xref: /openbmc/linux/drivers/net/ethernet/sun/cassini.c (revision bcb84fb4)
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * This driver uses the sungem driver (c) David Miller
20  * (davem@redhat.com) as its basis.
21  *
22  * The cassini chip has a number of features that distinguish it from
23  * the gem chip:
24  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
25  *      load balancing (non-VLAN mode)
26  *  batching of multiple packets
27  *  multiple CPU dispatching
28  *  page-based RX descriptor engine with separate completion rings
29  *  Gigabit support (GMII and PCS interface)
30  *  MIF link up/down detection works
31  *
32  * RX is handled by page sized buffers that are attached as fragments to
33  * the skb. here's what's done:
34  *  -- driver allocates pages at a time and keeps reference counts
35  *     on them.
36  *  -- the upper protocol layers assume that the header is in the skb
37  *     itself. as a result, cassini will copy a small amount (64 bytes)
38  *     to make them happy.
39  *  -- driver appends the rest of the data pages as frags to skbuffs
40  *     and increments the reference count
41  *  -- on page reclamation, the driver swaps the page with a spare page.
42  *     if that page is still in use, it frees its reference to that page,
43  *     and allocates a new page for use. otherwise, it just recycles the
44  *     the page.
45  *
46  * NOTE: cassini can parse the header. however, it's not worth it
47  *       as long as the network stack requires a header copy.
48  *
49  * TX has 4 queues. currently these queues are used in a round-robin
50  * fashion for load balancing. They can also be used for QoS. for that
51  * to work, however, QoS information needs to be exposed down to the driver
52  * level so that subqueues get targeted to particular transmit rings.
53  * alternatively, the queues can be configured via use of the all-purpose
54  * ioctl.
55  *
56  * RX DATA: the rx completion ring has all the info, but the rx desc
57  * ring has all of the data. RX can conceivably come in under multiple
58  * interrupts, but the INT# assignment needs to be set up properly by
59  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60  * that. also, the two descriptor rings are designed to distinguish between
61  * encrypted and non-encrypted packets, but we use them for buffering
62  * instead.
63  *
64  * by default, the selective clear mask is set up to process rx packets.
65  */
66 
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68 
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84 
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96 
97 #include <net/checksum.h>
98 
99 #include <linux/atomic.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <linux/uaccess.h>
103 
104 #define cas_page_map(x)      kmap_atomic((x))
105 #define cas_page_unmap(x)    kunmap_atomic((x))
106 #define CAS_NCPUS            num_online_cpus()
107 
108 #define cas_skb_release(x)  netif_rx(x)
109 
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
114 
115 #include "cassini.h"
116 
117 #define USE_TX_COMPWB      /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
119 #define USE_RX_BLANK       /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
121 
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123  * also, we need to make cp->lock finer-grained.
124  */
125 #undef  USE_PCI_INTB
126 #undef  USE_PCI_INTC
127 #undef  USE_PCI_INTD
128 #undef  USE_QOS
129 
130 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
131 
132 /* rx processing options */
133 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
136 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
137 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
138 
139 #define DRV_MODULE_NAME		"cassini"
140 #define DRV_MODULE_VERSION	"1.6"
141 #define DRV_MODULE_RELDATE	"21 May 2008"
142 
143 #define CAS_DEF_MSG_ENABLE	  \
144 	(NETIF_MSG_DRV		| \
145 	 NETIF_MSG_PROBE	| \
146 	 NETIF_MSG_LINK		| \
147 	 NETIF_MSG_TIMER	| \
148 	 NETIF_MSG_IFDOWN	| \
149 	 NETIF_MSG_IFUP		| \
150 	 NETIF_MSG_RX_ERR	| \
151 	 NETIF_MSG_TX_ERR)
152 
153 /* length of time before we decide the hardware is borked,
154  * and dev->tx_timeout() should be called to fix the problem
155  */
156 #define CAS_TX_TIMEOUT			(HZ)
157 #define CAS_LINK_TIMEOUT                (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT           (1)
159 
160 /* timeout values for state changing. these specify the number
161  * of 10us delays to be used before giving up.
162  */
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES     5000
165 
166 /* specify a minimum frame size to deal with some fifo issues
167  * max mtu == 2 * page size - ethernet header - 64 - swivel =
168  *            2 * page_size - 0x50
169  */
170 #define CAS_MIN_FRAME			97
171 #define CAS_1000MB_MIN_FRAME            255
172 #define CAS_MIN_MTU                     60
173 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
174 
175 #if 1
176 /*
177  * Eliminate these and use separate atomic counters for each, to
178  * avoid a race condition.
179  */
180 #else
181 #define CAS_RESET_MTU                   1
182 #define CAS_RESET_ALL                   2
183 #define CAS_RESET_SPARE                 3
184 #endif
185 
186 static char version[] =
187 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188 
189 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode;
191 
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug, int, 0);
197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode, int, 0);
199 MODULE_PARM_DESC(link_mode, "default link mode");
200 
201 /*
202  * Work around for a PCS bug in which the link goes down due to the chip
203  * being confused and never showing a link status of "up."
204  */
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
206 /*
207  * Value in seconds, for user input.
208  */
209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210 module_param(linkdown_timeout, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213 
214 /*
215  * value in 'ticks' (units used by jiffies). Set when we init the
216  * module because 'HZ' in actually a function call on some flavors of
217  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218  */
219 static int link_transition_timeout;
220 
221 
222 
223 static u16 link_modes[] = {
224 	BMCR_ANENABLE,			 /* 0 : autoneg */
225 	0,				 /* 1 : 10bt half duplex */
226 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
227 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
228 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
229 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230 };
231 
232 static const struct pci_device_id cas_pci_tbl[] = {
233 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 	{ 0, }
238 };
239 
240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241 
242 static void cas_set_link_modes(struct cas *cp);
243 
244 static inline void cas_lock_tx(struct cas *cp)
245 {
246 	int i;
247 
248 	for (i = 0; i < N_TX_RINGS; i++)
249 		spin_lock_nested(&cp->tx_lock[i], i);
250 }
251 
252 static inline void cas_lock_all(struct cas *cp)
253 {
254 	spin_lock_irq(&cp->lock);
255 	cas_lock_tx(cp);
256 }
257 
258 /* WTZ: QA was finding deadlock problems with the previous
259  * versions after long test runs with multiple cards per machine.
260  * See if replacing cas_lock_all with safer versions helps. The
261  * symptoms QA is reporting match those we'd expect if interrupts
262  * aren't being properly restored, and we fixed a previous deadlock
263  * with similar symptoms by using save/restore versions in other
264  * places.
265  */
266 #define cas_lock_all_save(cp, flags) \
267 do { \
268 	struct cas *xxxcp = (cp); \
269 	spin_lock_irqsave(&xxxcp->lock, flags); \
270 	cas_lock_tx(xxxcp); \
271 } while (0)
272 
273 static inline void cas_unlock_tx(struct cas *cp)
274 {
275 	int i;
276 
277 	for (i = N_TX_RINGS; i > 0; i--)
278 		spin_unlock(&cp->tx_lock[i - 1]);
279 }
280 
281 static inline void cas_unlock_all(struct cas *cp)
282 {
283 	cas_unlock_tx(cp);
284 	spin_unlock_irq(&cp->lock);
285 }
286 
287 #define cas_unlock_all_restore(cp, flags) \
288 do { \
289 	struct cas *xxxcp = (cp); \
290 	cas_unlock_tx(xxxcp); \
291 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
292 } while (0)
293 
294 static void cas_disable_irq(struct cas *cp, const int ring)
295 {
296 	/* Make sure we won't get any more interrupts */
297 	if (ring == 0) {
298 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299 		return;
300 	}
301 
302 	/* disable completion interrupts and selectively mask */
303 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304 		switch (ring) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306 #ifdef USE_PCI_INTB
307 		case 1:
308 #endif
309 #ifdef USE_PCI_INTC
310 		case 2:
311 #endif
312 #ifdef USE_PCI_INTD
313 		case 3:
314 #endif
315 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
317 			break;
318 #endif
319 		default:
320 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321 			       REG_PLUS_INTRN_MASK(ring));
322 			break;
323 		}
324 	}
325 }
326 
327 static inline void cas_mask_intr(struct cas *cp)
328 {
329 	int i;
330 
331 	for (i = 0; i < N_RX_COMP_RINGS; i++)
332 		cas_disable_irq(cp, i);
333 }
334 
335 static void cas_enable_irq(struct cas *cp, const int ring)
336 {
337 	if (ring == 0) { /* all but TX_DONE */
338 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339 		return;
340 	}
341 
342 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343 		switch (ring) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345 #ifdef USE_PCI_INTB
346 		case 1:
347 #endif
348 #ifdef USE_PCI_INTC
349 		case 2:
350 #endif
351 #ifdef USE_PCI_INTD
352 		case 3:
353 #endif
354 			writel(INTRN_MASK_RX_EN, cp->regs +
355 			       REG_PLUS_INTRN_MASK(ring));
356 			break;
357 #endif
358 		default:
359 			break;
360 		}
361 	}
362 }
363 
364 static inline void cas_unmask_intr(struct cas *cp)
365 {
366 	int i;
367 
368 	for (i = 0; i < N_RX_COMP_RINGS; i++)
369 		cas_enable_irq(cp, i);
370 }
371 
372 static inline void cas_entropy_gather(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376 		return;
377 
378 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379 			    readl(cp->regs + REG_ENTROPY_IV),
380 			    sizeof(uint64_t)*8);
381 #endif
382 }
383 
384 static inline void cas_entropy_reset(struct cas *cp)
385 {
386 #ifdef USE_ENTROPY_DEV
387 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388 		return;
389 
390 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
392 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394 
395 	/* if we read back 0x0, we don't have an entropy device */
396 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398 #endif
399 }
400 
401 /* access to the phy. the following assumes that we've initialized the MIF to
402  * be in frame rather than bit-bang mode
403  */
404 static u16 cas_phy_read(struct cas *cp, int reg)
405 {
406 	u32 cmd;
407 	int limit = STOP_TRIES_PHY;
408 
409 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
413 	writel(cmd, cp->regs + REG_MIF_FRAME);
414 
415 	/* poll for completion */
416 	while (limit-- > 0) {
417 		udelay(10);
418 		cmd = readl(cp->regs + REG_MIF_FRAME);
419 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420 			return cmd & MIF_FRAME_DATA_MASK;
421 	}
422 	return 0xFFFF; /* -1 */
423 }
424 
425 static int cas_phy_write(struct cas *cp, int reg, u16 val)
426 {
427 	int limit = STOP_TRIES_PHY;
428 	u32 cmd;
429 
430 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
434 	cmd |= val & MIF_FRAME_DATA_MASK;
435 	writel(cmd, cp->regs + REG_MIF_FRAME);
436 
437 	/* poll for completion */
438 	while (limit-- > 0) {
439 		udelay(10);
440 		cmd = readl(cp->regs + REG_MIF_FRAME);
441 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442 			return 0;
443 	}
444 	return -1;
445 }
446 
447 static void cas_phy_powerup(struct cas *cp)
448 {
449 	u16 ctl = cas_phy_read(cp, MII_BMCR);
450 
451 	if ((ctl & BMCR_PDOWN) == 0)
452 		return;
453 	ctl &= ~BMCR_PDOWN;
454 	cas_phy_write(cp, MII_BMCR, ctl);
455 }
456 
457 static void cas_phy_powerdown(struct cas *cp)
458 {
459 	u16 ctl = cas_phy_read(cp, MII_BMCR);
460 
461 	if (ctl & BMCR_PDOWN)
462 		return;
463 	ctl |= BMCR_PDOWN;
464 	cas_phy_write(cp, MII_BMCR, ctl);
465 }
466 
467 /* cp->lock held. note: the last put_page will free the buffer */
468 static int cas_page_free(struct cas *cp, cas_page_t *page)
469 {
470 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471 		       PCI_DMA_FROMDEVICE);
472 	__free_pages(page->buffer, cp->page_order);
473 	kfree(page);
474 	return 0;
475 }
476 
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y)       ((x)->used += (y))
479 #define RX_USED_SET(x, y)       ((x)->used  = (y))
480 #else
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
483 #endif
484 
485 /* local page allocation routines for the receive buffers. jumbo pages
486  * require at least 8K contiguous and 8K aligned buffers.
487  */
488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489 {
490 	cas_page_t *page;
491 
492 	page = kmalloc(sizeof(cas_page_t), flags);
493 	if (!page)
494 		return NULL;
495 
496 	INIT_LIST_HEAD(&page->list);
497 	RX_USED_SET(page, 0);
498 	page->buffer = alloc_pages(flags, cp->page_order);
499 	if (!page->buffer)
500 		goto page_err;
501 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502 				      cp->page_size, PCI_DMA_FROMDEVICE);
503 	return page;
504 
505 page_err:
506 	kfree(page);
507 	return NULL;
508 }
509 
510 /* initialize spare pool of rx buffers, but allocate during the open */
511 static void cas_spare_init(struct cas *cp)
512 {
513   	spin_lock(&cp->rx_inuse_lock);
514 	INIT_LIST_HEAD(&cp->rx_inuse_list);
515 	spin_unlock(&cp->rx_inuse_lock);
516 
517 	spin_lock(&cp->rx_spare_lock);
518 	INIT_LIST_HEAD(&cp->rx_spare_list);
519 	cp->rx_spares_needed = RX_SPARE_COUNT;
520 	spin_unlock(&cp->rx_spare_lock);
521 }
522 
523 /* used on close. free all the spare buffers. */
524 static void cas_spare_free(struct cas *cp)
525 {
526 	struct list_head list, *elem, *tmp;
527 
528 	/* free spare buffers */
529 	INIT_LIST_HEAD(&list);
530 	spin_lock(&cp->rx_spare_lock);
531 	list_splice_init(&cp->rx_spare_list, &list);
532 	spin_unlock(&cp->rx_spare_lock);
533 	list_for_each_safe(elem, tmp, &list) {
534 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
535 	}
536 
537 	INIT_LIST_HEAD(&list);
538 #if 1
539 	/*
540 	 * Looks like Adrian had protected this with a different
541 	 * lock than used everywhere else to manipulate this list.
542 	 */
543 	spin_lock(&cp->rx_inuse_lock);
544 	list_splice_init(&cp->rx_inuse_list, &list);
545 	spin_unlock(&cp->rx_inuse_lock);
546 #else
547 	spin_lock(&cp->rx_spare_lock);
548 	list_splice_init(&cp->rx_inuse_list, &list);
549 	spin_unlock(&cp->rx_spare_lock);
550 #endif
551 	list_for_each_safe(elem, tmp, &list) {
552 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
553 	}
554 }
555 
556 /* replenish spares if needed */
557 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558 {
559 	struct list_head list, *elem, *tmp;
560 	int needed, i;
561 
562 	/* check inuse list. if we don't need any more free buffers,
563 	 * just free it
564 	 */
565 
566 	/* make a local copy of the list */
567 	INIT_LIST_HEAD(&list);
568 	spin_lock(&cp->rx_inuse_lock);
569 	list_splice_init(&cp->rx_inuse_list, &list);
570 	spin_unlock(&cp->rx_inuse_lock);
571 
572 	list_for_each_safe(elem, tmp, &list) {
573 		cas_page_t *page = list_entry(elem, cas_page_t, list);
574 
575 		/*
576 		 * With the lockless pagecache, cassini buffering scheme gets
577 		 * slightly less accurate: we might find that a page has an
578 		 * elevated reference count here, due to a speculative ref,
579 		 * and skip it as in-use. Ideally we would be able to reclaim
580 		 * it. However this would be such a rare case, it doesn't
581 		 * matter too much as we should pick it up the next time round.
582 		 *
583 		 * Importantly, if we find that the page has a refcount of 1
584 		 * here (our refcount), then we know it is definitely not inuse
585 		 * so we can reuse it.
586 		 */
587 		if (page_count(page->buffer) > 1)
588 			continue;
589 
590 		list_del(elem);
591 		spin_lock(&cp->rx_spare_lock);
592 		if (cp->rx_spares_needed > 0) {
593 			list_add(elem, &cp->rx_spare_list);
594 			cp->rx_spares_needed--;
595 			spin_unlock(&cp->rx_spare_lock);
596 		} else {
597 			spin_unlock(&cp->rx_spare_lock);
598 			cas_page_free(cp, page);
599 		}
600 	}
601 
602 	/* put any inuse buffers back on the list */
603 	if (!list_empty(&list)) {
604 		spin_lock(&cp->rx_inuse_lock);
605 		list_splice(&list, &cp->rx_inuse_list);
606 		spin_unlock(&cp->rx_inuse_lock);
607 	}
608 
609 	spin_lock(&cp->rx_spare_lock);
610 	needed = cp->rx_spares_needed;
611 	spin_unlock(&cp->rx_spare_lock);
612 	if (!needed)
613 		return;
614 
615 	/* we still need spares, so try to allocate some */
616 	INIT_LIST_HEAD(&list);
617 	i = 0;
618 	while (i < needed) {
619 		cas_page_t *spare = cas_page_alloc(cp, flags);
620 		if (!spare)
621 			break;
622 		list_add(&spare->list, &list);
623 		i++;
624 	}
625 
626 	spin_lock(&cp->rx_spare_lock);
627 	list_splice(&list, &cp->rx_spare_list);
628 	cp->rx_spares_needed -= i;
629 	spin_unlock(&cp->rx_spare_lock);
630 }
631 
632 /* pull a page from the list. */
633 static cas_page_t *cas_page_dequeue(struct cas *cp)
634 {
635 	struct list_head *entry;
636 	int recover;
637 
638 	spin_lock(&cp->rx_spare_lock);
639 	if (list_empty(&cp->rx_spare_list)) {
640 		/* try to do a quick recovery */
641 		spin_unlock(&cp->rx_spare_lock);
642 		cas_spare_recover(cp, GFP_ATOMIC);
643 		spin_lock(&cp->rx_spare_lock);
644 		if (list_empty(&cp->rx_spare_list)) {
645 			netif_err(cp, rx_err, cp->dev,
646 				  "no spare buffers available\n");
647 			spin_unlock(&cp->rx_spare_lock);
648 			return NULL;
649 		}
650 	}
651 
652 	entry = cp->rx_spare_list.next;
653 	list_del(entry);
654 	recover = ++cp->rx_spares_needed;
655 	spin_unlock(&cp->rx_spare_lock);
656 
657 	/* trigger the timer to do the recovery */
658 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659 #if 1
660 		atomic_inc(&cp->reset_task_pending);
661 		atomic_inc(&cp->reset_task_pending_spare);
662 		schedule_work(&cp->reset_task);
663 #else
664 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665 		schedule_work(&cp->reset_task);
666 #endif
667 	}
668 	return list_entry(entry, cas_page_t, list);
669 }
670 
671 
672 static void cas_mif_poll(struct cas *cp, const int enable)
673 {
674 	u32 cfg;
675 
676 	cfg  = readl(cp->regs + REG_MIF_CFG);
677 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678 
679 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
680 		cfg |= MIF_CFG_PHY_SELECT;
681 
682 	/* poll and interrupt on link status change. */
683 	if (enable) {
684 		cfg |= MIF_CFG_POLL_EN;
685 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687 	}
688 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689 	       cp->regs + REG_MIF_MASK);
690 	writel(cfg, cp->regs + REG_MIF_CFG);
691 }
692 
693 /* Must be invoked under cp->lock */
694 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
695 {
696 	u16 ctl;
697 #if 1
698 	int lcntl;
699 	int changed = 0;
700 	int oldstate = cp->lstate;
701 	int link_was_not_down = !(oldstate == link_down);
702 #endif
703 	/* Setup link parameters */
704 	if (!ep)
705 		goto start_aneg;
706 	lcntl = cp->link_cntl;
707 	if (ep->autoneg == AUTONEG_ENABLE)
708 		cp->link_cntl = BMCR_ANENABLE;
709 	else {
710 		u32 speed = ethtool_cmd_speed(ep);
711 		cp->link_cntl = 0;
712 		if (speed == SPEED_100)
713 			cp->link_cntl |= BMCR_SPEED100;
714 		else if (speed == SPEED_1000)
715 			cp->link_cntl |= CAS_BMCR_SPEED1000;
716 		if (ep->duplex == DUPLEX_FULL)
717 			cp->link_cntl |= BMCR_FULLDPLX;
718 	}
719 #if 1
720 	changed = (lcntl != cp->link_cntl);
721 #endif
722 start_aneg:
723 	if (cp->lstate == link_up) {
724 		netdev_info(cp->dev, "PCS link down\n");
725 	} else {
726 		if (changed) {
727 			netdev_info(cp->dev, "link configuration changed\n");
728 		}
729 	}
730 	cp->lstate = link_down;
731 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
732 	if (!cp->hw_running)
733 		return;
734 #if 1
735 	/*
736 	 * WTZ: If the old state was link_up, we turn off the carrier
737 	 * to replicate everything we do elsewhere on a link-down
738 	 * event when we were already in a link-up state..
