xref: /openbmc/linux/drivers/net/ethernet/sun/sungem.c (revision 0d6c4a2e)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
47 #include <asm/irq.h>
48 
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
53 
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/pci-bridge.h>
56 #include <asm/prom.h>
57 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h>
59 #endif
60 
61 #include <linux/sungem_phy.h>
62 #include "sungem.h"
63 
64 /* Stripping FCS is causing problems, disabled for now */
65 #undef STRIP_FCS
66 
67 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
68 			 NETIF_MSG_PROBE	| \
69 			 NETIF_MSG_LINK)
70 
71 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
75 
76 #define DRV_NAME	"sungem"
77 #define DRV_VERSION	"1.0"
78 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
79 
80 static char version[] __devinitdata =
81         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
82 
83 MODULE_AUTHOR(DRV_AUTHOR);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL");
86 
87 #define GEM_MODULE_NAME	"gem"
88 
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
90 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
91 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
92 
93 	/* These models only differ from the original GEM in
94 	 * that their tx/rx fifos are of a different size and
95 	 * they only support 10/100 speeds. -DaveM
96 	 *
97 	 * Apple's GMAC does support gigabit on machines with
98 	 * the BCM54xx PHYs. -BenH
99 	 */
100 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
109 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
111 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
113 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114 	{0, }
115 };
116 
117 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
118 
119 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
120 {
121 	u32 cmd;
122 	int limit = 10000;
123 
124 	cmd  = (1 << 30);
125 	cmd |= (2 << 28);
126 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
127 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
128 	cmd |= (MIF_FRAME_TAMSB);
129 	writel(cmd, gp->regs + MIF_FRAME);
130 
131 	while (--limit) {
132 		cmd = readl(gp->regs + MIF_FRAME);
133 		if (cmd & MIF_FRAME_TALSB)
134 			break;
135 
136 		udelay(10);
137 	}
138 
139 	if (!limit)
140 		cmd = 0xffff;
141 
142 	return cmd & MIF_FRAME_DATA;
143 }
144 
145 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
146 {
147 	struct gem *gp = netdev_priv(dev);
148 	return __phy_read(gp, mii_id, reg);
149 }
150 
151 static inline u16 phy_read(struct gem *gp, int reg)
152 {
153 	return __phy_read(gp, gp->mii_phy_addr, reg);
154 }
155 
156 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
157 {
158 	u32 cmd;
159 	int limit = 10000;
160 
161 	cmd  = (1 << 30);
162 	cmd |= (1 << 28);
163 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
164 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
165 	cmd |= (MIF_FRAME_TAMSB);
166 	cmd |= (val & MIF_FRAME_DATA);
167 	writel(cmd, gp->regs + MIF_FRAME);
168 
169 	while (limit--) {
170 		cmd = readl(gp->regs + MIF_FRAME);
171 		if (cmd & MIF_FRAME_TALSB)
172 			break;
173 
174 		udelay(10);
175 	}
176 }
177 
178 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
179 {
180 	struct gem *gp = netdev_priv(dev);
181 	__phy_write(gp, mii_id, reg, val & 0xffff);
182 }
183 
184 static inline void phy_write(struct gem *gp, int reg, u16 val)
185 {
186 	__phy_write(gp, gp->mii_phy_addr, reg, val);
187 }
188 
189 static inline void gem_enable_ints(struct gem *gp)
190 {
191 	/* Enable all interrupts but TXDONE */
192 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 }
194 
195 static inline void gem_disable_ints(struct gem *gp)
196 {
197 	/* Disable all interrupts, including TXDONE */
198 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
199 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
200 }
201 
202 static void gem_get_cell(struct gem *gp)
203 {
204 	BUG_ON(gp->cell_enabled < 0);
205 	gp->cell_enabled++;
206 #ifdef CONFIG_PPC_PMAC
207 	if (gp->cell_enabled == 1) {
208 		mb();
209 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
210 		udelay(10);
211 	}
212 #endif /* CONFIG_PPC_PMAC */
213 }
214 
215 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem *gp)
217 {
218 	BUG_ON(gp->cell_enabled <= 0);
219 	gp->cell_enabled--;
220 #ifdef CONFIG_PPC_PMAC
221 	if (gp->cell_enabled == 0) {
222 		mb();
223 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
224 		udelay(10);
225 	}
226 #endif /* CONFIG_PPC_PMAC */
227 }
228 
229 static inline void gem_netif_stop(struct gem *gp)
230 {
231 	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
232 	napi_disable(&gp->napi);
233 	netif_tx_disable(gp->dev);
234 }
235 
236 static inline void gem_netif_start(struct gem *gp)
237 {
238 	/* NOTE: unconditional netif_wake_queue is only
239 	 * appropriate so long as all callers are assured to
240 	 * have free tx slots.
241 	 */
242 	netif_wake_queue(gp->dev);
243 	napi_enable(&gp->napi);
244 }
245 
246 static void gem_schedule_reset(struct gem *gp)
247 {
248 	gp->reset_task_pending = 1;
249 	schedule_work(&gp->reset_task);
250 }
251 
252 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
253 {
254 	if (netif_msg_intr(gp))
255 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 }
257 
258 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
259 {
260 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 	u32 pcs_miistat;
262 
263 	if (netif_msg_intr(gp))
264 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
265 			gp->dev->name, pcs_istat);
266 
267 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
268 		netdev_err(dev, "PCS irq but no link status change???\n");
269 		return 0;
270 	}
271 
272 	/* The link status bit latches on zero, so you must
273 	 * read it twice in such a case to see a transition
274 	 * to the link being up.
275 	 */
276 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
277 	if (!(pcs_miistat & PCS_MIISTAT_LS))
278 		pcs_miistat |=
279 			(readl(gp->regs + PCS_MIISTAT) &
280 			 PCS_MIISTAT_LS);
281 
282 	if (pcs_miistat & PCS_MIISTAT_ANC) {
283 		/* The remote-fault indication is only valid
284 		 * when autoneg has completed.
285 		 */
286 		if (pcs_miistat & PCS_MIISTAT_RF)
287 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
288 		else
289 			netdev_info(dev, "PCS AutoNEG complete\n");
290 	}
291 
292 	if (pcs_miistat & PCS_MIISTAT_LS) {
293 		netdev_info(dev, "PCS link is now up\n");
294 		netif_carrier_on(gp->dev);
295 	} else {
296 		netdev_info(dev, "PCS link is now down\n");
297 		netif_carrier_off(gp->dev);
298 		/* If this happens and the link timer is not running,
299 		 * reset so we re-negotiate.
300 		 */
301 		if (!timer_pending(&gp->link_timer))
302 			return 1;
303 	}
304 
305 	return 0;
306 }
307 
308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
309 {
310 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
311 
312 	if (netif_msg_intr(gp))
313 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
314 			gp->dev->name, txmac_stat);
315 
316 	/* Defer timer expiration is quite normal,
317 	 * don't even log the event.
318 	 */
319 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
320 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
321 		return 0;
322 
323 	if (txmac_stat & MAC_TXSTAT_URUN) {
324 		netdev_err(dev, "TX MAC xmit underrun\n");
325 		dev->stats.tx_fifo_errors++;
326 	}
327 
328 	if (txmac_stat & MAC_TXSTAT_MPE) {
329 		netdev_err(dev, "TX MAC max packet size error\n");
330 		dev->stats.tx_errors++;
331 	}
332 
333 	/* The rest are all cases of one of the 16-bit TX
334 	 * counters expiring.
335 	 */
336 	if (txmac_stat & MAC_TXSTAT_NCE)
337 		dev->stats.collisions += 0x10000;
338 
339 	if (txmac_stat & MAC_TXSTAT_ECE) {
340 		dev->stats.tx_aborted_errors += 0x10000;
341 		dev->stats.collisions += 0x10000;
342 	}
343 
344 	if (txmac_stat & MAC_TXSTAT_LCE) {
345 		dev->stats.tx_aborted_errors += 0x10000;
346 		dev->stats.collisions += 0x10000;
347 	}
348 
349 	/* We do not keep track of MAC_TXSTAT_FCE and
350 	 * MAC_TXSTAT_PCE events.
351 	 */
352 	return 0;
353 }
354 
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356  * so we do the following.
357  *
358  * If any part of the reset goes wrong, we return 1 and that causes the
359  * whole chip to be reset.
360  */
361 static int gem_rxmac_reset(struct gem *gp)
362 {
363 	struct net_device *dev = gp->dev;
364 	int limit, i;
365 	u64 desc_dma;
366 	u32 val;
367 
368 	/* First, reset & disable MAC RX. */
369 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
370 	for (limit = 0; limit < 5000; limit++) {
371 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
372 			break;
373 		udelay(10);
374 	}
375 	if (limit == 5000) {
376 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
377 		return 1;
378 	}
379 
380 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
381 	       gp->regs + MAC_RXCFG);
382 	for (limit = 0; limit < 5000; limit++) {
383 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
384 			break;
385 		udelay(10);
386 	}
387 	if (limit == 5000) {
388 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
389 		return 1;
390 	}
391 
392 	/* Second, disable RX DMA. */
393 	writel(0, gp->regs + RXDMA_CFG);
394 	for (limit = 0; limit < 5000; limit++) {
395 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
396 			break;
397 		udelay(10);
398 	}
399 	if (limit == 5000) {
400 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
401 		return 1;
402 	}
403 
404 	mdelay(5);
405 
406 	/* Execute RX reset command. */
407 	writel(gp->swrst_base | GREG_SWRST_RXRST,
408 	       gp->regs + GREG_SWRST);
409 	for (limit = 0; limit < 5000; limit++) {
410 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
411 			break;
412 		udelay(10);
413 	}
414 	if (limit == 5000) {
415 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
416 		return 1;
417 	}
418 
419 	/* Refresh the RX ring. */
420 	for (i = 0; i < RX_RING_SIZE; i++) {
421 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
422 
423 		if (gp->rx_skbs[i] == NULL) {
424 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
425 			return 1;
426 		}
427 
428 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
429 	}
430 	gp->rx_new = gp->rx_old = 0;
431 
432 	/* Now we must reprogram the rest of RX unit. */
433 	desc_dma = (u64) gp->gblock_dvma;
434 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
435 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
436 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
437 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
438 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
439 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
440 	writel(val, gp->regs + RXDMA_CFG);
441 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
442 		writel(((5 & RXDMA_BLANK_IPKTS) |
443 			((8 << 12) & RXDMA_BLANK_ITIME)),
444 		       gp->regs + RXDMA_BLANK);
445 	else
446 		writel(((5 & RXDMA_BLANK_IPKTS) |
447 			((4 << 12) & RXDMA_BLANK_ITIME)),
448 		       gp->regs + RXDMA_BLANK);
449 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
450 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
451 	writel(val, gp->regs + RXDMA_PTHRESH);
452 	val = readl(gp->regs + RXDMA_CFG);
453 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
454 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
455 	val = readl(gp->regs + MAC_RXCFG);
456 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
457 
458 	return 0;
459 }
460 
461 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
462 {
463 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
464 	int ret = 0;
465 
466 	if (netif_msg_intr(gp))
467 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 			gp->dev->name, rxmac_stat);
469 
470 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
471 		u32 smac = readl(gp->regs + MAC_SMACHINE);
472 
473 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
474 		dev->stats.rx_over_errors++;
475 		dev->stats.rx_fifo_errors++;
476 
477 		ret = gem_rxmac_reset(gp);
478 	}
479 
480 	if (rxmac_stat & MAC_RXSTAT_ACE)
481 		dev->stats.rx_frame_errors += 0x10000;
482 
483 	if (rxmac_stat & MAC_RXSTAT_CCE)
484 		dev->stats.rx_crc_errors += 0x10000;
485 
486 	if (rxmac_stat & MAC_RXSTAT_LCE)
487 		dev->stats.rx_length_errors += 0x10000;
488 
489 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
490 	 * events.
