1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 2 * sungem.c: Sun GEM ethernet driver. 3 * 4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 5 * 6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 9 * 10 * NAPI and NETPOLL support 11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 12 * 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/fcntl.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/in.h> 24 #include <linux/sched.h> 25 #include <linux/string.h> 26 #include <linux/delay.h> 27 #include <linux/errno.h> 28 #include <linux/pci.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/netdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/mii.h> 34 #include <linux/ethtool.h> 35 #include <linux/crc32.h> 36 #include <linux/random.h> 37 #include <linux/workqueue.h> 38 #include <linux/if_vlan.h> 39 #include <linux/bitops.h> 40 #include <linux/mm.h> 41 #include <linux/gfp.h> 42 43 #include <asm/io.h> 44 #include <asm/byteorder.h> 45 #include <asm/uaccess.h> 46 #include <asm/irq.h> 47 48 #ifdef CONFIG_SPARC 49 #include <asm/idprom.h> 50 #include <asm/prom.h> 51 #endif 52 53 #ifdef CONFIG_PPC_PMAC 54 #include <asm/prom.h> 55 #include <asm/machdep.h> 56 #include <asm/pmac_feature.h> 57 #endif 58 59 #include <linux/sungem_phy.h> 60 #include "sungem.h" 61 62 /* Stripping FCS is causing problems, disabled for now */ 63 #undef STRIP_FCS 64 65 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 66 NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK) 68 69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 72 SUPPORTED_Pause | SUPPORTED_Autoneg) 73 74 #define DRV_NAME "sungem" 75 #define DRV_VERSION "1.0" 76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 77 78 static char version[] = 79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 80 81 MODULE_AUTHOR(DRV_AUTHOR); 82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 83 MODULE_LICENSE("GPL"); 84 85 #define GEM_MODULE_NAME "gem" 86 87 static const struct pci_device_id gem_pci_tbl[] = { 88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 90 91 /* These models only differ from the original GEM in 92 * that their tx/rx fifos are of a different size and 93 * they only support 10/100 speeds. -DaveM 94 * 95 * Apple's GMAC does support gigabit on machines with 96 * the BCM54xx PHYs. -BenH 97 */ 98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 112 {0, } 113 }; 114 115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 116 117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 118 { 119 u32 cmd; 120 int limit = 10000; 121 122 cmd = (1 << 30); 123 cmd |= (2 << 28); 124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 125 cmd |= (reg << 18) & MIF_FRAME_REGAD; 126 cmd |= (MIF_FRAME_TAMSB); 127 writel(cmd, gp->regs + MIF_FRAME); 128 129 while (--limit) { 130 cmd = readl(gp->regs + MIF_FRAME); 131 if (cmd & MIF_FRAME_TALSB) 132 break; 133 134 udelay(10); 135 } 136 137 if (!limit) 138 cmd = 0xffff; 139 140 return cmd & MIF_FRAME_DATA; 141 } 142 143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 144 { 145 struct gem *gp = netdev_priv(dev); 146 return __sungem_phy_read(gp, mii_id, reg); 147 } 148 149 static inline u16 sungem_phy_read(struct gem *gp, int reg) 150 { 151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 152 } 153 154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 155 { 156 u32 cmd; 157 int limit = 10000; 158 159 cmd = (1 << 30); 160 cmd |= (1 << 28); 161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 162 cmd |= (reg << 18) & MIF_FRAME_REGAD; 163 cmd |= (MIF_FRAME_TAMSB); 164 cmd |= (val & MIF_FRAME_DATA); 165 writel(cmd, gp->regs + MIF_FRAME); 166 167 while (limit--) { 168 cmd = readl(gp->regs + MIF_FRAME); 169 if (cmd & MIF_FRAME_TALSB) 170 break; 171 172 udelay(10); 173 } 174 } 175 176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 177 { 178 struct gem *gp = netdev_priv(dev); 179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 180 } 181 182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 183 { 184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 185 } 186 187 static inline void gem_enable_ints(struct gem *gp) 188 { 189 /* Enable all interrupts but TXDONE */ 190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 191 } 192 193 static inline void gem_disable_ints(struct gem *gp) 194 { 195 /* Disable all interrupts, including TXDONE */ 196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 197 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 198 } 199 200 static void gem_get_cell(struct gem *gp) 201 { 202 BUG_ON(gp->cell_enabled < 0); 203 gp->cell_enabled++; 204 #ifdef CONFIG_PPC_PMAC 205 if (gp->cell_enabled == 1) { 206 mb(); 207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 208 udelay(10); 209 } 210 #endif /* CONFIG_PPC_PMAC */ 211 } 212 213 /* Turn off the chip's clock */ 214 static void gem_put_cell(struct gem *gp) 215 { 216 BUG_ON(gp->cell_enabled <= 0); 217 gp->cell_enabled--; 218 #ifdef CONFIG_PPC_PMAC 219 if (gp->cell_enabled == 0) { 220 mb(); 221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 222 udelay(10); 223 } 224 #endif /* CONFIG_PPC_PMAC */ 225 } 226 227 static inline void gem_netif_stop(struct gem *gp) 228 { 229 netif_trans_update(gp->dev); /* prevent tx timeout */ 230 napi_disable(&gp->napi); 231 netif_tx_disable(gp->dev); 232 } 233 234 static inline void gem_netif_start(struct gem *gp) 235 { 236 /* NOTE: unconditional netif_wake_queue is only 237 * appropriate so long as all callers are assured to 238 * have free tx slots. 239 */ 240 netif_wake_queue(gp->dev); 241 napi_enable(&gp->napi); 242 } 243 244 static void gem_schedule_reset(struct gem *gp) 245 { 246 gp->reset_task_pending = 1; 247 schedule_work(&gp->reset_task); 248 } 249 250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 251 { 252 if (netif_msg_intr(gp)) 253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 254 } 255 256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 257 { 258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 259 u32 pcs_miistat; 260 261 if (netif_msg_intr(gp)) 262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 263 gp->dev->name, pcs_istat); 264 265 if (!(pcs_istat & PCS_ISTAT_LSC)) { 266 netdev_err(dev, "PCS irq but no link status change???\n"); 267 return 0; 268 } 269 270 /* The link status bit latches on zero, so you must 271 * read it twice in such a case to see a transition 272 * to the link being up. 273 */ 274 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 275 if (!(pcs_miistat & PCS_MIISTAT_LS)) 276 pcs_miistat |= 277 (readl(gp->regs + PCS_MIISTAT) & 278 PCS_MIISTAT_LS); 279 280 if (pcs_miistat & PCS_MIISTAT_ANC) { 281 /* The remote-fault indication is only valid 282 * when autoneg has completed. 283 */ 284 if (pcs_miistat & PCS_MIISTAT_RF) 285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 286 else 287 netdev_info(dev, "PCS AutoNEG complete\n"); 288 } 289 290 if (pcs_miistat & PCS_MIISTAT_LS) { 291 netdev_info(dev, "PCS link is now up\n"); 292 netif_carrier_on(gp->dev); 293 } else { 294 netdev_info(dev, "PCS link is now down\n"); 295 netif_carrier_off(gp->dev); 296 /* If this happens and the link timer is not running, 297 * reset so we re-negotiate. 298 */ 299 if (!timer_pending(&gp->link_timer)) 300 return 1; 301 } 302 303 return 0; 304 } 305 306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 307 { 308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 309 310 if (netif_msg_intr(gp)) 311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 312 gp->dev->name, txmac_stat); 313 314 /* Defer timer expiration is quite normal, 315 * don't even log the event. 316 */ 317 if ((txmac_stat & MAC_TXSTAT_DTE) && 318 !(txmac_stat & ~MAC_TXSTAT_DTE)) 319 return 0; 320 321 if (txmac_stat & MAC_TXSTAT_URUN) { 322 netdev_err(dev, "TX MAC xmit underrun\n"); 323 dev->stats.tx_fifo_errors++; 324 } 325 326 if (txmac_stat & MAC_TXSTAT_MPE) { 327 netdev_err(dev, "TX MAC max packet size error\n"); 328 dev->stats.tx_errors++; 329 } 330 331 /* The rest are all cases of one of the 16-bit TX 332 * counters expiring. 333 */ 334 if (txmac_stat & MAC_TXSTAT_NCE) 335 dev->stats.collisions += 0x10000; 336 337 if (txmac_stat & MAC_TXSTAT_ECE) { 338 dev->stats.tx_aborted_errors += 0x10000; 339 dev->stats.collisions += 0x10000; 340 } 341 342 if (txmac_stat & MAC_TXSTAT_LCE) { 343 dev->stats.tx_aborted_errors += 0x10000; 344 dev->stats.collisions += 0x10000; 345 } 346 347 /* We do not keep track of MAC_TXSTAT_FCE and 348 * MAC_TXSTAT_PCE events. 349 */ 350 return 0; 351 } 352 353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 354 * so we do the following. 355 * 356 * If any part of the reset goes wrong, we return 1 and that causes the 357 * whole chip to be reset. 358 */ 359 static int gem_rxmac_reset(struct gem *gp) 360 { 361 struct net_device *dev = gp->dev; 362 int limit, i; 363 u64 desc_dma; 364 u32 val; 365 366 /* First, reset & disable MAC RX. */ 367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 368 for (limit = 0; limit < 5000; limit++) { 369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 370 break; 371 udelay(10); 372 } 373 if (limit == 5000) { 374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 375 return 1; 376 } 377 378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 379 gp->regs + MAC_RXCFG); 380 for (limit = 0; limit < 5000; limit++) { 381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 382 break; 383 udelay(10); 384 } 385 if (limit == 5000) { 386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 387 return 1; 388 } 389 390 /* Second, disable RX DMA. */ 391 writel(0, gp->regs + RXDMA_CFG); 392 for (limit = 0; limit < 5000; limit++) { 393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 394 break; 395 udelay(10); 396 } 397 if (limit == 5000) { 398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 399 return 1; 400 } 401 402 mdelay(5); 403 404 /* Execute RX reset command. */ 405 writel(gp->swrst_base | GREG_SWRST_RXRST, 406 gp->regs + GREG_SWRST); 407 for (limit = 0; limit < 5000; limit++) { 408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 409 break; 410 udelay(10); 411 } 412 if (limit == 5000) { 413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 414 return 1; 415 } 416 417 /* Refresh the RX ring. */ 418 for (i = 0; i < RX_RING_SIZE; i++) { 419 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 420 421 if (gp->rx_skbs[i] == NULL) { 422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 423 return 1; 424 } 425 426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 427 } 428 gp->rx_new = gp->rx_old = 0; 429 430 /* Now we must