739 	 */
740 	if (oldstate == link_up)
741 		netif_carrier_off(cp->dev);
742 	if (changed  && link_was_not_down) {
743 		/*
744 		 * WTZ: This branch will simply schedule a full reset after
745 		 * we explicitly changed link modes in an ioctl. See if this
746 		 * fixes the link-problems we were having for forced mode.
747 		 */
748 		atomic_inc(&cp->reset_task_pending);
749 		atomic_inc(&cp->reset_task_pending_all);
750 		schedule_work(&cp->reset_task);
751 		cp->timer_ticks = 0;
752 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
753 		return;
754 	}
755 #endif
756 	if (cp->phy_type & CAS_PHY_SERDES) {
757 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
758 
759 		if (cp->link_cntl & BMCR_ANENABLE) {
760 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
761 			cp->lstate = link_aneg;
762 		} else {
763 			if (cp->link_cntl & BMCR_FULLDPLX)
764 				val |= PCS_MII_CTRL_DUPLEX;
765 			val &= ~PCS_MII_AUTONEG_EN;
766 			cp->lstate = link_force_ok;
767 		}
768 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
769 		writel(val, cp->regs + REG_PCS_MII_CTRL);
770 
771 	} else {
772 		cas_mif_poll(cp, 0);
773 		ctl = cas_phy_read(cp, MII_BMCR);
774 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
775 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
776 		ctl |= cp->link_cntl;
777 		if (ctl & BMCR_ANENABLE) {
778 			ctl |= BMCR_ANRESTART;
779 			cp->lstate = link_aneg;
780 		} else {
781 			cp->lstate = link_force_ok;
782 		}
783 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
784 		cas_phy_write(cp, MII_BMCR, ctl);
785 		cas_mif_poll(cp, 1);
786 	}
787 
788 	cp->timer_ticks = 0;
789 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
790 }
791 
792 /* Must be invoked under cp->lock. */
793 static int cas_reset_mii_phy(struct cas *cp)
794 {
795 	int limit = STOP_TRIES_PHY;
796 	u16 val;
797 
798 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
799 	udelay(100);
800 	while (--limit) {
801 		val = cas_phy_read(cp, MII_BMCR);
802 		if ((val & BMCR_RESET) == 0)
803 			break;
804 		udelay(10);
805 	}
806 	return limit <= 0;
807 }
808 
809 static void cas_saturn_firmware_init(struct cas *cp)
810 {
811 	const struct firmware *fw;
812 	const char fw_name[] = "sun/cassini.bin";
813 	int err;
814 
815 	if (PHY_NS_DP83065 != cp->phy_id)
816 		return;
817 
818 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
819 	if (err) {
820 		pr_err("Failed to load firmware \"%s\"\n",
821 		       fw_name);
822 		return;
823 	}
824 	if (fw->size < 2) {
825 		pr_err("bogus length %zu in \"%s\"\n",
826 		       fw->size, fw_name);
827 		goto out;
828 	}
829 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
830 	cp->fw_size = fw->size - 2;
831 	cp->fw_data = vmalloc(cp->fw_size);
832 	if (!cp->fw_data)
833 		goto out;
834 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
835 out:
836 	release_firmware(fw);
837 }
838 
839 static void cas_saturn_firmware_load(struct cas *cp)
840 {
841 	int i;
842 
843 	if (!cp->fw_data)
844 		return;
845 
846 	cas_phy_powerdown(cp);
847 
848 	/* expanded memory access mode */
849 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
850 
851 	/* pointer configuration for new firmware */
852 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
853 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
854 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
855 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
856 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
857 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
858 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
859 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
860 
861 	/* download new firmware */
862 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
863 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
864 	for (i = 0; i < cp->fw_size; i++)
865 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
866 
867 	/* enable firmware */
868 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
869 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
870 }
871 
872 
873 /* phy initialization */
874 static void cas_phy_init(struct cas *cp)
875 {
876 	u16 val;
877 
878 	/* if we're in MII/GMII mode, set up phy */
879 	if (CAS_PHY_MII(cp->phy_type)) {
880 		writel(PCS_DATAPATH_MODE_MII,
881 		       cp->regs + REG_PCS_DATAPATH_MODE);
882 
883 		cas_mif_poll(cp, 0);
884 		cas_reset_mii_phy(cp); /* take out of isolate mode */
885 
886 		if (PHY_LUCENT_B0 == cp->phy_id) {
887 			/* workaround link up/down issue with lucent */
888 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
889 			cas_phy_write(cp, MII_BMCR, 0x00f1);
890 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
891 
892 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
893 			/* workarounds for broadcom phy */
894 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
895 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
896 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
897 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
898 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
899 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
900 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
901 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
903 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
904 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
905 
906 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
907 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
908 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
909 			if (val & 0x0080) {
910 				/* link workaround */
911 				cas_phy_write(cp, BROADCOM_MII_REG4,
912 					      val & ~0x0080);
913 			}
914 
915 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
916 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
917 			       SATURN_PCFG_FSI : 0x0,
918 			       cp->regs + REG_SATURN_PCFG);
919 
920 			/* load firmware to address 10Mbps auto-negotiation
921 			 * issue. NOTE: this will need to be changed if the
922 			 * default firmware gets fixed.
923 			 */
924 			if (PHY_NS_DP83065 == cp->phy_id) {
925 				cas_saturn_firmware_load(cp);
926 			}
927 			cas_phy_powerup(cp);
928 		}
929 
930 		/* advertise capabilities */
931 		val = cas_phy_read(cp, MII_BMCR);
932 		val &= ~BMCR_ANENABLE;
933 		cas_phy_write(cp, MII_BMCR, val);
934 		udelay(10);
935 
936 		cas_phy_write(cp, MII_ADVERTISE,
937 			      cas_phy_read(cp, MII_ADVERTISE) |
938 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
939 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
940 			       CAS_ADVERTISE_PAUSE |
941 			       CAS_ADVERTISE_ASYM_PAUSE));
942 
943 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
944 			/* make sure that we don't advertise half
945 			 * duplex to avoid a chip issue
946 			 */
947 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
948 			val &= ~CAS_ADVERTISE_1000HALF;
949 			val |= CAS_ADVERTISE_1000FULL;
950 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
951 		}
952 
953 	} else {
954 		/* reset pcs for serdes */
955 		u32 val;
956 		int limit;
957 
958 		writel(PCS_DATAPATH_MODE_SERDES,
959 		       cp->regs + REG_PCS_DATAPATH_MODE);
960 
961 		/* enable serdes pins on saturn */
962 		if (cp->cas_flags & CAS_FLAG_SATURN)
963 			writel(0, cp->regs + REG_SATURN_PCFG);
964 
965 		/* Reset PCS unit. */
966 		val = readl(cp->regs + REG_PCS_MII_CTRL);
967 		val |= PCS_MII_RESET;
968 		writel(val, cp->regs + REG_PCS_MII_CTRL);
969 
970 		limit = STOP_TRIES;
971 		while (--limit > 0) {
972 			udelay(10);
973 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
974 			     PCS_MII_RESET) == 0)
975 				break;
976 		}
977 		if (limit <= 0)
978 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
979 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
980 
981 		/* Make sure PCS is disabled while changing advertisement
982 		 * configuration.
983 		 */
984 		writel(0x0, cp->regs + REG_PCS_CFG);
985 
986 		/* Advertise all capabilities except half-duplex. */
987 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
988 		val &= ~PCS_MII_ADVERT_HD;
989 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
990 			PCS_MII_ADVERT_ASYM_PAUSE);
991 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
992 
993 		/* enable PCS */
994 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
995 
996 		/* pcs workaround: enable sync detect */
997 		writel(PCS_SERDES_CTRL_SYNCD_EN,
998 		       cp->regs + REG_PCS_SERDES_CTRL);
999 	}
1000 }
1001 
1002 
1003 static int cas_pcs_link_check(struct cas *cp)
1004 {
1005 	u32 stat, state_machine;
1006 	int retval = 0;
1007 
1008 	/* The link status bit latches on zero, so you must
1009 	 * read it twice in such a case to see a transition
1010 	 * to the link being up.
1011 	 */
1012 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1013 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1014 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015 
1016 	/* The remote-fault indication is only valid
1017 	 * when autoneg has completed.
1018 	 */
1019 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1020 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1021 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1022 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1023 
1024 	/* work around link detection issue by querying the PCS state
1025 	 * machine directly.
1026 	 */
1027 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1028 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1029 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1030 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1031 		stat |= PCS_MII_STATUS_LINK_STATUS;
1032 	}
1033 
1034 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1035 		if (cp->lstate != link_up) {
1036 			if (cp->opened) {
1037 				cp->lstate = link_up;
1038 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1039 
1040 				cas_set_link_modes(cp);
1041 				netif_carrier_on(cp->dev);
1042 			}
1043 		}
1044 	} else if (cp->lstate == link_up) {
1045 		cp->lstate = link_down;
1046 		if (link_transition_timeout != 0 &&
1047 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1048 		    !cp->link_transition_jiffies_valid) {
1049 			/*
1050 			 * force a reset, as a workaround for the
1051 			 * link-failure problem. May want to move this to a
1052 			 * point a bit earlier in the sequence. If we had
1053 			 * generated a reset a short time ago, we'll wait for
1054 			 * the link timer to check the status until a
1055 			 * timer expires (link_transistion_jiffies_valid is
1056 			 * true when the timer is running.)  Instead of using
1057 			 * a system timer, we just do a check whenever the
1058 			 * link timer is running - this clears the flag after
1059 			 * a suitable delay.
1060 			 */
1061 			retval = 1;
1062 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1063 			cp->link_transition_jiffies = jiffies;
1064 			cp->link_transition_jiffies_valid = 1;
1065 		} else {
1066 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1067 		}
1068 		netif_carrier_off(cp->dev);
1069 		if (cp->opened)
1070 			netif_info(cp, link, cp->dev, "PCS link down\n");
1071 
1072 		/* Cassini only: if you force a mode, there can be
1073 		 * sync problems on link down. to fix that, the following
1074 		 * things need to be checked:
1075 		 * 1) read serialink state register
1076 		 * 2) read pcs status register to verify link down.
1077 		 * 3) if link down and serial link == 0x03, then you need
1078 		 *    to global reset the chip.
1079 		 */
1080 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081 			/* should check to see if we're in a forced mode */
1082 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083 			if (stat == 0x03)
1084 				return 1;
1085 		}
1086 	} else if (cp->lstate == link_down) {
1087 		if (link_transition_timeout != 0 &&
1088 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089 		    !cp->link_transition_jiffies_valid) {
1090 			/* force a reset, as a workaround for the
1091 			 * link-failure problem.  May want to move
1092 			 * this to a point a bit earlier in the
1093 			 * sequence.
1094 			 */
1095 			retval = 1;
1096 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097 			cp->link_transition_jiffies = jiffies;
1098 			cp->link_transition_jiffies_valid = 1;
1099 		} else {
1100 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101 		}
1102 	}
1103 
1104 	return retval;
1105 }
1106 
1107 static int cas_pcs_interrupt(struct net_device *dev,
1108 			     struct cas *cp, u32 status)
1109 {
1110 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111 
1112 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113 		return 0;
1114 	return cas_pcs_link_check(cp);
1115 }
1116 
1117 static int cas_txmac_interrupt(struct net_device *dev,
1118 			       struct cas *cp, u32 status)
1119 {
1120 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121 
1122 	if (!txmac_stat)
1123 		return 0;
1124 
1125 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1126 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1127 
1128 	/* Defer timer expiration is quite normal,
1129 	 * don't even log the event.
1130 	 */
1131 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133 		return 0;
1134 
1135 	spin_lock(&cp->stat_lock[0]);
1136 	if (txmac_stat & MAC_TX_UNDERRUN) {
1137 		netdev_err(dev, "TX MAC xmit underrun\n");
1138 		cp->net_stats[0].tx_fifo_errors++;
1139 	}
1140 
1141 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1142 		netdev_err(dev, "TX MAC max packet size error\n");
1143 		cp->net_stats[0].tx_errors++;
1144 	}
1145 
1146 	/* The rest are all cases of one of the 16-bit TX
1147 	 * counters expiring.
1148 	 */
1149 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1150 		cp->net_stats[0].collisions += 0x10000;
1151 
1152 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1153 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1154 		cp->net_stats[0].collisions += 0x10000;
1155 	}
1156 
1157 	if (txmac_stat & MAC_TX_COLL_LATE) {
1158 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1159 		cp->net_stats[0].collisions += 0x10000;
1160 	}
1161 	spin_unlock(&cp->stat_lock[0]);
1162 
1163 	/* We do not keep track of MAC_TX_COLL_FIRST and
1164 	 * MAC_TX_PEAK_ATTEMPTS events.
1165 	 */
1166 	return 0;
1167 }
1168 
1169 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1170 {
1171 	cas_hp_inst_t *inst;
1172 	u32 val;
1173 	int i;
1174 
1175 	i = 0;
1176 	while ((inst = firmware) && inst->note) {
1177 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1178 
1179 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1180 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1181 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1182 
1183 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1184 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1185 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1186 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1187 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1188 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1190 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1191 
1192 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1193 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1194 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1195 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1196 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1197 		++firmware;
1198 		++i;
1199 	}
1200 }
1201 
1202 static void cas_init_rx_dma(struct cas *cp)
1203 {
1204 	u64 desc_dma = cp->block_dvma;
1205 	u32 val;
1206 	int i, size;
1207 
1208 	/* rx free descriptors */
1209 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1210 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1211 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1212 	if ((N_RX_DESC_RINGS > 1) &&
1213 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1214 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1215 	writel(val, cp->regs + REG_RX_CFG);
1216 
1217 	val = (unsigned long) cp->init_rxds[0] -
1218 		(unsigned long) cp->init_block;
1219 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1220 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1221 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1222 
1223 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1224 		/* rx desc 2 is for IPSEC packets. however,
1225 		 * we don't it that for that purpose.
1226 		 */
1227 		val = (unsigned long) cp->init_rxds[1] -
1228 			(unsigned long) cp->init_block;
1229 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1230 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1231 		       REG_PLUS_RX_DB1_LOW);
1232 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1233 		       REG_PLUS_RX_KICK1);
1234 	}
1235 
1236 	/* rx completion registers */
1237 	val = (unsigned long) cp->init_rxcs[0] -
1238 		(unsigned long) cp->init_block;
1239 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1240 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1241 
1242 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1243 		/* rx comp 2-4 */
1244 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1245 			val = (unsigned long) cp->init_rxcs[i] -
1246 				(unsigned long) cp->init_block;
1247 			writel((desc_dma + val) >> 32, cp->regs +
1248 			       REG_PLUS_RX_CBN_HI(i));
1249 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1250 			       REG_PLUS_RX_CBN_LOW(i));
1251 		}
1252 	}
1253 
1254 	/* read selective clear regs to prevent spurious interrupts
1255 	 * on reset because complete == kick.
1256 	 * selective clear set up to prevent interrupts on resets
1257 	 */
1258 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1259 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1260 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1261 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1262 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1263 
1264 		/* 2 is different from 3 and 4 */
1265 		if (N_RX_COMP_RINGS > 1)
1266 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1267 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1268 
1269 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1270 			writel(INTR_RX_DONE_ALT,
1271 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1272 	}
1273 
1274 	/* set up pause thresholds */
1275 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1276 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1277 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1278 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1279 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1280 
1281 	/* zero out dma reassembly buffers */
1282 	for (i = 0; i < 64; i++) {
1283 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1284 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1285 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1286 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1287 	}
1288 
1289 	/* make sure address register is 0 for normal operation */
1290 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1291 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1292 
1293 	/* interrupt mitigation */
1294 #ifdef USE_RX_BLANK
1295 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1296 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1297 	writel(val, cp->regs + REG_RX_BLANK);
1298 #else
1299 	writel(0x0, cp->regs + REG_RX_BLANK);
1300 #endif
1301 
1302 	/* interrupt generation as a function of low water marks for
1303 	 * free desc and completion entries. these are used to trigger
1304 	 * housekeeping for rx descs. we don't use the free interrupt
1305 	 * as it's not very useful
1306 	 */
1307 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1308 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1309 	writel(val, cp->regs + REG_RX_AE_THRESH);
1310 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1311 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1312 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1313 	}
1314 
1315 	/* Random early detect registers. useful for congestion avoidance.
1316 	 * this should be tunable.
1317 	 */
1318 	writel(0x0, cp->regs + REG_RX_RED);
1319 
1320 	/* receive page sizes. default == 2K (0x800) */
1321 	val = 0;
1322 	if (cp->page_size == 0x1000)
1323 		val = 0x1;
1324 	else if (cp->page_size == 0x2000)
1325 		val = 0x2;
1326 	else if (cp->page_size == 0x4000)
1327 		val = 0x3;
1328 
1329 	/* round mtu + offset. constrain to page size. */
1330 	size = cp->dev->mtu + 64;
1331 	if (size > cp->page_size)
1332 		size = cp->page_size;
1333 
1334 	if (size <= 0x400)
1335 		i = 0x0;
1336 	else if (size <= 0x800)
1337 		i = 0x1;
1338 	else if (size <= 0x1000)
1339 		i = 0x2;
1340 	else
1341 		i = 0x3;
1342 
1343 	cp->mtu_stride = 1 << (i + 10);
1344 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1345 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1346 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1347 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1348 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1349 
1350 	/* enable the header parser if desired */
1351 	if (CAS_HP_FIRMWARE == cas_prog_null)
1352 		return;
1353 
1354 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1355 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1356 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1357 	writel(val, cp->regs + REG_HP_CFG);
1358 }
1359 
1360 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1361 {
1362 	memset(rxc, 0, sizeof(*rxc));
1363 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1364 }
1365 
1366 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1367  * flipping is protected by the fact that the chip will not
1368  * hand back the same page index while it's being processed.
1369  */
1370 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1371 {
1372 	cas_page_t *page = cp->rx_pages[1][index];
1373 	cas_page_t *new;
1374 
1375 	if (page_count(page->buffer) == 1)
1376 		return page;
1377 
1378 	new = cas_page_dequeue(cp);
1379 	if (new) {
1380 		spin_lock(&cp->rx_inuse_lock);
1381 		list_add(&page->list, &cp->rx_inuse_list);
1382 		spin_unlock(&cp->rx_inuse_lock);
1383 	}
1384 	return new;
1385 }
1386 
1387 /* this needs to be changed if we actually use the ENC RX DESC ring */
1388 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1389 				 const int index)
1390 {
1391 	cas_page_t **page0 = cp->rx_pages[0];
1392 	cas_page_t **page1 = cp->rx_pages[1];
1393 
1394 	/* swap if buffer is in use */
1395 	if (page_count(page0[index]->buffer) > 1) {
1396 		cas_page_t *new = cas_page_spare(cp, index);
1397 		if (new) {
1398 			page1[index] = page0[index];
1399 			page0[index] = new;
1400 		}
1401 	}
1402 	RX_USED_SET(page0[index], 0);
1403 	return page0[index];
1404 }
1405 
1406 static void cas_clean_rxds(struct cas *cp)
1407 {
1408 	/* only clean ring 0 as ring 1 is used for spare buffers */
1409         struct cas_rx_desc *rxd = cp->init_rxds[0];
1410 	int i, size;
1411 
1412 	/* release all rx flows */
1413 	for (i = 0; i < N_RX_FLOWS; i++) {
1414 		struct sk_buff *skb;
1415 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1416 			cas_skb_release(skb);
1417 		}
1418 	}
1419 
1420 	/* initialize descriptors */
1421 	size = RX_DESC_RINGN_SIZE(0);
1422 	for (i = 0; i < size; i++) {
1423 		cas_page_t *page = cas_page_swap(cp, 0, i);
1424 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1425 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1426 					    CAS_BASE(RX_INDEX_RING, 0));
1427 	}
1428 
1429 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1430 	cp->rx_last[0] = 0;
1431 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1432 }
1433 
1434 static void cas_clean_rxcs(struct cas *cp)
1435 {
1436 	int i, j;
1437 
1438 	/* take ownership of rx comp descriptors */
1439 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1440 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1441 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1442 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1443 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1444 			cas_rxc_init(rxc + j);
1445 		}
1446 	}
1447 }
1448 
1449 #if 0
1450 /* When we get a RX fifo overflow, the RX unit is probably hung
1451  * so we do the following.