491 	 */
492 	return ret;
493 }
494 
495 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
496 {
497 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
498 
499 	if (netif_msg_intr(gp))
500 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
501 			gp->dev->name, mac_cstat);
502 
503 	/* This interrupt is just for pause frame and pause
504 	 * tracking.  It is useful for diagnostics and debug
505 	 * but probably by default we will mask these events.
506 	 */
507 	if (mac_cstat & MAC_CSTAT_PS)
508 		gp->pause_entered++;
509 
510 	if (mac_cstat & MAC_CSTAT_PRCV)
511 		gp->pause_last_time_recvd = (mac_cstat >> 16);
512 
513 	return 0;
514 }
515 
516 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
517 {
518 	u32 mif_status = readl(gp->regs + MIF_STATUS);
519 	u32 reg_val, changed_bits;
520 
521 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
522 	changed_bits = (mif_status & MIF_STATUS_STAT);
523 
524 	gem_handle_mif_event(gp, reg_val, changed_bits);
525 
526 	return 0;
527 }
528 
529 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
530 {
531 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
532 
533 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
534 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
535 		netdev_err(dev, "PCI error [%04x]", pci_estat);
536 
537 		if (pci_estat & GREG_PCIESTAT_BADACK)
538 			pr_cont(" <No ACK64# during ABS64 cycle>");
539 		if (pci_estat & GREG_PCIESTAT_DTRTO)
540 			pr_cont(" <Delayed transaction timeout>");
541 		if (pci_estat & GREG_PCIESTAT_OTHER)
542 			pr_cont(" <other>");
543 		pr_cont("\n");
544 	} else {
545 		pci_estat |= GREG_PCIESTAT_OTHER;
546 		netdev_err(dev, "PCI error\n");
547 	}
548 
549 	if (pci_estat & GREG_PCIESTAT_OTHER) {
550 		u16 pci_cfg_stat;
551 
552 		/* Interrogate PCI config space for the
553 		 * true cause.
554 		 */
555 		pci_read_config_word(gp->pdev, PCI_STATUS,
556 				     &pci_cfg_stat);
557 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
558 			   pci_cfg_stat);
559 		if (pci_cfg_stat & PCI_STATUS_PARITY)
560 			netdev_err(dev, "PCI parity error detected\n");
561 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
562 			netdev_err(dev, "PCI target abort\n");
563 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
564 			netdev_err(dev, "PCI master acks target abort\n");
565 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
566 			netdev_err(dev, "PCI master abort\n");
567 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
568 			netdev_err(dev, "PCI system error SERR#\n");
569 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
570 			netdev_err(dev, "PCI parity error\n");
571 
572 		/* Write the error bits back to clear them. */
573 		pci_cfg_stat &= (PCI_STATUS_PARITY |
574 				 PCI_STATUS_SIG_TARGET_ABORT |
575 				 PCI_STATUS_REC_TARGET_ABORT |
576 				 PCI_STATUS_REC_MASTER_ABORT |
577 				 PCI_STATUS_SIG_SYSTEM_ERROR |
578 				 PCI_STATUS_DETECTED_PARITY);
579 		pci_write_config_word(gp->pdev,
580 				      PCI_STATUS, pci_cfg_stat);
581 	}
582 
583 	/* For all PCI errors, we should reset the chip. */
584 	return 1;
585 }
586 
587 /* All non-normal interrupt conditions get serviced here.
588  * Returns non-zero if we should just exit the interrupt
589  * handler right now (ie. if we reset the card which invalidates
590  * all of the other original irq status bits).
591  */
592 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
593 {
594 	if (gem_status & GREG_STAT_RXNOBUF) {
595 		/* Frame arrived, no free RX buffers available. */
596 		if (netif_msg_rx_err(gp))
597 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
598 				gp->dev->name);
599 		dev->stats.rx_dropped++;
600 	}
601 
602 	if (gem_status & GREG_STAT_RXTAGERR) {
603 		/* corrupt RX tag framing */
604 		if (netif_msg_rx_err(gp))
605 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
606 				gp->dev->name);
607 		dev->stats.rx_errors++;
608 
609 		return 1;
610 	}
611 
612 	if (gem_status & GREG_STAT_PCS) {
613 		if (gem_pcs_interrupt(dev, gp, gem_status))
614 			return 1;
615 	}
616 
617 	if (gem_status & GREG_STAT_TXMAC) {
618 		if (gem_txmac_interrupt(dev, gp, gem_status))
619 			return 1;
620 	}
621 
622 	if (gem_status & GREG_STAT_RXMAC) {
623 		if (gem_rxmac_interrupt(dev, gp, gem_status))
624 			return 1;
625 	}
626 
627 	if (gem_status & GREG_STAT_MAC) {
628 		if (gem_mac_interrupt(dev, gp, gem_status))
629 			return 1;
630 	}
631 
632 	if (gem_status & GREG_STAT_MIF) {
633 		if (gem_mif_interrupt(dev, gp, gem_status))
634 			return 1;
635 	}
636 
637 	if (gem_status & GREG_STAT_PCIERR) {
638 		if (gem_pci_interrupt(dev, gp, gem_status))
639 			return 1;
640 	}
641 
642 	return 0;
643 }
644 
645 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
646 {
647 	int entry, limit;
648 
649 	entry = gp->tx_old;
650 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
651 	while (entry != limit) {
652 		struct sk_buff *skb;
653 		struct gem_txd *txd;
654 		dma_addr_t dma_addr;
655 		u32 dma_len;
656 		int frag;
657 
658 		if (netif_msg_tx_done(gp))
659 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
660 				gp->dev->name, entry);
661 		skb = gp->tx_skbs[entry];
662 		if (skb_shinfo(skb)->nr_frags) {
663 			int last = entry + skb_shinfo(skb)->nr_frags;
664 			int walk = entry;
665 			int incomplete = 0;
666 
667 			last &= (TX_RING_SIZE - 1);
668 			for (;;) {
669 				walk = NEXT_TX(walk);
670 				if (walk == limit)
671 					incomplete = 1;
672 				if (walk == last)
673 					break;
674 			}
675 			if (incomplete)
676 				break;
677 		}
678 		gp->tx_skbs[entry] = NULL;
679 		dev->stats.tx_bytes += skb->len;
680 
681 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
682 			txd = &gp->init_block->txd[entry];
683 
684 			dma_addr = le64_to_cpu(txd->buffer);
685 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
686 
687 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
688 			entry = NEXT_TX(entry);
689 		}
690 
691 		dev->stats.tx_packets++;
692 		dev_kfree_skb(skb);
693 	}
694 	gp->tx_old = entry;
695 
696 	/* Need to make the tx_old update visible to gem_start_xmit()
697 	 * before checking for netif_queue_stopped().  Without the
698 	 * memory barrier, there is a small possibility that gem_start_xmit()
699 	 * will miss it and cause the queue to be stopped forever.
700 	 */
701 	smp_mb();
702 
703 	if (unlikely(netif_queue_stopped(dev) &&
704 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
705 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
706 
707 		__netif_tx_lock(txq, smp_processor_id());
708 		if (netif_queue_stopped(dev) &&
709 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
710 			netif_wake_queue(dev);
711 		__netif_tx_unlock(txq);
712 	}
713 }
714 
715 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
716 {
717 	int cluster_start, curr, count, kick;
718 
719 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
720 	count = 0;
721 	kick = -1;
722 	wmb();
723 	while (curr != limit) {
724 		curr = NEXT_RX(curr);
725 		if (++count == 4) {
726 			struct gem_rxd *rxd =
727 				&gp->init_block->rxd[cluster_start];
728 			for (;;) {
729 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
730 				rxd++;
731 				cluster_start = NEXT_RX(cluster_start);
732 				if (cluster_start == curr)
733 					break;
734 			}
735 			kick = curr;
736 			count = 0;
737 		}
738 	}
739 	if (kick >= 0) {
740 		mb();
741 		writel(kick, gp->regs + RXDMA_KICK);
742 	}
743 }
744 
745 #define ALIGNED_RX_SKB_ADDR(addr) \
746         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
748 						gfp_t gfp_flags)
749 {
750 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
751 
752 	if (likely(skb)) {
753 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
754 		skb_reserve(skb, offset);
755 		skb->dev = dev;
756 	}
757 	return skb;
758 }
759 
760 static int gem_rx(struct gem *gp, int work_to_do)
761 {
762 	struct net_device *dev = gp->dev;
763 	int entry, drops, work_done = 0;
764 	u32 done;
765 	__sum16 csum;
766 
767 	if (netif_msg_rx_status(gp))
768 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
769 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
770 
771 	entry = gp->rx_new;
772 	drops = 0;
773 	done = readl(gp->regs + RXDMA_DONE);
774 	for (;;) {
775 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
776 		struct sk_buff *skb;
777 		u64 status = le64_to_cpu(rxd->status_word);
778 		dma_addr_t dma_addr;
779 		int len;
780 
781 		if ((status & RXDCTRL_OWN) != 0)
782 			break;
783 
784 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
785 			break;
786 
787 		/* When writing back RX descriptor, GEM writes status
788 		 * then buffer address, possibly in separate transactions.
789 		 * If we don't wait for the chip to write both, we could
790 		 * post a new buffer to this descriptor then have GEM spam
791 		 * on the buffer address.  We sync on the RX completion
792 		 * register to prevent this from happening.
793 		 */
794 		if (entry == done) {
795 			done = readl(gp->regs + RXDMA_DONE);
796 			if (entry == done)
797 				break;
798 		}
799 
800 		/* We can now account for the work we're about to do */
801 		work_done++;
802 
803 		skb = gp->rx_skbs[entry];
804 
805 		len = (status & RXDCTRL_BUFSZ) >> 16;
806 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
807 			dev->stats.rx_errors++;
808 			if (len < ETH_ZLEN)
809 				dev->stats.rx_length_errors++;
810 			if (len & RXDCTRL_BAD)
811 				dev->stats.rx_crc_errors++;
812 
813 			/* We'll just return it to GEM. */
814 		drop_it:
815 			dev->stats.rx_dropped++;
816 			goto next;
817 		}
818 
819 		dma_addr = le64_to_cpu(rxd->buffer);
820 		if (len > RX_COPY_THRESHOLD) {
821 			struct sk_buff *new_skb;
822 
823 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
824 			if (new_skb == NULL) {
825 				drops++;
826 				goto drop_it;
827 			}
828 			pci_unmap_page(gp->pdev, dma_addr,
829 				       RX_BUF_ALLOC_SIZE(gp),
830 				       PCI_DMA_FROMDEVICE);
831 			gp->rx_skbs[entry] = new_skb;
832 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
833 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
834 							       virt_to_page(new_skb->data),
835 							       offset_in_page(new_skb->data),
836 							       RX_BUF_ALLOC_SIZE(gp),
837 							       PCI_DMA_FROMDEVICE));
838 			skb_reserve(new_skb, RX_OFFSET);
839 
840 			/* Trim the original skb for the netif. */
841 			skb_trim(skb, len);
842 		} else {
843 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
844 
845 			if (copy_skb == NULL) {
846 				drops++;
847 				goto drop_it;
848 			}
849 
850 			skb_reserve(copy_skb, 2);
851 			skb_put(copy_skb, len);
852 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 			skb_copy_from_linear_data(skb, copy_skb->data, len);
854 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
855 
856 			/* We'll reuse the original ring buffer. */
857 			skb = copy_skb;
858 		}
859 
860 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
861 		skb->csum = csum_unfold(csum);
862 		skb->ip_summed = CHECKSUM_COMPLETE;
863 		skb->protocol = eth_type_trans(skb, gp->dev);
864 
865 		napi_gro_receive(&gp->napi, skb);
866 
867 		dev->stats.rx_packets++;
868 		dev->stats.rx_bytes += len;
869 
870 	next:
871 		entry = NEXT_RX(entry);
872 	}
873 
874 	gem_post_rxds(gp, entry);
875 
876 	gp->rx_new = entry;
877 
878 	if (drops)
879 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
880 
881 	return work_done;
882 }
883 
884 static int gem_poll(struct napi_struct *napi, int budget)
885 {
886 	struct gem *gp = container_of(napi, struct gem, napi);
887 	struct net_device *dev = gp->dev;
888 	int work_done;
889 
890 	work_done = 0;
891 	do {
892 		/* Handle anomalies */
893 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
894 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
895 			int reset;
896 
897 			/* We run the abnormal interrupt handling code with
898 			 * the Tx lock. It only resets the Rx portion of the
899 			 * chip, but we need to guard it against DMA being
900 			 * restarted by the link poll timer
901 			 */
902 			__netif_tx_lock(txq, smp_processor_id());
903 			reset = gem_abnormal_irq(dev, gp, gp->status);
904 			__netif_tx_unlock(txq);
905 			if (reset) {
906 				gem_schedule_reset(gp);
907 				napi_complete(napi);
908 				return work_done;
909 			}
910 		}
911 
912 		/* Run TX completion thread */
913 		gem_tx(dev, gp, gp->status);
914 
915 		/* Run RX thread. We don't use any locking here,
916 		 * code willing to do bad things - like cleaning the
917 		 * rx ring - must call napi_disable(), which
918 		 * schedule_timeout()'s if polling is already disabled.