reprogram the rest of RX unit. */ 431 desc_dma = (u64) gp->gblock_dvma; 432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 437 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 438 writel(val, gp->regs + RXDMA_CFG); 439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 440 writel(((5 & RXDMA_BLANK_IPKTS) | 441 ((8 << 12) & RXDMA_BLANK_ITIME)), 442 gp->regs + RXDMA_BLANK); 443 else 444 writel(((5 & RXDMA_BLANK_IPKTS) | 445 ((4 << 12) & RXDMA_BLANK_ITIME)), 446 gp->regs + RXDMA_BLANK); 447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 449 writel(val, gp->regs + RXDMA_PTHRESH); 450 val = readl(gp->regs + RXDMA_CFG); 451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 453 val = readl(gp->regs + MAC_RXCFG); 454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 455 456 return 0; 457 } 458 459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 460 { 461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 462 int ret = 0; 463 464 if (netif_msg_intr(gp)) 465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 466 gp->dev->name, rxmac_stat); 467 468 if (rxmac_stat & MAC_RXSTAT_OFLW) { 469 u32 smac = readl(gp->regs + MAC_SMACHINE); 470 471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 472 dev->stats.rx_over_errors++; 473 dev->stats.rx_fifo_errors++; 474 475 ret = gem_rxmac_reset(gp); 476 } 477 478 if (rxmac_stat & MAC_RXSTAT_ACE) 479 dev->stats.rx_frame_errors += 0x10000; 480 481 if (rxmac_stat & MAC_RXSTAT_CCE) 482 dev->stats.rx_crc_errors += 0x10000; 483 484 if (rxmac_stat & MAC_RXSTAT_LCE) 485 dev->stats.rx_length_errors += 0x10000; 486 487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 488 * events. 489 */ 490 return ret; 491 } 492 493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 494 { 495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 496 497 if (netif_msg_intr(gp)) 498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 499 gp->dev->name, mac_cstat); 500 501 /* This interrupt is just for pause frame and pause 502 * tracking. It is useful for diagnostics and debug 503 * but probably by default we will mask these events. 504 */ 505 if (mac_cstat & MAC_CSTAT_PS) 506 gp->pause_entered++; 507 508 if (mac_cstat & MAC_CSTAT_PRCV) 509 gp->pause_last_time_recvd = (mac_cstat >> 16); 510 511 return 0; 512 } 513 514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 515 { 516 u32 mif_status = readl(gp->regs + MIF_STATUS); 517 u32 reg_val, changed_bits; 518 519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 520 changed_bits = (mif_status & MIF_STATUS_STAT); 521 522 gem_handle_mif_event(gp, reg_val, changed_bits); 523 524 return 0; 525 } 526 527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 528 { 529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 530 531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 533 netdev_err(dev, "PCI error [%04x]", pci_estat); 534 535 if (pci_estat & GREG_PCIESTAT_BADACK) 536 pr_cont(" <No ACK64# during ABS64 cycle>"); 537 if (pci_estat & GREG_PCIESTAT_DTRTO) 538 pr_cont(" <Delayed transaction timeout>"); 539 if (pci_estat & GREG_PCIESTAT_OTHER) 540 pr_cont(" <other>"); 541 pr_cont("\n"); 542 } else { 543 pci_estat |= GREG_PCIESTAT_OTHER; 544 netdev_err(dev, "PCI error\n"); 545 } 546 547 if (pci_estat & GREG_PCIESTAT_OTHER) { 548 u16 pci_cfg_stat; 549 550 /* Interrogate PCI config space for the 551 * true cause. 552 */ 553 pci_read_config_word(gp->pdev, PCI_STATUS, 554 &pci_cfg_stat); 555 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 556 pci_cfg_stat); 557 if (pci_cfg_stat & PCI_STATUS_PARITY) 558 netdev_err(dev, "PCI parity error detected\n"); 559 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 560 netdev_err(dev, "PCI target abort\n"); 561 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 562 netdev_err(dev, "PCI master acks target abort\n"); 563 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 564 netdev_err(dev, "PCI master abort\n"); 565 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 566 netdev_err(dev, "PCI system error SERR#\n"); 567 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 568 netdev_err(dev, "PCI parity error\n"); 569 570 /* Write the error bits back to clear them. */ 571 pci_cfg_stat &= (PCI_STATUS_PARITY | 572 PCI_STATUS_SIG_TARGET_ABORT | 573 PCI_STATUS_REC_TARGET_ABORT | 574 PCI_STATUS_REC_MASTER_ABORT | 575 PCI_STATUS_SIG_SYSTEM_ERROR | 576 PCI_STATUS_DETECTED_PARITY); 577 pci_write_config_word(gp->pdev, 578 PCI_STATUS, pci_cfg_stat); 579 } 580 581 /* For all PCI errors, we should reset the chip. */ 582 return 1; 583 } 584 585 /* All non-normal interrupt conditions get serviced here. 586 * Returns non-zero if we should just exit the interrupt 587 * handler right now (ie. if we reset the card which invalidates 588 * all of the other original irq status bits). 589 */ 590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 591 { 592 if (gem_status & GREG_STAT_RXNOBUF) { 593 /* Frame arrived, no free RX buffers available. */ 594 if (netif_msg_rx_err(gp)) 595 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 596 gp->dev->name); 597 dev->stats.rx_dropped++; 598 } 599 600 if (gem_status & GREG_STAT_RXTAGERR) { 601 /* corrupt RX tag framing */ 602 if (netif_msg_rx_err(gp)) 603 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 604 gp->dev->name); 605 dev->stats.rx_errors++; 606 607 return 1; 608 } 609 610 if (gem_status & GREG_STAT_PCS) { 611 if (gem_pcs_interrupt(dev, gp, gem_status)) 612 return 1; 613 } 614 615 if (gem_status & GREG_STAT_TXMAC) { 616 if (gem_txmac_interrupt(dev, gp, gem_status)) 617 return 1; 618 } 619 620 if (gem_status & GREG_STAT_RXMAC) { 621 if (gem_rxmac_interrupt(dev, gp, gem_status)) 622 return 1; 623 } 624 625 if (gem_status & GREG_STAT_MAC) { 626 if (gem_mac_interrupt(dev, gp, gem_status)) 627 return 1; 628 } 629 630 if (gem_status & GREG_STAT_MIF) { 631 if (gem_mif_interrupt(dev, gp, gem_status)) 632 return 1; 633 } 634 635 if (gem_status & GREG_STAT_PCIERR) { 636 if (gem_pci_interrupt(dev, gp, gem_status)) 637 return 1; 638 } 639 640 return 0; 641 } 642 643 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 644 { 645 int entry, limit; 646 647 entry = gp->tx_old; 648 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 649 while (entry != limit) { 650 struct sk_buff *skb; 651 struct gem_txd *txd; 652 dma_addr_t dma_addr; 653 u32 dma_len; 654 int frag; 655 656 if (netif_msg_tx_done(gp)) 657 printk(KERN_DEBUG "%s: tx done, slot %d\n", 658 gp->dev->name, entry); 659 skb = gp->tx_skbs[entry]; 660 if (skb_shinfo(skb)->nr_frags) { 661 int last = entry + skb_shinfo(skb)->nr_frags; 662 int walk = entry; 663 int incomplete = 0; 664 665 last &= (TX_RING_SIZE - 1); 666 for (;;) { 667 walk = NEXT_TX(walk); 668 if (walk == limit) 669 incomplete = 1; 670 if (walk == last) 671 break; 672 } 673 if (incomplete) 674 break; 675 } 676 gp->tx_skbs[entry] = NULL; 677 dev->stats.tx_bytes += skb->len; 678 679 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 680 txd = &gp->init_block->txd[entry]; 681 682 dma_addr = le64_to_cpu(txd->buffer); 683 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 684 685 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 686 entry = NEXT_TX(entry); 687 } 688 689 dev->stats.tx_packets++; 690 dev_consume_skb_any(skb); 691 } 692 gp->tx_old = entry; 693 694 /* Need to make the tx_old update visible to gem_start_xmit() 695 * before checking for netif_queue_stopped(). Without the 696 * memory barrier, there is a small possibility that gem_start_xmit() 697 * will miss it and cause the queue to be stopped forever. 698 */ 699 smp_mb(); 700 701 if (unlikely(netif_queue_stopped(dev) && 702 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 703 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 704 705 __netif_tx_lock(txq, smp_processor_id()); 706 if (netif_queue_stopped(dev) && 707 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 708 netif_wake_queue(dev); 709 __netif_tx_unlock(txq); 710 } 711 } 712 713 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 714 { 715 int cluster_start, curr, count, kick; 716 717 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 718 count = 0; 719 kick = -1; 720 dma_wmb(); 721 while (curr != limit) { 722 curr = NEXT_RX(curr); 723 if (++count == 4) { 724 struct gem_rxd *rxd = 725 &gp->init_block->rxd[cluster_start]; 726 for (;;) { 727 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 728 rxd++; 729 cluster_start = NEXT_RX(cluster_start); 730 if (cluster_start == curr) 731 break; 732 } 733 kick = curr; 734 count = 0; 735 } 736 } 737 if (kick >= 0) { 738 mb(); 739 writel(kick, gp->regs + RXDMA_KICK); 740 } 741 } 742 743 #define ALIGNED_RX_SKB_ADDR(addr) \ 744 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 745 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 746 gfp_t gfp_flags) 747 { 748 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 749 750 if (likely(skb)) { 751 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 752 skb_reserve(skb, offset); 753 } 754 return skb; 755 } 756 757 static int gem_rx(struct gem *gp, int work_to_do) 758 { 759 struct net_device *dev = gp->dev; 760 int entry, drops, work_done = 0; 761 u32 done; 762 __sum16 csum; 763 764 if (netif_msg_rx_status(gp)) 765 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 766 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 767 768 entry = gp->rx_new; 769 drops = 0; 770 done = readl(gp->regs + RXDMA_DONE); 771 for (;;) { 772 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 773 struct sk_buff *skb; 774 u64 status = le64_to_cpu(rxd->status_word); 775 dma_addr_t dma_addr; 776 int len; 777 778 if ((status & RXDCTRL_OWN) != 0) 779 break; 780 781 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 782 break; 783 784 /* When writing back RX descriptor, GEM writes status 785 * then buffer address, possibly in separate transactions. 786 * If we don't wait for the chip to write both, we could 787 * post a new buffer to this descriptor then have GEM spam 788 * on the buffer address. We sync on the RX completion 789 * register to prevent this from happening. 