1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 2 * sungem.c: Sun GEM ethernet driver. 3 * 4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 5 * 6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 9 * 10 * NAPI and NETPOLL support 11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 12 * 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/fcntl.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/in.h> 24 #include <linux/sched.h> 25 #include <linux/string.h> 26 #include <linux/delay.h> 27 #include <linux/init.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/byteorder.h> 47 #include <asm/uaccess.h> 48 #include <asm/irq.h> 49 50 #ifdef CONFIG_SPARC 51 #include <asm/idprom.h> 52 #include <asm/prom.h> 53 #endif 54 55 #ifdef CONFIG_PPC_PMAC 56 #include <asm/pci-bridge.h> 57 #include <asm/prom.h> 58 #include <asm/machdep.h> 59 #include <asm/pmac_feature.h> 60 #endif 61 62 #include <linux/sungem_phy.h> 63 #include "sungem.h" 64 65 /* Stripping FCS is causing problems, disabled for now */ 66 #undef STRIP_FCS 67 68 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 69 NETIF_MSG_PROBE | \ 70 NETIF_MSG_LINK) 71 72 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 73 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 74 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 75 SUPPORTED_Pause | SUPPORTED_Autoneg) 76 77 #define DRV_NAME "sungem" 78 #define DRV_VERSION "1.0" 79 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 80 81 static char version[] __devinitdata = 82 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 83 84 MODULE_AUTHOR(DRV_AUTHOR); 85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 86 MODULE_LICENSE("GPL"); 87 88 #define GEM_MODULE_NAME "gem" 89 90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = { 91 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 92 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 93 94 /* These models only differ from the original GEM in 95 * that their tx/rx fifos are of a different size and 96 * they only support 10/100 speeds. -DaveM 97 * 98 * Apple's GMAC does support gigabit on machines with 99 * the BCM54xx PHYs. -BenH 100 */ 101 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 113 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 115 {0, } 116 }; 117 118 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 119 120 static u16 __phy_read(struct gem *gp, int phy_addr, int reg) 121 { 122 u32 cmd; 123 int limit = 10000; 124 125 cmd = (1 << 30); 126 cmd |= (2 << 28); 127 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 128 cmd |= (reg << 18) & MIF_FRAME_REGAD; 129 cmd |= (MIF_FRAME_TAMSB); 130 writel(cmd, gp->regs + MIF_FRAME); 131 132 while (--limit) { 133 cmd = readl(gp->regs + MIF_FRAME); 134 if (cmd & MIF_FRAME_TALSB) 135 break; 136 137 udelay(10); 138 } 139 140 if (!limit) 141 cmd = 0xffff; 142 143 return cmd & MIF_FRAME_DATA; 144 } 145 146 static inline int _phy_read(struct net_device *dev, int mii_id, int reg) 147 { 148 struct gem *gp = netdev_priv(dev); 149 return __phy_read(gp, mii_id, reg); 150 } 151 152 static inline u16 phy_read(struct gem *gp, int reg) 153 { 154 return __phy_read(gp, gp->mii_phy_addr, reg); 155 } 156 157 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 158 { 159 u32 cmd; 160 int limit = 10000; 161 162 cmd = (1 << 30); 163 cmd |= (1 << 28); 164 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 165 cmd |= (reg << 18) & MIF_FRAME_REGAD; 166 cmd |= (MIF_FRAME_TAMSB); 167 cmd |= (val & MIF_FRAME_DATA); 168 writel(cmd, gp->regs + MIF_FRAME); 169 170 while (limit--) { 171 cmd = readl(gp->regs + MIF_FRAME); 172 if (cmd & MIF_FRAME_TALSB) 173 break; 174 175 udelay(10); 176 } 177 } 178 179 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val) 180 { 181 struct gem *gp = netdev_priv(dev); 182 __phy_write(gp, mii_id, reg, val & 0xffff); 183 } 184 185 static inline void phy_write(struct gem *gp, int reg, u16 val) 186 { 187 __phy_write(gp, gp->mii_phy_addr, reg, val); 188 } 189 190 static inline void gem_enable_ints(struct gem *gp) 191 { 192 /* Enable all interrupts but TXDONE */ 193 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 194 } 195 196 static inline void gem_disable_ints(struct gem *gp) 197 { 198 /* Disable all interrupts, including TXDONE */ 199 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 200 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 201 } 202 203 static void gem_get_cell(struct gem *gp) 204 { 205 BUG_ON(gp->cell_enabled < 0); 206 gp->cell_enabled++; 207 #ifdef CONFIG_PPC_PMAC 208 if (gp->cell_enabled == 1) { 209 mb(); 210 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 211 udelay(10); 212 } 213 #endif /* CONFIG_PPC_PMAC */ 214 } 215 216 /* Turn off the chip's clock */ 217 static void gem_put_cell(struct gem *gp) 218 { 219 BUG_ON(gp->cell_enabled <= 0); 220 gp->cell_enabled--; 221 #ifdef CONFIG_PPC_PMAC 222 if (gp->cell_enabled == 0) { 223 mb(); 224 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 225 udelay(10); 226 } 227 #endif /* CONFIG_PPC_PMAC */ 228 } 229 230 static inline void gem_netif_stop(struct gem *gp) 231 { 232 gp->dev->trans_start = jiffies; /* prevent tx timeout */ 233 napi_disable(&gp->napi); 234 netif_tx_disable(gp->dev); 235 } 236 237 static inline void gem_netif_start(struct gem *gp) 238 { 239 /* NOTE: unconditional netif_wake_queue is only 240 * appropriate so long as all callers are assured to 241 * have free tx slots. 242 */ 243 netif_wake_queue(gp->dev); 244 napi_enable(&gp->napi); 245 } 246 247 static void gem_schedule_reset(struct gem *gp) 248 { 249 gp->reset_task_pending = 1; 250 schedule_work(&gp->reset_task); 251 } 252 253 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 254 { 255 if (netif_msg_intr(gp)) 256 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 257 } 258 259 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 260 { 261 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 262 u32 pcs_miistat; 263 264 if (netif_msg_intr(gp)) 265 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 266 gp->dev->name, pcs_istat); 267 268 if (!(pcs_istat & PCS_ISTAT_LSC)) { 269 netdev_err(dev, "PCS irq but no link status change???\n"); 270 return 0; 271 } 272 273 /* The link status bit latches on zero, so you must 274 * read it twice in such a case to see a transition 275 * to the link being up. 276 */ 277 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 278 if (!(pcs_miistat & PCS_MIISTAT_LS)) 279 pcs_miistat |= 280 (readl(gp->regs + PCS_MIISTAT) & 281 PCS_MIISTAT_LS); 282 283 if (pcs_miistat & PCS_MIISTAT_ANC) { 284 /* The remote-fault indication is only valid 285 * when autoneg has completed. 286 */ 287 if (pcs_miistat & PCS_MIISTAT_RF) 288 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 289 else 290 netdev_info(dev, "PCS AutoNEG complete\n"); 291 } 292 293 if (pcs_miistat & PCS_MIISTAT_LS) { 294 netdev_info(dev, "PCS link is now up\n"); 295 netif_carrier_on(gp->dev); 296 } else { 297 netdev_info(dev, "PCS link is now down\n"); 298 netif_carrier_off(gp->dev); 299 /* If this happens and the link timer is not running, 300 * reset so we re-negotiate. 301 */ 302 if (!timer_pending(&gp->link_timer)) 303 return 1; 304 } 305 306 return 0; 307 } 308 309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 310 { 311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 312 313 if (netif_msg_intr(gp)) 314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 315 gp->dev->name, txmac_stat); 316 317 /* Defer timer expiration is quite normal, 318 * don't even log the event. 319 */ 320 if ((txmac_stat & MAC_TXSTAT_DTE) && 321 !(txmac_stat & ~MAC_TXSTAT_DTE)) 322 return 0; 323 324 if (txmac_stat & MAC_TXSTAT_URUN) { 325 netdev_err(dev, "TX MAC xmit underrun\n"); 326 dev->stats.tx_fifo_errors++; 327 } 328 329 if (txmac_stat & MAC_TXSTAT_MPE) { 330 netdev_err(dev, "TX MAC max packet size error\n"); 331 dev->stats.tx_errors++; 332 } 333 334 /* The rest are all cases of one of the 16-bit TX 335 * counters expiring. 336 */ 337 if (txmac_stat & MAC_TXSTAT_NCE) 338 dev->stats.collisions += 0x10000; 339 340 if (txmac_stat & MAC_TXSTAT_ECE) { 341 dev->stats.tx_aborted_errors += 0x10000; 342 dev->stats.collisions += 0x10000; 343 } 344 345 if (txmac_stat & MAC_TXSTAT_LCE) { 346 dev->stats.tx_aborted_errors += 0x10000; 347 dev->stats.collisions += 0x10000; 348 } 349 350 /* We do not keep track of MAC_TXSTAT_FCE and 351 * MAC_TXSTAT_PCE events. 352 */ 353 return 0; 354 } 355 356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 357 * so we do the following. 358 * 359 * If any part of the reset goes wrong, we return 1 and that causes the 360 * whole chip to be reset. 361 */ 362 static int gem_rxmac_reset(struct gem *gp) 363 { 364 struct net_device *dev = gp->dev; 365 int limit, i; 366 u64 desc_dma; 367 u32 val; 368 369 /* First, reset & disable MAC RX. */ 370 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 371 for (limit = 0; limit < 5000; limit++) { 372 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 373 break; 374 udelay(10); 375 } 376 if (limit == 5000) { 377 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 378 return 1; 379 } 380 381 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 382 gp->regs + MAC_RXCFG); 383 for (limit = 0; limit < 5000; limit++) { 384 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 385 break; 386 udelay(10); 387 } 388 if (limit == 5000) { 389 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 390 return 1; 391 } 392 393 /* Second, disable RX DMA. */ 394 writel(0, gp->regs + RXDMA_CFG); 395 for (limit = 0; limit < 5000; limit++) { 396 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 397 break; 398 udelay(10); 399 } 400 if (limit == 5000) { 401 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 402 return 1; 403 } 404 405 udelay(5000); 406 407 /* Execute RX reset command. */ 408 writel(gp->swrst_base | GREG_SWRST_RXRST, 409 gp->regs + GREG_SWRST); 410 for (limit = 0; limit < 5000; limit++) { 411 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 412 break; 413 udelay(10); 414 } 415 if (limit == 5000) { 416 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 417 return 1; 418 } 419 420 /* Refresh the RX ring. */ 421 for (i = 0; i < RX_RING_SIZE; i++) { 422 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 423 424 if (gp->rx_skbs[i] == NULL) { 425 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 426 return 1; 427 } 428 429 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 430 } 431 gp->rx_new = gp->rx_old = 0; 432 433 /* Now we must reprogram the rest of RX unit. */ 434 desc_dma = (u64) gp->gblock_dvma; 435 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 436 