xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 19e2f6fe)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h>
48 #include <asm/irq.h>
49 
50 #ifdef CONFIG_SPARC
51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif
54 
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h>
57 #include <asm/prom.h>
58 #include <asm/machdep.h>
59 #include <asm/pmac_feature.h>
60 #endif
61 
62 #include <linux/sungem_phy.h>
63 #include "sungem.h"
64 
65 /* Stripping FCS is causing problems, disabled for now */
66 #undef STRIP_FCS
67 
68 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
69 			 NETIF_MSG_PROBE	| \
70 			 NETIF_MSG_LINK)
71 
72 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
73 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
74 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
75 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
76 
77 #define DRV_NAME	"sungem"
78 #define DRV_VERSION	"1.0"
79 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
80 
81 static char version[] __devinitdata =
82         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
83 
84 MODULE_AUTHOR(DRV_AUTHOR);
85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
86 MODULE_LICENSE("GPL");
87 
88 #define GEM_MODULE_NAME	"gem"
89 
90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
91 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
92 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
93 
94 	/* These models only differ from the original GEM in
95 	 * that their tx/rx fifos are of a different size and
96 	 * they only support 10/100 speeds. -DaveM
97 	 *
98 	 * Apple's GMAC does support gigabit on machines with
99 	 * the BCM54xx PHYs. -BenH
100 	 */
101 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
112 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
114 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 	{0, }
116 };
117 
118 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
119 
120 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
121 {
122 	u32 cmd;
123 	int limit = 10000;
124 
125 	cmd  = (1 << 30);
126 	cmd |= (2 << 28);
127 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
128 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
129 	cmd |= (MIF_FRAME_TAMSB);
130 	writel(cmd, gp->regs + MIF_FRAME);
131 
132 	while (--limit) {
133 		cmd = readl(gp->regs + MIF_FRAME);
134 		if (cmd & MIF_FRAME_TALSB)
135 			break;
136 
137 		udelay(10);
138 	}
139 
140 	if (!limit)
141 		cmd = 0xffff;
142 
143 	return cmd & MIF_FRAME_DATA;
144 }
145 
146 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
147 {
148 	struct gem *gp = netdev_priv(dev);
149 	return __phy_read(gp, mii_id, reg);
150 }
151 
152 static inline u16 phy_read(struct gem *gp, int reg)
153 {
154 	return __phy_read(gp, gp->mii_phy_addr, reg);
155 }
156 
157 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
158 {
159 	u32 cmd;
160 	int limit = 10000;
161 
162 	cmd  = (1 << 30);
163 	cmd |= (1 << 28);
164 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
165 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
166 	cmd |= (MIF_FRAME_TAMSB);
167 	cmd |= (val & MIF_FRAME_DATA);
168 	writel(cmd, gp->regs + MIF_FRAME);
169 
170 	while (limit--) {
171 		cmd = readl(gp->regs + MIF_FRAME);
172 		if (cmd & MIF_FRAME_TALSB)
173 			break;
174 
175 		udelay(10);
176 	}
177 }
178 
179 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
180 {
181 	struct gem *gp = netdev_priv(dev);
182 	__phy_write(gp, mii_id, reg, val & 0xffff);
183 }
184 
185 static inline void phy_write(struct gem *gp, int reg, u16 val)
186 {
187 	__phy_write(gp, gp->mii_phy_addr, reg, val);
188 }
189 
190 static inline void gem_enable_ints(struct gem *gp)
191 {
192 	/* Enable all interrupts but TXDONE */
193 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
194 }
195 
196 static inline void gem_disable_ints(struct gem *gp)
197 {
198 	/* Disable all interrupts, including TXDONE */
199 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
200 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
201 }
202 
203 static void gem_get_cell(struct gem *gp)
204 {
205 	BUG_ON(gp->cell_enabled < 0);
206 	gp->cell_enabled++;
207 #ifdef CONFIG_PPC_PMAC
208 	if (gp->cell_enabled == 1) {
209 		mb();
210 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
211 		udelay(10);
212 	}
213 #endif /* CONFIG_PPC_PMAC */
214 }
215 
216 /* Turn off the chip's clock */
217 static void gem_put_cell(struct gem *gp)
218 {
219 	BUG_ON(gp->cell_enabled <= 0);
220 	gp->cell_enabled--;
221 #ifdef CONFIG_PPC_PMAC
222 	if (gp->cell_enabled == 0) {
223 		mb();
224 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
225 		udelay(10);
226 	}
227 #endif /* CONFIG_PPC_PMAC */
228 }
229 
230 static inline void gem_netif_stop(struct gem *gp)
231 {
232 	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
233 	napi_disable(&gp->napi);
234 	netif_tx_disable(gp->dev);
235 }
236 
237 static inline void gem_netif_start(struct gem *gp)
238 {
239 	/* NOTE: unconditional netif_wake_queue is only
240 	 * appropriate so long as all callers are assured to
241 	 * have free tx slots.
242 	 */
243 	netif_wake_queue(gp->dev);
244 	napi_enable(&gp->napi);
245 }
246 
247 static void gem_schedule_reset(struct gem *gp)
248 {
249 	gp->reset_task_pending = 1;
250 	schedule_work(&gp->reset_task);
251 }
252 
253 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
254 {
255 	if (netif_msg_intr(gp))
256 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
257 }
258 
259 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
260 {
261 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
262 	u32 pcs_miistat;
263 
264 	if (netif_msg_intr(gp))
265 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
266 			gp->dev->name, pcs_istat);
267 
268 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
269 		netdev_err(dev, "PCS irq but no link status change???\n");
270 		return 0;
271 	}
272 
273 	/* The link status bit latches on zero, so you must
274 	 * read it twice in such a case to see a transition
275 	 * to the link being up.
276 	 */
277 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
278 	if (!(pcs_miistat & PCS_MIISTAT_LS))
279 		pcs_miistat |=
280 			(readl(gp->regs + PCS_MIISTAT) &
281 			 PCS_MIISTAT_LS);
282 
283 	if (pcs_miistat & PCS_MIISTAT_ANC) {
284 		/* The remote-fault indication is only valid
285 		 * when autoneg has completed.
286 		 */
287 		if (pcs_miistat & PCS_MIISTAT_RF)
288 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
289 		else
290 			netdev_info(dev, "PCS AutoNEG complete\n");
291 	}
292 
293 	if (pcs_miistat & PCS_MIISTAT_LS) {
294 		netdev_info(dev, "PCS link is now up\n");
295 		netif_carrier_on(gp->dev);
296 	} else {
297 		netdev_info(dev, "PCS link is now down\n");
298 		netif_carrier_off(gp->dev);
299 		/* If this happens and the link timer is not running,
300 		 * reset so we re-negotiate.
301 		 */
302 		if (!timer_pending(&gp->link_timer))
303 			return 1;
304 	}
305 
306 	return 0;
307 }
308 
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
310 {
311 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
312 
313 	if (netif_msg_intr(gp))
314 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 			gp->dev->name, txmac_stat);
316 
317 	/* Defer timer expiration is quite normal,
318 	 * don't even log the event.
319 	 */
320 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
322 		return 0;
323 
324 	if (txmac_stat & MAC_TXSTAT_URUN) {
325 		netdev_err(dev, "TX MAC xmit underrun\n");
326 		dev->stats.tx_fifo_errors++;
327 	}
328 
329 	if (txmac_stat & MAC_TXSTAT_MPE) {
330 		netdev_err(dev, "TX MAC max packet size error\n");
331 		dev->stats.tx_errors++;
332 	}
333 
334 	/* The rest are all cases of one of the 16-bit TX
335 	 * counters expiring.
336 	 */
337 	if (txmac_stat & MAC_TXSTAT_NCE)
338 		dev->stats.collisions += 0x10000;
339 
340 	if (txmac_stat & MAC_TXSTAT_ECE) {
341 		dev->stats.tx_aborted_errors += 0x10000;
342 		dev->stats.collisions += 0x10000;
343 	}
344 
345 	if (txmac_stat & MAC_TXSTAT_LCE) {
346 		dev->stats.tx_aborted_errors += 0x10000;
347 		dev->stats.collisions += 0x10000;
348 	}
349 
350 	/* We do not keep track of MAC_TXSTAT_FCE and
351 	 * MAC_TXSTAT_PCE events.
352 	 */
353 	return 0;
354 }
355 
356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
357  * so we do the following.
358  *
359  * If any part of the reset goes wrong, we return 1 and that causes the
360  * whole chip to be reset.
361  */
362 static int gem_rxmac_reset(struct gem *gp)
363 {
364 	struct net_device *dev = gp->dev;
365 	int limit, i;
366 	u64 desc_dma;
367 	u32 val;
368 
369 	/* First, reset & disable MAC RX. */
370 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
371 	for (limit = 0; limit < 5000; limit++) {
372 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
373 			break;
374 		udelay(10);
375 	}
376 	if (limit == 5000) {
377 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
378 		return 1;
379 	}
380 
381 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
382 	       gp->regs + MAC_RXCFG);
383 	for (limit = 0; limit < 5000; limit++) {
384 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
385 			break;
386 		udelay(10);
387 	}
388 	if (limit == 5000) {
389 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
390 		return 1;
391 	}
392 
393 	/* Second, disable RX DMA. */
394 	writel(0, gp->regs + RXDMA_CFG);
395 	for (limit = 0; limit < 5000; limit++) {
396 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
397 			break;
398 		udelay(10);
399 	}
400 	if (limit == 5000) {
401 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
402 		return 1;
403 	}
404 
405 	udelay(5000);
406 
407 	/* Execute RX reset command. */
408 	writel(gp->swrst_base | GREG_SWRST_RXRST,
409 	       gp->regs + GREG_SWRST);
410 	for (limit = 0; limit < 5000; limit++) {
411 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
412 			break;
413 		udelay(10);
414 	}
415 	if (limit == 5000) {
416 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
417 		return 1;
418 	}
419 
420 	/* Refresh the RX ring. */
421 	for (i = 0; i < RX_RING_SIZE; i++) {
422 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
423 
424 		if (gp->rx_skbs[i] == NULL) {
425 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
426 			return 1;
427 		}
428 
429 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
430 	}
431 	gp->rx_new = gp->rx_old = 0;
432 
433 	/* Now we must reprogram the rest of RX unit. */
434 	desc_dma = (u64) gp->gblock_dvma;
435 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
436 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
437 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
438 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
439 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
440 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
441 	writel(val, gp->regs + RXDMA_CFG);
442 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
443 		writel(((5 & RXDMA_BLANK_IPKTS) |
444 			((8 << 12) & RXDMA_BLANK_ITIME)),
445 		       gp->regs + RXDMA_BLANK);
446 	else
447 		writel(((5 & RXDMA_BLANK_IPKTS) |
448 			((4 << 12) & RXDMA_BLANK_ITIME)),
449 		       gp->regs + RXDMA_BLANK);
450 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
451 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
452 	writel(val, gp->regs + RXDMA_PTHRESH);
453 	val = readl(gp->regs + RXDMA_CFG);
454 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
455 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
456 	val = readl(gp->regs + MAC_RXCFG);
457 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
458 
459 	return 0;
460 }
461 
462 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
463 {
464 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
465 	int ret = 0;
466 
467 	if (netif_msg_intr(gp))
468 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
469 			gp->dev->name, rxmac_stat);
470 
471 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
472 		u32 smac = readl(gp->regs + MAC_SMACHINE);
473 
474 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
475 		dev->stats.rx_over_errors++;
476 		dev->stats.rx_fifo_errors++;
477 
478 		ret = gem_rxmac_reset(gp);
479 	}
480 
481 	if (rxmac_stat & MAC_RXSTAT_ACE)
482 		dev->stats.rx_frame_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_CCE)
485 		dev->stats.rx_crc_errors += 0x10000;
486 
487 	if (rxmac_stat & MAC_RXSTAT_LCE)
488 		dev->stats.rx_length_errors += 0x10000;
489 
490 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
491 	 * events.
