xref: /openbmc/linux/drivers/net/ethernet/sun/cassini.c (revision e23feb16)
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86 
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98 
99 #include <net/checksum.h>
100 
101 #include <linux/atomic.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105 
106 #define cas_page_map(x)      kmap_atomic((x))
107 #define cas_page_unmap(x)    kunmap_atomic((x))
108 #define CAS_NCPUS            num_online_cpus()
109 
110 #define cas_skb_release(x)  netif_rx(x)
111 
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
116 
117 #include "cassini.h"
118 
119 #define USE_TX_COMPWB      /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
121 #define USE_RX_BLANK       /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
123 
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125  * also, we need to make cp->lock finer-grained.
126  */
127 #undef  USE_PCI_INTB
128 #undef  USE_PCI_INTC
129 #undef  USE_PCI_INTD
130 #undef  USE_QOS
131 
132 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
133 
134 /* rx processing options */
135 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
138 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
139 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
140 
141 #define DRV_MODULE_NAME		"cassini"
142 #define DRV_MODULE_VERSION	"1.6"
143 #define DRV_MODULE_RELDATE	"21 May 2008"
144 
145 #define CAS_DEF_MSG_ENABLE	  \
146 	(NETIF_MSG_DRV		| \
147 	 NETIF_MSG_PROBE	| \
148 	 NETIF_MSG_LINK		| \
149 	 NETIF_MSG_TIMER	| \
150 	 NETIF_MSG_IFDOWN	| \
151 	 NETIF_MSG_IFUP		| \
152 	 NETIF_MSG_RX_ERR	| \
153 	 NETIF_MSG_TX_ERR)
154 
155 /* length of time before we decide the hardware is borked,
156  * and dev->tx_timeout() should be called to fix the problem
157  */
158 #define CAS_TX_TIMEOUT			(HZ)
159 #define CAS_LINK_TIMEOUT                (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT           (1)
161 
162 /* timeout values for state changing. these specify the number
163  * of 10us delays to be used before giving up.
164  */
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES     5000
167 
168 /* specify a minimum frame size to deal with some fifo issues
169  * max mtu == 2 * page size - ethernet header - 64 - swivel =
170  *            2 * page_size - 0x50
171  */
172 #define CAS_MIN_FRAME			97
173 #define CAS_1000MB_MIN_FRAME            255
174 #define CAS_MIN_MTU                     60
175 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
176 
177 #if 1
178 /*
179  * Eliminate these and use separate atomic counters for each, to
180  * avoid a race condition.
181  */
182 #else
183 #define CAS_RESET_MTU                   1
184 #define CAS_RESET_ALL                   2
185 #define CAS_RESET_SPARE                 3
186 #endif
187 
188 static char version[] =
189 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
190 
191 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
193 
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
202 
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /*
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215 
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222 
223 
224 
225 static u16 link_modes[] = {
226 	BMCR_ANENABLE,			 /* 0 : autoneg */
227 	0,				 /* 1 : 10bt half duplex */
228 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
229 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
230 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
231 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
232 };
233 
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 	{ 0, }
240 };
241 
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243 
244 static void cas_set_link_modes(struct cas *cp);
245 
246 static inline void cas_lock_tx(struct cas *cp)
247 {
248 	int i;
249 
250 	for (i = 0; i < N_TX_RINGS; i++)
251 		spin_lock(&cp->tx_lock[i]);
252 }
253 
254 static inline void cas_lock_all(struct cas *cp)
255 {
256 	spin_lock_irq(&cp->lock);
257 	cas_lock_tx(cp);
258 }
259 
260 /* WTZ: QA was finding deadlock problems with the previous
261  * versions after long test runs with multiple cards per machine.
262  * See if replacing cas_lock_all with safer versions helps. The
263  * symptoms QA is reporting match those we'd expect if interrupts
264  * aren't being properly restored, and we fixed a previous deadlock
265  * with similar symptoms by using save/restore versions in other
266  * places.
267  */
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270 	struct cas *xxxcp = (cp); \
271 	spin_lock_irqsave(&xxxcp->lock, flags); \
272 	cas_lock_tx(xxxcp); \
273 } while (0)
274 
275 static inline void cas_unlock_tx(struct cas *cp)
276 {
277 	int i;
278 
279 	for (i = N_TX_RINGS; i > 0; i--)
280 		spin_unlock(&cp->tx_lock[i - 1]);
281 }
282 
283 static inline void cas_unlock_all(struct cas *cp)
284 {
285 	cas_unlock_tx(cp);
286 	spin_unlock_irq(&cp->lock);
287 }
288 
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291 	struct cas *xxxcp = (cp); \
292 	cas_unlock_tx(xxxcp); \
293 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
295 
296 static void cas_disable_irq(struct cas *cp, const int ring)
297 {
298 	/* Make sure we won't get any more interrupts */
299 	if (ring == 0) {
300 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301 		return;
302 	}
303 
304 	/* disable completion interrupts and selectively mask */
305 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306 		switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309 		case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312 		case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315 		case 3:
316 #endif
317 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
319 			break;
320 #endif
321 		default:
322 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323 			       REG_PLUS_INTRN_MASK(ring));
324 			break;
325 		}
326 	}
327 }
328 
329 static inline void cas_mask_intr(struct cas *cp)
330 {
331 	int i;
332 
333 	for (i = 0; i < N_RX_COMP_RINGS; i++)
334 		cas_disable_irq(cp, i);
335 }
336 
337 static void cas_enable_irq(struct cas *cp, const int ring)
338 {
339 	if (ring == 0) { /* all but TX_DONE */
340 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341 		return;
342 	}
343 
344 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345 		switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348 		case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351 		case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354 		case 3:
355 #endif
356 			writel(INTRN_MASK_RX_EN, cp->regs +
357 			       REG_PLUS_INTRN_MASK(ring));
358 			break;
359 #endif
360 		default:
361 			break;
362 		}
363 	}
364 }
365 
366 static inline void cas_unmask_intr(struct cas *cp)
367 {
368 	int i;
369 
370 	for (i = 0; i < N_RX_COMP_RINGS; i++)
371 		cas_enable_irq(cp, i);
372 }
373 
374 static inline void cas_entropy_gather(struct cas *cp)
375 {
376 #ifdef USE_ENTROPY_DEV
377 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378 		return;
379 
380 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381 			    readl(cp->regs + REG_ENTROPY_IV),
382 			    sizeof(uint64_t)*8);
383 #endif
384 }
385 
386 static inline void cas_entropy_reset(struct cas *cp)
387 {
388 #ifdef USE_ENTROPY_DEV
389 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390 		return;
391 
392 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
394 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396 
397 	/* if we read back 0x0, we don't have an entropy device */
398 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
401 }
402 
403 /* access to the phy. the following assumes that we've initialized the MIF to
404  * be in frame rather than bit-bang mode
405  */
406 static u16 cas_phy_read(struct cas *cp, int reg)
407 {
408 	u32 cmd;
409 	int limit = STOP_TRIES_PHY;
410 
411 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
415 	writel(cmd, cp->regs + REG_MIF_FRAME);
416 
417 	/* poll for completion */
418 	while (limit-- > 0) {
419 		udelay(10);
420 		cmd = readl(cp->regs + REG_MIF_FRAME);
421 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422 			return cmd & MIF_FRAME_DATA_MASK;
423 	}
424 	return 0xFFFF; /* -1 */
425 }
426 
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 {
429 	int limit = STOP_TRIES_PHY;
430 	u32 cmd;
431 
432 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
436 	cmd |= val & MIF_FRAME_DATA_MASK;
437 	writel(cmd, cp->regs + REG_MIF_FRAME);
438 
439 	/* poll for completion */
440 	while (limit-- > 0) {
441 		udelay(10);
442 		cmd = readl(cp->regs + REG_MIF_FRAME);
443 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444 			return 0;
445 	}
446 	return -1;
447 }
448 
449 static void cas_phy_powerup(struct cas *cp)
450 {
451 	u16 ctl = cas_phy_read(cp, MII_BMCR);
452 
453 	if ((ctl & BMCR_PDOWN) == 0)
454 		return;
455 	ctl &= ~BMCR_PDOWN;
456 	cas_phy_write(cp, MII_BMCR, ctl);
457 }
458 
459 static void cas_phy_powerdown(struct cas *cp)
460 {
461 	u16 ctl = cas_phy_read(cp, MII_BMCR);
462 
463 	if (ctl & BMCR_PDOWN)
464 		return;
465 	ctl |= BMCR_PDOWN;
466 	cas_phy_write(cp, MII_BMCR, ctl);
467 }
468 
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 {
472 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473 		       PCI_DMA_FROMDEVICE);
474 	__free_pages(page->buffer, cp->page_order);
475 	kfree(page);
476 	return 0;
477 }
478 
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y)       ((x)->used += (y))
481 #define RX_USED_SET(x, y)       ((x)->used  = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
486 
487 /* local page allocation routines for the receive buffers. jumbo pages
488  * require at least 8K contiguous and 8K aligned buffers.
489  */
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 {
492 	cas_page_t *page;
493 
494 	page = kmalloc(sizeof(cas_page_t), flags);
495 	if (!page)
496 		return NULL;
497 
498 	INIT_LIST_HEAD(&page->list);
499 	RX_USED_SET(page, 0);
500 	page->buffer = alloc_pages(flags, cp->page_order);
501 	if (!page->buffer)
502 		goto page_err;
503 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504 				      cp->page_size, PCI_DMA_FROMDEVICE);
505 	return page;
506 
507 page_err:
508 	kfree(page);
509 	return NULL;
510 }
511 
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
514 {
515   	spin_lock(&cp->rx_inuse_lock);
516 	INIT_LIST_HEAD(&cp->rx_inuse_list);
517 	spin_unlock(&cp->rx_inuse_lock);
518 
519 	spin_lock(&cp->rx_spare_lock);
520 	INIT_LIST_HEAD(&cp->rx_spare_list);
521 	cp->rx_spares_needed = RX_SPARE_COUNT;
522 	spin_unlock(&cp->rx_spare_lock);
523 }
524 
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
527 {
528 	struct list_head list, *elem, *tmp;
529 
530 	/* free spare buffers */
531 	INIT_LIST_HEAD(&list);
532 	spin_lock(&cp->rx_spare_lock);
533 	list_splice_init(&cp->rx_spare_list, &list);
534 	spin_unlock(&cp->rx_spare_lock);
535 	list_for_each_safe(elem, tmp, &list) {
536 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
537 	}
538 
539 	INIT_LIST_HEAD(&list);
540 #if 1
541 	/*
542 	 * Looks like Adrian had protected this with a different
543 	 * lock than used everywhere else to manipulate this list.
544 	 */
545 	spin_lock(&cp->rx_inuse_lock);
546 	list_splice_init(&cp->rx_inuse_list, &list);
547 	spin_unlock(&cp->rx_inuse_lock);
548 #else
549 	spin_lock(&cp->rx_spare_lock);
550 	list_splice_init(&cp->rx_inuse_list, &list);
551 	spin_unlock(&cp->rx_spare_lock);
552 #endif
553 	list_for_each_safe(elem, tmp, &list) {
554 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
555 	}
556 }
557 
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 {
561 	struct list_head list, *elem, *tmp;
562 	int needed, i;
563 
564 	/* check inuse list. if we don't need any more free buffers,
565 	 * just free it
566 	 */
567 
568 	/* make a local copy of the list */
569 	INIT_LIST_HEAD(&list);
570 	spin_lock(&cp->rx_inuse_lock);
571 	list_splice_init(&cp->rx_inuse_list, &list);
572 	spin_unlock(&cp->rx_inuse_lock);
573 
574 	list_for_each_safe(elem, tmp, &list) {
575 		cas_page_t *page = list_entry(elem, cas_page_t, list);
576 
577 		/*
578 		 * With the lockless pagecache, cassini buffering scheme gets
579 		 * slightly less accurate: we might find that a page has an
580 		 * elevated reference count here, due to a speculative ref,
581 		 * and skip it as in-use. Ideally we would be able to reclaim
582 		 * it. However this would be such a rare case, it doesn't
583 		 * matter too much as we should pick it up the next time round.
584 		 *
585 		 * Importantly, if we find that the page has a refcount of 1
586 		 * here (our refcount), then we know it is definitely not inuse
587 		 * so we can reuse it.
588 		 */
589 		if (page_count(page->buffer) > 1)
590 			continue;
591 
592 		list_del(elem);
593 		spin_lock(&cp->rx_spare_lock);
594 		if (cp->rx_spares_needed > 0) {
595 			list_add(elem, &cp->rx_spare_list);
596 			cp->rx_spares_needed--;
597 			spin_unlock(&cp->rx_spare_lock);
598 		} else {
599 			spin_unlock(&cp->rx_spare_lock);
600 			cas_page_free(cp, page);
601 		}
602 	}
603 
604 	/* put any inuse buffers back on the list */
605 	if (!list_empty(&list)) {
606 		spin_lock(&cp->rx_inuse_lock);
607 		list_splice(&list, &cp->rx_inuse_list);
608 		spin_unlock(&cp->rx_inuse_lock);
609 	}
610 
611 	spin_lock(&cp->rx_spare_lock);
612 	needed = cp->rx_spares_needed;
613 	spin_unlock(&cp->rx_spare_lock);
614 	if (!needed)
615 		return;
616 
617 	/* we still need spares, so try to allocate some */
618 	INIT_LIST_HEAD(&list);
619 	i = 0;
620 	while (i < needed) {
621 		cas_page_t *spare = cas_page_alloc(cp, flags);
622 		if (!spare)
623 			break;
624 		list_add(&spare->list, &list);
625 		i++;
626 	}
627 
628 	spin_lock(&cp->rx_spare_lock);
629 	list_splice(&list, &cp->rx_spare_list);
630 	cp->rx_spares_needed -= i;
631 	spin_unlock(&cp->rx_spare_lock);
632 }
633 
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 {
637 	struct list_head *entry;
638 	int recover;
639 
640 	spin_lock(&cp->rx_spare_lock);
641 	if (list_empty(&cp->rx_spare_list)) {
642 		/* try to do a quick recovery */
643 		spin_unlock(&cp->rx_spare_lock);
644 		cas_spare_recover(cp, GFP_ATOMIC);
645 		spin_lock(&cp->rx_spare_lock);
646 		if (list_empty(&cp->rx_spare_list)) {
647 			netif_err(cp, rx_err, cp->dev,
648 				  "no spare buffers available\n");
649 			spin_unlock(&cp->rx_spare_lock);
650 			return NULL;
651 		}
652 	}
653 
654 	entry = cp->rx_spare_list.next;
655 	list_del(entry);
656 	recover = ++cp->rx_spares_needed;
657 	spin_unlock(&cp->rx_spare_lock);
658 
659 	/* trigger the timer to do the recovery */
660 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662 		atomic_inc(&cp->reset_task_pending);
663 		atomic_inc(&cp->reset_task_pending_spare);
664 		schedule_work(&cp->reset_task);
665 #else
666 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667 		schedule_work(&cp->reset_task);
668 #endif
669 	}
670 	return list_entry(entry, cas_page_t, list);
671 }
672 
673 
674 static void cas_mif_poll(struct cas *cp, const int enable)
675 {
676 	u32 cfg;
677 
678 	cfg  = readl(cp->regs + REG_MIF_CFG);
679 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680 
681 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
682 		cfg |= MIF_CFG_PHY_SELECT;
683 
684 	/* poll and interrupt on link status change. */
685 	if (enable) {
686 		cfg |= MIF_CFG_POLL_EN;
687 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689 	}
690 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691 	       cp->regs + REG_MIF_MASK);
692 	writel(cfg, cp->regs + REG_MIF_CFG);
693 }
694 
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
697 {
698 	u16 ctl;
699 #if 1
700 	int lcntl;
701 	int changed = 0;
702 	int oldstate = cp->lstate;
703 	int link_was_not_down = !(oldstate == link_down);
704 #endif
705 	/* Setup link parameters */
706 	if (!ep)
707 		goto start_aneg;
708 	lcntl = cp->link_cntl;
709 	if (ep->autoneg == AUTONEG_ENABLE)
710 		cp->link_cntl = BMCR_ANENABLE;
711 	else {
712 		u32 speed = ethtool_cmd_speed(ep);
713 		cp->link_cntl = 0;
714 		if (speed == SPEED_100)
715 			cp->link_cntl |= BMCR_SPEED100;
716 		else if (speed == SPEED_1000)
717 			cp->link_cntl |= CAS_BMCR_SPEED1000;
718 		if (ep->duplex == DUPLEX_FULL)
719 			cp->link_cntl |= BMCR_FULLDPLX;
720 	}
721 #if 1
722 	changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725 	if (cp->lstate == link_up) {
726 		netdev_info(cp->dev, "PCS link down\n");
727 	} else {
728 		if (changed) {
729 			netdev_info(cp->dev, "link configuration changed\n");
730 		}
731 	}
732 	cp->lstate = link_down;
733 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734 	if (!cp->hw_running)
735 		return;
736 #if 1
737 	/*
738 	 * WTZ: If the old state was link_up, we turn off the carrier
739 	 * to replicate everything we do elsewhere on a link-down
740 	 * event when we were already in a link-up state..
741 	 */
742 	if (oldstate == link_up)
743 		netif_carrier_off(cp->dev);
744 	if (changed  && link_was_not_down) {
745 		/*
746 		 * WTZ: This branch will simply schedule a full reset after
747 		 * we explicitly changed link modes in an ioctl. See if this
748 		 * fixes the link-problems we were having for forced mode.