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 437 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 438 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 439 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 440 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 441 writel(val, gp->regs + RXDMA_CFG); 442 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 443 writel(((5 & RXDMA_BLANK_IPKTS) | 444 ((8 << 12) & RXDMA_BLANK_ITIME)), 445 gp->regs + RXDMA_BLANK); 446 else 447 writel(((5 & RXDMA_BLANK_IPKTS) | 448 ((4 << 12) & RXDMA_BLANK_ITIME)), 449 gp->regs + RXDMA_BLANK); 450 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 451 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 452 writel(val, gp->regs + RXDMA_PTHRESH); 453 val = readl(gp->regs + RXDMA_CFG); 454 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 455 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 456 val = readl(gp->regs + MAC_RXCFG); 457 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 458 459 return 0; 460 } 461 462 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 463 { 464 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 465 int ret = 0; 466 467 if (netif_msg_intr(gp)) 468 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 469 gp->dev->name, rxmac_stat); 470 471 if (rxmac_stat & MAC_RXSTAT_OFLW) { 472 u32 smac = readl(gp->regs + MAC_SMACHINE); 473 474 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 475 dev->stats.rx_over_errors++; 476 dev->stats.rx_fifo_errors++; 477 478 ret = gem_rxmac_reset(gp); 479 } 480 481 if (rxmac_stat & MAC_RXSTAT_ACE) 482 dev->stats.rx_frame_errors += 0x10000; 483 484 if (rxmac_stat & MAC_RXSTAT_CCE) 485 dev->stats.rx_crc_errors += 0x10000; 486 487 if (rxmac_stat & MAC_RXSTAT_LCE) 488 dev->stats.rx_length_errors += 0x10000; 489 490 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 491 * events. 492 */ 493 return ret; 494 } 495 496 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 497 { 498 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 499 500 if (netif_msg_intr(gp)) 501 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 502 gp->dev->name, mac_cstat); 503 504 /* This interrupt is just for pause frame and pause 505 * tracking. It is useful for diagnostics and debug 506 * but probably by default we will mask these events. 507 */ 508 if (mac_cstat & MAC_CSTAT_PS) 509 gp->pause_entered++; 510 511 if (mac_cstat & MAC_CSTAT_PRCV) 512 gp->pause_last_time_recvd = (mac_cstat >> 16); 513 514 return 0; 515 } 516 517 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 518 { 519 u32 mif_status = readl(gp->regs + MIF_STATUS); 520 u32 reg_val, changed_bits; 521 522 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 523 changed_bits = (mif_status & MIF_STATUS_STAT); 524 525 gem_handle_mif_event(gp, reg_val, changed_bits); 526 527 return 0; 528 } 529 530 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 531 { 532 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 533 534 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 535 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 536 netdev_err(dev, "PCI error [%04x]", pci_estat); 537 538 if (pci_estat & GREG_PCIESTAT_BADACK) 539 pr_cont(" <No ACK64# during ABS64 cycle>"); 540 if (pci_estat & GREG_PCIESTAT_DTRTO) 541 pr_cont(" <Delayed transaction timeout>"); 542 if (pci_estat & GREG_PCIESTAT_OTHER) 543 pr_cont(" <other>"); 544 pr_cont("\n"); 545 } else { 546 pci_estat |= GREG_PCIESTAT_OTHER; 547 netdev_err(dev, "PCI error\n"); 548 } 549 550 if (pci_estat & GREG_PCIESTAT_OTHER) { 551 u16 pci_cfg_stat; 552 553 /* Interrogate PCI config space for the 554 * true cause. 555 */ 556 pci_read_config_word(gp->pdev, PCI_STATUS, 557 &pci_cfg_stat); 558 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 559 pci_cfg_stat); 560 if (pci_cfg_stat & PCI_STATUS_PARITY) 561 netdev_err(dev, "PCI parity error detected\n"); 562 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 563 netdev_err(dev, "PCI target abort\n"); 564 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 565 netdev_err(dev, "PCI master acks target abort\n"); 566 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 567 netdev_err(dev, "PCI master abort\n"); 568 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 569 netdev_err(dev, "PCI system error SERR#\n"); 570 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 571 netdev_err(dev, "PCI parity error\n"); 572 573 /* Write the error bits back to clear them. */ 574 pci_cfg_stat &= (PCI_STATUS_PARITY | 575 PCI_STATUS_SIG_TARGET_ABORT | 576 PCI_STATUS_REC_TARGET_ABORT | 577 PCI_STATUS_REC_MASTER_ABORT | 578 PCI_STATUS_SIG_SYSTEM_ERROR | 579 PCI_STATUS_DETECTED_PARITY); 580 pci_write_config_word(gp->pdev, 581 PCI_STATUS, pci_cfg_stat); 582 } 583 584 /* For all PCI errors, we should reset the chip. */ 585 return 1; 586 } 587 588 /* All non-normal interrupt conditions get serviced here. 589 * Returns non-zero if we should just exit the interrupt 590 * handler right now (ie. if we reset the card which invalidates 591 * all of the other original irq status bits). 592 */ 593 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 594 { 595 if (gem_status & GREG_STAT_RXNOBUF) { 596 /* Frame arrived, no free RX buffers available. */ 597 if (netif_msg_rx_err(gp)) 598 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 599 gp->dev->name); 600 dev->stats.rx_dropped++; 601 } 602 603 if (gem_status & GREG_STAT_RXTAGERR) { 604 /* corrupt RX tag framing */ 605 if (netif_msg_rx_err(gp)) 606 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 607 gp->dev->name); 608 dev->stats.rx_errors++; 609 610 return 1; 611 } 612 613 if (gem_status & GREG_STAT_PCS) { 614 if (gem_pcs_interrupt(dev, gp, gem_status)) 615 return 1; 616 } 617 618 if (gem_status & GREG_STAT_TXMAC) { 619 if (gem_txmac_interrupt(dev, gp, gem_status)) 620 return 1; 621 } 622 623 if (gem_status & GREG_STAT_RXMAC) { 624 if (gem_rxmac_interrupt(dev, gp, gem_status)) 625 return 1; 626 } 627 628 if (gem_status & GREG_STAT_MAC) { 629 if (gem_mac_interrupt(dev, gp, gem_status)) 630 return 1; 631 } 632 633 if (gem_status & GREG_STAT_MIF) { 634 if (gem_mif_interrupt(dev, gp, gem_status)) 635 return 1; 636 } 637 638 if (gem_status & GREG_STAT_PCIERR) { 639 if (gem_pci_interrupt(dev, gp, gem_status)) 640 return 1; 641 } 642 643 return 0; 644 } 645 646 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 647 { 648 int entry, limit; 649 650 entry = gp->tx_old; 651 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 652 while (entry != limit) { 653 struct sk_buff *skb; 654 struct gem_txd *txd; 655 dma_addr_t dma_addr; 656 u32 dma_len; 657 int frag; 658 659 if (netif_msg_tx_done(gp)) 660 printk(KERN_DEBUG "%s: tx done, slot %d\n", 661 gp->dev->name, entry); 662 skb = gp->tx_skbs[entry]; 663 if (skb_shinfo(skb)->nr_frags) { 664 int last = entry + skb_shinfo(skb)->nr_frags; 665 int walk = entry; 666 int incomplete = 0; 667 668 last &= (TX_RING_SIZE - 1); 669 for (;;) { 670 walk = NEXT_TX(walk); 671 if (walk == limit) 672 incomplete = 1; 673 if (walk == last) 674 break; 675 } 676 if (incomplete) 677 break; 678 } 679 gp->tx_skbs[entry] = NULL; 680 dev->stats.tx_bytes += skb->len; 681 682 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 683 txd = &gp->init_block->txd[entry]; 684 685 dma_addr = le64_to_cpu(txd->buffer); 686 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 687 688 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 689 entry = NEXT_TX(entry); 690 } 691 692 dev->stats.tx_packets++; 693 dev_kfree_skb(skb); 694 } 695 gp->tx_old = entry; 696 697 /* Need to make the tx_old update visible to gem_start_xmit() 698 * before checking for netif_queue_stopped(). Without the 699 * memory barrier, there is a small possibility that gem_start_xmit() 700 * will miss it and cause the queue to be stopped forever. 701 */ 702 smp_mb(); 703 704 if (unlikely(netif_queue_stopped(dev) && 705 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 706 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 707 708 __netif_tx_lock(txq, smp_processor_id()); 709 if (netif_queue_stopped(dev) && 710 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 711 netif_wake_queue(dev); 712 __netif_tx_unlock(txq); 713 } 714 } 715 716 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 717 { 718 int cluster_start, curr, count, kick; 719 720 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 721 count = 0; 722 kick = -1; 723 wmb(); 724 while (curr != limit) { 725 curr = NEXT_RX(curr); 726 if (++count == 4) { 727 struct gem_rxd *rxd = 728 &gp->init_block->rxd[cluster_start]; 729 for (;;) { 730 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 731 rxd++; 732 cluster_start = NEXT_RX(cluster_start); 733 if (cluster_start == curr) 734 break; 735 } 736 kick = curr; 737 count = 0; 738 } 739 } 740 if (kick >= 0) { 741 mb(); 742 writel(kick, gp->regs + RXDMA_KICK); 743 } 744 } 745 746 #define ALIGNED_RX_SKB_ADDR(addr) \ 747 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 748 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 749 gfp_t gfp_flags) 750 { 751 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 752 753 if (likely(skb)) { 754 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 755 skb_reserve(skb, offset); 756 skb->dev = dev; 757 } 758 return skb; 759 } 760 761 static int gem_rx(struct gem *gp, int work_to_do) 762 { 763 struct net_device *dev = gp->dev; 764 int entry, drops, work_done = 0; 765 u32 done; 766 __sum16 csum; 767 768 if (netif_msg_rx_status(gp)) 769 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 770 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 771 772 entry = gp->rx_new; 773 drops = 0; 774 done = readl(gp->regs + RXDMA_DONE); 775 for (;;) { 776 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 777 struct sk_buff *skb; 778 u64 status = le64_to_cpu(rxd->status_word); 779 dma_addr_t dma_addr; 780 int len; 781 782 if ((status & RXDCTRL_OWN) != 0) 783 break; 784 785 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 786 break; 787 788 /* When writing back RX descriptor, GEM writes status 789 * then buffer address, possibly in separate transactions. 790 * If we don't wait for the chip to write both, we could 791 * post a new buffer to this descriptor then have GEM spam 792 * on the buffer address. We sync on the RX completion 793 * register to prevent this from happening. 