919 		 */
920 		work_done += gem_rx(gp, budget - work_done);
921 
922 		if (work_done >= budget)
923 			return work_done;
924 
925 		gp->status = readl(gp->regs + GREG_STAT);
926 	} while (gp->status & GREG_STAT_NAPI);
927 
928 	napi_complete(napi);
929 	gem_enable_ints(gp);
930 
931 	return work_done;
932 }
933 
934 static irqreturn_t gem_interrupt(int irq, void *dev_id)
935 {
936 	struct net_device *dev = dev_id;
937 	struct gem *gp = netdev_priv(dev);
938 
939 	if (napi_schedule_prep(&gp->napi)) {
940 		u32 gem_status = readl(gp->regs + GREG_STAT);
941 
942 		if (unlikely(gem_status == 0)) {
943 			napi_enable(&gp->napi);
944 			return IRQ_NONE;
945 		}
946 		if (netif_msg_intr(gp))
947 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
948 			       gp->dev->name, gem_status);
949 
950 		gp->status = gem_status;
951 		gem_disable_ints(gp);
952 		__napi_schedule(&gp->napi);
953 	}
954 
955 	/* If polling was disabled at the time we received that
956 	 * interrupt, we may return IRQ_HANDLED here while we
957 	 * should return IRQ_NONE. No big deal...
958 	 */
959 	return IRQ_HANDLED;
960 }
961 
962 #ifdef CONFIG_NET_POLL_CONTROLLER
963 static void gem_poll_controller(struct net_device *dev)
964 {
965 	struct gem *gp = netdev_priv(dev);
966 
967 	disable_irq(gp->pdev->irq);
968 	gem_interrupt(gp->pdev->irq, dev);
969 	enable_irq(gp->pdev->irq);
970 }
971 #endif
972 
973 static void gem_tx_timeout(struct net_device *dev)
974 {
975 	struct gem *gp = netdev_priv(dev);
976 
977 	netdev_err(dev, "transmit timed out, resetting\n");
978 
979 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
980 		   readl(gp->regs + TXDMA_CFG),
981 		   readl(gp->regs + MAC_TXSTAT),
982 		   readl(gp->regs + MAC_TXCFG));
983 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
984 		   readl(gp->regs + RXDMA_CFG),
985 		   readl(gp->regs + MAC_RXSTAT),
986 		   readl(gp->regs + MAC_RXCFG));
987 
988 	gem_schedule_reset(gp);
989 }
990 
991 static __inline__ int gem_intme(int entry)
992 {
993 	/* Algorithm: IRQ every 1/2 of descriptors. */
994 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
995 		return 1;
996 
997 	return 0;
998 }
999 
1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001 				  struct net_device *dev)
1002 {
1003 	struct gem *gp = netdev_priv(dev);
1004 	int entry;
1005 	u64 ctrl;
1006 
1007 	ctrl = 0;
1008 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1010 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011 
1012 		ctrl = (TXDCTRL_CENAB |
1013 			(csum_start_off << 15) |
1014 			(csum_stuff_off << 21));
1015 	}
1016 
1017 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018 		/* This is a hard error, log it. */
1019 		if (!netif_queue_stopped(dev)) {
1020 			netif_stop_queue(dev);
1021 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022 		}
1023 		return NETDEV_TX_BUSY;
1024 	}
1025 
1026 	entry = gp->tx_new;
1027 	gp->tx_skbs[entry] = skb;
1028 
1029 	if (skb_shinfo(skb)->nr_frags == 0) {
1030 		struct gem_txd *txd = &gp->init_block->txd[entry];
1031 		dma_addr_t mapping;
1032 		u32 len;
1033 
1034 		len = skb->len;
1035 		mapping = pci_map_page(gp->pdev,
1036 				       virt_to_page(skb->data),
1037 				       offset_in_page(skb->data),
1038 				       len, PCI_DMA_TODEVICE);
1039 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040 		if (gem_intme(entry))
1041 			ctrl |= TXDCTRL_INTME;
1042 		txd->buffer = cpu_to_le64(mapping);
1043 		wmb();
1044 		txd->control_word = cpu_to_le64(ctrl);
1045 		entry = NEXT_TX(entry);
1046 	} else {
1047 		struct gem_txd *txd;
1048 		u32 first_len;
1049 		u64 intme;
1050 		dma_addr_t first_mapping;
1051 		int frag, first_entry = entry;
1052 
1053 		intme = 0;
1054 		if (gem_intme(entry))
1055 			intme |= TXDCTRL_INTME;
1056 
1057 		/* We must give this initial chunk to the device last.
1058 		 * Otherwise we could race with the device.
1059 		 */
1060 		first_len = skb_headlen(skb);
1061 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062 					     offset_in_page(skb->data),
1063 					     first_len, PCI_DMA_TODEVICE);
1064 		entry = NEXT_TX(entry);
1065 
1066 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068 			u32 len;
1069 			dma_addr_t mapping;
1070 			u64 this_ctrl;
1071 
1072 			len = skb_frag_size(this_frag);
1073 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1074 						   0, len, DMA_TO_DEVICE);
1075 			this_ctrl = ctrl;
1076 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1077 				this_ctrl |= TXDCTRL_EOF;
1078 
1079 			txd = &gp->init_block->txd[entry];
1080 			txd->buffer = cpu_to_le64(mapping);
1081 			wmb();
1082 			txd->control_word = cpu_to_le64(this_ctrl | len);
1083 
1084 			if (gem_intme(entry))
1085 				intme |= TXDCTRL_INTME;
1086 
1087 			entry = NEXT_TX(entry);
1088 		}
1089 		txd = &gp->init_block->txd[first_entry];
1090 		txd->buffer = cpu_to_le64(first_mapping);
1091 		wmb();
1092 		txd->control_word =
1093 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1094 	}
1095 
1096 	gp->tx_new = entry;
1097 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1098 		netif_stop_queue(dev);
1099 
1100 		/* netif_stop_queue() must be done before checking
1101 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1102 		 * in gem_tx(), we update tx_old before checking for
1103 		 * netif_queue_stopped().
1104 		 */
1105 		smp_mb();
1106 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1107 			netif_wake_queue(dev);
1108 	}
1109 	if (netif_msg_tx_queued(gp))
1110 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1111 		       dev->name, entry, skb->len);
1112 	mb();
1113 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1114 
1115 	return NETDEV_TX_OK;
1116 }
1117 
1118 static void gem_pcs_reset(struct gem *gp)
1119 {
1120 	int limit;
1121 	u32 val;
1122 
1123 	/* Reset PCS unit. */
1124 	val = readl(gp->regs + PCS_MIICTRL);
1125 	val |= PCS_MIICTRL_RST;
1126 	writel(val, gp->regs + PCS_MIICTRL);
1127 
1128 	limit = 32;
1129 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1130 		udelay(100);
1131 		if (limit-- <= 0)
1132 			break;
1133 	}
1134 	if (limit < 0)
1135 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1136 }
1137 
1138 static void gem_pcs_reinit_adv(struct gem *gp)
1139 {
1140 	u32 val;
1141 
1142 	/* Make sure PCS is disabled while changing advertisement
1143 	 * configuration.
1144 	 */
1145 	val = readl(gp->regs + PCS_CFG);
1146 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1147 	writel(val, gp->regs + PCS_CFG);
1148 
1149 	/* Advertise all capabilities except asymmetric
1150 	 * pause.
1151 	 */
1152 	val = readl(gp->regs + PCS_MIIADV);
1153 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1154 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1155 	writel(val, gp->regs + PCS_MIIADV);
1156 
1157 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1158 	 * and re-enable PCS.
1159 	 */
1160 	val = readl(gp->regs + PCS_MIICTRL);
1161 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1162 	val &= ~PCS_MIICTRL_WB;
1163 	writel(val, gp->regs + PCS_MIICTRL);
1164 
1165 	val = readl(gp->regs + PCS_CFG);
1166 	val |= PCS_CFG_ENABLE;
1167 	writel(val, gp->regs + PCS_CFG);
1168 
1169 	/* Make sure serialink loopback is off.  The meaning
1170 	 * of this bit is logically inverted based upon whether
1171 	 * you are in Serialink or SERDES mode.
1172 	 */
1173 	val = readl(gp->regs + PCS_SCTRL);
1174 	if (gp->phy_type == phy_serialink)
1175 		val &= ~PCS_SCTRL_LOOP;
1176 	else
1177 		val |= PCS_SCTRL_LOOP;
1178 	writel(val, gp->regs + PCS_SCTRL);
1179 }
1180 
1181 #define STOP_TRIES 32
1182 
1183 static void gem_reset(struct gem *gp)
1184 {
1185 	int limit;
1186 	u32 val;
1187 
1188 	/* Make sure we won't get any more interrupts */
1189 	writel(0xffffffff, gp->regs + GREG_IMASK);
1190 
1191 	/* Reset the chip */
1192 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1193 	       gp->regs + GREG_SWRST);
1194 
1195 	limit = STOP_TRIES;
1196 
1197 	do {
1198 		udelay(20);
1199 		val = readl(gp->regs + GREG_SWRST);
1200 		if (limit-- <= 0)
1201 			break;
1202 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1203 
1204 	if (limit < 0)
1205 		netdev_err(gp->dev, "SW reset is ghetto\n");
1206 
1207 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1208 		gem_pcs_reinit_adv(gp);
1209 }
1210 
1211 static void gem_start_dma(struct gem *gp)
1212 {
1213 	u32 val;
1214 
1215 	/* We are ready to rock, turn everything on. */
1216 	val = readl(gp->regs + TXDMA_CFG);
1217 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1218 	val = readl(gp->regs + RXDMA_CFG);
1219 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1220 	val = readl(gp->regs + MAC_TXCFG);
1221 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1222 	val = readl(gp->regs + MAC_RXCFG);
1223 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1224 
1225 	(void) readl(gp->regs + MAC_RXCFG);
1226 	udelay(100);
1227 
1228 	gem_enable_ints(gp);
1229 
1230 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1231 }
1232 
1233 /* DMA won't be actually stopped before about 4ms tho ...