1452  *
1453  * If any part of the reset goes wrong, we return 1 and that causes the
1454  * whole chip to be reset.
1455  */
1456 static int cas_rxmac_reset(struct cas *cp)
1457 {
1458 	struct net_device *dev = cp->dev;
1459 	int limit;
1460 	u32 val;
1461 
1462 	/* First, reset MAC RX. */
1463 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1464 	for (limit = 0; limit < STOP_TRIES; limit++) {
1465 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1466 			break;
1467 		udelay(10);
1468 	}
1469 	if (limit == STOP_TRIES) {
1470 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1471 		return 1;
1472 	}
1473 
1474 	/* Second, disable RX DMA. */
1475 	writel(0, cp->regs + REG_RX_CFG);
1476 	for (limit = 0; limit < STOP_TRIES; limit++) {
1477 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1478 			break;
1479 		udelay(10);
1480 	}
1481 	if (limit == STOP_TRIES) {
1482 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1483 		return 1;
1484 	}
1485 
1486 	mdelay(5);
1487 
1488 	/* Execute RX reset command. */
1489 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1490 	for (limit = 0; limit < STOP_TRIES; limit++) {
1491 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1492 			break;
1493 		udelay(10);
1494 	}
1495 	if (limit == STOP_TRIES) {
1496 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1497 		return 1;
1498 	}
1499 
1500 	/* reset driver rx state */
1501 	cas_clean_rxds(cp);
1502 	cas_clean_rxcs(cp);
1503 
1504 	/* Now, reprogram the rest of RX unit. */
1505 	cas_init_rx_dma(cp);
1506 
1507 	/* re-enable */
1508 	val = readl(cp->regs + REG_RX_CFG);
1509 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1510 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1511 	val = readl(cp->regs + REG_MAC_RX_CFG);
1512 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1513 	return 0;
1514 }
1515 #endif
1516 
1517 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1518 			       u32 status)
1519 {
1520 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1521 
1522 	if (!stat)
1523 		return 0;
1524 
1525 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1526 
1527 	/* these are all rollovers */
1528 	spin_lock(&cp->stat_lock[0]);
1529 	if (stat & MAC_RX_ALIGN_ERR)
1530 		cp->net_stats[0].rx_frame_errors += 0x10000;
1531 
1532 	if (stat & MAC_RX_CRC_ERR)
1533 		cp->net_stats[0].rx_crc_errors += 0x10000;
1534 
1535 	if (stat & MAC_RX_LEN_ERR)
1536 		cp->net_stats[0].rx_length_errors += 0x10000;
1537 
1538 	if (stat & MAC_RX_OVERFLOW) {
1539 		cp->net_stats[0].rx_over_errors++;
1540 		cp->net_stats[0].rx_fifo_errors++;
1541 	}
1542 
1543 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1544 	 * events.
1545 	 */
1546 	spin_unlock(&cp->stat_lock[0]);
1547 	return 0;
1548 }
1549 
1550 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1551 			     u32 status)
1552 {
1553 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1554 
1555 	if (!stat)
1556 		return 0;
1557 
1558 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1559 		     "mac interrupt, stat: 0x%x\n", stat);
1560 
1561 	/* This interrupt is just for pause frame and pause
1562 	 * tracking.  It is useful for diagnostics and debug
1563 	 * but probably by default we will mask these events.
1564 	 */
1565 	if (stat & MAC_CTRL_PAUSE_STATE)
1566 		cp->pause_entered++;
1567 
1568 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1569 		cp->pause_last_time_recvd = (stat >> 16);
1570 
1571 	return 0;
1572 }
1573 
1574 
1575 /* Must be invoked under cp->lock. */
1576 static inline int cas_mdio_link_not_up(struct cas *cp)
1577 {
1578 	u16 val;
1579 
1580 	switch (cp->lstate) {
1581 	case link_force_ret:
1582 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1583 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1584 		cp->timer_ticks = 5;
1585 		cp->lstate = link_force_ok;
1586 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587 		break;
1588 
1589 	case link_aneg:
1590 		val = cas_phy_read(cp, MII_BMCR);
1591 
1592 		/* Try forced modes. we try things in the following order:
1593 		 * 1000 full -> 100 full/half -> 10 half
1594 		 */
1595 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1596 		val |= BMCR_FULLDPLX;
1597 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1598 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1599 		cas_phy_write(cp, MII_BMCR, val);
1600 		cp->timer_ticks = 5;
1601 		cp->lstate = link_force_try;
1602 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1603 		break;
1604 
1605 	case link_force_try:
1606 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1607 		val = cas_phy_read(cp, MII_BMCR);
1608 		cp->timer_ticks = 5;
1609 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1610 			val &= ~CAS_BMCR_SPEED1000;
1611 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1612 			cas_phy_write(cp, MII_BMCR, val);
1613 			break;
1614 		}
1615 
1616 		if (val & BMCR_SPEED100) {
1617 			if (val & BMCR_FULLDPLX) /* fd failed */
1618 				val &= ~BMCR_FULLDPLX;
1619 			else { /* 100Mbps failed */
1620 				val &= ~BMCR_SPEED100;
1621 			}
1622 			cas_phy_write(cp, MII_BMCR, val);
1623 			break;
1624 		}
1625 	default:
1626 		break;
1627 	}
1628 	return 0;
1629 }
1630 
1631 
1632 /* must be invoked with cp->lock held */
1633 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1634 {
1635 	int restart;
1636 
1637 	if (bmsr & BMSR_LSTATUS) {
1638 		/* Ok, here we got a link. If we had it due to a forced
1639 		 * fallback, and we were configured for autoneg, we
1640 		 * retry a short autoneg pass. If you know your hub is
1641 		 * broken, use ethtool ;)
1642 		 */
1643 		if ((cp->lstate == link_force_try) &&
1644 		    (cp->link_cntl & BMCR_ANENABLE)) {
1645 			cp->lstate = link_force_ret;
1646 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1647 			cas_mif_poll(cp, 0);
1648 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1649 			cp->timer_ticks = 5;
1650 			if (cp->opened)
1651 				netif_info(cp, link, cp->dev,
1652 					   "Got link after fallback, retrying autoneg once...\n");
1653 			cas_phy_write(cp, MII_BMCR,
1654 				      cp->link_fcntl | BMCR_ANENABLE |
1655 				      BMCR_ANRESTART);
1656 			cas_mif_poll(cp, 1);
1657 
1658 		} else if (cp->lstate != link_up) {
1659 			cp->lstate = link_up;
1660 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1661 
1662 			if (cp->opened) {
1663 				cas_set_link_modes(cp);
1664 				netif_carrier_on(cp->dev);
1665 			}
1666 		}
1667 		return 0;
1668 	}
1669 
1670 	/* link not up. if the link was previously up, we restart the
1671 	 * whole process
1672 	 */
1673 	restart = 0;
1674 	if (cp->lstate == link_up) {
1675 		cp->lstate = link_down;
1676 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1677 
1678 		netif_carrier_off(cp->dev);
1679 		if (cp->opened)
1680 			netif_info(cp, link, cp->dev, "Link down\n");
1681 		restart = 1;
1682 
1683 	} else if (++cp->timer_ticks > 10)
1684 		cas_mdio_link_not_up(cp);
1685 
1686 	return restart;
1687 }
1688 
1689 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1690 			     u32 status)
1691 {
1692 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1693 	u16 bmsr;
1694 
1695 	/* check for a link change */
1696 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1697 		return 0;
1698 
1699 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1700 	return cas_mii_link_check(cp, bmsr);
1701 }
1702 
1703 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1704 			     u32 status)
1705 {
1706 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1707 
1708 	if (!stat)
1709 		return 0;
1710 
1711 	netdev_err(dev, "PCI error [%04x:%04x]",
1712 		   stat, readl(cp->regs + REG_BIM_DIAG));
1713 
1714 	/* cassini+ has this reserved */
1715 	if ((stat & PCI_ERR_BADACK) &&
1716 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1717 		pr_cont(" <No ACK64# during ABS64 cycle>");
1718 
1719 	if (stat & PCI_ERR_DTRTO)
1720 		pr_cont(" <Delayed transaction timeout>");
1721 	if (stat & PCI_ERR_OTHER)
1722 		pr_cont(" <other>");
1723 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1724 		pr_cont(" <BIM DMA 0 write req>");
1725 	if (stat & PCI_ERR_BIM_DMA_READ)
1726 		pr_cont(" <BIM DMA 0 read req>");
1727 	pr_cont("\n");
1728 
1729 	if (stat & PCI_ERR_OTHER) {
1730 		u16 cfg;
1731 
1732 		/* Interrogate PCI config space for the
1733 		 * true cause.
1734 		 */
1735 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1736 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1737 		if (cfg & PCI_STATUS_PARITY)
1738 			netdev_err(dev, "PCI parity error detected\n");
1739 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1740 			netdev_err(dev, "PCI target abort\n");
1741 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1742 			netdev_err(dev, "PCI master acks target abort\n");
1743 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1744 			netdev_err(dev, "PCI master abort\n");
1745 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1746 			netdev_err(dev, "PCI system error SERR#\n");
1747 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1748 			netdev_err(dev, "PCI parity error\n");
1749 
1750 		/* Write the error bits back to clear them. */
1751 		cfg &= (PCI_STATUS_PARITY |
1752 			PCI_STATUS_SIG_TARGET_ABORT |
1753 			PCI_STATUS_REC_TARGET_ABORT |
1754 			PCI_STATUS_REC_MASTER_ABORT |
1755 			PCI_STATUS_SIG_SYSTEM_ERROR |
1756 			PCI_STATUS_DETECTED_PARITY);
1757 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1758 	}
1759 
1760 	/* For all PCI errors, we should reset the chip. */
1761 	return 1;
1762 }
1763 
1764 /* All non-normal interrupt conditions get serviced here.
1765  * Returns non-zero if we should just exit the interrupt
1766  * handler right now (ie. if we reset the card which invalidates
1767  * all of the other original irq status bits).
1768  */
1769 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1770 			    u32 status)
1771 {
1772 	if (status & INTR_RX_TAG_ERROR) {
1773 		/* corrupt RX tag framing */
1774 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1775 			     "corrupt rx tag framing\n");
1776 		spin_lock(&cp->stat_lock[0]);
1777 		cp->net_stats[0].rx_errors++;
1778 		spin_unlock(&cp->stat_lock[0]);
1779 		goto do_reset;
1780 	}
1781 
1782 	if (status & INTR_RX_LEN_MISMATCH) {
1783 		/* length mismatch. */
1784 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1785 			     "length mismatch for rx frame\n");
1786 		spin_lock(&cp->stat_lock[0]);
1787 		cp->net_stats[0].rx_errors++;
1788 		spin_unlock(&cp->stat_lock[0]);
1789 		goto do_reset;
1790 	}
1791 
1792 	if (status & INTR_PCS_STATUS) {
1793 		if (cas_pcs_interrupt(dev, cp, status))
1794 			goto do_reset;
1795 	}
1796 
1797 	if (status & INTR_TX_MAC_STATUS) {
1798 		if (cas_txmac_interrupt(dev, cp, status))
1799 			goto do_reset;
1800 	}
1801 
1802 	if (status & INTR_RX_MAC_STATUS) {
1803 		if (cas_rxmac_interrupt(dev, cp, status))
1804 			goto do_reset;
1805 	}
1806 
1807 	if (status & INTR_MAC_CTRL_STATUS) {
1808 		if (cas_mac_interrupt(dev, cp, status))
1809 			goto do_reset;
1810 	}
1811 
1812 	if (status & INTR_MIF_STATUS) {
1813 		if (cas_mif_interrupt(dev, cp, status))
1814 			goto do_reset;
1815 	}
1816 
1817 	if (status & INTR_PCI_ERROR_STATUS) {
1818 		if (cas_pci_interrupt(dev, cp, status))
1819 			goto do_reset;
1820 	}
1821 	return 0;
1822 
1823 do_reset:
1824 #if 1
1825 	atomic_inc(&cp->reset_task_pending);
1826 	atomic_inc(&cp->reset_task_pending_all);
1827 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1828 	schedule_work(&cp->reset_task);
1829 #else
1830 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1831 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1832 	schedule_work(&cp->reset_task);
1833 #endif
1834 	return 1;
1835 }
1836 
1837 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1838  *       determining whether to do a netif_stop/wakeup
1839  */
1840 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1841 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1842 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1843 				  const int len)
1844 {
1845 	unsigned long off = addr + len;
1846 
1847 	if (CAS_TABORT(cp) == 1)
1848 		return 0;
1849 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1850 		return 0;
1851 	return TX_TARGET_ABORT_LEN;
1852 }
1853 
1854 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1855 {
1856 	struct cas_tx_desc *txds;
1857 	struct sk_buff **skbs;
1858 	struct net_device *dev = cp->dev;
1859 	int entry, count;
1860 
1861 	spin_lock(&cp->tx_lock[ring]);
1862 	txds = cp->init_txds[ring];
1863 	skbs = cp->tx_skbs[ring];
1864 	entry = cp->tx_old[ring];
1865 
1866 	count = TX_BUFF_COUNT(ring, entry, limit);
1867 	while (entry != limit) {
1868 		struct sk_buff *skb = skbs[entry];
1869 		dma_addr_t daddr;
1870 		u32 dlen;
1871 		int frag;
1872 
1873 		if (!skb) {
1874 			/* this should never occur */
1875 			entry = TX_DESC_NEXT(ring, entry);
1876 			continue;
1877 		}
1878 
1879 		/* however, we might get only a partial skb release. */
1880 		count -= skb_shinfo(skb)->nr_frags +
1881 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1882 		if (count < 0)
1883 			break;
1884 
1885 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1886 			     "tx[%d] done, slot %d\n", ring, entry);
1887 
1888 		skbs[entry] = NULL;
1889 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1890 
1891 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1892 			struct cas_tx_desc *txd = txds + entry;
1893 
1894 			daddr = le64_to_cpu(txd->buffer);
1895 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1896 				       le64_to_cpu(txd->control));
1897 			pci_unmap_page(cp->pdev, daddr, dlen,
1898 				       PCI_DMA_TODEVICE);
1899 			entry = TX_DESC_NEXT(ring, entry);
1900 
1901 			/* tiny buffer may follow */
1902 			if (cp->tx_tiny_use[ring][entry].used) {
1903 				cp->tx_tiny_use[ring][entry].used = 0;
1904 				entry = TX_DESC_NEXT(ring, entry);
1905 			}
1906 		}
1907 
1908 		spin_lock(&cp->stat_lock[ring]);
1909 		cp->net_stats[ring].tx_packets++;
1910 		cp->net_stats[ring].tx_bytes += skb->len;
1911 		spin_unlock(&cp->stat_lock[ring]);
1912 		dev_kfree_skb_irq(skb);
1913 	}
1914 	cp->tx_old[ring] = entry;
1915 
1916 	/* this is wrong for multiple tx rings. the net device needs
1917 	 * multiple queues for this to do the right thing.  we wait
1918 	 * for 2*packets to be available when using tiny buffers
1919 	 */
1920 	if (netif_queue_stopped(dev) &&
1921 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1922 		netif_wake_queue(dev);
1923 	spin_unlock(&cp->tx_lock[ring]);
1924 }
1925 
1926 static void cas_tx(struct net_device *dev, struct cas *cp,
1927 		   u32 status)
1928 {
1929         int limit, ring;
1930 #ifdef USE_TX_COMPWB
1931 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1932 #endif
1933 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1934 		     "tx interrupt, status: 0x%x, %llx\n",
1935 		     status, (unsigned long long)compwb);
1936 	/* process all the rings */
1937 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1938 #ifdef USE_TX_COMPWB
1939 		/* use the completion writeback registers */
1940 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1941 			CAS_VAL(TX_COMPWB_LSB, compwb);
1942 		compwb = TX_COMPWB_NEXT(compwb);
1943 #else
1944 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1945 #endif
1946 		if (cp->tx_old[ring] != limit)
1947 			cas_tx_ringN(cp, ring, limit);
1948 	}
1949 }
1950 
1951 
1952 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1953 			      int entry, const u64 *words,
1954 			      struct sk_buff **skbref)
1955 {
1956 	int dlen, hlen, len, i, alloclen;
1957 	int off, swivel = RX_SWIVEL_OFF_VAL;
1958 	struct cas_page *page;
1959 	struct sk_buff *skb;
1960 	void *addr, *crcaddr;
1961 	__sum16 csum;
1962 	char *p;
1963 
1964 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1965 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1966 	len  = hlen + dlen;
1967 
1968 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1969 		alloclen = len;
1970 	else
1971 		alloclen = max(hlen, RX_COPY_MIN);
1972 
1973 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1974 	if (skb == NULL)
1975 		return -1;
1976 
1977 	*skbref = skb;
1978 	skb_reserve(skb, swivel);
1979 
1980 	p = skb->data;
1981 	addr = crcaddr = NULL;
1982 	if (hlen) { /* always copy header pages */
1983 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1984 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1985 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1986 			swivel;
1987 
1988 		i = hlen;
1989 		if (!dlen) /* attach FCS */
1990 			i += cp->crc_size;
1991 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1992 				    PCI_DMA_FROMDEVICE);
1993 		addr = cas_page_map(page->buffer);
1994 		memcpy(p, addr + off, i);
1995 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1996 				    PCI_DMA_FROMDEVICE);
1997 		cas_page_unmap(addr);
1998 		RX_USED_ADD(page, 0x100);
1999 		p += hlen;
2000 		swivel = 0;
2001 	}
2002 
2003 
2004 	if (alloclen < (hlen + dlen)) {
2005 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2006 
2007 		/* normal or jumbo packets. we use frags */
2008 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2009 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2010 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2011 
2012 		hlen = min(cp->page_size - off, dlen);
2013 		if (hlen < 0) {
2014 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2015 				     "rx page overflow: %d\n", hlen);
2016 			dev_kfree_skb_irq(skb);
2017 			return -1;
2018 		}
2019 		i = hlen;
2020 		if (i == dlen)  /* attach FCS */
2021 			i += cp->crc_size;
2022 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2023 				    PCI_DMA_FROMDEVICE);
2024 
2025 		/* make sure we always copy a header */
2026 		swivel = 0;
2027 		if (p == (char *) skb->data) { /* not split */
2028 			addr = cas_page_map(page->buffer);
2029 			memcpy(p, addr + off, RX_COPY_MIN);
2030 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2031 					PCI_DMA_FROMDEVICE);
2032 			cas_page_unmap(addr);
2033 			off += RX_COPY_MIN;
2034 			swivel = RX_COPY_MIN;
2035 			RX_USED_ADD(page, cp->mtu_stride);
2036 		} else {
2037 			RX_USED_ADD(page, hlen);
2038 		}
2039 		skb_put(skb, alloclen);
2040 
2041 		skb_shinfo(skb)->nr_frags++;
2042 		skb->data_len += hlen - swivel;
2043 		skb->truesize += hlen - swivel;
2044 		skb->len      += hlen - swivel;
2045 
2046 		__skb_frag_set_page(frag, page->buffer);
2047 		__skb_frag_ref(frag);
2048 		frag->page_offset = off;
2049 		skb_frag_size_set(frag, hlen - swivel);
2050 
2051 		/* any more data? */
2052 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2053 			hlen = dlen;
2054 			off = 0;
2055 
2056 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2057 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2058 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2059 					    hlen + cp->crc_size,
2060 					    PCI_DMA_FROMDEVICE);
2061 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2062 					    hlen + cp->crc_size,
2063 					    PCI_DMA_FROMDEVICE);
2064 
2065 			skb_shinfo(skb)->nr_frags++;
2066 			skb->data_len += hlen;
2067 			skb->len      += hlen;
2068 			frag++;
2069 
2070 			__skb_frag_set_page(frag, page->buffer);
2071 			__skb_frag_ref(frag);
2072 			frag->page_offset = 0;
2073 			skb_frag_size_set(frag, hlen);
2074 			RX_USED_ADD(page, hlen + cp->crc_size);
2075 		}
2076 
2077 		if (cp->crc_size) {
2078 			addr = cas_page_map(page->buffer);
2079 			crcaddr  = addr + off + hlen;
2080 		}
2081 
2082 	} else {
2083 		/* copying packet */
2084 		if (!dlen)
2085 			goto end_copy_pkt;
2086 
2087 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2088 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2089 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2090 		hlen = min(cp->page_size - off, dlen);
2091 		if (hlen < 0) {
2092 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2093 				     "rx page overflow: %d\n", hlen);
2094 			dev_kfree_skb_irq(skb);
2095 			return -1;
2096 		}
2097 		i = hlen;
2098 		if (i == dlen) /* attach FCS */
2099 			i += cp->crc_size;
2100 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2101 				    PCI_DMA_FROMDEVICE);
2102 		addr = cas_page_map(page->buffer);
2103 		memcpy(p, addr + off, i);
2104 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2105 				    PCI_DMA_FROMDEVICE);
2106 		cas_page_unmap(addr);
2107 		if (p == (char *) skb->data) /* not split */
2108 			RX_USED_ADD(page, cp->mtu_stride);
2109 		else
2110 			RX_USED_ADD(page, i);
2111 
2112 		/* any more data? */
2113 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2114 			p += hlen;
2115 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2116 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2117 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2118 					    dlen + cp->crc_size,
2119 					    PCI_DMA_FROMDEVICE);
2120 			addr = cas_page_map(page->buffer);
2121 			memcpy(p, addr, dlen + cp->crc_size);
2122 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2123 					    dlen + cp->crc_size,
2124 					    PCI_DMA_FROMDEVICE);
2125 			cas_page_unmap(addr);
2126 			RX_USED_ADD(page, dlen + cp->crc_size);
2127 		}
2128 end_copy_pkt:
2129 		if (cp->crc_size) {
2130 			addr    = NULL;
2131 			crcaddr = skb->data + alloclen;
2132 		}
2133 		skb_put(skb, alloclen);
2134 	}
2135 
2136 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2137 	if (cp->crc_size) {
2138 		/* checksum includes FCS. strip it out. */
2139 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2140 					      csum_unfold(csum)));
2141 		if (addr)
2142 			cas_page_unmap(addr);
2143 	}
2144 	skb->protocol = eth_type_trans(skb, cp->dev);
2145 	if (skb->protocol == htons(ETH_P_IP)) {
2146 		skb->csum = csum_unfold(~csum);
2147 		skb->ip_summed = CHECKSUM_COMPLETE;
2148 	} else
2149 		skb_checksum_none_assert(skb);
2150 	return len;
2151 }
2152 
2153 
2154 /* we can handle up to 64 rx flows at a time. we do the same thing
2155  * as nonreassm except that we batch up the buffers.
