* Fetch MAC address from vital product data of PCI ROM. */
2718 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2719 {
2720 	int this_offset;
2721 
2722 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2723 		void __iomem *p = rom_base + this_offset;
2724 		int i;
2725 
2726 		if (readb(p + 0) != 0x90 ||
2727 		    readb(p + 1) != 0x00 ||
2728 		    readb(p + 2) != 0x09 ||
2729 		    readb(p + 3) != 0x4e ||
2730 		    readb(p + 4) != 0x41 ||
2731 		    readb(p + 5) != 0x06)
2732 			continue;
2733 
2734 		this_offset += 6;
2735 		p += 6;
2736 
2737 		for (i = 0; i < 6; i++)
2738 			dev_addr[i] = readb(p + i);
2739 		return 1;
2740 	}
2741 	return 0;
2742 }
2743 
2744 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2745 {
2746 	size_t size;
2747 	void __iomem *p = pci_map_rom(pdev, &size);
2748 
2749 	if (p) {
2750 			int found;
2751 
2752 		found = readb(p) == 0x55 &&
2753 			readb(p + 1) == 0xaa &&
2754 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2755 		pci_unmap_rom(pdev, p);
2756 		if (found)
2757 			return;
2758 	}
2759 
2760 	/* Sun MAC prefix then 3 random bytes. */
2761 	dev_addr[0] = 0x08;
2762 	dev_addr[1] = 0x00;
2763 	dev_addr[2] = 0x20;
2764 	get_random_bytes(dev_addr + 3, 3);
2765 }
2766 #endif /* not Sparc and not PPC */
2767 
2768 static int __devinit gem_get_device_address(struct gem *gp)
2769 {
2770 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2771 	struct net_device *dev = gp->dev;
2772 	const unsigned char *addr;
2773 
2774 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2775 	if (addr == NULL) {
2776 #ifdef CONFIG_SPARC
2777 		addr = idprom->id_ethaddr;
2778 #else
2779 		printk("\n");
2780 		pr_err("%s: can't get mac-address\n", dev->name);
2781 		return -1;
2782 #endif
2783 	}
2784 	memcpy(dev->dev_addr, addr, 6);
2785 #else
2786 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2787 #endif
2788 	return 0;
2789 }
2790 
2791 static void gem_remove_one(struct pci_dev *pdev)
2792 {
2793 	struct net_device *dev = pci_get_drvdata(pdev);
2794 
2795 	if (dev) {
2796 		struct gem *gp = netdev_priv(dev);
2797 
2798 		unregister_netdev(dev);
2799 
2800 		/* Ensure reset task is truely gone */
2801 		cancel_work_sync(&gp->reset_task);
2802 
2803 		/* Free resources */
2804 		pci_free_consistent(pdev,
2805 				    sizeof(struct gem_init_block),
2806 				    gp->init_block,
2807 				    gp->gblock_dvma);
2808 		iounmap(gp->regs);
2809 		pci_release_regions(pdev);
2810 		free_netdev(dev);
2811 
2812 		pci_set_drvdata(pdev, NULL);
2813 	}
2814 }
2815 
2816 static const struct net_device_ops gem_netdev_ops = {
2817 	.ndo_open		= gem_open,
2818 	.ndo_stop		= gem_close,
2819 	.ndo_start_xmit		= gem_start_xmit,
2820 	.ndo_get_stats		= gem_get_stats,
2821 	.ndo_set_rx_mode	= gem_set_multicast,
2822 	.ndo_do_ioctl		= gem_ioctl,
2823 	.ndo_tx_timeout		= gem_tx_timeout,
2824 	.ndo_change_mtu		= gem_change_mtu,
2825 	.ndo_validate_addr	= eth_validate_addr,
2826 	.ndo_set_mac_address    = gem_set_mac_address,
2827 #ifdef CONFIG_NET_POLL_CONTROLLER
2828 	.ndo_poll_controller    = gem_poll_controller,
2829 #endif
2830 };
2831 
2832 static int __devinit gem_init_one(struct pci_dev *pdev,
2833 				  const struct pci_device_id *ent)
2834 {
2835 	unsigned long gemreg_base, gemreg_len;
2836 	struct net_device *dev;
2837 	struct gem *gp;
2838 	int err, pci_using_dac;
2839 
2840 	printk_once(KERN_INFO "%s", version);
2841 
2842 	/* Apple gmac note: during probe, the chip is powered up by
2843 	 * the arch code to allow the code below to work (and to let
2844 	 * the chip be probed on the config space. It won't stay powered
2845 	 * up until the interface is brought up however, so we can't rely
2846 	 * on register configuration done at this point.