794 */ 795 if (entry == done) { 796 done = readl(gp->regs + RXDMA_DONE); 797 if (entry == done) 798 break; 799 } 800 801 /* We can now account for the work we're about to do */ 802 work_done++; 803 804 skb = gp->rx_skbs[entry]; 805 806 len = (status & RXDCTRL_BUFSZ) >> 16; 807 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 808 dev->stats.rx_errors++; 809 if (len < ETH_ZLEN) 810 dev->stats.rx_length_errors++; 811 if (len & RXDCTRL_BAD) 812 dev->stats.rx_crc_errors++; 813 814 /* We'll just return it to GEM. */ 815 drop_it: 816 dev->stats.rx_dropped++; 817 goto next; 818 } 819 820 dma_addr = le64_to_cpu(rxd->buffer); 821 if (len > RX_COPY_THRESHOLD) { 822 struct sk_buff *new_skb; 823 824 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 825 if (new_skb == NULL) { 826 drops++; 827 goto drop_it; 828 } 829 pci_unmap_page(gp->pdev, dma_addr, 830 RX_BUF_ALLOC_SIZE(gp), 831 PCI_DMA_FROMDEVICE); 832 gp->rx_skbs[entry] = new_skb; 833 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 834 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 835 virt_to_page(new_skb->data), 836 offset_in_page(new_skb->data), 837 RX_BUF_ALLOC_SIZE(gp), 838 PCI_DMA_FROMDEVICE)); 839 skb_reserve(new_skb, RX_OFFSET); 840 841 /* Trim the original skb for the netif. */ 842 skb_trim(skb, len); 843 } else { 844 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 845 846 if (copy_skb == NULL) { 847 drops++; 848 goto drop_it; 849 } 850 851 skb_reserve(copy_skb, 2); 852 skb_put(copy_skb, len); 853 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 854 skb_copy_from_linear_data(skb, copy_skb->data, len); 855 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 856 857 /* We'll reuse the original ring buffer. */ 858 skb = copy_skb; 859 } 860 861 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 862 skb->csum = csum_unfold(csum); 863 skb->ip_summed = CHECKSUM_COMPLETE; 864 skb->protocol = eth_type_trans(skb, gp->dev); 865 866 napi_gro_receive(&gp->napi, skb); 867 868 dev->stats.rx_packets++; 869 dev->stats.rx_bytes += len; 870 871 next: 872 entry = NEXT_RX(entry); 873 } 874 875 gem_post_rxds(gp, entry); 876 877 gp->rx_new = entry; 878 879 if (drops) 880 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 881 882 return work_done; 883 } 884 885 static int gem_poll(struct napi_struct *napi, int budget) 886 { 887 struct gem *gp = container_of(napi, struct gem, napi); 888 struct net_device *dev = gp->dev; 889 int work_done; 890 891 work_done = 0; 892 do { 893 /* Handle anomalies */ 894 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 895 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 896 int reset; 897 898 /* We run the abnormal interrupt handling code with 899 * the Tx lock. It only resets the Rx portion of the 900 * chip, but we need to guard it against DMA being 901 * restarted by the link poll timer 902 */ 903 __netif_tx_lock(txq, smp_processor_id()); 904 reset = gem_abnormal_irq(dev, gp, gp->status); 905 __netif_tx_unlock(txq); 906 if (reset) { 907 gem_schedule_reset(gp); 908 napi_complete(napi); 909 return work_done; 910 } 911 } 912 913 /* Run TX completion thread */ 914 gem_tx(dev, gp, gp->status); 915 916 /* Run RX thread. We don't use any locking here, 917 * code willing to do bad things - like cleaning the 918 * rx ring - must call napi_disable(), which 919 * schedule_timeout()'s if polling is already disabled. 920 */ 921 work_done += gem_rx(gp, budget - work_done); 922 923 if (work_done >= budget) 924 return work_done; 925 926 gp->status = readl(gp->regs + GREG_STAT); 927 } while (gp->status & GREG_STAT_NAPI); 928 929 napi_complete(napi); 930 gem_enable_ints(gp); 931 932 return work_done; 933 } 934 935 static irqreturn_t gem_interrupt(int irq, void *dev_id) 936 { 937 struct net_device *dev = dev_id; 938 struct gem *gp = netdev_priv(dev); 939 940 if (napi_schedule_prep(&gp->napi)) { 941 u32 gem_status = readl(gp->regs + GREG_STAT); 942 943 if (unlikely(gem_status == 0)) { 944 napi_enable(&gp->napi); 945 return IRQ_NONE; 946 } 947 if (netif_msg_intr(gp)) 948 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 949 gp->dev->name, gem_status); 950 951 gp->status = gem_status; 952 gem_disable_ints(gp); 953 __napi_schedule(&gp->napi); 954 } 955 956 /* If polling was disabled at the time we received that 957 * interrupt, we may return IRQ_HANDLED here while we 958 * should return IRQ_NONE. No big deal... 959 */ 960 return IRQ_HANDLED; 961 } 962 963 #ifdef CONFIG_NET_POLL_CONTROLLER 964 static void gem_poll_controller(struct net_device *dev) 965 { 966 struct gem *gp = netdev_priv(dev); 967 968 disable_irq(gp->pdev->irq); 969 gem_interrupt(gp->pdev->irq, dev); 970 enable_irq(gp->pdev->irq); 971 } 972 #endif 973 974 static void gem_tx_timeout(struct net_device *dev) 975 { 976 struct gem *gp = netdev_priv(dev); 977 978 netdev_err(dev, "transmit timed out, resetting\n"); 979 980 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 981 readl(gp->regs + TXDMA_CFG), 982 readl(gp->regs + MAC_TXSTAT), 983 readl(gp->regs + MAC_TXCFG)); 984 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 985 readl(gp->regs + RXDMA_CFG), 986 readl(gp->regs + MAC_RXSTAT), 987 readl(gp->regs + MAC_RXCFG)); 988 989 gem_schedule_reset(gp); 990 } 991 992 static __inline__ int gem_intme(int entry) 993 { 994 /* Algorithm: IRQ every 1/2 of descriptors. */ 995 if (!(entry & ((TX_RING_SIZE>>1)-1))) 996 return 1; 997 998 return 0; 999 } 1000 1001 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 1002 struct net_device *dev) 1003 { 1004 struct gem *gp = netdev_priv(dev); 1005 int entry; 1006 u64 ctrl; 1007 1008 ctrl = 0; 1009 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1010 const u64 csum_start_off = skb_checksum_start_offset(skb); 1011 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1012 1013 ctrl = (TXDCTRL_CENAB | 1014 (csum_start_off << 15) | 1015 (csum_stuff_off << 21)); 1016 } 1017 1018 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1019 /* This is a hard error, log it. */ 1020 if (!netif_queue_stopped(dev)) { 1021 netif_stop_queue(dev); 1022 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1023 } 1024 return NETDEV_TX_BUSY; 1025 } 1026 1027 entry = gp->tx_new; 1028 gp->tx_skbs[entry] = skb; 1029 1030 if (skb_shinfo(skb)->nr_frags == 0) { 1031 struct gem_txd *txd = &gp->init_block->txd[entry]; 1032 dma_addr_t mapping; 1033 u32 len; 1034 1035 len = skb->len; 1036 mapping = pci_map_page(gp->pdev, 1037 virt_to_page(skb->data), 1038 offset_in_page(skb->data), 1039 len, PCI_DMA_TODEVICE); 1040 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1041 if (gem_intme(entry)) 1042 ctrl |= TXDCTRL_INTME; 1043 txd->buffer = cpu_to_le64(mapping); 1044 wmb(); 1045 txd->control_word = cpu_to_le64(ctrl); 1046 entry = NEXT_TX(entry); 1047 } else { 1048 struct gem_txd *txd; 1049 u32 first_len; 1050 u64 intme; 1051 dma_addr_t first_mapping; 1052 int frag, first_entry = entry; 1053 1054 intme = 0; 1055 if (gem_intme(entry)) 1056 intme |= TXDCTRL_INTME; 1057 1058 /* We must give this initial chunk to the device last. 1059 * Otherwise we could race with the device. 1060 */ 1061 first_len = skb_headlen(skb); 1062 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1063 offset_in_page(skb->data), 1064 first_len, PCI_DMA_TODEVICE); 1065 entry = NEXT_TX(entry); 1066 1067 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1068 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1069 u32 len; 1070 dma_addr_t mapping; 1071 u64 this_ctrl; 1072 1073 len = skb_frag_size(this_frag); 1074 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1075 0, len, DMA_TO_DEVICE); 1076 this_ctrl = ctrl; 1077 if (frag == skb_shinfo(skb)->nr_frags - 1) 1078 this_ctrl |= TXDCTRL_EOF; 1079 1080 txd = &gp->init_block->txd[entry]; 1081 txd->buffer = cpu_to_le64(mapping); 1082 wmb(); 1083 txd->control_word = cpu_to_le64(this_ctrl | len); 1084 1085 if (gem_intme(entry)) 1086 intme |= TXDCTRL_INTME; 1087 1088 entry = NEXT_TX(entry); 1089 } 1090 txd = &gp->init_block->txd[first_entry]; 1091 txd->buffer = cpu_to_le64(first_mapping); 1092 wmb(); 1093 txd->control_word = 1094 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1095 } 1096 1097 gp->tx_new = entry; 1098 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1099 netif_stop_queue(dev); 1100 1101 /* netif_stop_queue() must be done before checking 1102 * checking tx index in TX_BUFFS_AVAIL() below, because 1103 * in gem_tx(), we update tx_old before checking for 1104 * netif_queue_stopped(). 1105 */ 1106 smp_mb(); 1107 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1108 netif_wake_queue(dev); 1109 } 1110 if (netif_msg_tx_queued(gp)) 1111 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1112 dev->name, entry, skb->len); 1113 mb(); 1114 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1115 1116 return NETDEV_TX_OK; 1117 } 1118 1119 static void gem_pcs_reset(struct gem *gp) 1120 { 1121 int limit; 1122 u32 val; 1123 1124 /* Reset PCS unit. */ 1125 val = readl(gp->regs + PCS_MIICTRL); 1126 val |= PCS_MIICTRL_RST; 1127 writel(val, gp->regs + PCS_MIICTRL); 1128 1129 limit = 32; 1130 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1131 udelay(100); 1132 if (limit-- <= 0) 1133 break; 1134 } 1135 if (limit < 0) 1136 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1137 } 1138 1139 static void gem_pcs_reinit_adv(struct gem *gp) 1140 { 1141 u32 val; 1142 1143 /* Make sure PCS is disabled while changing advertisement 1144 * configuration. 1145 */ 1146 val = readl(gp->regs + PCS_CFG); 1147 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1148 writel(val, gp->regs + PCS_CFG); 1149 1150 /* Advertise all capabilities except asymmetric 1151 * pause. 1152 */ 1153 val = readl(gp->regs + PCS_MIIADV); 1154 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1155 PCS_MIIADV_SP | PCS_MIIADV_AP); 1156 writel(val, gp->regs + PCS_MIIADV); 1157 1158 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1159 * and re-enable PCS. 1160 */ 1161 val = readl(gp->regs + PCS_MIICTRL); 1162 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1163 val &= ~PCS_MIICTRL_WB; 1164 writel(val, gp->regs + PCS_MIICTRL); 1165 1166 val = readl(gp->regs + PCS_CFG); 1167 val |= PCS_CFG_ENABLE; 1168 writel(val, gp->regs + PCS_CFG); 1169 1170 /* Make sure serialink loopback is off. The meaning 1171 * of this bit is logically inverted based upon whether 1172 * you are in Serialink or SERDES mode. 1173 */ 1174 val = readl(gp->regs + PCS_SCTRL); 1175 if (gp->phy_type == phy_serialink) 1176 val &= ~PCS_SCTRL_LOOP; 1177 else 1178 val |= PCS_SCTRL_LOOP; 1179 writel(val, gp->regs + PCS_SCTRL); 1180 } 1181 1182 #define STOP_TRIES 32 1183 1184 static void gem_reset(struct gem *gp) 1185 { 1186 int limit; 1187 u32 val; 1188 1189 /* Make sure we won't get any more interrupts */ 1190 writel(0xffffffff, gp->regs + GREG_IMASK); 1191 1192 /* Reset the chip */ 1193 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1194 gp->regs + GREG_SWRST); 1195 1196 limit = STOP_TRIES; 1197 1198 do { 1199 udelay(20); 1200 val = readl(gp->regs + GREG_SWRST); 1201 if (limit-- <= 0) 1202 break; 1203 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1204 1205 if (limit < 0) 1206 netdev_err(gp->dev, "SW reset is ghetto\n"); 1207 1208 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1209 gem_pcs_reinit_adv(gp); 1210 } 1211 1212 static void gem_start_dma(struct gem *gp) 1213 { 1214 u32 val; 1215 1216 /* We are ready to rock, turn everything on. */ 1217 val = readl(gp->regs + TXDMA_CFG); 1218 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1219 val = readl(gp->regs + RXDMA_CFG); 1220 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1221 val = readl(gp->regs + MAC_TXCFG); 1222 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1223 val = readl(gp->regs + MAC_RXCFG); 1224 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1225 1226 (void) readl(gp->regs + MAC_RXCFG); 1227 udelay(100); 1228 1229 gem_enable_ints(gp); 1230 1231 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1232 } 1233 1234 /* DMA won't be actually stopped before about 4ms tho ... 