790 */ 791 if (entry == done) { 792 done = readl(gp->regs + RXDMA_DONE); 793 if (entry == done) 794 break; 795 } 796 797 /* We can now account for the work we're about to do */ 798 work_done++; 799 800 skb = gp->rx_skbs[entry]; 801 802 len = (status & RXDCTRL_BUFSZ) >> 16; 803 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 804 dev->stats.rx_errors++; 805 if (len < ETH_ZLEN) 806 dev->stats.rx_length_errors++; 807 if (len & RXDCTRL_BAD) 808 dev->stats.rx_crc_errors++; 809 810 /* We'll just return it to GEM. */ 811 drop_it: 812 dev->stats.rx_dropped++; 813 goto next; 814 } 815 816 dma_addr = le64_to_cpu(rxd->buffer); 817 if (len > RX_COPY_THRESHOLD) { 818 struct sk_buff *new_skb; 819 820 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 821 if (new_skb == NULL) { 822 drops++; 823 goto drop_it; 824 } 825 pci_unmap_page(gp->pdev, dma_addr, 826 RX_BUF_ALLOC_SIZE(gp), 827 PCI_DMA_FROMDEVICE); 828 gp->rx_skbs[entry] = new_skb; 829 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 830 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 831 virt_to_page(new_skb->data), 832 offset_in_page(new_skb->data), 833 RX_BUF_ALLOC_SIZE(gp), 834 PCI_DMA_FROMDEVICE)); 835 skb_reserve(new_skb, RX_OFFSET); 836 837 /* Trim the original skb for the netif. */ 838 skb_trim(skb, len); 839 } else { 840 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 841 842 if (copy_skb == NULL) { 843 drops++; 844 goto drop_it; 845 } 846 847 skb_reserve(copy_skb, 2); 848 skb_put(copy_skb, len); 849 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 850 skb_copy_from_linear_data(skb, copy_skb->data, len); 851 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 852 853 /* We'll reuse the original ring buffer. */ 854 skb = copy_skb; 855 } 856 857 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 858 skb->csum = csum_unfold(csum); 859 skb->ip_summed = CHECKSUM_COMPLETE; 860 skb->protocol = eth_type_trans(skb, gp->dev); 861 862 napi_gro_receive(&gp->napi, skb); 863 864 dev->stats.rx_packets++; 865 dev->stats.rx_bytes += len; 866 867 next: 868 entry = NEXT_RX(entry); 869 } 870 871 gem_post_rxds(gp, entry); 872 873 gp->rx_new = entry; 874 875 if (drops) 876 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 877 878 return work_done; 879 } 880 881 static int gem_poll(struct napi_struct *napi, int budget) 882 { 883 struct gem *gp = container_of(napi, struct gem, napi); 884 struct net_device *dev = gp->dev; 885 int work_done; 886 887 work_done = 0; 888 do { 889 /* Handle anomalies */ 890 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 891 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 892 int reset; 893 894 /* We run the abnormal interrupt handling code with 895 * the Tx lock. It only resets the Rx portion of the 896 * chip, but we need to guard it against DMA being 897 * restarted by the link poll timer 898 */ 899 __netif_tx_lock(txq, smp_processor_id()); 900 reset = gem_abnormal_irq(dev, gp, gp->status); 901 __netif_tx_unlock(txq); 902 if (reset) { 903 gem_schedule_reset(gp); 904 napi_complete(napi); 905 return work_done; 906 } 907 } 908 909 /* Run TX completion thread */ 910 gem_tx(dev, gp, gp->status); 911 912 /* Run RX thread. We don't use any locking here, 913 * code willing to do bad things - like cleaning the 914 * rx ring - must call napi_disable(), which 915 * schedule_timeout()'s if polling is already disabled. 916 */ 917 work_done += gem_rx(gp, budget - work_done); 918 919 if (work_done >= budget) 920 return work_done; 921 922 gp->status = readl(gp->regs + GREG_STAT); 923 } while (gp->status & GREG_STAT_NAPI); 924 925 napi_complete(napi); 926 gem_enable_ints(gp); 927 928 return work_done; 929 } 930 931 static irqreturn_t gem_interrupt(int irq, void *dev_id) 932 { 933 struct net_device *dev = dev_id; 934 struct gem *gp = netdev_priv(dev); 935 936 if (napi_schedule_prep(&gp->napi)) { 937 u32 gem_status = readl(gp->regs + GREG_STAT); 938 939 if (unlikely(gem_status == 0)) { 940 napi_enable(&gp->napi); 941 return IRQ_NONE; 942 } 943 if (netif_msg_intr(gp)) 944 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 945 gp->dev->name, gem_status); 946 947 gp->status = gem_status; 948 gem_disable_ints(gp); 949 __napi_schedule(&gp->napi); 950 } 951 952 /* If polling was disabled at the time we received that 953 * interrupt, we may return IRQ_HANDLED here while we 954 * should return IRQ_NONE. No big deal... 955 */ 956 return IRQ_HANDLED; 957 } 958 959 #ifdef CONFIG_NET_POLL_CONTROLLER 960 static void gem_poll_controller(struct net_device *dev) 961 { 962 struct gem *gp = netdev_priv(dev); 963 964 disable_irq(gp->pdev->irq); 965 gem_interrupt(gp->pdev->irq, dev); 966 enable_irq(gp->pdev->irq); 967 } 968 #endif 969 970 static void gem_tx_timeout(struct net_device *dev) 971 { 972 struct gem *gp = netdev_priv(dev); 973 974 netdev_err(dev, "transmit timed out, resetting\n"); 975 976 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 977 readl(gp->regs + TXDMA_CFG), 978 readl(gp->regs + MAC_TXSTAT), 979 readl(gp->regs + MAC_TXCFG)); 980 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 981 readl(gp->regs + RXDMA_CFG), 982 readl(gp->regs + MAC_RXSTAT), 983 readl(gp->regs + MAC_RXCFG)); 984 985 gem_schedule_reset(gp); 986 } 987 988 static __inline__ int gem_intme(int entry) 989 { 990 /* Algorithm: IRQ every 1/2 of descriptors. */ 991 if (!(entry & ((TX_RING_SIZE>>1)-1))) 992 return 1; 993 994 return 0; 995 } 996 997 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 998 struct net_device *dev) 999 { 1000 struct gem *gp = netdev_priv(dev); 1001 int entry; 1002 u64 ctrl; 1003 1004 ctrl = 0; 1005 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1006 const u64 csum_start_off = skb_checksum_start_offset(skb); 1007 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1008 1009 ctrl = (TXDCTRL_CENAB | 1010 (csum_start_off << 15) | 1011 (csum_stuff_off << 21)); 1012 } 1013 1014 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1015 /* This is a hard error, log it. */ 1016 if (!netif_queue_stopped(dev)) { 1017 netif_stop_queue(dev); 1018 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1019 } 1020 return NETDEV_TX_BUSY; 1021 } 1022 1023 entry = gp->tx_new; 1024 gp->tx_skbs[entry] = skb; 1025 1026 if (skb_shinfo(skb)->nr_frags == 0) { 1027 struct gem_txd *txd = &gp->init_block->txd[entry]; 1028 dma_addr_t mapping; 1029 u32 len; 1030 1031 len = skb->len; 1032 mapping = pci_map_page(gp->pdev, 1033 virt_to_page(skb->data), 1034 offset_in_page(skb->data), 1035 len, PCI_DMA_TODEVICE); 1036 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1037 if (gem_intme(entry)) 1038 ctrl |= TXDCTRL_INTME; 1039 txd->buffer = cpu_to_le64(mapping); 1040 dma_wmb(); 1041 txd->control_word = cpu_to_le64(ctrl); 1042 entry = NEXT_TX(entry); 1043 } else { 1044 struct gem_txd *txd; 1045 u32 first_len; 1046 u64 intme; 1047 dma_addr_t first_mapping; 1048 int frag, first_entry = entry; 1049 1050 intme = 0; 1051 if (gem_intme(entry)) 1052 intme |= TXDCTRL_INTME; 1053 1054 /* We must give this initial chunk to the device last. 1055 * Otherwise we could race with the device. 1056 */ 1057 first_len = skb_headlen(skb); 1058 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1059 offset_in_page(skb->data), 1060 first_len, PCI_DMA_TODEVICE); 1061 entry = NEXT_TX(entry); 1062 1063 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1064 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1065 u32 len; 1066 dma_addr_t mapping; 1067 u64 this_ctrl; 1068 1069 len = skb_frag_size(this_frag); 1070 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1071 0, len, DMA_TO_DEVICE); 1072 this_ctrl = ctrl; 1073 if (frag == skb_shinfo(skb)->nr_frags - 1) 1074 this_ctrl |= TXDCTRL_EOF; 1075 1076 txd = &gp->init_block->txd[entry]; 1077 txd->buffer = cpu_to_le64(mapping); 1078 dma_wmb(); 1079 txd->control_word = cpu_to_le64(this_ctrl | len); 1080 1081 if (gem_intme(entry)) 1082 intme |= TXDCTRL_INTME; 1083 1084 entry = NEXT_TX(entry); 1085 } 1086 txd = &gp->init_block->txd[first_entry]; 1087 txd->buffer = cpu_to_le64(first_mapping); 1088 dma_wmb(); 1089 txd->control_word = 1090 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1091 } 1092 1093 gp->tx_new = entry; 1094 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1095 netif_stop_queue(dev); 1096 1097 /* netif_stop_queue() must be done before checking 1098 * checking tx index in TX_BUFFS_AVAIL() below, because 1099 * in gem_tx(), we update tx_old before checking for 1100 * netif_queue_stopped(). 1101 */ 1102 smp_mb(); 1103 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1104 netif_wake_queue(dev); 1105 } 1106 if (netif_msg_tx_queued(gp)) 1107 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1108 dev->name, entry, skb->len); 1109 mb(); 1110 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1111 1112 return NETDEV_TX_OK; 1113 } 1114 1115 static void gem_pcs_reset(struct gem *gp) 1116 { 1117 int limit; 1118 u32 val; 1119 1120 /* Reset PCS unit. */ 1121 val = readl(gp->regs + PCS_MIICTRL); 1122 val |= PCS_MIICTRL_RST; 1123 writel(val, gp->regs + PCS_MIICTRL); 1124 1125 limit = 32; 1126 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1127 udelay(100); 1128 if (limit-- <= 0) 1129 break; 1130 } 1131 if (limit < 0) 1132 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1133 } 1134 1135 static void gem_pcs_reinit_adv(struct gem *gp) 1136 { 1137 u32 val; 1138 1139 /* Make sure PCS is disabled while changing advertisement 1140 * configuration. 1141 */ 1142 val = readl(gp->regs + PCS_CFG); 1143 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1144 writel(val, gp->regs + PCS_CFG); 1145 1146 /* Advertise all capabilities except asymmetric 1147 * pause. 1148 */ 1149 val = readl(gp->regs + PCS_MIIADV); 1150 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1151 PCS_MIIADV_SP | PCS_MIIADV_AP); 1152 writel(val, gp->regs + PCS_MIIADV); 1153 1154 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1155 * and re-enable PCS. 1156 */ 1157 val = readl(gp->regs + PCS_MIICTRL); 1158 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1159 val &= ~PCS_MIICTRL_WB; 1160 writel(val, gp->regs + PCS_MIICTRL); 1161 1162 val = readl(gp->regs + PCS_CFG); 1163 val |= PCS_CFG_ENABLE; 1164 writel(val, gp->regs + PCS_CFG); 1165 1166 /* Make sure serialink loopback is off. The meaning 1167 * of this bit is logically inverted based upon whether 1168 * you are in Serialink or SERDES mode. 1169 */ 1170 val = readl(gp->regs + PCS_SCTRL); 1171 if (gp->phy_type == phy_serialink) 1172 val &= ~PCS_SCTRL_LOOP; 1173 else 1174 val |= PCS_SCTRL_LOOP; 1175 writel(val, gp->regs + PCS_SCTRL); 1176 } 1177 1178 #define STOP_TRIES 32 1179 1180 static void gem_reset(struct gem *gp) 1181 { 1182 int limit; 1183 u32 val; 1184 1185 /* Make sure we won't get any more interrupts */ 1186 writel(0xffffffff, gp->regs + GREG_IMASK); 1187 1188 /* Reset the chip */ 1189 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1190 gp->regs + GREG_SWRST); 1191 1192 limit = STOP_TRIES; 1193 1194 do { 1195 udelay(20); 1196 val = readl(gp->regs + GREG_SWRST); 1197 if (limit-- <= 0) 1198 break; 1199 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1200 1201 if (limit < 0) 1202 netdev_err(gp->dev, "SW reset is ghetto\n"); 1203 1204 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1205 gem_pcs_reinit_adv(gp); 1206 } 1207 1208 static void gem_start_dma(struct gem *gp) 1209 { 1210 u32 val; 1211 1212 /* We are ready to rock, turn everything on. */ 1213 val = readl(gp->regs + TXDMA_CFG); 1214 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1215 val = readl(gp->regs + RXDMA_CFG); 1216 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1217 val = readl(gp->regs + MAC_TXCFG); 1218 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1219 val = readl(gp->regs + MAC_RXCFG); 1220 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1221 1222 (void) readl(gp->regs + MAC_RXCFG); 1223 udelay(100); 1224 1225 gem_enable_ints(gp); 1226 1227 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1228 } 1229 1230 /* DMA won't be actually stopped before about 4ms tho ... 