492 	 */
493 	return ret;
494 }
495 
496 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
497 {
498 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
499 
500 	if (netif_msg_intr(gp))
501 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
502 			gp->dev->name, mac_cstat);
503 
504 	/* This interrupt is just for pause frame and pause
505 	 * tracking.  It is useful for diagnostics and debug
506 	 * but probably by default we will mask these events.
507 	 */
508 	if (mac_cstat & MAC_CSTAT_PS)
509 		gp->pause_entered++;
510 
511 	if (mac_cstat & MAC_CSTAT_PRCV)
512 		gp->pause_last_time_recvd = (mac_cstat >> 16);
513 
514 	return 0;
515 }
516 
517 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
518 {
519 	u32 mif_status = readl(gp->regs + MIF_STATUS);
520 	u32 reg_val, changed_bits;
521 
522 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
523 	changed_bits = (mif_status & MIF_STATUS_STAT);
524 
525 	gem_handle_mif_event(gp, reg_val, changed_bits);
526 
527 	return 0;
528 }
529 
530 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
531 {
532 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
533 
534 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
535 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
536 		netdev_err(dev, "PCI error [%04x]", pci_estat);
537 
538 		if (pci_estat & GREG_PCIESTAT_BADACK)
539 			pr_cont(" <No ACK64# during ABS64 cycle>");
540 		if (pci_estat & GREG_PCIESTAT_DTRTO)
541 			pr_cont(" <Delayed transaction timeout>");
542 		if (pci_estat & GREG_PCIESTAT_OTHER)
543 			pr_cont(" <other>");
544 		pr_cont("\n");
545 	} else {
546 		pci_estat |= GREG_PCIESTAT_OTHER;
547 		netdev_err(dev, "PCI error\n");
548 	}
549 
550 	if (pci_estat & GREG_PCIESTAT_OTHER) {
551 		u16 pci_cfg_stat;
552 
553 		/* Interrogate PCI config space for the
554 		 * true cause.
555 		 */
556 		pci_read_config_word(gp->pdev, PCI_STATUS,
557 				     &pci_cfg_stat);
558 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
559 			   pci_cfg_stat);
560 		if (pci_cfg_stat & PCI_STATUS_PARITY)
561 			netdev_err(dev, "PCI parity error detected\n");
562 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
563 			netdev_err(dev, "PCI target abort\n");
564 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
565 			netdev_err(dev, "PCI master acks target abort\n");
566 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
567 			netdev_err(dev, "PCI master abort\n");
568 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
569 			netdev_err(dev, "PCI system error SERR#\n");
570 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
571 			netdev_err(dev, "PCI parity error\n");
572 
573 		/* Write the error bits back to clear them. */
574 		pci_cfg_stat &= (PCI_STATUS_PARITY |
575 				 PCI_STATUS_SIG_TARGET_ABORT |
576 				 PCI_STATUS_REC_TARGET_ABORT |
577 				 PCI_STATUS_REC_MASTER_ABORT |
578 				 PCI_STATUS_SIG_SYSTEM_ERROR |
579 				 PCI_STATUS_DETECTED_PARITY);
580 		pci_write_config_word(gp->pdev,
581 				      PCI_STATUS, pci_cfg_stat);
582 	}
583 
584 	/* For all PCI errors, we should reset the chip. */
585 	return 1;
586 }
587 
588 /* All non-normal interrupt conditions get serviced here.
589  * Returns non-zero if we should just exit the interrupt
590  * handler right now (ie. if we reset the card which invalidates
591  * all of the other original irq status bits).
592  */
593 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
594 {
595 	if (gem_status & GREG_STAT_RXNOBUF) {
596 		/* Frame arrived, no free RX buffers available. */
597 		if (netif_msg_rx_err(gp))
598 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
599 				gp->dev->name);
600 		dev->stats.rx_dropped++;
601 	}
602 
603 	if (gem_status & GREG_STAT_RXTAGERR) {
604 		/* corrupt RX tag framing */
605 		if (netif_msg_rx_err(gp))
606 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
607 				gp->dev->name);
608 		dev->stats.rx_errors++;
609 
610 		return 1;
611 	}
612 
613 	if (gem_status & GREG_STAT_PCS) {
614 		if (gem_pcs_interrupt(dev, gp, gem_status))
615 			return 1;
616 	}
617 
618 	if (gem_status & GREG_STAT_TXMAC) {
619 		if (gem_txmac_interrupt(dev, gp, gem_status))
620 			return 1;
621 	}
622 
623 	if (gem_status & GREG_STAT_RXMAC) {
624 		if (gem_rxmac_interrupt(dev, gp, gem_status))
625 			return 1;
626 	}
627 
628 	if (gem_status & GREG_STAT_MAC) {
629 		if (gem_mac_interrupt(dev, gp, gem_status))
630 			return 1;
631 	}
632 
633 	if (gem_status & GREG_STAT_MIF) {
634 		if (gem_mif_interrupt(dev, gp, gem_status))
635 			return 1;
636 	}
637 
638 	if (gem_status & GREG_STAT_PCIERR) {
639 		if (gem_pci_interrupt(dev, gp, gem_status))
640 			return 1;
641 	}
642 
643 	return 0;
644 }
645 
646 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
647 {
648 	int entry, limit;
649 
650 	entry = gp->tx_old;
651 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
652 	while (entry != limit) {
653 		struct sk_buff *skb;
654 		struct gem_txd *txd;
655 		dma_addr_t dma_addr;
656 		u32 dma_len;
657 		int frag;
658 
659 		if (netif_msg_tx_done(gp))
660 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
661 				gp->dev->name, entry);
662 		skb = gp->tx_skbs[entry];
663 		if (skb_shinfo(skb)->nr_frags) {
664 			int last = entry + skb_shinfo(skb)->nr_frags;
665 			int walk = entry;
666 			int incomplete = 0;
667 
668 			last &= (TX_RING_SIZE - 1);
669 			for (;;) {
670 				walk = NEXT_TX(walk);
671 				if (walk == limit)
672 					incomplete = 1;
673 				if (walk == last)
674 					break;
675 			}
676 			if (incomplete)
677 				break;
678 		}
679 		gp->tx_skbs[entry] = NULL;
680 		dev->stats.tx_bytes += skb->len;
681 
682 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
683 			txd = &gp->init_block->txd[entry];
684 
685 			dma_addr = le64_to_cpu(txd->buffer);
686 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
687 
688 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
689 			entry = NEXT_TX(entry);
690 		}
691 
692 		dev->stats.tx_packets++;
693 		dev_kfree_skb(skb);
694 	}
695 	gp->tx_old = entry;
696 
697 	/* Need to make the tx_old update visible to gem_start_xmit()
698 	 * before checking for netif_queue_stopped().  Without the
699 	 * memory barrier, there is a small possibility that gem_start_xmit()
700 	 * will miss it and cause the queue to be stopped forever.
701 	 */
702 	smp_mb();
703 
704 	if (unlikely(netif_queue_stopped(dev) &&
705 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
706 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
707 
708 		__netif_tx_lock(txq, smp_processor_id());
709 		if (netif_queue_stopped(dev) &&
710 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
711 			netif_wake_queue(dev);
712 		__netif_tx_unlock(txq);
713 	}
714 }
715 
716 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
717 {
718 	int cluster_start, curr, count, kick;
719 
720 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
721 	count = 0;
722 	kick = -1;
723 	wmb();
724 	while (curr != limit) {
725 		curr = NEXT_RX(curr);
726 		if (++count == 4) {
727 			struct gem_rxd *rxd =
728 				&gp->init_block->rxd[cluster_start];
729 			for (;;) {
730 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
731 				rxd++;
732 				cluster_start = NEXT_RX(cluster_start);
733 				if (cluster_start == curr)
734 					break;
735 			}
736 			kick = curr;
737 			count = 0;
738 		}
739 	}
740 	if (kick >= 0) {
741 		mb();
742 		writel(kick, gp->regs + RXDMA_KICK);
743 	}
744 }
745 
746 #define ALIGNED_RX_SKB_ADDR(addr) \
747         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
748 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
749 						gfp_t gfp_flags)
750 {
751 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
752 
753 	if (likely(skb)) {
754 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
755 		skb_reserve(skb, offset);
756 		skb->dev = dev;
757 	}
758 	return skb;
759 }
760 
761 static int gem_rx(struct gem *gp, int work_to_do)
762 {
763 	struct net_device *dev = gp->dev;
764 	int entry, drops, work_done = 0;
765 	u32 done;
766 	__sum16 csum;
767 
768 	if (netif_msg_rx_status(gp))
769 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
770 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
771 
772 	entry = gp->rx_new;
773 	drops = 0;
774 	done = readl(gp->regs + RXDMA_DONE);
775 	for (;;) {
776 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
777 		struct sk_buff *skb;
778 		u64 status = le64_to_cpu(rxd->status_word);
779 		dma_addr_t dma_addr;
780 		int len;
781 
782 		if ((status & RXDCTRL_OWN) != 0)
783 			break;
784 
785 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
786 			break;
787 
788 		/* When writing back RX descriptor, GEM writes status
789 		 * then buffer address, possibly in separate transactions.
790 		 * If we don't wait for the chip to write both, we could
791 		 * post a new buffer to this descriptor then have GEM spam
792 		 * on the buffer address.  We sync on the RX completion
793 		 * register to prevent this from happening.
794 		 */
795 		if (entry == done) {
796 			done = readl(gp->regs + RXDMA_DONE);
797 			if (entry == done)
798 				break;
799 		}
800 
801 		/* We can now account for the work we're about to do */
802 		work_done++;
803 
804 		skb = gp->rx_skbs[entry];
805 
806 		len = (status & RXDCTRL_BUFSZ) >> 16;
807 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
808 			dev->stats.rx_errors++;
809 			if (len < ETH_ZLEN)
810 				dev->stats.rx_length_errors++;
811 			if (len & RXDCTRL_BAD)
812 				dev->stats.rx_crc_errors++;
813 
814 			/* We'll just return it to GEM. */
815 		drop_it:
816 			dev->stats.rx_dropped++;
817 			goto next;
818 		}
819 
820 		dma_addr = le64_to_cpu(rxd->buffer);
821 		if (len > RX_COPY_THRESHOLD) {
822 			struct sk_buff *new_skb;
823 
824 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
825 			if (new_skb == NULL) {
826 				drops++;
827 				goto drop_it;
828 			}
829 			pci_unmap_page(gp->pdev, dma_addr,
830 				       RX_BUF_ALLOC_SIZE(gp),
831 				       PCI_DMA_FROMDEVICE);
832 			gp->rx_skbs[entry] = new_skb;
833 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
834 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
835 							       virt_to_page(new_skb->data),
836 							       offset_in_page(new_skb->data),
837 							       RX_BUF_ALLOC_SIZE(gp),
838 							       PCI_DMA_FROMDEVICE));
839 			skb_reserve(new_skb, RX_OFFSET);
840 
841 			/* Trim the original skb for the netif. */
842 			skb_trim(skb, len);
843 		} else {
844 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
845 
846 			if (copy_skb == NULL) {
847 				drops++;
848 				goto drop_it;
849 			}
850 
851 			skb_reserve(copy_skb, 2);
852 			skb_put(copy_skb, len);
853 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
854 			skb_copy_from_linear_data(skb, copy_skb->data, len);
855 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
856 
857 			/* We'll reuse the original ring buffer. */
858 			skb = copy_skb;
859 		}
860 
861 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
862 		skb->csum = csum_unfold(csum);
863 		skb->ip_summed = CHECKSUM_COMPLETE;
864 		skb->protocol = eth_type_trans(skb, gp->dev);
865 
866 		napi_gro_receive(&gp->napi, skb);
867 
868 		dev->stats.rx_packets++;
869 		dev->stats.rx_bytes += len;
870 
871 	next:
872 		entry = NEXT_RX(entry);
873 	}
874 
875 	gem_post_rxds(gp, entry);
876 
877 	gp->rx_new = entry;
878 
879 	if (drops)
880 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
881 
882 	return work_done;
883 }
884 
885 static int gem_poll(struct napi_struct *napi, int budget)
886 {
887 	struct gem *gp = container_of(napi, struct gem, napi);
888 	struct net_device *dev = gp->dev;
889 	int work_done;
890 
891 	work_done = 0;
892 	do {
893 		/* Handle anomalies */
894 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
895 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
896 			int reset;
897 
898 			/* We run the abnormal interrupt handling code with
899 			 * the Tx lock. It only resets the Rx portion of the
900 			 * chip, but we need to guard it against DMA being
901 			 * restarted by the link poll timer
902 			 */
903 			__netif_tx_lock(txq, smp_processor_id());
904 			reset = gem_abnormal_irq(dev, gp, gp->status);
905 			__netif_tx_unlock(txq);
906 			if (reset) {
907 				gem_schedule_reset(gp);
908 				napi_complete(napi);
909 				return work_done;
910 			}
911 		}
912 
913 		/* Run TX completion thread */
914 		gem_tx(dev, gp, gp->status);
915 
916 		/* Run RX thread. We don't use any locking here,
917 		 * code willing to do bad things - like cleaning the
918 		 * rx ring - must call napi_disable(), which
919 		 * schedule_timeout()'s if polling is already disabled.