2156  * NOTE: we currently just treat each flow as a bunch of packets that
2157  *       we pass up. a better way would be to coalesce the packets
2158  *       into a jumbo packet. to do that, we need to do the following:
2159  *       1) the first packet will have a clean split between header and
2160  *          data. save both.
2161  *       2) each time the next flow packet comes in, extend the
2162  *          data length and merge the checksums.
2163  *       3) on flow release, fix up the header.
2164  *       4) make sure the higher layer doesn't care.
2165  * because packets get coalesced, we shouldn't run into fragment count
2166  * issues.
2167  */
2168 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2169 				   struct sk_buff *skb)
2170 {
2171 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2172 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2173 
2174 	/* this is protected at a higher layer, so no need to
2175 	 * do any additional locking here. stick the buffer
2176 	 * at the end.
2177 	 */
2178 	__skb_queue_tail(flow, skb);
2179 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2180 		while ((skb = __skb_dequeue(flow))) {
2181 			cas_skb_release(skb);
2182 		}
2183 	}
2184 }
2185 
2186 /* put rx descriptor back on ring. if a buffer is in use by a higher
2187  * layer, this will need to put in a replacement.
2188  */
2189 static void cas_post_page(struct cas *cp, const int ring, const int index)
2190 {
2191 	cas_page_t *new;
2192 	int entry;
2193 
2194 	entry = cp->rx_old[ring];
2195 
2196 	new = cas_page_swap(cp, ring, index);
2197 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2198 	cp->init_rxds[ring][entry].index  =
2199 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2200 			    CAS_BASE(RX_INDEX_RING, ring));
2201 
2202 	entry = RX_DESC_ENTRY(ring, entry + 1);
2203 	cp->rx_old[ring] = entry;
2204 
2205 	if (entry % 4)
2206 		return;
2207 
2208 	if (ring == 0)
2209 		writel(entry, cp->regs + REG_RX_KICK);
2210 	else if ((N_RX_DESC_RINGS > 1) &&
2211 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2212 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2213 }
2214 
2215 
2216 /* only when things are bad */
2217 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2218 {
2219 	unsigned int entry, last, count, released;
2220 	int cluster;
2221 	cas_page_t **page = cp->rx_pages[ring];
2222 
2223 	entry = cp->rx_old[ring];
2224 
2225 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2226 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2227 
2228 	cluster = -1;
2229 	count = entry & 0x3;
2230 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2231 	released = 0;
2232 	while (entry != last) {
2233 		/* make a new buffer if it's still in use */
2234 		if (page_count(page[entry]->buffer) > 1) {
2235 			cas_page_t *new = cas_page_dequeue(cp);
2236 			if (!new) {
2237 				/* let the timer know that we need to
2238 				 * do this again
2239 				 */
2240 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2241 				if (!timer_pending(&cp->link_timer))
2242 					mod_timer(&cp->link_timer, jiffies +
2243 						  CAS_LINK_FAST_TIMEOUT);
2244 				cp->rx_old[ring]  = entry;
2245 				cp->rx_last[ring] = num ? num - released : 0;
2246 				return -ENOMEM;
2247 			}
2248 			spin_lock(&cp->rx_inuse_lock);
2249 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2250 			spin_unlock(&cp->rx_inuse_lock);
2251 			cp->init_rxds[ring][entry].buffer =
2252 				cpu_to_le64(new->dma_addr);
2253 			page[entry] = new;
2254 
2255 		}
2256 
2257 		if (++count == 4) {
2258 			cluster = entry;
2259 			count = 0;
2260 		}
2261 		released++;
2262 		entry = RX_DESC_ENTRY(ring, entry + 1);
2263 	}
2264 	cp->rx_old[ring] = entry;
2265 
2266 	if (cluster < 0)
2267 		return 0;
2268 
2269 	if (ring == 0)
2270 		writel(cluster, cp->regs + REG_RX_KICK);
2271 	else if ((N_RX_DESC_RINGS > 1) &&
2272 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2273 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2274 	return 0;
2275 }
2276 
2277 
2278 /* process a completion ring. packets are set up in three basic ways:
2279  * small packets: should be copied header + data in single buffer.
2280  * large packets: header and data in a single buffer.
2281  * split packets: header in a separate buffer from data.
2282  *                data may be in multiple pages. data may be > 256
2283  *                bytes but in a single page.
2284  *
2285  * NOTE: RX page posting is done in this routine as well. while there's
2286  *       the capability of using multiple RX completion rings, it isn't
2287  *       really worthwhile due to the fact that the page posting will
2288  *       force serialization on the single descriptor ring.
2289  */
2290 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2291 {
2292 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2293 	int entry, drops;
2294 	int npackets = 0;
2295 
2296 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2297 		     "rx[%d] interrupt, done: %d/%d\n",
2298 		     ring,
2299 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2300 
2301 	entry = cp->rx_new[ring];
2302 	drops = 0;
2303 	while (1) {
2304 		struct cas_rx_comp *rxc = rxcs + entry;
2305 		struct sk_buff *uninitialized_var(skb);
2306 		int type, len;
2307 		u64 words[4];
2308 		int i, dring;
2309 
2310 		words[0] = le64_to_cpu(rxc->word1);
2311 		words[1] = le64_to_cpu(rxc->word2);
2312 		words[2] = le64_to_cpu(rxc->word3);
2313 		words[3] = le64_to_cpu(rxc->word4);
2314 
2315 		/* don't touch if still owned by hw */
2316 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2317 		if (type == 0)
2318 			break;
2319 
2320 		/* hw hasn't cleared the zero bit yet */
2321 		if (words[3] & RX_COMP4_ZERO) {
2322 			break;
2323 		}
2324 
2325 		/* get info on the packet */
2326 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2327 			spin_lock(&cp->stat_lock[ring]);
2328 			cp->net_stats[ring].rx_errors++;
2329 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2330 				cp->net_stats[ring].rx_length_errors++;
2331 			if (words[3] & RX_COMP4_BAD)
2332 				cp->net_stats[ring].rx_crc_errors++;
2333 			spin_unlock(&cp->stat_lock[ring]);
2334 
2335 			/* We'll just return it to Cassini. */
2336 		drop_it:
2337 			spin_lock(&cp->stat_lock[ring]);
2338 			++cp->net_stats[ring].rx_dropped;
2339 			spin_unlock(&cp->stat_lock[ring]);
2340 			goto next;
2341 		}
2342 
2343 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2344 		if (len < 0) {
2345 			++drops;
2346 			goto drop_it;
2347 		}
2348 
2349 		/* see if it's a flow re-assembly or not. the driver
2350 		 * itself handles release back up.
2351 		 */
2352 		if (RX_DONT_BATCH || (type == 0x2)) {
2353 			/* non-reassm: these always get released */
2354 			cas_skb_release(skb);
2355 		} else {
2356 			cas_rx_flow_pkt(cp, words, skb);
2357 		}
2358 
2359 		spin_lock(&cp->stat_lock[ring]);
2360 		cp->net_stats[ring].rx_packets++;
2361 		cp->net_stats[ring].rx_bytes += len;
2362 		spin_unlock(&cp->stat_lock[ring]);
2363 
2364 	next:
2365 		npackets++;
2366 
2367 		/* should it be released? */
2368 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2369 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2370 			dring = CAS_VAL(RX_INDEX_RING, i);
2371 			i = CAS_VAL(RX_INDEX_NUM, i);
2372 			cas_post_page(cp, dring, i);
2373 		}
2374 
2375 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2376 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2377 			dring = CAS_VAL(RX_INDEX_RING, i);
2378 			i = CAS_VAL(RX_INDEX_NUM, i);
2379 			cas_post_page(cp, dring, i);
2380 		}
2381 
2382 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2383 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2384 			dring = CAS_VAL(RX_INDEX_RING, i);
2385 			i = CAS_VAL(RX_INDEX_NUM, i);
2386 			cas_post_page(cp, dring, i);
2387 		}
2388 
2389 		/* skip to the next entry */
2390 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2391 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2392 #ifdef USE_NAPI
2393 		if (budget && (npackets >= budget))
2394 			break;
2395 #endif
2396 	}
2397 	cp->rx_new[ring] = entry;
2398 
2399 	if (drops)
2400 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2401 	return npackets;
2402 }
2403 
2404 
2405 /* put completion entries back on the ring */
2406 static void cas_post_rxcs_ringN(struct net_device *dev,
2407 				struct cas *cp, int ring)
2408 {
2409 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410 	int last, entry;
2411 
2412 	last = cp->rx_cur[ring];
2413 	entry = cp->rx_new[ring];
2414 	netif_printk(cp, intr, KERN_DEBUG, dev,
2415 		     "rxc[%d] interrupt, done: %d/%d\n",
2416 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2417 
2418 	/* zero and re-mark descriptors */
2419 	while (last != entry) {
2420 		cas_rxc_init(rxc + last);
2421 		last = RX_COMP_ENTRY(ring, last + 1);
2422 	}
2423 	cp->rx_cur[ring] = last;
2424 
2425 	if (ring == 0)
2426 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2427 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2428 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2429 }
2430 
2431 
2432 
2433 /* cassini can use all four PCI interrupts for the completion ring.
2434  * rings 3 and 4 are identical
2435  */
2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437 static inline void cas_handle_irqN(struct net_device *dev,
2438 				   struct cas *cp, const u32 status,
2439 				   const int ring)
2440 {
2441 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2442 		cas_post_rxcs_ringN(dev, cp, ring);
2443 }
2444 
2445 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2446 {
2447 	struct net_device *dev = dev_id;
2448 	struct cas *cp = netdev_priv(dev);
2449 	unsigned long flags;
2450 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2451 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2452 
2453 	/* check for shared irq */
2454 	if (status == 0)
2455 		return IRQ_NONE;
2456 
2457 	spin_lock_irqsave(&cp->lock, flags);
2458 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2459 #ifdef USE_NAPI
2460 		cas_mask_intr(cp);
2461 		napi_schedule(&cp->napi);
2462 #else
2463 		cas_rx_ringN(cp, ring, 0);
2464 #endif
2465 		status &= ~INTR_RX_DONE_ALT;
2466 	}
2467 
2468 	if (status)
2469 		cas_handle_irqN(dev, cp, status, ring);
2470 	spin_unlock_irqrestore(&cp->lock, flags);
2471 	return IRQ_HANDLED;
2472 }
2473 #endif
2474 
2475 #ifdef USE_PCI_INTB
2476 /* everything but rx packets */
2477 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2478 {
2479 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2480 		/* Frame arrived, no free RX buffers available.
2481 		 * NOTE: we can get this on a link transition. */
2482 		cas_post_rxds_ringN(cp, 1, 0);
2483 		spin_lock(&cp->stat_lock[1]);
2484 		cp->net_stats[1].rx_dropped++;
2485 		spin_unlock(&cp->stat_lock[1]);
2486 	}
2487 
2488 	if (status & INTR_RX_BUF_AE_1)
2489 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2490 				    RX_AE_FREEN_VAL(1));
2491 
2492 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493 		cas_post_rxcs_ringN(cp, 1);
2494 }
2495 
2496 /* ring 2 handles a few more events than 3 and 4 */
2497 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2498 {
2499 	struct net_device *dev = dev_id;
2500 	struct cas *cp = netdev_priv(dev);
2501 	unsigned long flags;
2502 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2503 
2504 	/* check for shared interrupt */
2505 	if (status == 0)
2506 		return IRQ_NONE;
2507 
2508 	spin_lock_irqsave(&cp->lock, flags);
2509 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2510 #ifdef USE_NAPI
2511 		cas_mask_intr(cp);
2512 		napi_schedule(&cp->napi);
2513 #else
2514 		cas_rx_ringN(cp, 1, 0);
2515 #endif
2516 		status &= ~INTR_RX_DONE_ALT;
2517 	}
2518 	if (status)
2519 		cas_handle_irq1(cp, status);
2520 	spin_unlock_irqrestore(&cp->lock, flags);
2521 	return IRQ_HANDLED;
2522 }
2523 #endif
2524 
2525 static inline void cas_handle_irq(struct net_device *dev,
2526 				  struct cas *cp, const u32 status)
2527 {
2528 	/* housekeeping interrupts */
2529 	if (status & INTR_ERROR_MASK)
2530 		cas_abnormal_irq(dev, cp, status);
2531 
2532 	if (status & INTR_RX_BUF_UNAVAIL) {
2533 		/* Frame arrived, no free RX buffers available.
2534 		 * NOTE: we can get this on a link transition.
2535 		 */
2536 		cas_post_rxds_ringN(cp, 0, 0);
2537 		spin_lock(&cp->stat_lock[0]);
2538 		cp->net_stats[0].rx_dropped++;
2539 		spin_unlock(&cp->stat_lock[0]);
2540 	} else if (status & INTR_RX_BUF_AE) {
2541 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2542 				    RX_AE_FREEN_VAL(0));
2543 	}
2544 
2545 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2546 		cas_post_rxcs_ringN(dev, cp, 0);
2547 }
2548 
2549 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2550 {
2551 	struct net_device *dev = dev_id;
2552 	struct cas *cp = netdev_priv(dev);
2553 	unsigned long flags;
2554 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2555 
2556 	if (status == 0)
2557 		return IRQ_NONE;
2558 
2559 	spin_lock_irqsave(&cp->lock, flags);
2560 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2561 		cas_tx(dev, cp, status);
2562 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563 	}
2564 
2565 	if (status & INTR_RX_DONE) {
2566 #ifdef USE_NAPI
2567 		cas_mask_intr(cp);
2568 		napi_schedule(&cp->napi);
2569 #else
2570 		cas_rx_ringN(cp, 0, 0);
2571 #endif
2572 		status &= ~INTR_RX_DONE;
2573 	}
2574 
2575 	if (status)
2576 		cas_handle_irq(dev, cp, status);
2577 	spin_unlock_irqrestore(&cp->lock, flags);
2578 	return IRQ_HANDLED;
2579 }
2580 
2581 
2582 #ifdef USE_NAPI
2583 static int cas_poll(struct napi_struct *napi, int budget)
2584 {
2585 	struct cas *cp = container_of(napi, struct cas, napi);
2586 	struct net_device *dev = cp->dev;
2587 	int i, enable_intr, credits;
2588 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2589 	unsigned long flags;
2590 
2591 	spin_lock_irqsave(&cp->lock, flags);
2592 	cas_tx(dev, cp, status);
2593 	spin_unlock_irqrestore(&cp->lock, flags);
2594 
2595 	/* NAPI rx packets. we spread the credits across all of the
2596 	 * rxc rings
2597 	 *
2598 	 * to make sure we're fair with the work we loop through each
2599 	 * ring N_RX_COMP_RING times with a request of
2600 	 * budget / N_RX_COMP_RINGS
2601 	 */
2602 	enable_intr = 1;
2603 	credits = 0;
2604 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2605 		int j;
2606 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2607 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2608 			if (credits >= budget) {
2609 				enable_intr = 0;
2610 				goto rx_comp;
2611 			}
2612 		}
2613 	}
2614 
2615 rx_comp:
2616 	/* final rx completion */
2617 	spin_lock_irqsave(&cp->lock, flags);
2618 	if (status)
2619 		cas_handle_irq(dev, cp, status);
2620 
2621 #ifdef USE_PCI_INTB
2622 	if (N_RX_COMP_RINGS > 1) {
2623 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2624 		if (status)
2625 			cas_handle_irq1(dev, cp, status);
2626 	}
2627 #endif
2628 
2629 #ifdef USE_PCI_INTC
2630 	if (N_RX_COMP_RINGS > 2) {
2631 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2632 		if (status)
2633 			cas_handle_irqN(dev, cp, status, 2);
2634 	}
2635 #endif
2636 
2637 #ifdef USE_PCI_INTD
2638 	if (N_RX_COMP_RINGS > 3) {
2639 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2640 		if (status)
2641 			cas_handle_irqN(dev, cp, status, 3);
2642 	}
2643 #endif
2644 	spin_unlock_irqrestore(&cp->lock, flags);
2645 	if (enable_intr) {
2646 		napi_complete(napi);
2647 		cas_unmask_intr(cp);
2648 	}
2649 	return credits;
2650 }
2651 #endif
2652 
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 static void cas_netpoll(struct net_device *dev)
2655 {
2656 	struct cas *cp = netdev_priv(dev);
2657 
2658 	cas_disable_irq(cp, 0);
2659 	cas_interrupt(cp->pdev->irq, dev);
2660 	cas_enable_irq(cp, 0);
2661 
2662 #ifdef USE_PCI_INTB
2663 	if (N_RX_COMP_RINGS > 1) {
2664 		/* cas_interrupt1(); */
2665 	}
2666 #endif
2667 #ifdef USE_PCI_INTC
2668 	if (N_RX_COMP_RINGS > 2) {
2669 		/* cas_interruptN(); */
2670 	}
2671 #endif
2672 #ifdef USE_PCI_INTD
2673 	if (N_RX_COMP_RINGS > 3) {
2674 		/* cas_interruptN(); */
2675 	}
2676 #endif
2677 }
2678 #endif
2679 
2680 static void cas_tx_timeout(struct net_device *dev)
2681 {
2682 	struct cas *cp = netdev_priv(dev);
2683 
2684 	netdev_err(dev, "transmit timed out, resetting\n");
2685 	if (!cp->hw_running) {
2686 		netdev_err(dev, "hrm.. hw not running!\n");
2687 		return;
2688 	}
2689 
2690 	netdev_err(dev, "MIF_STATE[%08x]\n",
2691 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2692 
2693 	netdev_err(dev, "MAC_STATE[%08x]\n",
2694 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2695 
2696 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697 		   readl(cp->regs + REG_TX_CFG),
2698 		   readl(cp->regs + REG_MAC_TX_STATUS),
2699 		   readl(cp->regs + REG_MAC_TX_CFG),
2700 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703 		   readl(cp->regs + REG_TX_SM_1),
2704 		   readl(cp->regs + REG_TX_SM_2));
2705 
2706 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2707 		   readl(cp->regs + REG_RX_CFG),
2708 		   readl(cp->regs + REG_MAC_RX_STATUS),
2709 		   readl(cp->regs + REG_MAC_RX_CFG));
2710 
2711 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2712 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2713 		   readl(cp->regs + REG_HP_STATUS0),
2714 		   readl(cp->regs + REG_HP_STATUS1),
2715 		   readl(cp->regs + REG_HP_STATUS2));
2716 
2717 #if 1
2718 	atomic_inc(&cp->reset_task_pending);
2719 	atomic_inc(&cp->reset_task_pending_all);
2720 	schedule_work(&cp->reset_task);
2721 #else
2722 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2723 	schedule_work(&cp->reset_task);
2724 #endif
2725 }
2726 
2727 static inline int cas_intme(int ring, int entry)
2728 {
2729 	/* Algorithm: IRQ every 1/2 of descriptors. */
2730 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2731 		return 1;
2732 	return 0;
2733 }
2734 
2735 
2736 static void cas_write_txd(struct cas *cp, int ring, int entry,
2737 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2738 {
2739 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2740 
2741 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2742 	if (cas_intme(ring, entry))
2743 		ctrl |= TX_DESC_INTME;
2744 	if (last)
2745 		ctrl |= TX_DESC_EOF;
2746 	txd->control = cpu_to_le64(ctrl);
2747 	txd->buffer = cpu_to_le64(mapping);
2748 }
2749 
2750 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2751 				const int entry)
2752 {
2753 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2754 }
2755 
2756 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2757 				     const int entry, const int tentry)
2758 {
2759 	cp->tx_tiny_use[ring][tentry].nbufs++;
2760 	cp->tx_tiny_use[ring][entry].used = 1;
2761 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2762 }
2763 
2764 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2765 				    struct sk_buff *skb)
2766 {
2767 	struct net_device *dev = cp->dev;
2768 	int entry, nr_frags, frag, tabort, tentry;
2769 	dma_addr_t mapping;
2770 	unsigned long flags;
2771 	u64 ctrl;
2772 	u32 len;
2773 
2774 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2775 
2776 	/* This is a hard error, log it. */
2777 	if (TX_BUFFS_AVAIL(cp, ring) <=
2778 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2779 		netif_stop_queue(dev);
2780 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2781 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2782 		return 1;
2783 	}
2784 
2785 	ctrl = 0;
2786 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2787 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2788 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2789 
2790 		ctrl =  TX_DESC_CSUM_EN |
2791 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2792 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2793 	}
2794 
2795 	entry = cp->tx_new[ring];
2796 	cp->tx_skbs[ring][entry] = skb;
2797 
2798 	nr_frags = skb_shinfo(skb)->nr_frags;
2799 	len = skb_headlen(skb);
2800 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2801 			       offset_in_page(skb->data), len,
2802 			       PCI_DMA_TODEVICE);
2803 
2804 	tentry = entry;
2805 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2806 	if (unlikely(tabort)) {
2807 		/* NOTE: len is always >  tabort */
2808 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2809 			      ctrl | TX_DESC_SOF, 0);
2810 		entry = TX_DESC_NEXT(ring, entry);
2811 
2812 		skb_copy_from_linear_data_offset(skb, len - tabort,
2813 			      tx_tiny_buf(cp, ring, entry), tabort);
2814 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2815 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2816 			      (nr_frags == 0));
2817 	} else {
2818 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2819 			      TX_DESC_SOF, (nr_frags == 0));
2820 	}
2821 	entry = TX_DESC_NEXT(ring, entry);
2822 
2823 	for (frag = 0; frag < nr_frags; frag++) {
2824 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2825 
2826 		len = skb_frag_size(fragp);
2827 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2828 					   DMA_TO_DEVICE);
2829 
2830 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2831 		if (unlikely(tabort)) {
2832 			void *addr;
2833 
2834 			/* NOTE: len is always > tabort */
2835 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2836 				      ctrl, 0);
2837 			entry = TX_DESC_NEXT(ring, entry);
2838 
2839 			addr = cas_page_map(skb_frag_page(fragp));
2840 			memcpy(tx_tiny_buf(cp, ring, entry),
2841 			       addr + fragp->page_offset + len - tabort,
2842 			       tabort);
2843 			cas_page_unmap(addr);
2844 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2845 			len     = tabort;
2846 		}
2847 
2848 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2849 			      (frag + 1 == nr_frags));
2850 		entry = TX_DESC_NEXT(ring, entry);
2851 	}
2852 
2853 	cp->tx_new[ring] = entry;
2854 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2855 		netif_stop_queue(dev);
2856 
2857 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2858 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2859 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2860 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2861 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2862 	return 0;
2863 }
2864 
2865 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2866 {
2867 	struct cas *cp = netdev_priv(dev);
2868 
2869 	/* this is only used as a load-balancing hint, so it doesn't
2870 	 * need to be SMP safe
2871 	 */
2872 	static int ring;
2873 
2874 	if (skb_padto(skb, cp->min_frame_size))
2875 		return NETDEV_TX_OK;
2876 
2877 	/* XXX: we need some higher-level QoS hooks to steer packets to
2878 	 *      individual queues.
