1 // SPDX-License-Identifier: GPL-2.0+ 2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 3 * 4 * Copyright (C) 2004 Sun Microsystems Inc. 5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 6 * 7 * This driver uses the sungem driver (c) David Miller 8 * (davem@redhat.com) as its basis. 9 * 10 * The cassini chip has a number of features that distinguish it from 11 * the gem chip: 12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 13 * load balancing (non-VLAN mode) 14 * batching of multiple packets 15 * multiple CPU dispatching 16 * page-based RX descriptor engine with separate completion rings 17 * Gigabit support (GMII and PCS interface) 18 * MIF link up/down detection works 19 * 20 * RX is handled by page sized buffers that are attached as fragments to 21 * the skb. here's what's done: 22 * -- driver allocates pages at a time and keeps reference counts 23 * on them. 24 * -- the upper protocol layers assume that the header is in the skb 25 * itself. as a result, cassini will copy a small amount (64 bytes) 26 * to make them happy. 27 * -- driver appends the rest of the data pages as frags to skbuffs 28 * and increments the reference count 29 * -- on page reclamation, the driver swaps the page with a spare page. 30 * if that page is still in use, it frees its reference to that page, 31 * and allocates a new page for use. otherwise, it just recycles the 32 * the page. 33 * 34 * NOTE: cassini can parse the header. however, it's not worth it 35 * as long as the network stack requires a header copy. 36 * 37 * TX has 4 queues. currently these queues are used in a round-robin 38 * fashion for load balancing. They can also be used for QoS. for that 39 * to work, however, QoS information needs to be exposed down to the driver 40 * level so that subqueues get targeted to particular transmit rings. 41 * alternatively, the queues can be configured via use of the all-purpose 42 * ioctl. 43 * 44 * RX DATA: the rx completion ring has all the info, but the rx desc 45 * ring has all of the data. RX can conceivably come in under multiple 46 * interrupts, but the INT# assignment needs to be set up properly by 47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 48 * that. also, the two descriptor rings are designed to distinguish between 49 * encrypted and non-encrypted packets, but we use them for buffering 50 * instead. 51 * 52 * by default, the selective clear mask is set up to process rx packets. 53 */ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/kernel.h> 59 #include <linux/types.h> 60 #include <linux/compiler.h> 61 #include <linux/slab.h> 62 #include <linux/delay.h> 63 #include <linux/init.h> 64 #include <linux/interrupt.h> 65 #include <linux/vmalloc.h> 66 #include <linux/ioport.h> 67 #include <linux/pci.h> 68 #include <linux/mm.h> 69 #include <linux/highmem.h> 70 #include <linux/list.h> 71 #include <linux/dma-mapping.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/ethtool.h> 77 #include <linux/crc32.h> 78 #include <linux/random.h> 79 #include <linux/mii.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/mutex.h> 83 #include <linux/firmware.h> 84 85 #include <net/checksum.h> 86 87 #include <linux/atomic.h> 88 #include <asm/io.h> 89 #include <asm/byteorder.h> 90 #include <linux/uaccess.h> 91 92 #define cas_page_map(x) kmap_atomic((x)) 93 #define cas_page_unmap(x) kunmap_atomic((x)) 94 #define CAS_NCPUS num_online_cpus() 95 96 #define cas_skb_release(x) netif_rx(x) 97 98 /* select which firmware to use */ 99 #define USE_HP_WORKAROUND 100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 101 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 102 103 #include "cassini.h" 104 105 #define USE_TX_COMPWB /* use completion writeback registers */ 106 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 107 #define USE_RX_BLANK /* hw interrupt mitigation */ 108 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 109 110 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 111 * also, we need to make cp->lock finer-grained. 112 */ 113 #undef USE_PCI_INTB 114 #undef USE_PCI_INTC 115 #undef USE_PCI_INTD 116 #undef USE_QOS 117 118 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 119 120 /* rx processing options */ 121 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 122 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 123 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 124 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 125 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 126 127 #define DRV_MODULE_NAME "cassini" 128 #define DRV_MODULE_VERSION "1.6" 129 #define DRV_MODULE_RELDATE "21 May 2008" 130 131 #define CAS_DEF_MSG_ENABLE \ 132 (NETIF_MSG_DRV | \ 133 NETIF_MSG_PROBE | \ 134 NETIF_MSG_LINK | \ 135 NETIF_MSG_TIMER | \ 136 NETIF_MSG_IFDOWN | \ 137 NETIF_MSG_IFUP | \ 138 NETIF_MSG_RX_ERR | \ 139 NETIF_MSG_TX_ERR) 140 141 /* length of time before we decide the hardware is borked, 142 * and dev->tx_timeout() should be called to fix the problem 143 */ 144 #define CAS_TX_TIMEOUT (HZ) 145 #define CAS_LINK_TIMEOUT (22*HZ/10) 146 #define CAS_LINK_FAST_TIMEOUT (1) 147 148 /* timeout values for state changing. these specify the number 149 * of 10us delays to be used before giving up. 150 */ 151 #define STOP_TRIES_PHY 1000 152 #define STOP_TRIES 5000 153 154 /* specify a minimum frame size to deal with some fifo issues 155 * max mtu == 2 * page size - ethernet header - 64 - swivel = 156 * 2 * page_size - 0x50 157 */ 158 #define CAS_MIN_FRAME 97 159 #define CAS_1000MB_MIN_FRAME 255 160 #define CAS_MIN_MTU 60 161 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 162 163 #if 1 164 /* 165 * Eliminate these and use separate atomic counters for each, to 166 * avoid a race condition. 167 */ 168 #else 169 #define CAS_RESET_MTU 1 170 #define CAS_RESET_ALL 2 171 #define CAS_RESET_SPARE 3 172 #endif 173 174 static char version[] = 175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 176 177 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 178 static int link_mode; 179 180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 182 MODULE_LICENSE("GPL"); 183 MODULE_FIRMWARE("sun/cassini.bin"); 184 module_param(cassini_debug, int, 0); 185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 186 module_param(link_mode, int, 0); 187 MODULE_PARM_DESC(link_mode, "default link mode"); 188 189 /* 190 * Work around for a PCS bug in which the link goes down due to the chip 191 * being confused and never showing a link status of "up." 192 */ 193 #define DEFAULT_LINKDOWN_TIMEOUT 5 194 /* 195 * Value in seconds, for user input. 