1235 */ 1236 static void gem_stop_dma(struct gem *gp) 1237 { 1238 u32 val; 1239 1240 /* We are done rocking, turn everything off. */ 1241 val = readl(gp->regs + TXDMA_CFG); 1242 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1243 val = readl(gp->regs + RXDMA_CFG); 1244 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1245 val = readl(gp->regs + MAC_TXCFG); 1246 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1247 val = readl(gp->regs + MAC_RXCFG); 1248 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1249 1250 (void) readl(gp->regs + MAC_RXCFG); 1251 1252 /* Need to wait a bit ... done by the caller */ 1253 } 1254 1255 1256 // XXX dbl check what that function should do when called on PCS PHY 1257 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) 1258 { 1259 u32 advertise, features; 1260 int autoneg; 1261 int speed; 1262 int duplex; 1263 1264 if (gp->phy_type != phy_mii_mdio0 && 1265 gp->phy_type != phy_mii_mdio1) 1266 goto non_mii; 1267 1268 /* Setup advertise */ 1269 if (found_mii_phy(gp)) 1270 features = gp->phy_mii.def->features; 1271 else 1272 features = 0; 1273 1274 advertise = features & ADVERTISE_MASK; 1275 if (gp->phy_mii.advertising != 0) 1276 advertise &= gp->phy_mii.advertising; 1277 1278 autoneg = gp->want_autoneg; 1279 speed = gp->phy_mii.speed; 1280 duplex = gp->phy_mii.duplex; 1281 1282 /* Setup link parameters */ 1283 if (!ep) 1284 goto start_aneg; 1285 if (ep->autoneg == AUTONEG_ENABLE) { 1286 advertise = ep->advertising; 1287 autoneg = 1; 1288 } else { 1289 autoneg = 0; 1290 speed = ethtool_cmd_speed(ep); 1291 duplex = ep->duplex; 1292 } 1293 1294 start_aneg: 1295 /* Sanitize settings based on PHY capabilities */ 1296 if ((features & SUPPORTED_Autoneg) == 0) 1297 autoneg = 0; 1298 if (speed == SPEED_1000 && 1299 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1300 speed = SPEED_100; 1301 if (speed == SPEED_100 && 1302 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1303 speed = SPEED_10; 1304 if (duplex == DUPLEX_FULL && 1305 !(features & (SUPPORTED_1000baseT_Full | 1306 SUPPORTED_100baseT_Full | 1307 SUPPORTED_10baseT_Full))) 1308 duplex = DUPLEX_HALF; 1309 if (speed == 0) 1310 speed = SPEED_10; 1311 1312 /* If we are asleep, we don't try to actually setup the PHY, we 1313 * just store the settings 1314 */ 1315 if (!netif_device_present(gp->dev)) { 1316 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1317 gp->phy_mii.speed = speed; 1318 gp->phy_mii.duplex = duplex; 1319 return; 1320 } 1321 1322 /* Configure PHY & start aneg */ 1323 gp->want_autoneg = autoneg; 1324 if (autoneg) { 1325 if (found_mii_phy(gp)) 1326 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1327 gp->lstate = link_aneg; 1328 } else { 1329 if (found_mii_phy(gp)) 1330 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1331 gp->lstate = link_force_ok; 1332 } 1333 1334 non_mii: 1335 gp->timer_ticks = 0; 1336 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1337 } 1338 1339 /* A link-up condition has occurred, initialize and enable the 1340 * rest of the chip. 1341 */ 1342 static int gem_set_link_modes(struct gem *gp) 1343 { 1344 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1345 int full_duplex, speed, pause; 1346 u32 val; 1347 1348 full_duplex = 0; 1349 speed = SPEED_10; 1350 pause = 0; 1351 1352 if (found_mii_phy(gp)) { 1353 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1354 return 1; 1355 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1356 speed = gp->phy_mii.speed; 1357 pause = gp->phy_mii.pause; 1358 } else if (gp->phy_type == phy_serialink || 1359 gp->phy_type == phy_serdes) { 1360 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1361 1362 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1363 full_duplex = 1; 1364 speed = SPEED_1000; 1365 } 1366 1367 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1368 speed, (full_duplex ? "full" : "half")); 1369 1370 1371 /* We take the tx queue lock to avoid collisions between 1372 * this code, the tx path and the NAPI-driven error path 1373 */ 1374 __netif_tx_lock(txq, smp_processor_id()); 1375 1376 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1377 if (full_duplex) { 1378 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1379 } else { 1380 /* MAC_TXCFG_NBO must be zero. */ 1381 } 1382 writel(val, gp->regs + MAC_TXCFG); 1383 1384 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1385 if (!full_duplex && 1386 (gp->phy_type == phy_mii_mdio0 || 1387 gp->phy_type == phy_mii_mdio1)) { 1388 val |= MAC_XIFCFG_DISE; 1389 } else if (full_duplex) { 1390 val |= MAC_XIFCFG_FLED; 1391 } 1392 1393 if (speed == SPEED_1000) 1394 val |= (MAC_XIFCFG_GMII); 1395 1396 writel(val, gp->regs + MAC_XIFCFG); 1397 1398 /* If gigabit and half-duplex, enable carrier extension 1399 * mode. Else, disable it. 1400 */ 1401 if (speed == SPEED_1000 && !full_duplex) { 1402 val = readl(gp->regs + MAC_TXCFG); 1403 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1404 1405 val = readl(gp->regs + MAC_RXCFG); 1406 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1407 } else { 1408 val = readl(gp->regs + MAC_TXCFG); 1409 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1410 1411 val = readl(gp->regs + MAC_RXCFG); 1412 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1413 } 1414 1415 if (gp->phy_type == phy_serialink || 1416 gp->phy_type == phy_serdes) { 1417 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1418 1419 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1420 pause = 1; 1421 } 1422 1423 if (!full_duplex) 1424 writel(512, gp->regs + MAC_STIME); 1425 else 1426 writel(64, gp->regs + MAC_STIME); 1427 val = readl(gp->regs + MAC_MCCFG); 1428 if (pause) 1429 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1430 else 1431 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1432 writel(val, gp->regs + MAC_MCCFG); 1433 1434 gem_start_dma(gp); 1435 1436 __netif_tx_unlock(txq); 1437 1438 if (netif_msg_link(gp)) { 1439 if (pause) { 1440 netdev_info(gp->dev, 1441 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1442 gp->rx_fifo_sz, 1443 gp->rx_pause_off, 1444 gp->rx_pause_on); 1445 } else { 1446 netdev_info(gp->dev, "Pause is disabled\n"); 1447 } 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int gem_mdio_link_not_up(struct gem *gp) 1454 { 1455 switch (gp->lstate) { 1456 case link_force_ret: 1457 netif_info(gp, link, gp->dev, 1458 "Autoneg failed again, keeping forced mode\n"); 1459 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1460 gp->last_forced_speed, DUPLEX_HALF); 1461 gp->timer_ticks = 5; 1462 gp->lstate = link_force_ok; 1463 return 0; 1464 case link_aneg: 1465 /* We try forced modes after a failed aneg only on PHYs that don't 1466 * have "magic_aneg" bit set, which means they internally do the 1467 * while forced-mode thingy. On these, we just restart aneg 1468 */ 1469 if (gp->phy_mii.def->magic_aneg) 1470 return 1; 1471 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1472 /* Try forced modes. */ 1473 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1474 DUPLEX_HALF); 1475 gp->timer_ticks = 5; 1476 gp->lstate = link_force_try; 1477 return 0; 1478 case link_force_try: 1479 /* Downgrade from 100 to 10 Mbps if necessary. 1480 * If already at 10Mbps, warn user about the 1481 * situation every 10 ticks. 1482 */ 1483 if (gp->phy_mii.speed == SPEED_100) { 1484 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1485 DUPLEX_HALF); 1486 gp->timer_ticks = 5; 1487 netif_info(gp, link, gp->dev, 1488 "switching to forced 10bt\n"); 1489 return 0; 1490 } else 1491 return 1; 1492 default: 1493 return 0; 1494 } 1495 } 1496 1497 static void gem_link_timer(unsigned long data) 1498 { 1499 struct gem *gp = (struct gem *) data; 1500 struct net_device *dev = gp->dev; 1501 int restart_aneg = 0; 1502 1503 /* There's no point doing anything if we're going to be reset */ 1504 if (gp->reset_task_pending) 1505 return; 1506 1507 if (gp->phy_type == phy_serialink || 1508 gp->phy_type == phy_serdes) { 1509 u32 val = readl(gp->regs + PCS_MIISTAT); 1510 1511 if (!(val & PCS_MIISTAT_LS)) 1512 val = readl(gp->regs + PCS_MIISTAT); 1513 1514 if ((val & PCS_MIISTAT_LS) != 0) { 1515 if (gp->lstate == link_up) 1516 goto restart; 1517 1518 gp->lstate = link_up; 1519 netif_carrier_on(dev); 1520 (void)gem_set_link_modes(gp); 1521 } 1522 goto restart; 1523 } 1524 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1525 /* Ok, here we got a link. If we had it due to a forced 1526 * fallback, and we were configured for autoneg, we do 1527 * retry a short autoneg pass. If you know your hub is 1528 * broken, use ethtool ;) 1529 */ 1530 if (gp->lstate == link_force_try && gp->want_autoneg) { 1531 gp->lstate = link_force_ret; 1532 gp->last_forced_speed = gp->phy_mii.speed; 1533 gp->timer_ticks = 5; 1534 if (netif_msg_link(gp)) 1535 netdev_info(dev, 1536 "Got link after fallback, retrying autoneg once...