749 		 */
750 		atomic_inc(&cp->reset_task_pending);
751 		atomic_inc(&cp->reset_task_pending_all);
752 		schedule_work(&cp->reset_task);
753 		cp->timer_ticks = 0;
754 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755 		return;
756 	}
757 #endif
758 	if (cp->phy_type & CAS_PHY_SERDES) {
759 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760 
761 		if (cp->link_cntl & BMCR_ANENABLE) {
762 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 			cp->lstate = link_aneg;
764 		} else {
765 			if (cp->link_cntl & BMCR_FULLDPLX)
766 				val |= PCS_MII_CTRL_DUPLEX;
767 			val &= ~PCS_MII_AUTONEG_EN;
768 			cp->lstate = link_force_ok;
769 		}
770 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 		writel(val, cp->regs + REG_PCS_MII_CTRL);
772 
773 	} else {
774 		cas_mif_poll(cp, 0);
775 		ctl = cas_phy_read(cp, MII_BMCR);
776 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 		ctl |= cp->link_cntl;
779 		if (ctl & BMCR_ANENABLE) {
780 			ctl |= BMCR_ANRESTART;
781 			cp->lstate = link_aneg;
782 		} else {
783 			cp->lstate = link_force_ok;
784 		}
785 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 		cas_phy_write(cp, MII_BMCR, ctl);
787 		cas_mif_poll(cp, 1);
788 	}
789 
790 	cp->timer_ticks = 0;
791 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793 
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797 	int limit = STOP_TRIES_PHY;
798 	u16 val;
799 
800 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801 	udelay(100);
802 	while (--limit) {
803 		val = cas_phy_read(cp, MII_BMCR);
804 		if ((val & BMCR_RESET) == 0)
805 			break;
806 		udelay(10);
807 	}
808 	return limit <= 0;
809 }
810 
811 static void cas_saturn_firmware_init(struct cas *cp)
812 {
813 	const struct firmware *fw;
814 	const char fw_name[] = "sun/cassini.bin";
815 	int err;
816 
817 	if (PHY_NS_DP83065 != cp->phy_id)
818 		return;
819 
820 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821 	if (err) {
822 		pr_err("Failed to load firmware \"%s\"\n",
823 		       fw_name);
824 		return;
825 	}
826 	if (fw->size < 2) {
827 		pr_err("bogus length %zu in \"%s\"\n",
828 		       fw->size, fw_name);
829 		goto out;
830 	}
831 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832 	cp->fw_size = fw->size - 2;
833 	cp->fw_data = vmalloc(cp->fw_size);
834 	if (!cp->fw_data)
835 		goto out;
836 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
837 out:
838 	release_firmware(fw);
839 }
840 
841 static void cas_saturn_firmware_load(struct cas *cp)
842 {
843 	int i;
844 
845 	if (!cp->fw_data)
846 		return;
847 
848 	cas_phy_powerdown(cp);
849 
850 	/* expanded memory access mode */
851 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
852 
853 	/* pointer configuration for new firmware */
854 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
855 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
856 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
857 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
858 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
859 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
860 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
861 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
862 
863 	/* download new firmware */
864 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
865 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
866 	for (i = 0; i < cp->fw_size; i++)
867 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
868 
869 	/* enable firmware */
870 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
871 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
872 }
873 
874 
875 /* phy initialization */
876 static void cas_phy_init(struct cas *cp)
877 {
878 	u16 val;
879 
880 	/* if we're in MII/GMII mode, set up phy */
881 	if (CAS_PHY_MII(cp->phy_type)) {
882 		writel(PCS_DATAPATH_MODE_MII,
883 		       cp->regs + REG_PCS_DATAPATH_MODE);
884 
885 		cas_mif_poll(cp, 0);
886 		cas_reset_mii_phy(cp); /* take out of isolate mode */
887 
888 		if (PHY_LUCENT_B0 == cp->phy_id) {
889 			/* workaround link up/down issue with lucent */
890 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
891 			cas_phy_write(cp, MII_BMCR, 0x00f1);
892 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
893 
894 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
895 			/* workarounds for broadcom phy */
896 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
897 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
898 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
899 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
900 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
901 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
903 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
905 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
906 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
907 
908 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
909 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
911 			if (val & 0x0080) {
912 				/* link workaround */
913 				cas_phy_write(cp, BROADCOM_MII_REG4,
914 					      val & ~0x0080);
915 			}
916 
917 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
918 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
919 			       SATURN_PCFG_FSI : 0x0,
920 			       cp->regs + REG_SATURN_PCFG);
921 
922 			/* load firmware to address 10Mbps auto-negotiation
923 			 * issue. NOTE: this will need to be changed if the
924 			 * default firmware gets fixed.
925 			 */
926 			if (PHY_NS_DP83065 == cp->phy_id) {
927 				cas_saturn_firmware_load(cp);
928 			}
929 			cas_phy_powerup(cp);
930 		}
931 
932 		/* advertise capabilities */
933 		val = cas_phy_read(cp, MII_BMCR);
934 		val &= ~BMCR_ANENABLE;
935 		cas_phy_write(cp, MII_BMCR, val);
936 		udelay(10);
937 
938 		cas_phy_write(cp, MII_ADVERTISE,
939 			      cas_phy_read(cp, MII_ADVERTISE) |
940 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
941 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
942 			       CAS_ADVERTISE_PAUSE |
943 			       CAS_ADVERTISE_ASYM_PAUSE));
944 
945 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
946 			/* make sure that we don't advertise half
947 			 * duplex to avoid a chip issue
948 			 */
949 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
950 			val &= ~CAS_ADVERTISE_1000HALF;
951 			val |= CAS_ADVERTISE_1000FULL;
952 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
953 		}
954 
955 	} else {
956 		/* reset pcs for serdes */
957 		u32 val;
958 		int limit;
959 
960 		writel(PCS_DATAPATH_MODE_SERDES,
961 		       cp->regs + REG_PCS_DATAPATH_MODE);
962 
963 		/* enable serdes pins on saturn */
964 		if (cp->cas_flags & CAS_FLAG_SATURN)
965 			writel(0, cp->regs + REG_SATURN_PCFG);
966 
967 		/* Reset PCS unit. */
968 		val = readl(cp->regs + REG_PCS_MII_CTRL);
969 		val |= PCS_MII_RESET;
970 		writel(val, cp->regs + REG_PCS_MII_CTRL);
971 
972 		limit = STOP_TRIES;
973 		while (--limit > 0) {
974 			udelay(10);
975 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
976 			     PCS_MII_RESET) == 0)
977 				break;
978 		}
979 		if (limit <= 0)
980 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
981 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
982 
983 		/* Make sure PCS is disabled while changing advertisement
984 		 * configuration.
985 		 */
986 		writel(0x0, cp->regs + REG_PCS_CFG);
987 
988 		/* Advertise all capabilities except half-duplex. */
989 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
990 		val &= ~PCS_MII_ADVERT_HD;
991 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
992 			PCS_MII_ADVERT_ASYM_PAUSE);
993 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
994 
995 		/* enable PCS */
996 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
997 
998 		/* pcs workaround: enable sync detect */
999 		writel(PCS_SERDES_CTRL_SYNCD_EN,
1000 		       cp->regs + REG_PCS_SERDES_CTRL);
1001 	}
1002 }
1003 
1004 
1005 static int cas_pcs_link_check(struct cas *cp)
1006 {
1007 	u32 stat, state_machine;
1008 	int retval = 0;
1009 
1010 	/* The link status bit latches on zero, so you must
1011 	 * read it twice in such a case to see a transition
1012 	 * to the link being up.
1013 	 */
1014 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1016 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017 
1018 	/* The remote-fault indication is only valid
1019 	 * when autoneg has completed.
1020 	 */
1021 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1022 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1023 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1024 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1025 
1026 	/* work around link detection issue by querying the PCS state
1027 	 * machine directly.
1028 	 */
1029 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1030 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1031 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1032 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1033 		stat |= PCS_MII_STATUS_LINK_STATUS;
1034 	}
1035 
1036 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1037 		if (cp->lstate != link_up) {
1038 			if (cp->opened) {
1039 				cp->lstate = link_up;
1040 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1041 
1042 				cas_set_link_modes(cp);
1043 				netif_carrier_on(cp->dev);
1044 			}
1045 		}
1046 	} else if (cp->lstate == link_up) {
1047 		cp->lstate = link_down;
1048 		if (link_transition_timeout != 0 &&
1049 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1050 		    !cp->link_transition_jiffies_valid) {
1051 			/*
1052 			 * force a reset, as a workaround for the
1053 			 * link-failure problem. May want to move this to a
1054 			 * point a bit earlier in the sequence. If we had
1055 			 * generated a reset a short time ago, we'll wait for
1056 			 * the link timer to check the status until a
1057 			 * timer expires (link_transistion_jiffies_valid is
1058 			 * true when the timer is running.)  Instead of using
1059 			 * a system timer, we just do a check whenever the
1060 			 * link timer is running - this clears the flag after
1061 			 * a suitable delay.
1062 			 */
1063 			retval = 1;
1064 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1065 			cp->link_transition_jiffies = jiffies;
1066 			cp->link_transition_jiffies_valid = 1;
1067 		} else {
1068 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1069 		}
1070 		netif_carrier_off(cp->dev);
1071 		if (cp->opened)
1072 			netif_info(cp, link, cp->dev, "PCS link down\n");
1073 
1074 		/* Cassini only: if you force a mode, there can be
1075 		 * sync problems on link down. to fix that, the following
1076 		 * things need to be checked:
1077 		 * 1) read serialink state register
1078 		 * 2) read pcs status register to verify link down.
1079 		 * 3) if link down and serial link == 0x03, then you need
1080 		 *    to global reset the chip.
1081 		 */
1082 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1083 			/* should check to see if we're in a forced mode */
1084 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1085 			if (stat == 0x03)
1086 				return 1;
1087 		}
1088 	} else if (cp->lstate == link_down) {
1089 		if (link_transition_timeout != 0 &&
1090 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1091 		    !cp->link_transition_jiffies_valid) {
1092 			/* force a reset, as a workaround for the
1093 			 * link-failure problem.  May want to move
1094 			 * this to a point a bit earlier in the
1095 			 * sequence.
1096 			 */
1097 			retval = 1;
1098 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1099 			cp->link_transition_jiffies = jiffies;
1100 			cp->link_transition_jiffies_valid = 1;
1101 		} else {
1102 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1103 		}
1104 	}
1105 
1106 	return retval;
1107 }
1108 
1109 static int cas_pcs_interrupt(struct net_device *dev,
1110 			     struct cas *cp, u32 status)
1111 {
1112 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1113 
1114 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1115 		return 0;
1116 	return cas_pcs_link_check(cp);
1117 }
1118 
1119 static int cas_txmac_interrupt(struct net_device *dev,
1120 			       struct cas *cp, u32 status)
1121 {
1122 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1123 
1124 	if (!txmac_stat)
1125 		return 0;
1126 
1127 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1128 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1129 
1130 	/* Defer timer expiration is quite normal,
1131 	 * don't even log the event.
1132 	 */
1133 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1134 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1135 		return 0;
1136 
1137 	spin_lock(&cp->stat_lock[0]);
1138 	if (txmac_stat & MAC_TX_UNDERRUN) {
1139 		netdev_err(dev, "TX MAC xmit underrun\n");
1140 		cp->net_stats[0].tx_fifo_errors++;
1141 	}
1142 
1143 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144 		netdev_err(dev, "TX MAC max packet size error\n");
1145 		cp->net_stats[0].tx_errors++;
1146 	}
1147 
1148 	/* The rest are all cases of one of the 16-bit TX
1149 	 * counters expiring.
1150 	 */
1151 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 		cp->net_stats[0].collisions += 0x10000;
1153 
1154 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 		cp->net_stats[0].collisions += 0x10000;
1157 	}
1158 
1159 	if (txmac_stat & MAC_TX_COLL_LATE) {
1160 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 		cp->net_stats[0].collisions += 0x10000;
1162 	}
1163 	spin_unlock(&cp->stat_lock[0]);
1164 
1165 	/* We do not keep track of MAC_TX_COLL_FIRST and
1166 	 * MAC_TX_PEAK_ATTEMPTS events.
1167 	 */
1168 	return 0;
1169 }
1170 
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1172 {
1173 	cas_hp_inst_t *inst;
1174 	u32 val;
1175 	int i;
1176 
1177 	i = 0;
1178 	while ((inst = firmware) && inst->note) {
1179 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180 
1181 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184 
1185 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193 
1194 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 		++firmware;
1200 		++i;
1201 	}
1202 }
1203 
1204 static void cas_init_rx_dma(struct cas *cp)
1205 {
1206 	u64 desc_dma = cp->block_dvma;
1207 	u32 val;
1208 	int i, size;
1209 
1210 	/* rx free descriptors */
1211 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 	if ((N_RX_DESC_RINGS > 1) &&
1215 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1216 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 	writel(val, cp->regs + REG_RX_CFG);
1218 
1219 	val = (unsigned long) cp->init_rxds[0] -
1220 		(unsigned long) cp->init_block;
1221 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224 
1225 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 		/* rx desc 2 is for IPSEC packets. however,
1227 		 * we don't it that for that purpose.
1228 		 */
1229 		val = (unsigned long) cp->init_rxds[1] -
1230 			(unsigned long) cp->init_block;
1231 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 		       REG_PLUS_RX_DB1_LOW);
1234 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235 		       REG_PLUS_RX_KICK1);
1236 	}
1237 
1238 	/* rx completion registers */
1239 	val = (unsigned long) cp->init_rxcs[0] -
1240 		(unsigned long) cp->init_block;
1241 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243 
1244 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 		/* rx comp 2-4 */
1246 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 			val = (unsigned long) cp->init_rxcs[i] -
1248 				(unsigned long) cp->init_block;
1249 			writel((desc_dma + val) >> 32, cp->regs +
1250 			       REG_PLUS_RX_CBN_HI(i));
1251 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 			       REG_PLUS_RX_CBN_LOW(i));
1253 		}
1254 	}
1255 
1256 	/* read selective clear regs to prevent spurious interrupts
1257 	 * on reset because complete == kick.
1258 	 * selective clear set up to prevent interrupts on resets
1259 	 */
1260 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265 
1266 		/* 2 is different from 3 and 4 */
1267 		if (N_RX_COMP_RINGS > 1)
1268 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270 
1271 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 			writel(INTR_RX_DONE_ALT,
1273 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274 	}
1275 
1276 	/* set up pause thresholds */
1277 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282 
1283 	/* zero out dma reassembly buffers */
1284 	for (i = 0; i < 64; i++) {
1285 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289 	}
1290 
1291 	/* make sure address register is 0 for normal operation */
1292 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294 
1295 	/* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 	writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301 	writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1303 
1304 	/* interrupt generation as a function of low water marks for
1305 	 * free desc and completion entries. these are used to trigger
1306 	 * housekeeping for rx descs. we don't use the free interrupt
1307 	 * as it's not very useful
1308 	 */
1309 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 	writel(val, cp->regs + REG_RX_AE_THRESH);
1312 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315 	}
1316 
1317 	/* Random early detect registers. useful for congestion avoidance.
1318 	 * this should be tunable.
1319 	 */
1320 	writel(0x0, cp->regs + REG_RX_RED);
1321 
1322 	/* receive page sizes. default == 2K (0x800) */
1323 	val = 0;
1324 	if (cp->page_size == 0x1000)
1325 		val = 0x1;
1326 	else if (cp->page_size == 0x2000)
1327 		val = 0x2;
1328 	else if (cp->page_size == 0x4000)
1329 		val = 0x3;
1330 
1331 	/* round mtu + offset. constrain to page size. */
1332 	size = cp->dev->mtu + 64;
1333 	if (size > cp->page_size)
1334 		size = cp->page_size;
1335 
1336 	if (size <= 0x400)
1337 		i = 0x0;
1338 	else if (size <= 0x800)
1339 		i = 0x1;
1340 	else if (size <= 0x1000)
1341 		i = 0x2;
1342 	else
1343 		i = 0x3;
1344 
1345 	cp->mtu_stride = 1 << (i + 10);
1346 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1347 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351 
1352 	/* enable the header parser if desired */
1353 	if (CAS_HP_FIRMWARE == cas_prog_null)
1354 		return;
1355 
1356 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 	writel(val, cp->regs + REG_HP_CFG);
1360 }
1361 
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 {
1364 	memset(rxc, 0, sizeof(*rxc));
1365 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1366 }
1367 
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369  * flipping is protected by the fact that the chip will not
1370  * hand back the same page index while it's being processed.
1371  */
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 {
1374 	cas_page_t *page = cp->rx_pages[1][index];
1375 	cas_page_t *new;
1376 
1377 	if (page_count(page->buffer) == 1)
1378 		return page;
1379 
1380 	new = cas_page_dequeue(cp);
1381 	if (new) {
1382 		spin_lock(&cp->rx_inuse_lock);
1383 		list_add(&page->list, &cp->rx_inuse_list);
1384 		spin_unlock(&cp->rx_inuse_lock);
1385 	}
1386 	return new;
1387 }
1388 
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391 				 const int index)
1392 {
1393 	cas_page_t **page0 = cp->rx_pages[0];
1394 	cas_page_t **page1 = cp->rx_pages[1];
1395 
1396 	/* swap if buffer is in use */
1397 	if (page_count(page0[index]->buffer) > 1) {
1398 		cas_page_t *new = cas_page_spare(cp, index);
1399 		if (new) {
1400 			page1[index] = page0[index];
1401 			page0[index] = new;
1402 		}
1403 	}
1404 	RX_USED_SET(page0[index], 0);
1405 	return page0[index];
1406 }
1407 
1408 static void cas_clean_rxds(struct cas *cp)
1409 {
1410 	/* only clean ring 0 as ring 1 is used for spare buffers */
1411         struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 	int i, size;
1413 
1414 	/* release all rx flows */
1415 	for (i = 0; i < N_RX_FLOWS; i++) {
1416 		struct sk_buff *skb;
1417 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 			cas_skb_release(skb);
1419 		}
1420 	}
1421 
1422 	/* initialize descriptors */
1423 	size = RX_DESC_RINGN_SIZE(0);
1424 	for (i = 0; i < size; i++) {
1425 		cas_page_t *page = cas_page_swap(cp, 0, i);
1426 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 					    CAS_BASE(RX_INDEX_RING, 0));
1429 	}
1430 
1431 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1432 	cp->rx_last[0] = 0;
1433 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434 }
1435 
1436 static void cas_clean_rxcs(struct cas *cp)
1437 {
1438 	int i, j;
1439 
1440 	/* take ownership of rx comp descriptors */
1441 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 			cas_rxc_init(rxc + j);
1447 		}
1448 	}
1449 }
1450 
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453  * so we do the following.
1454  *
1455  * If any part of the reset goes wrong, we return 1 and that causes the
1456  * whole chip to be reset.
1457  */
1458 static int cas_rxmac_reset(struct cas *cp)
1459 {
1460 	struct net_device *dev = cp->dev;
1461 	int limit;
1462 	u32 val;
1463 
1464 	/* First, reset MAC RX. */
1465 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 	for (limit = 0; limit < STOP_TRIES; limit++) {
1467 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 			break;
1469 		udelay(10);
1470 	}
1471 	if (limit == STOP_TRIES) {
1472 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1473 		return 1;
1474 	}
1475 
1476 	/* Second, disable RX DMA. */
1477 	writel(0, cp->regs + REG_RX_CFG);
1478 	for (limit = 0; limit < STOP_TRIES; limit++) {
1479 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1480 			break;
1481 		udelay(10);
1482 	}
1483 	if (limit == STOP_TRIES) {
1484 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1485 		return 1;
1486 	}
1487 
1488 	mdelay(5);
1489 
1490 	/* Execute RX reset command. */
1491 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1492 	for (limit = 0; limit < STOP_TRIES; limit++) {
1493 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1494 			break;
1495 		udelay(10);
1496 	}
1497 	if (limit == STOP_TRIES) {
1498 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1499 		return 1;
1500 	}
1501 
1502 	/* reset driver rx state */
1503 	cas_clean_rxds(cp);
1504 	cas_clean_rxcs(cp);
1505 
1506 	/* Now, reprogram the rest of RX unit. */
1507 	cas_init_rx_dma(cp);
1508 
1509 	/* re-enable */
1510 	val = readl(cp->regs + REG_RX_CFG);
1511 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1512 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1513 	val = readl(cp->regs + REG_MAC_RX_CFG);
1514 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1515 	return 0;
1516 }
1517 #endif
1518 
1519 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1520 			       u32 status)
1521 {
1522 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1523 
1524 	if (!stat)
1525 		return 0;
1526 
1527 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1528 
1529 	/* these are all rollovers */
1530 	spin_lock(&cp->stat_lock[0]);
1531 	if (stat & MAC_RX_ALIGN_ERR)
1532 		cp->net_stats[0].rx_frame_errors += 0x10000;
1533 
1534 	if (stat & MAC_RX_CRC_ERR)
1535 		cp->net_stats[0].rx_crc_errors += 0x10000;
1536 
1537 	if (stat & MAC_RX_LEN_ERR)
1538 		cp->net_stats[0].rx_length_errors += 0x10000;
1539 
1540 	if (stat & MAC_RX_OVERFLOW) {
1541 		cp->net_stats[0].rx_over_errors++;
1542 		cp->net_stats[0].rx_fifo_errors++;
1543 	}
1544 
1545 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1546 	 * events.
1547 	 */
1548 	spin_unlock(&cp->stat_lock[0]);
1549 	return 0;
1550 }
1551 
1552 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1553 			     u32 status)
1554 {
1555 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1556 
1557 	if (!stat)
1558 		return 0;
1559 
1560 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1561 		     "mac interrupt, stat: 0x%x\n", stat);
1562 
1563 	/* This interrupt is just for pause frame and pause
1564 	 * tracking.  It is useful for diagnostics and debug
1565 	 * but probably by default we will mask these events.