196 */ 197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 198 module_param(linkdown_timeout, int, 0); 199 MODULE_PARM_DESC(linkdown_timeout, 200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 201 202 /* 203 * value in 'ticks' (units used by jiffies). Set when we init the 204 * module because 'HZ' in actually a function call on some flavors of 205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 206 */ 207 static int link_transition_timeout; 208 209 210 211 static u16 link_modes[] = { 212 BMCR_ANENABLE, /* 0 : autoneg */ 213 0, /* 1 : 10bt half duplex */ 214 BMCR_SPEED100, /* 2 : 100bt half duplex */ 215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 218 }; 219 220 static const struct pci_device_id cas_pci_tbl[] = { 221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 225 { 0, } 226 }; 227 228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 229 230 static void cas_set_link_modes(struct cas *cp); 231 232 static inline void cas_lock_tx(struct cas *cp) 233 { 234 int i; 235 236 for (i = 0; i < N_TX_RINGS; i++) 237 spin_lock_nested(&cp->tx_lock[i], i); 238 } 239 240 /* WTZ: QA was finding deadlock problems with the previous 241 * versions after long test runs with multiple cards per machine. 242 * See if replacing cas_lock_all with safer versions helps. The 243 * symptoms QA is reporting match those we'd expect if interrupts 244 * aren't being properly restored, and we fixed a previous deadlock 245 * with similar symptoms by using save/restore versions in other 246 * places. 247 */ 248 #define cas_lock_all_save(cp, flags) \ 249 do { \ 250 struct cas *xxxcp = (cp); \ 251 spin_lock_irqsave(&xxxcp->lock, flags); \ 252 cas_lock_tx(xxxcp); \ 253 } while (0) 254 255 static inline void cas_unlock_tx(struct cas *cp) 256 { 257 int i; 258 259 for (i = N_TX_RINGS; i > 0; i--) 260 spin_unlock(&cp->tx_lock[i - 1]); 261 } 262 263 #define cas_unlock_all_restore(cp, flags) \ 264 do { \ 265 struct cas *xxxcp = (cp); \ 266 cas_unlock_tx(xxxcp); \ 267 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 268 } while (0) 269 270 static void cas_disable_irq(struct cas *cp, const int ring) 271 { 272 /* Make sure we won't get any more interrupts */ 273 if (ring == 0) { 274 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 275 return; 276 } 277 278 /* disable completion interrupts and selectively mask */ 279 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 280 switch (ring) { 281 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 282 #ifdef USE_PCI_INTB 283 case 1: 284 #endif 285 #ifdef USE_PCI_INTC 286 case 2: 287 #endif 288 #ifdef USE_PCI_INTD 289 case 3: 290 #endif 291 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 292 cp->regs + REG_PLUS_INTRN_MASK(ring)); 293 break; 294 #endif 295 default: 296 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 297 REG_PLUS_INTRN_MASK(ring)); 298 break; 299 } 300 } 301 } 302 303 static inline void cas_mask_intr(struct cas *cp) 304 { 305 int i; 306 307 for (i = 0; i < N_RX_COMP_RINGS; i++) 308 cas_disable_irq(cp, i); 309 } 310 311 static void cas_enable_irq(struct cas *cp, const int ring) 312 { 313 if (ring == 0) { /* all but TX_DONE */ 314 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 315 return; 316 } 317 318 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 319 switch (ring) { 320 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 321 #ifdef USE_PCI_INTB 322 case 1: 323 #endif 324 #ifdef USE_PCI_INTC 325 case 2: 326 #endif 327 #ifdef USE_PCI_INTD 328 case 3: 329 #endif 330 writel(INTRN_MASK_RX_EN, cp->regs + 331 REG_PLUS_INTRN_MASK(ring)); 332 break; 333 #endif 334 default: 335 break; 336 } 337 } 338 } 339 340 static inline void cas_unmask_intr(struct cas *cp) 341 { 342 int i; 343 344 for (i = 0; i < N_RX_COMP_RINGS; i++) 345 cas_enable_irq(cp, i); 346 } 347 348 static inline void cas_entropy_gather(struct cas *cp) 349 { 350 #ifdef USE_ENTROPY_DEV 351 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 352 return; 353 354 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 355 readl(cp->regs + REG_ENTROPY_IV), 356 sizeof(uint64_t)*8); 357 #endif 358 } 359 360 static inline void cas_entropy_reset(struct cas *cp) 361 { 362 #ifdef USE_ENTROPY_DEV 363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 364 return; 365 366 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 367 cp->regs + REG_BIM_LOCAL_DEV_EN); 368 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 369 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 370 371 /* if we read back 0x0, we don't have an entropy device */ 372 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 373 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 374 #endif 375 } 376 377 /* access to the phy. the following assumes that we've initialized the MIF to 378 * be in frame rather than bit-bang mode 379 */ 380 static u16 cas_phy_read(struct cas *cp, int reg) 381 { 382 u32 cmd; 383 int limit = STOP_TRIES_PHY; 384 385 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 386 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 387 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 388 cmd |= MIF_FRAME_TURN_AROUND_MSB; 389 writel(cmd, cp->regs + REG_MIF_FRAME); 390 391 /* poll for completion */ 392 while (limit-- > 0) { 393 udelay(10); 394 cmd = readl(cp->regs + REG_MIF_FRAME); 395 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 396 return cmd & MIF_FRAME_DATA_MASK; 397 } 398 return 0xFFFF; /* -1 */ 399 } 400 401 static int cas_phy_write(struct cas *cp, int reg, u16 val) 402 { 403 int limit = STOP_TRIES_PHY; 404 u32 cmd; 405 406 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 407 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 408 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 409 cmd |= MIF_FRAME_TURN_AROUND_MSB; 410 cmd |= val & MIF_FRAME_DATA_MASK; 411 writel(cmd, cp->regs + REG_MIF_FRAME); 412 413 /* poll for completion */ 414 while (limit-- > 0) { 415 udelay(10); 416 cmd = readl(cp->regs + REG_MIF_FRAME); 417 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 418 return 0; 419 } 420 return -1; 421 } 422 423 static void cas_phy_powerup(struct cas *cp) 424 { 425 u16 ctl = cas_phy_read(cp, MII_BMCR); 426 427 if ((ctl & BMCR_PDOWN) == 0) 428 return; 429 ctl &= ~BMCR_PDOWN; 430 cas_phy_write(cp, MII_BMCR, ctl); 431 } 432 433 static void cas_phy_powerdown(struct cas *cp) 434 { 435 u16 ctl = cas_phy_read(cp, MII_BMCR); 436 437 if (ctl & BMCR_PDOWN) 438 return; 439 ctl |= BMCR_PDOWN; 440 cas_phy_write(cp, MII_BMCR, ctl); 441 } 442 443 /* cp->lock held. note: the last put_page will free the buffer */ 444 static int cas_page_free(struct cas *cp, cas_page_t *page) 445 { 446 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 447 PCI_DMA_FROMDEVICE); 448 __free_pages(page->buffer, cp->page_order); 449 kfree(page); 450 return 0; 451 } 452 453 #ifdef RX_COUNT_BUFFERS 454 #define RX_USED_ADD(x, y) ((x)->used += (y)) 455 #define RX_USED_SET(x, y) ((x)->used = (y)) 456 #else 457 #define RX_USED_ADD(x, y) 458 #define RX_USED_SET(x, y) 459 #endif 460 461 /* local page allocation routines for the receive buffers. jumbo pages 462 * require at least 8K contiguous and 8K aligned buffers. 463 */ 464 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 465 { 466 cas_page_t *page; 467 468 page = kmalloc(sizeof(cas_page_t), flags); 469 if (!page) 470 return NULL; 471 472 INIT_LIST_HEAD(&page->list); 473 RX_USED_SET(page, 0); 474 page->buffer = alloc_pages(flags, cp->page_order); 475 if (!page->buffer) 476 goto page_err; 477 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 478 cp->page_size, PCI_DMA_FROMDEVICE); 479 return page; 480 481 page_err: 482 kfree(page); 483 return NULL; 484 } 485 486 /* initialize spare pool of rx buffers, but allocate during the open */ 487 static void cas_spare_init(struct cas *cp) 488 { 489 spin_lock(&cp->rx_inuse_lock); 490 INIT_LIST_HEAD(&cp->rx_inuse_list); 491 spin_unlock(&cp->rx_inuse_lock); 492 493 spin_lock(&cp->rx_spare_lock); 494 INIT_LIST_HEAD(&cp->rx_spare_list); 495 cp->rx_spares_needed = RX_SPARE_COUNT; 496 spin_unlock(&cp->rx_spare_lock); 497 } 498 499 /* used on close. free all the spare buffers. */ 500 static void cas_spare_free(struct cas *cp) 501 { 502 struct list_head list, *elem, *tmp; 503 504 /* free spare buffers */ 505 INIT_LIST_HEAD(&list); 506 spin_lock(&cp->rx_spare_lock); 507 list_splice_init(&cp->rx_spare_list, &list); 508 spin_unlock(&cp->rx_spare_lock); 509 list_for_each_safe(elem, tmp, &list) { 510 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 511 } 512 513 INIT_LIST_HEAD(&list); 514 #if 1 515 /* 516 * Looks like Adrian had protected this with a different 517 * lock than used everywhere else to manipulate this list. 518 */ 519 spin_lock(&cp->rx_inuse_lock); 520 list_splice_init(&cp->rx_inuse_list, &list); 521 spin_unlock(&cp->rx_inuse_lock); 522 #else 523 spin_lock(&cp->rx_spare_lock); 524 list_splice_init(&cp->rx_inuse_list, &list); 525 spin_unlock(&cp->rx_spare_lock); 526 #endif 527 list_for_each_safe(elem, tmp, &list) { 528 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 529 } 530 } 531 532 /* replenish spares if needed */ 533 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 534 { 535 struct list_head list, *elem, *tmp; 536 int needed, i; 537 538 /* check inuse list. if we don't need any more free buffers, 539 * just free it 540 */ 541 542 /* make a local copy of the list */ 543 INIT_LIST_HEAD(&list); 544 spin_lock(&cp->rx_inuse_lock); 545 list_splice_init(&cp->rx_inuse_list, &list); 546 spin_unlock(&cp->rx_inuse_lock); 547 548 list_for_each_safe(elem, tmp, &list) { 549 cas_page_t *page = list_entry(elem, cas_page_t, list); 550 551 /* 552 * With the lockless pagecache, cassini buffering scheme gets 553 * slightly less accurate: we might find that a page has an 554 * elevated reference count here, due to a speculative ref, 555 * and skip it as in-use. Ideally we would be able to reclaim 556 * it. However this would be such a rare case, it doesn't 557 * matter too much as we should pick it up the next time round. 558 * 559 * Importantly, if we find that the page has a refcount of 1 560 * here (our refcount), then we know it is definitely not inuse 561 * so we can reuse it. 562 */ 563 if (page_count(page->buffer) > 1) 564 continue; 565 566 list_del(elem); 567 spin_lock(&cp->rx_spare_lock); 568 if (cp->rx_spares_needed > 0) { 569 list_add(elem, &cp->rx_spare_list); 570 cp->rx_spares_needed--; 571 spin_unlock(&cp->rx_spare_lock); 572 } else { 573 spin_unlock(&cp->rx_spare_lock); 574 cas_page_free(cp, page); 575 } 576 } 577 578 /* put any inuse buffers back on the list */ 579 if (!list_empty(&list)) { 580 spin_lock(&cp->rx_inuse_lock); 581 list_splice(&list, &cp->rx_inuse_list); 582 spin_unlock(&cp->rx_inuse_lock); 583 } 584 585 spin_lock(&cp->rx_spare_lock); 586 needed = cp->rx_spares_needed; 587 spin_unlock(&cp->rx_spare_lock); 588 if (!needed) 589 return; 590 591 /* we still need spares, so try to allocate some */ 592 INIT_LIST_HEAD(&list); 593 i = 0; 594 while (i < needed) { 595 cas_page_t *spare = cas_page_alloc(cp, flags); 596 if (!spare) 597 break; 598 list_add(&spare->list, &list); 599 i++; 600 } 601 602 spin_lock(&cp->rx_spare_lock); 603 list_splice(&list, &cp->rx_spare_list); 604 cp->rx_spares_needed -= i; 605 spin_unlock(&cp->rx_spare_lock); 606 } 607 608 /* pull a page from the list. */ 609 static cas_page_t *cas_page_dequeue(struct cas *cp) 610 { 611 struct list_head *entry; 612 int recover; 613 614 spin_lock(&cp->rx_spare_lock); 615 if (list_empty(&cp->rx_spare_list)) { 616 /* try to do a quick recovery */ 617 spin_unlock(&cp->rx_spare_lock); 618 cas_spare_recover(cp, GFP_ATOMIC); 619 spin_lock(&cp->rx_spare_lock); 620 if (list_empty(&cp->rx_spare_list)) { 621 netif_err(cp, rx_err, cp->dev, 622 "no spare buffers available\n"); 623 spin_unlock(&cp->rx_spare_lock); 624 return NULL; 625 } 626 } 627 628 entry = cp->rx_spare_list.next; 629 list_del(entry); 630 recover = ++cp->rx_spares_needed; 631 spin_unlock(&cp->rx_spare_lock); 632 633 /* trigger the timer to do the recovery */ 634 