1234  */
1235 static void gem_stop_dma(struct gem *gp)
1236 {
1237 	u32 val;
1238 
1239 	/* We are done rocking, turn everything off. */
1240 	val = readl(gp->regs + TXDMA_CFG);
1241 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1242 	val = readl(gp->regs + RXDMA_CFG);
1243 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1244 	val = readl(gp->regs + MAC_TXCFG);
1245 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1246 	val = readl(gp->regs + MAC_RXCFG);
1247 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1248 
1249 	(void) readl(gp->regs + MAC_RXCFG);
1250 
1251 	/* Need to wait a bit ... done by the caller */
1252 }
1253 
1254 
1255 // XXX dbl check what that function should do when called on PCS PHY
1256 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1257 {
1258 	u32 advertise, features;
1259 	int autoneg;
1260 	int speed;
1261 	int duplex;
1262 
1263 	if (gp->phy_type != phy_mii_mdio0 &&
1264      	    gp->phy_type != phy_mii_mdio1)
1265      	    	goto non_mii;
1266 
1267 	/* Setup advertise */
1268 	if (found_mii_phy(gp))
1269 		features = gp->phy_mii.def->features;
1270 	else
1271 		features = 0;
1272 
1273 	advertise = features & ADVERTISE_MASK;
1274 	if (gp->phy_mii.advertising != 0)
1275 		advertise &= gp->phy_mii.advertising;
1276 
1277 	autoneg = gp->want_autoneg;
1278 	speed = gp->phy_mii.speed;
1279 	duplex = gp->phy_mii.duplex;
1280 
1281 	/* Setup link parameters */
1282 	if (!ep)
1283 		goto start_aneg;
1284 	if (ep->autoneg == AUTONEG_ENABLE) {
1285 		advertise = ep->advertising;
1286 		autoneg = 1;
1287 	} else {
1288 		autoneg = 0;
1289 		speed = ethtool_cmd_speed(ep);
1290 		duplex = ep->duplex;
1291 	}
1292 
1293 start_aneg:
1294 	/* Sanitize settings based on PHY capabilities */
1295 	if ((features & SUPPORTED_Autoneg) == 0)
1296 		autoneg = 0;
1297 	if (speed == SPEED_1000 &&
1298 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1299 		speed = SPEED_100;
1300 	if (speed == SPEED_100 &&
1301 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1302 		speed = SPEED_10;
1303 	if (duplex == DUPLEX_FULL &&
1304 	    !(features & (SUPPORTED_1000baseT_Full |
1305 	    		  SUPPORTED_100baseT_Full |
1306 	    		  SUPPORTED_10baseT_Full)))
1307 	    	duplex = DUPLEX_HALF;
1308 	if (speed == 0)
1309 		speed = SPEED_10;
1310 
1311 	/* If we are asleep, we don't try to actually setup the PHY, we
1312 	 * just store the settings
1313 	 */
1314 	if (!netif_device_present(gp->dev)) {
1315 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1316 		gp->phy_mii.speed = speed;
1317 		gp->phy_mii.duplex = duplex;
1318 		return;
1319 	}
1320 
1321 	/* Configure PHY & start aneg */
1322 	gp->want_autoneg = autoneg;
1323 	if (autoneg) {
1324 		if (found_mii_phy(gp))
1325 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1326 		gp->lstate = link_aneg;
1327 	} else {
1328 		if (found_mii_phy(gp))
1329 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1330 		gp->lstate = link_force_ok;
1331 	}
1332 
1333 non_mii:
1334 	gp->timer_ticks = 0;
1335 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1336 }
1337 
1338 /* A link-up condition has occurred, initialize and enable the
1339  * rest of the chip.
1340  */
1341 static int gem_set_link_modes(struct gem *gp)
1342 {
1343 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1344 	int full_duplex, speed, pause;
1345 	u32 val;
1346 
1347 	full_duplex = 0;
1348 	speed = SPEED_10;
1349 	pause = 0;
1350 
1351 	if (found_mii_phy(gp)) {
1352 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1353 	    		return 1;
1354 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1355 		speed = gp->phy_mii.speed;
1356 		pause = gp->phy_mii.pause;
1357 	} else if (gp->phy_type == phy_serialink ||
1358 	    	   gp->phy_type == phy_serdes) {
1359 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1360 
1361 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1362 			full_duplex = 1;
1363 		speed = SPEED_1000;
1364 	}
1365 
1366 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1367 		   speed, (full_duplex ? "full" : "half"));
1368 
1369 
1370 	/* We take the tx queue lock to avoid collisions between
1371 	 * this code, the tx path and the NAPI-driven error path
1372 	 */
1373 	__netif_tx_lock(txq, smp_processor_id());
1374 
1375 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1376 	if (full_duplex) {
1377 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1378 	} else {
1379 		/* MAC_TXCFG_NBO must be zero. */
1380 	}
1381 	writel(val, gp->regs + MAC_TXCFG);
1382 
1383 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1384 	if (!full_duplex &&
1385 	    (gp->phy_type == phy_mii_mdio0 ||
1386 	     gp->phy_type == phy_mii_mdio1)) {
1387 		val |= MAC_XIFCFG_DISE;
1388 	} else if (full_duplex) {
1389 		val |= MAC_XIFCFG_FLED;
1390 	}
1391 
1392 	if (speed == SPEED_1000)
1393 		val |= (MAC_XIFCFG_GMII);
1394 
1395 	writel(val, gp->regs + MAC_XIFCFG);
1396 
1397 	/* If gigabit and half-duplex, enable carrier extension
1398 	 * mode.  Else, disable it.
1399 	 */
1400 	if (speed == SPEED_1000 && !full_duplex) {
1401 		val = readl(gp->regs + MAC_TXCFG);
1402 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1403 
1404 		val = readl(gp->regs + MAC_RXCFG);
1405 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1406 	} else {
1407 		val = readl(gp->regs + MAC_TXCFG);
1408 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1409 
1410 		val = readl(gp->regs + MAC_RXCFG);
1411 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412 	}
1413 
1414 	if (gp->phy_type == phy_serialink ||
1415 	    gp->phy_type == phy_serdes) {
1416  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1417 
1418 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1419 			pause = 1;
1420 	}
1421 
1422 	if (!full_duplex)
1423 		writel(512, gp->regs + MAC_STIME);
1424 	else
1425 		writel(64, gp->regs + MAC_STIME);
1426 	val = readl(gp->regs + MAC_MCCFG);
1427 	if (pause)
1428 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1429 	else
1430 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1431 	writel(val, gp->regs + MAC_MCCFG);
1432 
1433 	gem_start_dma(gp);
1434 
1435 	__netif_tx_unlock(txq);
1436 
1437 	if (netif_msg_link(gp)) {
1438 		if (pause) {
1439 			netdev_info(gp->dev,
1440 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1441 				    gp->rx_fifo_sz,
1442 				    gp->rx_pause_off,
1443 				    gp->rx_pause_on);
1444 		} else {
1445 			netdev_info(gp->dev, "Pause is disabled\n");
1446 		}
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static int gem_mdio_link_not_up(struct gem *gp)
1453 {
1454 	switch (gp->lstate) {
1455 	case link_force_ret:
1456 		netif_info(gp, link, gp->dev,
1457 			   "Autoneg failed again, keeping forced mode\n");
1458 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1459 			gp->last_forced_speed, DUPLEX_HALF);
1460 		gp->timer_ticks = 5;
1461 		gp->lstate = link_force_ok;
1462 		return 0;
1463 	case link_aneg:
1464 		/* We try forced modes after a failed aneg only on PHYs that don't
1465 		 * have "magic_aneg" bit set, which means they internally do the
1466 		 * while forced-mode thingy. On these, we just restart aneg
1467 		 */
1468 		if (gp->phy_mii.def->magic_aneg)
1469 			return 1;
1470 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1471 		/* Try forced modes. */
1472 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1473 			DUPLEX_HALF);
1474 		gp->timer_ticks = 5;
1475 		gp->lstate = link_force_try;
1476 		return 0;
1477 	case link_force_try:
1478 		/* Downgrade from 100 to 10 Mbps if necessary.
1479 		 * If already at 10Mbps, warn user about the
1480 		 * situation every 10 ticks.
1481 		 */
1482 		if (gp->phy_mii.speed == SPEED_100) {
1483 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1484 				DUPLEX_HALF);
1485 			gp->timer_ticks = 5;
1486 			netif_info(gp, link, gp->dev,
1487 				   "switching to forced 10bt\n");
1488 			return 0;
1489 		} else
1490 			return 1;
1491 	default:
1492 		return 0;
1493 	}
1494 }
1495 
1496 static void gem_link_timer(unsigned long data)
1497 {
1498 	struct gem *gp = (struct gem *) data;
1499 	struct net_device *dev = gp->dev;
1500 	int restart_aneg = 0;
1501 
1502 	/* There's no point doing anything if we're going to be reset */
1503 	if (gp->reset_task_pending)
1504 		return;
1505 
1506 	if (gp->phy_type == phy_serialink ||
1507 	    gp->phy_type == phy_serdes) {
1508 		u32 val = readl(gp->regs + PCS_MIISTAT);
1509 
1510 		if (!(val & PCS_MIISTAT_LS))
1511 			val = readl(gp->regs + PCS_MIISTAT);
1512 
1513 		if ((val & PCS_MIISTAT_LS) != 0) {
1514 			if (gp->lstate == link_up)
1515 				goto restart;
1516 
1517 			gp->lstate = link_up;
1518 			netif_carrier_on(dev);
1519 			(void)gem_set_link_modes(gp);
1520 		}
1521 		goto restart;
1522 	}
1523 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1524 		/* Ok, here we got a link. If we had it due to a forced
1525 		 * fallback, and we were configured for autoneg, we do
1526 		 * retry a short autoneg pass. If you know your hub is
1527 		 * broken, use ethtool ;)
1528 		 */
1529 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1530 			gp->lstate = link_force_ret;
1531 			gp->last_forced_speed = gp->phy_mii.speed;
1532 			gp->timer_ticks = 5;
1533 			if (netif_msg_link(gp))
1534 				netdev_info(dev,
1535 					    "Got link after fallback, retrying autoneg once...\n");
1536 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1537 		} else if (gp->lstate != link_up) {
1538 			gp->lstate = link_up;
1539 			netif_carrier_on(dev);
1540 			if (gem_set_link_modes(gp))
1541 				restart_aneg = 1;
1542 		}
1543 	} else {
1544 		/* If the link was previously up, we restart the
1545 		 * whole process
1546 		 */
1547 		if (gp->lstate == link_up) {
1548 			gp->lstate = link_down;
1549 			netif_info(gp, link, dev, "Link down\n");
1550 			netif_carrier_off(dev);
1551 			gem_schedule_reset(gp);
1552 			/* The reset task will restart the timer */
1553 			return;
1554 		} else if (++gp->timer_ticks > 10) {
1555 			if (found_mii_phy(gp))
1556 				restart_aneg = gem_mdio_link_not_up(gp);
1557 			else
1558 				restart_aneg = 1;
1559 		}
1560 	}
1561 	if (restart_aneg) {
1562 		gem_begin_auto_negotiation(gp, NULL);
1563 		return;
1564 	}
1565 restart:
1566 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1567 }
1568 
1569 static void gem_clean_rings(struct gem *gp)
1570 {
1571 	struct gem_init_block *gb = gp->init_block;
1572 	struct sk_buff *skb;
1573 	int i;
1574 	dma_addr_t dma_addr;
1575 
1576 	for (i = 0; i < RX_RING_SIZE; i++) {
1577 		struct gem_rxd *rxd;
1578 
1579 		rxd = &gb->rxd[i];
1580 		if (gp->rx_skbs[i] != NULL) {
1581 			skb = gp->rx_skbs[i];
1582 			dma_addr = le64_to_cpu(rxd->buffer);
1583 			pci_unmap_page(gp->pdev, dma_addr,
1584 				       RX_BUF_ALLOC_SIZE(gp),
1585 				       PCI_DMA_FROMDEVICE);
1586 			dev_kfree_skb_any(skb);
1587 			gp->rx_skbs[i] = NULL;
1588 		}
1589 		rxd->status_word = 0;
1590 		wmb();
1591 		rxd->buffer = 0;
1592 	}
1593 
1594 	for (i = 0; i < TX_RING_SIZE; i++) {
1595 		if (gp->tx_skbs[i] != NULL) {
1596 			struct gem_txd *txd;
1597 			int frag;
1598 
1599 			skb = gp->tx_skbs[i];
1600 			gp->tx_skbs[i] = NULL;
1601 
1602 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1603 				int ent = i & (TX_RING_SIZE - 1);
1604 
1605 				txd = &gb->txd[ent];
1606 				dma_addr = le64_to_cpu(txd->buffer);
1607 				pci_unmap_page(gp->pdev, dma_addr,
1608 					       le64_to_cpu(txd->control_word) &
1609 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1610 
1611 				if (frag != skb_shinfo(skb)->nr_frags)