920 		 */
921 		work_done += gem_rx(gp, budget - work_done);
922 
923 		if (work_done >= budget)
924 			return work_done;
925 
926 		gp->status = readl(gp->regs + GREG_STAT);
927 	} while (gp->status & GREG_STAT_NAPI);
928 
929 	napi_complete(napi);
930 	gem_enable_ints(gp);
931 
932 	return work_done;
933 }
934 
935 static irqreturn_t gem_interrupt(int irq, void *dev_id)
936 {
937 	struct net_device *dev = dev_id;
938 	struct gem *gp = netdev_priv(dev);
939 
940 	if (napi_schedule_prep(&gp->napi)) {
941 		u32 gem_status = readl(gp->regs + GREG_STAT);
942 
943 		if (unlikely(gem_status == 0)) {
944 			napi_enable(&gp->napi);
945 			return IRQ_NONE;
946 		}
947 		if (netif_msg_intr(gp))
948 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
949 			       gp->dev->name, gem_status);
950 
951 		gp->status = gem_status;
952 		gem_disable_ints(gp);
953 		__napi_schedule(&gp->napi);
954 	}
955 
956 	/* If polling was disabled at the time we received that
957 	 * interrupt, we may return IRQ_HANDLED here while we
958 	 * should return IRQ_NONE. No big deal...
959 	 */
960 	return IRQ_HANDLED;
961 }
962 
963 #ifdef CONFIG_NET_POLL_CONTROLLER
964 static void gem_poll_controller(struct net_device *dev)
965 {
966 	struct gem *gp = netdev_priv(dev);
967 
968 	disable_irq(gp->pdev->irq);
969 	gem_interrupt(gp->pdev->irq, dev);
970 	enable_irq(gp->pdev->irq);
971 }
972 #endif
973 
974 static void gem_tx_timeout(struct net_device *dev)
975 {
976 	struct gem *gp = netdev_priv(dev);
977 
978 	netdev_err(dev, "transmit timed out, resetting\n");
979 
980 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
981 		   readl(gp->regs + TXDMA_CFG),
982 		   readl(gp->regs + MAC_TXSTAT),
983 		   readl(gp->regs + MAC_TXCFG));
984 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
985 		   readl(gp->regs + RXDMA_CFG),
986 		   readl(gp->regs + MAC_RXSTAT),
987 		   readl(gp->regs + MAC_RXCFG));
988 
989 	gem_schedule_reset(gp);
990 }
991 
992 static __inline__ int gem_intme(int entry)
993 {
994 	/* Algorithm: IRQ every 1/2 of descriptors. */
995 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
996 		return 1;
997 
998 	return 0;
999 }
1000 
1001 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1002 				  struct net_device *dev)
1003 {
1004 	struct gem *gp = netdev_priv(dev);
1005 	int entry;
1006 	u64 ctrl;
1007 
1008 	ctrl = 0;
1009 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1010 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1011 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1012 
1013 		ctrl = (TXDCTRL_CENAB |
1014 			(csum_start_off << 15) |
1015 			(csum_stuff_off << 21));
1016 	}
1017 
1018 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1019 		/* This is a hard error, log it. */
1020 		if (!netif_queue_stopped(dev)) {
1021 			netif_stop_queue(dev);
1022 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1023 		}
1024 		return NETDEV_TX_BUSY;
1025 	}
1026 
1027 	entry = gp->tx_new;
1028 	gp->tx_skbs[entry] = skb;
1029 
1030 	if (skb_shinfo(skb)->nr_frags == 0) {
1031 		struct gem_txd *txd = &gp->init_block->txd[entry];
1032 		dma_addr_t mapping;
1033 		u32 len;
1034 
1035 		len = skb->len;
1036 		mapping = pci_map_page(gp->pdev,
1037 				       virt_to_page(skb->data),
1038 				       offset_in_page(skb->data),
1039 				       len, PCI_DMA_TODEVICE);
1040 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1041 		if (gem_intme(entry))
1042 			ctrl |= TXDCTRL_INTME;
1043 		txd->buffer = cpu_to_le64(mapping);
1044 		wmb();
1045 		txd->control_word = cpu_to_le64(ctrl);
1046 		entry = NEXT_TX(entry);
1047 	} else {
1048 		struct gem_txd *txd;
1049 		u32 first_len;
1050 		u64 intme;
1051 		dma_addr_t first_mapping;
1052 		int frag, first_entry = entry;
1053 
1054 		intme = 0;
1055 		if (gem_intme(entry))
1056 			intme |= TXDCTRL_INTME;
1057 
1058 		/* We must give this initial chunk to the device last.
1059 		 * Otherwise we could race with the device.
1060 		 */
1061 		first_len = skb_headlen(skb);
1062 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1063 					     offset_in_page(skb->data),
1064 					     first_len, PCI_DMA_TODEVICE);
1065 		entry = NEXT_TX(entry);
1066 
1067 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1068 			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1069 			u32 len;
1070 			dma_addr_t mapping;
1071 			u64 this_ctrl;
1072 
1073 			len = this_frag->size;
1074 			mapping = pci_map_page(gp->pdev,
1075 					       this_frag->page,
1076 					       this_frag->page_offset,
1077 					       len, PCI_DMA_TODEVICE);
1078 			this_ctrl = ctrl;
1079 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1080 				this_ctrl |= TXDCTRL_EOF;
1081 
1082 			txd = &gp->init_block->txd[entry];
1083 			txd->buffer = cpu_to_le64(mapping);
1084 			wmb();
1085 			txd->control_word = cpu_to_le64(this_ctrl | len);
1086 
1087 			if (gem_intme(entry))
1088 				intme |= TXDCTRL_INTME;
1089 
1090 			entry = NEXT_TX(entry);
1091 		}
1092 		txd = &gp->init_block->txd[first_entry];
1093 		txd->buffer = cpu_to_le64(first_mapping);
1094 		wmb();
1095 		txd->control_word =
1096 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1097 	}
1098 
1099 	gp->tx_new = entry;
1100 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1101 		netif_stop_queue(dev);
1102 
1103 		/* netif_stop_queue() must be done before checking
1104 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1105 		 * in gem_tx(), we update tx_old before checking for
1106 		 * netif_queue_stopped().
1107 		 */
1108 		smp_mb();
1109 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1110 			netif_wake_queue(dev);
1111 	}
1112 	if (netif_msg_tx_queued(gp))
1113 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1114 		       dev->name, entry, skb->len);
1115 	mb();
1116 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1117 
1118 	return NETDEV_TX_OK;
1119 }
1120 
1121 static void gem_pcs_reset(struct gem *gp)
1122 {
1123 	int limit;
1124 	u32 val;
1125 
1126 	/* Reset PCS unit. */
1127 	val = readl(gp->regs + PCS_MIICTRL);
1128 	val |= PCS_MIICTRL_RST;
1129 	writel(val, gp->regs + PCS_MIICTRL);
1130 
1131 	limit = 32;
1132 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1133 		udelay(100);
1134 		if (limit-- <= 0)
1135 			break;
1136 	}
1137 	if (limit < 0)
1138 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1139 }
1140 
1141 static void gem_pcs_reinit_adv(struct gem *gp)
1142 {
1143 	u32 val;
1144 
1145 	/* Make sure PCS is disabled while changing advertisement
1146 	 * configuration.
1147 	 */
1148 	val = readl(gp->regs + PCS_CFG);
1149 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1150 	writel(val, gp->regs + PCS_CFG);
1151 
1152 	/* Advertise all capabilities except asymmetric
1153 	 * pause.
1154 	 */
1155 	val = readl(gp->regs + PCS_MIIADV);
1156 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1157 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1158 	writel(val, gp->regs + PCS_MIIADV);
1159 
1160 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1161 	 * and re-enable PCS.
1162 	 */
1163 	val = readl(gp->regs + PCS_MIICTRL);
1164 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1165 	val &= ~PCS_MIICTRL_WB;
1166 	writel(val, gp->regs + PCS_MIICTRL);
1167 
1168 	val = readl(gp->regs + PCS_CFG);
1169 	val |= PCS_CFG_ENABLE;
1170 	writel(val, gp->regs + PCS_CFG);
1171 
1172 	/* Make sure serialink loopback is off.  The meaning
1173 	 * of this bit is logically inverted based upon whether
1174 	 * you are in Serialink or SERDES mode.
1175 	 */
1176 	val = readl(gp->regs + PCS_SCTRL);
1177 	if (gp->phy_type == phy_serialink)
1178 		val &= ~PCS_SCTRL_LOOP;
1179 	else
1180 		val |= PCS_SCTRL_LOOP;
1181 	writel(val, gp->regs + PCS_SCTRL);
1182 }
1183 
1184 #define STOP_TRIES 32
1185 
1186 static void gem_reset(struct gem *gp)
1187 {
1188 	int limit;
1189 	u32 val;
1190 
1191 	/* Make sure we won't get any more interrupts */
1192 	writel(0xffffffff, gp->regs + GREG_IMASK);
1193 
1194 	/* Reset the chip */
1195 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1196 	       gp->regs + GREG_SWRST);
1197 
1198 	limit = STOP_TRIES;
1199 
1200 	do {
1201 		udelay(20);
1202 		val = readl(gp->regs + GREG_SWRST);
1203 		if (limit-- <= 0)
1204 			break;
1205 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1206 
1207 	if (limit < 0)
1208 		netdev_err(gp->dev, "SW reset is ghetto\n");
1209 
1210 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1211 		gem_pcs_reinit_adv(gp);
1212 }
1213 
1214 static void gem_start_dma(struct gem *gp)
1215 {
1216 	u32 val;
1217 
1218 	/* We are ready to rock, turn everything on. */
1219 	val = readl(gp->regs + TXDMA_CFG);
1220 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1221 	val = readl(gp->regs + RXDMA_CFG);
1222 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1223 	val = readl(gp->regs + MAC_TXCFG);
1224 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1225 	val = readl(gp->regs + MAC_RXCFG);
1226 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1227 
1228 	(void) readl(gp->regs + MAC_RXCFG);
1229 	udelay(100);
1230 
1231 	gem_enable_ints(gp);
1232 
1233 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1234 }
1235 
1236 /* DMA won't be actually stopped before about 4ms tho ...