1231 */ 1232 static void gem_stop_dma(struct gem *gp) 1233 { 1234 u32 val; 1235 1236 /* We are done rocking, turn everything off. */ 1237 val = readl(gp->regs + TXDMA_CFG); 1238 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1239 val = readl(gp->regs + RXDMA_CFG); 1240 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1241 val = readl(gp->regs + MAC_TXCFG); 1242 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1243 val = readl(gp->regs + MAC_RXCFG); 1244 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1245 1246 (void) readl(gp->regs + MAC_RXCFG); 1247 1248 /* Need to wait a bit ... done by the caller */ 1249 } 1250 1251 1252 // XXX dbl check what that function should do when called on PCS PHY 1253 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) 1254 { 1255 u32 advertise, features; 1256 int autoneg; 1257 int speed; 1258 int duplex; 1259 1260 if (gp->phy_type != phy_mii_mdio0 && 1261 gp->phy_type != phy_mii_mdio1) 1262 goto non_mii; 1263 1264 /* Setup advertise */ 1265 if (found_mii_phy(gp)) 1266 features = gp->phy_mii.def->features; 1267 else 1268 features = 0; 1269 1270 advertise = features & ADVERTISE_MASK; 1271 if (gp->phy_mii.advertising != 0) 1272 advertise &= gp->phy_mii.advertising; 1273 1274 autoneg = gp->want_autoneg; 1275 speed = gp->phy_mii.speed; 1276 duplex = gp->phy_mii.duplex; 1277 1278 /* Setup link parameters */ 1279 if (!ep) 1280 goto start_aneg; 1281 if (ep->autoneg == AUTONEG_ENABLE) { 1282 advertise = ep->advertising; 1283 autoneg = 1; 1284 } else { 1285 autoneg = 0; 1286 speed = ethtool_cmd_speed(ep); 1287 duplex = ep->duplex; 1288 } 1289 1290 start_aneg: 1291 /* Sanitize settings based on PHY capabilities */ 1292 if ((features & SUPPORTED_Autoneg) == 0) 1293 autoneg = 0; 1294 if (speed == SPEED_1000 && 1295 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1296 speed = SPEED_100; 1297 if (speed == SPEED_100 && 1298 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1299 speed = SPEED_10; 1300 if (duplex == DUPLEX_FULL && 1301 !(features & (SUPPORTED_1000baseT_Full | 1302 SUPPORTED_100baseT_Full | 1303 SUPPORTED_10baseT_Full))) 1304 duplex = DUPLEX_HALF; 1305 if (speed == 0) 1306 speed = SPEED_10; 1307 1308 /* If we are asleep, we don't try to actually setup the PHY, we 1309 * just store the settings 1310 */ 1311 if (!netif_device_present(gp->dev)) { 1312 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1313 gp->phy_mii.speed = speed; 1314 gp->phy_mii.duplex = duplex; 1315 return; 1316 } 1317 1318 /* Configure PHY & start aneg */ 1319 gp->want_autoneg = autoneg; 1320 if (autoneg) { 1321 if (found_mii_phy(gp)) 1322 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1323 gp->lstate = link_aneg; 1324 } else { 1325 if (found_mii_phy(gp)) 1326 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1327 gp->lstate = link_force_ok; 1328 } 1329 1330 non_mii: 1331 gp->timer_ticks = 0; 1332 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1333 } 1334 1335 /* A link-up condition has occurred, initialize and enable the 1336 * rest of the chip. 1337 */ 1338 static int gem_set_link_modes(struct gem *gp) 1339 { 1340 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1341 int full_duplex, speed, pause; 1342 u32 val; 1343 1344 full_duplex = 0; 1345 speed = SPEED_10; 1346 pause = 0; 1347 1348 if (found_mii_phy(gp)) { 1349 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1350 return 1; 1351 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1352 speed = gp->phy_mii.speed; 1353 pause = gp->phy_mii.pause; 1354 } else if (gp->phy_type == phy_serialink || 1355 gp->phy_type == phy_serdes) { 1356 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1357 1358 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1359 full_duplex = 1; 1360 speed = SPEED_1000; 1361 } 1362 1363 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1364 speed, (full_duplex ? "full" : "half")); 1365 1366 1367 /* We take the tx queue lock to avoid collisions between 1368 * this code, the tx path and the NAPI-driven error path 1369 */ 1370 __netif_tx_lock(txq, smp_processor_id()); 1371 1372 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1373 if (full_duplex) { 1374 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1375 } else { 1376 /* MAC_TXCFG_NBO must be zero. */ 1377 } 1378 writel(val, gp->regs + MAC_TXCFG); 1379 1380 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1381 if (!full_duplex && 1382 (gp->phy_type == phy_mii_mdio0 || 1383 gp->phy_type == phy_mii_mdio1)) { 1384 val |= MAC_XIFCFG_DISE; 1385 } else if (full_duplex) { 1386 val |= MAC_XIFCFG_FLED; 1387 } 1388 1389 if (speed == SPEED_1000) 1390 val |= (MAC_XIFCFG_GMII); 1391 1392 writel(val, gp->regs + MAC_XIFCFG); 1393 1394 /* If gigabit and half-duplex, enable carrier extension 1395 * mode. Else, disable it. 1396 */ 1397 if (speed == SPEED_1000 && !full_duplex) { 1398 val = readl(gp->regs + MAC_TXCFG); 1399 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1400 1401 val = readl(gp->regs + MAC_RXCFG); 1402 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1403 } else { 1404 val = readl(gp->regs + MAC_TXCFG); 1405 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1406 1407 val = readl(gp->regs + MAC_RXCFG); 1408 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1409 } 1410 1411 if (gp->phy_type == phy_serialink || 1412 gp->phy_type == phy_serdes) { 1413 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1414 1415 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1416 pause = 1; 1417 } 1418 1419 if (!full_duplex) 1420 writel(512, gp->regs + MAC_STIME); 1421 else 1422 writel(64, gp->regs + MAC_STIME); 1423 val = readl(gp->regs + MAC_MCCFG); 1424 if (pause) 1425 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1426 else 1427 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1428 writel(val, gp->regs + MAC_MCCFG); 1429 1430 gem_start_dma(gp); 1431 1432 __netif_tx_unlock(txq); 1433 1434 if (netif_msg_link(gp)) { 1435 if (pause) { 1436 netdev_info(gp->dev, 1437 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1438 gp->rx_fifo_sz, 1439 gp->rx_pause_off, 1440 gp->rx_pause_on); 1441 } else { 1442 netdev_info(gp->dev, "Pause is disabled\n"); 1443 } 1444 } 1445 1446 return 0; 1447 } 1448 1449 static int gem_mdio_link_not_up(struct gem *gp) 1450 { 1451 switch (gp->lstate) { 1452 case link_force_ret: 1453 netif_info(gp, link, gp->dev, 1454 "Autoneg failed again, keeping forced mode\n"); 1455 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1456 gp->last_forced_speed, DUPLEX_HALF); 1457 gp->timer_ticks = 5; 1458 gp->lstate = link_force_ok; 1459 return 0; 1460 case link_aneg: 1461 /* We try forced modes after a failed aneg only on PHYs that don't 1462 * have "magic_aneg" bit set, which means they internally do the 1463 * while forced-mode thingy. On these, we just restart aneg 1464 */ 1465 if (gp->phy_mii.def->magic_aneg) 1466 return 1; 1467 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1468 /* Try forced modes. */ 1469 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1470 DUPLEX_HALF); 1471 gp->timer_ticks = 5; 1472 gp->lstate = link_force_try; 1473 return 0; 1474 case link_force_try: 1475 /* Downgrade from 100 to 10 Mbps if necessary. 1476 * If already at 10Mbps, warn user about the 1477 * situation every 10 ticks. 1478 */ 1479 if (gp->phy_mii.speed == SPEED_100) { 1480 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1481 DUPLEX_HALF); 1482 gp->timer_ticks = 5; 1483 netif_info(gp, link, gp->dev, 1484 "switching to forced 10bt\n"); 1485 return 0; 1486 } else 1487 return 1; 1488 default: 1489 return 0; 1490 } 1491 } 1492 1493 static void gem_link_timer(unsigned long data) 1494 { 1495 struct gem *gp = (struct gem *) data; 1496 struct net_device *dev = gp->dev; 1497 int restart_aneg = 0; 1498 1499 /* There's no point doing anything if we're going to be reset */ 1500 if (gp->reset_task_pending) 1501 return; 1502 1503 if (gp->phy_type == phy_serialink || 1504 gp->phy_type == phy_serdes) { 1505 u32 val = readl(gp->regs + PCS_MIISTAT); 1506 1507 if (!(val & PCS_MIISTAT_LS)) 1508 val = readl(gp->regs + PCS_MIISTAT); 1509 1510 if ((val & PCS_MIISTAT_LS) != 0) { 1511 if (gp->lstate == link_up) 1512 goto restart; 1513 1514 gp->lstate = link_up; 1515 netif_carrier_on(dev); 1516 (void)gem_set_link_modes(gp); 1517 } 1518 goto restart; 1519 } 1520 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1521 /* Ok, here we got a link. If we had it due to a forced 1522 * fallback, and we were configured for autoneg, we do 1523 * retry a short autoneg pass. If you know your hub is 1524 * broken, use ethtool ;) 1525 */ 1526 if (gp->lstate == link_force_try && gp->want_autoneg) { 1527 gp->lstate = link_force_ret; 1528 gp->last_forced_speed = gp->phy_mii.speed; 1529 gp->timer_ticks = 5; 1530 if (netif_msg_link(gp)) 1531 netdev_info(dev, 1532 "Got link after fallback, retrying autoneg once...