2879 	 */
2880 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2881 		return NETDEV_TX_BUSY;
2882 	return NETDEV_TX_OK;
2883 }
2884 
2885 static void cas_init_tx_dma(struct cas *cp)
2886 {
2887 	u64 desc_dma = cp->block_dvma;
2888 	unsigned long off;
2889 	u32 val;
2890 	int i;
2891 
2892 	/* set up tx completion writeback registers. must be 8-byte aligned */
2893 #ifdef USE_TX_COMPWB
2894 	off = offsetof(struct cas_init_block, tx_compwb);
2895 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2896 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2897 #endif
2898 
2899 	/* enable completion writebacks, enable paced mode,
2900 	 * disable read pipe, and disable pre-interrupt compwbs
2901 	 */
2902 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2903 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2904 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2905 		TX_CFG_INTR_COMPWB_DIS;
2906 
2907 	/* write out tx ring info and tx desc bases */
2908 	for (i = 0; i < MAX_TX_RINGS; i++) {
2909 		off = (unsigned long) cp->init_txds[i] -
2910 			(unsigned long) cp->init_block;
2911 
2912 		val |= CAS_TX_RINGN_BASE(i);
2913 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2914 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2915 		       REG_TX_DBN_LOW(i));
2916 		/* don't zero out the kick register here as the system
2917 		 * will wedge
2918 		 */
2919 	}
2920 	writel(val, cp->regs + REG_TX_CFG);
2921 
2922 	/* program max burst sizes. these numbers should be different
2923 	 * if doing QoS.
2924 	 */
2925 #ifdef USE_QOS
2926 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2927 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2928 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2929 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2930 #else
2931 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2933 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2934 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2935 #endif
2936 }
2937 
2938 /* Must be invoked under cp->lock. */
2939 static inline void cas_init_dma(struct cas *cp)
2940 {
2941 	cas_init_tx_dma(cp);
2942 	cas_init_rx_dma(cp);
2943 }
2944 
2945 static void cas_process_mc_list(struct cas *cp)
2946 {
2947 	u16 hash_table[16];
2948 	u32 crc;
2949 	struct netdev_hw_addr *ha;
2950 	int i = 1;
2951 
2952 	memset(hash_table, 0, sizeof(hash_table));
2953 	netdev_for_each_mc_addr(ha, cp->dev) {
2954 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2955 			/* use the alternate mac address registers for the
2956 			 * first 15 multicast addresses
2957 			 */
2958 			writel((ha->addr[4] << 8) | ha->addr[5],
2959 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2960 			writel((ha->addr[2] << 8) | ha->addr[3],
2961 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2962 			writel((ha->addr[0] << 8) | ha->addr[1],
2963 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2964 			i++;
2965 		}
2966 		else {
2967 			/* use hw hash table for the next series of
2968 			 * multicast addresses
2969 			 */
2970 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2971 			crc >>= 24;
2972 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2973 		}
2974 	}
2975 	for (i = 0; i < 16; i++)
2976 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2977 }
2978 
2979 /* Must be invoked under cp->lock. */
2980 static u32 cas_setup_multicast(struct cas *cp)
2981 {
2982 	u32 rxcfg = 0;
2983 	int i;
2984 
2985 	if (cp->dev->flags & IFF_PROMISC) {
2986 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2987 
2988 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2989 	    	for (i=0; i < 16; i++)
2990 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2991 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2992 
2993 	} else {
2994 		cas_process_mc_list(cp);
2995 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996 	}
2997 
2998 	return rxcfg;
2999 }
3000 
3001 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3002 static void cas_clear_mac_err(struct cas *cp)
3003 {
3004 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3005 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3006 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3007 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3008 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3009 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3010 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3011 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3012 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3013 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3014 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3015 }
3016 
3017 
3018 static void cas_mac_reset(struct cas *cp)
3019 {
3020 	int i;
3021 
3022 	/* do both TX and RX reset */
3023 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3024 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3025 
3026 	/* wait for TX */
3027 	i = STOP_TRIES;
3028 	while (i-- > 0) {
3029 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3030 			break;
3031 		udelay(10);
3032 	}
3033 
3034 	/* wait for RX */
3035 	i = STOP_TRIES;
3036 	while (i-- > 0) {
3037 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3038 			break;
3039 		udelay(10);
3040 	}
3041 
3042 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3043 	    readl(cp->regs + REG_MAC_RX_RESET))
3044 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3045 			   readl(cp->regs + REG_MAC_TX_RESET),
3046 			   readl(cp->regs + REG_MAC_RX_RESET),
3047 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3048 }
3049 
3050 
3051 /* Must be invoked under cp->lock. */
3052 static void cas_init_mac(struct cas *cp)
3053 {
3054 	unsigned char *e = &cp->dev->dev_addr[0];
3055 	int i;
3056 	cas_mac_reset(cp);
3057 
3058 	/* setup core arbitration weight register */
3059 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3060 
3061 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3062 	/* set the infinite burst register for chips that don't have
3063 	 * pci issues.
3064 	 */
3065 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3066 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3067 #endif
3068 
3069 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3070 
3071 	writel(0x00, cp->regs + REG_MAC_IPG0);
3072 	writel(0x08, cp->regs + REG_MAC_IPG1);
3073 	writel(0x04, cp->regs + REG_MAC_IPG2);
3074 
3075 	/* change later for 802.3z */
3076 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3077 
3078 	/* min frame + FCS */
3079 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3080 
3081 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3082 	 * specify the maximum frame size to prevent RX tag errors on
3083 	 * oversized frames.
3084 	 */
3085 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3086 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3087 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3088 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3089 
3090 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3091 	 * workaround saturn half-duplex issue by increasing preamble
3092 	 * size to 65 bytes.
3093 	 */
3094 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3095 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3096 	else
3097 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3098 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3099 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3100 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3101 
3102 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3103 
3104 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3105 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3106 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3107 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3108 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3109 
3110 	/* setup mac address in perfect filter array */
3111 	for (i = 0; i < 45; i++)
3112 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3113 
3114 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3115 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3116 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3117 
3118 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3119 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3120 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3121 
3122 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3123 
3124 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3125 	cas_clear_mac_err(cp);
3126 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3127 
3128 	/* Setup MAC interrupts.  We want to get all of the interesting
3129 	 * counter expiration events, but we do not want to hear about
3130 	 * normal rx/tx as the DMA engine tells us that.
3131 	 */
3132 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3133 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3134 
3135 	/* Don't enable even the PAUSE interrupts for now, we
3136 	 * make no use of those events other than to record them.
3137 	 */
3138 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3139 }
3140 
3141 /* Must be invoked under cp->lock. */
3142 static void cas_init_pause_thresholds(struct cas *cp)
3143 {
3144 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3145 	 * full RX fifo size effectively disables PAUSE generation
3146 	 */
3147 	if (cp->rx_fifo_size <= (2 * 1024)) {
3148 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3149 	} else {
3150 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3151 		if (max_frame * 3 > cp->rx_fifo_size) {
3152 			cp->rx_pause_off = 7104;
3153 			cp->rx_pause_on  = 960;
3154 		} else {
3155 			int off = (cp->rx_fifo_size - (max_frame * 2));
3156 			int on = off - max_frame;
3157 			cp->rx_pause_off = off;
3158 			cp->rx_pause_on = on;
3159 		}
3160 	}
3161 }
3162 
3163 static int cas_vpd_match(const void __iomem *p, const char *str)
3164 {
3165 	int len = strlen(str) + 1;
3166 	int i;
3167 
3168 	for (i = 0; i < len; i++) {
3169 		if (readb(p + i) != str[i])
3170 			return 0;
3171 	}
3172 	return 1;
3173 }
3174 
3175 
3176 /* get the mac address by reading the vpd information in the rom.
3177  * also get the phy type and determine if there's an entropy generator.
3178  * NOTE: this is a bit convoluted for the following reasons:
3179  *  1) vpd info has order-dependent mac addresses for multinic cards
3180  *  2) the only way to determine the nic order is to use the slot
3181  *     number.
3182  *  3) fiber cards don't have bridges, so their slot numbers don't
3183  *     mean anything.
3184  *  4) we don't actually know we have a fiber card until after
3185  *     the mac addresses are parsed.
3186  */
3187 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3188 			    const int offset)
3189 {
3190 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3191 	void __iomem *base, *kstart;
3192 	int i, len;
3193 	int found = 0;
3194 #define VPD_FOUND_MAC        0x01
3195 #define VPD_FOUND_PHY        0x02
3196 
3197 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3198 	int mac_off  = 0;
3199 
3200 #if defined(CONFIG_SPARC)
3201 	const unsigned char *addr;
3202 #endif
3203 
3204 	/* give us access to the PROM */
3205 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3206 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3207 
3208 	/* check for an expansion rom */
3209 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3210 		goto use_random_mac_addr;
3211 
3212 	/* search for beginning of vpd */
3213 	base = NULL;
3214 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3215 		/* check for PCIR */
3216 		if ((readb(p + i + 0) == 0x50) &&
3217 		    (readb(p + i + 1) == 0x43) &&
3218 		    (readb(p + i + 2) == 0x49) &&
3219 		    (readb(p + i + 3) == 0x52)) {
3220 			base = p + (readb(p + i + 8) |
3221 				    (readb(p + i + 9) << 8));
3222 			break;
3223 		}
3224 	}
3225 
3226 	if (!base || (readb(base) != 0x82))
3227 		goto use_random_mac_addr;
3228 
3229 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3230 	while (i < EXPANSION_ROM_SIZE) {
3231 		if (readb(base + i) != 0x90) /* no vpd found */
3232 			goto use_random_mac_addr;
3233 
3234 		/* found a vpd field */
3235 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3236 
3237 		/* extract keywords */
3238 		kstart = base + i + 3;
3239 		p = kstart;
3240 		while ((p - kstart) < len) {
3241 			int klen = readb(p + 2);
3242 			int j;
3243 			char type;
3244 
3245 			p += 3;
3246 
3247 			/* look for the following things:
3248 			 * -- correct length == 29
3249 			 * 3 (type) + 2 (size) +
3250 			 * 18 (strlen("local-mac-address") + 1) +
3251 			 * 6 (mac addr)
3252 			 * -- VPD Instance 'I'
3253 			 * -- VPD Type Bytes 'B'
3254 			 * -- VPD data length == 6
3255 			 * -- property string == local-mac-address
3256 			 *
3257 			 * -- correct length == 24
3258 			 * 3 (type) + 2 (size) +
3259 			 * 12 (strlen("entropy-dev") + 1) +
3260 			 * 7 (strlen("vms110") + 1)
3261 			 * -- VPD Instance 'I'
3262 			 * -- VPD Type String 'B'
3263 			 * -- VPD data length == 7
3264 			 * -- property string == entropy-dev
3265 			 *
3266 			 * -- correct length == 18
3267 			 * 3 (type) + 2 (size) +
3268 			 * 9 (strlen("phy-type") + 1) +
3269 			 * 4 (strlen("pcs") + 1)
3270 			 * -- VPD Instance 'I'
3271 			 * -- VPD Type String 'S'
3272 			 * -- VPD data length == 4
3273 			 * -- property string == phy-type
3274 			 *
3275 			 * -- correct length == 23
3276 			 * 3 (type) + 2 (size) +
3277 			 * 14 (strlen("phy-interface") + 1) +
3278 			 * 4 (strlen("pcs") + 1)
3279 			 * -- VPD Instance 'I'
3280 			 * -- VPD Type String 'S'
3281 			 * -- VPD data length == 4
3282 			 * -- property string == phy-interface
3283 			 */
3284 			if (readb(p) != 'I')
3285 				goto next;
3286 
3287 			/* finally, check string and length */
3288 			type = readb(p + 3);
3289 			if (type == 'B') {
3290 				if ((klen == 29) && readb(p + 4) == 6 &&
3291 				    cas_vpd_match(p + 5,
3292 						  "local-mac-address")) {
3293 					if (mac_off++ > offset)
3294 						goto next;
3295 
3296 					/* set mac address */
3297 					for (j = 0; j < 6; j++)
3298 						dev_addr[j] =
3299 							readb(p + 23 + j);
3300 					goto found_mac;
3301 				}
3302 			}
3303 
3304 			if (type != 'S')
3305 				goto next;
3306 
3307 #ifdef USE_ENTROPY_DEV
3308 			if ((klen == 24) &&
3309 			    cas_vpd_match(p + 5, "entropy-dev") &&
3310 			    cas_vpd_match(p + 17, "vms110")) {
3311 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3312 				goto next;
3313 			}
3314 #endif
3315 
3316 			if (found & VPD_FOUND_PHY)
3317 				goto next;
3318 
3319 			if ((klen == 18) && readb(p + 4) == 4 &&
3320 			    cas_vpd_match(p + 5, "phy-type")) {
3321 				if (cas_vpd_match(p + 14, "pcs")) {
3322 					phy_type = CAS_PHY_SERDES;
3323 					goto found_phy;
3324 				}
3325 			}
3326 
3327 			if ((klen == 23) && readb(p + 4) == 4 &&
3328 			    cas_vpd_match(p + 5, "phy-interface")) {
3329 				if (cas_vpd_match(p + 19, "pcs")) {
3330 					phy_type = CAS_PHY_SERDES;
3331 					goto found_phy;
3332 				}
3333 			}
3334 found_mac:
3335 			found |= VPD_FOUND_MAC;
3336 			goto next;
3337 
3338 found_phy:
3339 			found |= VPD_FOUND_PHY;
3340 
3341 next:
3342 			p += klen;
3343 		}
3344 		i += len + 3;
3345 	}
3346 
3347 use_random_mac_addr:
3348 	if (found & VPD_FOUND_MAC)
3349 		goto done;
3350 
3351 #if defined(CONFIG_SPARC)
3352 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3353 	if (addr != NULL) {
3354 		memcpy(dev_addr, addr, ETH_ALEN);
3355 		goto done;
3356 	}
3357 #endif
3358 
3359 	/* Sun MAC prefix then 3 random bytes. */
3360 	pr_info("MAC address not found in ROM VPD\n");
3361 	dev_addr[0] = 0x08;
3362 	dev_addr[1] = 0x00;
3363 	dev_addr[2] = 0x20;
3364 	get_random_bytes(dev_addr + 3, 3);
3365 
3366 done:
3367 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3368 	return phy_type;
3369 }
3370 
3371 /* check pci invariants */
3372 static void cas_check_pci_invariants(struct cas *cp)
3373 {
3374 	struct pci_dev *pdev = cp->pdev;
3375 
3376 	cp->cas_flags = 0;
3377 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3378 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3379 		if (pdev->revision >= CAS_ID_REVPLUS)
3380 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3381 		if (pdev->revision < CAS_ID_REVPLUS02u)
3382 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3383 
3384 		/* Original Cassini supports HW CSUM, but it's not
3385 		 * enabled by default as it can trigger TX hangs.
3386 		 */
3387 		if (pdev->revision < CAS_ID_REV2)
3388 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3389 	} else {
3390 		/* Only sun has original cassini chips.  */
3391 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3392 
3393 		/* We use a flag because the same phy might be externally
3394 		 * connected.