1237  */
1238 static void gem_stop_dma(struct gem *gp)
1239 {
1240 	u32 val;
1241 
1242 	/* We are done rocking, turn everything off. */
1243 	val = readl(gp->regs + TXDMA_CFG);
1244 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1245 	val = readl(gp->regs + RXDMA_CFG);
1246 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1247 	val = readl(gp->regs + MAC_TXCFG);
1248 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1249 	val = readl(gp->regs + MAC_RXCFG);
1250 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1251 
1252 	(void) readl(gp->regs + MAC_RXCFG);
1253 
1254 	/* Need to wait a bit ... done by the caller */
1255 }
1256 
1257 
1258 // XXX dbl check what that function should do when called on PCS PHY
1259 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1260 {
1261 	u32 advertise, features;
1262 	int autoneg;
1263 	int speed;
1264 	int duplex;
1265 
1266 	if (gp->phy_type != phy_mii_mdio0 &&
1267      	    gp->phy_type != phy_mii_mdio1)
1268      	    	goto non_mii;
1269 
1270 	/* Setup advertise */
1271 	if (found_mii_phy(gp))
1272 		features = gp->phy_mii.def->features;
1273 	else
1274 		features = 0;
1275 
1276 	advertise = features & ADVERTISE_MASK;
1277 	if (gp->phy_mii.advertising != 0)
1278 		advertise &= gp->phy_mii.advertising;
1279 
1280 	autoneg = gp->want_autoneg;
1281 	speed = gp->phy_mii.speed;
1282 	duplex = gp->phy_mii.duplex;
1283 
1284 	/* Setup link parameters */
1285 	if (!ep)
1286 		goto start_aneg;
1287 	if (ep->autoneg == AUTONEG_ENABLE) {
1288 		advertise = ep->advertising;
1289 		autoneg = 1;
1290 	} else {
1291 		autoneg = 0;
1292 		speed = ethtool_cmd_speed(ep);
1293 		duplex = ep->duplex;
1294 	}
1295 
1296 start_aneg:
1297 	/* Sanitize settings based on PHY capabilities */
1298 	if ((features & SUPPORTED_Autoneg) == 0)
1299 		autoneg = 0;
1300 	if (speed == SPEED_1000 &&
1301 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1302 		speed = SPEED_100;
1303 	if (speed == SPEED_100 &&
1304 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1305 		speed = SPEED_10;
1306 	if (duplex == DUPLEX_FULL &&
1307 	    !(features & (SUPPORTED_1000baseT_Full |
1308 	    		  SUPPORTED_100baseT_Full |
1309 	    		  SUPPORTED_10baseT_Full)))
1310 	    	duplex = DUPLEX_HALF;
1311 	if (speed == 0)
1312 		speed = SPEED_10;
1313 
1314 	/* If we are asleep, we don't try to actually setup the PHY, we
1315 	 * just store the settings
1316 	 */
1317 	if (!netif_device_present(gp->dev)) {
1318 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1319 		gp->phy_mii.speed = speed;
1320 		gp->phy_mii.duplex = duplex;
1321 		return;
1322 	}
1323 
1324 	/* Configure PHY & start aneg */
1325 	gp->want_autoneg = autoneg;
1326 	if (autoneg) {
1327 		if (found_mii_phy(gp))
1328 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1329 		gp->lstate = link_aneg;
1330 	} else {
1331 		if (found_mii_phy(gp))
1332 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1333 		gp->lstate = link_force_ok;
1334 	}
1335 
1336 non_mii:
1337 	gp->timer_ticks = 0;
1338 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1339 }
1340 
1341 /* A link-up condition has occurred, initialize and enable the
1342  * rest of the chip.
1343  */
1344 static int gem_set_link_modes(struct gem *gp)
1345 {
1346 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1347 	int full_duplex, speed, pause;
1348 	u32 val;
1349 
1350 	full_duplex = 0;
1351 	speed = SPEED_10;
1352 	pause = 0;
1353 
1354 	if (found_mii_phy(gp)) {
1355 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1356 	    		return 1;
1357 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1358 		speed = gp->phy_mii.speed;
1359 		pause = gp->phy_mii.pause;
1360 	} else if (gp->phy_type == phy_serialink ||
1361 	    	   gp->phy_type == phy_serdes) {
1362 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1363 
1364 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1365 			full_duplex = 1;
1366 		speed = SPEED_1000;
1367 	}
1368 
1369 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1370 		   speed, (full_duplex ? "full" : "half"));
1371 
1372 
1373 	/* We take the tx queue lock to avoid collisions between
1374 	 * this code, the tx path and the NAPI-driven error path
1375 	 */
1376 	__netif_tx_lock(txq, smp_processor_id());
1377 
1378 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1379 	if (full_duplex) {
1380 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1381 	} else {
1382 		/* MAC_TXCFG_NBO must be zero. */
1383 	}
1384 	writel(val, gp->regs + MAC_TXCFG);
1385 
1386 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1387 	if (!full_duplex &&
1388 	    (gp->phy_type == phy_mii_mdio0 ||
1389 	     gp->phy_type == phy_mii_mdio1)) {
1390 		val |= MAC_XIFCFG_DISE;
1391 	} else if (full_duplex) {
1392 		val |= MAC_XIFCFG_FLED;
1393 	}
1394 
1395 	if (speed == SPEED_1000)
1396 		val |= (MAC_XIFCFG_GMII);
1397 
1398 	writel(val, gp->regs + MAC_XIFCFG);
1399 
1400 	/* If gigabit and half-duplex, enable carrier extension
1401 	 * mode.  Else, disable it.
1402 	 */
1403 	if (speed == SPEED_1000 && !full_duplex) {
1404 		val = readl(gp->regs + MAC_TXCFG);
1405 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406 
1407 		val = readl(gp->regs + MAC_RXCFG);
1408 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409 	} else {
1410 		val = readl(gp->regs + MAC_TXCFG);
1411 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1412 
1413 		val = readl(gp->regs + MAC_RXCFG);
1414 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1415 	}
1416 
1417 	if (gp->phy_type == phy_serialink ||
1418 	    gp->phy_type == phy_serdes) {
1419  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1420 
1421 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1422 			pause = 1;
1423 	}
1424 
1425 	if (!full_duplex)
1426 		writel(512, gp->regs + MAC_STIME);
1427 	else
1428 		writel(64, gp->regs + MAC_STIME);
1429 	val = readl(gp->regs + MAC_MCCFG);
1430 	if (pause)
1431 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1432 	else
1433 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1434 	writel(val, gp->regs + MAC_MCCFG);
1435 
1436 	gem_start_dma(gp);
1437 
1438 	__netif_tx_unlock(txq);
1439 
1440 	if (netif_msg_link(gp)) {
1441 		if (pause) {
1442 			netdev_info(gp->dev,
1443 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1444 				    gp->rx_fifo_sz,
1445 				    gp->rx_pause_off,
1446 				    gp->rx_pause_on);
1447 		} else {
1448 			netdev_info(gp->dev, "Pause is disabled\n");
1449 		}
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static int gem_mdio_link_not_up(struct gem *gp)
1456 {
1457 	switch (gp->lstate) {
1458 	case link_force_ret:
1459 		netif_info(gp, link, gp->dev,
1460 			   "Autoneg failed again, keeping forced mode\n");
1461 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1462 			gp->last_forced_speed, DUPLEX_HALF);
1463 		gp->timer_ticks = 5;
1464 		gp->lstate = link_force_ok;
1465 		return 0;
1466 	case link_aneg:
1467 		/* We try forced modes after a failed aneg only on PHYs that don't
1468 		 * have "magic_aneg" bit set, which means they internally do the
1469 		 * while forced-mode thingy. On these, we just restart aneg
1470 		 */
1471 		if (gp->phy_mii.def->magic_aneg)
1472 			return 1;
1473 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1474 		/* Try forced modes. */
1475 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1476 			DUPLEX_HALF);
1477 		gp->timer_ticks = 5;
1478 		gp->lstate = link_force_try;
1479 		return 0;
1480 	case link_force_try:
1481 		/* Downgrade from 100 to 10 Mbps if necessary.
1482 		 * If already at 10Mbps, warn user about the
1483 		 * situation every 10 ticks.
1484 		 */
1485 		if (gp->phy_mii.speed == SPEED_100) {
1486 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1487 				DUPLEX_HALF);
1488 			gp->timer_ticks = 5;
1489 			netif_info(gp, link, gp->dev,
1490 				   "switching to forced 10bt\n");
1491 			return 0;
1492 		} else
1493 			return 1;
1494 	default:
1495 		return 0;
1496 	}
1497 }
1498 
1499 static void gem_link_timer(unsigned long data)
1500 {
1501 	struct gem *gp = (struct gem *) data;
1502 	struct net_device *dev = gp->dev;
1503 	int restart_aneg = 0;
1504 
1505 	/* There's no point doing anything if we're going to be reset */
1506 	if (gp->reset_task_pending)
1507 		return;
1508 
1509 	if (gp->phy_type == phy_serialink ||
1510 	    gp->phy_type == phy_serdes) {
1511 		u32 val = readl(gp->regs + PCS_MIISTAT);
1512 
1513 		if (!(val & PCS_MIISTAT_LS))
1514 			val = readl(gp->regs + PCS_MIISTAT);
1515 
1516 		if ((val & PCS_MIISTAT_LS) != 0) {
1517 			if (gp->lstate == link_up)
1518 				goto restart;
1519 
1520 			gp->lstate = link_up;
1521 			netif_carrier_on(dev);
1522 			(void)gem_set_link_modes(gp);
1523 		}
1524 		goto restart;
1525 	}
1526 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1527 		/* Ok, here we got a link. If we had it due to a forced
1528 		 * fallback, and we were configured for autoneg, we do
1529 		 * retry a short autoneg pass. If you know your hub is
1530 		 * broken, use ethtool ;)
1531 		 */
1532 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1533 			gp->lstate = link_force_ret;
1534 			gp->last_forced_speed = gp->phy_mii.speed;
1535 			gp->timer_ticks = 5;
1536 			if (netif_msg_link(gp))
1537 				netdev_info(dev,
1538 					    "Got link after fallback, retrying autoneg once...\n");
1539 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1540 		} else if (gp->lstate != link_up) {
1541 			gp->lstate = link_up;
1542 			netif_carrier_on(dev);
1543 			if (gem_set_link_modes(gp))
1544 				restart_aneg = 1;
1545 		}
1546 	} else {
1547 		/* If the link was previously up, we restart the
1548 		 * whole process
1549 		 */
1550 		if (gp->lstate == link_up) {
1551 			gp->lstate = link_down;
1552 			netif_info(gp, link, dev, "Link down\n");
1553 			netif_carrier_off(dev);
1554 			gem_schedule_reset(gp);
1555 			/* The reset task will restart the timer */
1556 			return;
1557 		} else if (++gp->timer_ticks > 10) {
1558 			if (found_mii_phy(gp))
1559 				restart_aneg = gem_mdio_link_not_up(gp);
1560 			else
1561 				restart_aneg = 1;
1562 		}
1563 	}
1564 	if (restart_aneg) {
1565 		gem_begin_auto_negotiation(gp, NULL);
1566 		return;
1567 	}
1568 restart:
1569 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1570 }
1571 
1572 static void gem_clean_rings(struct gem *gp)
1573 {
1574 	struct gem_init_block *gb = gp->init_block;
1575 	struct sk_buff *skb;
1576 	int i;
1577 	dma_addr_t dma_addr;
1578 
1579 	for (i = 0; i < RX_RING_SIZE; i++) {
1580 		struct gem_rxd *rxd;
1581 
1582 		rxd = &gb->rxd[i];
1583 		if (gp->rx_skbs[i] != NULL) {
1584 			skb = gp->rx_skbs[i];
1585 			dma_addr = le64_to_cpu(rxd->buffer);
1586 			pci_unmap_page(gp->pdev, dma_addr,
1587 				       RX_BUF_ALLOC_SIZE(gp),
1588 				       PCI_DMA_FROMDEVICE);
1589 			dev_kfree_skb_any(skb);
1590 			gp->rx_skbs[i] = NULL;
1591 		}
1592 		rxd->status_word = 0;
1593 		wmb();
1594 		rxd->buffer = 0;
1595 	}
1596 
1597 	for (i = 0; i < TX_RING_SIZE; i++) {
1598 		if (gp->tx_skbs[i] != NULL) {
1599 			struct gem_txd *txd;
1600 			int frag;
1601 
1602 			skb = gp->tx_skbs[i];
1603 			gp->tx_skbs[i] = NULL;
1604 
1605 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1606 				int ent = i & (TX_RING_SIZE - 1);
1607 
1608 				txd = &gb->txd[ent];
1609 				dma_addr = le64_to_cpu(txd->buffer);
1610 				pci_unmap_page(gp->pdev, dma_addr,
1611 					       le64_to_cpu(txd->control_word) &
1612 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1613 
1614 				if (frag != skb_shinfo(skb)->nr_frags)