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 635 #if 1 636 atomic_inc(&cp->reset_task_pending); 637 atomic_inc(&cp->reset_task_pending_spare); 638 schedule_work(&cp->reset_task); 639 #else 640 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 641 schedule_work(&cp->reset_task); 642 #endif 643 } 644 return list_entry(entry, cas_page_t, list); 645 } 646 647 648 static void cas_mif_poll(struct cas *cp, const int enable) 649 { 650 u32 cfg; 651 652 cfg = readl(cp->regs + REG_MIF_CFG); 653 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 654 655 if (cp->phy_type & CAS_PHY_MII_MDIO1) 656 cfg |= MIF_CFG_PHY_SELECT; 657 658 /* poll and interrupt on link status change. */ 659 if (enable) { 660 cfg |= MIF_CFG_POLL_EN; 661 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 662 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 663 } 664 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 665 cp->regs + REG_MIF_MASK); 666 writel(cfg, cp->regs + REG_MIF_CFG); 667 } 668 669 /* Must be invoked under cp->lock */ 670 static void cas_begin_auto_negotiation(struct cas *cp, 671 const struct ethtool_link_ksettings *ep) 672 { 673 u16 ctl; 674 #if 1 675 int lcntl; 676 int changed = 0; 677 int oldstate = cp->lstate; 678 int link_was_not_down = !(oldstate == link_down); 679 #endif 680 /* Setup link parameters */ 681 if (!ep) 682 goto start_aneg; 683 lcntl = cp->link_cntl; 684 if (ep->base.autoneg == AUTONEG_ENABLE) { 685 cp->link_cntl = BMCR_ANENABLE; 686 } else { 687 u32 speed = ep->base.speed; 688 cp->link_cntl = 0; 689 if (speed == SPEED_100) 690 cp->link_cntl |= BMCR_SPEED100; 691 else if (speed == SPEED_1000) 692 cp->link_cntl |= CAS_BMCR_SPEED1000; 693 if (ep->base.duplex == DUPLEX_FULL) 694 cp->link_cntl |= BMCR_FULLDPLX; 695 } 696 #if 1 697 changed = (lcntl != cp->link_cntl); 698 #endif 699 start_aneg: 700 if (cp->lstate == link_up) { 701 netdev_info(cp->dev, "PCS link down\n"); 702 } else { 703 if (changed) { 704 netdev_info(cp->dev, "link configuration changed\n"); 705 } 706 } 707 cp->lstate = link_down; 708 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 709 if (!cp->hw_running) 710 return; 711 #if 1 712 /* 713 * WTZ: If the old state was link_up, we turn off the carrier 714 * to replicate everything we do elsewhere on a link-down 715 * event when we were already in a link-up state.. 716 */ 717 if (oldstate == link_up) 718 netif_carrier_off(cp->dev); 719 if (changed && link_was_not_down) { 720 /* 721 * WTZ: This branch will simply schedule a full reset after 722 * we explicitly changed link modes in an ioctl. See if this 723 * fixes the link-problems we were having for forced mode. 724 */ 725 atomic_inc(&cp->reset_task_pending); 726 atomic_inc(&cp->reset_task_pending_all); 727 schedule_work(&cp->reset_task); 728 cp->timer_ticks = 0; 729 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 730 return; 731 } 732 #endif 733 if (cp->phy_type & CAS_PHY_SERDES) { 734 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 735 736 if (cp->link_cntl & BMCR_ANENABLE) { 737 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 738 cp->lstate = link_aneg; 739 } else { 740 if (cp->link_cntl & BMCR_FULLDPLX) 741 val |= PCS_MII_CTRL_DUPLEX; 742 val &= ~PCS_MII_AUTONEG_EN; 743 cp->lstate = link_force_ok; 744 } 745 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 746 writel(val, cp->regs + REG_PCS_MII_CTRL); 747 748 } else { 749 cas_mif_poll(cp, 0); 750 ctl = cas_phy_read(cp, MII_BMCR); 751 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 752 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 753 ctl |= cp->link_cntl; 754 if (ctl & BMCR_ANENABLE) { 755 ctl |= BMCR_ANRESTART; 756 cp->lstate = link_aneg; 757 } else { 758 cp->lstate = link_force_ok; 759 } 760 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 761 cas_phy_write(cp, MII_BMCR, ctl); 762 cas_mif_poll(cp, 1); 763 } 764 765 cp->timer_ticks = 0; 766 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 767 } 768 769 /* Must be invoked under cp->lock. */ 770 static int cas_reset_mii_phy(struct cas *cp) 771 { 772 int limit = STOP_TRIES_PHY; 773 u16 val; 774 775 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 776 udelay(100); 777 while (--limit) { 778 val = cas_phy_read(cp, MII_BMCR); 779 if ((val & BMCR_RESET) == 0) 780 break; 781 udelay(10); 782 } 783 return limit <= 0; 784 } 785 786 static void cas_saturn_firmware_init(struct cas *cp) 787 { 788 const struct firmware *fw; 789 const char fw_name[] = "sun/cassini.bin"; 790 int err; 791 792 if (PHY_NS_DP83065 != cp->phy_id) 793 return; 794 795 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 796 if (err) { 797 pr_err("Failed to load firmware \"%s\"\n", 798 fw_name); 799 return; 800 } 801 if (fw->size < 2) { 802 pr_err("bogus length %zu in \"%s\"\n", 803 fw->size, fw_name); 804 goto out; 805 } 806 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 807 cp->fw_size = fw->size - 2; 808 cp->fw_data = vmalloc(cp->fw_size); 809 if (!cp->fw_data) 810 goto out; 811 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 812 out: 813 release_firmware(fw); 814 } 815 816 static void cas_saturn_firmware_load(struct cas *cp) 817 { 818 int i; 819 820 if (!cp->fw_data) 821 return; 822 823 cas_phy_powerdown(cp); 824 825 /* expanded memory access mode */ 826 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 827 828 /* pointer configuration for new firmware */ 829 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 830 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 832 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 833 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 834 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 836 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 837 838 /* download new firmware */ 839 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 840 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 841 for (i = 0; i < cp->fw_size; i++) 842 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 843 844 /* enable firmware */ 845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 846 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 847 } 848 849 850 /* phy initialization */ 851 static void cas_phy_init(struct cas *cp) 