3395 		 */
3396 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3397 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3398 			cp->cas_flags |= CAS_FLAG_SATURN;
3399 	}
3400 }
3401 
3402 
3403 static int cas_check_invariants(struct cas *cp)
3404 {
3405 	struct pci_dev *pdev = cp->pdev;
3406 	u32 cfg;
3407 	int i;
3408 
3409 	/* get page size for rx buffers. */
3410 	cp->page_order = 0;
3411 #ifdef USE_PAGE_ORDER
3412 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3413 		/* see if we can allocate larger pages */
3414 		struct page *page = alloc_pages(GFP_ATOMIC,
3415 						CAS_JUMBO_PAGE_SHIFT -
3416 						PAGE_SHIFT);
3417 		if (page) {
3418 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3419 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3420 		} else {
3421 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3422 		}
3423 	}
3424 #endif
3425 	cp->page_size = (PAGE_SIZE << cp->page_order);
3426 
3427 	/* Fetch the FIFO configurations. */
3428 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3429 	cp->rx_fifo_size = RX_FIFO_SIZE;
3430 
3431 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3432 	 * they're both connected.
3433 	 */
3434 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3435 					PCI_SLOT(pdev->devfn));
3436 	if (cp->phy_type & CAS_PHY_SERDES) {
3437 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3438 		return 0; /* no more checking needed */
3439 	}
3440 
3441 	/* MII */
3442 	cfg = readl(cp->regs + REG_MIF_CFG);
3443 	if (cfg & MIF_CFG_MDIO_1) {
3444 		cp->phy_type = CAS_PHY_MII_MDIO1;
3445 	} else if (cfg & MIF_CFG_MDIO_0) {
3446 		cp->phy_type = CAS_PHY_MII_MDIO0;
3447 	}
3448 
3449 	cas_mif_poll(cp, 0);
3450 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3451 
3452 	for (i = 0; i < 32; i++) {
3453 		u32 phy_id;
3454 		int j;
3455 
3456 		for (j = 0; j < 3; j++) {
3457 			cp->phy_addr = i;
3458 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3459 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3460 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3461 				cp->phy_id = phy_id;
3462 				goto done;
3463 			}
3464 		}
3465 	}
3466 	pr_err("MII phy did not respond [%08x]\n",
3467 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3468 	return -1;
3469 
3470 done:
3471 	/* see if we can do gigabit */
3472 	cfg = cas_phy_read(cp, MII_BMSR);
3473 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3474 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3475 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3476 	return 0;
3477 }
3478 
3479 /* Must be invoked under cp->lock. */
3480 static inline void cas_start_dma(struct cas *cp)
3481 {
3482 	int i;
3483 	u32 val;
3484 	int txfailed = 0;
3485 
3486 	/* enable dma */
3487 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3488 	writel(val, cp->regs + REG_TX_CFG);
3489 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3490 	writel(val, cp->regs + REG_RX_CFG);
3491 
3492 	/* enable the mac */
3493 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3494 	writel(val, cp->regs + REG_MAC_TX_CFG);
3495 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3496 	writel(val, cp->regs + REG_MAC_RX_CFG);
3497 
3498 	i = STOP_TRIES;
3499 	while (i-- > 0) {
3500 		val = readl(cp->regs + REG_MAC_TX_CFG);
3501 		if ((val & MAC_TX_CFG_EN))
3502 			break;
3503 		udelay(10);
3504 	}
3505 	if (i < 0) txfailed = 1;
3506 	i = STOP_TRIES;
3507 	while (i-- > 0) {
3508 		val = readl(cp->regs + REG_MAC_RX_CFG);
3509 		if ((val & MAC_RX_CFG_EN)) {
3510 			if (txfailed) {
3511 				netdev_err(cp->dev,
3512 					   "enabling mac failed [tx:%08x:%08x]\n",
3513 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3514 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3515 			}
3516 			goto enable_rx_done;
3517 		}
3518 		udelay(10);
3519 	}
3520 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3521 		   (txfailed ? "tx,rx" : "rx"),
3522 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3523 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3524 
3525 enable_rx_done:
3526 	cas_unmask_intr(cp); /* enable interrupts */
3527 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3528 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3529 
3530 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3531 		if (N_RX_DESC_RINGS > 1)
3532 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3533 			       cp->regs + REG_PLUS_RX_KICK1);
3534 
3535 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3536 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3537 	}
3538 }
3539 
3540 /* Must be invoked under cp->lock. */
3541 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3542 				   int *pause)
3543 {
3544 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3545 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3546 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3547 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3548 		*pause |= 0x10;
3549 	*spd = 1000;
3550 }
3551 
3552 /* Must be invoked under cp->lock. */
3553 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3554 				   int *pause)
3555 {
3556 	u32 val;
3557 
3558 	*fd = 0;
3559 	*spd = 10;
3560 	*pause = 0;
3561 
3562 	/* use GMII registers */
3563 	val = cas_phy_read(cp, MII_LPA);
3564 	if (val & CAS_LPA_PAUSE)
3565 		*pause = 0x01;
3566 
3567 	if (val & CAS_LPA_ASYM_PAUSE)
3568 		*pause |= 0x10;
3569 
3570 	if (val & LPA_DUPLEX)
3571 		*fd = 1;
3572 	if (val & LPA_100)
3573 		*spd = 100;
3574 
3575 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3576 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3577 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3578 			*spd = 1000;
3579 		if (val & CAS_LPA_1000FULL)
3580 			*fd = 1;
3581 	}
3582 }
3583 
3584 /* A link-up condition has occurred, initialize and enable the
3585  * rest of the chip.
3586  *
3587  * Must be invoked under cp->lock.
3588  */
3589 static void cas_set_link_modes(struct cas *cp)
3590 {
3591 	u32 val;
3592 	int full_duplex, speed, pause;
3593 
3594 	full_duplex = 0;
3595 	speed = 10;
3596 	pause = 0;
3597 
3598 	if (CAS_PHY_MII(cp->phy_type)) {
3599 		cas_mif_poll(cp, 0);
3600 		val = cas_phy_read(cp, MII_BMCR);
3601 		if (val & BMCR_ANENABLE) {
3602 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3603 					       &pause);
3604 		} else {
3605 			if (val & BMCR_FULLDPLX)
3606 				full_duplex = 1;
3607 
3608 			if (val & BMCR_SPEED100)
3609 				speed = 100;
3610 			else if (val & CAS_BMCR_SPEED1000)
3611 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3612 					1000 : 100;
3613 		}
3614 		cas_mif_poll(cp, 1);
3615 
3616 	} else {
3617 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3618 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3619 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3620 			if (val & PCS_MII_CTRL_DUPLEX)
3621 				full_duplex = 1;
3622 		}
3623 	}
3624 
3625 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3626 		   speed, full_duplex ? "full" : "half");
3627 
3628 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3629 	if (CAS_PHY_MII(cp->phy_type)) {
3630 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3631 		if (!full_duplex)
3632 			val |= MAC_XIF_DISABLE_ECHO;
3633 	}
3634 	if (full_duplex)
3635 		val |= MAC_XIF_FDPLX_LED;
3636 	if (speed == 1000)
3637 		val |= MAC_XIF_GMII_MODE;
3638 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3639 
3640 	/* deal with carrier and collision detect. */
3641 	val = MAC_TX_CFG_IPG_EN;
3642 	if (full_duplex) {
3643 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3644 		val |= MAC_TX_CFG_IGNORE_COLL;
3645 	} else {
3646 #ifndef USE_CSMA_CD_PROTO
3647 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3648 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3649 #endif
3650 	}
3651 	/* val now set up for REG_MAC_TX_CFG */
3652 
3653 	/* If gigabit and half-duplex, enable carrier extension
3654 	 * mode.  increase slot time to 512 bytes as well.
3655 	 * else, disable it and make sure slot time is 64 bytes.
3656 	 * also activate checksum bug workaround
3657 	 */
3658 	if ((speed == 1000) && !full_duplex) {
3659 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3660 		       cp->regs + REG_MAC_TX_CFG);
3661 
3662 		val = readl(cp->regs + REG_MAC_RX_CFG);
3663 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3664 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3665 		       cp->regs + REG_MAC_RX_CFG);
3666 
3667 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3668 
3669 		cp->crc_size = 4;
3670 		/* minimum size gigabit frame at half duplex */
3671 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3672 
3673 	} else {
3674 		writel(val, cp->regs + REG_MAC_TX_CFG);
3675 
3676 		/* checksum bug workaround. don't strip FCS when in
3677 		 * half-duplex mode
3678 		 */
3679 		val = readl(cp->regs + REG_MAC_RX_CFG);
3680 		if (full_duplex) {
3681 			val |= MAC_RX_CFG_STRIP_FCS;
3682 			cp->crc_size = 0;
3683 			cp->min_frame_size = CAS_MIN_MTU;
3684 		} else {
3685 			val &= ~MAC_RX_CFG_STRIP_FCS;
3686 			cp->crc_size = 4;
3687 			cp->min_frame_size = CAS_MIN_FRAME;
3688 		}
3689 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3690 		       cp->regs + REG_MAC_RX_CFG);
3691 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3692 	}
3693 
3694 	if (netif_msg_link(cp)) {
3695 		if (pause & 0x01) {
3696 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3697 				    cp->rx_fifo_size,
3698 				    cp->rx_pause_off,
3699 				    cp->rx_pause_on);
3700 		} else if (pause & 0x10) {
3701 			netdev_info(cp->dev, "TX pause enabled\n");
3702 		} else {
3703 			netdev_info(cp->dev, "Pause is disabled\n");
3704 		}
3705 	}
3706 
3707 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3708 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3709 	if (pause) { /* symmetric or asymmetric pause */
3710 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3711 		if (pause & 0x01) { /* symmetric pause */
3712 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3713 		}
3714 	}
3715 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3716 	cas_start_dma(cp);
3717 }
3718 
3719 /* Must be invoked under cp->lock. */
3720 static void cas_init_hw(struct cas *cp, int restart_link)
3721 {
3722 	if (restart_link)
3723 		cas_phy_init(cp);
3724 
3725 	cas_init_pause_thresholds(cp);
3726 	cas_init_mac(cp);
3727 	cas_init_dma(cp);
3728 
3729 	if (restart_link) {
3730 		/* Default aneg parameters */
3731 		cp->timer_ticks = 0;
3732 		cas_begin_auto_negotiation(cp, NULL);
3733 	} else if (cp->lstate == link_up) {
3734 		cas_set_link_modes(cp);
3735 		netif_carrier_on(cp->dev);
3736 	}
3737 }
3738 
3739 /* Must be invoked under cp->lock. on earlier cassini boards,
3740  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3741  * let it settle out, and then restore pci state.
3742  */
3743 static void cas_hard_reset(struct cas *cp)
3744 {
3745 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3746 	udelay(20);
3747 	pci_restore_state(cp->pdev);
3748 }
3749 
3750 
3751 static void cas_global_reset(struct cas *cp, int blkflag)
3752 {
3753 	int limit;
3754 
3755 	/* issue a global reset. don't use RSTOUT. */
3756 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3757 		/* For PCS, when the blkflag is set, we should set the
3758 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3759 		 * the last autonegotiation from being cleared.  We'll
3760 		 * need some special handling if the chip is set into a
3761 		 * loopback mode.
3762 		 */
3763 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3764 		       cp->regs + REG_SW_RESET);
3765 	} else {
3766 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3767 	}
3768 
3769 	/* need to wait at least 3ms before polling register */
3770 	mdelay(3);
3771 
3772 	limit = STOP_TRIES;
3773 	while (limit-- > 0) {
3774 		u32 val = readl(cp->regs + REG_SW_RESET);
3775 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3776 			goto done;
3777 		udelay(10);
3778 	}
3779 	netdev_err(cp->dev, "sw reset failed\n");
3780 
3781 done:
3782 	/* enable various BIM interrupts */
3783 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3784 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3785 
3786 	/* clear out pci error status mask for handled errors.
3787 	 * we don't deal with DMA counter overflows as they happen
3788 	 * all the time.
3789 	 */
3790 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3791 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3792 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3793 	       REG_PCI_ERR_STATUS_MASK);
3794 
3795 	/* set up for MII by default to address mac rx reset timeout
3796 	 * issue
3797 	 */
3798 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3799 }
3800 
3801 static void cas_reset(struct cas *cp, int blkflag)
3802 {
3803 	u32 val;
3804 
3805 	cas_mask_intr(cp);
3806 	cas_global_reset(cp, blkflag);
3807 	cas_mac_reset(cp);
3808 	cas_entropy_reset(cp);
3809 
3810 	/* disable dma engines. */
3811 	val = readl(cp->regs + REG_TX_CFG);
3812 	val &= ~TX_CFG_DMA_EN;
3813 	writel(val, cp->regs + REG_TX_CFG);
3814 
3815 	val = readl(cp->regs + REG_RX_CFG);
3816 	val &= ~RX_CFG_DMA_EN;
3817 	writel(val, cp->regs + REG_RX_CFG);
3818 
3819 	/* program header parser */
3820 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3821 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3822 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3823 	} else {
3824 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3825 	}
3826 
3827 	/* clear out error registers */
3828 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3829 	cas_clear_mac_err(cp);
3830 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3831 }
3832 
3833 /* Shut down the chip, must be called with pm_mutex held.  */
3834 static void cas_shutdown(struct cas *cp)
3835 {
3836 	unsigned long flags;
3837 
3838 	/* Make us not-running to avoid timers respawning */
3839 	cp->hw_running = 0;
3840 
3841 	del_timer_sync(&cp->link_timer);
3842 
3843 	/* Stop the reset task */
3844 #if 0
3845 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3846 	       atomic_read(&cp->reset_task_pending_spare) ||
3847 	       atomic_read(&cp->reset_task_pending_all))
3848 		schedule();
3849 
3850 #else
3851 	while (atomic_read(&cp->reset_task_pending))
3852 		schedule();
3853 #endif
3854 	/* Actually stop the chip */
3855 	cas_lock_all_save(cp, flags);
3856 	cas_reset(cp, 0);
3857 	if (cp->cas_flags & CAS_FLAG_SATURN)
3858 		cas_phy_powerdown(cp);
3859 	cas_unlock_all_restore(cp, flags);
3860 }
3861 
3862 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3863 {
3864 	struct cas *cp = netdev_priv(dev);
3865 
3866 	dev->mtu = new_mtu;
3867 	if (!netif_running(dev) || !netif_device_present(dev))
3868 		return 0;
3869 
3870 	/* let the reset task handle it */
3871 #if 1
3872 	atomic_inc(&cp->reset_task_pending);
3873 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3874 		atomic_inc(&cp->reset_task_pending_all);
3875 	} else {
3876 		atomic_inc(&cp->reset_task_pending_mtu);
3877 	}
3878 	schedule_work(&cp->reset_task);
3879 #else
3880 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3881 		   CAS_RESET_ALL : CAS_RESET_MTU);
3882 	pr_err("reset called in cas_change_mtu\n");
3883 	schedule_work(&cp->reset_task);
3884 #endif
3885 
3886 	flush_work(&cp->reset_task);
3887 	return 0;
3888 }
3889 
3890 static void cas_clean_txd(struct cas *cp, int ring)
3891 {
3892 	struct cas_tx_desc *txd = cp->init_txds[ring];
3893 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3894 	u64 daddr, dlen;
3895 	int i, size;
3896 
3897 	size = TX_DESC_RINGN_SIZE(ring);
3898 	for (i = 0; i < size; i++) {
3899 		int frag;
3900 
3901 		if (skbs[i] == NULL)
3902 			continue;
3903 
3904 		skb = skbs[i];
3905 		skbs[i] = NULL;
3906 
3907 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3908 			int ent = i & (size - 1);
3909 
3910 			/* first buffer is never a tiny buffer and so
3911 			 * needs to be unmapped.
3912 			 */
3913 			daddr = le64_to_cpu(txd[ent].buffer);
3914 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3915 					 le64_to_cpu(txd[ent].control));
3916 			pci_unmap_page(cp->pdev, daddr, dlen,
3917 				       PCI_DMA_TODEVICE);
3918 
3919 			if (frag != skb_shinfo(skb)->nr_frags) {
3920 				i++;
3921 
3922 				/* next buffer might by a tiny buffer.
3923 				 * skip past it.
3924 				 */
3925 				ent = i & (size - 1);
3926 				if (cp->tx_tiny_use[ring][ent].used)
3927 					i++;
3928 			}
3929 		}
3930 		dev_kfree_skb_any(skb);
3931 	}
3932 
3933 	/* zero out tiny buf usage */
3934 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3935 }
3936 
3937 /* freed on close */
3938 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3939 {
3940 	cas_page_t **page = cp->rx_pages[ring];
3941 	int i, size;
3942 
3943 	size = RX_DESC_RINGN_SIZE(ring);
3944 	for (i = 0; i < size; i++) {
3945 		if (page[i]) {
3946 			cas_page_free(cp, page[i]);
3947 			page[i] = NULL;
3948 		}
3949 	}
3950 }
3951 
3952 static void cas_free_rxds(struct cas *cp)
3953 {
3954 	int i;
3955 
3956 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3957 		cas_free_rx_desc(cp, i);
3958 }
3959 
3960 /* Must be invoked under cp->lock. */
3961 static void cas_clean_rings(struct cas *cp)
3962 {
3963 	int i;
3964 
3965 	/* need to clean all tx rings */
3966 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3967 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3968 	for (i = 0; i < N_TX_RINGS; i++)
3969 		cas_clean_txd(cp, i);
3970 
3971 	/* zero out init block */
3972 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3973 	cas_clean_rxds(cp);
3974 	cas_clean_rxcs(cp);
3975 }
3976 
3977 /* allocated on open */
3978 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3979 {
3980 	cas_page_t **page = cp->rx_pages[ring];
3981 	int size, i = 0;
3982 
3983 	size = RX_DESC_RINGN_SIZE(ring);
3984 	for (i = 0; i < size; i++) {
3985 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3986 			return -1;
3987 	}
3988 	return 0;
3989 }
3990 
3991 static int cas_alloc_rxds(struct cas *cp)
3992 {
3993 	int i;
3994 
3995 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3996 		if (cas_alloc_rx_desc(cp, i) < 0) {
3997 			cas_free_rxds(cp);
3998 			return -1;
3999 		}
4000 	}
4001 	return 0;
4002 }
4003 
4004 static void cas_reset_task(struct work_struct *work)
4005 {
4006 	struct cas *cp = container_of(work, struct cas, reset_task);
4007 #if 0
4008 	int pending = atomic_read(&cp->reset_task_pending);
4009 #else
4010 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4011 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4012 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4013 
4014 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4015 		/* We can have more tasks scheduled than actually
4016 		 * needed.
4017 		 */
4018 		atomic_dec(&cp->reset_task_pending);
4019 		return;
4020 	}
4021 #endif
4022 	/* The link went down, we reset the ring, but keep
4023 	 * DMA stopped. Use this function for reset
4024 	 * on error as well.
4025 	 */
4026 	if (cp->hw_running) {
4027 		unsigned long flags;
4028 
4029 		/* Make sure we don't get interrupts or tx packets */
4030 		netif_device_detach(cp->dev);
4031 		cas_lock_all_save(cp, flags);
4032 
4033 		if (cp->opened) {
4034 			/* We call cas_spare_recover when we call cas_open.
4035 			 * but we do not initialize the lists cas_spare_recover
4036 			 * uses until cas_open is called.
4037 			 */
4038 			cas_spare_recover(cp, GFP_ATOMIC);
4039 		}
4040 #if 1
4041 		/* test => only pending_spare set */
4042 		if (!pending_all && !pending_mtu)
4043 			goto done;
4044 #else
4045 		if (pending == CAS_RESET_SPARE)
4046 			goto done;
4047 #endif
4048 		/* when pending == CAS_RESET_ALL, the following
4049 		 * call to cas_init_hw will restart auto negotiation.
4050 		 * Setting the second argument of cas_reset to
4051 		 * !(pending == CAS_RESET_ALL) will set this argument
4052 		 * to 1 (avoiding reinitializing the PHY for the normal
4053 		 * PCS case) when auto negotiation is not restarted.
4054 		 */
4055 #if 1
4056 		cas_reset(cp, !(pending_all > 0));
4057 		if (cp->opened)
4058 			cas_clean_rings(cp);
4059 		cas_init_hw(cp, (pending_all > 0));
4060 #else
4061 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4062 		if (cp->opened)
4063 			cas_clean_rings(cp);
4064 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4065 #endif
4066 
4067 done:
4068 		cas_unlock_all_restore(cp, flags);
4069 		netif_device_attach(cp->dev);
4070 	}
4071 #if 1
4072 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4073 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4074 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4075 	atomic_dec(&cp->reset_task_pending);
4076 #else
4077 	atomic_set(&cp->reset_task_pending, 0);
4078 #endif
4079 }
4080 
4081 static void cas_link_timer(unsigned long data)
4082 {
4083 	struct cas *cp = (struct cas *) data;
4084 	int mask, pending = 0, reset = 0;
4085 	unsigned long flags;
4086 
4087 	if (link_transition_timeout != 0 &&
4088 	    cp->link_transition_jiffies_valid &&
4089 	    ((jiffies - cp->link_transition_jiffies) >
4090 	      (link_transition_timeout))) {
4091 		/* One-second counter so link-down workaround doesn't
4092 		 * cause resets to occur so fast as to fool the switch
4093 		 * into thinking the link is down.