2847 	 */
2848 	err = pci_enable_device(pdev);
2849 	if (err) {
2850 		pr_err("Cannot enable MMIO operation, aborting\n");
2851 		return err;
2852 	}
2853 	pci_set_master(pdev);
2854 
2855 	/* Configure DMA attributes. */
2856 
2857 	/* All of the GEM documentation states that 64-bit DMA addressing
2858 	 * is fully supported and should work just fine.  However the
2859 	 * front end for RIO based GEMs is different and only supports
2860 	 * 32-bit addressing.
2861 	 *
2862 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2863 	 */
2864 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2865 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2866 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2867 		pci_using_dac = 1;
2868 	} else {
2869 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2870 		if (err) {
2871 			pr_err("No usable DMA configuration, aborting\n");
2872 			goto err_disable_device;
2873 		}
2874 		pci_using_dac = 0;
2875 	}
2876 
2877 	gemreg_base = pci_resource_start(pdev, 0);
2878 	gemreg_len = pci_resource_len(pdev, 0);
2879 
2880 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2881 		pr_err("Cannot find proper PCI device base address, aborting\n");
2882 		err = -ENODEV;
2883 		goto err_disable_device;
2884 	}
2885 
2886 	dev = alloc_etherdev(sizeof(*gp));
2887 	if (!dev) {
2888 		pr_err("Etherdev alloc failed, aborting\n");
2889 		err = -ENOMEM;
2890 		goto err_disable_device;
2891 	}
2892 	SET_NETDEV_DEV(dev, &pdev->dev);
2893 
2894 	gp = netdev_priv(dev);
2895 
2896 	err = pci_request_regions(pdev, DRV_NAME);
2897 	if (err) {
2898 		pr_err("Cannot obtain PCI resources, aborting\n");
2899 		goto err_out_free_netdev;
2900 	}
2901 
2902 	gp->pdev = pdev;
2903 	dev->base_addr = (long) pdev;
2904 	gp->dev = dev;
2905 
2906 	gp->msg_enable = DEFAULT_MSG;
2907 
2908 	init_timer(&gp->link_timer);
2909 	gp->link_timer.function = gem_link_timer;
2910 	gp->link_timer.data = (unsigned long) gp;
2911 
2912 	INIT_WORK(&gp->reset_task, gem_reset_task);
2913 
2914 	gp->lstate = link_down;
2915 	gp->timer_ticks = 0;
2916 	netif_carrier_off(dev);
2917 
2918 	gp->regs = ioremap(gemreg_base, gemreg_len);
2919 	if (!gp->regs) {
2920 		pr_err("Cannot map device registers, aborting\n");
2921 		err = -EIO;
2922 		goto err_out_free_res;
2923 	}
2924 
2925 	/* On Apple, we want a reference to the Open Firmware device-tree
2926 	 * node. We use it for clock control.