852 { 853 u16 val; 854 855 /* if we're in MII/GMII mode, set up phy */ 856 if (CAS_PHY_MII(cp->phy_type)) { 857 writel(PCS_DATAPATH_MODE_MII, 858 cp->regs + REG_PCS_DATAPATH_MODE); 859 860 cas_mif_poll(cp, 0); 861 cas_reset_mii_phy(cp); /* take out of isolate mode */ 862 863 if (PHY_LUCENT_B0 == cp->phy_id) { 864 /* workaround link up/down issue with lucent */ 865 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 866 cas_phy_write(cp, MII_BMCR, 0x00f1); 867 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 868 869 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 870 /* workarounds for broadcom phy */ 871 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 872 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 873 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 874 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 875 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 876 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 877 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 878 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 879 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 880 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 881 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 882 883 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 884 val = cas_phy_read(cp, BROADCOM_MII_REG4); 885 val = cas_phy_read(cp, BROADCOM_MII_REG4); 886 if (val & 0x0080) { 887 /* link workaround */ 888 cas_phy_write(cp, BROADCOM_MII_REG4, 889 val & ~0x0080); 890 } 891 892 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 893 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 894 SATURN_PCFG_FSI : 0x0, 895 cp->regs + REG_SATURN_PCFG); 896 897 /* load firmware to address 10Mbps auto-negotiation 898 * issue. NOTE: this will need to be changed if the 899 * default firmware gets fixed. 900 */ 901 if (PHY_NS_DP83065 == cp->phy_id) { 902 cas_saturn_firmware_load(cp); 903 } 904 cas_phy_powerup(cp); 905 } 906 907 /* advertise capabilities */ 908 val = cas_phy_read(cp, MII_BMCR); 909 val &= ~BMCR_ANENABLE; 910 cas_phy_write(cp, MII_BMCR, val); 911 udelay(10); 912 913 cas_phy_write(cp, MII_ADVERTISE, 914 cas_phy_read(cp, MII_ADVERTISE) | 915 (ADVERTISE_10HALF | ADVERTISE_10FULL | 916 ADVERTISE_100HALF | ADVERTISE_100FULL | 917 CAS_ADVERTISE_PAUSE | 918 CAS_ADVERTISE_ASYM_PAUSE)); 919 920 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 921 /* make sure that we don't advertise half 922 * duplex to avoid a chip issue 923 */ 924 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 925 val &= ~CAS_ADVERTISE_1000HALF; 926 val |= CAS_ADVERTISE_1000FULL; 927 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 928 } 929 930 } else { 931 /* reset pcs for serdes */ 932 u32 val; 933 int limit; 934 935 writel(PCS_DATAPATH_MODE_SERDES, 936 cp->regs + REG_PCS_DATAPATH_MODE); 937 938 /* enable serdes pins on saturn */ 939 if (cp->cas_flags & CAS_FLAG_SATURN) 940 writel(0, cp->regs + REG_SATURN_PCFG); 941 942 /* Reset PCS unit. */ 943 val = readl(cp->regs + REG_PCS_MII_CTRL); 944 val |= PCS_MII_RESET; 945 writel(val, cp->regs + REG_PCS_MII_CTRL); 946 947 limit = STOP_TRIES; 948 while (--limit > 0) { 949 udelay(10); 950 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 951 PCS_MII_RESET) == 0) 952 break; 953 } 954 if (limit <= 0) 955 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 956 readl(cp->regs + REG_PCS_STATE_MACHINE)); 957 958 /* Make sure PCS is disabled while changing advertisement 959 * configuration. 960 */ 961 writel(0x0, cp->regs + REG_PCS_CFG); 962 963 /* Advertise all capabilities except half-duplex. */ 964 val = readl(cp->regs + REG_PCS_MII_ADVERT); 965 val &= ~PCS_MII_ADVERT_HD; 966 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 967 PCS_MII_ADVERT_ASYM_PAUSE); 968 writel(val, cp->regs + REG_PCS_MII_ADVERT); 969 970 /* enable PCS */ 971 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 972 973 /* pcs workaround: enable sync detect */ 974 writel(PCS_SERDES_CTRL_SYNCD_EN, 975 cp->regs + REG_PCS_SERDES_CTRL); 976 } 977 } 978 979 980 static int cas_pcs_link_check(struct cas *cp) 981 { 982 u32 stat, state_machine; 983 int retval = 0; 984 985 /* The link status bit latches on zero, so you must 986 * read it twice in such a case to see a transition 987 * to the link being up. 988 */ 989 stat = readl(cp->regs + REG_PCS_MII_STATUS); 990 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 991 stat = readl(cp->regs + REG_PCS_MII_STATUS); 992 993 /* The remote-fault indication is only valid 994 * when autoneg has completed. 995 */ 996 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 997 PCS_MII_STATUS_REMOTE_FAULT)) == 998 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 999 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1000 1001 /* work around link detection issue by querying the PCS state 1002 * machine directly. 1003 */ 1004 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1005 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1006 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1007 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1008 stat |= PCS_MII_STATUS_LINK_STATUS; 1009 } 1010 1011 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1012 if (cp->lstate != link_up) { 1013 if (cp->opened) { 1014 cp->lstate = link_up; 1015 cp->link_transition = LINK_TRANSITION_LINK_UP; 1016 1017 cas_set_link_modes(cp); 1018 netif_carrier_on(cp->dev); 1019 } 1020 } 1021 } else if (cp->lstate == link_up) { 1022 cp->lstate = link_down; 1023 if (link_transition_timeout != 0 && 1024 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1025 !cp->link_transition_jiffies_valid) { 1026 /* 1027 * force a reset, as a workaround for the 1028 * link-failure problem. May want to move this to a 1029 * point a bit earlier in the sequence. If we had 1030 * generated a reset a short time ago, we'll wait for 1031 * the link timer to check the status until a 1032 * timer expires (link_transistion_jiffies_valid is 1033 * true when the timer is running.) Instead of using 1034 * a system timer, we just do a check whenever the 1035 * link timer is running - this clears the flag after 1036 * a suitable delay. 