4094 		 */
4095 		cp->link_transition_jiffies_valid = 0;
4096 	}
4097 
4098 	if (!cp->hw_running)
4099 		return;
4100 
4101 	spin_lock_irqsave(&cp->lock, flags);
4102 	cas_lock_tx(cp);
4103 	cas_entropy_gather(cp);
4104 
4105 	/* If the link task is still pending, we just
4106 	 * reschedule the link timer
4107 	 */
4108 #if 1
4109 	if (atomic_read(&cp->reset_task_pending_all) ||
4110 	    atomic_read(&cp->reset_task_pending_spare) ||
4111 	    atomic_read(&cp->reset_task_pending_mtu))
4112 		goto done;
4113 #else
4114 	if (atomic_read(&cp->reset_task_pending))
4115 		goto done;
4116 #endif
4117 
4118 	/* check for rx cleaning */
4119 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4120 		int i, rmask;
4121 
4122 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4123 			rmask = CAS_FLAG_RXD_POST(i);
4124 			if ((mask & rmask) == 0)
4125 				continue;
4126 
4127 			/* post_rxds will do a mod_timer */
4128 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4129 				pending = 1;
4130 				continue;
4131 			}
4132 			cp->cas_flags &= ~rmask;
4133 		}
4134 	}
4135 
4136 	if (CAS_PHY_MII(cp->phy_type)) {
4137 		u16 bmsr;
4138 		cas_mif_poll(cp, 0);
4139 		bmsr = cas_phy_read(cp, MII_BMSR);
4140 		/* WTZ: Solaris driver reads this twice, but that
4141 		 * may be due to the PCS case and the use of a
4142 		 * common implementation. Read it twice here to be
4143 		 * safe.
4144 		 */
4145 		bmsr = cas_phy_read(cp, MII_BMSR);
4146 		cas_mif_poll(cp, 1);
4147 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4148 		reset = cas_mii_link_check(cp, bmsr);
4149 	} else {
4150 		reset = cas_pcs_link_check(cp);
4151 	}
4152 
4153 	if (reset)
4154 		goto done;
4155 
4156 	/* check for tx state machine confusion */
4157 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4158 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4159 		u32 wptr, rptr;
4160 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4161 
4162 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4163 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4164 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4165 				     "tx err: MAC_STATE[%08x]\n", val);
4166 			reset = 1;
4167 			goto done;
4168 		}
4169 
4170 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4171 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4172 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4173 		if ((val == 0) && (wptr != rptr)) {
4174 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4175 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4176 				     val, wptr, rptr);
4177 			reset = 1;
4178 		}
4179 
4180 		if (reset)
4181 			cas_hard_reset(cp);
4182 	}
4183 
4184 done:
4185 	if (reset) {
4186 #if 1
4187 		atomic_inc(&cp->reset_task_pending);
4188 		atomic_inc(&cp->reset_task_pending_all);
4189 		schedule_work(&cp->reset_task);
4190 #else
4191 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4192 		pr_err("reset called in cas_link_timer\n");
4193 		schedule_work(&cp->reset_task);
4194 #endif
4195 	}
4196 
4197 	if (!pending)
4198 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4199 	cas_unlock_tx(cp);
4200 	spin_unlock_irqrestore(&cp->lock, flags);
4201 }
4202 
4203 /* tiny buffers are used to avoid target abort issues with
4204  * older cassini's
4205  */
4206 static void cas_tx_tiny_free(struct cas *cp)
4207 {
4208 	struct pci_dev *pdev = cp->pdev;
4209 	int i;
4210 
4211 	for (i = 0; i < N_TX_RINGS; i++) {
4212 		if (!cp->tx_tiny_bufs[i])
4213 			continue;
4214 
4215 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4216 				    cp->tx_tiny_bufs[i],
4217 				    cp->tx_tiny_dvma[i]);
4218 		cp->tx_tiny_bufs[i] = NULL;
4219 	}
4220 }
4221 
4222 static int cas_tx_tiny_alloc(struct cas *cp)
4223 {
4224 	struct pci_dev *pdev = cp->pdev;
4225 	int i;
4226 
4227 	for (i = 0; i < N_TX_RINGS; i++) {
4228 		cp->tx_tiny_bufs[i] =
4229 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4230 					     &cp->tx_tiny_dvma[i]);
4231 		if (!cp->tx_tiny_bufs[i]) {
4232 			cas_tx_tiny_free(cp);
4233 			return -1;
4234 		}
4235 	}
4236 	return 0;
4237 }
4238 
4239 
4240 static int cas_open(struct net_device *dev)
4241 {
4242 	struct cas *cp = netdev_priv(dev);
4243 	int hw_was_up, err;
4244 	unsigned long flags;
4245 
4246 	mutex_lock(&cp->pm_mutex);
4247 
4248 	hw_was_up = cp->hw_running;
4249 
4250 	/* The power-management mutex protects the hw_running
4251 	 * etc. state so it is safe to do this bit without cp->lock
4252 	 */
4253 	if (!cp->hw_running) {
4254 		/* Reset the chip */
4255 		cas_lock_all_save(cp, flags);
4256 		/* We set the second arg to cas_reset to zero
4257 		 * because cas_init_hw below will have its second
4258 		 * argument set to non-zero, which will force
4259 		 * autonegotiation to start.
4260 		 */
4261 		cas_reset(cp, 0);
4262 		cp->hw_running = 1;
4263 		cas_unlock_all_restore(cp, flags);
4264 	}
4265 
4266 	err = -ENOMEM;
4267 	if (cas_tx_tiny_alloc(cp) < 0)
4268 		goto err_unlock;
4269 
4270 	/* alloc rx descriptors */
4271 	if (cas_alloc_rxds(cp) < 0)
4272 		goto err_tx_tiny;
4273 
4274 	/* allocate spares */
4275 	cas_spare_init(cp);
4276 	cas_spare_recover(cp, GFP_KERNEL);
4277 
4278 	/* We can now request the interrupt as we know it's masked
4279 	 * on the controller. cassini+ has up to 4 interrupts
4280 	 * that can be used, but you need to do explicit pci interrupt
4281 	 * mapping to expose them
4282 	 */
4283 	if (request_irq(cp->pdev->irq, cas_interrupt,
4284 			IRQF_SHARED, dev->name, (void *) dev)) {
4285 		netdev_err(cp->dev, "failed to request irq !\n");
4286 		err = -EAGAIN;
4287 		goto err_spare;
4288 	}
4289 
4290 #ifdef USE_NAPI
4291 	napi_enable(&cp->napi);
4292 #endif
4293 	/* init hw */
4294 	cas_lock_all_save(cp, flags);
4295 	cas_clean_rings(cp);
4296 	cas_init_hw(cp, !hw_was_up);
4297 	cp->opened = 1;
4298 	cas_unlock_all_restore(cp, flags);
4299 
4300 	netif_start_queue(dev);
4301 	mutex_unlock(&cp->pm_mutex);
4302 	return 0;
4303 
4304 err_spare:
4305 	cas_spare_free(cp);
4306 	cas_free_rxds(cp);
4307 err_tx_tiny:
4308 	cas_tx_tiny_free(cp);
4309 err_unlock:
4310 	mutex_unlock(&cp->pm_mutex);
4311 	return err;
4312 }
4313 
4314 static int cas_close(struct net_device *dev)
4315 {
4316 	unsigned long flags;
4317 	struct cas *cp = netdev_priv(dev);
4318 
4319 #ifdef USE_NAPI
4320 	napi_disable(&cp->napi);
4321 #endif
4322 	/* Make sure we don't get distracted by suspend/resume */
4323 	mutex_lock(&cp->pm_mutex);
4324 
4325 	netif_stop_queue(dev);
4326 
4327 	/* Stop traffic, mark us closed */
4328 	cas_lock_all_save(cp, flags);
4329 	cp->opened = 0;
4330 	cas_reset(cp, 0);
4331 	cas_phy_init(cp);
4332 	cas_begin_auto_negotiation(cp, NULL);
4333 	cas_clean_rings(cp);
4334 	cas_unlock_all_restore(cp, flags);
4335 
4336 	free_irq(cp->pdev->irq, (void *) dev);
4337 	cas_spare_free(cp);
4338 	cas_free_rxds(cp);
4339 	cas_tx_tiny_free(cp);
4340 	mutex_unlock(&cp->pm_mutex);
4341 	return 0;
4342 }
4343 
4344 static struct {
4345 	const char name[ETH_GSTRING_LEN];
4346 } ethtool_cassini_statnames[] = {
4347 	{"collisions"},
4348 	{"rx_bytes"},
4349 	{"rx_crc_errors"},
4350 	{"rx_dropped"},
4351 	{"rx_errors"},
4352 	{"rx_fifo_errors"},
4353 	{"rx_frame_errors"},
4354 	{"rx_length_errors"},
4355 	{"rx_over_errors"},
4356 	{"rx_packets"},
4357 	{"tx_aborted_errors"},
4358 	{"tx_bytes"},
4359 	{"tx_dropped"},
4360 	{"tx_errors"},
4361 	{"tx_fifo_errors"},
4362 	{"tx_packets"}
4363 };
4364 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4365 
4366 static struct {
4367 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4368 } ethtool_register_table[] = {
4369 	{-MII_BMSR},
4370 	{-MII_BMCR},
4371 	{REG_CAWR},
4372 	{REG_INF_BURST},
4373 	{REG_BIM_CFG},
4374 	{REG_RX_CFG},
4375 	{REG_HP_CFG},
4376 	{REG_MAC_TX_CFG},
4377 	{REG_MAC_RX_CFG},
4378 	{REG_MAC_CTRL_CFG},
4379 	{REG_MAC_XIF_CFG},
4380 	{REG_MIF_CFG},
4381 	{REG_PCS_CFG},
4382 	{REG_SATURN_PCFG},
4383 	{REG_PCS_MII_STATUS},
4384 	{REG_PCS_STATE_MACHINE},
4385 	{REG_MAC_COLL_EXCESS},
4386 	{REG_MAC_COLL_LATE}
4387 };
4388 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4389 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4390 
4391 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4392 {
4393 	u8 *p;
4394 	int i;
4395 	unsigned long flags;
4396 
4397 	spin_lock_irqsave(&cp->lock, flags);
4398 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4399 		u16 hval;
4400 		u32 val;
4401 		if (ethtool_register_table[i].offsets < 0) {
4402 			hval = cas_phy_read(cp,
4403 				    -ethtool_register_table[i].offsets);
4404 			val = hval;
4405 		} else {
4406 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4407 		}
4408 		memcpy(p, (u8 *)&val, sizeof(u32));
4409 	}
4410 	spin_unlock_irqrestore(&cp->lock, flags);
4411 }
4412 
4413 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4414 {
4415 	struct cas *cp = netdev_priv(dev);
4416 	struct net_device_stats *stats = cp->net_stats;
4417 	unsigned long flags;
4418 	int i;
4419 	unsigned long tmp;
4420 
4421 	/* we collate all of the stats into net_stats[N_TX_RING] */
4422 	if (!cp->hw_running)
4423 		return stats + N_TX_RINGS;
4424 
4425 	/* collect outstanding stats */
4426 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4427 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4428 	 * in case the chip somehow puts any garbage in the other bits.
4429 	 * Also, counter usage didn't seem to mach what Adrian did
4430 	 * in the parts of the code that set these quantities. Made
4431 	 * that consistent.
4432 	 */
4433 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4434 	stats[N_TX_RINGS].rx_crc_errors +=
4435 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4436 	stats[N_TX_RINGS].rx_frame_errors +=
4437 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4438 	stats[N_TX_RINGS].rx_length_errors +=
4439 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4440 #if 1
4441 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4442 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4443 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4444 	stats[N_TX_RINGS].collisions +=
4445 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4446 #else
4447 	stats[N_TX_RINGS].tx_aborted_errors +=
4448 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4449 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4450 		readl(cp->regs + REG_MAC_COLL_LATE);
4451 #endif
4452 	cas_clear_mac_err(cp);
4453 
4454 	/* saved bits that are unique to ring 0 */
4455 	spin_lock(&cp->stat_lock[0]);
4456 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4457 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4458 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4459 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4460 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4461 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4462 	spin_unlock(&cp->stat_lock[0]);
4463 
4464 	for (i = 0; i < N_TX_RINGS; i++) {
4465 		spin_lock(&cp->stat_lock[i]);
4466 		stats[N_TX_RINGS].rx_length_errors +=
4467 			stats[i].rx_length_errors;
4468 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4469 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4470 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4471 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4472 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4473 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4474 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4475 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4476 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4477 		memset(stats + i, 0, sizeof(struct net_device_stats));
4478 		spin_unlock(&cp->stat_lock[i]);
4479 	}
4480 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4481 	return stats + N_TX_RINGS;
4482 }
4483 
4484 
4485 static void cas_set_multicast(struct net_device *dev)
4486 {
4487 	struct cas *cp = netdev_priv(dev);
4488 	u32 rxcfg, rxcfg_new;
4489 	unsigned long flags;
4490 	int limit = STOP_TRIES;
4491 
4492 	if (!cp->hw_running)
4493 		return;
4494 
4495 	spin_lock_irqsave(&cp->lock, flags);
4496 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4497 
4498 	/* disable RX MAC and wait for completion */
4499 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4500 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4501 		if (!limit--)
4502 			break;
4503 		udelay(10);
4504 	}
4505 
4506 	/* disable hash filter and wait for completion */
4507 	limit = STOP_TRIES;
4508 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4509 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4510 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4511 		if (!limit--)
4512 			break;
4513 		udelay(10);
4514 	}
4515 
4516 	/* program hash filters */
4517 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4518 	rxcfg |= rxcfg_new;
4519 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4520 	spin_unlock_irqrestore(&cp->lock, flags);
4521 }
4522 
4523 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4524 {
4525 	struct cas *cp = netdev_priv(dev);
4526 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4527 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4528 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4529 }
4530 
4531 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4532 {
4533 	struct cas *cp = netdev_priv(dev);
4534 	u16 bmcr;
4535 	int full_duplex, speed, pause;
4536 	unsigned long flags;
4537 	enum link_state linkstate = link_up;
4538 
4539 	cmd->advertising = 0;
4540 	cmd->supported = SUPPORTED_Autoneg;
4541 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4542 		cmd->supported |= SUPPORTED_1000baseT_Full;
4543 		cmd->advertising |= ADVERTISED_1000baseT_Full;
4544 	}
4545 
4546 	/* Record PHY settings if HW is on. */
4547 	spin_lock_irqsave(&cp->lock, flags);
4548 	bmcr = 0;
4549 	linkstate = cp->lstate;
4550 	if (CAS_PHY_MII(cp->phy_type)) {
4551 		cmd->port = PORT_MII;
4552 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4553 			XCVR_INTERNAL : XCVR_EXTERNAL;
4554 		cmd->phy_address = cp->phy_addr;
4555 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4556 			ADVERTISED_10baseT_Half |
4557 			ADVERTISED_10baseT_Full |
4558 			ADVERTISED_100baseT_Half |
4559 			ADVERTISED_100baseT_Full;
4560 
4561 		cmd->supported |=
4562 			(SUPPORTED_10baseT_Half |
4563 			 SUPPORTED_10baseT_Full |
4564 			 SUPPORTED_100baseT_Half |
4565 			 SUPPORTED_100baseT_Full |
4566 			 SUPPORTED_TP | SUPPORTED_MII);
4567 
4568 		if (cp->hw_running) {
4569 			cas_mif_poll(cp, 0);
4570 			bmcr = cas_phy_read(cp, MII_BMCR);
4571 			cas_read_mii_link_mode(cp, &full_duplex,
4572 					       &speed, &pause);
4573 			cas_mif_poll(cp, 1);
4574 		}
4575 
4576 	} else {
4577 		cmd->port = PORT_FIBRE;
4578 		cmd->transceiver = XCVR_INTERNAL;
4579 		cmd->phy_address = 0;
4580 		cmd->supported   |= SUPPORTED_FIBRE;
4581 		cmd->advertising |= ADVERTISED_FIBRE;
4582 
4583 		if (cp->hw_running) {
4584 			/* pcs uses the same bits as mii */
4585 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4586 			cas_read_pcs_link_mode(cp, &full_duplex,
4587 					       &speed, &pause);
4588 		}
4589 	}
4590 	spin_unlock_irqrestore(&cp->lock, flags);
4591 
4592 	if (bmcr & BMCR_ANENABLE) {
4593 		cmd->advertising |= ADVERTISED_Autoneg;
4594 		cmd->autoneg = AUTONEG_ENABLE;
4595 		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4596 					    SPEED_10 :
4597 					    ((speed == 1000) ?
4598 					     SPEED_1000 : SPEED_100)));
4599 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4600 	} else {
4601 		cmd->autoneg = AUTONEG_DISABLE;
4602 		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4603 					    SPEED_1000 :
4604 					    ((bmcr & BMCR_SPEED100) ?
4605 					     SPEED_100 : SPEED_10)));
4606 		cmd->duplex =
4607 			(bmcr & BMCR_FULLDPLX) ?
4608 			DUPLEX_FULL : DUPLEX_HALF;
4609 	}
4610 	if (linkstate != link_up) {
4611 		/* Force these to "unknown" if the link is not up and
4612 		 * autonogotiation in enabled. We can set the link
4613 		 * speed to 0, but not cmd->duplex,
4614 		 * because its legal values are 0 and 1.  Ethtool will
4615 		 * print the value reported in parentheses after the
4616 		 * word "Unknown" for unrecognized values.
4617 		 *
4618 		 * If in forced mode, we report the speed and duplex
4619 		 * settings that we configured.