\n"); 1533 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1534 } else if (gp->lstate != link_up) { 1535 gp->lstate = link_up; 1536 netif_carrier_on(dev); 1537 if (gem_set_link_modes(gp)) 1538 restart_aneg = 1; 1539 } 1540 } else { 1541 /* If the link was previously up, we restart the 1542 * whole process 1543 */ 1544 if (gp->lstate == link_up) { 1545 gp->lstate = link_down; 1546 netif_info(gp, link, dev, "Link down\n"); 1547 netif_carrier_off(dev); 1548 gem_schedule_reset(gp); 1549 /* The reset task will restart the timer */ 1550 return; 1551 } else if (++gp->timer_ticks > 10) { 1552 if (found_mii_phy(gp)) 1553 restart_aneg = gem_mdio_link_not_up(gp); 1554 else 1555 restart_aneg = 1; 1556 } 1557 } 1558 if (restart_aneg) { 1559 gem_begin_auto_negotiation(gp, NULL); 1560 return; 1561 } 1562 restart: 1563 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1564 } 1565 1566 static void gem_clean_rings(struct gem *gp) 1567 { 1568 struct gem_init_block *gb = gp->init_block; 1569 struct sk_buff *skb; 1570 int i; 1571 dma_addr_t dma_addr; 1572 1573 for (i = 0; i < RX_RING_SIZE; i++) { 1574 struct gem_rxd *rxd; 1575 1576 rxd = &gb->rxd[i]; 1577 if (gp->rx_skbs[i] != NULL) { 1578 skb = gp->rx_skbs[i]; 1579 dma_addr = le64_to_cpu(rxd->buffer); 1580 pci_unmap_page(gp->pdev, dma_addr, 1581 RX_BUF_ALLOC_SIZE(gp), 1582 PCI_DMA_FROMDEVICE); 1583 dev_kfree_skb_any(skb); 1584 gp->rx_skbs[i] = NULL; 1585 } 1586 rxd->status_word = 0; 1587 dma_wmb(); 1588 rxd->buffer = 0; 1589 } 1590 1591 for (i = 0; i < TX_RING_SIZE; i++) { 1592 if (gp->tx_skbs[i] != NULL) { 1593 struct gem_txd *txd; 1594 int frag; 1595 1596 skb = gp->tx_skbs[i]; 1597 gp->tx_skbs[i] = NULL; 1598 1599 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1600 int ent = i & (TX_RING_SIZE - 1); 1601 1602 txd = &gb->txd[ent]; 1603 dma_addr = le64_to_cpu(txd->buffer); 1604 pci_unmap_page(gp->pdev, dma_addr, 1605 le64_to_cpu(txd->control_word) & 1606 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1607 1608 if (frag != skb_shinfo(skb)->nr_frags) 1609 i++; 1610 } 1611 dev_kfree_skb_any(skb); 1612 } 1613 } 1614 } 1615 1616 static void gem_init_rings(struct gem *gp) 1617 { 1618 struct gem_init_block *gb = gp->init_block; 1619 struct net_device *dev = gp->dev; 1620 int i; 1621 dma_addr_t dma_addr; 1622 1623 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1624 1625 gem_clean_rings(gp); 1626 1627 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1628 (unsigned)VLAN_ETH_FRAME_LEN); 1629 1630 for (i = 0; i < RX_RING_SIZE; i++) { 1631 struct sk_buff *skb; 1632 struct gem_rxd *rxd = &gb->rxd[i]; 1633 1634 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1635 if (!skb) { 1636 rxd->buffer = 0; 1637 rxd->status_word = 0; 1638 continue; 1639 } 1640 1641 gp->rx_skbs[i] = skb; 1642 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1643 dma_addr = pci_map_page(gp->pdev, 1644 virt_to_page(skb->data), 1645 offset_in_page(skb->data), 1646 RX_BUF_ALLOC_SIZE(gp), 1647 PCI_DMA_FROMDEVICE); 1648 rxd->buffer = cpu_to_le64(dma_addr); 1649 dma_wmb(); 1650 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1651 skb_reserve(skb, RX_OFFSET); 1652 } 1653 1654 for (i = 0; i < TX_RING_SIZE; i++) { 1655 struct gem_txd *txd = &gb->txd[i]; 1656 1657 txd->control_word = 0; 1658 dma_wmb(); 1659 txd->buffer = 0; 1660 } 1661 wmb(); 1662 } 1663 1664 /* Init PHY interface and start link poll state machine */ 1665 static void gem_init_phy(struct gem *gp) 1666 { 1667 u32 mifcfg; 1668 1669 /* Revert MIF CFG setting done on stop_phy */ 1670 mifcfg = readl(gp->regs + MIF_CFG); 1671 mifcfg &= ~MIF_CFG_BBMODE; 1672 writel(mifcfg, gp->regs + MIF_CFG); 1673 1674 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1675 int i; 1676 1677 /* Those delay sucks, the HW seem to love them though, I'll 1678 * serisouly consider breaking some locks here to be able 1679 * to schedule instead 1680 */ 1681 for (i = 0; i < 3; i++) { 1682 #ifdef CONFIG_PPC_PMAC 1683 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1684 msleep(20); 1685 #endif 1686 /* Some PHYs used by apple have problem getting back to us, 1687 * we do an additional reset here 1688 */ 1689 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1690 msleep(20); 1691 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1692 break; 1693 if (i == 2) 1694 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1695 } 1696 } 1697 1698 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1699 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1700 u32 val; 1701 1702 /* Init datapath mode register. */ 1703 if (gp->phy_type == phy_mii_mdio0 || 1704 gp->phy_type == phy_mii_mdio1) { 1705 val = PCS_DMODE_MGM; 1706 } else if (gp->phy_type == phy_serialink) { 1707 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1708 } else { 1709 val = PCS_DMODE_ESM; 1710 } 1711 1712 writel(val, gp->regs + PCS_DMODE); 1713 } 1714 1715 if (gp->phy_type == phy_mii_mdio0 || 1716 gp->phy_type == phy_mii_mdio1) { 1717 /* Reset and detect MII PHY */ 1718 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1719 1720 /* Init PHY */ 1721 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1722 gp->phy_mii.def->ops->init(&gp->phy_mii); 1723 } else { 1724 gem_pcs_reset(gp); 1725 gem_pcs_reinit_adv(gp); 1726 } 1727 1728 /* Default aneg parameters */ 1729 gp->timer_ticks = 0; 1730 gp->lstate = link_down; 1731 netif_carrier_off(gp->dev); 1732 1733 /* Print things out */ 1734 if (gp->phy_type == phy_mii_mdio0 || 1735 gp->phy_type == phy_mii_mdio1) 1736 netdev_info(gp->dev, "Found %s PHY\n", 1737 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1738 1739 gem_begin_auto_negotiation(gp, NULL); 1740 } 1741 1742 static void gem_init_dma(struct gem *gp) 1743 { 1744 u64 desc_dma = (u64) gp->gblock_dvma; 1745 u32 val; 1746 1747 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1748 writel(val, gp->regs + TXDMA_CFG); 1749 1750 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1751 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1752 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1753 1754 writel(0, gp->regs + TXDMA_KICK); 1755 1756 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1757 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1758 writel(val, gp->regs + RXDMA_CFG); 1759 1760 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1761 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1762 1763 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1764 1765 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1766 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1767 writel(val, gp->regs + RXDMA_PTHRESH); 1768 1769 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1770 writel(((5 & RXDMA_BLANK_IPKTS) | 1771 ((8 << 12) & RXDMA_BLANK_ITIME)), 1772 gp->regs + RXDMA_BLANK); 1773 else 1774 writel(((5 & RXDMA_BLANK_IPKTS) | 1775 ((4 << 12) & RXDMA_BLANK_ITIME)), 1776 gp->regs + RXDMA_BLANK); 1777 } 1778 1779 static u32 gem_setup_multicast(struct gem *gp) 1780 { 1781 u32 rxcfg = 0; 1782 int i; 1783 1784 if ((gp->dev->flags & IFF_ALLMULTI) || 1785 (netdev_mc_count(gp->dev) > 256)) { 1786 for (i=0; i<16; i++) 1787 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1788 rxcfg |= MAC_RXCFG_HFE; 1789 } else if (gp->dev->flags & IFF_PROMISC) { 1790 rxcfg |= MAC_RXCFG_PROM; 1791 } else { 1792 u16 hash_table[16]; 1793 u32 crc; 1794 struct netdev_hw_addr *ha; 1795 int i; 1796 1797 memset(hash_table, 0, sizeof(hash_table)); 1798 netdev_for_each_mc_addr(ha, gp->dev) { 1799 crc = ether_crc_le(6, ha->addr); 1800 crc >>= 24; 1801 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1802 } 1803 for (i=0; i<16; i++) 1804 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1805 rxcfg |= MAC_RXCFG_HFE; 1806 } 1807 1808 return rxcfg; 1809 } 1810 1811 static void gem_init_mac(struct gem *gp) 1812 { 1813 unsigned char *e = &gp->dev->dev_addr[0]; 1814 1815 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1816 1817 writel(0x00, gp->regs + MAC_IPG0); 1818 writel(0x08, gp->regs + MAC_IPG1); 1819 writel(0x04, gp->regs + MAC_IPG2); 1820 writel(0x40, gp->regs + MAC_STIME); 1821 writel(0x40, gp->regs + MAC_MINFSZ); 1822 1823 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1824 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1825 1826 writel(0x07, gp->regs + MAC_PASIZE); 1827 writel(0x04, gp->regs + MAC_JAMSIZE); 1828 writel(0x10, gp->regs + MAC_ATTLIM); 1829 writel(0x8808, gp->regs + MAC_MCTYPE); 1830 1831 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1832 1833 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1834 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1835 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1836 1837 writel(0, gp->regs + MAC_ADDR3); 1838 writel(0, gp->regs + MAC_ADDR4); 1839 writel(0, gp->regs + MAC_ADDR5); 1840 1841 writel(0x0001, gp->regs + MAC_ADDR6); 1842 writel(0xc200, gp->regs + MAC_ADDR7); 1843 writel(0x0180, gp->regs + MAC_ADDR8); 1844 1845 writel(0, gp->regs + MAC_AFILT0); 1846 writel(0, gp->regs + MAC_AFILT1); 1847 writel(0, gp->regs + MAC_AFILT2); 1848 writel(0, gp->regs + MAC_AF21MSK); 1849 writel(0, gp->regs + MAC_AF0MSK); 1850 1851 gp->mac_rx_cfg = gem_setup_multicast(gp); 1852 #ifdef STRIP_FCS 1853 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1854 #endif 1855 writel(0, gp->regs + MAC_NCOLL); 1856 writel(0, gp->regs + MAC_FASUCC); 1857 writel(0, gp->regs + MAC_ECOLL); 1858 writel(0, gp->regs + MAC_LCOLL); 1859 writel(0, gp->regs + MAC_DTIMER); 1860 writel(0, gp->regs + MAC_PATMPS); 1861 writel(0, gp->regs + MAC_RFCTR); 1862 writel(0, gp->regs + MAC_LERR); 1863 writel(0, gp->regs + MAC_AERR); 1864 writel(0, gp->regs + MAC_FCSERR); 1865 writel(0, gp->regs + MAC_RXCVERR); 1866 1867 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1868 * them once a link is established. 1869 */ 1870 writel(0, gp->regs + MAC_TXCFG); 1871 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1872 writel(0, gp->regs + MAC_MCCFG); 1873 writel(0, gp->regs + MAC_XIFCFG); 1874 1875 /* Setup MAC interrupts. We want to get all of the interesting 1876 * counter expiration events, but we do not want to hear about 1877 * normal rx/tx as the DMA engine tells us that. 1878 */ 1879 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1880 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1881 1882 /* Don't enable even the PAUSE interrupts for now, we 1883 * make no use of those events other than to record them. 1884 */ 1885 writel(0xffffffff, gp->regs + MAC_MCMASK); 1886 1887 /* Don't enable GEM's WOL in normal operations 1888 */ 1889 if (gp->has_wol) 1890 writel(0, gp->regs + WOL_WAKECSR); 1891 } 1892 1893 static void gem_init_pause_thresholds(struct gem *gp) 1894 { 1895 u32 cfg; 1896 1897 /* Calculate pause thresholds. Setting the OFF threshold to the 1898 * full RX fifo size effectively disables PAUSE generation which 1899 * is what we do for 10/100 only GEMs which have FIFOs too small 1900 * to make real gains from PAUSE. 