\n"); 1537 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1538 } else if (gp->lstate != link_up) { 1539 gp->lstate = link_up; 1540 netif_carrier_on(dev); 1541 if (gem_set_link_modes(gp)) 1542 restart_aneg = 1; 1543 } 1544 } else { 1545 /* If the link was previously up, we restart the 1546 * whole process 1547 */ 1548 if (gp->lstate == link_up) { 1549 gp->lstate = link_down; 1550 netif_info(gp, link, dev, "Link down\n"); 1551 netif_carrier_off(dev); 1552 gem_schedule_reset(gp); 1553 /* The reset task will restart the timer */ 1554 return; 1555 } else if (++gp->timer_ticks > 10) { 1556 if (found_mii_phy(gp)) 1557 restart_aneg = gem_mdio_link_not_up(gp); 1558 else 1559 restart_aneg = 1; 1560 } 1561 } 1562 if (restart_aneg) { 1563 gem_begin_auto_negotiation(gp, NULL); 1564 return; 1565 } 1566 restart: 1567 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1568 } 1569 1570 static void gem_clean_rings(struct gem *gp) 1571 { 1572 struct gem_init_block *gb = gp->init_block; 1573 struct sk_buff *skb; 1574 int i; 1575 dma_addr_t dma_addr; 1576 1577 for (i = 0; i < RX_RING_SIZE; i++) { 1578 struct gem_rxd *rxd; 1579 1580 rxd = &gb->rxd[i]; 1581 if (gp->rx_skbs[i] != NULL) { 1582 skb = gp->rx_skbs[i]; 1583 dma_addr = le64_to_cpu(rxd->buffer); 1584 pci_unmap_page(gp->pdev, dma_addr, 1585 RX_BUF_ALLOC_SIZE(gp), 1586 PCI_DMA_FROMDEVICE); 1587 dev_kfree_skb_any(skb); 1588 gp->rx_skbs[i] = NULL; 1589 } 1590 rxd->status_word = 0; 1591 wmb(); 1592 rxd->buffer = 0; 1593 } 1594 1595 for (i = 0; i < TX_RING_SIZE; i++) { 1596 if (gp->tx_skbs[i] != NULL) { 1597 struct gem_txd *txd; 1598 int frag; 1599 1600 skb = gp->tx_skbs[i]; 1601 gp->tx_skbs[i] = NULL; 1602 1603 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1604 int ent = i & (TX_RING_SIZE - 1); 1605 1606 txd = &gb->txd[ent]; 1607 dma_addr = le64_to_cpu(txd->buffer); 1608 pci_unmap_page(gp->pdev, dma_addr, 1609 le64_to_cpu(txd->control_word) & 1610 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1611 1612 if (frag != skb_shinfo(skb)->nr_frags) 1613 i++; 1614 } 1615 dev_kfree_skb_any(skb); 1616 } 1617 } 1618 } 1619 1620 static void gem_init_rings(struct gem *gp) 1621 { 1622 struct gem_init_block *gb = gp->init_block; 1623 struct net_device *dev = gp->dev; 1624 int i; 1625 dma_addr_t dma_addr; 1626 1627 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1628 1629 gem_clean_rings(gp); 1630 1631 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1632 (unsigned)VLAN_ETH_FRAME_LEN); 1633 1634 for (i = 0; i < RX_RING_SIZE; i++) { 1635 struct sk_buff *skb; 1636 struct gem_rxd *rxd = &gb->rxd[i]; 1637 1638 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1639 if (!skb) { 1640 rxd->buffer = 0; 1641 rxd->status_word = 0; 1642 continue; 1643 } 1644 1645 gp->rx_skbs[i] = skb; 1646 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1647 dma_addr = pci_map_page(gp->pdev, 1648 virt_to_page(skb->data), 1649 offset_in_page(skb->data), 1650 RX_BUF_ALLOC_SIZE(gp), 1651 PCI_DMA_FROMDEVICE); 1652 rxd->buffer = cpu_to_le64(dma_addr); 1653 wmb(); 1654 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1655 skb_reserve(skb, RX_OFFSET); 1656 } 1657 1658 for (i = 0; i < TX_RING_SIZE; i++) { 1659 struct gem_txd *txd = &gb->txd[i]; 1660 1661 txd->control_word = 0; 1662 wmb(); 1663 txd->buffer = 0; 1664 } 1665 wmb(); 1666 } 1667 1668 /* Init PHY interface and start link poll state machine */ 1669 static void gem_init_phy(struct gem *gp) 1670 { 1671 u32 mifcfg; 1672 1673 /* Revert MIF CFG setting done on stop_phy */ 1674 mifcfg = readl(gp->regs + MIF_CFG); 1675 mifcfg &= ~MIF_CFG_BBMODE; 1676 writel(mifcfg, gp->regs + MIF_CFG); 1677 1678 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1679 int i; 1680 1681 /* Those delay sucks, the HW seem to love them though, I'll 1682 * serisouly consider breaking some locks here to be able 1683 * to schedule instead 1684 */ 1685 for (i = 0; i < 3; i++) { 1686 #ifdef CONFIG_PPC_PMAC 1687 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1688 msleep(20); 1689 #endif 1690 /* Some PHYs used by apple have problem getting back to us, 1691 * we do an additional reset here 1692 */ 1693 phy_write(gp, MII_BMCR, BMCR_RESET); 1694 msleep(20); 1695 if (phy_read(gp, MII_BMCR) != 0xffff) 1696 break; 1697 if (i == 2) 1698 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1699 } 1700 } 1701 1702 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1703 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1704 u32 val; 1705 1706 /* Init datapath mode register. */ 1707 if (gp->phy_type == phy_mii_mdio0 || 1708 gp->phy_type == phy_mii_mdio1) { 1709 val = PCS_DMODE_MGM; 1710 } else if (gp->phy_type == phy_serialink) { 1711 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1712 } else { 1713 val = PCS_DMODE_ESM; 1714 } 1715 1716 writel(val, gp->regs + PCS_DMODE); 1717 } 1718 1719 if (gp->phy_type == phy_mii_mdio0 || 1720 gp->phy_type == phy_mii_mdio1) { 1721 /* Reset and detect MII PHY */ 1722 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1723 1724 /* Init PHY */ 1725 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1726 gp->phy_mii.def->ops->init(&gp->phy_mii); 1727 } else { 1728 gem_pcs_reset(gp); 1729 gem_pcs_reinit_adv(gp); 1730 } 1731 1732 /* Default aneg parameters */ 1733 gp->timer_ticks = 0; 1734 gp->lstate = link_down; 1735 netif_carrier_off(gp->dev); 1736 1737 /* Print things out */ 1738 if (gp->phy_type == phy_mii_mdio0 || 1739 gp->phy_type == phy_mii_mdio1) 1740 netdev_info(gp->dev, "Found %s PHY\n", 1741 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1742 1743 gem_begin_auto_negotiation(gp, NULL); 1744 } 1745 1746 static void gem_init_dma(struct gem *gp) 1747 { 1748 u64 desc_dma = (u64) gp->gblock_dvma; 1749 u32 val; 1750 1751 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1752 writel(val, gp->regs + TXDMA_CFG); 1753 1754 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1755 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1756 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1757 1758 writel(0, gp->regs + TXDMA_KICK); 1759 1760 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1761 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1762 writel(val, gp->regs + RXDMA_CFG); 1763 1764 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1765 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1766 1767 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1768 1769 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1770 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1771 writel(val, gp->regs + RXDMA_PTHRESH); 1772 1773 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1774 writel(((5 & RXDMA_BLANK_IPKTS) | 1775 ((8 << 12) & RXDMA_BLANK_ITIME)), 1776 gp->regs + RXDMA_BLANK); 1777 else 1778 writel(((5 & RXDMA_BLANK_IPKTS) | 1779 ((4 << 12) & RXDMA_BLANK_ITIME)), 1780 gp->regs + RXDMA_BLANK); 1781 } 1782 1783 static u32 gem_setup_multicast(struct gem *gp) 1784 { 1785 u32 rxcfg = 0; 1786 int i; 1787 1788 if ((gp->dev->flags & IFF_ALLMULTI) || 1789 (netdev_mc_count(gp->dev) > 256)) { 1790 for (i=0; i<16; i++) 1791 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1792 rxcfg |= MAC_RXCFG_HFE; 1793 } else if (gp->dev->flags & IFF_PROMISC) { 1794 rxcfg |= MAC_RXCFG_PROM; 1795 } else { 1796 u16 hash_table[16]; 1797 u32 crc; 1798 struct netdev_hw_addr *ha; 1799 int i; 1800 1801 memset(hash_table, 0, sizeof(hash_table)); 1802 netdev_for_each_mc_addr(ha, gp->dev) { 1803 crc = ether_crc_le(6, ha->addr); 1804 crc >>= 24; 1805 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1806 } 1807 for (i=0; i<16; i++) 1808 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1809 rxcfg |= MAC_RXCFG_HFE; 1810 } 1811 1812 return rxcfg; 1813 } 1814 1815 static void gem_init_mac(struct gem *gp) 1816 { 1817 unsigned char *e = &gp->dev->dev_addr[0]; 1818 1819 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1820 1821 writel(0x00, gp->regs + MAC_IPG0); 1822 writel(0x08, gp->regs + MAC_IPG1); 1823 writel(0x04, gp->regs + MAC_IPG2); 1824 writel(0x40, gp->regs + MAC_STIME); 1825 writel(0x40, gp->regs + MAC_MINFSZ); 1826 1827 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1828 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1829 1830 writel(0x07, gp->regs + MAC_PASIZE); 1831 writel(0x04, gp->regs + MAC_JAMSIZE); 1832 writel(0x10, gp->regs + MAC_ATTLIM); 1833 writel(0x8808, gp->regs + MAC_MCTYPE); 1834 1835 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1836 1837 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1838 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1839 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1840 1841 writel(0, gp->regs + MAC_ADDR3); 1842 writel(0, gp->regs + MAC_ADDR4); 1843 writel(0, gp->regs + MAC_ADDR5); 1844 1845 writel(0x0001, gp->regs + MAC_ADDR6); 1846 writel(0xc200, gp->regs + MAC_ADDR7); 1847 writel(0x0180, gp->regs + MAC_ADDR8); 1848 1849 writel(0, gp->regs + MAC_AFILT0); 1850 writel(0, gp->regs + MAC_AFILT1); 1851 writel(0, gp->regs + MAC_AFILT2); 1852 writel(0, gp->regs + MAC_AF21MSK); 1853 writel(0, gp->regs + MAC_AF0MSK); 1854 1855 gp->mac_rx_cfg = gem_setup_multicast(gp); 1856 #ifdef STRIP_FCS 1857 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1858 #endif 1859 writel(0, gp->regs + MAC_NCOLL); 1860 writel(0, gp->regs + MAC_FASUCC); 1861 writel(0, gp->regs + MAC_ECOLL); 1862 writel(0, gp->regs + MAC_LCOLL); 1863 writel(0, gp->regs + MAC_DTIMER); 1864 writel(0, gp->regs + MAC_PATMPS); 1865 writel(0, gp->regs + MAC_RFCTR); 1866 writel(0, gp->regs + MAC_LERR); 1867 writel(0, gp->regs + MAC_AERR); 1868 writel(0, gp->regs + MAC_FCSERR); 1869 writel(0, gp->regs + MAC_RXCVERR); 1870 1871 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1872 * them once a link is established. 1873 */ 1874 writel(0, gp->regs + MAC_TXCFG); 1875 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1876 writel(0, gp->regs + MAC_MCCFG); 1877 writel(0, gp->regs + MAC_XIFCFG); 1878 1879 /* Setup MAC interrupts. We want to get all of the interesting 1880 * counter expiration events, but we do not want to hear about 1881 * normal rx/tx as the DMA engine tells us that. 1882 */ 1883 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1884 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1885 1886 /* Don't enable even the PAUSE interrupts for now, we 1887 * make no use of those events other than to record them. 1888 */ 1889 writel(0xffffffff, gp->regs + MAC_MCMASK); 1890 1891 /* Don't enable GEM's WOL in normal operations 1892 */ 1893 if (gp->has_wol) 1894 writel(0, gp->regs + WOL_WAKECSR); 1895 } 1896 1897 static void gem_init_pause_thresholds(struct gem *gp) 1898 { 1899 u32 cfg; 1900 1901 /* Calculate pause thresholds. Setting the OFF threshold to the 1902 * full RX fifo size effectively disables PAUSE generation which 1903 * is what we do for 10/100 only GEMs which have FIFOs too small 1904 * to make real gains from PAUSE. 