1566 	 */
1567 	if (stat & MAC_CTRL_PAUSE_STATE)
1568 		cp->pause_entered++;
1569 
1570 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1571 		cp->pause_last_time_recvd = (stat >> 16);
1572 
1573 	return 0;
1574 }
1575 
1576 
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas *cp)
1579 {
1580 	u16 val;
1581 
1582 	switch (cp->lstate) {
1583 	case link_force_ret:
1584 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1585 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1586 		cp->timer_ticks = 5;
1587 		cp->lstate = link_force_ok;
1588 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1589 		break;
1590 
1591 	case link_aneg:
1592 		val = cas_phy_read(cp, MII_BMCR);
1593 
1594 		/* Try forced modes. we try things in the following order:
1595 		 * 1000 full -> 100 full/half -> 10 half
1596 		 */
1597 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1598 		val |= BMCR_FULLDPLX;
1599 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1600 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1601 		cas_phy_write(cp, MII_BMCR, val);
1602 		cp->timer_ticks = 5;
1603 		cp->lstate = link_force_try;
1604 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1605 		break;
1606 
1607 	case link_force_try:
1608 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609 		val = cas_phy_read(cp, MII_BMCR);
1610 		cp->timer_ticks = 5;
1611 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1612 			val &= ~CAS_BMCR_SPEED1000;
1613 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1614 			cas_phy_write(cp, MII_BMCR, val);
1615 			break;
1616 		}
1617 
1618 		if (val & BMCR_SPEED100) {
1619 			if (val & BMCR_FULLDPLX) /* fd failed */
1620 				val &= ~BMCR_FULLDPLX;
1621 			else { /* 100Mbps failed */
1622 				val &= ~BMCR_SPEED100;
1623 			}
1624 			cas_phy_write(cp, MII_BMCR, val);
1625 			break;
1626 		}
1627 	default:
1628 		break;
1629 	}
1630 	return 0;
1631 }
1632 
1633 
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1636 {
1637 	int restart;
1638 
1639 	if (bmsr & BMSR_LSTATUS) {
1640 		/* Ok, here we got a link. If we had it due to a forced
1641 		 * fallback, and we were configured for autoneg, we
1642 		 * retry a short autoneg pass. If you know your hub is
1643 		 * broken, use ethtool ;)
1644 		 */
1645 		if ((cp->lstate == link_force_try) &&
1646 		    (cp->link_cntl & BMCR_ANENABLE)) {
1647 			cp->lstate = link_force_ret;
1648 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1649 			cas_mif_poll(cp, 0);
1650 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1651 			cp->timer_ticks = 5;
1652 			if (cp->opened)
1653 				netif_info(cp, link, cp->dev,
1654 					   "Got link after fallback, retrying autoneg once...\n");
1655 			cas_phy_write(cp, MII_BMCR,
1656 				      cp->link_fcntl | BMCR_ANENABLE |
1657 				      BMCR_ANRESTART);
1658 			cas_mif_poll(cp, 1);
1659 
1660 		} else if (cp->lstate != link_up) {
1661 			cp->lstate = link_up;
1662 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1663 
1664 			if (cp->opened) {
1665 				cas_set_link_modes(cp);
1666 				netif_carrier_on(cp->dev);
1667 			}
1668 		}
1669 		return 0;
1670 	}
1671 
1672 	/* link not up. if the link was previously up, we restart the
1673 	 * whole process
1674 	 */
1675 	restart = 0;
1676 	if (cp->lstate == link_up) {
1677 		cp->lstate = link_down;
1678 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1679 
1680 		netif_carrier_off(cp->dev);
1681 		if (cp->opened)
1682 			netif_info(cp, link, cp->dev, "Link down\n");
1683 		restart = 1;
1684 
1685 	} else if (++cp->timer_ticks > 10)
1686 		cas_mdio_link_not_up(cp);
1687 
1688 	return restart;
1689 }
1690 
1691 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1692 			     u32 status)
1693 {
1694 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1695 	u16 bmsr;
1696 
1697 	/* check for a link change */
1698 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1699 		return 0;
1700 
1701 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1702 	return cas_mii_link_check(cp, bmsr);
1703 }
1704 
1705 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1706 			     u32 status)
1707 {
1708 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1709 
1710 	if (!stat)
1711 		return 0;
1712 
1713 	netdev_err(dev, "PCI error [%04x:%04x]",
1714 		   stat, readl(cp->regs + REG_BIM_DIAG));
1715 
1716 	/* cassini+ has this reserved */
1717 	if ((stat & PCI_ERR_BADACK) &&
1718 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1719 		pr_cont(" <No ACK64# during ABS64 cycle>");
1720 
1721 	if (stat & PCI_ERR_DTRTO)
1722 		pr_cont(" <Delayed transaction timeout>");
1723 	if (stat & PCI_ERR_OTHER)
1724 		pr_cont(" <other>");
1725 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1726 		pr_cont(" <BIM DMA 0 write req>");
1727 	if (stat & PCI_ERR_BIM_DMA_READ)
1728 		pr_cont(" <BIM DMA 0 read req>");
1729 	pr_cont("\n");
1730 
1731 	if (stat & PCI_ERR_OTHER) {
1732 		u16 cfg;
1733 
1734 		/* Interrogate PCI config space for the
1735 		 * true cause.
1736 		 */
1737 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1738 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1739 		if (cfg & PCI_STATUS_PARITY)
1740 			netdev_err(dev, "PCI parity error detected\n");
1741 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1742 			netdev_err(dev, "PCI target abort\n");
1743 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1744 			netdev_err(dev, "PCI master acks target abort\n");
1745 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1746 			netdev_err(dev, "PCI master abort\n");
1747 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1748 			netdev_err(dev, "PCI system error SERR#\n");
1749 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1750 			netdev_err(dev, "PCI parity error\n");
1751 
1752 		/* Write the error bits back to clear them. */
1753 		cfg &= (PCI_STATUS_PARITY |
1754 			PCI_STATUS_SIG_TARGET_ABORT |
1755 			PCI_STATUS_REC_TARGET_ABORT |
1756 			PCI_STATUS_REC_MASTER_ABORT |
1757 			PCI_STATUS_SIG_SYSTEM_ERROR |
1758 			PCI_STATUS_DETECTED_PARITY);
1759 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1760 	}
1761 
1762 	/* For all PCI errors, we should reset the chip. */
1763 	return 1;
1764 }
1765 
1766 /* All non-normal interrupt conditions get serviced here.
1767  * Returns non-zero if we should just exit the interrupt
1768  * handler right now (ie. if we reset the card which invalidates
1769  * all of the other original irq status bits).
1770  */
1771 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1772 			    u32 status)
1773 {
1774 	if (status & INTR_RX_TAG_ERROR) {
1775 		/* corrupt RX tag framing */
1776 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1777 			     "corrupt rx tag framing\n");
1778 		spin_lock(&cp->stat_lock[0]);
1779 		cp->net_stats[0].rx_errors++;
1780 		spin_unlock(&cp->stat_lock[0]);
1781 		goto do_reset;
1782 	}
1783 
1784 	if (status & INTR_RX_LEN_MISMATCH) {
1785 		/* length mismatch. */
1786 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1787 			     "length mismatch for rx frame\n");
1788 		spin_lock(&cp->stat_lock[0]);
1789 		cp->net_stats[0].rx_errors++;
1790 		spin_unlock(&cp->stat_lock[0]);
1791 		goto do_reset;
1792 	}
1793 
1794 	if (status & INTR_PCS_STATUS) {
1795 		if (cas_pcs_interrupt(dev, cp, status))
1796 			goto do_reset;
1797 	}
1798 
1799 	if (status & INTR_TX_MAC_STATUS) {
1800 		if (cas_txmac_interrupt(dev, cp, status))
1801 			goto do_reset;
1802 	}
1803 
1804 	if (status & INTR_RX_MAC_STATUS) {
1805 		if (cas_rxmac_interrupt(dev, cp, status))
1806 			goto do_reset;
1807 	}
1808 
1809 	if (status & INTR_MAC_CTRL_STATUS) {
1810 		if (cas_mac_interrupt(dev, cp, status))
1811 			goto do_reset;
1812 	}
1813 
1814 	if (status & INTR_MIF_STATUS) {
1815 		if (cas_mif_interrupt(dev, cp, status))
1816 			goto do_reset;
1817 	}
1818 
1819 	if (status & INTR_PCI_ERROR_STATUS) {
1820 		if (cas_pci_interrupt(dev, cp, status))
1821 			goto do_reset;
1822 	}
1823 	return 0;
1824 
1825 do_reset:
1826 #if 1
1827 	atomic_inc(&cp->reset_task_pending);
1828 	atomic_inc(&cp->reset_task_pending_all);
1829 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1830 	schedule_work(&cp->reset_task);
1831 #else
1832 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1834 	schedule_work(&cp->reset_task);
1835 #endif
1836 	return 1;
1837 }
1838 
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840  *       determining whether to do a netif_stop/wakeup
1841  */
1842 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1845 				  const int len)
1846 {
1847 	unsigned long off = addr + len;
1848 
1849 	if (CAS_TABORT(cp) == 1)
1850 		return 0;
1851 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1852 		return 0;
1853 	return TX_TARGET_ABORT_LEN;
1854 }
1855 
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1857 {
1858 	struct cas_tx_desc *txds;
1859 	struct sk_buff **skbs;
1860 	struct net_device *dev = cp->dev;
1861 	int entry, count;
1862 
1863 	spin_lock(&cp->tx_lock[ring]);
1864 	txds = cp->init_txds[ring];
1865 	skbs = cp->tx_skbs[ring];
1866 	entry = cp->tx_old[ring];
1867 
1868 	count = TX_BUFF_COUNT(ring, entry, limit);
1869 	while (entry != limit) {
1870 		struct sk_buff *skb = skbs[entry];
1871 		dma_addr_t daddr;
1872 		u32 dlen;
1873 		int frag;
1874 
1875 		if (!skb) {
1876 			/* this should never occur */
1877 			entry = TX_DESC_NEXT(ring, entry);
1878 			continue;
1879 		}
1880 
1881 		/* however, we might get only a partial skb release. */
1882 		count -= skb_shinfo(skb)->nr_frags +
1883 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1884 		if (count < 0)
1885 			break;
1886 
1887 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1888 			     "tx[%d] done, slot %d\n", ring, entry);
1889 
1890 		skbs[entry] = NULL;
1891 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1892 
1893 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1894 			struct cas_tx_desc *txd = txds + entry;
1895 
1896 			daddr = le64_to_cpu(txd->buffer);
1897 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1898 				       le64_to_cpu(txd->control));
1899 			pci_unmap_page(cp->pdev, daddr, dlen,
1900 				       PCI_DMA_TODEVICE);
1901 			entry = TX_DESC_NEXT(ring, entry);
1902 
1903 			/* tiny buffer may follow */
1904 			if (cp->tx_tiny_use[ring][entry].used) {
1905 				cp->tx_tiny_use[ring][entry].used = 0;
1906 				entry = TX_DESC_NEXT(ring, entry);
1907 			}
1908 		}
1909 
1910 		spin_lock(&cp->stat_lock[ring]);
1911 		cp->net_stats[ring].tx_packets++;
1912 		cp->net_stats[ring].tx_bytes += skb->len;
1913 		spin_unlock(&cp->stat_lock[ring]);
1914 		dev_kfree_skb_irq(skb);
1915 	}
1916 	cp->tx_old[ring] = entry;
1917 
1918 	/* this is wrong for multiple tx rings. the net device needs
1919 	 * multiple queues for this to do the right thing.  we wait
1920 	 * for 2*packets to be available when using tiny buffers
1921 	 */
1922 	if (netif_queue_stopped(dev) &&
1923 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1924 		netif_wake_queue(dev);
1925 	spin_unlock(&cp->tx_lock[ring]);
1926 }
1927 
1928 static void cas_tx(struct net_device *dev, struct cas *cp,
1929 		   u32 status)
1930 {
1931         int limit, ring;
1932 #ifdef USE_TX_COMPWB
1933 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1934 #endif
1935 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1936 		     "tx interrupt, status: 0x%x, %llx\n",
1937 		     status, (unsigned long long)compwb);
1938 	/* process all the rings */
1939 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1940 #ifdef USE_TX_COMPWB
1941 		/* use the completion writeback registers */
1942 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1943 			CAS_VAL(TX_COMPWB_LSB, compwb);
1944 		compwb = TX_COMPWB_NEXT(compwb);
1945 #else
1946 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1947 #endif
1948 		if (cp->tx_old[ring] != limit)
1949 			cas_tx_ringN(cp, ring, limit);
1950 	}
1951 }
1952 
1953 
1954 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1955 			      int entry, const u64 *words,
1956 			      struct sk_buff **skbref)
1957 {
1958 	int dlen, hlen, len, i, alloclen;
1959 	int off, swivel = RX_SWIVEL_OFF_VAL;
1960 	struct cas_page *page;
1961 	struct sk_buff *skb;
1962 	void *addr, *crcaddr;
1963 	__sum16 csum;
1964 	char *p;
1965 
1966 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1967 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1968 	len  = hlen + dlen;
1969 
1970 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1971 		alloclen = len;
1972 	else
1973 		alloclen = max(hlen, RX_COPY_MIN);
1974 
1975 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1976 	if (skb == NULL)
1977 		return -1;
1978 
1979 	*skbref = skb;
1980 	skb_reserve(skb, swivel);
1981 
1982 	p = skb->data;
1983 	addr = crcaddr = NULL;
1984 	if (hlen) { /* always copy header pages */
1985 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1986 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1987 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1988 			swivel;
1989 
1990 		i = hlen;
1991 		if (!dlen) /* attach FCS */
1992 			i += cp->crc_size;
1993 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1994 				    PCI_DMA_FROMDEVICE);
1995 		addr = cas_page_map(page->buffer);
1996 		memcpy(p, addr + off, i);
1997 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1998 				    PCI_DMA_FROMDEVICE);
1999 		cas_page_unmap(addr);
2000 		RX_USED_ADD(page, 0x100);
2001 		p += hlen;
2002 		swivel = 0;
2003 	}
2004 
2005 
2006 	if (alloclen < (hlen + dlen)) {
2007 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2008 
2009 		/* normal or jumbo packets. we use frags */
2010 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2011 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2013 
2014 		hlen = min(cp->page_size - off, dlen);
2015 		if (hlen < 0) {
2016 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2017 				     "rx page overflow: %d\n", hlen);
2018 			dev_kfree_skb_irq(skb);
2019 			return -1;
2020 		}
2021 		i = hlen;
2022 		if (i == dlen)  /* attach FCS */
2023 			i += cp->crc_size;
2024 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2025 				    PCI_DMA_FROMDEVICE);
2026 
2027 		/* make sure we always copy a header */
2028 		swivel = 0;
2029 		if (p == (char *) skb->data) { /* not split */
2030 			addr = cas_page_map(page->buffer);
2031 			memcpy(p, addr + off, RX_COPY_MIN);
2032 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2033 					PCI_DMA_FROMDEVICE);
2034 			cas_page_unmap(addr);
2035 			off += RX_COPY_MIN;
2036 			swivel = RX_COPY_MIN;
2037 			RX_USED_ADD(page, cp->mtu_stride);
2038 		} else {
2039 			RX_USED_ADD(page, hlen);
2040 		}
2041 		skb_put(skb, alloclen);
2042 
2043 		skb_shinfo(skb)->nr_frags++;
2044 		skb->data_len += hlen - swivel;
2045 		skb->truesize += hlen - swivel;
2046 		skb->len      += hlen - swivel;
2047 
2048 		__skb_frag_set_page(frag, page->buffer);
2049 		__skb_frag_ref(frag);
2050 		frag->page_offset = off;
2051 		skb_frag_size_set(frag, hlen - swivel);
2052 
2053 		/* any more data? */
2054 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2055 			hlen = dlen;
2056 			off = 0;
2057 
2058 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2059 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2060 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2061 					    hlen + cp->crc_size,
2062 					    PCI_DMA_FROMDEVICE);
2063 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2064 					    hlen + cp->crc_size,
2065 					    PCI_DMA_FROMDEVICE);
2066 
2067 			skb_shinfo(skb)->nr_frags++;
2068 			skb->data_len += hlen;
2069 			skb->len      += hlen;
2070 			frag++;
2071 
2072 			__skb_frag_set_page(frag, page->buffer);
2073 			__skb_frag_ref(frag);
2074 			frag->page_offset = 0;
2075 			skb_frag_size_set(frag, hlen);
2076 			RX_USED_ADD(page, hlen + cp->crc_size);
2077 		}
2078 
2079 		if (cp->crc_size) {
2080 			addr = cas_page_map(page->buffer);
2081 			crcaddr  = addr + off + hlen;
2082 		}
2083 
2084 	} else {
2085 		/* copying packet */
2086 		if (!dlen)
2087 			goto end_copy_pkt;
2088 
2089 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2090 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2092 		hlen = min(cp->page_size - off, dlen);
2093 		if (hlen < 0) {
2094 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2095 				     "rx page overflow: %d\n", hlen);
2096 			dev_kfree_skb_irq(skb);
2097 			return -1;
2098 		}
2099 		i = hlen;
2100 		if (i == dlen) /* attach FCS */
2101 			i += cp->crc_size;
2102 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2103 				    PCI_DMA_FROMDEVICE);
2104 		addr = cas_page_map(page->buffer);
2105 		memcpy(p, addr + off, i);
2106 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2107 				    PCI_DMA_FROMDEVICE);
2108 		cas_page_unmap(addr);
2109 		if (p == (char *) skb->data) /* not split */
2110 			RX_USED_ADD(page, cp->mtu_stride);
2111 		else
2112 			RX_USED_ADD(page, i);
2113 
2114 		/* any more data? */
2115 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2116 			p += hlen;
2117 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2118 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2119 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2120 					    dlen + cp->crc_size,
2121 					    PCI_DMA_FROMDEVICE);
2122 			addr = cas_page_map(page->buffer);
2123 			memcpy(p, addr, dlen + cp->crc_size);
2124 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2125 					    dlen + cp->crc_size,
2126 					    PCI_DMA_FROMDEVICE);
2127 			cas_page_unmap(addr);
2128 			RX_USED_ADD(page, dlen + cp->crc_size);
2129 		}
2130 end_copy_pkt:
2131 		if (cp->crc_size) {
2132 			addr    = NULL;
2133 			crcaddr = skb->data + alloclen;
2134 		}
2135 		skb_put(skb, alloclen);
2136 	}
2137 
2138 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2139 	if (cp->crc_size) {
2140 		/* checksum includes FCS. strip it out. */
2141 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2142 					      csum_unfold(csum)));
2143 		if (addr)
2144 			cas_page_unmap(addr);
2145 	}
2146 	skb->protocol = eth_type_trans(skb, cp->dev);
2147 	if (skb->protocol == htons(ETH_P_IP)) {
2148 		skb->csum = csum_unfold(~csum);
2149 		skb->ip_summed = CHECKSUM_COMPLETE;
2150 	} else
2151 		skb_checksum_none_assert(skb);
2152 	return len;
2153 }
2154 
2155 
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157  * as nonreassm except that we batch up the buffers.
2158  * NOTE: we currently just treat each flow as a bunch of packets that
2159  *       we pass up. a better way would be to coalesce the packets
2160  *       into a jumbo packet. to do that, we need to do the following:
2161  *       1) the first packet will have a clean split between header and
2162  *          data. save both.
2163  *       2) each time the next flow packet comes in, extend the
2164  *          data length and merge the checksums.
2165  *       3) on flow release, fix up the header.
2166  *       4) make sure the higher layer doesn't care.
2167  * because packets get coalesced, we shouldn't run into fragment count
2168  * issues.