1612 					i++;
1613 			}
1614 			dev_kfree_skb_any(skb);
1615 		}
1616 	}
1617 }
1618 
1619 static void gem_init_rings(struct gem *gp)
1620 {
1621 	struct gem_init_block *gb = gp->init_block;
1622 	struct net_device *dev = gp->dev;
1623 	int i;
1624 	dma_addr_t dma_addr;
1625 
1626 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1627 
1628 	gem_clean_rings(gp);
1629 
1630 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1631 			    (unsigned)VLAN_ETH_FRAME_LEN);
1632 
1633 	for (i = 0; i < RX_RING_SIZE; i++) {
1634 		struct sk_buff *skb;
1635 		struct gem_rxd *rxd = &gb->rxd[i];
1636 
1637 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1638 		if (!skb) {
1639 			rxd->buffer = 0;
1640 			rxd->status_word = 0;
1641 			continue;
1642 		}
1643 
1644 		gp->rx_skbs[i] = skb;
1645 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1646 		dma_addr = pci_map_page(gp->pdev,
1647 					virt_to_page(skb->data),
1648 					offset_in_page(skb->data),
1649 					RX_BUF_ALLOC_SIZE(gp),
1650 					PCI_DMA_FROMDEVICE);
1651 		rxd->buffer = cpu_to_le64(dma_addr);
1652 		wmb();
1653 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1654 		skb_reserve(skb, RX_OFFSET);
1655 	}
1656 
1657 	for (i = 0; i < TX_RING_SIZE; i++) {
1658 		struct gem_txd *txd = &gb->txd[i];
1659 
1660 		txd->control_word = 0;
1661 		wmb();
1662 		txd->buffer = 0;
1663 	}
1664 	wmb();
1665 }
1666 
1667 /* Init PHY interface and start link poll state machine */
1668 static void gem_init_phy(struct gem *gp)
1669 {
1670 	u32 mifcfg;
1671 
1672 	/* Revert MIF CFG setting done on stop_phy */
1673 	mifcfg = readl(gp->regs + MIF_CFG);
1674 	mifcfg &= ~MIF_CFG_BBMODE;
1675 	writel(mifcfg, gp->regs + MIF_CFG);
1676 
1677 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1678 		int i;
1679 
1680 		/* Those delay sucks, the HW seem to love them though, I'll
1681 		 * serisouly consider breaking some locks here to be able
1682 		 * to schedule instead
1683 		 */
1684 		for (i = 0; i < 3; i++) {
1685 #ifdef CONFIG_PPC_PMAC
1686 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1687 			msleep(20);
1688 #endif
1689 			/* Some PHYs used by apple have problem getting back to us,
1690 			 * we do an additional reset here
1691 			 */
1692 			phy_write(gp, MII_BMCR, BMCR_RESET);
1693 			msleep(20);
1694 			if (phy_read(gp, MII_BMCR) != 0xffff)
1695 				break;
1696 			if (i == 2)
1697 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1698 		}
1699 	}
1700 
1701 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1702 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1703 		u32 val;
1704 
1705 		/* Init datapath mode register. */
1706 		if (gp->phy_type == phy_mii_mdio0 ||
1707 		    gp->phy_type == phy_mii_mdio1) {
1708 			val = PCS_DMODE_MGM;
1709 		} else if (gp->phy_type == phy_serialink) {
1710 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1711 		} else {
1712 			val = PCS_DMODE_ESM;
1713 		}
1714 
1715 		writel(val, gp->regs + PCS_DMODE);
1716 	}
1717 
1718 	if (gp->phy_type == phy_mii_mdio0 ||
1719 	    gp->phy_type == phy_mii_mdio1) {
1720 		/* Reset and detect MII PHY */
1721 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1722 
1723 		/* Init PHY */
1724 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1725 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1726 	} else {
1727 		gem_pcs_reset(gp);
1728 		gem_pcs_reinit_adv(gp);
1729 	}
1730 
1731 	/* Default aneg parameters */
1732 	gp->timer_ticks = 0;
1733 	gp->lstate = link_down;
1734 	netif_carrier_off(gp->dev);
1735 
1736 	/* Print things out */
1737 	if (gp->phy_type == phy_mii_mdio0 ||
1738 	    gp->phy_type == phy_mii_mdio1)
1739 		netdev_info(gp->dev, "Found %s PHY\n",
1740 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1741 
1742 	gem_begin_auto_negotiation(gp, NULL);
1743 }
1744 
1745 static void gem_init_dma(struct gem *gp)
1746 {
1747 	u64 desc_dma = (u64) gp->gblock_dvma;
1748 	u32 val;
1749 
1750 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1751 	writel(val, gp->regs + TXDMA_CFG);
1752 
1753 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1754 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1755 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1756 
1757 	writel(0, gp->regs + TXDMA_KICK);
1758 
1759 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1760 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1761 	writel(val, gp->regs + RXDMA_CFG);
1762 
1763 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1764 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1765 
1766 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1767 
1768 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1769 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1770 	writel(val, gp->regs + RXDMA_PTHRESH);
1771 
1772 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1773 		writel(((5 & RXDMA_BLANK_IPKTS) |
1774 			((8 << 12) & RXDMA_BLANK_ITIME)),
1775 		       gp->regs + RXDMA_BLANK);
1776 	else
1777 		writel(((5 & RXDMA_BLANK_IPKTS) |
1778 			((4 << 12) & RXDMA_BLANK_ITIME)),
1779 		       gp->regs + RXDMA_BLANK);
1780 }
1781 
1782 static u32 gem_setup_multicast(struct gem *gp)
1783 {
1784 	u32 rxcfg = 0;
1785 	int i;
1786 
1787 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1788 	    (netdev_mc_count(gp->dev) > 256)) {
1789 	    	for (i=0; i<16; i++)
1790 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1791 		rxcfg |= MAC_RXCFG_HFE;
1792 	} else if (gp->dev->flags & IFF_PROMISC) {
1793 		rxcfg |= MAC_RXCFG_PROM;
1794 	} else {
1795 		u16 hash_table[16];
1796 		u32 crc;
1797 		struct netdev_hw_addr *ha;
1798 		int i;
1799 
1800 		memset(hash_table, 0, sizeof(hash_table));
1801 		netdev_for_each_mc_addr(ha, gp->dev) {
1802 			crc = ether_crc_le(6, ha->addr);
1803 			crc >>= 24;
1804 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1805 		}
1806 	    	for (i=0; i<16; i++)
1807 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1808 		rxcfg |= MAC_RXCFG_HFE;
1809 	}
1810 
1811 	return rxcfg;
1812 }
1813 
1814 static void gem_init_mac(struct gem *gp)
1815 {
1816 	unsigned char *e = &gp->dev->dev_addr[0];
1817 
1818 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1819 
1820 	writel(0x00, gp->regs + MAC_IPG0);
1821 	writel(0x08, gp->regs + MAC_IPG1);
1822 	writel(0x04, gp->regs + MAC_IPG2);
1823 	writel(0x40, gp->regs + MAC_STIME);
1824 	writel(0x40, gp->regs + MAC_MINFSZ);
1825 
1826 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1827 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1828 
1829 	writel(0x07, gp->regs + MAC_PASIZE);
1830 	writel(0x04, gp->regs + MAC_JAMSIZE);
1831 	writel(0x10, gp->regs + MAC_ATTLIM);
1832 	writel(0x8808, gp->regs + MAC_MCTYPE);
1833 
1834 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1835 
1836 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1837 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1838 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1839 
1840 	writel(0, gp->regs + MAC_ADDR3);
1841 	writel(0, gp->regs + MAC_ADDR4);
1842 	writel(0, gp->regs + MAC_ADDR5);
1843 
1844 	writel(0x0001, gp->regs + MAC_ADDR6);
1845 	writel(0xc200, gp->regs + MAC_ADDR7);
1846 	writel(0x0180, gp->regs + MAC_ADDR8);
1847 
1848 	writel(0, gp->regs + MAC_AFILT0);
1849 	writel(0, gp->regs + MAC_AFILT1);
1850 	writel(0, gp->regs + MAC_AFILT2);
1851 	writel(0, gp->regs + MAC_AF21MSK);
1852 	writel(0, gp->regs + MAC_AF0MSK);
1853 
1854 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1855 #ifdef STRIP_FCS
1856 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1857 #endif
1858 	writel(0, gp->regs + MAC_NCOLL);
1859 	writel(0, gp->regs + MAC_FASUCC);
1860 	writel(0, gp->regs + MAC_ECOLL);
1861 	writel(0, gp->regs + MAC_LCOLL);
1862 	writel(0, gp->regs + MAC_DTIMER);
1863 	writel(0, gp->regs + MAC_PATMPS);
1864 	writel(0, gp->regs + MAC_RFCTR);
1865 	writel(0, gp->regs + MAC_LERR);
1866 	writel(0, gp->regs + MAC_AERR);
1867 	writel(0, gp->regs + MAC_FCSERR);
1868 	writel(0, gp->regs + MAC_RXCVERR);
1869 
1870 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1871 	 * them once a link is established.
1872 	 */
1873 	writel(0, gp->regs + MAC_TXCFG);
1874 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1875 	writel(0, gp->regs + MAC_MCCFG);
1876 	writel(0, gp->regs + MAC_XIFCFG);
1877 
1878 	/* Setup MAC interrupts.  We want to get all of the interesting
1879 	 * counter expiration events, but we do not want to hear about
1880 	 * normal rx/tx as the DMA engine tells us that.
1881 	 */
1882 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1883 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1884 
1885 	/* Don't enable even the PAUSE interrupts for now, we
1886 	 * make no use of those events other than to record them.
1887 	 */
1888 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1889 
1890 	/* Don't enable GEM's WOL in normal operations
1891 	 */
1892 	if (gp->has_wol)
1893 		writel(0, gp->regs + WOL_WAKECSR);
1894 }
1895 
1896 static void gem_init_pause_thresholds(struct gem *gp)
1897 {
1898        	u32 cfg;
1899 
1900 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1901 	 * full RX fifo size effectively disables PAUSE generation which
1902 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1903 	 * to make real gains from PAUSE.
1904 	 */
1905 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1906 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1907 	} else {
1908 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1909 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1910 		int on = off - max_frame;
1911 
1912 		gp->rx_pause_off = off;
1913 		gp->rx_pause_on = on;
1914 	}
1915 
1916 
1917 	/* Configure the chip "burst" DMA mode & enable some
1918 	 * HW bug fixes on Apple version
1919 	 */
1920        	cfg  = 0;
1921        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1922 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1923 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1924        	cfg |= GREG_CFG_IBURST;
1925 #endif
1926        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1927        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1928        	writel(cfg, gp->regs + GREG_CFG);
1929 
1930 	/* If Infinite Burst didn't stick, then use different
1931 	 * thresholds (and Apple bug fixes don't exist)
1932 	 */
1933 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1934 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1935 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1936 		writel(cfg, gp->regs + GREG_CFG);
1937 	}
1938 }
1939 
1940 static int gem_check_invariants(struct gem *gp)
1941 {
1942 	struct pci_dev *pdev = gp->pdev;
1943 	u32 mif_cfg;
1944 
1945 	/* On Apple's sungem, we can't rely on registers as the chip
1946 	 * was been powered down by the firmware. The PHY is looked
1947 	 * up later on.
1948 	 */
1949 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1950 		gp->phy_type = phy_mii_mdio0;
1951 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1952 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1953 		gp->swrst_base = 0;
1954 
1955 		mif_cfg = readl(gp->regs + MIF_CFG);
1956 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1957 		mif_cfg |= MIF_CFG_MDI0;
1958 		writel(mif_cfg, gp->regs + MIF_CFG);
1959 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1960 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1961 
1962 		/* We hard-code the PHY address so we can properly bring it out of
1963 		 * reset later on, we can't really probe it at this point, though
1964 		 * that isn't an issue.