2927 	 */
2928 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2929 	gp->of_node = pci_device_to_OF_node(pdev);
2930 #endif
2931 
2932 	/* Only Apple version supports WOL afaik */
2933 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2934 		gp->has_wol = 1;
2935 
2936 	/* Make sure cell is enabled */
2937 	gem_get_cell(gp);
2938 
2939 	/* Make sure everything is stopped and in init state */
2940 	gem_reset(gp);
2941 
2942 	/* Fill up the mii_phy structure (even if we won't use it) */
2943 	gp->phy_mii.dev = dev;
2944 	gp->phy_mii.mdio_read = _phy_read;
2945 	gp->phy_mii.mdio_write = _phy_write;
2946 #ifdef CONFIG_PPC_PMAC
2947 	gp->phy_mii.platform_data = gp->of_node;
2948 #endif
2949 	/* By default, we start with autoneg */
2950 	gp->want_autoneg = 1;
2951 
2952 	/* Check fifo sizes, PHY type, etc... */
2953 	if (gem_check_invariants(gp)) {
2954 		err = -ENODEV;
2955 		goto err_out_iounmap;
2956 	}
2957 
2958 	/* It is guaranteed that the returned buffer will be at least
2959 	 * PAGE_SIZE aligned.
2960 	 */
2961 	gp->init_block = (struct gem_init_block *)
2962 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2963 				     &gp->gblock_dvma);
2964 	if (!gp->init_block) {
2965 		pr_err("Cannot allocate init block, aborting\n");
2966 		err = -ENOMEM;
2967 		goto err_out_iounmap;
2968 	}
2969 
2970 	if (gem_get_device_address(gp))
2971 		goto err_out_free_consistent;
2972 
2973 	dev->netdev_ops = &gem_netdev_ops;
2974 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2975 	dev->ethtool_ops = &gem_ethtool_ops;
2976 	dev->watchdog_timeo = 5 * HZ;
2977 	dev->irq = pdev->irq;
2978 	dev->dma = 0;
2979 
2980 	/* Set that now, in case PM kicks in now */
2981 	pci_set_drvdata(pdev, dev);
2982 
2983 	/* We can do scatter/gather and HW checksum */
2984 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2985 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2986 	if (pci_using_dac)
2987 		dev->features |= NETIF_F_HIGHDMA;
2988 
2989 	/* Register with kernel */
2990 	if (register_netdev(dev)) {
2991 		pr_err("Cannot register net device, aborting\n");
2992 		err = -ENOMEM;
2993 		goto err_out_free_consistent;
2994 	}
2995 
2996 	/* Undo the get_cell with appropriate locking (we could use
2997 	 * ndo_init/uninit but that would be even more clumsy imho)
2998 	 */
2999 	rtnl_lock();
3000 	gem_put_cell(gp);
3001 	rtnl_unlock();
3002 
3003 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3004 		    dev->dev_addr);
3005 	return 0;
3006 
3007 err_out_free_consistent:
3008 	gem_remove_one(pdev);
3009 err_out_iounmap:
3010 	gem_put_cell(gp);
3011 	iounmap(gp->regs);
3012 
3013 err_out_free_res:
3014 	pci_release_regions(pdev);
3015 
3016 err_out_free_netdev:
3017 	free_netdev(dev);
3018 err_disable_device:
3019 	pci_disable_device(pdev);
3020 	return err;
3021 
3022 }
3023 
3024 
3025 static struct pci_driver gem_driver = {
3026 	.name		= GEM_MODULE_NAME,
3027 	.id_table	= gem_pci_tbl,
3028 	.probe		= gem_init_one,
3029 	.remove		= gem_remove_one,
3030 #ifdef CONFIG_PM
3031 	.suspend	= gem_suspend,
3032 	.resume		= gem_resume,
3033 #endif /* CONFIG_PM */
3034 };
3035 
3036 static int __init gem_init(void)
3037 {
3038 	return pci_register_driver(&gem_driver);
3039 }
3040 
3041 static void __exit gem_cleanup(void)
3042 {
3043 	pci_unregister_driver(&gem_driver);
3044 }
3045 
3046 module_init(gem_init);
3047 module_exit(gem_cleanup);
3048