2169  */
2170 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2171 				   struct sk_buff *skb)
2172 {
2173 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2174 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2175 
2176 	/* this is protected at a higher layer, so no need to
2177 	 * do any additional locking here. stick the buffer
2178 	 * at the end.
2179 	 */
2180 	__skb_queue_tail(flow, skb);
2181 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2182 		while ((skb = __skb_dequeue(flow))) {
2183 			cas_skb_release(skb);
2184 		}
2185 	}
2186 }
2187 
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189  * layer, this will need to put in a replacement.
2190  */
2191 static void cas_post_page(struct cas *cp, const int ring, const int index)
2192 {
2193 	cas_page_t *new;
2194 	int entry;
2195 
2196 	entry = cp->rx_old[ring];
2197 
2198 	new = cas_page_swap(cp, ring, index);
2199 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2200 	cp->init_rxds[ring][entry].index  =
2201 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2202 			    CAS_BASE(RX_INDEX_RING, ring));
2203 
2204 	entry = RX_DESC_ENTRY(ring, entry + 1);
2205 	cp->rx_old[ring] = entry;
2206 
2207 	if (entry % 4)
2208 		return;
2209 
2210 	if (ring == 0)
2211 		writel(entry, cp->regs + REG_RX_KICK);
2212 	else if ((N_RX_DESC_RINGS > 1) &&
2213 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2214 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2215 }
2216 
2217 
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2220 {
2221 	unsigned int entry, last, count, released;
2222 	int cluster;
2223 	cas_page_t **page = cp->rx_pages[ring];
2224 
2225 	entry = cp->rx_old[ring];
2226 
2227 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2228 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2229 
2230 	cluster = -1;
2231 	count = entry & 0x3;
2232 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2233 	released = 0;
2234 	while (entry != last) {
2235 		/* make a new buffer if it's still in use */
2236 		if (page_count(page[entry]->buffer) > 1) {
2237 			cas_page_t *new = cas_page_dequeue(cp);
2238 			if (!new) {
2239 				/* let the timer know that we need to
2240 				 * do this again
2241 				 */
2242 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2243 				if (!timer_pending(&cp->link_timer))
2244 					mod_timer(&cp->link_timer, jiffies +
2245 						  CAS_LINK_FAST_TIMEOUT);
2246 				cp->rx_old[ring]  = entry;
2247 				cp->rx_last[ring] = num ? num - released : 0;
2248 				return -ENOMEM;
2249 			}
2250 			spin_lock(&cp->rx_inuse_lock);
2251 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2252 			spin_unlock(&cp->rx_inuse_lock);
2253 			cp->init_rxds[ring][entry].buffer =
2254 				cpu_to_le64(new->dma_addr);
2255 			page[entry] = new;
2256 
2257 		}
2258 
2259 		if (++count == 4) {
2260 			cluster = entry;
2261 			count = 0;
2262 		}
2263 		released++;
2264 		entry = RX_DESC_ENTRY(ring, entry + 1);
2265 	}
2266 	cp->rx_old[ring] = entry;
2267 
2268 	if (cluster < 0)
2269 		return 0;
2270 
2271 	if (ring == 0)
2272 		writel(cluster, cp->regs + REG_RX_KICK);
2273 	else if ((N_RX_DESC_RINGS > 1) &&
2274 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2275 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2276 	return 0;
2277 }
2278 
2279 
2280 /* process a completion ring. packets are set up in three basic ways:
2281  * small packets: should be copied header + data in single buffer.
2282  * large packets: header and data in a single buffer.
2283  * split packets: header in a separate buffer from data.
2284  *                data may be in multiple pages. data may be > 256
2285  *                bytes but in a single page.
2286  *
2287  * NOTE: RX page posting is done in this routine as well. while there's
2288  *       the capability of using multiple RX completion rings, it isn't
2289  *       really worthwhile due to the fact that the page posting will
2290  *       force serialization on the single descriptor ring.
2291  */
2292 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2293 {
2294 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2295 	int entry, drops;
2296 	int npackets = 0;
2297 
2298 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2299 		     "rx[%d] interrupt, done: %d/%d\n",
2300 		     ring,
2301 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2302 
2303 	entry = cp->rx_new[ring];
2304 	drops = 0;
2305 	while (1) {
2306 		struct cas_rx_comp *rxc = rxcs + entry;
2307 		struct sk_buff *uninitialized_var(skb);
2308 		int type, len;
2309 		u64 words[4];
2310 		int i, dring;
2311 
2312 		words[0] = le64_to_cpu(rxc->word1);
2313 		words[1] = le64_to_cpu(rxc->word2);
2314 		words[2] = le64_to_cpu(rxc->word3);
2315 		words[3] = le64_to_cpu(rxc->word4);
2316 
2317 		/* don't touch if still owned by hw */
2318 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2319 		if (type == 0)
2320 			break;
2321 
2322 		/* hw hasn't cleared the zero bit yet */
2323 		if (words[3] & RX_COMP4_ZERO) {
2324 			break;
2325 		}
2326 
2327 		/* get info on the packet */
2328 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2329 			spin_lock(&cp->stat_lock[ring]);
2330 			cp->net_stats[ring].rx_errors++;
2331 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2332 				cp->net_stats[ring].rx_length_errors++;
2333 			if (words[3] & RX_COMP4_BAD)
2334 				cp->net_stats[ring].rx_crc_errors++;
2335 			spin_unlock(&cp->stat_lock[ring]);
2336 
2337 			/* We'll just return it to Cassini. */
2338 		drop_it:
2339 			spin_lock(&cp->stat_lock[ring]);
2340 			++cp->net_stats[ring].rx_dropped;
2341 			spin_unlock(&cp->stat_lock[ring]);
2342 			goto next;
2343 		}
2344 
2345 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2346 		if (len < 0) {
2347 			++drops;
2348 			goto drop_it;
2349 		}
2350 
2351 		/* see if it's a flow re-assembly or not. the driver
2352 		 * itself handles release back up.
2353 		 */
2354 		if (RX_DONT_BATCH || (type == 0x2)) {
2355 			/* non-reassm: these always get released */
2356 			cas_skb_release(skb);
2357 		} else {
2358 			cas_rx_flow_pkt(cp, words, skb);
2359 		}
2360 
2361 		spin_lock(&cp->stat_lock[ring]);
2362 		cp->net_stats[ring].rx_packets++;
2363 		cp->net_stats[ring].rx_bytes += len;
2364 		spin_unlock(&cp->stat_lock[ring]);
2365 
2366 	next:
2367 		npackets++;
2368 
2369 		/* should it be released? */
2370 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2371 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2372 			dring = CAS_VAL(RX_INDEX_RING, i);
2373 			i = CAS_VAL(RX_INDEX_NUM, i);
2374 			cas_post_page(cp, dring, i);
2375 		}
2376 
2377 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2378 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2379 			dring = CAS_VAL(RX_INDEX_RING, i);
2380 			i = CAS_VAL(RX_INDEX_NUM, i);
2381 			cas_post_page(cp, dring, i);
2382 		}
2383 
2384 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2385 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2386 			dring = CAS_VAL(RX_INDEX_RING, i);
2387 			i = CAS_VAL(RX_INDEX_NUM, i);
2388 			cas_post_page(cp, dring, i);
2389 		}
2390 
2391 		/* skip to the next entry */
2392 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2393 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2394 #ifdef USE_NAPI
2395 		if (budget && (npackets >= budget))
2396 			break;
2397 #endif
2398 	}
2399 	cp->rx_new[ring] = entry;
2400 
2401 	if (drops)
2402 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2403 	return npackets;
2404 }
2405 
2406 
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device *dev,
2409 				struct cas *cp, int ring)
2410 {
2411 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2412 	int last, entry;
2413 
2414 	last = cp->rx_cur[ring];
2415 	entry = cp->rx_new[ring];
2416 	netif_printk(cp, intr, KERN_DEBUG, dev,
2417 		     "rxc[%d] interrupt, done: %d/%d\n",
2418 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2419 
2420 	/* zero and re-mark descriptors */
2421 	while (last != entry) {
2422 		cas_rxc_init(rxc + last);
2423 		last = RX_COMP_ENTRY(ring, last + 1);
2424 	}
2425 	cp->rx_cur[ring] = last;
2426 
2427 	if (ring == 0)
2428 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2429 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2430 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2431 }
2432 
2433 
2434 
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436  * rings 3 and 4 are identical
2437  */
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device *dev,
2440 				   struct cas *cp, const u32 status,
2441 				   const int ring)
2442 {
2443 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2444 		cas_post_rxcs_ringN(dev, cp, ring);
2445 }
2446 
2447 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2448 {
2449 	struct net_device *dev = dev_id;
2450 	struct cas *cp = netdev_priv(dev);
2451 	unsigned long flags;
2452 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2453 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2454 
2455 	/* check for shared irq */
2456 	if (status == 0)
2457 		return IRQ_NONE;
2458 
2459 	spin_lock_irqsave(&cp->lock, flags);
2460 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462 		cas_mask_intr(cp);
2463 		napi_schedule(&cp->napi);
2464 #else
2465 		cas_rx_ringN(cp, ring, 0);
2466 #endif
2467 		status &= ~INTR_RX_DONE_ALT;
2468 	}
2469 
2470 	if (status)
2471 		cas_handle_irqN(dev, cp, status, ring);
2472 	spin_unlock_irqrestore(&cp->lock, flags);
2473 	return IRQ_HANDLED;
2474 }
2475 #endif
2476 
2477 #ifdef USE_PCI_INTB
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2480 {
2481 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2482 		/* Frame arrived, no free RX buffers available.
2483 		 * NOTE: we can get this on a link transition. */
2484 		cas_post_rxds_ringN(cp, 1, 0);
2485 		spin_lock(&cp->stat_lock[1]);
2486 		cp->net_stats[1].rx_dropped++;
2487 		spin_unlock(&cp->stat_lock[1]);
2488 	}
2489 
2490 	if (status & INTR_RX_BUF_AE_1)
2491 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492 				    RX_AE_FREEN_VAL(1));
2493 
2494 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495 		cas_post_rxcs_ringN(cp, 1);
2496 }
2497 
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2500 {
2501 	struct net_device *dev = dev_id;
2502 	struct cas *cp = netdev_priv(dev);
2503 	unsigned long flags;
2504 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2505 
2506 	/* check for shared interrupt */
2507 	if (status == 0)
2508 		return IRQ_NONE;
2509 
2510 	spin_lock_irqsave(&cp->lock, flags);
2511 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512 #ifdef USE_NAPI
2513 		cas_mask_intr(cp);
2514 		napi_schedule(&cp->napi);
2515 #else
2516 		cas_rx_ringN(cp, 1, 0);
2517 #endif
2518 		status &= ~INTR_RX_DONE_ALT;
2519 	}
2520 	if (status)
2521 		cas_handle_irq1(cp, status);
2522 	spin_unlock_irqrestore(&cp->lock, flags);
2523 	return IRQ_HANDLED;
2524 }
2525 #endif
2526 
2527 static inline void cas_handle_irq(struct net_device *dev,
2528 				  struct cas *cp, const u32 status)
2529 {
2530 	/* housekeeping interrupts */
2531 	if (status & INTR_ERROR_MASK)
2532 		cas_abnormal_irq(dev, cp, status);
2533 
2534 	if (status & INTR_RX_BUF_UNAVAIL) {
2535 		/* Frame arrived, no free RX buffers available.
2536 		 * NOTE: we can get this on a link transition.
2537 		 */
2538 		cas_post_rxds_ringN(cp, 0, 0);
2539 		spin_lock(&cp->stat_lock[0]);
2540 		cp->net_stats[0].rx_dropped++;
2541 		spin_unlock(&cp->stat_lock[0]);
2542 	} else if (status & INTR_RX_BUF_AE) {
2543 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544 				    RX_AE_FREEN_VAL(0));
2545 	}
2546 
2547 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548 		cas_post_rxcs_ringN(dev, cp, 0);
2549 }
2550 
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2552 {
2553 	struct net_device *dev = dev_id;
2554 	struct cas *cp = netdev_priv(dev);
2555 	unsigned long flags;
2556 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2557 
2558 	if (status == 0)
2559 		return IRQ_NONE;
2560 
2561 	spin_lock_irqsave(&cp->lock, flags);
2562 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563 		cas_tx(dev, cp, status);
2564 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2565 	}
2566 
2567 	if (status & INTR_RX_DONE) {
2568 #ifdef USE_NAPI
2569 		cas_mask_intr(cp);
2570 		napi_schedule(&cp->napi);
2571 #else
2572 		cas_rx_ringN(cp, 0, 0);
2573 #endif
2574 		status &= ~INTR_RX_DONE;
2575 	}
2576 
2577 	if (status)
2578 		cas_handle_irq(dev, cp, status);
2579 	spin_unlock_irqrestore(&cp->lock, flags);
2580 	return IRQ_HANDLED;
2581 }
2582 
2583 
2584 #ifdef USE_NAPI
2585 static int cas_poll(struct napi_struct *napi, int budget)
2586 {
2587 	struct cas *cp = container_of(napi, struct cas, napi);
2588 	struct net_device *dev = cp->dev;
2589 	int i, enable_intr, credits;
2590 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2591 	unsigned long flags;
2592 
2593 	spin_lock_irqsave(&cp->lock, flags);
2594 	cas_tx(dev, cp, status);
2595 	spin_unlock_irqrestore(&cp->lock, flags);
2596 
2597 	/* NAPI rx packets. we spread the credits across all of the
2598 	 * rxc rings
2599 	 *
2600 	 * to make sure we're fair with the work we loop through each
2601 	 * ring N_RX_COMP_RING times with a request of
2602 	 * budget / N_RX_COMP_RINGS
2603 	 */
2604 	enable_intr = 1;
2605 	credits = 0;
2606 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607 		int j;
2608 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610 			if (credits >= budget) {
2611 				enable_intr = 0;
2612 				goto rx_comp;
2613 			}
2614 		}
2615 	}
2616 
2617 rx_comp:
2618 	/* final rx completion */
2619 	spin_lock_irqsave(&cp->lock, flags);
2620 	if (status)
2621 		cas_handle_irq(dev, cp, status);
2622 
2623 #ifdef USE_PCI_INTB
2624 	if (N_RX_COMP_RINGS > 1) {
2625 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626 		if (status)
2627 			cas_handle_irq1(dev, cp, status);
2628 	}
2629 #endif
2630 
2631 #ifdef USE_PCI_INTC
2632 	if (N_RX_COMP_RINGS > 2) {
2633 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634 		if (status)
2635 			cas_handle_irqN(dev, cp, status, 2);
2636 	}
2637 #endif
2638 
2639 #ifdef USE_PCI_INTD
2640 	if (N_RX_COMP_RINGS > 3) {
2641 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642 		if (status)
2643 			cas_handle_irqN(dev, cp, status, 3);
2644 	}
2645 #endif
2646 	spin_unlock_irqrestore(&cp->lock, flags);
2647 	if (enable_intr) {
2648 		napi_complete(napi);
2649 		cas_unmask_intr(cp);
2650 	}
2651 	return credits;
2652 }
2653 #endif
2654 
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2657 {
2658 	struct cas *cp = netdev_priv(dev);
2659 
2660 	cas_disable_irq(cp, 0);
2661 	cas_interrupt(cp->pdev->irq, dev);
2662 	cas_enable_irq(cp, 0);
2663 
2664 #ifdef USE_PCI_INTB
2665 	if (N_RX_COMP_RINGS > 1) {
2666 		/* cas_interrupt1(); */
2667 	}
2668 #endif
2669 #ifdef USE_PCI_INTC
2670 	if (N_RX_COMP_RINGS > 2) {
2671 		/* cas_interruptN(); */
2672 	}
2673 #endif
2674 #ifdef USE_PCI_INTD
2675 	if (N_RX_COMP_RINGS > 3) {
2676 		/* cas_interruptN(); */
2677 	}
2678 #endif
2679 }
2680 #endif
2681 
2682 static void cas_tx_timeout(struct net_device *dev)
2683 {
2684 	struct cas *cp = netdev_priv(dev);
2685 
2686 	netdev_err(dev, "transmit timed out, resetting\n");
2687 	if (!cp->hw_running) {
2688 		netdev_err(dev, "hrm.. hw not running!\n");
2689 		return;
2690 	}
2691 
2692 	netdev_err(dev, "MIF_STATE[%08x]\n",
2693 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2694 
2695 	netdev_err(dev, "MAC_STATE[%08x]\n",
2696 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2697 
2698 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699 		   readl(cp->regs + REG_TX_CFG),
2700 		   readl(cp->regs + REG_MAC_TX_STATUS),
2701 		   readl(cp->regs + REG_MAC_TX_CFG),
2702 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2703 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2704 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2705 		   readl(cp->regs + REG_TX_SM_1),
2706 		   readl(cp->regs + REG_TX_SM_2));
2707 
2708 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2709 		   readl(cp->regs + REG_RX_CFG),
2710 		   readl(cp->regs + REG_MAC_RX_STATUS),
2711 		   readl(cp->regs + REG_MAC_RX_CFG));
2712 
2713 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2715 		   readl(cp->regs + REG_HP_STATUS0),
2716 		   readl(cp->regs + REG_HP_STATUS1),
2717 		   readl(cp->regs + REG_HP_STATUS2));
2718 
2719 #if 1
2720 	atomic_inc(&cp->reset_task_pending);
2721 	atomic_inc(&cp->reset_task_pending_all);
2722 	schedule_work(&cp->reset_task);
2723 #else
2724 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 	schedule_work(&cp->reset_task);
2726 #endif
2727 }
2728 
2729 static inline int cas_intme(int ring, int entry)
2730 {
2731 	/* Algorithm: IRQ every 1/2 of descriptors. */
2732 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733 		return 1;
2734 	return 0;
2735 }
2736 
2737 
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2740 {
2741 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2742 
2743 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 	if (cas_intme(ring, entry))
2745 		ctrl |= TX_DESC_INTME;
2746 	if (last)
2747 		ctrl |= TX_DESC_EOF;
2748 	txd->control = cpu_to_le64(ctrl);
2749 	txd->buffer = cpu_to_le64(mapping);
2750 }
2751 
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2753 				const int entry)
2754 {
2755 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2756 }
2757 
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759 				     const int entry, const int tentry)
2760 {
2761 	cp->tx_tiny_use[ring][tentry].nbufs++;
2762 	cp->tx_tiny_use[ring][entry].used = 1;
2763 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2764 }
2765 
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767 				    struct sk_buff *skb)
2768 {
2769 	struct net_device *dev = cp->dev;
2770 	int entry, nr_frags, frag, tabort, tentry;
2771 	dma_addr_t mapping;
2772 	unsigned long flags;
2773 	u64 ctrl;
2774 	u32 len;
2775 
2776 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2777 
2778 	/* This is a hard error, log it. */
2779 	if (TX_BUFFS_AVAIL(cp, ring) <=
2780 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 		netif_stop_queue(dev);
2782 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2784 		return 1;
2785 	}
2786 
2787 	ctrl = 0;
2788 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2790 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2791 
2792 		ctrl =  TX_DESC_CSUM_EN |
2793 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2794 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2795 	}
2796 
2797 	entry = cp->tx_new[ring];
2798 	cp->tx_skbs[ring][entry] = skb;
2799 
2800 	nr_frags = skb_shinfo(skb)->nr_frags;
2801 	len = skb_headlen(skb);
2802 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2803 			       offset_in_page(skb->data), len,
2804 			       PCI_DMA_TODEVICE);
2805 
2806 	tentry = entry;
2807 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2808 	if (unlikely(tabort)) {
2809 		/* NOTE: len is always >  tabort */
2810 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811 			      ctrl | TX_DESC_SOF, 0);
2812 		entry = TX_DESC_NEXT(ring, entry);
2813 
2814 		skb_copy_from_linear_data_offset(skb, len - tabort,
2815 			      tx_tiny_buf(cp, ring, entry), tabort);
2816 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2817 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2818 			      (nr_frags == 0));
2819 	} else {
2820 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2821 			      TX_DESC_SOF, (nr_frags == 0));
2822 	}
2823 	entry = TX_DESC_NEXT(ring, entry);
2824 
2825 	for (frag = 0; frag < nr_frags; frag++) {
2826 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2827 
2828 		len = skb_frag_size(fragp);
2829 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2830 					   DMA_TO_DEVICE);
2831 
2832 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2833 		if (unlikely(tabort)) {
2834 			void *addr;
2835 
2836 			/* NOTE: len is always > tabort */
2837 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2838 				      ctrl, 0);
2839 			entry = TX_DESC_NEXT(ring, entry);
2840 
2841 			addr = cas_page_map(skb_frag_page(fragp));
2842 			memcpy(tx_tiny_buf(cp, ring, entry),
2843 			       addr + fragp->page_offset + len - tabort,
2844 			       tabort);
2845 			cas_page_unmap(addr);
2846 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2847 			len     = tabort;
2848 		}
2849 
2850 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2851 			      (frag + 1 == nr_frags));
2852 		entry = TX_DESC_NEXT(ring, entry);
2853 	}
2854 
2855 	cp->tx_new[ring] = entry;
2856 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2857 		netif_stop_queue(dev);
2858 
2859 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2860 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2862 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2863 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2864 	return 0;
2865 }
2866 
2867 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2868 {
2869 	struct cas *cp = netdev_priv(dev);
2870 
2871 	/* this is only used as a load-balancing hint, so it doesn't
2872 	 * need to be SMP safe
2873 	 */
2874 	static int ring;
2875 
2876 	if (skb_padto(skb, cp->min_frame_size))
2877 		return NETDEV_TX_OK;
2878 
2879 	/* XXX: we need some higher-level QoS hooks to steer packets to
2880 	 *      individual queues.