1965 		 */
1966 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1967 			gp->mii_phy_addr = 1;
1968 		else
1969 			gp->mii_phy_addr = 0;
1970 
1971 		return 0;
1972 	}
1973 
1974 	mif_cfg = readl(gp->regs + MIF_CFG);
1975 
1976 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1977 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1978 		/* One of the MII PHYs _must_ be present
1979 		 * as this chip has no gigabit PHY.
1980 		 */
1981 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1982 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1983 			       mif_cfg);
1984 			return -1;
1985 		}
1986 	}
1987 
1988 	/* Determine initial PHY interface type guess.  MDIO1 is the
1989 	 * external PHY and thus takes precedence over MDIO0.
1990 	 */
1991 
1992 	if (mif_cfg & MIF_CFG_MDI1) {
1993 		gp->phy_type = phy_mii_mdio1;
1994 		mif_cfg |= MIF_CFG_PSELECT;
1995 		writel(mif_cfg, gp->regs + MIF_CFG);
1996 	} else if (mif_cfg & MIF_CFG_MDI0) {
1997 		gp->phy_type = phy_mii_mdio0;
1998 		mif_cfg &= ~MIF_CFG_PSELECT;
1999 		writel(mif_cfg, gp->regs + MIF_CFG);
2000 	} else {
2001 #ifdef CONFIG_SPARC
2002 		const char *p;
2003 
2004 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2005 		if (p && !strcmp(p, "serdes"))
2006 			gp->phy_type = phy_serdes;
2007 		else
2008 #endif
2009 			gp->phy_type = phy_serialink;
2010 	}
2011 	if (gp->phy_type == phy_mii_mdio1 ||
2012 	    gp->phy_type == phy_mii_mdio0) {
2013 		int i;
2014 
2015 		for (i = 0; i < 32; i++) {
2016 			gp->mii_phy_addr = i;
2017 			if (phy_read(gp, MII_BMCR) != 0xffff)
2018 				break;
2019 		}
2020 		if (i == 32) {
2021 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2022 				pr_err("RIO MII phy will not respond\n");
2023 				return -1;
2024 			}
2025 			gp->phy_type = phy_serdes;
2026 		}
2027 	}
2028 
2029 	/* Fetch the FIFO configurations now too. */
2030 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2031 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2032 
2033 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2034 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2035 			if (gp->tx_fifo_sz != (9 * 1024) ||
2036 			    gp->rx_fifo_sz != (20 * 1024)) {
2037 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2038 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2039 				return -1;
2040 			}
2041 			gp->swrst_base = 0;
2042 		} else {
2043 			if (gp->tx_fifo_sz != (2 * 1024) ||
2044 			    gp->rx_fifo_sz != (2 * 1024)) {
2045 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2046 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2047 				return -1;
2048 			}
2049 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2050 		}
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 static void gem_reinit_chip(struct gem *gp)
2057 {
2058 	/* Reset the chip */
2059 	gem_reset(gp);
2060 
2061 	/* Make sure ints are disabled */
2062 	gem_disable_ints(gp);
2063 
2064 	/* Allocate & setup ring buffers */
2065 	gem_init_rings(gp);
2066 
2067 	/* Configure pause thresholds */
2068 	gem_init_pause_thresholds(gp);
2069 
2070 	/* Init DMA & MAC engines */
2071 	gem_init_dma(gp);
2072 	gem_init_mac(gp);
2073 }
2074 
2075 
2076 static void gem_stop_phy(struct gem *gp, int wol)
2077 {
2078 	u32 mifcfg;
2079 
2080 	/* Let the chip settle down a bit, it seems that helps
2081 	 * for sleep mode on some models
2082 	 */
2083 	msleep(10);
2084 
2085 	/* Make sure we aren't polling PHY status change. We
2086 	 * don't currently use that feature though
2087 	 */
2088 	mifcfg = readl(gp->regs + MIF_CFG);
2089 	mifcfg &= ~MIF_CFG_POLL;
2090 	writel(mifcfg, gp->regs + MIF_CFG);
2091 
2092 	if (wol && gp->has_wol) {
2093 		unsigned char *e = &gp->dev->dev_addr[0];
2094 		u32 csr;
2095 
2096 		/* Setup wake-on-lan for MAGIC packet */
2097 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2098 		       gp->regs + MAC_RXCFG);
2099 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2100 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2101 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2102 
2103 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2104 		csr = WOL_WAKECSR_ENABLE;
2105 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2106 			csr |= WOL_WAKECSR_MII;
2107 		writel(csr, gp->regs + WOL_WAKECSR);
2108 	} else {
2109 		writel(0, gp->regs + MAC_RXCFG);
2110 		(void)readl(gp->regs + MAC_RXCFG);
2111 		/* Machine sleep will die in strange ways if we
2112 		 * dont wait a bit here, looks like the chip takes
2113 		 * some time to really shut down
2114 		 */
2115 		msleep(10);
2116 	}
2117 
2118 	writel(0, gp->regs + MAC_TXCFG);
2119 	writel(0, gp->regs + MAC_XIFCFG);
2120 	writel(0, gp->regs + TXDMA_CFG);
2121 	writel(0, gp->regs + RXDMA_CFG);
2122 
2123 	if (!wol) {
2124 		gem_reset(gp);
2125 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2126 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2127 
2128 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2129 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2130 
2131 		/* According to Apple, we must set the MDIO pins to this begnign
2132 		 * state or we may 1) eat more current, 2) damage some PHYs
2133 		 */
2134 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2135 		writel(0, gp->regs + MIF_BBCLK);
2136 		writel(0, gp->regs + MIF_BBDATA);
2137 		writel(0, gp->regs + MIF_BBOENAB);
2138 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2139 		(void) readl(gp->regs + MAC_XIFCFG);
2140 	}
2141 }
2142 
2143 static int gem_do_start(struct net_device *dev)
2144 {
2145 	struct gem *gp = netdev_priv(dev);
2146 	int rc;
2147 
2148 	/* Enable the cell */
2149 	gem_get_cell(gp);
2150 
2151 	/* Make sure PCI access and bus master are enabled */
2152 	rc = pci_enable_device(gp->pdev);
2153 	if (rc) {
2154 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2155 
2156 		/* Put cell and forget it for now, it will be considered as
2157 		 * still asleep, a new sleep cycle may bring it back
2158 		 */
2159 		gem_put_cell(gp);
2160 		return -ENXIO;
2161 	}
2162 	pci_set_master(gp->pdev);
2163 
2164 	/* Init & setup chip hardware */
2165 	gem_reinit_chip(gp);
2166 
2167 	/* An interrupt might come in handy */
2168 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2169 			 IRQF_SHARED, dev->name, (void *)dev);
2170 	if (rc) {
2171 		netdev_err(dev, "failed to request irq !\n");
2172 
2173 		gem_reset(gp);
2174 		gem_clean_rings(gp);
2175 		gem_put_cell(gp);
2176 		return rc;
2177 	}
2178 
2179 	/* Mark us as attached again if we come from resume(), this has
2180 	 * no effect if we weren't detatched and needs to be done now.
2181 	 */
2182 	netif_device_attach(dev);
2183 
2184 	/* Restart NAPI & queues */
2185 	gem_netif_start(gp);
2186 
2187 	/* Detect & init PHY, start autoneg etc... this will
2188 	 * eventually result in starting DMA operations when
2189 	 * the link is up
2190 	 */
2191 	gem_init_phy(gp);
2192 
2193 	return 0;
2194 }
2195 
2196 static void gem_do_stop(struct net_device *dev, int wol)
2197 {
2198 	struct gem *gp = netdev_priv(dev);
2199 
2200 	/* Stop NAPI and stop tx queue */
2201 	gem_netif_stop(gp);
2202 
2203 	/* Make sure ints are disabled. We don't care about
2204 	 * synchronizing as NAPI is disabled, thus a stray
2205 	 * interrupt will do nothing bad (our irq handler
2206 	 * just schedules NAPI)
2207 	 */
2208 	gem_disable_ints(gp);
2209 
2210 	/* Stop the link timer */
2211 	del_timer_sync(&gp->link_timer);
2212 
2213 	/* We cannot cancel the reset task while holding the
2214 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2215 	 * if we did. This is not an issue however as the reset
2216 	 * task is synchronized vs. us (rtnl_lock) and will do
2217 	 * nothing if the device is down or suspended. We do
2218 	 * still clear reset_task_pending to avoid a spurrious
2219 	 * reset later on in case we do resume before it gets
2220 	 * scheduled.
2221 	 */
2222 	gp->reset_task_pending = 0;
2223 
2224 	/* If we are going to sleep with WOL */
2225 	gem_stop_dma(gp);
2226 	msleep(10);
2227 	if (!wol)
2228 		gem_reset(gp);
2229 	msleep(10);
2230 
2231 	/* Get rid of rings */
2232 	gem_clean_rings(gp);
2233 
2234 	/* No irq needed anymore */
2235 	free_irq(gp->pdev->irq, (void *) dev);
2236 
2237 	/* Shut the PHY down eventually and setup WOL */
2238 	gem_stop_phy(gp, wol);
2239 
2240 	/* Make sure bus master is disabled */
2241 	pci_disable_device(gp->pdev);
2242 
2243 	/* Cell not needed neither if no WOL */
2244 	if (!wol)
2245 		gem_put_cell(gp);
2246 }
2247 
2248 static void gem_reset_task(struct work_struct *work)
2249 {
2250 	struct gem *gp = container_of(work, struct gem, reset_task);
2251 
2252 	/* Lock out the network stack (essentially shield ourselves
2253 	 * against a racing open, close, control call, or suspend
2254 	 */
2255 	rtnl_lock();
2256 
2257 	/* Skip the reset task if suspended or closed, or if it's
2258 	 * been cancelled by gem_do_stop (see comment there)
2259 	 */
2260 	if (!netif_device_present(gp->dev) ||
2261 	    !netif_running(gp->dev) ||
2262 	    !gp->reset_task_pending) {
2263 		rtnl_unlock();
2264 		return;
2265 	}
2266 
2267 	/* Stop the link timer */
2268 	del_timer_sync(&gp->link_timer);
2269 
2270 	/* Stop NAPI and tx */
2271 	gem_netif_stop(gp);
2272 
2273 	/* Reset the chip & rings */
2274 	gem_reinit_chip(gp);
2275 	if (gp->lstate == link_up)
2276 		gem_set_link_modes(gp);
2277 
2278 	/* Restart NAPI and Tx */
2279 	gem_netif_start(gp);
2280 
2281 	/* We are back ! */
2282 	gp->reset_task_pending = 0;
2283 
2284 	/* If the link is not up, restart autoneg, else restart the
2285 	 * polling timer
2286 	 */
2287 	if (gp->lstate != link_up)
2288 		gem_begin_auto_negotiation(gp, NULL);
2289 	else
2290 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2291 
2292 	rtnl_unlock();
2293 }
2294 
2295 static int gem_open(struct net_device *dev)
2296 {
2297 	/* We allow open while suspended, we just do nothing,
2298 	 * the chip will be initialized in resume()
2299 	 */
2300 	if (netif_device_present(dev))
2301 		return gem_do_start(dev);
2302 	return 0;
2303 }
2304 
2305 static int gem_close(struct net_device *dev)
2306 {
2307 	if (netif_device_present(dev))
2308 		gem_do_stop(dev, 0);
2309 
2310 	return 0;
2311 }
2312 
2313 #ifdef CONFIG_PM
2314 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2315 {
2316 	struct net_device *dev = pci_get_drvdata(pdev);
2317 	struct gem *gp = netdev_priv(dev);
2318 
2319 	/* Lock the network stack first to avoid racing with open/close,
2320 	 * reset task and setting calls
2321 	 */
2322 	rtnl_lock();
2323 
2324 	/* Not running, mark ourselves non-present, no need for
2325 	 * a lock here
2326 	 */
2327 	if (!netif_running(dev)) {
2328 		netif_device_detach(dev);
2329 		rtnl_unlock();
2330 		return 0;
2331 	}
2332 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2333 		    (gp->wake_on_lan && netif_running(dev)) ?