1615 					i++;
1616 			}
1617 			dev_kfree_skb_any(skb);
1618 		}
1619 	}
1620 }
1621 
1622 static void gem_init_rings(struct gem *gp)
1623 {
1624 	struct gem_init_block *gb = gp->init_block;
1625 	struct net_device *dev = gp->dev;
1626 	int i;
1627 	dma_addr_t dma_addr;
1628 
1629 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1630 
1631 	gem_clean_rings(gp);
1632 
1633 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1634 			    (unsigned)VLAN_ETH_FRAME_LEN);
1635 
1636 	for (i = 0; i < RX_RING_SIZE; i++) {
1637 		struct sk_buff *skb;
1638 		struct gem_rxd *rxd = &gb->rxd[i];
1639 
1640 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1641 		if (!skb) {
1642 			rxd->buffer = 0;
1643 			rxd->status_word = 0;
1644 			continue;
1645 		}
1646 
1647 		gp->rx_skbs[i] = skb;
1648 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1649 		dma_addr = pci_map_page(gp->pdev,
1650 					virt_to_page(skb->data),
1651 					offset_in_page(skb->data),
1652 					RX_BUF_ALLOC_SIZE(gp),
1653 					PCI_DMA_FROMDEVICE);
1654 		rxd->buffer = cpu_to_le64(dma_addr);
1655 		wmb();
1656 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1657 		skb_reserve(skb, RX_OFFSET);
1658 	}
1659 
1660 	for (i = 0; i < TX_RING_SIZE; i++) {
1661 		struct gem_txd *txd = &gb->txd[i];
1662 
1663 		txd->control_word = 0;
1664 		wmb();
1665 		txd->buffer = 0;
1666 	}
1667 	wmb();
1668 }
1669 
1670 /* Init PHY interface and start link poll state machine */
1671 static void gem_init_phy(struct gem *gp)
1672 {
1673 	u32 mifcfg;
1674 
1675 	/* Revert MIF CFG setting done on stop_phy */
1676 	mifcfg = readl(gp->regs + MIF_CFG);
1677 	mifcfg &= ~MIF_CFG_BBMODE;
1678 	writel(mifcfg, gp->regs + MIF_CFG);
1679 
1680 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1681 		int i;
1682 
1683 		/* Those delay sucks, the HW seem to love them though, I'll
1684 		 * serisouly consider breaking some locks here to be able
1685 		 * to schedule instead
1686 		 */
1687 		for (i = 0; i < 3; i++) {
1688 #ifdef CONFIG_PPC_PMAC
1689 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1690 			msleep(20);
1691 #endif
1692 			/* Some PHYs used by apple have problem getting back to us,
1693 			 * we do an additional reset here
1694 			 */
1695 			phy_write(gp, MII_BMCR, BMCR_RESET);
1696 			msleep(20);
1697 			if (phy_read(gp, MII_BMCR) != 0xffff)
1698 				break;
1699 			if (i == 2)
1700 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1701 		}
1702 	}
1703 
1704 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1705 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1706 		u32 val;
1707 
1708 		/* Init datapath mode register. */
1709 		if (gp->phy_type == phy_mii_mdio0 ||
1710 		    gp->phy_type == phy_mii_mdio1) {
1711 			val = PCS_DMODE_MGM;
1712 		} else if (gp->phy_type == phy_serialink) {
1713 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1714 		} else {
1715 			val = PCS_DMODE_ESM;
1716 		}
1717 
1718 		writel(val, gp->regs + PCS_DMODE);
1719 	}
1720 
1721 	if (gp->phy_type == phy_mii_mdio0 ||
1722 	    gp->phy_type == phy_mii_mdio1) {
1723 		/* Reset and detect MII PHY */
1724 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1725 
1726 		/* Init PHY */
1727 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1728 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1729 	} else {
1730 		gem_pcs_reset(gp);
1731 		gem_pcs_reinit_adv(gp);
1732 	}
1733 
1734 	/* Default aneg parameters */
1735 	gp->timer_ticks = 0;
1736 	gp->lstate = link_down;
1737 	netif_carrier_off(gp->dev);
1738 
1739 	/* Print things out */
1740 	if (gp->phy_type == phy_mii_mdio0 ||
1741 	    gp->phy_type == phy_mii_mdio1)
1742 		netdev_info(gp->dev, "Found %s PHY\n",
1743 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1744 
1745 	gem_begin_auto_negotiation(gp, NULL);
1746 }
1747 
1748 static void gem_init_dma(struct gem *gp)
1749 {
1750 	u64 desc_dma = (u64) gp->gblock_dvma;
1751 	u32 val;
1752 
1753 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1754 	writel(val, gp->regs + TXDMA_CFG);
1755 
1756 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1757 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1758 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1759 
1760 	writel(0, gp->regs + TXDMA_KICK);
1761 
1762 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1763 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1764 	writel(val, gp->regs + RXDMA_CFG);
1765 
1766 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1767 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1768 
1769 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1770 
1771 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1772 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1773 	writel(val, gp->regs + RXDMA_PTHRESH);
1774 
1775 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1776 		writel(((5 & RXDMA_BLANK_IPKTS) |
1777 			((8 << 12) & RXDMA_BLANK_ITIME)),
1778 		       gp->regs + RXDMA_BLANK);
1779 	else
1780 		writel(((5 & RXDMA_BLANK_IPKTS) |
1781 			((4 << 12) & RXDMA_BLANK_ITIME)),
1782 		       gp->regs + RXDMA_BLANK);
1783 }
1784 
1785 static u32 gem_setup_multicast(struct gem *gp)
1786 {
1787 	u32 rxcfg = 0;
1788 	int i;
1789 
1790 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1791 	    (netdev_mc_count(gp->dev) > 256)) {
1792 	    	for (i=0; i<16; i++)
1793 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1794 		rxcfg |= MAC_RXCFG_HFE;
1795 	} else if (gp->dev->flags & IFF_PROMISC) {
1796 		rxcfg |= MAC_RXCFG_PROM;
1797 	} else {
1798 		u16 hash_table[16];
1799 		u32 crc;
1800 		struct netdev_hw_addr *ha;
1801 		int i;
1802 
1803 		memset(hash_table, 0, sizeof(hash_table));
1804 		netdev_for_each_mc_addr(ha, gp->dev) {
1805 			crc = ether_crc_le(6, ha->addr);
1806 			crc >>= 24;
1807 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1808 		}
1809 	    	for (i=0; i<16; i++)
1810 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1811 		rxcfg |= MAC_RXCFG_HFE;
1812 	}
1813 
1814 	return rxcfg;
1815 }
1816 
1817 static void gem_init_mac(struct gem *gp)
1818 {
1819 	unsigned char *e = &gp->dev->dev_addr[0];
1820 
1821 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1822 
1823 	writel(0x00, gp->regs + MAC_IPG0);
1824 	writel(0x08, gp->regs + MAC_IPG1);
1825 	writel(0x04, gp->regs + MAC_IPG2);
1826 	writel(0x40, gp->regs + MAC_STIME);
1827 	writel(0x40, gp->regs + MAC_MINFSZ);
1828 
1829 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1830 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1831 
1832 	writel(0x07, gp->regs + MAC_PASIZE);
1833 	writel(0x04, gp->regs + MAC_JAMSIZE);
1834 	writel(0x10, gp->regs + MAC_ATTLIM);
1835 	writel(0x8808, gp->regs + MAC_MCTYPE);
1836 
1837 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1838 
1839 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1840 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1841 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1842 
1843 	writel(0, gp->regs + MAC_ADDR3);
1844 	writel(0, gp->regs + MAC_ADDR4);
1845 	writel(0, gp->regs + MAC_ADDR5);
1846 
1847 	writel(0x0001, gp->regs + MAC_ADDR6);
1848 	writel(0xc200, gp->regs + MAC_ADDR7);
1849 	writel(0x0180, gp->regs + MAC_ADDR8);
1850 
1851 	writel(0, gp->regs + MAC_AFILT0);
1852 	writel(0, gp->regs + MAC_AFILT1);
1853 	writel(0, gp->regs + MAC_AFILT2);
1854 	writel(0, gp->regs + MAC_AF21MSK);
1855 	writel(0, gp->regs + MAC_AF0MSK);
1856 
1857 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1858 #ifdef STRIP_FCS
1859 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1860 #endif
1861 	writel(0, gp->regs + MAC_NCOLL);
1862 	writel(0, gp->regs + MAC_FASUCC);
1863 	writel(0, gp->regs + MAC_ECOLL);
1864 	writel(0, gp->regs + MAC_LCOLL);
1865 	writel(0, gp->regs + MAC_DTIMER);
1866 	writel(0, gp->regs + MAC_PATMPS);
1867 	writel(0, gp->regs + MAC_RFCTR);
1868 	writel(0, gp->regs + MAC_LERR);
1869 	writel(0, gp->regs + MAC_AERR);
1870 	writel(0, gp->regs + MAC_FCSERR);
1871 	writel(0, gp->regs + MAC_RXCVERR);
1872 
1873 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1874 	 * them once a link is established.
1875 	 */
1876 	writel(0, gp->regs + MAC_TXCFG);
1877 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1878 	writel(0, gp->regs + MAC_MCCFG);
1879 	writel(0, gp->regs + MAC_XIFCFG);
1880 
1881 	/* Setup MAC interrupts.  We want to get all of the interesting
1882 	 * counter expiration events, but we do not want to hear about
1883 	 * normal rx/tx as the DMA engine tells us that.
1884 	 */
1885 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1886 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1887 
1888 	/* Don't enable even the PAUSE interrupts for now, we
1889 	 * make no use of those events other than to record them.
1890 	 */
1891 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1892 
1893 	/* Don't enable GEM's WOL in normal operations
1894 	 */
1895 	if (gp->has_wol)
1896 		writel(0, gp->regs + WOL_WAKECSR);
1897 }
1898 
1899 static void gem_init_pause_thresholds(struct gem *gp)
1900 {
1901        	u32 cfg;
1902 
1903 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1904 	 * full RX fifo size effectively disables PAUSE generation which
1905 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1906 	 * to make real gains from PAUSE.
1907 	 */
1908 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1909 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1910 	} else {
1911 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1912 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1913 		int on = off - max_frame;
1914 
1915 		gp->rx_pause_off = off;
1916 		gp->rx_pause_on = on;
1917 	}
1918 
1919 
1920 	/* Configure the chip "burst" DMA mode & enable some
1921 	 * HW bug fixes on Apple version
1922 	 */
1923        	cfg  = 0;
1924        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1925 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1926 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1927        	cfg |= GREG_CFG_IBURST;
1928 #endif
1929        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1930        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1931        	writel(cfg, gp->regs + GREG_CFG);
1932 
1933 	/* If Infinite Burst didn't stick, then use different
1934 	 * thresholds (and Apple bug fixes don't exist)
1935 	 */
1936 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1937 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1938 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1939 		writel(cfg, gp->regs + GREG_CFG);
1940 	}
1941 }
1942 
1943 static int gem_check_invariants(struct gem *gp)
1944 {
1945 	struct pci_dev *pdev = gp->pdev;
1946 	u32 mif_cfg;
1947 
1948 	/* On Apple's sungem, we can't rely on registers as the chip
1949 	 * was been powered down by the firmware. The PHY is looked
1950 	 * up later on.
1951 	 */
1952 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1953 		gp->phy_type = phy_mii_mdio0;
1954 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1955 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1956 		gp->swrst_base = 0;
1957 
1958 		mif_cfg = readl(gp->regs + MIF_CFG);
1959 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1960 		mif_cfg |= MIF_CFG_MDI0;
1961 		writel(mif_cfg, gp->regs + MIF_CFG);
1962 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1963 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1964 
1965 		/* We hard-code the PHY address so we can properly bring it out of
1966 		 * reset later on, we can't really probe it at this point, though
1967 		 * that isn't an issue.