2881 	 */
2882 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2883 		return NETDEV_TX_BUSY;
2884 	return NETDEV_TX_OK;
2885 }
2886 
2887 static void cas_init_tx_dma(struct cas *cp)
2888 {
2889 	u64 desc_dma = cp->block_dvma;
2890 	unsigned long off;
2891 	u32 val;
2892 	int i;
2893 
2894 	/* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896 	off = offsetof(struct cas_init_block, tx_compwb);
2897 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2898 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2899 #endif
2900 
2901 	/* enable completion writebacks, enable paced mode,
2902 	 * disable read pipe, and disable pre-interrupt compwbs
2903 	 */
2904 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2905 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2906 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2907 		TX_CFG_INTR_COMPWB_DIS;
2908 
2909 	/* write out tx ring info and tx desc bases */
2910 	for (i = 0; i < MAX_TX_RINGS; i++) {
2911 		off = (unsigned long) cp->init_txds[i] -
2912 			(unsigned long) cp->init_block;
2913 
2914 		val |= CAS_TX_RINGN_BASE(i);
2915 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2916 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2917 		       REG_TX_DBN_LOW(i));
2918 		/* don't zero out the kick register here as the system
2919 		 * will wedge
2920 		 */
2921 	}
2922 	writel(val, cp->regs + REG_TX_CFG);
2923 
2924 	/* program max burst sizes. these numbers should be different
2925 	 * if doing QoS.
2926 	 */
2927 #ifdef USE_QOS
2928 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2929 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2930 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2931 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2932 #else
2933 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2935 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2936 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2937 #endif
2938 }
2939 
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas *cp)
2942 {
2943 	cas_init_tx_dma(cp);
2944 	cas_init_rx_dma(cp);
2945 }
2946 
2947 static void cas_process_mc_list(struct cas *cp)
2948 {
2949 	u16 hash_table[16];
2950 	u32 crc;
2951 	struct netdev_hw_addr *ha;
2952 	int i = 1;
2953 
2954 	memset(hash_table, 0, sizeof(hash_table));
2955 	netdev_for_each_mc_addr(ha, cp->dev) {
2956 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2957 			/* use the alternate mac address registers for the
2958 			 * first 15 multicast addresses
2959 			 */
2960 			writel((ha->addr[4] << 8) | ha->addr[5],
2961 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2962 			writel((ha->addr[2] << 8) | ha->addr[3],
2963 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2964 			writel((ha->addr[0] << 8) | ha->addr[1],
2965 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2966 			i++;
2967 		}
2968 		else {
2969 			/* use hw hash table for the next series of
2970 			 * multicast addresses
2971 			 */
2972 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2973 			crc >>= 24;
2974 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2975 		}
2976 	}
2977 	for (i = 0; i < 16; i++)
2978 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2979 }
2980 
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2983 {
2984 	u32 rxcfg = 0;
2985 	int i;
2986 
2987 	if (cp->dev->flags & IFF_PROMISC) {
2988 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2989 
2990 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2991 	    	for (i=0; i < 16; i++)
2992 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2994 
2995 	} else {
2996 		cas_process_mc_list(cp);
2997 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998 	}
2999 
3000 	return rxcfg;
3001 }
3002 
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas *cp)
3005 {
3006 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3007 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3008 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3009 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3010 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3011 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3012 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3013 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3014 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3015 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3016 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3017 }
3018 
3019 
3020 static void cas_mac_reset(struct cas *cp)
3021 {
3022 	int i;
3023 
3024 	/* do both TX and RX reset */
3025 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3026 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3027 
3028 	/* wait for TX */
3029 	i = STOP_TRIES;
3030 	while (i-- > 0) {
3031 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3032 			break;
3033 		udelay(10);
3034 	}
3035 
3036 	/* wait for RX */
3037 	i = STOP_TRIES;
3038 	while (i-- > 0) {
3039 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3040 			break;
3041 		udelay(10);
3042 	}
3043 
3044 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3045 	    readl(cp->regs + REG_MAC_RX_RESET))
3046 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047 			   readl(cp->regs + REG_MAC_TX_RESET),
3048 			   readl(cp->regs + REG_MAC_RX_RESET),
3049 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3050 }
3051 
3052 
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas *cp)
3055 {
3056 	unsigned char *e = &cp->dev->dev_addr[0];
3057 	int i;
3058 	cas_mac_reset(cp);
3059 
3060 	/* setup core arbitration weight register */
3061 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3062 
3063 	/* XXX Use pci_dma_burst_advice() */
3064 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3065 	/* set the infinite burst register for chips that don't have
3066 	 * pci issues.
3067 	 */
3068 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3069 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3070 #endif
3071 
3072 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3073 
3074 	writel(0x00, cp->regs + REG_MAC_IPG0);
3075 	writel(0x08, cp->regs + REG_MAC_IPG1);
3076 	writel(0x04, cp->regs + REG_MAC_IPG2);
3077 
3078 	/* change later for 802.3z */
3079 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3080 
3081 	/* min frame + FCS */
3082 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3083 
3084 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3085 	 * specify the maximum frame size to prevent RX tag errors on
3086 	 * oversized frames.
3087 	 */
3088 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3089 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3090 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3091 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3092 
3093 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3094 	 * workaround saturn half-duplex issue by increasing preamble
3095 	 * size to 65 bytes.
3096 	 */
3097 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3098 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3099 	else
3100 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3101 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3102 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3103 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3104 
3105 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3106 
3107 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3108 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3109 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3110 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3111 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3112 
3113 	/* setup mac address in perfect filter array */
3114 	for (i = 0; i < 45; i++)
3115 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3116 
3117 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3118 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3119 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3120 
3121 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3122 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3123 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3124 
3125 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3126 
3127 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3128 	cas_clear_mac_err(cp);
3129 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3130 
3131 	/* Setup MAC interrupts.  We want to get all of the interesting
3132 	 * counter expiration events, but we do not want to hear about
3133 	 * normal rx/tx as the DMA engine tells us that.
3134 	 */
3135 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3136 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3137 
3138 	/* Don't enable even the PAUSE interrupts for now, we
3139 	 * make no use of those events other than to record them.
3140 	 */
3141 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3142 }
3143 
3144 /* Must be invoked under cp->lock. */
3145 static void cas_init_pause_thresholds(struct cas *cp)
3146 {
3147 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3148 	 * full RX fifo size effectively disables PAUSE generation
3149 	 */
3150 	if (cp->rx_fifo_size <= (2 * 1024)) {
3151 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3152 	} else {
3153 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3154 		if (max_frame * 3 > cp->rx_fifo_size) {
3155 			cp->rx_pause_off = 7104;
3156 			cp->rx_pause_on  = 960;
3157 		} else {
3158 			int off = (cp->rx_fifo_size - (max_frame * 2));
3159 			int on = off - max_frame;
3160 			cp->rx_pause_off = off;
3161 			cp->rx_pause_on = on;
3162 		}
3163 	}
3164 }
3165 
3166 static int cas_vpd_match(const void __iomem *p, const char *str)
3167 {
3168 	int len = strlen(str) + 1;
3169 	int i;
3170 
3171 	for (i = 0; i < len; i++) {
3172 		if (readb(p + i) != str[i])
3173 			return 0;
3174 	}
3175 	return 1;
3176 }
3177 
3178 
3179 /* get the mac address by reading the vpd information in the rom.
3180  * also get the phy type and determine if there's an entropy generator.
3181  * NOTE: this is a bit convoluted for the following reasons:
3182  *  1) vpd info has order-dependent mac addresses for multinic cards
3183  *  2) the only way to determine the nic order is to use the slot
3184  *     number.
3185  *  3) fiber cards don't have bridges, so their slot numbers don't
3186  *     mean anything.
3187  *  4) we don't actually know we have a fiber card until after
3188  *     the mac addresses are parsed.
3189  */
3190 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3191 			    const int offset)
3192 {
3193 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3194 	void __iomem *base, *kstart;
3195 	int i, len;
3196 	int found = 0;
3197 #define VPD_FOUND_MAC        0x01
3198 #define VPD_FOUND_PHY        0x02
3199 
3200 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3201 	int mac_off  = 0;
3202 
3203 #if defined(CONFIG_SPARC)
3204 	const unsigned char *addr;
3205 #endif
3206 
3207 	/* give us access to the PROM */
3208 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3209 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3210 
3211 	/* check for an expansion rom */
3212 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3213 		goto use_random_mac_addr;
3214 
3215 	/* search for beginning of vpd */
3216 	base = NULL;
3217 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3218 		/* check for PCIR */
3219 		if ((readb(p + i + 0) == 0x50) &&
3220 		    (readb(p + i + 1) == 0x43) &&
3221 		    (readb(p + i + 2) == 0x49) &&
3222 		    (readb(p + i + 3) == 0x52)) {
3223 			base = p + (readb(p + i + 8) |
3224 				    (readb(p + i + 9) << 8));
3225 			break;
3226 		}
3227 	}
3228 
3229 	if (!base || (readb(base) != 0x82))
3230 		goto use_random_mac_addr;
3231 
3232 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3233 	while (i < EXPANSION_ROM_SIZE) {
3234 		if (readb(base + i) != 0x90) /* no vpd found */
3235 			goto use_random_mac_addr;
3236 
3237 		/* found a vpd field */
3238 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3239 
3240 		/* extract keywords */
3241 		kstart = base + i + 3;
3242 		p = kstart;
3243 		while ((p - kstart) < len) {
3244 			int klen = readb(p + 2);
3245 			int j;
3246 			char type;
3247 
3248 			p += 3;
3249 
3250 			/* look for the following things:
3251 			 * -- correct length == 29
3252 			 * 3 (type) + 2 (size) +
3253 			 * 18 (strlen("local-mac-address") + 1) +
3254 			 * 6 (mac addr)
3255 			 * -- VPD Instance 'I'
3256 			 * -- VPD Type Bytes 'B'
3257 			 * -- VPD data length == 6
3258 			 * -- property string == local-mac-address
3259 			 *
3260 			 * -- correct length == 24
3261 			 * 3 (type) + 2 (size) +
3262 			 * 12 (strlen("entropy-dev") + 1) +
3263 			 * 7 (strlen("vms110") + 1)
3264 			 * -- VPD Instance 'I'
3265 			 * -- VPD Type String 'B'
3266 			 * -- VPD data length == 7
3267 			 * -- property string == entropy-dev
3268 			 *
3269 			 * -- correct length == 18
3270 			 * 3 (type) + 2 (size) +
3271 			 * 9 (strlen("phy-type") + 1) +
3272 			 * 4 (strlen("pcs") + 1)
3273 			 * -- VPD Instance 'I'
3274 			 * -- VPD Type String 'S'
3275 			 * -- VPD data length == 4
3276 			 * -- property string == phy-type
3277 			 *
3278 			 * -- correct length == 23
3279 			 * 3 (type) + 2 (size) +
3280 			 * 14 (strlen("phy-interface") + 1) +
3281 			 * 4 (strlen("pcs") + 1)
3282 			 * -- VPD Instance 'I'
3283 			 * -- VPD Type String 'S'
3284 			 * -- VPD data length == 4
3285 			 * -- property string == phy-interface
3286 			 */
3287 			if (readb(p) != 'I')
3288 				goto next;
3289 
3290 			/* finally, check string and length */
3291 			type = readb(p + 3);
3292 			if (type == 'B') {
3293 				if ((klen == 29) && readb(p + 4) == 6 &&
3294 				    cas_vpd_match(p + 5,
3295 						  "local-mac-address")) {
3296 					if (mac_off++ > offset)
3297 						goto next;
3298 
3299 					/* set mac address */
3300 					for (j = 0; j < 6; j++)
3301 						dev_addr[j] =
3302 							readb(p + 23 + j);
3303 					goto found_mac;
3304 				}
3305 			}
3306 
3307 			if (type != 'S')
3308 				goto next;
3309 
3310 #ifdef USE_ENTROPY_DEV
3311 			if ((klen == 24) &&
3312 			    cas_vpd_match(p + 5, "entropy-dev") &&
3313 			    cas_vpd_match(p + 17, "vms110")) {
3314 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3315 				goto next;
3316 			}
3317 #endif
3318 
3319 			if (found & VPD_FOUND_PHY)
3320 				goto next;
3321 
3322 			if ((klen == 18) && readb(p + 4) == 4 &&
3323 			    cas_vpd_match(p + 5, "phy-type")) {
3324 				if (cas_vpd_match(p + 14, "pcs")) {
3325 					phy_type = CAS_PHY_SERDES;
3326 					goto found_phy;
3327 				}
3328 			}
3329 
3330 			if ((klen == 23) && readb(p + 4) == 4 &&
3331 			    cas_vpd_match(p + 5, "phy-interface")) {
3332 				if (cas_vpd_match(p + 19, "pcs")) {
3333 					phy_type = CAS_PHY_SERDES;
3334 					goto found_phy;
3335 				}
3336 			}
3337 found_mac:
3338 			found |= VPD_FOUND_MAC;
3339 			goto next;
3340 
3341 found_phy:
3342 			found |= VPD_FOUND_PHY;
3343 
3344 next:
3345 			p += klen;
3346 		}
3347 		i += len + 3;
3348 	}
3349 
3350 use_random_mac_addr:
3351 	if (found & VPD_FOUND_MAC)
3352 		goto done;
3353 
3354 #if defined(CONFIG_SPARC)
3355 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3356 	if (addr != NULL) {
3357 		memcpy(dev_addr, addr, 6);
3358 		goto done;
3359 	}
3360 #endif
3361 
3362 	/* Sun MAC prefix then 3 random bytes. */
3363 	pr_info("MAC address not found in ROM VPD\n");
3364 	dev_addr[0] = 0x08;
3365 	dev_addr[1] = 0x00;
3366 	dev_addr[2] = 0x20;
3367 	get_random_bytes(dev_addr + 3, 3);
3368 
3369 done:
3370 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3371 	return phy_type;
3372 }
3373 
3374 /* check pci invariants */
3375 static void cas_check_pci_invariants(struct cas *cp)
3376 {
3377 	struct pci_dev *pdev = cp->pdev;
3378 
3379 	cp->cas_flags = 0;
3380 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3381 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3382 		if (pdev->revision >= CAS_ID_REVPLUS)
3383 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3384 		if (pdev->revision < CAS_ID_REVPLUS02u)
3385 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3386 
3387 		/* Original Cassini supports HW CSUM, but it's not
3388 		 * enabled by default as it can trigger TX hangs.
3389 		 */
3390 		if (pdev->revision < CAS_ID_REV2)
3391 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3392 	} else {
3393 		/* Only sun has original cassini chips.  */
3394 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3395 
3396 		/* We use a flag because the same phy might be externally
3397 		 * connected.
3398 		 */
3399 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3400 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3401 			cp->cas_flags |= CAS_FLAG_SATURN;
3402 	}
3403 }
3404 
3405 
3406 static int cas_check_invariants(struct cas *cp)
3407 {
3408 	struct pci_dev *pdev = cp->pdev;
3409 	u32 cfg;
3410 	int i;
3411 
3412 	/* get page size for rx buffers. */
3413 	cp->page_order = 0;
3414 #ifdef USE_PAGE_ORDER
3415 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3416 		/* see if we can allocate larger pages */
3417 		struct page *page = alloc_pages(GFP_ATOMIC,
3418 						CAS_JUMBO_PAGE_SHIFT -
3419 						PAGE_SHIFT);
3420 		if (page) {
3421 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3422 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3423 		} else {
3424 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3425 		}
3426 	}
3427 #endif
3428 	cp->page_size = (PAGE_SIZE << cp->page_order);
3429 
3430 	/* Fetch the FIFO configurations. */
3431 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3432 	cp->rx_fifo_size = RX_FIFO_SIZE;
3433 
3434 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3435 	 * they're both connected.