2334 		    "enabled" : "disabled");
2335 
2336 	/* Tell the network stack we're gone. gem_do_stop() below will
2337 	 * synchronize with TX, stop NAPI etc...
2338 	 */
2339 	netif_device_detach(dev);
2340 
2341 	/* Switch off chip, remember WOL setting */
2342 	gp->asleep_wol = !!gp->wake_on_lan;
2343 	gem_do_stop(dev, gp->asleep_wol);
2344 
2345 	/* Unlock the network stack */
2346 	rtnl_unlock();
2347 
2348 	return 0;
2349 }
2350 
2351 static int gem_resume(struct pci_dev *pdev)
2352 {
2353 	struct net_device *dev = pci_get_drvdata(pdev);
2354 	struct gem *gp = netdev_priv(dev);
2355 
2356 	/* See locking comment in gem_suspend */
2357 	rtnl_lock();
2358 
2359 	/* Not running, mark ourselves present, no need for
2360 	 * a lock here
2361 	 */
2362 	if (!netif_running(dev)) {
2363 		netif_device_attach(dev);
2364 		rtnl_unlock();
2365 		return 0;
2366 	}
2367 
2368 	/* Restart chip. If that fails there isn't much we can do, we
2369 	 * leave things stopped.
2370 	 */
2371 	gem_do_start(dev);
2372 
2373 	/* If we had WOL enabled, the cell clock was never turned off during
2374 	 * sleep, so we end up beeing unbalanced. Fix that here
2375 	 */
2376 	if (gp->asleep_wol)
2377 		gem_put_cell(gp);
2378 
2379 	/* Unlock the network stack */
2380 	rtnl_unlock();
2381 
2382 	return 0;
2383 }
2384 #endif /* CONFIG_PM */
2385 
2386 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2387 {
2388 	struct gem *gp = netdev_priv(dev);
2389 
2390 	/* I have seen this being called while the PM was in progress,
2391 	 * so we shield against this. Let's also not poke at registers
2392 	 * while the reset task is going on.
2393 	 *
2394 	 * TODO: Move stats collection elsewhere (link timer ?) and
2395 	 * make this a nop to avoid all those synchro issues
2396 	 */
2397 	if (!netif_device_present(dev) || !netif_running(dev))
2398 		goto bail;
2399 
2400 	/* Better safe than sorry... */
2401 	if (WARN_ON(!gp->cell_enabled))
2402 		goto bail;
2403 
2404 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2405 	writel(0, gp->regs + MAC_FCSERR);
2406 
2407 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2408 	writel(0, gp->regs + MAC_AERR);
2409 
2410 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2411 	writel(0, gp->regs + MAC_LERR);
2412 
2413 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2414 	dev->stats.collisions +=
2415 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2416 	writel(0, gp->regs + MAC_ECOLL);
2417 	writel(0, gp->regs + MAC_LCOLL);
2418  bail:
2419 	return &dev->stats;
2420 }
2421 
2422 static int gem_set_mac_address(struct net_device *dev, void *addr)
2423 {
2424 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2425 	struct gem *gp = netdev_priv(dev);
2426 	unsigned char *e = &dev->dev_addr[0];
2427 
2428 	if (!is_valid_ether_addr(macaddr->sa_data))
2429 		return -EADDRNOTAVAIL;
2430 
2431 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2432 
2433 	/* We'll just catch it later when the device is up'd or resumed */
2434 	if (!netif_running(dev) || !netif_device_present(dev))
2435 		return 0;
2436 
2437 	/* Better safe than sorry... */
2438 	if (WARN_ON(!gp->cell_enabled))
2439 		return 0;
2440 
2441 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2442 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2443 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2444 
2445 	return 0;
2446 }
2447 
2448 static void gem_set_multicast(struct net_device *dev)
2449 {
2450 	struct gem *gp = netdev_priv(dev);
2451 	u32 rxcfg, rxcfg_new;
2452 	int limit = 10000;
2453 
2454 	if (!netif_running(dev) || !netif_device_present(dev))
2455 		return;
2456 
2457 	/* Better safe than sorry... */
2458 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2459 		return;
2460 
2461 	rxcfg = readl(gp->regs + MAC_RXCFG);
2462 	rxcfg_new = gem_setup_multicast(gp);
2463 #ifdef STRIP_FCS
2464 	rxcfg_new |= MAC_RXCFG_SFCS;
2465 #endif
2466 	gp->mac_rx_cfg = rxcfg_new;
2467 
2468 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2469 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2470 		if (!limit--)
2471 			break;
2472 		udelay(10);
2473 	}
2474 
2475 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2476 	rxcfg |= rxcfg_new;
2477 
2478 	writel(rxcfg, gp->regs + MAC_RXCFG);
2479 }
2480 
2481 /* Jumbo-grams don't seem to work :-( */
2482 #define GEM_MIN_MTU	68
2483 #if 1
2484 #define GEM_MAX_MTU	1500
2485 #else
2486 #define GEM_MAX_MTU	9000
2487 #endif
2488 
2489 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2490 {
2491 	struct gem *gp = netdev_priv(dev);
2492 
2493 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2494 		return -EINVAL;
2495 
2496 	dev->mtu = new_mtu;
2497 
2498 	/* We'll just catch it later when the device is up'd or resumed */
2499 	if (!netif_running(dev) || !netif_device_present(dev))
2500 		return 0;
2501 
2502 	/* Better safe than sorry... */
2503 	if (WARN_ON(!gp->cell_enabled))
2504 		return 0;
2505 
2506 	gem_netif_stop(gp);
2507 	gem_reinit_chip(gp);
2508 	if (gp->lstate == link_up)
2509 		gem_set_link_modes(gp);
2510 	gem_netif_start(gp);
2511 
2512 	return 0;
2513 }
2514 
2515 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2516 {
2517 	struct gem *gp = netdev_priv(dev);
2518 
2519 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2520 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2521 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2522 }
2523 
2524 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2525 {
2526 	struct gem *gp = netdev_priv(dev);
2527 
2528 	if (gp->phy_type == phy_mii_mdio0 ||
2529 	    gp->phy_type == phy_mii_mdio1) {
2530 		if (gp->phy_mii.def)
2531 			cmd->supported = gp->phy_mii.def->features;
2532 		else
2533 			cmd->supported = (SUPPORTED_10baseT_Half |
2534 					  SUPPORTED_10baseT_Full);
2535 
2536 		/* XXX hardcoded stuff for now */
2537 		cmd->port = PORT_MII;
2538 		cmd->transceiver = XCVR_EXTERNAL;
2539 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2540 
2541 		/* Return current PHY settings */
2542 		cmd->autoneg = gp->want_autoneg;
2543 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2544 		cmd->duplex = gp->phy_mii.duplex;
2545 		cmd->advertising = gp->phy_mii.advertising;
2546 
2547 		/* If we started with a forced mode, we don't have a default
2548 		 * advertise set, we need to return something sensible so
2549 		 * userland can re-enable autoneg properly.
2550 		 */
2551 		if (cmd->advertising == 0)
2552 			cmd->advertising = cmd->supported;
2553 	} else { // XXX PCS ?
2554 		cmd->supported =
2555 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2556 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2557 			 SUPPORTED_Autoneg);
2558 		cmd->advertising = cmd->supported;
2559 		ethtool_cmd_speed_set(cmd, 0);
2560 		cmd->duplex = cmd->port = cmd->phy_address =
2561 			cmd->transceiver = cmd->autoneg = 0;
2562 
2563 		/* serdes means usually a Fibre connector, with most fixed */
2564 		if (gp->phy_type == phy_serdes) {
2565 			cmd->port = PORT_FIBRE;
2566 			cmd->supported = (SUPPORTED_1000baseT_Half |
2567 				SUPPORTED_1000baseT_Full |
2568 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2569 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2570 			cmd->advertising = cmd->supported;
2571 			cmd->transceiver = XCVR_INTERNAL;
2572 			if (gp->lstate == link_up)
2573 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2574 			cmd->duplex = DUPLEX_FULL;
2575 			cmd->autoneg = 1;
2576 		}
2577 	}
2578 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2579 
2580 	return 0;
2581 }
2582 
2583 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2584 {
2585 	struct gem *gp = netdev_priv(dev);
2586 	u32 speed = ethtool_cmd_speed(cmd);
2587 
2588 	/* Verify the settings we care about. */
2589 	if (cmd->autoneg != AUTONEG_ENABLE &&
2590 	    cmd->autoneg != AUTONEG_DISABLE)
2591 		return -EINVAL;
2592 
2593 	if (cmd->autoneg == AUTONEG_ENABLE &&
2594 	    cmd->advertising == 0)
2595 		return -EINVAL;
2596 
2597 	if (cmd->autoneg == AUTONEG_DISABLE &&
2598 	    ((speed != SPEED_1000 &&
2599 	      speed != SPEED_100 &&
2600 	      speed != SPEED_10) ||
2601 	     (cmd->duplex != DUPLEX_HALF &&
2602 	      cmd->duplex != DUPLEX_FULL)))
2603 		return -EINVAL;
2604 
2605 	/* Apply settings and restart link process. */
2606 	if (netif_device_present(gp->dev)) {
2607 		del_timer_sync(&gp->link_timer);
2608 		gem_begin_auto_negotiation(gp, cmd);
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 static int gem_nway_reset(struct net_device *dev)
2615 {
2616 	struct gem *gp = netdev_priv(dev);
2617 
2618 	if (!gp->want_autoneg)
2619 		return -EINVAL;
2620 
2621 	/* Restart link process  */
2622 	if (netif_device_present(gp->dev)) {
2623 		del_timer_sync(&gp->link_timer);
2624 		gem_begin_auto_negotiation(gp, NULL);
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 static u32 gem_get_msglevel(struct net_device *dev)
2631 {
2632 	struct gem *gp = netdev_priv(dev);
2633 	return gp->msg_enable;
2634 }
2635 
2636 static void gem_set_msglevel(struct net_device *dev, u32 value)
2637 {
2638 	struct gem *gp = netdev_priv(dev);
2639 	gp->msg_enable = value;
2640 }
2641 
2642 
2643 /* Add more when I understand how to program the chip */
2644 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2645 
2646 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2647 
2648 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2649 {
2650 	struct gem *gp = netdev_priv(dev);
2651 
2652 	/* Add more when I understand how to program the chip */
2653 	if (gp->has_wol) {
2654 		wol->supported = WOL_SUPPORTED_MASK;
2655 		wol->wolopts = gp->wake_on_lan;
2656 	} else {
2657 		wol->supported = 0;
2658 		wol->wolopts = 0;
2659 	}
2660 }
2661 
2662 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663 {
2664 	struct gem *gp = netdev_priv(dev);
2665 
2666 	if (!gp->has_wol)
2667 		return -EOPNOTSUPP;
2668 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2669 	return 0;
2670 }
2671 
2672 static const struct ethtool_ops gem_ethtool_ops = {
2673 	.get_drvinfo		= gem_get_drvinfo,
2674 	.get_link		= ethtool_op_get_link,
2675 	.get_settings		= gem_get_settings,
2676 	.set_settings		= gem_set_settings,
2677 	.nway_reset		= gem_nway_reset,
2678 	.get_msglevel		= gem_get_msglevel,
2679 	.set_msglevel		= gem_set_msglevel,
2680 	.get_wol		= gem_get_wol,
2681 	.set_wol		= gem_set_wol,
2682 };
2683 