1968 		 */
1969 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1970 			gp->mii_phy_addr = 1;
1971 		else
1972 			gp->mii_phy_addr = 0;
1973 
1974 		return 0;
1975 	}
1976 
1977 	mif_cfg = readl(gp->regs + MIF_CFG);
1978 
1979 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1980 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1981 		/* One of the MII PHYs _must_ be present
1982 		 * as this chip has no gigabit PHY.
1983 		 */
1984 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1985 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1986 			       mif_cfg);
1987 			return -1;
1988 		}
1989 	}
1990 
1991 	/* Determine initial PHY interface type guess.  MDIO1 is the
1992 	 * external PHY and thus takes precedence over MDIO0.
1993 	 */
1994 
1995 	if (mif_cfg & MIF_CFG_MDI1) {
1996 		gp->phy_type = phy_mii_mdio1;
1997 		mif_cfg |= MIF_CFG_PSELECT;
1998 		writel(mif_cfg, gp->regs + MIF_CFG);
1999 	} else if (mif_cfg & MIF_CFG_MDI0) {
2000 		gp->phy_type = phy_mii_mdio0;
2001 		mif_cfg &= ~MIF_CFG_PSELECT;
2002 		writel(mif_cfg, gp->regs + MIF_CFG);
2003 	} else {
2004 #ifdef CONFIG_SPARC
2005 		const char *p;
2006 
2007 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2008 		if (p && !strcmp(p, "serdes"))
2009 			gp->phy_type = phy_serdes;
2010 		else
2011 #endif
2012 			gp->phy_type = phy_serialink;
2013 	}
2014 	if (gp->phy_type == phy_mii_mdio1 ||
2015 	    gp->phy_type == phy_mii_mdio0) {
2016 		int i;
2017 
2018 		for (i = 0; i < 32; i++) {
2019 			gp->mii_phy_addr = i;
2020 			if (phy_read(gp, MII_BMCR) != 0xffff)
2021 				break;
2022 		}
2023 		if (i == 32) {
2024 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2025 				pr_err("RIO MII phy will not respond\n");
2026 				return -1;
2027 			}
2028 			gp->phy_type = phy_serdes;
2029 		}
2030 	}
2031 
2032 	/* Fetch the FIFO configurations now too. */
2033 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2034 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2035 
2036 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2037 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2038 			if (gp->tx_fifo_sz != (9 * 1024) ||
2039 			    gp->rx_fifo_sz != (20 * 1024)) {
2040 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2041 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2042 				return -1;
2043 			}
2044 			gp->swrst_base = 0;
2045 		} else {
2046 			if (gp->tx_fifo_sz != (2 * 1024) ||
2047 			    gp->rx_fifo_sz != (2 * 1024)) {
2048 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2049 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2050 				return -1;
2051 			}
2052 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2053 		}
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static void gem_reinit_chip(struct gem *gp)
2060 {
2061 	/* Reset the chip */
2062 	gem_reset(gp);
2063 
2064 	/* Make sure ints are disabled */
2065 	gem_disable_ints(gp);
2066 
2067 	/* Allocate & setup ring buffers */
2068 	gem_init_rings(gp);
2069 
2070 	/* Configure pause thresholds */
2071 	gem_init_pause_thresholds(gp);
2072 
2073 	/* Init DMA & MAC engines */
2074 	gem_init_dma(gp);
2075 	gem_init_mac(gp);
2076 }
2077 
2078 
2079 static void gem_stop_phy(struct gem *gp, int wol)
2080 {
2081 	u32 mifcfg;
2082 
2083 	/* Let the chip settle down a bit, it seems that helps
2084 	 * for sleep mode on some models
2085 	 */
2086 	msleep(10);
2087 
2088 	/* Make sure we aren't polling PHY status change. We
2089 	 * don't currently use that feature though
2090 	 */
2091 	mifcfg = readl(gp->regs + MIF_CFG);
2092 	mifcfg &= ~MIF_CFG_POLL;
2093 	writel(mifcfg, gp->regs + MIF_CFG);
2094 
2095 	if (wol && gp->has_wol) {
2096 		unsigned char *e = &gp->dev->dev_addr[0];
2097 		u32 csr;
2098 
2099 		/* Setup wake-on-lan for MAGIC packet */
2100 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2101 		       gp->regs + MAC_RXCFG);
2102 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2103 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2104 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2105 
2106 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2107 		csr = WOL_WAKECSR_ENABLE;
2108 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2109 			csr |= WOL_WAKECSR_MII;
2110 		writel(csr, gp->regs + WOL_WAKECSR);
2111 	} else {
2112 		writel(0, gp->regs + MAC_RXCFG);
2113 		(void)readl(gp->regs + MAC_RXCFG);
2114 		/* Machine sleep will die in strange ways if we
2115 		 * dont wait a bit here, looks like the chip takes
2116 		 * some time to really shut down
2117 		 */
2118 		msleep(10);
2119 	}
2120 
2121 	writel(0, gp->regs + MAC_TXCFG);
2122 	writel(0, gp->regs + MAC_XIFCFG);
2123 	writel(0, gp->regs + TXDMA_CFG);
2124 	writel(0, gp->regs + RXDMA_CFG);
2125 
2126 	if (!wol) {
2127 		gem_reset(gp);
2128 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2129 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2130 
2131 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2132 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2133 
2134 		/* According to Apple, we must set the MDIO pins to this begnign
2135 		 * state or we may 1) eat more current, 2) damage some PHYs
2136 		 */
2137 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2138 		writel(0, gp->regs + MIF_BBCLK);
2139 		writel(0, gp->regs + MIF_BBDATA);
2140 		writel(0, gp->regs + MIF_BBOENAB);
2141 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2142 		(void) readl(gp->regs + MAC_XIFCFG);
2143 	}
2144 }
2145 
2146 static int gem_do_start(struct net_device *dev)
2147 {
2148 	struct gem *gp = netdev_priv(dev);
2149 	int rc;
2150 
2151 	/* Enable the cell */
2152 	gem_get_cell(gp);
2153 
2154 	/* Make sure PCI access and bus master are enabled */
2155 	rc = pci_enable_device(gp->pdev);
2156 	if (rc) {
2157 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2158 
2159 		/* Put cell and forget it for now, it will be considered as
2160 		 * still asleep, a new sleep cycle may bring it back
2161 		 */
2162 		gem_put_cell(gp);
2163 		return -ENXIO;
2164 	}
2165 	pci_set_master(gp->pdev);
2166 
2167 	/* Init & setup chip hardware */
2168 	gem_reinit_chip(gp);
2169 
2170 	/* An interrupt might come in handy */
2171 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2172 			 IRQF_SHARED, dev->name, (void *)dev);
2173 	if (rc) {
2174 		netdev_err(dev, "failed to request irq !\n");
2175 
2176 		gem_reset(gp);
2177 		gem_clean_rings(gp);
2178 		gem_put_cell(gp);
2179 		return rc;
2180 	}
2181 
2182 	/* Mark us as attached again if we come from resume(), this has
2183 	 * no effect if we weren't detatched and needs to be done now.
2184 	 */
2185 	netif_device_attach(dev);
2186 
2187 	/* Restart NAPI & queues */
2188 	gem_netif_start(gp);
2189 
2190 	/* Detect & init PHY, start autoneg etc... this will
2191 	 * eventually result in starting DMA operations when
2192 	 * the link is up
2193 	 */
2194 	gem_init_phy(gp);
2195 
2196 	return 0;
2197 }
2198 
2199 static void gem_do_stop(struct net_device *dev, int wol)
2200 {
2201 	struct gem *gp = netdev_priv(dev);
2202 
2203 	/* Stop NAPI and stop tx queue */
2204 	gem_netif_stop(gp);
2205 
2206 	/* Make sure ints are disabled. We don't care about
2207 	 * synchronizing as NAPI is disabled, thus a stray
2208 	 * interrupt will do nothing bad (our irq handler
2209 	 * just schedules NAPI)
2210 	 */
2211 	gem_disable_ints(gp);
2212 
2213 	/* Stop the link timer */
2214 	del_timer_sync(&gp->link_timer);
2215 
2216 	/* We cannot cancel the reset task while holding the
2217 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2218 	 * if we did. This is not an issue however as the reset
2219 	 * task is synchronized vs. us (rtnl_lock) and will do
2220 	 * nothing if the device is down or suspended. We do
2221 	 * still clear reset_task_pending to avoid a spurrious
2222 	 * reset later on in case we do resume before it gets
2223 	 * scheduled.
2224 	 */
2225 	gp->reset_task_pending = 0;
2226 
2227 	/* If we are going to sleep with WOL */
2228 	gem_stop_dma(gp);
2229 	msleep(10);
2230 	if (!wol)
2231 		gem_reset(gp);
2232 	msleep(10);
2233 
2234 	/* Get rid of rings */
2235 	gem_clean_rings(gp);
2236 
2237 	/* No irq needed anymore */
2238 	free_irq(gp->pdev->irq, (void *) dev);
2239 
2240 	/* Shut the PHY down eventually and setup WOL */
2241 	gem_stop_phy(gp, wol);
2242 
2243 	/* Make sure bus master is disabled */
2244 	pci_disable_device(gp->pdev);
2245 
2246 	/* Cell not needed neither if no WOL */
2247 	if (!wol)
2248 		gem_put_cell(gp);
2249 }
2250 
2251 static void gem_reset_task(struct work_struct *work)
2252 {
2253 	struct gem *gp = container_of(work, struct gem, reset_task);
2254 
2255 	/* Lock out the network stack (essentially shield ourselves
2256 	 * against a racing open, close, control call, or suspend
2257 	 */
2258 	rtnl_lock();
2259 
2260 	/* Skip the reset task if suspended or closed, or if it's
2261 	 * been cancelled by gem_do_stop (see comment there)
2262 	 */
2263 	if (!netif_device_present(gp->dev) ||
2264 	    !netif_running(gp->dev) ||
2265 	    !gp->reset_task_pending) {
2266 		rtnl_unlock();
2267 		return;
2268 	}
2269 
2270 	/* Stop the link timer */
2271 	del_timer_sync(&gp->link_timer);
2272 
2273 	/* Stop NAPI and tx */
2274 	gem_netif_stop(gp);
2275 
2276 	/* Reset the chip & rings */
2277 	gem_reinit_chip(gp);
2278 	if (gp->lstate == link_up)
2279 		gem_set_link_modes(gp);
2280 
2281 	/* Restart NAPI and Tx */
2282 	gem_netif_start(gp);
2283 
2284 	/* We are back ! */
2285 	gp->reset_task_pending = 0;
2286 
2287 	/* If the link is not up, restart autoneg, else restart the
2288 	 * polling timer
2289 	 */
2290 	if (gp->lstate != link_up)
2291 		gem_begin_auto_negotiation(gp, NULL);
2292 	else
2293 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2294 
2295 	rtnl_unlock();
2296 }
2297 
2298 static int gem_open(struct net_device *dev)
2299 {
2300 	/* We allow open while suspended, we just do nothing,
2301 	 * the chip will be initialized in resume()
2302 	 */
2303 	if (netif_device_present(dev))
2304 		return gem_do_start(dev);
2305 	return 0;
2306 }
2307 
2308 static int gem_close(struct net_device *dev)
2309 {
2310 	if (netif_device_present(dev))
2311 		gem_do_stop(dev, 0);
2312 
2313 	return 0;
2314 }
2315 
2316 #ifdef CONFIG_PM
2317 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2318 {
2319 	struct net_device *dev = pci_get_drvdata(pdev);
2320 	struct gem *gp = netdev_priv(dev);
2321 
2322 	/* Lock the network stack first to avoid racing with open/close,
2323 	 * reset task and setting calls
2324 	 */
2325 	rtnl_lock();
2326 
2327 	/* Not running, mark ourselves non-present, no need for
2328 	 * a lock here
2329 	 */
2330 	if (!netif_running(dev)) {
2331 		netif_device_detach(dev);
2332 		rtnl_unlock();
2333 		return 0;
2334 	}
2335 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2336 		    (gp->wake_on_lan && netif_running(dev)) ?