3436 	 */
3437 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3438 					PCI_SLOT(pdev->devfn));
3439 	if (cp->phy_type & CAS_PHY_SERDES) {
3440 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3441 		return 0; /* no more checking needed */
3442 	}
3443 
3444 	/* MII */
3445 	cfg = readl(cp->regs + REG_MIF_CFG);
3446 	if (cfg & MIF_CFG_MDIO_1) {
3447 		cp->phy_type = CAS_PHY_MII_MDIO1;
3448 	} else if (cfg & MIF_CFG_MDIO_0) {
3449 		cp->phy_type = CAS_PHY_MII_MDIO0;
3450 	}
3451 
3452 	cas_mif_poll(cp, 0);
3453 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3454 
3455 	for (i = 0; i < 32; i++) {
3456 		u32 phy_id;
3457 		int j;
3458 
3459 		for (j = 0; j < 3; j++) {
3460 			cp->phy_addr = i;
3461 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3462 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3463 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3464 				cp->phy_id = phy_id;
3465 				goto done;
3466 			}
3467 		}
3468 	}
3469 	pr_err("MII phy did not respond [%08x]\n",
3470 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3471 	return -1;
3472 
3473 done:
3474 	/* see if we can do gigabit */
3475 	cfg = cas_phy_read(cp, MII_BMSR);
3476 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3477 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3478 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3479 	return 0;
3480 }
3481 
3482 /* Must be invoked under cp->lock. */
3483 static inline void cas_start_dma(struct cas *cp)
3484 {
3485 	int i;
3486 	u32 val;
3487 	int txfailed = 0;
3488 
3489 	/* enable dma */
3490 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3491 	writel(val, cp->regs + REG_TX_CFG);
3492 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3493 	writel(val, cp->regs + REG_RX_CFG);
3494 
3495 	/* enable the mac */
3496 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3497 	writel(val, cp->regs + REG_MAC_TX_CFG);
3498 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3499 	writel(val, cp->regs + REG_MAC_RX_CFG);
3500 
3501 	i = STOP_TRIES;
3502 	while (i-- > 0) {
3503 		val = readl(cp->regs + REG_MAC_TX_CFG);
3504 		if ((val & MAC_TX_CFG_EN))
3505 			break;
3506 		udelay(10);
3507 	}
3508 	if (i < 0) txfailed = 1;
3509 	i = STOP_TRIES;
3510 	while (i-- > 0) {
3511 		val = readl(cp->regs + REG_MAC_RX_CFG);
3512 		if ((val & MAC_RX_CFG_EN)) {
3513 			if (txfailed) {
3514 				netdev_err(cp->dev,
3515 					   "enabling mac failed [tx:%08x:%08x]\n",
3516 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3517 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3518 			}
3519 			goto enable_rx_done;
3520 		}
3521 		udelay(10);
3522 	}
3523 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3524 		   (txfailed ? "tx,rx" : "rx"),
3525 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3526 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3527 
3528 enable_rx_done:
3529 	cas_unmask_intr(cp); /* enable interrupts */
3530 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3531 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3532 
3533 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3534 		if (N_RX_DESC_RINGS > 1)
3535 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3536 			       cp->regs + REG_PLUS_RX_KICK1);
3537 
3538 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3539 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3540 	}
3541 }
3542 
3543 /* Must be invoked under cp->lock. */
3544 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3545 				   int *pause)
3546 {
3547 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3548 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3549 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3550 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3551 		*pause |= 0x10;
3552 	*spd = 1000;
3553 }
3554 
3555 /* Must be invoked under cp->lock. */
3556 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3557 				   int *pause)
3558 {
3559 	u32 val;
3560 
3561 	*fd = 0;
3562 	*spd = 10;
3563 	*pause = 0;
3564 
3565 	/* use GMII registers */
3566 	val = cas_phy_read(cp, MII_LPA);
3567 	if (val & CAS_LPA_PAUSE)
3568 		*pause = 0x01;
3569 
3570 	if (val & CAS_LPA_ASYM_PAUSE)
3571 		*pause |= 0x10;
3572 
3573 	if (val & LPA_DUPLEX)
3574 		*fd = 1;
3575 	if (val & LPA_100)
3576 		*spd = 100;
3577 
3578 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3579 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3580 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3581 			*spd = 1000;
3582 		if (val & CAS_LPA_1000FULL)
3583 			*fd = 1;
3584 	}
3585 }
3586 
3587 /* A link-up condition has occurred, initialize and enable the
3588  * rest of the chip.
3589  *
3590  * Must be invoked under cp->lock.
3591  */
3592 static void cas_set_link_modes(struct cas *cp)
3593 {
3594 	u32 val;
3595 	int full_duplex, speed, pause;
3596 
3597 	full_duplex = 0;
3598 	speed = 10;
3599 	pause = 0;
3600 
3601 	if (CAS_PHY_MII(cp->phy_type)) {
3602 		cas_mif_poll(cp, 0);
3603 		val = cas_phy_read(cp, MII_BMCR);
3604 		if (val & BMCR_ANENABLE) {
3605 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3606 					       &pause);
3607 		} else {
3608 			if (val & BMCR_FULLDPLX)
3609 				full_duplex = 1;
3610 
3611 			if (val & BMCR_SPEED100)
3612 				speed = 100;
3613 			else if (val & CAS_BMCR_SPEED1000)
3614 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3615 					1000 : 100;
3616 		}
3617 		cas_mif_poll(cp, 1);
3618 
3619 	} else {
3620 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3621 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3622 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3623 			if (val & PCS_MII_CTRL_DUPLEX)
3624 				full_duplex = 1;
3625 		}
3626 	}
3627 
3628 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3629 		   speed, full_duplex ? "full" : "half");
3630 
3631 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3632 	if (CAS_PHY_MII(cp->phy_type)) {
3633 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3634 		if (!full_duplex)
3635 			val |= MAC_XIF_DISABLE_ECHO;
3636 	}
3637 	if (full_duplex)
3638 		val |= MAC_XIF_FDPLX_LED;
3639 	if (speed == 1000)
3640 		val |= MAC_XIF_GMII_MODE;
3641 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3642 
3643 	/* deal with carrier and collision detect. */
3644 	val = MAC_TX_CFG_IPG_EN;
3645 	if (full_duplex) {
3646 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3647 		val |= MAC_TX_CFG_IGNORE_COLL;
3648 	} else {
3649 #ifndef USE_CSMA_CD_PROTO
3650 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3651 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3652 #endif
3653 	}
3654 	/* val now set up for REG_MAC_TX_CFG */
3655 
3656 	/* If gigabit and half-duplex, enable carrier extension
3657 	 * mode.  increase slot time to 512 bytes as well.
3658 	 * else, disable it and make sure slot time is 64 bytes.
3659 	 * also activate checksum bug workaround
3660 	 */
3661 	if ((speed == 1000) && !full_duplex) {
3662 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3663 		       cp->regs + REG_MAC_TX_CFG);
3664 
3665 		val = readl(cp->regs + REG_MAC_RX_CFG);
3666 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3667 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3668 		       cp->regs + REG_MAC_RX_CFG);
3669 
3670 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3671 
3672 		cp->crc_size = 4;
3673 		/* minimum size gigabit frame at half duplex */
3674 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3675 
3676 	} else {
3677 		writel(val, cp->regs + REG_MAC_TX_CFG);
3678 
3679 		/* checksum bug workaround. don't strip FCS when in
3680 		 * half-duplex mode
3681 		 */
3682 		val = readl(cp->regs + REG_MAC_RX_CFG);
3683 		if (full_duplex) {
3684 			val |= MAC_RX_CFG_STRIP_FCS;
3685 			cp->crc_size = 0;
3686 			cp->min_frame_size = CAS_MIN_MTU;
3687 		} else {
3688 			val &= ~MAC_RX_CFG_STRIP_FCS;
3689 			cp->crc_size = 4;
3690 			cp->min_frame_size = CAS_MIN_FRAME;
3691 		}
3692 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3693 		       cp->regs + REG_MAC_RX_CFG);
3694 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3695 	}
3696 
3697 	if (netif_msg_link(cp)) {
3698 		if (pause & 0x01) {
3699 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3700 				    cp->rx_fifo_size,
3701 				    cp->rx_pause_off,
3702 				    cp->rx_pause_on);
3703 		} else if (pause & 0x10) {
3704 			netdev_info(cp->dev, "TX pause enabled\n");
3705 		} else {
3706 			netdev_info(cp->dev, "Pause is disabled\n");
3707 		}
3708 	}
3709 
3710 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3711 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3712 	if (pause) { /* symmetric or asymmetric pause */
3713 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3714 		if (pause & 0x01) { /* symmetric pause */
3715 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3716 		}
3717 	}
3718 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3719 	cas_start_dma(cp);
3720 }
3721 
3722 /* Must be invoked under cp->lock. */
3723 static void cas_init_hw(struct cas *cp, int restart_link)
3724 {
3725 	if (restart_link)
3726 		cas_phy_init(cp);
3727 
3728 	cas_init_pause_thresholds(cp);
3729 	cas_init_mac(cp);
3730 	cas_init_dma(cp);
3731 
3732 	if (restart_link) {
3733 		/* Default aneg parameters */
3734 		cp->timer_ticks = 0;
3735 		cas_begin_auto_negotiation(cp, NULL);
3736 	} else if (cp->lstate == link_up) {
3737 		cas_set_link_modes(cp);
3738 		netif_carrier_on(cp->dev);
3739 	}
3740 }
3741 
3742 /* Must be invoked under cp->lock. on earlier cassini boards,
3743  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3744  * let it settle out, and then restore pci state.
3745  */
3746 static void cas_hard_reset(struct cas *cp)
3747 {
3748 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3749 	udelay(20);
3750 	pci_restore_state(cp->pdev);
3751 }
3752 
3753 
3754 static void cas_global_reset(struct cas *cp, int blkflag)
3755 {
3756 	int limit;
3757 
3758 	/* issue a global reset. don't use RSTOUT. */
3759 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3760 		/* For PCS, when the blkflag is set, we should set the
3761 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3762 		 * the last autonegotiation from being cleared.  We'll
3763 		 * need some special handling if the chip is set into a
3764 		 * loopback mode.
3765 		 */
3766 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3767 		       cp->regs + REG_SW_RESET);
3768 	} else {
3769 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3770 	}
3771 
3772 	/* need to wait at least 3ms before polling register */
3773 	mdelay(3);
3774 
3775 	limit = STOP_TRIES;
3776 	while (limit-- > 0) {
3777 		u32 val = readl(cp->regs + REG_SW_RESET);
3778 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3779 			goto done;
3780 		udelay(10);
3781 	}
3782 	netdev_err(cp->dev, "sw reset failed\n");
3783 
3784 done:
3785 	/* enable various BIM interrupts */
3786 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3787 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3788 
3789 	/* clear out pci error status mask for handled errors.
3790 	 * we don't deal with DMA counter overflows as they happen
3791 	 * all the time.
3792 	 */
3793 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3794 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3795 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3796 	       REG_PCI_ERR_STATUS_MASK);
3797 
3798 	/* set up for MII by default to address mac rx reset timeout
3799 	 * issue
3800 	 */
3801 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3802 }
3803 
3804 static void cas_reset(struct cas *cp, int blkflag)
3805 {
3806 	u32 val;
3807 
3808 	cas_mask_intr(cp);
3809 	cas_global_reset(cp, blkflag);
3810 	cas_mac_reset(cp);
3811 	cas_entropy_reset(cp);
3812 
3813 	/* disable dma engines. */
3814 	val = readl(cp->regs + REG_TX_CFG);
3815 	val &= ~TX_CFG_DMA_EN;
3816 	writel(val, cp->regs + REG_TX_CFG);
3817 
3818 	val = readl(cp->regs + REG_RX_CFG);
3819 	val &= ~RX_CFG_DMA_EN;
3820 	writel(val, cp->regs + REG_RX_CFG);
3821 
3822 	/* program header parser */
3823 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3824 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3825 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3826 	} else {
3827 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3828 	}
3829 
3830 	/* clear out error registers */
3831 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3832 	cas_clear_mac_err(cp);
3833 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3834 }
3835 
3836 /* Shut down the chip, must be called with pm_mutex held.  */
3837 static void cas_shutdown(struct cas *cp)
3838 {
3839 	unsigned long flags;
3840 
3841 	/* Make us not-running to avoid timers respawning */
3842 	cp->hw_running = 0;
3843 
3844 	del_timer_sync(&cp->link_timer);
3845 
3846 	/* Stop the reset task */
3847 #if 0
3848 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3849 	       atomic_read(&cp->reset_task_pending_spare) ||
3850 	       atomic_read(&cp->reset_task_pending_all))
3851 		schedule();
3852 
3853 #else
3854 	while (atomic_read(&cp->reset_task_pending))
3855 		schedule();
3856 #endif
3857 	/* Actually stop the chip */
3858 	cas_lock_all_save(cp, flags);
3859 	cas_reset(cp, 0);
3860 	if (cp->cas_flags & CAS_FLAG_SATURN)
3861 		cas_phy_powerdown(cp);
3862 	cas_unlock_all_restore(cp, flags);
3863 }
3864 
3865 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3866 {
3867 	struct cas *cp = netdev_priv(dev);
3868 
3869 	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3870 		return -EINVAL;
3871 
3872 	dev->mtu = new_mtu;
3873 	if (!netif_running(dev) || !netif_device_present(dev))
3874 		return 0;
3875 
3876 	/* let the reset task handle it */
3877 #if 1
3878 	atomic_inc(&cp->reset_task_pending);
3879 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3880 		atomic_inc(&cp->reset_task_pending_all);
3881 	} else {
3882 		atomic_inc(&cp->reset_task_pending_mtu);
3883 	}
3884 	schedule_work(&cp->reset_task);
3885 #else
3886 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3887 		   CAS_RESET_ALL : CAS_RESET_MTU);
3888 	pr_err("reset called in cas_change_mtu\n");
3889 	schedule_work(&cp->reset_task);
3890 #endif
3891 
3892 	flush_work(&cp->reset_task);
3893 	return 0;
3894 }
3895 
3896 static void cas_clean_txd(struct cas *cp, int ring)
3897 {
3898 	struct cas_tx_desc *txd = cp->init_txds[ring];
3899 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3900 	u64 daddr, dlen;
3901 	int i, size;
3902 
3903 	size = TX_DESC_RINGN_SIZE(ring);
3904 	for (i = 0; i < size; i++) {
3905 		int frag;
3906 
3907 		if (skbs[i] == NULL)
3908 			continue;
3909 
3910 		skb = skbs[i];
3911 		skbs[i] = NULL;
3912 
3913 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3914 			int ent = i & (size - 1);
3915 
3916 			/* first buffer is never a tiny buffer and so
3917 			 * needs to be unmapped.
3918 			 */
3919 			daddr = le64_to_cpu(txd[ent].buffer);
3920 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3921 					 le64_to_cpu(txd[ent].control));
3922 			pci_unmap_page(cp->pdev, daddr, dlen,
3923 				       PCI_DMA_TODEVICE);
3924 
3925 			if (frag != skb_shinfo(skb)->nr_frags) {
3926 				i++;
3927 
3928 				/* next buffer might by a tiny buffer.
3929 				 * skip past it.
3930 				 */
3931 				ent = i & (size - 1);
3932 				if (cp->tx_tiny_use[ring][ent].used)
3933 					i++;
3934 			}
3935 		}
3936 		dev_kfree_skb_any(skb);
3937 	}
3938 
3939 	/* zero out tiny buf usage */
3940 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3941 }
3942 
3943 /* freed on close */
3944 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3945 {
3946 	cas_page_t **page = cp->rx_pages[ring];
3947 	int i, size;
3948 
3949 	size = RX_DESC_RINGN_SIZE(ring);
3950 	for (i = 0; i < size; i++) {
3951 		if (page[i]) {
3952 			cas_page_free(cp, page[i]);
3953 			page[i] = NULL;
3954 		}
3955 	}
3956 }
3957 
3958 static void cas_free_rxds(struct cas *cp)
3959 {
3960 	int i;
3961 
3962 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3963 		cas_free_rx_desc(cp, i);
3964 }
3965 
3966 /* Must be invoked under cp->lock. */
3967 static void cas_clean_rings(struct cas *cp)
3968 {
3969 	int i;
3970 
3971 	/* need to clean all tx rings */
3972 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3973 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3974 	for (i = 0; i < N_TX_RINGS; i++)
3975 		cas_clean_txd(cp, i);
3976 
3977 	/* zero out init block */
3978 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3979 	cas_clean_rxds(cp);
3980 	cas_clean_rxcs(cp);
3981 }
3982 
3983 /* allocated on open */
3984 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3985 {
3986 	cas_page_t **page = cp->rx_pages[ring];
3987 	int size, i = 0;
3988 
3989 	size = RX_DESC_RINGN_SIZE(ring);
3990 	for (i = 0; i < size; i++) {
3991 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3992 			return -1;
3993 	}
3994 	return 0;
3995 }
3996 
3997 static int cas_alloc_rxds(struct cas *cp)
3998 {
3999 	int i;
4000 
4001 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4002 		if (cas_alloc_rx_desc(cp, i) < 0) {
4003 			cas_free_rxds(cp);
4004 			return -1;
4005 		}
4006 	}
4007 	return 0;
4008 }
4009 
4010 static void cas_reset_task(struct work_struct *work)
4011 {
4012 	struct cas *cp = container_of(work, struct cas, reset_task);
4013 #if 0
4014 	int pending = atomic_read(&cp->reset_task_pending);
4015 #else
4016 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4017 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4018 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4019 
4020 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4021 		/* We can have more tasks scheduled than actually
4022 		 * needed.
4023 		 */
4024 		atomic_dec(&cp->reset_task_pending);
4025 		return;
4026 	}
4027 #endif
4028 	/* The link went down, we reset the ring, but keep
4029 	 * DMA stopped. Use this function for reset
4030 	 * on error as well.
4031 	 */
4032 	if (cp->hw_running) {
4033 		unsigned long flags;
4034 
4035 		/* Make sure we don't get interrupts or tx packets */
4036 		netif_device_detach(cp->dev);
4037 		cas_lock_all_save(cp, flags);
4038 
4039 		if (cp->opened) {
4040 			/* We call cas_spare_recover when we call cas_open.
4041 			 * but we do not initialize the lists cas_spare_recover
4042 			 * uses until cas_open is called.
4043 			 */
4044 			cas_spare_recover(cp, GFP_ATOMIC);
4045 		}
4046 #if 1
4047 		/* test => only pending_spare set */
4048 		if (!pending_all && !pending_mtu)
4049 			goto done;
4050 #else
4051 		if (pending == CAS_RESET_SPARE)
4052 			goto done;
4053 #endif
4054 		/* when pending == CAS_RESET_ALL, the following
4055 		 * call to cas_init_hw will restart auto negotiation.
4056 		 * Setting the second argument of cas_reset to
4057 		 * !(pending == CAS_RESET_ALL) will set this argument
4058 		 * to 1 (avoiding reinitializing the PHY for the normal
4059 		 * PCS case) when auto negotiation is not restarted.
4060 		 */
4061 #if 1
4062 		cas_reset(cp, !(pending_all > 0));
4063 		if (cp->opened)
4064 			cas_clean_rings(cp);
4065 		cas_init_hw(cp, (pending_all > 0));
4066 #else
4067 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4068 		if (cp->opened)
4069 			cas_clean_rings(cp);
4070 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4071 #endif
4072 
4073 done:
4074 		cas_unlock_all_restore(cp, flags);
4075 		netif_device_attach(cp->dev);
4076 	}
4077 #if 1
4078 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4079 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4080 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4081 	atomic_dec(&cp->reset_task_pending);
4082 #else
4083 	atomic_set(&cp->reset_task_pending, 0);
4084 #endif
4085 }
4086 
4087 static void cas_link_timer(unsigned long data)
4088 {
4089 	struct cas *cp = (struct cas *) data;
4090 	int mask, pending = 0, reset = 0;
4091 	unsigned long flags;
4092 
4093 	if (link_transition_timeout != 0 &&
4094 	    cp->link_transition_jiffies_valid &&
4095 	    ((jiffies - cp->link_transition_jiffies) >
4096 	      (link_transition_timeout))) {
4097 		/* One-second counter so link-down workaround doesn't
4098 		 * cause resets to occur so fast as to fool the switch
4099 		 * into thinking the link is down.
4100 		 */
4101 		cp->link_transition_jiffies_valid = 0;
4102 	}
4103 
4104 	if (!cp->hw_running)
4105 		return;
4106 
4107 	spin_lock_irqsave(&cp->lock, flags);
4108 	cas_lock_tx(cp);
4109 	cas_entropy_gather(cp);
4110 
4111 	/* If the link task is still pending, we just
4112 	 * reschedule the link timer
4113 	 */
4114 #if 1
4115 	if (atomic_read(&cp->reset_task_pending_all) ||
4116 	    atomic_read(&cp->reset_task_pending_spare) ||
4117 	    atomic_read(&cp->reset_task_pending_mtu))
4118 		goto done;
4119 #else
4120 	if (atomic_read(&cp->reset_task_pending))
4121 		goto done;
4122 #endif
4123 
4124 	/* check for rx cleaning */
4125 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4126 		int i, rmask;
4127 
4128 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4129 			rmask = CAS_FLAG_RXD_POST(i);
4130 			if ((mask & rmask) == 0)
4131 				continue;
4132 
4133 			/* post_rxds will do a mod_timer */
4134 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4135 				pending = 1;
4136 				continue;
4137 			}
4138 			cp->cas_flags &= ~rmask;
4139 		}
4140 	}
4141 
4142 	if (CAS_PHY_MII(cp->phy_type)) {
4143 		u16 bmsr;
4144 		cas_mif_poll(cp, 0);
4145 		bmsr = cas_phy_read(cp, MII_BMSR);
4146 		/* WTZ: Solaris driver reads this twice, but that
4147 		 * may be due to the PCS case and the use of a
4148 		 * common implementation. Read it twice here to be
4149 		 * safe.