1037 */ 1038 retval = 1; 1039 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1040 cp->link_transition_jiffies = jiffies; 1041 cp->link_transition_jiffies_valid = 1; 1042 } else { 1043 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1044 } 1045 netif_carrier_off(cp->dev); 1046 if (cp->opened) 1047 netif_info(cp, link, cp->dev, "PCS link down\n"); 1048 1049 /* Cassini only: if you force a mode, there can be 1050 * sync problems on link down. to fix that, the following 1051 * things need to be checked: 1052 * 1) read serialink state register 1053 * 2) read pcs status register to verify link down. 1054 * 3) if link down and serial link == 0x03, then you need 1055 * to global reset the chip. 1056 */ 1057 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1058 /* should check to see if we're in a forced mode */ 1059 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1060 if (stat == 0x03) 1061 return 1; 1062 } 1063 } else if (cp->lstate == link_down) { 1064 if (link_transition_timeout != 0 && 1065 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1066 !cp->link_transition_jiffies_valid) { 1067 /* force a reset, as a workaround for the 1068 * link-failure problem. May want to move 1069 * this to a point a bit earlier in the 1070 * sequence. 1071 */ 1072 retval = 1; 1073 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1074 cp->link_transition_jiffies = jiffies; 1075 cp->link_transition_jiffies_valid = 1; 1076 } else { 1077 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1078 } 1079 } 1080 1081 return retval; 1082 } 1083 1084 static int cas_pcs_interrupt(struct net_device *dev, 1085 struct cas *cp, u32 status) 1086 { 1087 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1088 1089 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1090 return 0; 1091 return cas_pcs_link_check(cp); 1092 } 1093 1094 static int cas_txmac_interrupt(struct net_device *dev, 1095 struct cas *cp, u32 status) 1096 { 1097 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1098 1099 if (!txmac_stat) 1100 return 0; 1101 1102 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1103 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1104 1105 /* Defer timer expiration is quite normal, 1106 * don't even log the event. 1107 */ 1108 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1109 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1110 return 0; 1111 1112 spin_lock(&cp->stat_lock[0]); 1113 if (txmac_stat & MAC_TX_UNDERRUN) { 1114 netdev_err(dev, "TX MAC xmit underrun\n"); 1115 cp->net_stats[0].tx_fifo_errors++; 1116 } 1117 1118 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1119 netdev_err(dev, "TX MAC max packet size error\n"); 1120 cp->net_stats[0].tx_errors++; 1121 } 1122 1123 /* The rest are all cases of one of the 16-bit TX 1124 * counters expiring. 1125 */ 1126 if (txmac_stat & MAC_TX_COLL_NORMAL) 1127 cp->net_stats[0].collisions += 0x10000; 1128 1129 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1130 cp->net_stats[0].tx_aborted_errors += 0x10000; 1131 cp->net_stats[0].collisions += 0x10000; 1132 } 1133 1134 if (txmac_stat & MAC_TX_COLL_LATE) { 1135 cp->net_stats[0].tx_aborted_errors += 0x10000; 1136 cp->net_stats[0].collisions += 0x10000; 1137 } 1138 spin_unlock(&cp->stat_lock[0]); 1139 1140 /* We do not keep track of MAC_TX_COLL_FIRST and 1141 * MAC_TX_PEAK_ATTEMPTS events. 1142 */ 1143 return 0; 1144 } 1145 1146 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1147 { 1148 cas_hp_inst_t *inst; 1149 u32 val; 1150 int i; 1151 1152 i = 0; 1153 while ((inst = firmware) && inst->note) { 1154 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1155 1156 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1157 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1158 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1159 1160 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1163 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1165 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1166 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1167 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1168 1169 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1172 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1173 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1174 ++firmware; 1175 ++i; 1176 } 1177 } 1178 1179 static void cas_init_rx_dma(struct cas *cp) 1180 { 1181 u64 desc_dma = cp->block_dvma; 1182 u32 val; 1183 int i, size; 1184 1185 /* rx free descriptors */ 1186 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1187 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1188 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1189 if ((N_RX_DESC_RINGS > 1) && 1190 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1191 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1192 writel(val, cp->regs + REG_RX_CFG); 1193 1194 val = (unsigned long) cp->init_rxds[0] - 1195 (unsigned long) cp->init_block; 1196 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1197 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1198 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1199 1200 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1201 /* rx desc 2 is for IPSEC packets. however, 1202 * we don't it that for that purpose. 1203 */ 1204 val = (unsigned long) cp->init_rxds[1] - 1205 (unsigned long) cp->init_block; 1206 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1207 writel((desc_dma + val) & 0xffffffff, cp->regs + 1208 REG_PLUS_RX_DB1_LOW); 1209 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1210 REG_PLUS_RX_KICK1); 1211 } 1212 1213 /* rx completion registers */ 1214 val = (unsigned long) cp->init_rxcs[0] - 1215 (unsigned long) cp->init_block; 1216 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1217 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1218 1219 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1220 /* rx comp 2-4 */ 1221 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1222 val = (unsigned long) cp->init_rxcs[i] - 1223 (unsigned long) cp->init_block; 1224 writel((desc_dma + val) >> 32, cp->regs + 1225 REG_PLUS_RX_CBN_HI(i)); 1226 writel((desc_dma + val) & 0xffffffff, cp->regs + 1227 REG_PLUS_RX_CBN_LOW(i)); 1228 } 1229 } 1230 1231 /* read selective clear regs to prevent spurious interrupts 1232 * on reset because complete == kick. 1233 * selective clear set up to prevent interrupts on resets 1234 */ 1235 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1236 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1237 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1238 for (i = 1; i < N_RX_COMP_RINGS; i++) 1239 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1240 1241 /* 2 is different from 3 and 4 */ 1242 if (N_RX_COMP_RINGS > 1) 1243 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1244 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1245 1246 for (i = 2; i < N_RX_COMP_RINGS; i++) 1247 writel(INTR_RX_DONE_ALT, 1248 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1249 } 1250 1251 /* set up pause thresholds */ 1252 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1253 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1254 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1255 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1256 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1257 1258 /* zero out dma reassembly buffers */ 1259 for (i = 0; i < 64; i++) { 1260 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1263 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1264 } 1265 1266 /* make sure address register is 0 for normal operation */ 1267 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1268 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1269 1270 /* interrupt mitigation */ 1271 #ifdef USE_RX_BLANK 1272 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1273 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1274 writel(val, cp->regs + REG_RX_BLANK); 1275 #else 1276 writel(0x0, cp->regs + REG_RX_BLANK); 1277 #endif 1278 1279 /* interrupt generation as a function of low water marks for 1280 * free desc and completion entries. these are used to trigger 1281 * housekeeping for rx descs. we don't use the free interrupt 1282 * as it's not very useful 1283 */ 1284 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1285 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1286 writel(val, cp->regs + REG_RX_AE_THRESH); 1287 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1288 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1289 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1290 } 1291 1292 /* Random early detect registers. useful for congestion avoidance. 1293 * this should be tunable. 1294 */ 1295 writel(0x0, cp->regs + REG_RX_RED); 1296 1297 /* receive page sizes. default == 2K (0x800) */ 1298 val = 0; 1299 if (cp->page_size == 0x1000) 1300 val = 0x1; 1301 else if (cp->page_size == 0x2000) 1302 val = 0x2; 1303 else if (cp->page_size == 0x4000) 1304 val = 0x3; 1305 1306 /* round mtu + offset. constrain to page size. */ 1307 size = cp->dev->mtu + 64; 1308 if (size > cp->page_size) 1309 size = cp->page_size; 1310 1311 if (size <= 0x400) 1312 i = 0x0; 1313 else if (size <= 0x800) 1314 i = 0x1; 1315 else if (size <= 0x1000) 1316 i = 0x2; 1317 else 1318 i = 0x3; 1319 1320 cp->mtu_stride = 1 << (i + 10); 1321 val = CAS_BASE(RX_PAGE_SIZE, val); 1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1324 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1325 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1326 1327 /* enable the header parser if desired */ 1328 if (CAS_HP_FIRMWARE == cas_prog_null) 1329 return; 1330 1331 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1332 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1333 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1334 writel(val, cp->regs + REG_HP_CFG); 1335 } 1336 1337 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1338 { 1339 memset(rxc, 0, sizeof(*rxc)); 1340 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1341 } 1342 1343 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1344 * flipping is protected by the fact that the chip will not 1345 * hand back the same page index while it's being processed. 1346 */ 1347 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1348 { 1349 cas_page_t *page = cp->rx_pages[1][index]; 1350 cas_page_t *new; 1351 1352 if (page_count(page->buffer) == 1) 1353 return page; 1354 1355 new = cas_page_dequeue(cp); 1356 if (new) { 1357 spin_lock(&cp->rx_inuse_lock); 1358 list_add(&page->list, &cp->rx_inuse_list); 1359 spin_unlock(&cp->rx_inuse_lock); 1360 } 1361 return new; 1362 } 1363 1364 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1365 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1366 const int index) 1367 { 1368 cas_page_t **page0 = cp->rx_pages[0]; 1369 cas_page_t **page1 = cp->rx_pages[1]; 1370 1371 /* swap if buffer is in use */ 1372 if (page_count(page0[index]->buffer) > 1) { 1373 cas_page_t *new = cas_page_spare(cp, index); 1374 if (new) { 1375 page1[index] = page0[index]; 1376 page0[index] = new; 1377 } 1378 } 1379 RX_USED_SET(page0[index], 0); 1380 return page0[index]; 1381 } 1382 1383 static void cas_clean_rxds(struct cas *cp) 1384 { 1385 /* only clean ring 0 as ring 1 is used for spare buffers */ 1386 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1387 int i, size; 1388 1389 /* release all rx flows */ 1390 for (i = 0; i < N_RX_FLOWS; i++) { 1391 struct sk_buff *skb; 1392 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1393 cas_skb_release(skb); 1394 } 1395 } 1396 1397 /* initialize descriptors */ 1398 size = RX_DESC_RINGN_SIZE(0); 1399 for (i = 0; i < size; i++) { 1400 cas_page_t *page = cas_page_swap(cp, 0, i); 1401 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1402 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1403 CAS_BASE(RX_INDEX_RING, 0)); 1404 } 1405 1406 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1407 cp->rx_last[0] = 0; 1408 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1409 } 1410 1411 static void cas_clean_rxcs(struct cas *cp) 1412 { 1413 int i, j; 1414 1415 /* take ownership of rx comp descriptors */ 1416 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1417 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1418 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1419 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1420 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1421 cas_rxc_init(rxc + j); 1422 } 1423 } 1424 } 1425 1426 #if 0 1427 /* When we get a RX fifo overflow, the RX unit is probably hung 1428 * so we do the following. 