2684 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2685 {
2686 	struct gem *gp = netdev_priv(dev);
2687 	struct mii_ioctl_data *data = if_mii(ifr);
2688 	int rc = -EOPNOTSUPP;
2689 
2690 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2691 	 * netif_device_present() is true and holds rtnl_lock for us
2692 	 * so we have nothing to worry about
2693 	 */
2694 
2695 	switch (cmd) {
2696 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2697 		data->phy_id = gp->mii_phy_addr;
2698 		/* Fallthrough... */
2699 
2700 	case SIOCGMIIREG:		/* Read MII PHY register. */
2701 		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2702 					   data->reg_num & 0x1f);
2703 		rc = 0;
2704 		break;
2705 
2706 	case SIOCSMIIREG:		/* Write MII PHY register. */
2707 		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2708 			    data->val_in);
2709 		rc = 0;
2710 		break;
2711 	}
2712 	return rc;
2713 }
2714 
2715 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2716 /* Fetch MAC address from vital product data of PCI ROM. */
2717 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2718 {
2719 	int this_offset;
2720 
2721 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2722 		void __iomem *p = rom_base + this_offset;
2723 		int i;
2724 
2725 		if (readb(p + 0) != 0x90 ||
2726 		    readb(p + 1) != 0x00 ||
2727 		    readb(p + 2) != 0x09 ||
2728 		    readb(p + 3) != 0x4e ||
2729 		    readb(p + 4) != 0x41 ||
2730 		    readb(p + 5) != 0x06)
2731 			continue;
2732 
2733 		this_offset += 6;
2734 		p += 6;
2735 
2736 		for (i = 0; i < 6; i++)
2737 			dev_addr[i] = readb(p + i);
2738 		return 1;
2739 	}
2740 	return 0;
2741 }
2742 
2743 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2744 {
2745 	size_t size;
2746 	void __iomem *p = pci_map_rom(pdev, &size);
2747 
2748 	if (p) {
2749 			int found;
2750 
2751 		found = readb(p) == 0x55 &&
2752 			readb(p + 1) == 0xaa &&
2753 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2754 		pci_unmap_rom(pdev, p);
2755 		if (found)
2756 			return;
2757 	}
2758 
2759 	/* Sun MAC prefix then 3 random bytes. */
2760 	dev_addr[0] = 0x08;
2761 	dev_addr[1] = 0x00;
2762 	dev_addr[2] = 0x20;
2763 	get_random_bytes(dev_addr + 3, 3);
2764 }
2765 #endif /* not Sparc and not PPC */
2766 
2767 static int __devinit gem_get_device_address(struct gem *gp)
2768 {
2769 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2770 	struct net_device *dev = gp->dev;
2771 	const unsigned char *addr;
2772 
2773 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2774 	if (addr == NULL) {
2775 #ifdef CONFIG_SPARC
2776 		addr = idprom->id_ethaddr;
2777 #else
2778 		printk("\n");
2779 		pr_err("%s: can't get mac-address\n", dev->name);
2780 		return -1;
2781 #endif
2782 	}
2783 	memcpy(dev->dev_addr, addr, 6);
2784 #else
2785 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2786 #endif
2787 	return 0;
2788 }
2789 
2790 static void gem_remove_one(struct pci_dev *pdev)
2791 {
2792 	struct net_device *dev = pci_get_drvdata(pdev);
2793 
2794 	if (dev) {
2795 		struct gem *gp = netdev_priv(dev);
2796 
2797 		unregister_netdev(dev);
2798 
2799 		/* Ensure reset task is truely gone */
2800 		cancel_work_sync(&gp->reset_task);
2801 
2802 		/* Free resources */
2803 		pci_free_consistent(pdev,
2804 				    sizeof(struct gem_init_block),
2805 				    gp->init_block,
2806 				    gp->gblock_dvma);
2807 		iounmap(gp->regs);
2808 		pci_release_regions(pdev);
2809 		free_netdev(dev);
2810 
2811 		pci_set_drvdata(pdev, NULL);
2812 	}
2813 }
2814 
2815 static const struct net_device_ops gem_netdev_ops = {
2816 	.ndo_open		= gem_open,
2817 	.ndo_stop		= gem_close,
2818 	.ndo_start_xmit		= gem_start_xmit,
2819 	.ndo_get_stats		= gem_get_stats,
2820 	.ndo_set_rx_mode	= gem_set_multicast,
2821 	.ndo_do_ioctl		= gem_ioctl,
2822 	.ndo_tx_timeout		= gem_tx_timeout,
2823 	.ndo_change_mtu		= gem_change_mtu,
2824 	.ndo_validate_addr	= eth_validate_addr,
2825 	.ndo_set_mac_address    = gem_set_mac_address,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 	.ndo_poll_controller    = gem_poll_controller,
2828 #endif
2829 };
2830 
2831 static int __devinit gem_init_one(struct pci_dev *pdev,
2832 				  const struct pci_device_id *ent)
2833 {
2834 	unsigned long gemreg_base, gemreg_len;
2835 	struct net_device *dev;
2836 	struct gem *gp;
2837 	int err, pci_using_dac;
2838 
2839 	printk_once(KERN_INFO "%s", version);
2840 
2841 	/* Apple gmac note: during probe, the chip is powered up by
2842 	 * the arch code to allow the code below to work (and to let
2843 	 * the chip be probed on the config space. It won't stay powered
2844 	 * up until the interface is brought up however, so we can't rely
2845 	 * on register configuration done at this point.
2846 	 */
2847 	err = pci_enable_device(pdev);
2848 	if (err) {
2849 		pr_err("Cannot enable MMIO operation, aborting\n");
2850 		return err;
2851 	}
2852 	pci_set_master(pdev);
2853 
2854 	/* Configure DMA attributes. */
2855 
2856 	/* All of the GEM documentation states that 64-bit DMA addressing
2857 	 * is fully supported and should work just fine.  However the
2858 	 * front end for RIO based GEMs is different and only supports
2859 	 * 32-bit addressing.
2860 	 *
2861 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2862 	 */
2863 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2864 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2865 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2866 		pci_using_dac = 1;
2867 	} else {
2868 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2869 		if (err) {
2870 			pr_err("No usable DMA configuration, aborting\n");
2871 			goto err_disable_device;
2872 		}
2873 		pci_using_dac = 0;
2874 	}
2875 
2876 	gemreg_base = pci_resource_start(pdev, 0);
2877 	gemreg_len = pci_resource_len(pdev, 0);
2878 
2879 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2880 		pr_err("Cannot find proper PCI device base address, aborting\n");
2881 		err = -ENODEV;
2882 		goto err_disable_device;
2883 	}
2884 
2885 	dev = alloc_etherdev(sizeof(*gp));
2886 	if (!dev) {
2887 		err = -ENOMEM;
2888 		goto err_disable_device;
2889 	}
2890 	SET_NETDEV_DEV(dev, &pdev->dev);
2891 
2892 	gp = netdev_priv(dev);
2893 
2894 	err = pci_request_regions(pdev, DRV_NAME);
2895 	if (err) {
2896 		pr_err("Cannot obtain PCI resources, aborting\n");
2897 		goto err_out_free_netdev;
2898 	}
2899 
2900 	gp->pdev = pdev;
2901 	gp->dev = dev;
2902 
2903 	gp->msg_enable = DEFAULT_MSG;
2904 
2905 	init_timer(&gp->link_timer);
2906 	gp->link_timer.function = gem_link_timer;
2907 	gp->link_timer.data = (unsigned long) gp;
2908 
2909 	INIT_WORK(&gp->reset_task, gem_reset_task);
2910 
2911 	gp->lstate = link_down;
2912 	gp->timer_ticks = 0;
2913 	netif_carrier_off(dev);
2914 
2915 	gp->regs = ioremap(gemreg_base, gemreg_len);
2916 	if (!gp->regs) {
2917 		pr_err("Cannot map device registers, aborting\n");
2918 		err = -EIO;
2919 		goto err_out_free_res;
2920 	}
2921 
2922 	/* On Apple, we want a reference to the Open Firmware device-tree
2923 	 * node. We use it for clock control.
2924 	 */
2925 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2926 	gp->of_node = pci_device_to_OF_node(pdev);
2927 #endif
2928 
2929 	/* Only Apple version supports WOL afaik */
2930 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2931 		gp->has_wol = 1;
2932 
2933 	/* Make sure cell is enabled */
2934 	gem_get_cell(gp);
2935 
2936 	/* Make sure everything is stopped and in init state */
2937 	gem_reset(gp);
2938 
2939 	/* Fill up the mii_phy structure (even if we won't use it) */
2940 	gp->phy_mii.dev = dev;
2941 	gp->phy_mii.mdio_read = _phy_read;
2942 	gp->phy_mii.mdio_write = _phy_write;
2943 #ifdef CONFIG_PPC_PMAC
2944 	gp->phy_mii.platform_data = gp->of_node;
2945 #endif
2946 	/* By default, we start with autoneg */
2947 	gp->want_autoneg = 1;
2948 
2949 	/* Check fifo sizes, PHY type, etc... */
2950 	if (gem_check_invariants(gp)) {
2951 		err = -ENODEV;
2952 		goto err_out_iounmap;
2953 	}
2954 
2955 	/* It is guaranteed that the returned buffer will be at least
2956 	 * PAGE_SIZE aligned.
2957 	 */
2958 	gp->init_block = (struct gem_init_block *)
2959 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2960 				     &gp->gblock_dvma);
2961 	if (!gp->init_block) {
2962 		pr_err("Cannot allocate init block, aborting\n");
2963 		err = -ENOMEM;
2964 		goto err_out_iounmap;
2965 	}
2966 
2967 	if (gem_get_device_address(gp))
2968 		goto err_out_free_consistent;
2969 
2970 	dev->netdev_ops = &gem_netdev_ops;
2971 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2972 	dev->ethtool_ops = &gem_ethtool_ops;
2973 	dev->watchdog_timeo = 5 * HZ;
2974 	dev->dma = 0;
2975 
2976 	/* Set that now, in case PM kicks in now */
2977 	pci_set_drvdata(pdev, dev);
2978 
2979 	/* We can do scatter/gather and HW checksum */
2980 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2981 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2982 	if (pci_using_dac)
2983 		dev->features |= NETIF_F_HIGHDMA;
2984 
2985 	/* Register with kernel */
2986 	if (register_netdev(dev)) {
2987 		pr_err("Cannot register net device, aborting\n");
2988 		err = -ENOMEM;
2989 		goto err_out_free_consistent;
2990 	}
2991 
2992 	/* Undo the get_cell with appropriate locking (we could use
2993 	 * ndo_init/uninit but that would be even more clumsy imho)
2994 	 */
2995 	rtnl_lock();
2996 	gem_put_cell(gp);
2997 	rtnl_unlock();
2998 
2999 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3000 		    dev->dev_addr);
3001 	return 0;
3002 
3003 err_out_free_consistent:
3004 	gem_remove_one(pdev);
3005 err_out_iounmap:
3006 	gem_put_cell(gp);
3007 	iounmap(gp->regs);
3008 
3009 err_out_free_res:
3010 	pci_release_regions(pdev);
3011 
3012 err_out_free_netdev:
3013 	free_netdev(dev);
3014 err_disable_device:
3015 	pci_disable_device(pdev);
3016 	return err;
3017 
3018 }
3019 
3020 
3021 static struct pci_driver gem_driver = {
3022 	.name		= GEM_MODULE_NAME,
3023 	.id_table	= gem_pci_tbl,
3024 	.probe		= gem_init_one,
3025 	.remove		= gem_remove_one,
3026 #ifdef CONFIG_PM
3027 	.suspend	= gem_suspend,
3028 	.resume		= gem_resume,
3029 #endif /* CONFIG_PM */
3030 };
3031 
3032 static int __init gem_init(void)
3033 {
3034 	return pci_register_driver(&gem_driver);
3035 }
3036 
3037 static void __exit gem_cleanup(void)
3038 {
3039 	pci_unregister_driver(&gem_driver);
3040 }
3041 
3042 module_init(gem_init);
3043 module_exit(gem_cleanup);
3044