4150 		 */
4151 		bmsr = cas_phy_read(cp, MII_BMSR);
4152 		cas_mif_poll(cp, 1);
4153 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4154 		reset = cas_mii_link_check(cp, bmsr);
4155 	} else {
4156 		reset = cas_pcs_link_check(cp);
4157 	}
4158 
4159 	if (reset)
4160 		goto done;
4161 
4162 	/* check for tx state machine confusion */
4163 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4164 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4165 		u32 wptr, rptr;
4166 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4167 
4168 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4169 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4170 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4171 				     "tx err: MAC_STATE[%08x]\n", val);
4172 			reset = 1;
4173 			goto done;
4174 		}
4175 
4176 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4177 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4178 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4179 		if ((val == 0) && (wptr != rptr)) {
4180 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4181 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4182 				     val, wptr, rptr);
4183 			reset = 1;
4184 		}
4185 
4186 		if (reset)
4187 			cas_hard_reset(cp);
4188 	}
4189 
4190 done:
4191 	if (reset) {
4192 #if 1
4193 		atomic_inc(&cp->reset_task_pending);
4194 		atomic_inc(&cp->reset_task_pending_all);
4195 		schedule_work(&cp->reset_task);
4196 #else
4197 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4198 		pr_err("reset called in cas_link_timer\n");
4199 		schedule_work(&cp->reset_task);
4200 #endif
4201 	}
4202 
4203 	if (!pending)
4204 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4205 	cas_unlock_tx(cp);
4206 	spin_unlock_irqrestore(&cp->lock, flags);
4207 }
4208 
4209 /* tiny buffers are used to avoid target abort issues with
4210  * older cassini's
4211  */
4212 static void cas_tx_tiny_free(struct cas *cp)
4213 {
4214 	struct pci_dev *pdev = cp->pdev;
4215 	int i;
4216 
4217 	for (i = 0; i < N_TX_RINGS; i++) {
4218 		if (!cp->tx_tiny_bufs[i])
4219 			continue;
4220 
4221 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4222 				    cp->tx_tiny_bufs[i],
4223 				    cp->tx_tiny_dvma[i]);
4224 		cp->tx_tiny_bufs[i] = NULL;
4225 	}
4226 }
4227 
4228 static int cas_tx_tiny_alloc(struct cas *cp)
4229 {
4230 	struct pci_dev *pdev = cp->pdev;
4231 	int i;
4232 
4233 	for (i = 0; i < N_TX_RINGS; i++) {
4234 		cp->tx_tiny_bufs[i] =
4235 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4236 					     &cp->tx_tiny_dvma[i]);
4237 		if (!cp->tx_tiny_bufs[i]) {
4238 			cas_tx_tiny_free(cp);
4239 			return -1;
4240 		}
4241 	}
4242 	return 0;
4243 }
4244 
4245 
4246 static int cas_open(struct net_device *dev)
4247 {
4248 	struct cas *cp = netdev_priv(dev);
4249 	int hw_was_up, err;
4250 	unsigned long flags;
4251 
4252 	mutex_lock(&cp->pm_mutex);
4253 
4254 	hw_was_up = cp->hw_running;
4255 
4256 	/* The power-management mutex protects the hw_running
4257 	 * etc. state so it is safe to do this bit without cp->lock
4258 	 */
4259 	if (!cp->hw_running) {
4260 		/* Reset the chip */
4261 		cas_lock_all_save(cp, flags);
4262 		/* We set the second arg to cas_reset to zero
4263 		 * because cas_init_hw below will have its second
4264 		 * argument set to non-zero, which will force
4265 		 * autonegotiation to start.
4266 		 */
4267 		cas_reset(cp, 0);
4268 		cp->hw_running = 1;
4269 		cas_unlock_all_restore(cp, flags);
4270 	}
4271 
4272 	err = -ENOMEM;
4273 	if (cas_tx_tiny_alloc(cp) < 0)
4274 		goto err_unlock;
4275 
4276 	/* alloc rx descriptors */
4277 	if (cas_alloc_rxds(cp) < 0)
4278 		goto err_tx_tiny;
4279 
4280 	/* allocate spares */
4281 	cas_spare_init(cp);
4282 	cas_spare_recover(cp, GFP_KERNEL);
4283 
4284 	/* We can now request the interrupt as we know it's masked
4285 	 * on the controller. cassini+ has up to 4 interrupts
4286 	 * that can be used, but you need to do explicit pci interrupt
4287 	 * mapping to expose them
4288 	 */
4289 	if (request_irq(cp->pdev->irq, cas_interrupt,
4290 			IRQF_SHARED, dev->name, (void *) dev)) {
4291 		netdev_err(cp->dev, "failed to request irq !\n");
4292 		err = -EAGAIN;
4293 		goto err_spare;
4294 	}
4295 
4296 #ifdef USE_NAPI
4297 	napi_enable(&cp->napi);
4298 #endif
4299 	/* init hw */
4300 	cas_lock_all_save(cp, flags);
4301 	cas_clean_rings(cp);
4302 	cas_init_hw(cp, !hw_was_up);
4303 	cp->opened = 1;
4304 	cas_unlock_all_restore(cp, flags);
4305 
4306 	netif_start_queue(dev);
4307 	mutex_unlock(&cp->pm_mutex);
4308 	return 0;
4309 
4310 err_spare:
4311 	cas_spare_free(cp);
4312 	cas_free_rxds(cp);
4313 err_tx_tiny:
4314 	cas_tx_tiny_free(cp);
4315 err_unlock:
4316 	mutex_unlock(&cp->pm_mutex);
4317 	return err;
4318 }
4319 
4320 static int cas_close(struct net_device *dev)
4321 {
4322 	unsigned long flags;
4323 	struct cas *cp = netdev_priv(dev);
4324 
4325 #ifdef USE_NAPI
4326 	napi_disable(&cp->napi);
4327 #endif
4328 	/* Make sure we don't get distracted by suspend/resume */
4329 	mutex_lock(&cp->pm_mutex);
4330 
4331 	netif_stop_queue(dev);
4332 
4333 	/* Stop traffic, mark us closed */
4334 	cas_lock_all_save(cp, flags);
4335 	cp->opened = 0;
4336 	cas_reset(cp, 0);
4337 	cas_phy_init(cp);
4338 	cas_begin_auto_negotiation(cp, NULL);
4339 	cas_clean_rings(cp);
4340 	cas_unlock_all_restore(cp, flags);
4341 
4342 	free_irq(cp->pdev->irq, (void *) dev);
4343 	cas_spare_free(cp);
4344 	cas_free_rxds(cp);
4345 	cas_tx_tiny_free(cp);
4346 	mutex_unlock(&cp->pm_mutex);
4347 	return 0;
4348 }
4349 
4350 static struct {
4351 	const char name[ETH_GSTRING_LEN];
4352 } ethtool_cassini_statnames[] = {
4353 	{"collisions"},
4354 	{"rx_bytes"},
4355 	{"rx_crc_errors"},
4356 	{"rx_dropped"},
4357 	{"rx_errors"},
4358 	{"rx_fifo_errors"},
4359 	{"rx_frame_errors"},
4360 	{"rx_length_errors"},
4361 	{"rx_over_errors"},
4362 	{"rx_packets"},
4363 	{"tx_aborted_errors"},
4364 	{"tx_bytes"},
4365 	{"tx_dropped"},
4366 	{"tx_errors"},
4367 	{"tx_fifo_errors"},
4368 	{"tx_packets"}
4369 };
4370 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4371 
4372 static struct {
4373 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4374 } ethtool_register_table[] = {
4375 	{-MII_BMSR},
4376 	{-MII_BMCR},
4377 	{REG_CAWR},
4378 	{REG_INF_BURST},
4379 	{REG_BIM_CFG},
4380 	{REG_RX_CFG},
4381 	{REG_HP_CFG},
4382 	{REG_MAC_TX_CFG},
4383 	{REG_MAC_RX_CFG},
4384 	{REG_MAC_CTRL_CFG},
4385 	{REG_MAC_XIF_CFG},
4386 	{REG_MIF_CFG},
4387 	{REG_PCS_CFG},
4388 	{REG_SATURN_PCFG},
4389 	{REG_PCS_MII_STATUS},
4390 	{REG_PCS_STATE_MACHINE},
4391 	{REG_MAC_COLL_EXCESS},
4392 	{REG_MAC_COLL_LATE}
4393 };
4394 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4395 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4396 
4397 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4398 {
4399 	u8 *p;
4400 	int i;
4401 	unsigned long flags;
4402 
4403 	spin_lock_irqsave(&cp->lock, flags);
4404 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4405 		u16 hval;
4406 		u32 val;
4407 		if (ethtool_register_table[i].offsets < 0) {
4408 			hval = cas_phy_read(cp,
4409 				    -ethtool_register_table[i].offsets);
4410 			val = hval;
4411 		} else {
4412 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4413 		}
4414 		memcpy(p, (u8 *)&val, sizeof(u32));
4415 	}
4416 	spin_unlock_irqrestore(&cp->lock, flags);
4417 }
4418 
4419 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4420 {
4421 	struct cas *cp = netdev_priv(dev);
4422 	struct net_device_stats *stats = cp->net_stats;
4423 	unsigned long flags;
4424 	int i;
4425 	unsigned long tmp;
4426 
4427 	/* we collate all of the stats into net_stats[N_TX_RING] */
4428 	if (!cp->hw_running)
4429 		return stats + N_TX_RINGS;
4430 
4431 	/* collect outstanding stats */
4432 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4433 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4434 	 * in case the chip somehow puts any garbage in the other bits.
4435 	 * Also, counter usage didn't seem to mach what Adrian did
4436 	 * in the parts of the code that set these quantities. Made
4437 	 * that consistent.
4438 	 */
4439 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4440 	stats[N_TX_RINGS].rx_crc_errors +=
4441 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4442 	stats[N_TX_RINGS].rx_frame_errors +=
4443 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4444 	stats[N_TX_RINGS].rx_length_errors +=
4445 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4446 #if 1
4447 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4448 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4449 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4450 	stats[N_TX_RINGS].collisions +=
4451 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4452 #else
4453 	stats[N_TX_RINGS].tx_aborted_errors +=
4454 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4455 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4456 		readl(cp->regs + REG_MAC_COLL_LATE);
4457 #endif
4458 	cas_clear_mac_err(cp);
4459 
4460 	/* saved bits that are unique to ring 0 */
4461 	spin_lock(&cp->stat_lock[0]);
4462 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4463 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4464 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4465 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4466 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4467 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4468 	spin_unlock(&cp->stat_lock[0]);
4469 
4470 	for (i = 0; i < N_TX_RINGS; i++) {
4471 		spin_lock(&cp->stat_lock[i]);
4472 		stats[N_TX_RINGS].rx_length_errors +=
4473 			stats[i].rx_length_errors;
4474 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4475 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4476 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4477 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4478 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4479 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4480 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4481 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4482 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4483 		memset(stats + i, 0, sizeof(struct net_device_stats));
4484 		spin_unlock(&cp->stat_lock[i]);
4485 	}
4486 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4487 	return stats + N_TX_RINGS;
4488 }
4489 
4490 
4491 static void cas_set_multicast(struct net_device *dev)
4492 {
4493 	struct cas *cp = netdev_priv(dev);
4494 	u32 rxcfg, rxcfg_new;
4495 	unsigned long flags;
4496 	int limit = STOP_TRIES;
4497 
4498 	if (!cp->hw_running)
4499 		return;
4500 
4501 	spin_lock_irqsave(&cp->lock, flags);
4502 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4503 
4504 	/* disable RX MAC and wait for completion */
4505 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4506 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4507 		if (!limit--)
4508 			break;
4509 		udelay(10);
4510 	}
4511 
4512 	/* disable hash filter and wait for completion */
4513 	limit = STOP_TRIES;
4514 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4515 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4516 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4517 		if (!limit--)
4518 			break;
4519 		udelay(10);
4520 	}
4521 
4522 	/* program hash filters */
4523 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4524 	rxcfg |= rxcfg_new;
4525 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4526 	spin_unlock_irqrestore(&cp->lock, flags);
4527 }
4528 
4529 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4530 {
4531 	struct cas *cp = netdev_priv(dev);
4532 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4533 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4534 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4535 	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4536 		cp->casreg_len : CAS_MAX_REGS;
4537 	info->n_stats = CAS_NUM_STAT_KEYS;
4538 }
4539 
4540 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4541 {
4542 	struct cas *cp = netdev_priv(dev);
4543 	u16 bmcr;
4544 	int full_duplex, speed, pause;
4545 	unsigned long flags;
4546 	enum link_state linkstate = link_up;
4547 
4548 	cmd->advertising = 0;
4549 	cmd->supported = SUPPORTED_Autoneg;
4550 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4551 		cmd->supported |= SUPPORTED_1000baseT_Full;
4552 		cmd->advertising |= ADVERTISED_1000baseT_Full;
4553 	}
4554 
4555 	/* Record PHY settings if HW is on. */
4556 	spin_lock_irqsave(&cp->lock, flags);
4557 	bmcr = 0;
4558 	linkstate = cp->lstate;
4559 	if (CAS_PHY_MII(cp->phy_type)) {
4560 		cmd->port = PORT_MII;
4561 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4562 			XCVR_INTERNAL : XCVR_EXTERNAL;
4563 		cmd->phy_address = cp->phy_addr;
4564 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4565 			ADVERTISED_10baseT_Half |
4566 			ADVERTISED_10baseT_Full |
4567 			ADVERTISED_100baseT_Half |
4568 			ADVERTISED_100baseT_Full;
4569 
4570 		cmd->supported |=
4571 			(SUPPORTED_10baseT_Half |
4572 			 SUPPORTED_10baseT_Full |
4573 			 SUPPORTED_100baseT_Half |
4574 			 SUPPORTED_100baseT_Full |
4575 			 SUPPORTED_TP | SUPPORTED_MII);
4576 
4577 		if (cp->hw_running) {
4578 			cas_mif_poll(cp, 0);
4579 			bmcr = cas_phy_read(cp, MII_BMCR);
4580 			cas_read_mii_link_mode(cp, &full_duplex,
4581 					       &speed, &pause);
4582 			cas_mif_poll(cp, 1);
4583 		}
4584 
4585 	} else {
4586 		cmd->port = PORT_FIBRE;
4587 		cmd->transceiver = XCVR_INTERNAL;
4588 		cmd->phy_address = 0;
4589 		cmd->supported   |= SUPPORTED_FIBRE;
4590 		cmd->advertising |= ADVERTISED_FIBRE;
4591 
4592 		if (cp->hw_running) {
4593 			/* pcs uses the same bits as mii */
4594 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4595 			cas_read_pcs_link_mode(cp, &full_duplex,
4596 					       &speed, &pause);
4597 		}
4598 	}
4599 	spin_unlock_irqrestore(&cp->lock, flags);
4600 
4601 	if (bmcr & BMCR_ANENABLE) {
4602 		cmd->advertising |= ADVERTISED_Autoneg;
4603 		cmd->autoneg = AUTONEG_ENABLE;
4604 		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4605 					    SPEED_10 :
4606 					    ((speed == 1000) ?
4607 					     SPEED_1000 : SPEED_100)));
4608 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4609 	} else {
4610 		cmd->autoneg = AUTONEG_DISABLE;
4611 		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4612 					    SPEED_1000 :
4613 					    ((bmcr & BMCR_SPEED100) ?
4614 					     SPEED_100 : SPEED_10)));
4615 		cmd->duplex =
4616 			(bmcr & BMCR_FULLDPLX) ?
4617 			DUPLEX_FULL : DUPLEX_HALF;
4618 	}
4619 	if (linkstate != link_up) {
4620 		/* Force these to "unknown" if the link is not up and
4621 		 * autonogotiation in enabled. We can set the link
4622 		 * speed to 0, but not cmd->duplex,
4623 		 * because its legal values are 0 and 1.  Ethtool will
4624 		 * print the value reported in parentheses after the
4625 		 * word "Unknown" for unrecognized values.
4626 		 *
4627 		 * If in forced mode, we report the speed and duplex
4628 		 * settings that we configured.
4629 		 */
4630 		if (cp->link_cntl & BMCR_ANENABLE) {
4631 			ethtool_cmd_speed_set(cmd, 0);
4632 			cmd->duplex = 0xff;
4633 		} else {
4634 			ethtool_cmd_speed_set(cmd, SPEED_10);
4635 			if (cp->link_cntl & BMCR_SPEED100) {
4636 				ethtool_cmd_speed_set(cmd, SPEED_100);
4637 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4638 				ethtool_cmd_speed_set(cmd, SPEED_1000);
4639 			}
4640 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4641 				DUPLEX_FULL : DUPLEX_HALF;
4642 		}
4643 	}
4644 	return 0;
4645 }
4646 
4647 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4648 {
4649 	struct cas *cp = netdev_priv(dev);
4650 	unsigned long flags;
4651 	u32 speed = ethtool_cmd_speed(cmd);
4652 
4653 	/* Verify the settings we care about. */
4654 	if (cmd->autoneg != AUTONEG_ENABLE &&
4655 	    cmd->autoneg != AUTONEG_DISABLE)
4656 		return -EINVAL;
4657 
4658 	if (cmd->autoneg == AUTONEG_DISABLE &&
4659 	    ((speed != SPEED_1000 &&
4660 	      speed != SPEED_100 &&
4661 	      speed != SPEED_10) ||
4662 	     (cmd->duplex != DUPLEX_HALF &&
4663 	      cmd->duplex != DUPLEX_FULL)))
4664 		return -EINVAL;
4665 
4666 	/* Apply settings and restart link process. */
4667 	spin_lock_irqsave(&cp->lock, flags);
4668 	cas_begin_auto_negotiation(cp, cmd);
4669 	spin_unlock_irqrestore(&cp->lock, flags);
4670 	return 0;
4671 }
4672 
4673 static int cas_nway_reset(struct net_device *dev)
4674 {
4675 	struct cas *cp = netdev_priv(dev);
4676 	unsigned long flags;
4677 
4678 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4679 		return -EINVAL;
4680 
4681 	/* Restart link process. */
4682 	spin_lock_irqsave(&cp->lock, flags);
4683 	cas_begin_auto_negotiation(cp, NULL);
4684 	spin_unlock_irqrestore(&cp->lock, flags);
4685 
4686 	return 0;
4687 }
4688 
4689 static u32 cas_get_link(struct net_device *dev)
4690 {
4691 	struct cas *cp = netdev_priv(dev);
4692 	return cp->lstate == link_up;
4693 }
4694 
4695 static u32 cas_get_msglevel(struct net_device *dev)
4696 {
4697 	struct cas *cp = netdev_priv(dev);
4698 	return cp->msg_enable;
4699 }
4700 
4701 static void cas_set_msglevel(struct net_device *dev, u32 value)
4702 {
4703 	struct cas *cp = netdev_priv(dev);
4704 	cp->msg_enable = value;
4705 }
4706 
4707 static int cas_get_regs_len(struct net_device *dev)
4708 {
4709 	struct cas *cp = netdev_priv(dev);
4710 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4711 }
4712 
4713 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4714 			     void *p)
4715 {
4716 	struct cas *cp = netdev_priv(dev);
4717 	regs->version = 0;
4718 	/* cas_read_regs handles locks (cp->lock).  */
4719 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4720 }
4721 
4722 static int cas_get_sset_count(struct net_device *dev, int sset)
4723 {
4724 	switch (sset) {
4725 	case ETH_SS_STATS:
4726 		return CAS_NUM_STAT_KEYS;
4727 	default:
4728 		return -EOPNOTSUPP;
4729 	}
4730 }
4731 
4732 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4733 {
4734 	 memcpy(data, &ethtool_cassini_statnames,
4735 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4736 }
4737 
4738 static void cas_get_ethtool_stats(struct net_device *dev,
4739 				      struct ethtool_stats *estats, u64 *data)
4740 {
4741 	struct cas *cp = netdev_priv(dev);
4742 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4743 	int i = 0;
4744 	data[i++] = stats->collisions;
4745 	data[i++] = stats->rx_bytes;
4746 	data[i++] = stats->rx_crc_errors;
4747 	data[i++] = stats->rx_dropped;
4748 	data[i++] = stats->rx_errors;
4749 	data[i++] = stats->rx_fifo_errors;
4750 	data[i++] = stats->rx_frame_errors;
4751 	data[i++] = stats->rx_length_errors;
4752 	data[i++] = stats->rx_over_errors;
4753 	data[i++] = stats->rx_packets;
4754 	data[i++] = stats->tx_aborted_errors;
4755 	data[i++] = stats->tx_bytes;
4756 	data[i++] = stats->tx_dropped;
4757 	data[i++] = stats->tx_errors;
4758 	data[i++] = stats->tx_fifo_errors;
4759 	data[i++] = stats->tx_packets;
4760 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4761 }
4762 
4763 static const struct ethtool_ops cas_ethtool_ops = {
4764 	.get_drvinfo		= cas_get_drvinfo,
4765 	.get_settings		= cas_get_settings,
4766 	.set_settings		= cas_set_settings,
4767 	.nway_reset		= cas_nway_reset,
4768 	.get_link		= cas_get_link,
4769 	.get_msglevel		= cas_get_msglevel,
4770 	.set_msglevel		= cas_set_msglevel,
4771 	.get_regs_len		= cas_get_regs_len,
4772 	.get_regs		= cas_get_regs,
4773 	.get_sset_count		= cas_get_sset_count,
4774 	.get_strings		= cas_get_strings,
4775 	.get_ethtool_stats	= cas_get_ethtool_stats,
4776 };
4777 
4778 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4779 {
4780 	struct cas *cp = netdev_priv(dev);
4781 	struct mii_ioctl_data *data = if_mii(ifr);
4782 	unsigned long flags;
4783 	int rc = -EOPNOTSUPP;
4784 
4785 	/* Hold the PM mutex while doing ioctl's or we may collide
4786 	 * with open/close and power management and oops.