1905 */ 1906 if (gp->rx_fifo_sz <= (2 * 1024)) { 1907 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1908 } else { 1909 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1910 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1911 int on = off - max_frame; 1912 1913 gp->rx_pause_off = off; 1914 gp->rx_pause_on = on; 1915 } 1916 1917 1918 /* Configure the chip "burst" DMA mode & enable some 1919 * HW bug fixes on Apple version 1920 */ 1921 cfg = 0; 1922 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1923 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1924 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1925 cfg |= GREG_CFG_IBURST; 1926 #endif 1927 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1928 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1929 writel(cfg, gp->regs + GREG_CFG); 1930 1931 /* If Infinite Burst didn't stick, then use different 1932 * thresholds (and Apple bug fixes don't exist) 1933 */ 1934 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1935 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1936 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1937 writel(cfg, gp->regs + GREG_CFG); 1938 } 1939 } 1940 1941 static int gem_check_invariants(struct gem *gp) 1942 { 1943 struct pci_dev *pdev = gp->pdev; 1944 u32 mif_cfg; 1945 1946 /* On Apple's sungem, we can't rely on registers as the chip 1947 * was been powered down by the firmware. The PHY is looked 1948 * up later on. 1949 */ 1950 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1951 gp->phy_type = phy_mii_mdio0; 1952 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1953 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1954 gp->swrst_base = 0; 1955 1956 mif_cfg = readl(gp->regs + MIF_CFG); 1957 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1958 mif_cfg |= MIF_CFG_MDI0; 1959 writel(mif_cfg, gp->regs + MIF_CFG); 1960 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1961 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1962 1963 /* We hard-code the PHY address so we can properly bring it out of 1964 * reset later on, we can't really probe it at this point, though 1965 * that isn't an issue. 1966 */ 1967 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1968 gp->mii_phy_addr = 1; 1969 else 1970 gp->mii_phy_addr = 0; 1971 1972 return 0; 1973 } 1974 1975 mif_cfg = readl(gp->regs + MIF_CFG); 1976 1977 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1978 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1979 /* One of the MII PHYs _must_ be present 1980 * as this chip has no gigabit PHY. 1981 */ 1982 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1983 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1984 mif_cfg); 1985 return -1; 1986 } 1987 } 1988 1989 /* Determine initial PHY interface type guess. MDIO1 is the 1990 * external PHY and thus takes precedence over MDIO0. 1991 */ 1992 1993 if (mif_cfg & MIF_CFG_MDI1) { 1994 gp->phy_type = phy_mii_mdio1; 1995 mif_cfg |= MIF_CFG_PSELECT; 1996 writel(mif_cfg, gp->regs + MIF_CFG); 1997 } else if (mif_cfg & MIF_CFG_MDI0) { 1998 gp->phy_type = phy_mii_mdio0; 1999 mif_cfg &= ~MIF_CFG_PSELECT; 2000 writel(mif_cfg, gp->regs + MIF_CFG); 2001 } else { 2002 #ifdef CONFIG_SPARC 2003 const char *p; 2004 2005 p = of_get_property(gp->of_node, "shared-pins", NULL); 2006 if (p && !strcmp(p, "serdes")) 2007 gp->phy_type = phy_serdes; 2008 else 2009 #endif 2010 gp->phy_type = phy_serialink; 2011 } 2012 if (gp->phy_type == phy_mii_mdio1 || 2013 gp->phy_type == phy_mii_mdio0) { 2014 int i; 2015 2016 for (i = 0; i < 32; i++) { 2017 gp->mii_phy_addr = i; 2018 if (phy_read(gp, MII_BMCR) != 0xffff) 2019 break; 2020 } 2021 if (i == 32) { 2022 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2023 pr_err("RIO MII phy will not respond\n"); 2024 return -1; 2025 } 2026 gp->phy_type = phy_serdes; 2027 } 2028 } 2029 2030 /* Fetch the FIFO configurations now too. */ 2031 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2032 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2033 2034 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2035 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2036 if (gp->tx_fifo_sz != (9 * 1024) || 2037 gp->rx_fifo_sz != (20 * 1024)) { 2038 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2039 gp->tx_fifo_sz, gp->rx_fifo_sz); 2040 return -1; 2041 } 2042 gp->swrst_base = 0; 2043 } else { 2044 if (gp->tx_fifo_sz != (2 * 1024) || 2045 gp->rx_fifo_sz != (2 * 1024)) { 2046 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2047 gp->tx_fifo_sz, gp->rx_fifo_sz); 2048 return -1; 2049 } 2050 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2051 } 2052 } 2053 2054 return 0; 2055 } 2056 2057 static void gem_reinit_chip(struct gem *gp) 2058 { 2059 /* Reset the chip */ 2060 gem_reset(gp); 2061 2062 /* Make sure ints are disabled */ 2063 gem_disable_ints(gp); 2064 2065 /* Allocate & setup ring buffers */ 2066 gem_init_rings(gp); 2067 2068 /* Configure pause thresholds */ 2069 gem_init_pause_thresholds(gp); 2070 2071 /* Init DMA & MAC engines */ 2072 gem_init_dma(gp); 2073 gem_init_mac(gp); 2074 } 2075 2076 2077 static void gem_stop_phy(struct gem *gp, int wol) 2078 { 2079 u32 mifcfg; 2080 2081 /* Let the chip settle down a bit, it seems that helps 2082 * for sleep mode on some models 2083 */ 2084 msleep(10); 2085 2086 /* Make sure we aren't polling PHY status change. We 2087 * don't currently use that feature though 2088 */ 2089 mifcfg = readl(gp->regs + MIF_CFG); 2090 mifcfg &= ~MIF_CFG_POLL; 2091 writel(mifcfg, gp->regs + MIF_CFG); 2092 2093 if (wol && gp->has_wol) { 2094 unsigned char *e = &gp->dev->dev_addr[0]; 2095 u32 csr; 2096 2097 /* Setup wake-on-lan for MAGIC packet */ 2098 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2099 gp->regs + MAC_RXCFG); 2100 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2101 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2102 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2103 2104 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2105 csr = WOL_WAKECSR_ENABLE; 2106 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2107 csr |= WOL_WAKECSR_MII; 2108 writel(csr, gp->regs + WOL_WAKECSR); 2109 } else { 2110 writel(0, gp->regs + MAC_RXCFG); 2111 (void)readl(gp->regs + MAC_RXCFG); 2112 /* Machine sleep will die in strange ways if we 2113 * dont wait a bit here, looks like the chip takes 2114 * some time to really shut down 2115 */ 2116 msleep(10); 2117 } 2118 2119 writel(0, gp->regs + MAC_TXCFG); 2120 writel(0, gp->regs + MAC_XIFCFG); 2121 writel(0, gp->regs + TXDMA_CFG); 2122 writel(0, gp->regs + RXDMA_CFG); 2123 2124 if (!wol) { 2125 gem_reset(gp); 2126 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2127 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2128 2129 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2130 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2131 2132 /* According to Apple, we must set the MDIO pins to this begnign 2133 * state or we may 1) eat more current, 2) damage some PHYs 2134 */ 2135 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2136 writel(0, gp->regs + MIF_BBCLK); 2137 writel(0, gp->regs + MIF_BBDATA); 2138 writel(0, gp->regs + MIF_BBOENAB); 2139 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2140 (void) readl(gp->regs + MAC_XIFCFG); 2141 } 2142 } 2143 2144 static int gem_do_start(struct net_device *dev) 2145 { 2146 struct gem *gp = netdev_priv(dev); 2147 int rc; 2148 2149 /* Enable the cell */ 2150 gem_get_cell(gp); 2151 2152 /* Make sure PCI access and bus master are enabled */ 2153 rc = pci_enable_device(gp->pdev); 2154 if (rc) { 2155 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2156 2157 /* Put cell and forget it for now, it will be considered as 2158 * still asleep, a new sleep cycle may bring it back 2159 */ 2160 gem_put_cell(gp); 2161 return -ENXIO; 2162 } 2163 pci_set_master(gp->pdev); 2164 2165 /* Init & setup chip hardware */ 2166 gem_reinit_chip(gp); 2167 2168 /* An interrupt might come in handy */ 2169 rc = request_irq(gp->pdev->irq, gem_interrupt, 2170 IRQF_SHARED, dev->name, (void *)dev); 2171 if (rc) { 2172 netdev_err(dev, "failed to request irq !\n"); 2173 2174 gem_reset(gp); 2175 gem_clean_rings(gp); 2176 gem_put_cell(gp); 2177 return rc; 2178 } 2179 2180 /* Mark us as attached again if we come from resume(), this has 2181 * no effect if we weren't detatched and needs to be done now. 2182 */ 2183 netif_device_attach(dev); 2184 2185 /* Restart NAPI & queues */ 2186 gem_netif_start(gp); 2187 2188 /* Detect & init PHY, start autoneg etc... this will 2189 * eventually result in starting DMA operations when 2190 * the link is up 2191 */ 2192 gem_init_phy(gp); 2193 2194 return 0; 2195 } 2196 2197 static void gem_do_stop(struct net_device *dev, int wol) 2198 { 2199 struct gem *gp = netdev_priv(dev); 2200 2201 /* Stop NAPI and stop tx queue */ 2202 gem_netif_stop(gp); 2203 2204 /* Make sure ints are disabled. We don't care about 2205 * synchronizing as NAPI is disabled, thus a stray 2206 * interrupt will do nothing bad (our irq handler 2207 * just schedules NAPI) 2208 */ 2209 gem_disable_ints(gp); 2210 2211 /* Stop the link timer */ 2212 del_timer_sync(&gp->link_timer); 2213 2214 /* We cannot cancel the reset task while holding the 2215 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2216 * if we did. This is not an issue however as the reset 2217 * task is synchronized vs. us (rtnl_lock) and will do 2218 * nothing if the device is down or suspended. We do 2219 * still clear reset_task_pending to avoid a spurrious 2220 * reset later on in case we do resume before it gets 2221 * scheduled. 2222 */ 2223 gp->reset_task_pending = 0; 2224 2225 /* If we are going to sleep with WOL */ 2226 gem_stop_dma(gp); 2227 msleep(10); 2228 if (!wol) 2229 gem_reset(gp); 2230 msleep(10); 2231 2232 /* Get rid of rings */ 2233 gem_clean_rings(gp); 2234 2235 /* No irq needed anymore */ 2236 free_irq(gp->pdev->irq, (void *) dev); 2237 2238 /* Shut the PHY down eventually and setup WOL */ 2239 gem_stop_phy(gp, wol); 2240 2241 /* Make sure bus master is disabled */ 2242 pci_disable_device(gp->pdev); 2243 2244 /* Cell not needed neither if no WOL */ 2245 if (!wol) 2246 gem_put_cell(gp); 2247 } 2248 2249 static void gem_reset_task(struct work_struct *work) 2250 { 2251 struct gem *gp = container_of(work, struct gem, reset_task); 2252 2253 /* Lock out the network stack (essentially shield ourselves 2254 * against a racing open, close, control call, or suspend 2255 */ 2256 rtnl_lock(); 2257 2258 /* Skip the reset task if suspended or closed, or if it's 2259 * been cancelled by gem_do_stop (see comment there) 2260 */ 2261 if (!netif_device_present(gp->dev) || 2262 !netif_running(gp->dev) || 2263 !gp->reset_task_pending) { 2264 rtnl_unlock(); 2265 return; 2266 } 2267 2268 /* Stop the link timer */ 2269 del_timer_sync(&gp->link_timer); 2270 2271 /* Stop NAPI and tx */ 2272 gem_netif_stop(gp); 2273 2274 /* Reset the chip & rings */ 2275 gem_reinit_chip(gp); 2276 if (gp->lstate == link_up) 2277 gem_set_link_modes(gp); 2278 2279 /* Restart NAPI and Tx */ 2280 gem_netif_start(gp); 2281 2282 /* We are back ! */ 2283 gp->reset_task_pending = 0; 2284 2285 /* If the link is not up, restart autoneg, else restart the 2286 * polling timer 2287 */ 2288 if (gp->lstate != link_up) 2289 gem_begin_auto_negotiation(gp, NULL); 2290 else 2291 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2292 2293 rtnl_unlock(); 2294 } 2295 2296 static int gem_open(struct net_device *dev) 2297 { 2298 /* We allow open while suspended, we just do nothing, 2299 * the chip will be initialized in resume() 2300 */ 2301 if (netif_device_present(dev)) 2302 return gem_do_start(dev); 2303 return 0; 2304 } 2305 2306 static int gem_close(struct net_device *dev) 2307 { 2308 if (netif_device_present(dev)) 2309 gem_do_stop(dev, 0); 2310 2311 return 0; 2312 } 2313 2314 #ifdef CONFIG_PM 2315 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2316 { 2317 struct net_device *dev = pci_get_drvdata(pdev); 2318 struct gem *gp = netdev_priv(dev); 2319 2320 /* Lock the network stack first to avoid racing with open/close, 2321 * reset task and setting calls 2322 */ 2323 rtnl_lock(); 2324 2325 /* Not running, mark ourselves non-present, no need for 2326 * a lock here 2327 */ 2328 if (!netif_running(dev)) { 2329 netif_device_detach(dev); 2330 rtnl_unlock(); 2331 return 0; 2332 } 2333 netdev_info(dev, "suspending, WakeOnLan %s\n", 2334 (gp->wake_on_lan && netif_running(dev)) ? 