1901 */ 1902 if (gp->rx_fifo_sz <= (2 * 1024)) { 1903 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1904 } else { 1905 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1906 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1907 int on = off - max_frame; 1908 1909 gp->rx_pause_off = off; 1910 gp->rx_pause_on = on; 1911 } 1912 1913 1914 /* Configure the chip "burst" DMA mode & enable some 1915 * HW bug fixes on Apple version 1916 */ 1917 cfg = 0; 1918 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1919 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1920 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1921 cfg |= GREG_CFG_IBURST; 1922 #endif 1923 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1924 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1925 writel(cfg, gp->regs + GREG_CFG); 1926 1927 /* If Infinite Burst didn't stick, then use different 1928 * thresholds (and Apple bug fixes don't exist) 1929 */ 1930 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1931 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1932 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1933 writel(cfg, gp->regs + GREG_CFG); 1934 } 1935 } 1936 1937 static int gem_check_invariants(struct gem *gp) 1938 { 1939 struct pci_dev *pdev = gp->pdev; 1940 u32 mif_cfg; 1941 1942 /* On Apple's sungem, we can't rely on registers as the chip 1943 * was been powered down by the firmware. The PHY is looked 1944 * up later on. 1945 */ 1946 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1947 gp->phy_type = phy_mii_mdio0; 1948 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1949 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1950 gp->swrst_base = 0; 1951 1952 mif_cfg = readl(gp->regs + MIF_CFG); 1953 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1954 mif_cfg |= MIF_CFG_MDI0; 1955 writel(mif_cfg, gp->regs + MIF_CFG); 1956 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1957 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1958 1959 /* We hard-code the PHY address so we can properly bring it out of 1960 * reset later on, we can't really probe it at this point, though 1961 * that isn't an issue. 1962 */ 1963 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1964 gp->mii_phy_addr = 1; 1965 else 1966 gp->mii_phy_addr = 0; 1967 1968 return 0; 1969 } 1970 1971 mif_cfg = readl(gp->regs + MIF_CFG); 1972 1973 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1974 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1975 /* One of the MII PHYs _must_ be present 1976 * as this chip has no gigabit PHY. 1977 */ 1978 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1979 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1980 mif_cfg); 1981 return -1; 1982 } 1983 } 1984 1985 /* Determine initial PHY interface type guess. MDIO1 is the 1986 * external PHY and thus takes precedence over MDIO0. 1987 */ 1988 1989 if (mif_cfg & MIF_CFG_MDI1) { 1990 gp->phy_type = phy_mii_mdio1; 1991 mif_cfg |= MIF_CFG_PSELECT; 1992 writel(mif_cfg, gp->regs + MIF_CFG); 1993 } else if (mif_cfg & MIF_CFG_MDI0) { 1994 gp->phy_type = phy_mii_mdio0; 1995 mif_cfg &= ~MIF_CFG_PSELECT; 1996 writel(mif_cfg, gp->regs + MIF_CFG); 1997 } else { 1998 #ifdef CONFIG_SPARC 1999 const char *p; 2000 2001 p = of_get_property(gp->of_node, "shared-pins", NULL); 2002 if (p && !strcmp(p, "serdes")) 2003 gp->phy_type = phy_serdes; 2004 else 2005 #endif 2006 gp->phy_type = phy_serialink; 2007 } 2008 if (gp->phy_type == phy_mii_mdio1 || 2009 gp->phy_type == phy_mii_mdio0) { 2010 int i; 2011 2012 for (i = 0; i < 32; i++) { 2013 gp->mii_phy_addr = i; 2014 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2015 break; 2016 } 2017 if (i == 32) { 2018 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2019 pr_err("RIO MII phy will not respond\n"); 2020 return -1; 2021 } 2022 gp->phy_type = phy_serdes; 2023 } 2024 } 2025 2026 /* Fetch the FIFO configurations now too. */ 2027 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2028 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2029 2030 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2031 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2032 if (gp->tx_fifo_sz != (9 * 1024) || 2033 gp->rx_fifo_sz != (20 * 1024)) { 2034 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2035 gp->tx_fifo_sz, gp->rx_fifo_sz); 2036 return -1; 2037 } 2038 gp->swrst_base = 0; 2039 } else { 2040 if (gp->tx_fifo_sz != (2 * 1024) || 2041 gp->rx_fifo_sz != (2 * 1024)) { 2042 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2043 gp->tx_fifo_sz, gp->rx_fifo_sz); 2044 return -1; 2045 } 2046 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2047 } 2048 } 2049 2050 return 0; 2051 } 2052 2053 static void gem_reinit_chip(struct gem *gp) 2054 { 2055 /* Reset the chip */ 2056 gem_reset(gp); 2057 2058 /* Make sure ints are disabled */ 2059 gem_disable_ints(gp); 2060 2061 /* Allocate & setup ring buffers */ 2062 gem_init_rings(gp); 2063 2064 /* Configure pause thresholds */ 2065 gem_init_pause_thresholds(gp); 2066 2067 /* Init DMA & MAC engines */ 2068 gem_init_dma(gp); 2069 gem_init_mac(gp); 2070 } 2071 2072 2073 static void gem_stop_phy(struct gem *gp, int wol) 2074 { 2075 u32 mifcfg; 2076 2077 /* Let the chip settle down a bit, it seems that helps 2078 * for sleep mode on some models 2079 */ 2080 msleep(10); 2081 2082 /* Make sure we aren't polling PHY status change. We 2083 * don't currently use that feature though 2084 */ 2085 mifcfg = readl(gp->regs + MIF_CFG); 2086 mifcfg &= ~MIF_CFG_POLL; 2087 writel(mifcfg, gp->regs + MIF_CFG); 2088 2089 if (wol && gp->has_wol) { 2090 unsigned char *e = &gp->dev->dev_addr[0]; 2091 u32 csr; 2092 2093 /* Setup wake-on-lan for MAGIC packet */ 2094 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2095 gp->regs + MAC_RXCFG); 2096 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2097 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2098 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2099 2100 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2101 csr = WOL_WAKECSR_ENABLE; 2102 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2103 csr |= WOL_WAKECSR_MII; 2104 writel(csr, gp->regs + WOL_WAKECSR); 2105 } else { 2106 writel(0, gp->regs + MAC_RXCFG); 2107 (void)readl(gp->regs + MAC_RXCFG); 2108 /* Machine sleep will die in strange ways if we 2109 * dont wait a bit here, looks like the chip takes 2110 * some time to really shut down 2111 */ 2112 msleep(10); 2113 } 2114 2115 writel(0, gp->regs + MAC_TXCFG); 2116 writel(0, gp->regs + MAC_XIFCFG); 2117 writel(0, gp->regs + TXDMA_CFG); 2118 writel(0, gp->regs + RXDMA_CFG); 2119 2120 if (!wol) { 2121 gem_reset(gp); 2122 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2123 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2124 2125 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2126 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2127 2128 /* According to Apple, we must set the MDIO pins to this begnign 2129 * state or we may 1) eat more current, 2) damage some PHYs 2130 */ 2131 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2132 writel(0, gp->regs + MIF_BBCLK); 2133 writel(0, gp->regs + MIF_BBDATA); 2134 writel(0, gp->regs + MIF_BBOENAB); 2135 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2136 (void) readl(gp->regs + MAC_XIFCFG); 2137 } 2138 } 2139 2140 static int gem_do_start(struct net_device *dev) 2141 { 2142 struct gem *gp = netdev_priv(dev); 2143 int rc; 2144 2145 /* Enable the cell */ 2146 gem_get_cell(gp); 2147 2148 /* Make sure PCI access and bus master are enabled */ 2149 rc = pci_enable_device(gp->pdev); 2150 if (rc) { 2151 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2152 2153 /* Put cell and forget it for now, it will be considered as 2154 * still asleep, a new sleep cycle may bring it back 2155 */ 2156 gem_put_cell(gp); 2157 return -ENXIO; 2158 } 2159 pci_set_master(gp->pdev); 2160 2161 /* Init & setup chip hardware */ 2162 gem_reinit_chip(gp); 2163 2164 /* An interrupt might come in handy */ 2165 rc = request_irq(gp->pdev->irq, gem_interrupt, 2166 IRQF_SHARED, dev->name, (void *)dev); 2167 if (rc) { 2168 netdev_err(dev, "failed to request irq !\n"); 2169 2170 gem_reset(gp); 2171 gem_clean_rings(gp); 2172 gem_put_cell(gp); 2173 return rc; 2174 } 2175 2176 /* Mark us as attached again if we come from resume(), this has 2177 * no effect if we weren't detached and needs to be done now. 2178 */ 2179 netif_device_attach(dev); 2180 2181 /* Restart NAPI & queues */ 2182 gem_netif_start(gp); 2183 2184 /* Detect & init PHY, start autoneg etc... this will 2185 * eventually result in starting DMA operations when 2186 * the link is up 2187 */ 2188 gem_init_phy(gp); 2189 2190 return 0; 2191 } 2192 2193 static void gem_do_stop(struct net_device *dev, int wol) 2194 { 2195 struct gem *gp = netdev_priv(dev); 2196 2197 /* Stop NAPI and stop tx queue */ 2198 gem_netif_stop(gp); 2199 2200 /* Make sure ints are disabled. We don't care about 2201 * synchronizing as NAPI is disabled, thus a stray 2202 * interrupt will do nothing bad (our irq handler 2203 * just schedules NAPI) 2204 */ 2205 gem_disable_ints(gp); 2206 2207 /* Stop the link timer */ 2208 del_timer_sync(&gp->link_timer); 2209 2210 /* We cannot cancel the reset task while holding the 2211 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2212 * if we did. This is not an issue however as the reset 2213 * task is synchronized vs. us (rtnl_lock) and will do 2214 * nothing if the device is down or suspended. We do 2215 * still clear reset_task_pending to avoid a spurrious 2216 * reset later on in case we do resume before it gets 2217 * scheduled. 