4787 	 */
4788 	mutex_lock(&cp->pm_mutex);
4789 	switch (cmd) {
4790 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4791 		data->phy_id = cp->phy_addr;
4792 		/* Fallthrough... */
4793 
4794 	case SIOCGMIIREG:		/* Read MII PHY register. */
4795 		spin_lock_irqsave(&cp->lock, flags);
4796 		cas_mif_poll(cp, 0);
4797 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4798 		cas_mif_poll(cp, 1);
4799 		spin_unlock_irqrestore(&cp->lock, flags);
4800 		rc = 0;
4801 		break;
4802 
4803 	case SIOCSMIIREG:		/* Write MII PHY register. */
4804 		spin_lock_irqsave(&cp->lock, flags);
4805 		cas_mif_poll(cp, 0);
4806 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4807 		cas_mif_poll(cp, 1);
4808 		spin_unlock_irqrestore(&cp->lock, flags);
4809 		break;
4810 	default:
4811 		break;
4812 	}
4813 
4814 	mutex_unlock(&cp->pm_mutex);
4815 	return rc;
4816 }
4817 
4818 /* When this chip sits underneath an Intel 31154 bridge, it is the
4819  * only subordinate device and we can tweak the bridge settings to
4820  * reflect that fact.
4821  */
4822 static void cas_program_bridge(struct pci_dev *cas_pdev)
4823 {
4824 	struct pci_dev *pdev = cas_pdev->bus->self;
4825 	u32 val;
4826 
4827 	if (!pdev)
4828 		return;
4829 
4830 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4831 		return;
4832 
4833 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4834 	 * Arbiter Control/Status Register which lives at offset
4835 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4836 	 * is much simpler so that's how we do this.
4837 	 */
4838 	pci_read_config_dword(pdev, 0x40, &val);
4839 	val &= ~0x00040000;
4840 	pci_write_config_dword(pdev, 0x40, val);
4841 
4842 	/* Max out the Multi-Transaction Timer settings since
4843 	 * Cassini is the only device present.
4844 	 *
4845 	 * The register is 16-bit and lives at 0x50.  When the
4846 	 * settings are enabled, it extends the GRANT# signal
4847 	 * for a requestor after a transaction is complete.  This
4848 	 * allows the next request to run without first needing
4849 	 * to negotiate the GRANT# signal back.
4850 	 *
4851 	 * Bits 12:10 define the grant duration:
4852 	 *
4853 	 *	1	--	16 clocks
4854 	 *	2	--	32 clocks
4855 	 *	3	--	64 clocks
4856 	 *	4	--	128 clocks
4857 	 *	5	--	256 clocks
4858 	 *
4859 	 * All other values are illegal.
4860 	 *
4861 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4862 	 * GRANT# signal treatment.  We set them all.
4863 	 */
4864 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4865 
4866 	/* The Read Prefecth Policy register is 16-bit and sits at
4867 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4868 	 * enable it and max out all of the settings since only one
4869 	 * device is sitting underneath and thus bandwidth sharing is
4870 	 * not an issue.
4871 	 *
4872 	 * The register has several 3 bit fields, which indicates a
4873 	 * multiplier applied to the base amount of prefetching the
4874 	 * chip would do.  These fields are at:
4875 	 *
4876 	 *	15:13	---	ReRead Primary Bus
4877 	 *	12:10	---	FirstRead Primary Bus
4878 	 *	09:07	---	ReRead Secondary Bus
4879 	 *	06:04	---	FirstRead Secondary Bus
4880 	 *
4881 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4882 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4883 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4884 	 * the individual REQ/GNT pairs [2:0].
4885 	 */
4886 	pci_write_config_word(pdev, 0x52,
4887 			      (0x7 << 13) |
4888 			      (0x7 << 10) |
4889 			      (0x7 <<  7) |
4890 			      (0x7 <<  4) |
4891 			      (0xf <<  0));
4892 
4893 	/* Force cacheline size to 0x8 */
4894 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4895 
4896 	/* Force latency timer to maximum setting so Cassini can
4897 	 * sit on the bus as long as it likes.
4898 	 */
4899 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4900 }
4901 
4902 static const struct net_device_ops cas_netdev_ops = {
4903 	.ndo_open		= cas_open,
4904 	.ndo_stop		= cas_close,
4905 	.ndo_start_xmit		= cas_start_xmit,
4906 	.ndo_get_stats 		= cas_get_stats,
4907 	.ndo_set_rx_mode	= cas_set_multicast,
4908 	.ndo_do_ioctl		= cas_ioctl,
4909 	.ndo_tx_timeout		= cas_tx_timeout,
4910 	.ndo_change_mtu		= cas_change_mtu,
4911 	.ndo_set_mac_address	= eth_mac_addr,
4912 	.ndo_validate_addr	= eth_validate_addr,
4913 #ifdef CONFIG_NET_POLL_CONTROLLER
4914 	.ndo_poll_controller	= cas_netpoll,
4915 #endif
4916 };
4917 
4918 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4919 {
4920 	static int cas_version_printed = 0;
4921 	unsigned long casreg_len;
4922 	struct net_device *dev;
4923 	struct cas *cp;
4924 	int i, err, pci_using_dac;
4925 	u16 pci_cmd;
4926 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4927 
4928 	if (cas_version_printed++ == 0)
4929 		pr_info("%s", version);
4930 
4931 	err = pci_enable_device(pdev);
4932 	if (err) {
4933 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4934 		return err;
4935 	}
4936 
4937 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4938 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4939 		       "base address, aborting\n");
4940 		err = -ENODEV;
4941 		goto err_out_disable_pdev;
4942 	}
4943 
4944 	dev = alloc_etherdev(sizeof(*cp));
4945 	if (!dev) {
4946 		err = -ENOMEM;
4947 		goto err_out_disable_pdev;
4948 	}
4949 	SET_NETDEV_DEV(dev, &pdev->dev);
4950 
4951 	err = pci_request_regions(pdev, dev->name);
4952 	if (err) {
4953 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4954 		goto err_out_free_netdev;
4955 	}
4956 	pci_set_master(pdev);
4957 
4958 	/* we must always turn on parity response or else parity
4959 	 * doesn't get generated properly. disable SERR/PERR as well.
4960 	 * in addition, we want to turn MWI on.
4961 	 */
4962 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4963 	pci_cmd &= ~PCI_COMMAND_SERR;
4964 	pci_cmd |= PCI_COMMAND_PARITY;
4965 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4966 	if (pci_try_set_mwi(pdev))
4967 		pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4968 
4969 	cas_program_bridge(pdev);
4970 
4971 	/*
4972 	 * On some architectures, the default cache line size set
4973 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4974 	 * it for this case.  To start, we'll print some configuration
4975 	 * data.
4976 	 */
4977 #if 1
4978 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4979 			     &orig_cacheline_size);
4980 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4981 		cas_cacheline_size =
4982 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4983 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4984 		if (pci_write_config_byte(pdev,
4985 					  PCI_CACHE_LINE_SIZE,
4986 					  cas_cacheline_size)) {
4987 			dev_err(&pdev->dev, "Could not set PCI cache "
4988 			       "line size\n");
4989 			goto err_write_cacheline;
4990 		}
4991 	}
4992 #endif
4993 
4994 
4995 	/* Configure DMA attributes. */
4996 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4997 		pci_using_dac = 1;
4998 		err = pci_set_consistent_dma_mask(pdev,
4999 						  DMA_BIT_MASK(64));
5000 		if (err < 0) {
5001 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5002 			       "for consistent allocations\n");
5003 			goto err_out_free_res;
5004 		}
5005 
5006 	} else {
5007 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5008 		if (err) {
5009 			dev_err(&pdev->dev, "No usable DMA configuration, "
5010 			       "aborting\n");
5011 			goto err_out_free_res;
5012 		}
5013 		pci_using_dac = 0;
5014 	}
5015 
5016 	casreg_len = pci_resource_len(pdev, 0);
5017 
5018 	cp = netdev_priv(dev);
5019 	cp->pdev = pdev;
5020 #if 1
5021 	/* A value of 0 indicates we never explicitly set it */
5022 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5023 #endif
5024 	cp->dev = dev;
5025 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5026 	  cassini_debug;
5027 
5028 #if defined(CONFIG_SPARC)
5029 	cp->of_node = pci_device_to_OF_node(pdev);
5030 #endif
5031 
5032 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5033 	cp->link_transition_jiffies_valid = 0;
5034 
5035 	spin_lock_init(&cp->lock);
5036 	spin_lock_init(&cp->rx_inuse_lock);
5037 	spin_lock_init(&cp->rx_spare_lock);
5038 	for (i = 0; i < N_TX_RINGS; i++) {
5039 		spin_lock_init(&cp->stat_lock[i]);
5040 		spin_lock_init(&cp->tx_lock[i]);
5041 	}
5042 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5043 	mutex_init(&cp->pm_mutex);
5044 
5045 	init_timer(&cp->link_timer);
5046 	cp->link_timer.function = cas_link_timer;
5047 	cp->link_timer.data = (unsigned long) cp;
5048 
5049 #if 1
5050 	/* Just in case the implementation of atomic operations
5051 	 * change so that an explicit initialization is necessary.
5052 	 */
5053 	atomic_set(&cp->reset_task_pending, 0);
5054 	atomic_set(&cp->reset_task_pending_all, 0);
5055 	atomic_set(&cp->reset_task_pending_spare, 0);
5056 	atomic_set(&cp->reset_task_pending_mtu, 0);
5057 #endif
5058 	INIT_WORK(&cp->reset_task, cas_reset_task);
5059 
5060 	/* Default link parameters */
5061 	if (link_mode >= 0 && link_mode < 6)
5062 		cp->link_cntl = link_modes[link_mode];
5063 	else
5064 		cp->link_cntl = BMCR_ANENABLE;
5065 	cp->lstate = link_down;
5066 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5067 	netif_carrier_off(cp->dev);
5068 	cp->timer_ticks = 0;
5069 
5070 	/* give us access to cassini registers */
5071 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5072 	if (!cp->regs) {
5073 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5074 		goto err_out_free_res;
5075 	}
5076 	cp->casreg_len = casreg_len;
5077 
5078 	pci_save_state(pdev);
5079 	cas_check_pci_invariants(cp);
5080 	cas_hard_reset(cp);
5081 	cas_reset(cp, 0);
5082 	if (cas_check_invariants(cp))
5083 		goto err_out_iounmap;
5084 	if (cp->cas_flags & CAS_FLAG_SATURN)
5085 		cas_saturn_firmware_init(cp);
5086 
5087 	cp->init_block = (struct cas_init_block *)
5088 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5089 				     &cp->block_dvma);
5090 	if (!cp->init_block) {
5091 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5092 		goto err_out_iounmap;
5093 	}
5094 
5095 	for (i = 0; i < N_TX_RINGS; i++)
5096 		cp->init_txds[i] = cp->init_block->txds[i];
5097 
5098 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5099 		cp->init_rxds[i] = cp->init_block->rxds[i];
5100 
5101 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5102 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5103 
5104 	for (i = 0; i < N_RX_FLOWS; i++)
5105 		skb_queue_head_init(&cp->rx_flows[i]);
5106 
5107 	dev->netdev_ops = &cas_netdev_ops;
5108 	dev->ethtool_ops = &cas_ethtool_ops;
5109 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5110 
5111 #ifdef USE_NAPI
5112 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5113 #endif
5114 	dev->irq = pdev->irq;
5115 	dev->dma = 0;
5116 
5117 	/* Cassini features. */
5118 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5119 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5120 
5121 	if (pci_using_dac)
5122 		dev->features |= NETIF_F_HIGHDMA;
5123 
5124 	if (register_netdev(dev)) {
5125 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5126 		goto err_out_free_consistent;
5127 	}
5128 
5129 	i = readl(cp->regs + REG_BIM_CFG);
5130 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5132 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5133 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5134 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5135 		    dev->dev_addr);
5136 
5137 	pci_set_drvdata(pdev, dev);
5138 	cp->hw_running = 1;
5139 	cas_entropy_reset(cp);
5140 	cas_phy_init(cp);
5141 	cas_begin_auto_negotiation(cp, NULL);
5142 	return 0;
5143 
5144 err_out_free_consistent:
5145 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5146 			    cp->init_block, cp->block_dvma);
5147 
5148 err_out_iounmap:
5149 	mutex_lock(&cp->pm_mutex);
5150 	if (cp->hw_running)
5151 		cas_shutdown(cp);
5152 	mutex_unlock(&cp->pm_mutex);
5153 
5154 	pci_iounmap(pdev, cp->regs);
5155 
5156 
5157 err_out_free_res:
5158 	pci_release_regions(pdev);
5159 
5160 err_write_cacheline:
5161 	/* Try to restore it in case the error occurred after we
5162 	 * set it.
5163 	 */
5164 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5165 
5166 err_out_free_netdev:
5167 	free_netdev(dev);
5168 
5169 err_out_disable_pdev:
5170 	pci_disable_device(pdev);
5171 	pci_set_drvdata(pdev, NULL);
5172 	return -ENODEV;
5173 }
5174 
5175 static void cas_remove_one(struct pci_dev *pdev)
5176 {
5177 	struct net_device *dev = pci_get_drvdata(pdev);
5178 	struct cas *cp;
5179 	if (!dev)
5180 		return;
5181 
5182 	cp = netdev_priv(dev);
5183 	unregister_netdev(dev);
5184 
5185 	if (cp->fw_data)
5186 		vfree(cp->fw_data);
5187 
5188 	mutex_lock(&cp->pm_mutex);
5189 	cancel_work_sync(&cp->reset_task);
5190 	if (cp->hw_running)
5191 		cas_shutdown(cp);
5192 	mutex_unlock(&cp->pm_mutex);
5193 
5194 #if 1
5195 	if (cp->orig_cacheline_size) {
5196 		/* Restore the cache line size if we had modified
5197 		 * it.
5198 		 */
5199 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5200 				      cp->orig_cacheline_size);
5201 	}
5202 #endif
5203 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5204 			    cp->init_block, cp->block_dvma);
5205 	pci_iounmap(pdev, cp->regs);
5206 	free_netdev(dev);
5207 	pci_release_regions(pdev);
5208 	pci_disable_device(pdev);
5209 	pci_set_drvdata(pdev, NULL);
5210 }
5211 
5212 #ifdef CONFIG_PM
5213 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5214 {
5215 	struct net_device *dev = pci_get_drvdata(pdev);
5216 	struct cas *cp = netdev_priv(dev);
5217 	unsigned long flags;
5218 
5219 	mutex_lock(&cp->pm_mutex);
5220 
5221 	/* If the driver is opened, we stop the DMA */
5222 	if (cp->opened) {
5223 		netif_device_detach(dev);
5224 
5225 		cas_lock_all_save(cp, flags);
5226 
5227 		/* We can set the second arg of cas_reset to 0
5228 		 * because on resume, we'll call cas_init_hw with
5229 		 * its second arg set so that autonegotiation is
5230 		 * restarted.
5231 		 */
5232 		cas_reset(cp, 0);
5233 		cas_clean_rings(cp);
5234 		cas_unlock_all_restore(cp, flags);
5235 	}
5236 
5237 	if (cp->hw_running)
5238 		cas_shutdown(cp);
5239 	mutex_unlock(&cp->pm_mutex);
5240 
5241 	return 0;
5242 }
5243 
5244 static int cas_resume(struct pci_dev *pdev)
5245 {
5246 	struct net_device *dev = pci_get_drvdata(pdev);
5247 	struct cas *cp = netdev_priv(dev);
5248 
5249 	netdev_info(dev, "resuming\n");
5250 
5251 	mutex_lock(&cp->pm_mutex);
5252 	cas_hard_reset(cp);
5253 	if (cp->opened) {
5254 		unsigned long flags;
5255 		cas_lock_all_save(cp, flags);
5256 		cas_reset(cp, 0);
5257 		cp->hw_running = 1;
5258 		cas_clean_rings(cp);
5259 		cas_init_hw(cp, 1);
5260 		cas_unlock_all_restore(cp, flags);
5261 
5262 		netif_device_attach(dev);
5263 	}
5264 	mutex_unlock(&cp->pm_mutex);
5265 	return 0;
5266 }
5267 #endif /* CONFIG_PM */
5268 
5269 static struct pci_driver cas_driver = {
5270 	.name		= DRV_MODULE_NAME,
5271 	.id_table	= cas_pci_tbl,
5272 	.probe		= cas_init_one,
5273 	.remove		= cas_remove_one,
5274 #ifdef CONFIG_PM
5275 	.suspend	= cas_suspend,
5276 	.resume		= cas_resume
5277 #endif
5278 };
5279 
5280 static int __init cas_init(void)
5281 {
5282 	if (linkdown_timeout > 0)
5283 		link_transition_timeout = linkdown_timeout * HZ;
5284 	else
5285 		link_transition_timeout = 0;
5286 
5287 	return pci_register_driver(&cas_driver);
5288 }
5289 
5290 static void __exit cas_cleanup(void)
5291 {
5292 	pci_unregister_driver(&cas_driver);
5293 }
5294 
5295 module_init(cas_init);
5296 module_exit(cas_cleanup);
5297