2337 		    "enabled" : "disabled");
2338 
2339 	/* Tell the network stack we're gone. gem_do_stop() below will
2340 	 * synchronize with TX, stop NAPI etc...
2341 	 */
2342 	netif_device_detach(dev);
2343 
2344 	/* Switch off chip, remember WOL setting */
2345 	gp->asleep_wol = gp->wake_on_lan;
2346 	gem_do_stop(dev, gp->asleep_wol);
2347 
2348 	/* Unlock the network stack */
2349 	rtnl_unlock();
2350 
2351 	return 0;
2352 }
2353 
2354 static int gem_resume(struct pci_dev *pdev)
2355 {
2356 	struct net_device *dev = pci_get_drvdata(pdev);
2357 	struct gem *gp = netdev_priv(dev);
2358 
2359 	/* See locking comment in gem_suspend */
2360 	rtnl_lock();
2361 
2362 	/* Not running, mark ourselves present, no need for
2363 	 * a lock here
2364 	 */
2365 	if (!netif_running(dev)) {
2366 		netif_device_attach(dev);
2367 		rtnl_unlock();
2368 		return 0;
2369 	}
2370 
2371 	/* Restart chip. If that fails there isn't much we can do, we
2372 	 * leave things stopped.
2373 	 */
2374 	gem_do_start(dev);
2375 
2376 	/* If we had WOL enabled, the cell clock was never turned off during
2377 	 * sleep, so we end up beeing unbalanced. Fix that here
2378 	 */
2379 	if (gp->asleep_wol)
2380 		gem_put_cell(gp);
2381 
2382 	/* Unlock the network stack */
2383 	rtnl_unlock();
2384 
2385 	return 0;
2386 }
2387 #endif /* CONFIG_PM */
2388 
2389 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2390 {
2391 	struct gem *gp = netdev_priv(dev);
2392 
2393 	/* I have seen this being called while the PM was in progress,
2394 	 * so we shield against this. Let's also not poke at registers
2395 	 * while the reset task is going on.
2396 	 *
2397 	 * TODO: Move stats collection elsewhere (link timer ?) and
2398 	 * make this a nop to avoid all those synchro issues
2399 	 */
2400 	if (!netif_device_present(dev) || !netif_running(dev))
2401 		goto bail;
2402 
2403 	/* Better safe than sorry... */
2404 	if (WARN_ON(!gp->cell_enabled))
2405 		goto bail;
2406 
2407 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2408 	writel(0, gp->regs + MAC_FCSERR);
2409 
2410 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2411 	writel(0, gp->regs + MAC_AERR);
2412 
2413 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2414 	writel(0, gp->regs + MAC_LERR);
2415 
2416 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2417 	dev->stats.collisions +=
2418 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2419 	writel(0, gp->regs + MAC_ECOLL);
2420 	writel(0, gp->regs + MAC_LCOLL);
2421  bail:
2422 	return &dev->stats;
2423 }
2424 
2425 static int gem_set_mac_address(struct net_device *dev, void *addr)
2426 {
2427 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2428 	struct gem *gp = netdev_priv(dev);
2429 	unsigned char *e = &dev->dev_addr[0];
2430 
2431 	if (!is_valid_ether_addr(macaddr->sa_data))
2432 		return -EADDRNOTAVAIL;
2433 
2434 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2435 
2436 	/* We'll just catch it later when the device is up'd or resumed */
2437 	if (!netif_running(dev) || !netif_device_present(dev))
2438 		return 0;
2439 
2440 	/* Better safe than sorry... */
2441 	if (WARN_ON(!gp->cell_enabled))
2442 		return 0;
2443 
2444 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2445 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2446 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2447 
2448 	return 0;
2449 }
2450 
2451 static void gem_set_multicast(struct net_device *dev)
2452 {
2453 	struct gem *gp = netdev_priv(dev);
2454 	u32 rxcfg, rxcfg_new;
2455 	int limit = 10000;
2456 
2457 	if (!netif_running(dev) || !netif_device_present(dev))
2458 		return;
2459 
2460 	/* Better safe than sorry... */
2461 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2462 		return;
2463 
2464 	rxcfg = readl(gp->regs + MAC_RXCFG);
2465 	rxcfg_new = gem_setup_multicast(gp);
2466 #ifdef STRIP_FCS
2467 	rxcfg_new |= MAC_RXCFG_SFCS;
2468 #endif
2469 	gp->mac_rx_cfg = rxcfg_new;
2470 
2471 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2472 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2473 		if (!limit--)
2474 			break;
2475 		udelay(10);
2476 	}
2477 
2478 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2479 	rxcfg |= rxcfg_new;
2480 
2481 	writel(rxcfg, gp->regs + MAC_RXCFG);
2482 }
2483 
2484 /* Jumbo-grams don't seem to work :-( */
2485 #define GEM_MIN_MTU	68
2486 #if 1
2487 #define GEM_MAX_MTU	1500
2488 #else
2489 #define GEM_MAX_MTU	9000
2490 #endif
2491 
2492 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2493 {
2494 	struct gem *gp = netdev_priv(dev);
2495 
2496 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2497 		return -EINVAL;
2498 
2499 	dev->mtu = new_mtu;
2500 
2501 	/* We'll just catch it later when the device is up'd or resumed */
2502 	if (!netif_running(dev) || !netif_device_present(dev))
2503 		return 0;
2504 
2505 	/* Better safe than sorry... */
2506 	if (WARN_ON(!gp->cell_enabled))
2507 		return 0;
2508 
2509 	gem_netif_stop(gp);
2510 	gem_reinit_chip(gp);
2511 	if (gp->lstate == link_up)
2512 		gem_set_link_modes(gp);
2513 	gem_netif_start(gp);
2514 
2515 	return 0;
2516 }
2517 
2518 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2519 {
2520 	struct gem *gp = netdev_priv(dev);
2521 
2522 	strcpy(info->driver, DRV_NAME);
2523 	strcpy(info->version, DRV_VERSION);
2524 	strcpy(info->bus_info, pci_name(gp->pdev));
2525 }
2526 
2527 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2528 {
2529 	struct gem *gp = netdev_priv(dev);
2530 
2531 	if (gp->phy_type == phy_mii_mdio0 ||
2532 	    gp->phy_type == phy_mii_mdio1) {
2533 		if (gp->phy_mii.def)
2534 			cmd->supported = gp->phy_mii.def->features;
2535 		else
2536 			cmd->supported = (SUPPORTED_10baseT_Half |
2537 					  SUPPORTED_10baseT_Full);
2538 
2539 		/* XXX hardcoded stuff for now */
2540 		cmd->port = PORT_MII;
2541 		cmd->transceiver = XCVR_EXTERNAL;
2542 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2543 
2544 		/* Return current PHY settings */
2545 		cmd->autoneg = gp->want_autoneg;
2546 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2547 		cmd->duplex = gp->phy_mii.duplex;
2548 		cmd->advertising = gp->phy_mii.advertising;
2549 
2550 		/* If we started with a forced mode, we don't have a default
2551 		 * advertise set, we need to return something sensible so
2552 		 * userland can re-enable autoneg properly.
2553 		 */
2554 		if (cmd->advertising == 0)
2555 			cmd->advertising = cmd->supported;
2556 	} else { // XXX PCS ?
2557 		cmd->supported =
2558 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2559 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2560 			 SUPPORTED_Autoneg);
2561 		cmd->advertising = cmd->supported;
2562 		ethtool_cmd_speed_set(cmd, 0);
2563 		cmd->duplex = cmd->port = cmd->phy_address =
2564 			cmd->transceiver = cmd->autoneg = 0;
2565 
2566 		/* serdes means usually a Fibre connector, with most fixed */
2567 		if (gp->phy_type == phy_serdes) {
2568 			cmd->port = PORT_FIBRE;
2569 			cmd->supported = (SUPPORTED_1000baseT_Half |
2570 				SUPPORTED_1000baseT_Full |
2571 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2572 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2573 			cmd->advertising = cmd->supported;
2574 			cmd->transceiver = XCVR_INTERNAL;
2575 			if (gp->lstate == link_up)
2576 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2577 			cmd->duplex = DUPLEX_FULL;
2578 			cmd->autoneg = 1;
2579 		}
2580 	}
2581 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2582 
2583 	return 0;
2584 }
2585 
2586 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2587 {
2588 	struct gem *gp = netdev_priv(dev);
2589 	u32 speed = ethtool_cmd_speed(cmd);
2590 
2591 	/* Verify the settings we care about. */
2592 	if (cmd->autoneg != AUTONEG_ENABLE &&
2593 	    cmd->autoneg != AUTONEG_DISABLE)
2594 		return -EINVAL;
2595 
2596 	if (cmd->autoneg == AUTONEG_ENABLE &&
2597 	    cmd->advertising == 0)
2598 		return -EINVAL;
2599 
2600 	if (cmd->autoneg == AUTONEG_DISABLE &&
2601 	    ((speed != SPEED_1000 &&
2602 	      speed != SPEED_100 &&
2603 	      speed != SPEED_10) ||
2604 	     (cmd->duplex != DUPLEX_HALF &&
2605 	      cmd->duplex != DUPLEX_FULL)))
2606 		return -EINVAL;
2607 
2608 	/* Apply settings and restart link process. */
2609 	if (netif_device_present(gp->dev)) {
2610 		del_timer_sync(&gp->link_timer);
2611 		gem_begin_auto_negotiation(gp, cmd);
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static int gem_nway_reset(struct net_device *dev)
2618 {
2619 	struct gem *gp = netdev_priv(dev);
2620 
2621 	if (!gp->want_autoneg)
2622 		return -EINVAL;
2623 
2624 	/* Restart link process  */
2625 	if (netif_device_present(gp->dev)) {
2626 		del_timer_sync(&gp->link_timer);
2627 		gem_begin_auto_negotiation(gp, NULL);
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 static u32 gem_get_msglevel(struct net_device *dev)
2634 {
2635 	struct gem *gp = netdev_priv(dev);
2636 	return gp->msg_enable;
2637 }
2638 
2639 static void gem_set_msglevel(struct net_device *dev, u32 value)
2640 {
2641 	struct gem *gp = netdev_priv(dev);
2642 	gp->msg_enable = value;
2643 }
2644 
2645 
2646 /* Add more when I understand how to program the chip */
2647 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2648 
2649 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2650 
2651 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2652 {
2653 	struct gem *gp = netdev_priv(dev);
2654 
2655 	/* Add more when I understand how to program the chip */
2656 	if (gp->has_wol) {
2657 		wol->supported = WOL_SUPPORTED_MASK;
2658 		wol->wolopts = gp->wake_on_lan;
2659 	} else {
2660 		wol->supported = 0;
2661 		wol->wolopts = 0;
2662 	}
2663 }
2664 
2665 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666 {
2667 	struct gem *gp = netdev_priv(dev);
2668 
2669 	if (!gp->has_wol)
2670 		return -EOPNOTSUPP;
2671 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2672 	return 0;
2673 }
2674 
2675 static const struct ethtool_ops gem_ethtool_ops = {
2676 	.get_drvinfo		= gem_get_drvinfo,
2677 	.get_link		= ethtool_op_get_link,
2678 	.get_settings		= gem_get_settings,
2679 	.set_settings		= gem_set_settings,
2680 	.nway_reset		= gem_nway_reset,
2681 	.get_msglevel		= gem_get_msglevel,
2682 	.set_msglevel		= gem_set_msglevel,
2683 	.get_wol		= gem_get_wol,
2684 	.set_wol		= gem_set_wol,
2685 };
2686 
2687 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2688 {
2689 	struct gem *gp = netdev_priv(dev);