2335 "enabled" : "disabled"); 2336 2337 /* Tell the network stack we're gone. gem_do_stop() below will 2338 * synchronize with TX, stop NAPI etc... 2339 */ 2340 netif_device_detach(dev); 2341 2342 /* Switch off chip, remember WOL setting */ 2343 gp->asleep_wol = gp->wake_on_lan; 2344 gem_do_stop(dev, gp->asleep_wol); 2345 2346 /* Unlock the network stack */ 2347 rtnl_unlock(); 2348 2349 return 0; 2350 } 2351 2352 static int gem_resume(struct pci_dev *pdev) 2353 { 2354 struct net_device *dev = pci_get_drvdata(pdev); 2355 struct gem *gp = netdev_priv(dev); 2356 2357 /* See locking comment in gem_suspend */ 2358 rtnl_lock(); 2359 2360 /* Not running, mark ourselves present, no need for 2361 * a lock here 2362 */ 2363 if (!netif_running(dev)) { 2364 netif_device_attach(dev); 2365 rtnl_unlock(); 2366 return 0; 2367 } 2368 2369 /* Restart chip. If that fails there isn't much we can do, we 2370 * leave things stopped. 2371 */ 2372 gem_do_start(dev); 2373 2374 /* If we had WOL enabled, the cell clock was never turned off during 2375 * sleep, so we end up beeing unbalanced. Fix that here 2376 */ 2377 if (gp->asleep_wol) 2378 gem_put_cell(gp); 2379 2380 /* Unlock the network stack */ 2381 rtnl_unlock(); 2382 2383 return 0; 2384 } 2385 #endif /* CONFIG_PM */ 2386 2387 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2388 { 2389 struct gem *gp = netdev_priv(dev); 2390 2391 /* I have seen this being called while the PM was in progress, 2392 * so we shield against this. Let's also not poke at registers 2393 * while the reset task is going on. 2394 * 2395 * TODO: Move stats collection elsewhere (link timer ?) and 2396 * make this a nop to avoid all those synchro issues 2397 */ 2398 if (!netif_device_present(dev) || !netif_running(dev)) 2399 goto bail; 2400 2401 /* Better safe than sorry... */ 2402 if (WARN_ON(!gp->cell_enabled)) 2403 goto bail; 2404 2405 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2406 writel(0, gp->regs + MAC_FCSERR); 2407 2408 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2409 writel(0, gp->regs + MAC_AERR); 2410 2411 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2412 writel(0, gp->regs + MAC_LERR); 2413 2414 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2415 dev->stats.collisions += 2416 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2417 writel(0, gp->regs + MAC_ECOLL); 2418 writel(0, gp->regs + MAC_LCOLL); 2419 bail: 2420 return &dev->stats; 2421 } 2422 2423 static int gem_set_mac_address(struct net_device *dev, void *addr) 2424 { 2425 struct sockaddr *macaddr = (struct sockaddr *) addr; 2426 struct gem *gp = netdev_priv(dev); 2427 unsigned char *e = &dev->dev_addr[0]; 2428 2429 if (!is_valid_ether_addr(macaddr->sa_data)) 2430 return -EADDRNOTAVAIL; 2431 2432 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2433 2434 /* We'll just catch it later when the device is up'd or resumed */ 2435 if (!netif_running(dev) || !netif_device_present(dev)) 2436 return 0; 2437 2438 /* Better safe than sorry... */ 2439 if (WARN_ON(!gp->cell_enabled)) 2440 return 0; 2441 2442 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2443 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2444 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2445 2446 return 0; 2447 } 2448 2449 static void gem_set_multicast(struct net_device *dev) 2450 { 2451 struct gem *gp = netdev_priv(dev); 2452 u32 rxcfg, rxcfg_new; 2453 int limit = 10000; 2454 2455 if (!netif_running(dev) || !netif_device_present(dev)) 2456 return; 2457 2458 /* Better safe than sorry... */ 2459 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2460 return; 2461 2462 rxcfg = readl(gp->regs + MAC_RXCFG); 2463 rxcfg_new = gem_setup_multicast(gp); 2464 #ifdef STRIP_FCS 2465 rxcfg_new |= MAC_RXCFG_SFCS; 2466 #endif 2467 gp->mac_rx_cfg = rxcfg_new; 2468 2469 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2470 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2471 if (!limit--) 2472 break; 2473 udelay(10); 2474 } 2475 2476 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2477 rxcfg |= rxcfg_new; 2478 2479 writel(rxcfg, gp->regs + MAC_RXCFG); 2480 } 2481 2482 /* Jumbo-grams don't seem to work :-( */ 2483 #define GEM_MIN_MTU 68 2484 #if 1 2485 #define GEM_MAX_MTU 1500 2486 #else 2487 #define GEM_MAX_MTU 9000 2488 #endif 2489 2490 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2491 { 2492 struct gem *gp = netdev_priv(dev); 2493 2494 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) 2495 return -EINVAL; 2496 2497 dev->mtu = new_mtu; 2498 2499 /* We'll just catch it later when the device is up'd or resumed */ 2500 if (!netif_running(dev) || !netif_device_present(dev)) 2501 return 0; 2502 2503 /* Better safe than sorry... */ 2504 if (WARN_ON(!gp->cell_enabled)) 2505 return 0; 2506 2507 gem_netif_stop(gp); 2508 gem_reinit_chip(gp); 2509 if (gp->lstate == link_up) 2510 gem_set_link_modes(gp); 2511 gem_netif_start(gp); 2512 2513 return 0; 2514 } 2515 2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2517 { 2518 struct gem *gp = netdev_priv(dev); 2519 2520 strcpy(info->driver, DRV_NAME); 2521 strcpy(info->version, DRV_VERSION); 2522 strcpy(info->bus_info, pci_name(gp->pdev)); 2523 } 2524 2525 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2526 { 2527 struct gem *gp = netdev_priv(dev); 2528 2529 if (gp->phy_type == phy_mii_mdio0 || 2530 gp->phy_type == phy_mii_mdio1) { 2531 if (gp->phy_mii.def) 2532 cmd->supported = gp->phy_mii.def->features; 2533 else 2534 cmd->supported = (SUPPORTED_10baseT_Half | 2535 SUPPORTED_10baseT_Full); 2536 2537 /* XXX hardcoded stuff for now */ 2538 cmd->port = PORT_MII; 2539 cmd->transceiver = XCVR_EXTERNAL; 2540 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2541 2542 /* Return current PHY settings */ 2543 cmd->autoneg = gp->want_autoneg; 2544 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); 2545 cmd->duplex = gp->phy_mii.duplex; 2546 cmd->advertising = gp->phy_mii.advertising; 2547 2548 /* If we started with a forced mode, we don't have a default 2549 * advertise set, we need to return something sensible so 2550 * userland can re-enable autoneg properly. 2551 */ 2552 if (cmd->advertising == 0) 2553 cmd->advertising = cmd->supported; 2554 } else { // XXX PCS ? 2555 cmd->supported = 2556 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2557 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2558 SUPPORTED_Autoneg); 2559 cmd->advertising = cmd->supported; 2560 ethtool_cmd_speed_set(cmd, 0); 2561 cmd->duplex = cmd->port = cmd->phy_address = 2562 cmd->transceiver = cmd->autoneg = 0; 2563 2564 /* serdes means usually a Fibre connector, with most fixed */ 2565 if (gp->phy_type == phy_serdes) { 2566 cmd->port = PORT_FIBRE; 2567 cmd->supported = (SUPPORTED_1000baseT_Half | 2568 SUPPORTED_1000baseT_Full | 2569 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2570 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2571 cmd->advertising = cmd->supported; 2572 cmd->transceiver = XCVR_INTERNAL; 2573 if (gp->lstate == link_up) 2574 ethtool_cmd_speed_set(cmd, SPEED_1000); 2575 cmd->duplex = DUPLEX_FULL; 2576 cmd->autoneg = 1; 2577 } 2578 } 2579 cmd->maxtxpkt = cmd->maxrxpkt = 0; 2580 2581 return 0; 2582 } 2583 2584 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2585 { 2586 struct gem *gp = netdev_priv(dev); 2587 u32 speed = ethtool_cmd_speed(cmd); 2588 2589 /* Verify the settings we care about. */ 2590 if (cmd->autoneg != AUTONEG_ENABLE && 2591 cmd->autoneg != AUTONEG_DISABLE) 2592 return -EINVAL; 2593 2594 if (cmd->autoneg == AUTONEG_ENABLE && 2595 cmd->advertising == 0) 2596 return -EINVAL; 2597 2598 if (cmd->autoneg == AUTONEG_DISABLE && 2599 ((speed != SPEED_1000 && 2600 speed != SPEED_100 && 2601 speed != SPEED_10) || 2602 (cmd->duplex != DUPLEX_HALF && 2603 cmd->duplex != DUPLEX_FULL))) 2604 return -EINVAL; 2605 2606 /* Apply settings and restart link process. */ 2607 if (netif_device_present(gp->dev)) { 2608 del_timer_sync(&gp->link_timer); 2609 gem_begin_auto_negotiation(gp, cmd); 2610 } 2611 2612 return 0; 2613 } 2614 2615 static int gem_nway_reset(struct net_device *dev) 2616 { 2617 struct gem *gp = netdev_priv(dev); 2618 2619 if (!gp->want_autoneg) 2620 return -EINVAL; 2621 2622 /* Restart link process */ 2623 if (netif_device_present(gp->dev)) { 2624 del_timer_sync(&gp->link_timer); 2625 gem_begin_auto_negotiation(gp, NULL); 2626 } 2627 2628 return 0; 2629 } 2630 2631 static u32 gem_get_msglevel(struct net_device *dev) 2632 { 2633 struct gem *gp = netdev_priv(dev); 2634 return gp->msg_enable; 2635 } 2636 2637 static void gem_set_msglevel(struct net_device *dev, u32 value) 2638 { 2639 struct gem *gp = netdev_priv(dev); 2640 gp->msg_enable = value; 2641 } 2642 2643 2644 /* Add more when I understand how to program the chip */ 2645 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2646 2647 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2648 2649 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2650 { 2651 struct gem *gp = netdev_priv(dev); 2652 2653 /* Add more when I understand how to program the chip */ 2654 if (gp->has_wol) { 2655 wol->supported = WOL_SUPPORTED_MASK; 2656 wol->wolopts = gp->wake_on_lan; 2657 } else { 2658 wol->supported = 0; 2659 wol->wolopts = 0; 2660 } 2661 } 2662 2663 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2664 { 