4620 		 */
4621 		if (cp->link_cntl & BMCR_ANENABLE) {
4622 			ethtool_cmd_speed_set(cmd, 0);
4623 			cmd->duplex = 0xff;
4624 		} else {
4625 			ethtool_cmd_speed_set(cmd, SPEED_10);
4626 			if (cp->link_cntl & BMCR_SPEED100) {
4627 				ethtool_cmd_speed_set(cmd, SPEED_100);
4628 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4629 				ethtool_cmd_speed_set(cmd, SPEED_1000);
4630 			}
4631 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4632 				DUPLEX_FULL : DUPLEX_HALF;
4633 		}
4634 	}
4635 	return 0;
4636 }
4637 
4638 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4639 {
4640 	struct cas *cp = netdev_priv(dev);
4641 	unsigned long flags;
4642 	u32 speed = ethtool_cmd_speed(cmd);
4643 
4644 	/* Verify the settings we care about. */
4645 	if (cmd->autoneg != AUTONEG_ENABLE &&
4646 	    cmd->autoneg != AUTONEG_DISABLE)
4647 		return -EINVAL;
4648 
4649 	if (cmd->autoneg == AUTONEG_DISABLE &&
4650 	    ((speed != SPEED_1000 &&
4651 	      speed != SPEED_100 &&
4652 	      speed != SPEED_10) ||
4653 	     (cmd->duplex != DUPLEX_HALF &&
4654 	      cmd->duplex != DUPLEX_FULL)))
4655 		return -EINVAL;
4656 
4657 	/* Apply settings and restart link process. */
4658 	spin_lock_irqsave(&cp->lock, flags);
4659 	cas_begin_auto_negotiation(cp, cmd);
4660 	spin_unlock_irqrestore(&cp->lock, flags);
4661 	return 0;
4662 }
4663 
4664 static int cas_nway_reset(struct net_device *dev)
4665 {
4666 	struct cas *cp = netdev_priv(dev);
4667 	unsigned long flags;
4668 
4669 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4670 		return -EINVAL;
4671 
4672 	/* Restart link process. */
4673 	spin_lock_irqsave(&cp->lock, flags);
4674 	cas_begin_auto_negotiation(cp, NULL);
4675 	spin_unlock_irqrestore(&cp->lock, flags);
4676 
4677 	return 0;
4678 }
4679 
4680 static u32 cas_get_link(struct net_device *dev)
4681 {
4682 	struct cas *cp = netdev_priv(dev);
4683 	return cp->lstate == link_up;
4684 }
4685 
4686 static u32 cas_get_msglevel(struct net_device *dev)
4687 {
4688 	struct cas *cp = netdev_priv(dev);
4689 	return cp->msg_enable;
4690 }
4691 
4692 static void cas_set_msglevel(struct net_device *dev, u32 value)
4693 {
4694 	struct cas *cp = netdev_priv(dev);
4695 	cp->msg_enable = value;
4696 }
4697 
4698 static int cas_get_regs_len(struct net_device *dev)
4699 {
4700 	struct cas *cp = netdev_priv(dev);
4701 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4702 }
4703 
4704 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4705 			     void *p)
4706 {
4707 	struct cas *cp = netdev_priv(dev);
4708 	regs->version = 0;
4709 	/* cas_read_regs handles locks (cp->lock).  */
4710 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4711 }
4712 
4713 static int cas_get_sset_count(struct net_device *dev, int sset)
4714 {
4715 	switch (sset) {
4716 	case ETH_SS_STATS:
4717 		return CAS_NUM_STAT_KEYS;
4718 	default:
4719 		return -EOPNOTSUPP;
4720 	}
4721 }
4722 
4723 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4724 {
4725 	 memcpy(data, &ethtool_cassini_statnames,
4726 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4727 }
4728 
4729 static void cas_get_ethtool_stats(struct net_device *dev,
4730 				      struct ethtool_stats *estats, u64 *data)
4731 {
4732 	struct cas *cp = netdev_priv(dev);
4733 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4734 	int i = 0;
4735 	data[i++] = stats->collisions;
4736 	data[i++] = stats->rx_bytes;
4737 	data[i++] = stats->rx_crc_errors;
4738 	data[i++] = stats->rx_dropped;
4739 	data[i++] = stats->rx_errors;
4740 	data[i++] = stats->rx_fifo_errors;
4741 	data[i++] = stats->rx_frame_errors;
4742 	data[i++] = stats->rx_length_errors;
4743 	data[i++] = stats->rx_over_errors;
4744 	data[i++] = stats->rx_packets;
4745 	data[i++] = stats->tx_aborted_errors;
4746 	data[i++] = stats->tx_bytes;
4747 	data[i++] = stats->tx_dropped;
4748 	data[i++] = stats->tx_errors;
4749 	data[i++] = stats->tx_fifo_errors;
4750 	data[i++] = stats->tx_packets;
4751 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4752 }
4753 
4754 static const struct ethtool_ops cas_ethtool_ops = {
4755 	.get_drvinfo		= cas_get_drvinfo,
4756 	.get_settings		= cas_get_settings,
4757 	.set_settings		= cas_set_settings,
4758 	.nway_reset		= cas_nway_reset,
4759 	.get_link		= cas_get_link,
4760 	.get_msglevel		= cas_get_msglevel,
4761 	.set_msglevel		= cas_set_msglevel,
4762 	.get_regs_len		= cas_get_regs_len,
4763 	.get_regs		= cas_get_regs,
4764 	.get_sset_count		= cas_get_sset_count,
4765 	.get_strings		= cas_get_strings,
4766 	.get_ethtool_stats	= cas_get_ethtool_stats,
4767 };
4768 
4769 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4770 {
4771 	struct cas *cp = netdev_priv(dev);
4772 	struct mii_ioctl_data *data = if_mii(ifr);
4773 	unsigned long flags;
4774 	int rc = -EOPNOTSUPP;
4775 
4776 	/* Hold the PM mutex while doing ioctl's or we may collide
4777 	 * with open/close and power management and oops.
4778 	 */
4779 	mutex_lock(&cp->pm_mutex);
4780 	switch (cmd) {
4781 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4782 		data->phy_id = cp->phy_addr;
4783 		/* Fallthrough... */
4784 
4785 	case SIOCGMIIREG:		/* Read MII PHY register. */
4786 		spin_lock_irqsave(&cp->lock, flags);
4787 		cas_mif_poll(cp, 0);
4788 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4789 		cas_mif_poll(cp, 1);
4790 		spin_unlock_irqrestore(&cp->lock, flags);
4791 		rc = 0;
4792 		break;
4793 
4794 	case SIOCSMIIREG:		/* Write MII PHY register. */
4795 		spin_lock_irqsave(&cp->lock, flags);
4796 		cas_mif_poll(cp, 0);
4797 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4798 		cas_mif_poll(cp, 1);
4799 		spin_unlock_irqrestore(&cp->lock, flags);
4800 		break;
4801 	default:
4802 		break;
4803 	}
4804 
4805 	mutex_unlock(&cp->pm_mutex);
4806 	return rc;
4807 }
4808 
4809 /* When this chip sits underneath an Intel 31154 bridge, it is the
4810  * only subordinate device and we can tweak the bridge settings to
4811  * reflect that fact.
4812  */
4813 static void cas_program_bridge(struct pci_dev *cas_pdev)
4814 {
4815 	struct pci_dev *pdev = cas_pdev->bus->self;
4816 	u32 val;
4817 
4818 	if (!pdev)
4819 		return;
4820 
4821 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4822 		return;
4823 
4824 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4825 	 * Arbiter Control/Status Register which lives at offset
4826 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4827 	 * is much simpler so that's how we do this.
4828 	 */
4829 	pci_read_config_dword(pdev, 0x40, &val);
4830 	val &= ~0x00040000;
4831 	pci_write_config_dword(pdev, 0x40, val);
4832 
4833 	/* Max out the Multi-Transaction Timer settings since
4834 	 * Cassini is the only device present.
4835 	 *
4836 	 * The register is 16-bit and lives at 0x50.  When the
4837 	 * settings are enabled, it extends the GRANT# signal
4838 	 * for a requestor after a transaction is complete.  This
4839 	 * allows the next request to run without first needing
4840 	 * to negotiate the GRANT# signal back.
4841 	 *
4842 	 * Bits 12:10 define the grant duration:
4843 	 *
4844 	 *	1	--	16 clocks
4845 	 *	2	--	32 clocks
4846 	 *	3	--	64 clocks
4847 	 *	4	--	128 clocks
4848 	 *	5	--	256 clocks
4849 	 *
4850 	 * All other values are illegal.
4851 	 *
4852 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4853 	 * GRANT# signal treatment.  We set them all.
4854 	 */
4855 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4856 
4857 	/* The Read Prefecth Policy register is 16-bit and sits at
4858 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4859 	 * enable it and max out all of the settings since only one
4860 	 * device is sitting underneath and thus bandwidth sharing is
4861 	 * not an issue.
4862 	 *
4863 	 * The register has several 3 bit fields, which indicates a
4864 	 * multiplier applied to the base amount of prefetching the
4865 	 * chip would do.  These fields are at:
4866 	 *
4867 	 *	15:13	---	ReRead Primary Bus
4868 	 *	12:10	---	FirstRead Primary Bus
4869 	 *	09:07	---	ReRead Secondary Bus
4870 	 *	06:04	---	FirstRead Secondary Bus
4871 	 *
4872 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4873 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4874 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4875 	 * the individual REQ/GNT pairs [2:0].
4876 	 */
4877 	pci_write_config_word(pdev, 0x52,
4878 			      (0x7 << 13) |
4879 			      (0x7 << 10) |
4880 			      (0x7 <<  7) |
4881 			      (0x7 <<  4) |
4882 			      (0xf <<  0));
4883 
4884 	/* Force cacheline size to 0x8 */
4885 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4886 
4887 	/* Force latency timer to maximum setting so Cassini can
4888 	 * sit on the bus as long as it likes.
4889 	 */
4890 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4891 }
4892 
4893 static const struct net_device_ops cas_netdev_ops = {
4894 	.ndo_open		= cas_open,
4895 	.ndo_stop		= cas_close,
4896 	.ndo_start_xmit		= cas_start_xmit,
4897 	.ndo_get_stats 		= cas_get_stats,
4898 	.ndo_set_rx_mode	= cas_set_multicast,
4899 	.ndo_do_ioctl		= cas_ioctl,
4900 	.ndo_tx_timeout		= cas_tx_timeout,
4901 	.ndo_change_mtu		= cas_change_mtu,
4902 	.ndo_set_mac_address	= eth_mac_addr,
4903 	.ndo_validate_addr	= eth_validate_addr,
4904 #ifdef CONFIG_NET_POLL_CONTROLLER
4905 	.ndo_poll_controller	= cas_netpoll,
4906 #endif
4907 };
4908 
4909 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4910 {
4911 	static int cas_version_printed = 0;
4912 	unsigned long casreg_len;
4913 	struct net_device *dev;
4914 	struct cas *cp;
4915 	int i, err, pci_using_dac;
4916 	u16 pci_cmd;
4917 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4918 
4919 	if (cas_version_printed++ == 0)
4920 		pr_info("%s", version);
4921 
4922 	err = pci_enable_device(pdev);
4923 	if (err) {
4924 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4925 		return err;
4926 	}
4927 
4928 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4929 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4930 		       "base address, aborting\n");
4931 		err = -ENODEV;
4932 		goto err_out_disable_pdev;
4933 	}
4934 
4935 	dev = alloc_etherdev(sizeof(*cp));
4936 	if (!dev) {
4937 		err = -ENOMEM;
4938 		goto err_out_disable_pdev;
4939 	}
4940 	SET_NETDEV_DEV(dev, &pdev->dev);
4941 
4942 	err = pci_request_regions(pdev, dev->name);
4943 	if (err) {
4944 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4945 		goto err_out_free_netdev;
4946 	}
4947 	pci_set_master(pdev);
4948 
4949 	/* we must always turn on parity response or else parity
4950 	 * doesn't get generated properly. disable SERR/PERR as well.
4951 	 * in addition, we want to turn MWI on.
4952 	 */
4953 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4954 	pci_cmd &= ~PCI_COMMAND_SERR;
4955 	pci_cmd |= PCI_COMMAND_PARITY;
4956 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4957 	if (pci_try_set_mwi(pdev))
4958 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4959 
4960 	cas_program_bridge(pdev);
4961 
4962 	/*
4963 	 * On some architectures, the default cache line size set
4964 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4965 	 * it for this case.  To start, we'll print some configuration
4966 	 * data.
4967 	 */
4968 #if 1
4969 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4970 			     &orig_cacheline_size);
4971 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4972 		cas_cacheline_size =
4973 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4974 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4975 		if (pci_write_config_byte(pdev,
4976 					  PCI_CACHE_LINE_SIZE,
4977 					  cas_cacheline_size)) {
4978 			dev_err(&pdev->dev, "Could not set PCI cache "
4979 			       "line size\n");
4980 			goto err_write_cacheline;
4981 		}
4982 	}
4983 #endif
4984 
4985 
4986 	/* Configure DMA attributes. */
4987 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4988 		pci_using_dac = 1;
4989 		err = pci_set_consistent_dma_mask(pdev,
4990 						  DMA_BIT_MASK(64));
4991 		if (err < 0) {
4992 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4993 			       "for consistent allocations\n");
4994 			goto err_out_free_res;
4995 		}
4996 
4997 	} else {
4998 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4999 		if (err) {
5000 			dev_err(&pdev->dev, "No usable DMA configuration, "
5001 			       "aborting\n");
5002 			goto err_out_free_res;
5003 		}
5004 		pci_using_dac = 0;
5005 	}
5006 
5007 	casreg_len = pci_resource_len(pdev, 0);
5008 
5009 	cp = netdev_priv(dev);
5010 	cp->pdev = pdev;
5011 #if 1
5012 	/* A value of 0 indicates we never explicitly set it */
5013 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5014 #endif
5015 	cp->dev = dev;
5016 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5017 	  cassini_debug;
5018 
5019 #if defined(CONFIG_SPARC)
5020 	cp->of_node = pci_device_to_OF_node(pdev);
5021 #endif
5022 
5023 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5024 	cp->link_transition_jiffies_valid = 0;
5025 
5026 	spin_lock_init(&cp->lock);
5027 	spin_lock_init(&cp->rx_inuse_lock);
5028 	spin_lock_init(&cp->rx_spare_lock);
5029 	for (i = 0; i < N_TX_RINGS; i++) {
5030 		spin_lock_init(&cp->stat_lock[i]);
5031 		spin_lock_init(&cp->tx_lock[i]);
5032 	}
5033 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5034 	mutex_init(&cp->pm_mutex);
5035 
5036 	init_timer(&cp->link_timer);
5037 	cp->link_timer.function = cas_link_timer;
5038 	cp->link_timer.data = (unsigned long) cp;
5039 
5040 #if 1
5041 	/* Just in case the implementation of atomic operations
5042 	 * change so that an explicit initialization is necessary.
5043 	 */
5044 	atomic_set(&cp->reset_task_pending, 0);
5045 	atomic_set(&cp->reset_task_pending_all, 0);
5046 	atomic_set(&cp->reset_task_pending_spare, 0);
5047 	atomic_set(&cp->reset_task_pending_mtu, 0);
5048 #endif
5049 	INIT_WORK(&cp->reset_task, cas_reset_task);
5050 
5051 	/* Default link parameters */
5052 	if (link_mode >= 0 && link_mode < 6)
5053 		cp->link_cntl = link_modes[link_mode];
5054 	else
5055 		cp->link_cntl = BMCR_ANENABLE;
5056 	cp->lstate = link_down;
5057 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5058 	netif_carrier_off(cp->dev);
5059 	cp->timer_ticks = 0;
5060 
5061 	/* give us access to cassini registers */
5062 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5063 	if (!cp->regs) {
5064 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5065 		goto err_out_free_res;
5066 	}
5067 	cp->casreg_len = casreg_len;
5068 
5069 	pci_save_state(pdev);
5070 	cas_check_pci_invariants(cp);
5071 	cas_hard_reset(cp);
5072 	cas_reset(cp, 0);
5073 	if (cas_check_invariants(cp))
5074 		goto err_out_iounmap;
5075 	if (cp->cas_flags & CAS_FLAG_SATURN)
5076 		cas_saturn_firmware_init(cp);
5077 
5078 	cp->init_block = (struct cas_init_block *)
5079 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5080 				     &cp->block_dvma);
5081 	if (!cp->init_block) {
5082 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5083 		goto err_out_iounmap;
5084 	}
5085 
5086 	for (i = 0; i < N_TX_RINGS; i++)
5087 		cp->init_txds[i] = cp->init_block->txds[i];
5088 
5089 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5090 		cp->init_rxds[i] = cp->init_block->rxds[i];
5091 
5092 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5093 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5094 
5095 	for (i = 0; i < N_RX_FLOWS; i++)
5096 		skb_queue_head_init(&cp->rx_flows[i]);
5097 
5098 	dev->netdev_ops = &cas_netdev_ops;
5099 	dev->ethtool_ops = &cas_ethtool_ops;
5100 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5101 
5102 #ifdef USE_NAPI
5103 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5104 #endif
5105 	dev->irq = pdev->irq;
5106 	dev->dma = 0;
5107 
5108 	/* Cassini features. */
5109 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5110 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5111 
5112 	if (pci_using_dac)
5113 		dev->features |= NETIF_F_HIGHDMA;
5114 
5115 	/* MTU range: 60 - varies or 9000 */
5116 	dev->min_mtu = CAS_MIN_MTU;
5117 	dev->max_mtu = CAS_MAX_MTU;
5118 
5119 	if (register_netdev(dev)) {
5120 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5121 		goto err_out_free_consistent;
5122 	}
5123 
5124 	i = readl(cp->regs + REG_BIM_CFG);
5125 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5126 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5127 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5128 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5129 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5130 		    dev->dev_addr);
5131 
5132 	pci_set_drvdata(pdev, dev);
5133 	cp->hw_running = 1;
5134 	cas_entropy_reset(cp);
5135 	cas_phy_init(cp);
5136 	cas_begin_auto_negotiation(cp, NULL);
5137 	return 0;
5138 
5139 err_out_free_consistent:
5140 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5141 			    cp->init_block, cp->block_dvma);
5142 
5143 err_out_iounmap:
5144 	mutex_lock(&cp->pm_mutex);
5145 	if (cp->hw_running)
5146 		cas_shutdown(cp);
5147 	mutex_unlock(&cp->pm_mutex);
5148 
5149 	pci_iounmap(pdev, cp->regs);
5150 
5151 
5152 err_out_free_res:
5153 	pci_release_regions(pdev);
5154 
5155 err_write_cacheline:
5156 	/* Try to restore it in case the error occurred after we
5157 	 * set it.
5158 	 */
5159 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5160 
5161 err_out_free_netdev:
5162 	free_netdev(dev);
5163 
5164 err_out_disable_pdev:
5165 	pci_disable_device(pdev);
5166 	return -ENODEV;
5167 }
5168 
5169 static void cas_remove_one(struct pci_dev *pdev)
5170 {
5171 	struct net_device *dev = pci_get_drvdata(pdev);
5172 	struct cas *cp;
5173 	if (!dev)
5174 		return;
5175 
5176 	cp = netdev_priv(dev);
5177 	unregister_netdev(dev);
5178 
5179 	vfree(cp->fw_data);
5180 
5181 	mutex_lock(&cp->pm_mutex);
5182 	cancel_work_sync(&cp->reset_task);
5183 	if (cp->hw_running)
5184 		cas_shutdown(cp);
5185 	mutex_unlock(&cp->pm_mutex);
5186 
5187 #if 1
5188 	if (cp->orig_cacheline_size) {
5189 		/* Restore the cache line size if we had modified
5190 		 * it.
5191 		 */
5192 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5193 				      cp->orig_cacheline_size);
5194 	}
5195 #endif
5196 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5197 			    cp->init_block, cp->block_dvma);
5198 	pci_iounmap(pdev, cp->regs);
5199 	free_netdev(dev);
5200 	pci_release_regions(pdev);
5201 	pci_disable_device(pdev);
5202 }
5203 
5204 #ifdef CONFIG_PM
5205 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5206 {
5207 	struct net_device *dev = pci_get_drvdata(pdev);
5208 	struct cas *cp = netdev_priv(dev);
5209 	unsigned long flags;
5210 
5211 	mutex_lock(&cp->pm_mutex);
5212 
5213 	/* If the driver is opened, we stop the DMA */
5214 	if (cp->opened) {
5215 		netif_device_detach(dev);
5216 
5217 		cas_lock_all_save(cp, flags);
5218 
5219 		/* We can set the second arg of cas_reset to 0
5220 		 * because on resume, we'll call cas_init_hw with
5221 		 * its second arg set so that autonegotiation is
5222 		 * restarted.
5223 		 */
5224 		cas_reset(cp, 0);
5225 		cas_clean_rings(cp);
5226 		cas_unlock_all_restore(cp, flags);
5227 	}
5228 
5229 	if (cp->hw_running)
5230 		cas_shutdown(cp);
5231 	mutex_unlock(&cp->pm_mutex);
5232 
5233 	return 0;
5234 }
5235 
5236 static int cas_resume(struct pci_dev *pdev)
5237 {
5238 	struct net_device *dev = pci_get_drvdata(pdev);
5239 	struct cas *cp = netdev_priv(dev);
5240 
5241 	netdev_info(dev, "resuming\n");
5242 
5243 	mutex_lock(&cp->pm_mutex);
5244 	cas_hard_reset(cp);
5245 	if (cp->opened) {
5246 		unsigned long flags;
5247 		cas_lock_all_save(cp, flags);
5248 		cas_reset(cp, 0);
5249 		cp->hw_running = 1;
5250 		cas_clean_rings(cp);
5251 		cas_init_hw(cp, 1);
5252 		cas_unlock_all_restore(cp, flags);
5253 
5254 		netif_device_attach(dev);
5255 	}
5256 	mutex_unlock(&cp->pm_mutex);
5257 	return 0;
5258 }
5259 #endif /* CONFIG_PM */
5260 
5261 static struct pci_driver cas_driver = {
5262 	.name		= DRV_MODULE_NAME,
5263 	.id_table	= cas_pci_tbl,
5264 	.probe		= cas_init_one,
5265 	.remove		= cas_remove_one,
5266 #ifdef CONFIG_PM
5267 	.suspend	= cas_suspend,
5268 	.resume		= cas_resume
5269 #endif
5270 };
5271 
5272 static int __init cas_init(void)
5273 {
5274 	if (linkdown_timeout > 0)
5275 		link_transition_timeout = linkdown_timeout * HZ;
5276 	else
5277 		link_transition_timeout = 0;
5278 
5279 	return pci_register_driver(&cas_driver);
5280 }
5281 
5282 static void __exit cas_cleanup(void)
5283 {
5284 	pci_unregister_driver(&cas_driver);
5285 }
5286 
5287 module_init(cas_init);
5288 module_exit(cas_cleanup);
5289