2690 	struct mii_ioctl_data *data = if_mii(ifr);
2691 	int rc = -EOPNOTSUPP;
2692 
2693 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2694 	 * netif_device_present() is true and holds rtnl_lock for us
2695 	 * so we have nothing to worry about
2696 	 */
2697 
2698 	switch (cmd) {
2699 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2700 		data->phy_id = gp->mii_phy_addr;
2701 		/* Fallthrough... */
2702 
2703 	case SIOCGMIIREG:		/* Read MII PHY register. */
2704 		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2705 					   data->reg_num & 0x1f);
2706 		rc = 0;
2707 		break;
2708 
2709 	case SIOCSMIIREG:		/* Write MII PHY register. */
2710 		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2711 			    data->val_in);
2712 		rc = 0;
2713 		break;
2714 	}
2715 	return rc;
2716 }
2717 
2718 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2719 /* Fetch MAC address from vital product data of PCI ROM. */
2720 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2721 {
2722 	int this_offset;
2723 
2724 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2725 		void __iomem *p = rom_base + this_offset;
2726 		int i;
2727 
2728 		if (readb(p + 0) != 0x90 ||
2729 		    readb(p + 1) != 0x00 ||
2730 		    readb(p + 2) != 0x09 ||
2731 		    readb(p + 3) != 0x4e ||
2732 		    readb(p + 4) != 0x41 ||
2733 		    readb(p + 5) != 0x06)
2734 			continue;
2735 
2736 		this_offset += 6;
2737 		p += 6;
2738 
2739 		for (i = 0; i < 6; i++)
2740 			dev_addr[i] = readb(p + i);
2741 		return 1;
2742 	}
2743 	return 0;
2744 }
2745 
2746 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2747 {
2748 	size_t size;
2749 	void __iomem *p = pci_map_rom(pdev, &size);
2750 
2751 	if (p) {
2752 			int found;
2753 
2754 		found = readb(p) == 0x55 &&
2755 			readb(p + 1) == 0xaa &&
2756 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2757 		pci_unmap_rom(pdev, p);
2758 		if (found)
2759 			return;
2760 	}
2761 
2762 	/* Sun MAC prefix then 3 random bytes. */
2763 	dev_addr[0] = 0x08;
2764 	dev_addr[1] = 0x00;
2765 	dev_addr[2] = 0x20;
2766 	get_random_bytes(dev_addr + 3, 3);
2767 }
2768 #endif /* not Sparc and not PPC */
2769 
2770 static int __devinit gem_get_device_address(struct gem *gp)
2771 {
2772 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2773 	struct net_device *dev = gp->dev;
2774 	const unsigned char *addr;
2775 
2776 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2777 	if (addr == NULL) {
2778 #ifdef CONFIG_SPARC
2779 		addr = idprom->id_ethaddr;
2780 #else
2781 		printk("\n");
2782 		pr_err("%s: can't get mac-address\n", dev->name);
2783 		return -1;
2784 #endif
2785 	}
2786 	memcpy(dev->dev_addr, addr, 6);
2787 #else
2788 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2789 #endif
2790 	return 0;
2791 }
2792 
2793 static void gem_remove_one(struct pci_dev *pdev)
2794 {
2795 	struct net_device *dev = pci_get_drvdata(pdev);
2796 
2797 	if (dev) {
2798 		struct gem *gp = netdev_priv(dev);
2799 
2800 		unregister_netdev(dev);
2801 
2802 		/* Ensure reset task is truely gone */
2803 		cancel_work_sync(&gp->reset_task);
2804 
2805 		/* Free resources */
2806 		pci_free_consistent(pdev,
2807 				    sizeof(struct gem_init_block),
2808 				    gp->init_block,
2809 				    gp->gblock_dvma);
2810 		iounmap(gp->regs);
2811 		pci_release_regions(pdev);
2812 		free_netdev(dev);
2813 
2814 		pci_set_drvdata(pdev, NULL);
2815 	}
2816 }
2817 
2818 static const struct net_device_ops gem_netdev_ops = {
2819 	.ndo_open		= gem_open,
2820 	.ndo_stop		= gem_close,
2821 	.ndo_start_xmit		= gem_start_xmit,
2822 	.ndo_get_stats		= gem_get_stats,
2823 	.ndo_set_multicast_list = gem_set_multicast,
2824 	.ndo_do_ioctl		= gem_ioctl,
2825 	.ndo_tx_timeout		= gem_tx_timeout,
2826 	.ndo_change_mtu		= gem_change_mtu,
2827 	.ndo_validate_addr	= eth_validate_addr,
2828 	.ndo_set_mac_address    = gem_set_mac_address,
2829 #ifdef CONFIG_NET_POLL_CONTROLLER
2830 	.ndo_poll_controller    = gem_poll_controller,
2831 #endif
2832 };
2833 
2834 static int __devinit gem_init_one(struct pci_dev *pdev,
2835 				  const struct pci_device_id *ent)
2836 {
2837 	unsigned long gemreg_base, gemreg_len;
2838 	struct net_device *dev;
2839 	struct gem *gp;
2840 	int err, pci_using_dac;
2841 
2842 	printk_once(KERN_INFO "%s", version);
2843 
2844 	/* Apple gmac note: during probe, the chip is powered up by
2845 	 * the arch code to allow the code below to work (and to let
2846 	 * the chip be probed on the config space. It won't stay powered
2847 	 * up until the interface is brought up however, so we can't rely
2848 	 * on register configuration done at this point.
2849 	 */
2850 	err = pci_enable_device(pdev);
2851 	if (err) {
2852 		pr_err("Cannot enable MMIO operation, aborting\n");
2853 		return err;
2854 	}
2855 	pci_set_master(pdev);
2856 
2857 	/* Configure DMA attributes. */
2858 
2859 	/* All of the GEM documentation states that 64-bit DMA addressing
2860 	 * is fully supported and should work just fine.  However the
2861 	 * front end for RIO based GEMs is different and only supports
2862 	 * 32-bit addressing.
2863 	 *
2864 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2865 	 */
2866 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2867 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2868 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2869 		pci_using_dac = 1;
2870 	} else {
2871 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2872 		if (err) {
2873 			pr_err("No usable DMA configuration, aborting\n");
2874 			goto err_disable_device;
2875 		}
2876 		pci_using_dac = 0;
2877 	}
2878 
2879 	gemreg_base = pci_resource_start(pdev, 0);
2880 	gemreg_len = pci_resource_len(pdev, 0);
2881 
2882 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2883 		pr_err("Cannot find proper PCI device base address, aborting\n");
2884 		err = -ENODEV;
2885 		goto err_disable_device;
2886 	}
2887 
2888 	dev = alloc_etherdev(sizeof(*gp));
2889 	if (!dev) {
2890 		pr_err("Etherdev alloc failed, aborting\n");
2891 		err = -ENOMEM;
2892 		goto err_disable_device;
2893 	}
2894 	SET_NETDEV_DEV(dev, &pdev->dev);
2895 
2896 	gp = netdev_priv(dev);
2897 
2898 	err = pci_request_regions(pdev, DRV_NAME);
2899 	if (err) {
2900 		pr_err("Cannot obtain PCI resources, aborting\n");
2901 		goto err_out_free_netdev;
2902 	}
2903 
2904 	gp->pdev = pdev;
2905 	dev->base_addr = (long) pdev;
2906 	gp->dev = dev;
2907 
2908 	gp->msg_enable = DEFAULT_MSG;
2909 
2910 	init_timer(&gp->link_timer);
2911 	gp->link_timer.function = gem_link_timer;
2912 	gp->link_timer.data = (unsigned long) gp;
2913 
2914 	INIT_WORK(&gp->reset_task, gem_reset_task);
2915 
2916 	gp->lstate = link_down;
2917 	gp->timer_ticks = 0;
2918 	netif_carrier_off(dev);
2919 
2920 	gp->regs = ioremap(gemreg_base, gemreg_len);
2921 	if (!gp->regs) {
2922 		pr_err("Cannot map device registers, aborting\n");
2923 		err = -EIO;
2924 		goto err_out_free_res;
2925 	}
2926 
2927 	/* On Apple, we want a reference to the Open Firmware device-tree
2928 	 * node. We use it for clock control.
2929 	 */
2930 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2931 	gp->of_node = pci_device_to_OF_node(pdev);
2932 #endif
2933 
2934 	/* Only Apple version supports WOL afaik */
2935 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2936 		gp->has_wol = 1;
2937 
2938 	/* Make sure cell is enabled */
2939 	gem_get_cell(gp);
2940 
2941 	/* Make sure everything is stopped and in init state */
2942 	gem_reset(gp);
2943 
2944 	/* Fill up the mii_phy structure (even if we won't use it) */
2945 	gp->phy_mii.dev = dev;
2946 	gp->phy_mii.mdio_read = _phy_read;
2947 	gp->phy_mii.mdio_write = _phy_write;
2948 #ifdef CONFIG_PPC_PMAC
2949 	gp->phy_mii.platform_data = gp->of_node;
2950 #endif
2951 	/* By default, we start with autoneg */
2952 	gp->want_autoneg = 1;
2953 
2954 	/* Check fifo sizes, PHY type, etc... */
2955 	if (gem_check_invariants(gp)) {
2956 		err = -ENODEV;
2957 		goto err_out_iounmap;
2958 	}
2959 
2960 	/* It is guaranteed that the returned buffer will be at least
2961 	 * PAGE_SIZE aligned.
2962 	 */
2963 	gp->init_block = (struct gem_init_block *)
2964 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2965 				     &gp->gblock_dvma);
2966 	if (!gp->init_block) {
2967 		pr_err("Cannot allocate init block, aborting\n");
2968 		err = -ENOMEM;
2969 		goto err_out_iounmap;
2970 	}
2971 
2972 	if (gem_get_device_address(gp))
2973 		goto err_out_free_consistent;
2974 
2975 	dev->netdev_ops = &gem_netdev_ops;
2976 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2977 	dev->ethtool_ops = &gem_ethtool_ops;
2978 	dev->watchdog_timeo = 5 * HZ;
2979 	dev->irq = pdev->irq;
2980 	dev->dma = 0;
2981 
2982 	/* Set that now, in case PM kicks in now */
2983 	pci_set_drvdata(pdev, dev);
2984 
2985 	/* We can do scatter/gather and HW checksum */
2986 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2987 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2988 	if (pci_using_dac)
2989 		dev->features |= NETIF_F_HIGHDMA;
2990 
2991 	/* Register with kernel */
2992 	if (register_netdev(dev)) {
2993 		pr_err("Cannot register net device, aborting\n");
2994 		err = -ENOMEM;
2995 		goto err_out_free_consistent;
2996 	}
2997 
2998 	/* Undo the get_cell with appropriate locking (we could use
2999 	 * ndo_init/uninit but that would be even more clumsy imho)
3000 	 */
3001 	rtnl_lock();
3002 	gem_put_cell(gp);
3003 	rtnl_unlock();
3004 
3005 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3006 		    dev->dev_addr);
3007 	return 0;
3008 
3009 err_out_free_consistent:
3010 	gem_remove_one(pdev);
3011 err_out_iounmap:
3012 	gem_put_cell(gp);
3013 	iounmap(gp->regs);
3014 
3015 err_out_free_res:
3016 	pci_release_regions(pdev);
3017 
3018 err_out_free_netdev:
3019 	free_netdev(dev);
3020 err_disable_device:
3021 	pci_disable_device(pdev);
3022 	return err;
3023 
3024 }
3025 
3026 
3027 static struct pci_driver gem_driver = {
3028 	.name		= GEM_MODULE_NAME,
3029 	.id_table	= gem_pci_tbl,
3030 	.probe		= gem_init_one,
3031 	.remove		= gem_remove_one,
3032 #ifdef CONFIG_PM
3033 	.suspend	= gem_suspend,
3034 	.resume		= gem_resume,
3035 #endif /* CONFIG_PM */
3036 };
3037 
3038 static int __init gem_init(void)
3039 {
3040 	return pci_register_driver(&gem_driver);
3041 }
3042 
3043 static void __exit gem_cleanup(void)
3044 {
3045 	pci_unregister_driver(&gem_driver);
3046 }
3047 
3048 module_init(gem_init);
3049 module_exit(gem_cleanup);
3050