2665 struct gem *gp = netdev_priv(dev); 2666 2667 if (!gp->has_wol) 2668 return -EOPNOTSUPP; 2669 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2670 return 0; 2671 } 2672 2673 static const struct ethtool_ops gem_ethtool_ops = { 2674 .get_drvinfo = gem_get_drvinfo, 2675 .get_link = ethtool_op_get_link, 2676 .get_settings = gem_get_settings, 2677 .set_settings = gem_set_settings, 2678 .nway_reset = gem_nway_reset, 2679 .get_msglevel = gem_get_msglevel, 2680 .set_msglevel = gem_set_msglevel, 2681 .get_wol = gem_get_wol, 2682 .set_wol = gem_set_wol, 2683 }; 2684 2685 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2686 { 2687 struct gem *gp = netdev_priv(dev); 2688 struct mii_ioctl_data *data = if_mii(ifr); 2689 int rc = -EOPNOTSUPP; 2690 2691 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2692 * netif_device_present() is true and holds rtnl_lock for us 2693 * so we have nothing to worry about 2694 */ 2695 2696 switch (cmd) { 2697 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2698 data->phy_id = gp->mii_phy_addr; 2699 /* Fallthrough... */ 2700 2701 case SIOCGMIIREG: /* Read MII PHY register. */ 2702 data->val_out = __phy_read(gp, data->phy_id & 0x1f, 2703 data->reg_num & 0x1f); 2704 rc = 0; 2705 break; 2706 2707 case SIOCSMIIREG: /* Write MII PHY register. */ 2708 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2709 data->val_in); 2710 rc = 0; 2711 break; 2712 } 2713 return rc; 2714 } 2715 2716 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2717 /* Fetch MAC address from vital product data of PCI ROM. */ 2718 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2719 { 2720 int this_offset; 2721 2722 for (this_offset = 0x20; this_offset < len; this_offset++) { 2723 void __iomem *p = rom_base + this_offset; 2724 int i; 2725 2726 if (readb(p + 0) != 0x90 || 2727 readb(p + 1) != 0x00 || 2728 readb(p + 2) != 0x09 || 2729 readb(p + 3) != 0x4e || 2730 readb(p + 4) != 0x41 || 2731 readb(p + 5) != 0x06) 2732 continue; 2733 2734 this_offset += 6; 2735 p += 6; 2736 2737 for (i = 0; i < 6; i++) 2738 dev_addr[i] = readb(p + i); 2739 return 1; 2740 } 2741 return 0; 2742 } 2743 2744 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2745 { 2746 size_t size; 2747 void __iomem *p = pci_map_rom(pdev, &size); 2748 2749 if (p) { 2750 int found; 2751 2752 found = readb(p) == 0x55 && 2753 readb(p + 1) == 0xaa && 2754 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2755 pci_unmap_rom(pdev, p); 2756 if (found) 2757 return; 2758 } 2759 2760 /* Sun MAC prefix then 3 random bytes. */ 2761 dev_addr[0] = 0x08; 2762 dev_addr[1] = 0x00; 2763 dev_addr[2] = 0x20; 2764 get_random_bytes(dev_addr + 3, 3); 2765 } 2766 #endif /* not Sparc and not PPC */ 2767 2768 static int __devinit gem_get_device_address(struct gem *gp) 2769 { 2770 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2771 struct net_device *dev = gp->dev; 2772 const unsigned char *addr; 2773 2774 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2775 if (addr == NULL) { 2776 #ifdef CONFIG_SPARC 2777 addr = idprom->id_ethaddr; 2778 #else 2779 printk("\n"); 2780 pr_err("%s: can't get mac-address\n", dev->name); 2781 return -1; 2782 #endif 2783 } 2784 memcpy(dev->dev_addr, addr, 6); 2785 #else 2786 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2787 #endif 2788 return 0; 2789 } 2790 2791 static void gem_remove_one(struct pci_dev *pdev) 2792 { 2793 struct net_device *dev = pci_get_drvdata(pdev); 2794 2795 if (dev) { 2796 struct gem *gp = netdev_priv(dev); 2797 2798 unregister_netdev(dev); 2799 2800 /* Ensure reset task is truely gone */ 2801 cancel_work_sync(&gp->reset_task); 2802 2803 /* Free resources */ 2804 pci_free_consistent(pdev, 2805 sizeof(struct gem_init_block), 2806 gp->init_block, 2807 gp->gblock_dvma); 2808 iounmap(gp->regs); 2809 pci_release_regions(pdev); 2810 free_netdev(dev); 2811 2812 pci_set_drvdata(pdev, NULL); 2813 } 2814 } 2815 2816 static const struct net_device_ops gem_netdev_ops = { 2817 .ndo_open = gem_open, 2818 .ndo_stop = gem_close, 2819 .ndo_start_xmit = gem_start_xmit, 2820 .ndo_get_stats = gem_get_stats, 2821 .ndo_set_rx_mode = gem_set_multicast, 2822 .ndo_do_ioctl = gem_ioctl, 2823 .ndo_tx_timeout = gem_tx_timeout, 2824 .ndo_change_mtu = gem_change_mtu, 2825 .ndo_validate_addr = eth_validate_addr, 2826 .ndo_set_mac_address = gem_set_mac_address, 2827 #ifdef CONFIG_NET_POLL_CONTROLLER 2828 .ndo_poll_controller = gem_poll_controller, 2829 #endif 2830 }; 2831 2832 static int __devinit gem_init_one(struct pci_dev *pdev, 2833 const struct pci_device_id *ent) 2834 { 2835 unsigned long gemreg_base, gemreg_len; 2836 struct net_device *dev; 2837 struct gem *gp; 2838 int err, pci_using_dac; 2839 2840 printk_once(KERN_INFO "%s", version); 2841 2842 /* Apple gmac note: during probe, the chip is powered up by 2843 * the arch code to allow the code below to work (and to let 2844 * the chip be probed on the config space. It won't stay powered 2845 * up until the interface is brought up however, so we can't rely 2846 * on register configuration done at this point. 2847 */ 2848 err = pci_enable_device(pdev); 2849 if (err) { 2850 pr_err("Cannot enable MMIO operation, aborting\n"); 2851 return err; 2852 } 2853 pci_set_master(pdev); 2854 2855 /* Configure DMA attributes. */ 2856 2857 /* All of the GEM documentation states that 64-bit DMA addressing 2858 * is fully supported and should work just fine. However the 2859 * front end for RIO based GEMs is different and only supports 2860 * 32-bit addressing. 2861 * 2862 * For now we assume the various PPC GEMs are 32-bit only as well. 2863 */ 2864 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2865 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2866 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2867 pci_using_dac = 1; 2868 } else { 2869 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2870 if (err) { 2871 pr_err("No usable DMA configuration, aborting\n"); 2872 goto err_disable_device; 2873 } 2874 pci_using_dac = 0; 2875 } 2876 2877 gemreg_base = pci_resource_start(pdev, 0); 2878 gemreg_len = pci_resource_len(pdev, 0); 2879 2880 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2881 pr_err("Cannot find proper PCI device base address, aborting\n"); 2882 err = -ENODEV; 2883 goto err_disable_device; 2884 } 2885 2886 dev = alloc_etherdev(sizeof(*gp)); 2887 if (!dev) { 2888 pr_err("Etherdev alloc failed, aborting\n"); 2889 err = -ENOMEM; 2890 goto err_disable_device; 2891 } 2892 SET_NETDEV_DEV(dev, &pdev->dev); 2893 2894 gp = netdev_priv(dev); 2895 2896 err = pci_request_regions(pdev, DRV_NAME); 2897 if (err) { 2898 pr_err("Cannot obtain PCI resources, aborting\n"); 2899 goto err_out_free_netdev; 2900 } 2901 2902 gp->pdev = pdev; 2903 dev->base_addr = (long) pdev; 2904 gp->dev = dev; 2905 2906 gp->msg_enable = DEFAULT_MSG; 2907 2908 init_timer(&gp->link_timer); 2909 gp->link_timer.function = gem_link_timer; 2910 gp->link_timer.data = (unsigned long) gp; 2911 2912 INIT_WORK(&gp->reset_task, gem_reset_task); 2913 2914 gp->lstate = link_down; 2915 gp->timer_ticks = 0; 2916 netif_carrier_off(dev); 2917 2918 gp->regs = ioremap(gemreg_base, gemreg_len); 2919 if (!gp->regs) { 2920 pr_err("Cannot map device registers, aborting\n"); 2921 err = -EIO; 2922 goto err_out_free_res; 2923 } 2924 2925 /* On Apple, we want a reference to the Open Firmware device-tree 2926 * node. We use it for clock control. 2927 */ 2928 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2929 gp->of_node = pci_device_to_OF_node(pdev); 2930 #endif 2931 2932 /* Only Apple version supports WOL afaik */ 2933 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2934 gp->has_wol = 1; 2935 2936 /* Make sure cell is enabled */ 2937 gem_get_cell(gp); 2938 2939 /* Make sure everything is stopped and in init state */ 2940 gem_reset(gp); 2941 2942 /* Fill up the mii_phy structure (even if we won't use it) */ 2943 gp->phy_mii.dev = dev; 2944 gp->phy_mii.mdio_read = _phy_read; 2945 gp->phy_mii.mdio_write = _phy_write; 2946 #ifdef CONFIG_PPC_PMAC 2947 gp->phy_mii.platform_data = gp->of_node; 2948 #endif 2949 /* By default, we start with autoneg */ 2950 gp->want_autoneg = 1; 2951 2952 /* Check fifo sizes, PHY type, etc... */ 2953 if (gem_check_invariants(gp)) { 2954 err = -ENODEV; 2955 goto err_out_iounmap; 2956 } 2957 2958 /* It is guaranteed that the returned buffer will be at least 2959 * PAGE_SIZE aligned. 2960 */ 2961 gp->init_block = (struct gem_init_block *) 2962 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2963 &gp->gblock_dvma); 2964 if (!gp->init_block) { 2965 pr_err("Cannot allocate init block, aborting\n"); 2966 err = -ENOMEM; 2967 goto err_out_iounmap; 2968 } 2969 2970 if (gem_get_device_address(gp)) 2971 goto err_out_free_consistent; 2972 2973 dev->netdev_ops = &gem_netdev_ops; 2974 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2975 dev->ethtool_ops = &gem_ethtool_ops; 2976 dev->watchdog_timeo = 5 * HZ; 2977 dev->irq = pdev->irq; 2978 dev->dma = 0; 2979 2980 /* Set that now, in case PM kicks in now */ 2981 pci_set_drvdata(pdev, dev); 2982 2983 /* We can do scatter/gather and HW checksum */ 2984 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2985 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2986 if (pci_using_dac) 2987 dev->features |= NETIF_F_HIGHDMA; 2988 2989 /* Register with kernel */ 2990 if (register_netdev(dev)) { 2991 pr_err("Cannot register net device, aborting\n"); 2992 err = -ENOMEM; 2993 goto err_out_free_consistent; 2994 } 2995 2996 /* Undo the get_cell with appropriate locking (we could use 2997 * ndo_init/uninit but that would be even more clumsy imho) 2998 */ 2999 rtnl_lock(); 3000 gem_put_cell(gp); 3001 rtnl_unlock(); 3002 3003 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3004 dev->dev_addr); 3005 return 0; 3006 3007 err_out_free_consistent: 3008 gem_remove_one(pdev); 3009 err_out_iounmap: 3010 gem_put_cell(gp); 3011 iounmap(gp->regs); 3012 3013 err_out_free_res: 3014 pci_release_regions(pdev); 3015 3016 err_out_free_netdev: 3017 free_netdev(dev); 3018 err_disable_device: 3019 pci_disable_device(pdev); 3020 return err; 3021 3022 } 3023 3024 3025 static struct pci_driver gem_driver = { 3026 .name = GEM_MODULE_NAME, 3027 .id_table = gem_pci_tbl, 3028 .probe = gem_init_one, 3029 .remove = gem_remove_one, 3030 #ifdef CONFIG_PM 3031 .suspend = gem_suspend, 3032 .resume = gem_resume, 3033 #endif /* CONFIG_PM */ 3034 }; 3035 3036 static int __init gem_init(void) 3037 { 3038 return pci_register_driver(&gem_driver); 3039 } 3040 3041 static void __exit gem_cleanup(void) 3042 { 3043 pci_unregister_driver(&gem_driver); 3044 } 3045 3046 module_init(gem_init); 3047 module_exit(gem_cleanup); 3048