2218 */ 2219 gp->reset_task_pending = 0; 2220 2221 /* If we are going to sleep with WOL */ 2222 gem_stop_dma(gp); 2223 msleep(10); 2224 if (!wol) 2225 gem_reset(gp); 2226 msleep(10); 2227 2228 /* Get rid of rings */ 2229 gem_clean_rings(gp); 2230 2231 /* No irq needed anymore */ 2232 free_irq(gp->pdev->irq, (void *) dev); 2233 2234 /* Shut the PHY down eventually and setup WOL */ 2235 gem_stop_phy(gp, wol); 2236 2237 /* Make sure bus master is disabled */ 2238 pci_disable_device(gp->pdev); 2239 2240 /* Cell not needed neither if no WOL */ 2241 if (!wol) 2242 gem_put_cell(gp); 2243 } 2244 2245 static void gem_reset_task(struct work_struct *work) 2246 { 2247 struct gem *gp = container_of(work, struct gem, reset_task); 2248 2249 /* Lock out the network stack (essentially shield ourselves 2250 * against a racing open, close, control call, or suspend 2251 */ 2252 rtnl_lock(); 2253 2254 /* Skip the reset task if suspended or closed, or if it's 2255 * been cancelled by gem_do_stop (see comment there) 2256 */ 2257 if (!netif_device_present(gp->dev) || 2258 !netif_running(gp->dev) || 2259 !gp->reset_task_pending) { 2260 rtnl_unlock(); 2261 return; 2262 } 2263 2264 /* Stop the link timer */ 2265 del_timer_sync(&gp->link_timer); 2266 2267 /* Stop NAPI and tx */ 2268 gem_netif_stop(gp); 2269 2270 /* Reset the chip & rings */ 2271 gem_reinit_chip(gp); 2272 if (gp->lstate == link_up) 2273 gem_set_link_modes(gp); 2274 2275 /* Restart NAPI and Tx */ 2276 gem_netif_start(gp); 2277 2278 /* We are back ! */ 2279 gp->reset_task_pending = 0; 2280 2281 /* If the link is not up, restart autoneg, else restart the 2282 * polling timer 2283 */ 2284 if (gp->lstate != link_up) 2285 gem_begin_auto_negotiation(gp, NULL); 2286 else 2287 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2288 2289 rtnl_unlock(); 2290 } 2291 2292 static int gem_open(struct net_device *dev) 2293 { 2294 /* We allow open while suspended, we just do nothing, 2295 * the chip will be initialized in resume() 2296 */ 2297 if (netif_device_present(dev)) 2298 return gem_do_start(dev); 2299 return 0; 2300 } 2301 2302 static int gem_close(struct net_device *dev) 2303 { 2304 if (netif_device_present(dev)) 2305 gem_do_stop(dev, 0); 2306 2307 return 0; 2308 } 2309 2310 #ifdef CONFIG_PM 2311 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2312 { 2313 struct net_device *dev = pci_get_drvdata(pdev); 2314 struct gem *gp = netdev_priv(dev); 2315 2316 /* Lock the network stack first to avoid racing with open/close, 2317 * reset task and setting calls 2318 */ 2319 rtnl_lock(); 2320 2321 /* Not running, mark ourselves non-present, no need for 2322 * a lock here 2323 */ 2324 if (!netif_running(dev)) { 2325 netif_device_detach(dev); 2326 rtnl_unlock(); 2327 return 0; 2328 } 2329 netdev_info(dev, "suspending, WakeOnLan %s\n", 2330 (gp->wake_on_lan && netif_running(dev)) ? 2331 "enabled" : "disabled"); 2332 2333 /* Tell the network stack we're gone. gem_do_stop() below will 2334 * synchronize with TX, stop NAPI etc... 2335 */ 2336 netif_device_detach(dev); 2337 2338 /* Switch off chip, remember WOL setting */ 2339 gp->asleep_wol = !!gp->wake_on_lan; 2340 gem_do_stop(dev, gp->asleep_wol); 2341 2342 /* Unlock the network stack */ 2343 rtnl_unlock(); 2344 2345 return 0; 2346 } 2347 2348 static int gem_resume(struct pci_dev *pdev) 2349 { 2350 struct net_device *dev = pci_get_drvdata(pdev); 2351 struct gem *gp = netdev_priv(dev); 2352 2353 /* See locking comment in gem_suspend */ 2354 rtnl_lock(); 2355 2356 /* Not running, mark ourselves present, no need for 2357 * a lock here 2358 */ 2359 if (!netif_running(dev)) { 2360 netif_device_attach(dev); 2361 rtnl_unlock(); 2362 return 0; 2363 } 2364 2365 /* Restart chip. If that fails there isn't much we can do, we 2366 * leave things stopped. 2367 */ 2368 gem_do_start(dev); 2369 2370 /* If we had WOL enabled, the cell clock was never turned off during 2371 * sleep, so we end up beeing unbalanced. Fix that here 2372 */ 2373 if (gp->asleep_wol) 2374 gem_put_cell(gp); 2375 2376 /* Unlock the network stack */ 2377 rtnl_unlock(); 2378 2379 return 0; 2380 } 2381 #endif /* CONFIG_PM */ 2382 2383 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2384 { 2385 struct gem *gp = netdev_priv(dev); 2386 2387 /* I have seen this being called while the PM was in progress, 2388 * so we shield against this. Let's also not poke at registers 2389 * while the reset task is going on. 2390 * 2391 * TODO: Move stats collection elsewhere (link timer ?) and 2392 * make this a nop to avoid all those synchro issues 2393 */ 2394 if (!netif_device_present(dev) || !netif_running(dev)) 2395 goto bail; 2396 2397 /* Better safe than sorry... */ 2398 if (WARN_ON(!gp->cell_enabled)) 2399 goto bail; 2400 2401 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2402 writel(0, gp->regs + MAC_FCSERR); 2403 2404 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2405 writel(0, gp->regs + MAC_AERR); 2406 2407 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2408 writel(0, gp->regs + MAC_LERR); 2409 2410 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2411 dev->stats.collisions += 2412 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2413 writel(0, gp->regs + MAC_ECOLL); 2414 writel(0, gp->regs + MAC_LCOLL); 2415 bail: 2416 return &dev->stats; 2417 } 2418 2419 static int gem_set_mac_address(struct net_device *dev, void *addr) 2420 { 2421 struct sockaddr *macaddr = (struct sockaddr *) addr; 2422 struct gem *gp = netdev_priv(dev); 2423 unsigned char *e = &dev->dev_addr[0]; 2424 2425 if (!is_valid_ether_addr(macaddr->sa_data)) 2426 return -EADDRNOTAVAIL; 2427 2428 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2429 2430 /* We'll just catch it later when the device is up'd or resumed */ 2431 if (!netif_running(dev) || !netif_device_present(dev)) 2432 return 0; 2433 2434 /* Better safe than sorry... */ 2435 if (WARN_ON(!gp->cell_enabled)) 2436 return 0; 2437 2438 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2439 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2440 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2441 2442 return 0; 2443 } 2444 2445 static void gem_set_multicast(struct net_device *dev) 2446 { 2447 struct gem *gp = netdev_priv(dev); 2448 u32 rxcfg, rxcfg_new; 2449 int limit = 10000; 2450 2451 if (!netif_running(dev) || !netif_device_present(dev)) 2452 return; 2453 2454 /* Better safe than sorry... */ 2455 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2456 return; 2457 2458 rxcfg = readl(gp->regs + MAC_RXCFG); 2459 rxcfg_new = gem_setup_multicast(gp); 2460 #ifdef STRIP_FCS 2461 rxcfg_new |= MAC_RXCFG_SFCS; 2462 #endif 2463 gp->mac_rx_cfg = rxcfg_new; 2464 2465 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2466 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2467 if (!limit--) 2468 break; 2469 udelay(10); 2470 } 2471 2472 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2473 rxcfg |= rxcfg_new; 2474 2475 writel(rxcfg, gp->regs + MAC_RXCFG); 2476 } 2477 2478 /* Jumbo-grams don't seem to work :-( */ 2479 #define GEM_MIN_MTU 68 2480 #if 1 2481 #define GEM_MAX_MTU 1500 2482 #else 2483 #define GEM_MAX_MTU 9000 2484 #endif 2485 2486 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2487 { 2488 struct gem *gp = netdev_priv(dev); 2489 2490 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) 2491 return -EINVAL; 2492 2493 dev->mtu = new_mtu; 2494 2495 /* We'll just catch it later when the device is up'd or resumed */ 2496 if (!netif_running(dev) || !netif_device_present(dev)) 2497 return 0; 2498 2499 /* Better safe than sorry... */ 2500 if (WARN_ON(!gp->cell_enabled)) 2501 return 0; 2502 2503 gem_netif_stop(gp); 2504 gem_reinit_chip(gp); 2505 if (gp->lstate == link_up) 2506 gem_set_link_modes(gp); 2507 gem_netif_start(gp); 2508 2509 return 0; 2510 } 2511 2512 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2513 { 2514 struct gem *gp = netdev_priv(dev); 2515 2516 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2517 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2518 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2519 } 2520 2521 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2522 { 2523 struct gem *gp = netdev_priv(dev); 2524 2525 if (gp->phy_type == phy_mii_mdio0 || 2526 gp->phy_type == phy_mii_mdio1) { 2527 if (gp->phy_mii.def) 2528 cmd->supported = gp->phy_mii.def->features; 2529 else 2530 cmd->supported = (SUPPORTED_10baseT_Half | 2531 SUPPORTED_10baseT_Full); 2532 2533 /* XXX hardcoded stuff for now */ 2534 cmd->port = PORT_MII; 2535 cmd->transceiver = XCVR_EXTERNAL; 2536 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2537 2538 /* Return current PHY settings */ 2539 cmd->autoneg = gp->want_autoneg; 2540 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); 2541 cmd->duplex = gp->phy_mii.duplex; 2542 cmd->advertising = gp->phy_mii.advertising; 2543 2544 /* If we started with a forced mode, we don't have a default 2545 * advertise set, we need to return something sensible so 2546 * userland can re-enable autoneg properly. 2547 */ 2548 if (cmd->advertising == 0) 2549 cmd->advertising = cmd->supported; 2550 } else { // XXX PCS ? 2551 cmd->supported = 2552 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2553 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2554 SUPPORTED_Autoneg); 2555 cmd->advertising = cmd->supported; 2556 ethtool_cmd_speed_set(cmd, 0); 2557 cmd->duplex = cmd->port = cmd->phy_address = 2558 cmd->transceiver = cmd->autoneg = 0; 2559 2560 /* serdes means usually a Fibre connector, with most fixed */ 2561 if (gp->phy_type == phy_serdes) { 2562 cmd->port = PORT_FIBRE; 2563 cmd->supported = (SUPPORTED_1000baseT_Half | 2564 SUPPORTED_1000baseT_Full | 2565 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2566 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2567 cmd->advertising = cmd->supported; 2568 cmd->transceiver = XCVR_INTERNAL; 2569 if (gp->lstate == link_up) 2570 ethtool_cmd_speed_set(cmd, SPEED_1000); 2571 cmd->duplex = DUPLEX_FULL; 2572 cmd->autoneg = 1; 2573 } 2574 } 2575 cmd->maxtxpkt = cmd->maxrxpkt = 0; 2576 2577 return 0; 2578 } 2579 2580 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2581 { 2582 struct gem *gp = netdev_priv(dev); 2583 u32 speed = ethtool_cmd_speed(cmd); 2584 2585 /* Verify the settings we care about. */ 2586 if (cmd->autoneg != AUTONEG_ENABLE && 2587 cmd->autoneg != AUTONEG_DISABLE) 2588 return -EINVAL; 2589 2590 if (cmd->autoneg == AUTONEG_ENABLE && 2591 cmd->advertising == 0) 2592 return -EINVAL; 2593 2594 if (cmd->autoneg == AUTONEG_DISABLE && 2595 ((speed != SPEED_1000 && 2596 speed != SPEED_100 && 2597 speed != SPEED_10) || 2598 (cmd->duplex != DUPLEX_HALF && 2599 cmd->duplex != DUPLEX_FULL))) 2600 return -EINVAL; 2601 2602 /* Apply settings and restart link process. */ 2603 if (netif_device_present(gp->dev)) { 2604 del_timer_sync(&gp->link_timer); 2605 gem_begin_auto_negotiation(gp, cmd); 2606 } 2607 2608 return 0; 2609 } 2610 2611 static int gem_nway_reset(struct net_device *dev) 2612 { 2613 struct gem *gp = netdev_priv(dev); 2614 2615 if (!gp->want_autoneg) 2616 return -EINVAL; 2617 2618 /* Restart link process */ 2619 if (netif_device_present(gp->dev)) { 2620 del_timer_sync(&gp->link_timer); 2621 gem_begin_auto_negotiation(gp, NULL); 2622 } 2623 2624 return 0; 2625 } 2626 2627 static u32 gem_get_msglevel(struct net_device *dev) 2628 { 2629 struct gem *gp = netdev_priv(dev); 2630 return gp->msg_enable; 2631 } 2632 2633 static void gem_set_msglevel(struct net_device *dev, u32 value) 2634 { 2635 struct gem *gp = netdev_priv(dev); 2636 gp->msg_enable = value; 2637 } 2638 2639 2640 /* Add more when I understand how to program the chip */ 2641 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2642 2643 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2644 2645 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2646 { 2647 struct gem *gp = netdev_priv(dev); 2648 2649 /* Add more when I understand how to program the chip */ 2650 if (gp->has_wol) { 2651 wol->supported = WOL_SUPPORTED_MASK; 2652 wol->wolopts = gp->wake_on_lan; 2653 } else { 2654 wol->supported = 0; 2655 wol->wolopts = 0; 2656 } 2657 } 2658 2659 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2660 { 2661 struct gem *gp = netdev_priv(dev); 2662 2663 if (!gp->has_wol) 2664 return -EOPNOTSUPP; 2665 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2666 return 0; 2667 } 2668 2669 static const struct ethtool_ops gem_ethtool_ops = { 2670 .get_drvinfo = gem_get_drvinfo, 2671 .get_link = ethtool_op_get_link, 2672 .get_settings = gem_get_settings, 2673 .set_settings = gem_set_settings, 2674 .nway_reset = gem_nway_reset, 2675 .get_msglevel = gem_get_msglevel, 2676 .set_msglevel = gem_set_msglevel, 2677 .get_wol = gem_get_wol, 2678 .set_wol = gem_set_wol, 2679 }; 2680 2681 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2682 { 2683 struct gem *gp = netdev_priv(dev); 2684 struct mii_ioctl_data *data = if_mii(ifr); 2685 int rc = -EOPNOTSUPP; 2686 2687 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2688 * netif_device_present() is true and holds rtnl_lock for us 2689 * so we have nothing to worry about 2690 */ 2691 2692 switch (cmd) { 2693 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2694 data->phy_id = gp->mii_phy_addr; 2695 /* Fallthrough... */ 2696 2697 case SIOCGMIIREG: /* Read MII PHY register. */ 2698 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2699 data->reg_num & 0x1f); 2700 rc = 0; 2701 break; 2702 2703 case SIOCSMIIREG: /* Write MII PHY register. */ 2704 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2705 data->val_in); 2706 rc = 0; 2707 break; 2708 } 2709 return rc; 2710 } 2711 2712 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2713 /* Fetch MAC address from vital product data of PCI ROM. */ 2714 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2715 { 2716 int this_offset; 2717 2718 for (this_offset = 0x20; this_offset < len; this_offset++) { 2719 void __iomem *p = rom_base + this_offset; 2720 int i; 2721 2722 if (readb(p + 0) != 0x90 || 2723 readb(p + 1) != 0x00 || 2724 readb(p + 2) != 0x09 || 2725 readb(p + 3) != 0x4e || 2726 readb(p + 4) != 0x41 || 2727 readb(p + 5) != 0x06) 2728 continue; 2729 2730 this_offset += 6; 2731 p += 6; 2732 2733 for (i = 0; i < 6; i++) 2734 dev_addr[i] = readb(p + i); 2735 return 1; 2736 } 2737 return 0; 2738 } 2739 2740 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2741 { 2742 size_t size; 2743 void __iomem *p = pci_map_rom(pdev, &size); 2744 2745 if (p) { 2746 int found; 2747 2748 found = readb(p) == 0x55 && 2749 readb(p + 1) == 0xaa && 2750 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2751 pci_unmap_rom(pdev, p); 2752 if (found) 2753 return; 2754 } 2755 2756 /* Sun MAC prefix then 3 random bytes. */ 2757 dev_addr[0] = 0x08; 2758 dev_addr[1] = 0x00; 2759 dev_addr[2] = 0x20; 2760 get_random_bytes(dev_addr + 3, 3); 2761 } 2762 #endif /* not Sparc and not PPC */ 2763 2764 static int gem_get_device_address(struct gem *gp) 2765 { 2766 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2767 struct net_device *dev = gp->dev; 2768 const unsigned char *addr; 2769 2770 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2771 if (addr == NULL) { 2772 #ifdef CONFIG_SPARC 2773 addr = idprom->id_ethaddr; 2774 #else 2775 printk("\n"); 2776 pr_err("%s: can't get mac-address\n", dev->name); 2777 return -1; 2778 #endif 2779 } 2780 memcpy(dev->dev_addr, addr, ETH_ALEN); 2781 #else 2782 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2783 #endif 2784 return 0; 2785 } 2786 2787 static void gem_remove_one(struct pci_dev *pdev) 2788 { 2789 struct net_device *dev = pci_get_drvdata(pdev); 2790 2791 if (dev) { 2792 struct gem *gp = netdev_priv(dev); 2793 2794 unregister_netdev(dev); 2795 2796 /* Ensure reset task is truly gone */ 2797 cancel_work_sync(&gp->reset_task); 2798 2799 /* Free resources */ 2800 pci_free_consistent(pdev, 2801 sizeof(struct gem_init_block), 2802 gp->init_block, 2803 gp->gblock_dvma); 2804 iounmap(gp->regs); 2805 pci_release_regions(pdev); 2806 free_netdev(dev); 2807 } 2808 } 2809 2810 static const struct net_device_ops gem_netdev_ops = { 2811 .ndo_open = gem_open, 2812 .ndo_stop = gem_close, 2813 .ndo_start_xmit = gem_start_xmit, 2814 .ndo_get_stats = gem_get_stats, 2815 .ndo_set_rx_mode = gem_set_multicast, 2816 .ndo_do_ioctl = gem_ioctl, 2817 .ndo_tx_timeout = gem_tx_timeout, 2818 .ndo_change_mtu = gem_change_mtu, 2819 .ndo_validate_addr = eth_validate_addr, 2820 .ndo_set_mac_address = gem_set_mac_address, 2821 #ifdef CONFIG_NET_POLL_CONTROLLER 2822 .ndo_poll_controller = gem_poll_controller, 2823 #endif 2824 }; 2825 2826 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2827 { 2828 unsigned long gemreg_base, gemreg_len; 2829 struct net_device *dev; 2830 struct gem *gp; 2831 int err, pci_using_dac; 2832 2833 printk_once(KERN_INFO "%s", version); 2834 2835 /* Apple gmac note: during probe, the chip is powered up by 2836 * the arch code to allow the code below to work (and to let 2837 * the chip be probed on the config space. It won't stay powered 2838 * up until the interface is brought up however, so we can't rely 2839 * on register configuration done at this point. 2840 */ 2841 err = pci_enable_device(pdev); 2842 if (err) { 2843 pr_err("Cannot enable MMIO operation, aborting\n"); 2844 return err; 2845 } 2846 pci_set_master(pdev); 2847 2848 /* Configure DMA attributes. */ 2849 2850 /* All of the GEM documentation states that 64-bit DMA addressing 2851 * is fully supported and should work just fine. However the 2852 * front end for RIO based GEMs is different and only supports 2853 * 32-bit addressing. 2854 * 2855 * For now we assume the various PPC GEMs are 32-bit only as well. 2856 */ 2857 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2858 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2859 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2860 pci_using_dac = 1; 2861 } else { 2862 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2863 if (err) { 2864 pr_err("No usable DMA configuration, aborting\n"); 2865 goto err_disable_device; 2866 } 2867 pci_using_dac = 0; 2868 } 2869 2870 gemreg_base = pci_resource_start(pdev, 0); 2871 gemreg_len = pci_resource_len(pdev, 0); 2872 2873 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2874 pr_err("Cannot find proper PCI device base address, aborting\n"); 2875 err = -ENODEV; 2876 goto err_disable_device; 2877 } 2878 2879 dev = alloc_etherdev(sizeof(*gp)); 2880 if (!dev) { 2881 err = -ENOMEM; 2882 goto err_disable_device; 2883 } 2884 SET_NETDEV_DEV(dev, &pdev->dev); 2885 2886 gp = netdev_priv(dev); 2887 2888 err = pci_request_regions(pdev, DRV_NAME); 2889 if (err) { 2890 pr_err("Cannot obtain PCI resources, aborting\n"); 2891 goto err_out_free_netdev; 2892 } 2893 2894 gp->pdev = pdev; 2895 gp->dev = dev; 2896 2897 gp->msg_enable = DEFAULT_MSG; 2898 2899 init_timer(&gp->link_timer); 2900 gp->link_timer.function = gem_link_timer; 2901 gp->link_timer.data = (unsigned long) gp; 2902 2903 INIT_WORK(&gp->reset_task, gem_reset_task); 2904 2905 gp->lstate = link_down; 2906 gp->timer_ticks = 0; 2907 netif_carrier_off(dev); 2908 2909 gp->regs = ioremap(gemreg_base, gemreg_len); 2910 if (!gp->regs) { 2911 pr_err("Cannot map device registers, aborting\n"); 2912 err = -EIO; 2913 goto err_out_free_res; 2914 } 2915 2916 /* On Apple, we want a reference to the Open Firmware device-tree 2917 * node. We use it for clock control. 2918 */ 2919 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2920 gp->of_node = pci_device_to_OF_node(pdev); 2921 #endif 2922 2923 /* Only Apple version supports WOL afaik */ 2924 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2925 gp->has_wol = 1; 2926 2927 /* Make sure cell is enabled */ 2928 gem_get_cell(gp); 2929 2930 /* Make sure everything is stopped and in init state */ 2931 gem_reset(gp); 2932 2933 /* Fill up the mii_phy structure (even if we won't use it) */ 2934 gp->phy_mii.dev = dev; 2935 gp->phy_mii.mdio_read = _sungem_phy_read; 2936 gp->phy_mii.mdio_write = _sungem_phy_write; 2937 #ifdef CONFIG_PPC_PMAC 2938 gp->phy_mii.platform_data = gp->of_node; 2939 #endif 2940 /* By default, we start with autoneg */ 2941 gp->want_autoneg = 1; 2942 2943 /* Check fifo sizes, PHY type, etc... */ 2944 if (gem_check_invariants(gp)) { 2945 err = -ENODEV; 2946 goto err_out_iounmap; 2947 } 2948 2949 /* It is guaranteed that the returned buffer will be at least 2950 * PAGE_SIZE aligned. 2951 */ 2952 gp->init_block = (struct gem_init_block *) 2953 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2954 &gp->gblock_dvma); 2955 if (!gp->init_block) { 2956 pr_err("Cannot allocate init block, aborting\n"); 2957 err = -ENOMEM; 2958 goto err_out_iounmap; 2959 } 2960 2961 err = gem_get_device_address(gp); 2962 if (err) 2963 goto err_out_free_consistent; 2964 2965 dev->netdev_ops = &gem_netdev_ops; 2966 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2967 dev->ethtool_ops = &gem_ethtool_ops; 2968 dev->watchdog_timeo = 5 * HZ; 2969 dev->dma = 0; 2970 2971 /* Set that now, in case PM kicks in now */ 2972 pci_set_drvdata(pdev, dev); 2973 2974 /* We can do scatter/gather and HW checksum */ 2975 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2976 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2977 if (pci_using_dac) 2978 dev->features |= NETIF_F_HIGHDMA; 2979 2980 /* Register with kernel */ 2981 if (register_netdev(dev)) { 2982 pr_err("Cannot register net device, aborting\n"); 2983 err = -ENOMEM; 2984 goto err_out_free_consistent; 2985 } 2986 2987 /* Undo the get_cell with appropriate locking (we could use 2988 * ndo_init/uninit but that would be even more clumsy imho) 2989 */ 2990 rtnl_lock(); 2991 gem_put_cell(gp); 2992 rtnl_unlock(); 2993 2994 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 2995 dev->dev_addr); 2996 return 0; 2997 2998 err_out_free_consistent: 2999 gem_remove_one(pdev); 3000 err_out_iounmap: 3001 gem_put_cell(gp); 3002 iounmap(gp->regs); 3003 3004 err_out_free_res: 3005 pci_release_regions(pdev); 3006 3007 err_out_free_netdev: 3008 free_netdev(dev); 3009 err_disable_device: 3010 pci_disable_device(pdev); 3011 return err; 3012 3013 } 3014 3015 3016 static struct pci_driver gem_driver = { 3017 .name = GEM_MODULE_NAME, 3018 .id_table = gem_pci_tbl, 3019 .probe = gem_init_one, 3020 .remove = gem_remove_one, 3021 #ifdef CONFIG_PM 3022 .suspend = gem_suspend, 3023 .resume = gem_resume, 3024 #endif /* CONFIG_PM */ 3025 }; 3026 3027 module_pci_driver(gem_driver); 3028