1429 * 1430 * If any part of the reset goes wrong, we return 1 and that causes the 1431 * whole chip to be reset. 1432 */ 1433 static int cas_rxmac_reset(struct cas *cp) 1434 { 1435 struct net_device *dev = cp->dev; 1436 int limit; 1437 u32 val; 1438 1439 /* First, reset MAC RX. */ 1440 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1441 for (limit = 0; limit < STOP_TRIES; limit++) { 1442 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1443 break; 1444 udelay(10); 1445 } 1446 if (limit == STOP_TRIES) { 1447 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1448 return 1; 1449 } 1450 1451 /* Second, disable RX DMA. */ 1452 writel(0, cp->regs + REG_RX_CFG); 1453 for (limit = 0; limit < STOP_TRIES; limit++) { 1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1455 break; 1456 udelay(10); 1457 } 1458 if (limit == STOP_TRIES) { 1459 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1460 return 1; 1461 } 1462 1463 mdelay(5); 1464 1465 /* Execute RX reset command. */ 1466 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1467 for (limit = 0; limit < STOP_TRIES; limit++) { 1468 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1469 break; 1470 udelay(10); 1471 } 1472 if (limit == STOP_TRIES) { 1473 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1474 return 1; 1475 } 1476 1477 /* reset driver rx state */ 1478 cas_clean_rxds(cp); 1479 cas_clean_rxcs(cp); 1480 1481 /* Now, reprogram the rest of RX unit. */ 1482 cas_init_rx_dma(cp); 1483 1484 /* re-enable */ 1485 val = readl(cp->regs + REG_RX_CFG); 1486 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1487 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1488 val = readl(cp->regs + REG_MAC_RX_CFG); 1489 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1490 return 0; 1491 } 1492 #endif 1493 1494 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1495 u32 status) 1496 { 1497 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1498 1499 if (!stat) 1500 return 0; 1501 1502 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1503 1504 /* these are all rollovers */ 1505 spin_lock(&cp->stat_lock[0]); 1506 if (stat & MAC_RX_ALIGN_ERR) 1507 cp->net_stats[0].rx_frame_errors += 0x10000; 1508 1509 if (stat & MAC_RX_CRC_ERR) 1510 cp->net_stats[0].rx_crc_errors += 0x10000; 1511 1512 if (stat & MAC_RX_LEN_ERR) 1513 cp->net_stats[0].rx_length_errors += 0x10000; 1514 1515 if (stat & MAC_RX_OVERFLOW) { 1516 cp->net_stats[0].rx_over_errors++; 1517 cp->net_stats[0].rx_fifo_errors++; 1518 } 1519 1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1521 * events. 1522 */ 1523 spin_unlock(&cp->stat_lock[0]); 1524 return 0; 1525 } 1526 1527 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1528 u32 status) 1529 { 1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1531 1532 if (!stat) 1533 return 0; 1534 1535 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1536 "mac interrupt, stat: 0x%x\n", stat); 1537 1538 /* This interrupt is just for pause frame and pause 1539 * tracking. It is useful for diagnostics and debug 1540 * but probably by default we will mask these events. 1541 */ 1542 if (stat & MAC_CTRL_PAUSE_STATE) 1543 cp->pause_entered++; 1544 1545 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1546 cp->pause_last_time_recvd = (stat >> 16); 1547 1548 return 0; 1549 } 1550 1551 1552 /* Must be invoked under cp->lock. */ 1553 static inline int cas_mdio_link_not_up(struct cas *cp) 1554 { 1555 u16 val; 1556 1557 switch (cp->lstate) { 1558 case link_force_ret: 1559 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1560 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1561 cp->timer_ticks = 5; 1562 cp->lstate = link_force_ok; 1563 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1564 break; 1565 1566 case link_aneg: 1567 val = cas_phy_read(cp, MII_BMCR); 1568 1569 /* Try forced modes. we try things in the following order: 1570 * 1000 full -> 100 full/half -> 10 half 1571 */ 1572 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1573 val |= BMCR_FULLDPLX; 1574 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1575 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1576 cas_phy_write(cp, MII_BMCR, val); 1577 cp->timer_ticks = 5; 1578 cp->lstate = link_force_try; 1579 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1580 break; 1581 1582 case link_force_try: 1583 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1584 val = cas_phy_read(cp, MII_BMCR); 1585 cp->timer_ticks = 5; 1586 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1587 val &= ~CAS_BMCR_SPEED1000; 1588 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1589 cas_phy_write(cp, MII_BMCR, val); 1590 break; 1591 } 1592 1593 if (val & BMCR_SPEED100) { 1594 if (val & BMCR_FULLDPLX) /* fd failed */ 1595 val &= ~BMCR_FULLDPLX; 1596 else { /* 100Mbps failed */ 1597 val &= ~BMCR_SPEED100; 1598 } 1599 cas_phy_write(cp, MII_BMCR, val); 1600 break; 1601 } 1602 default: 1603 break; 1604 } 1605 return 0; 1606 } 1607 1608 1609 /* must be invoked with cp->lock held */ 1610 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1611 { 1612 int restart; 1613 1614 if (bmsr & BMSR_LSTATUS) { 1615 /* Ok, here we got a link. If we had it due to a forced 1616 * fallback, and we were configured for autoneg, we 1617 * retry a short autoneg pass. If you know your hub is 1618 * broken, use ethtool ;) 1619 */ 1620 if ((cp->lstate == link_force_try) && 1621 (cp->link_cntl & BMCR_ANENABLE)) { 1622 cp->lstate = link_force_ret; 1623 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1624 cas_mif_poll(cp, 0); 1625 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1626 cp->timer_ticks = 5; 1627 if (cp->opened) 1628 netif_info(cp, link, cp->dev, 1629 "Got link after fallback, retrying autoneg once...\n"); 1630 cas_phy_write(cp, MII_BMCR, 1631 cp->link_fcntl | BMCR_ANENABLE | 1632 BMCR_ANRESTART); 1633 cas_mif_poll(cp, 1); 1634 1635 } else if (cp->lstate != link_up) { 1636 cp->lstate = link_up; 1637 cp->link_transition = LINK_TRANSITION_LINK_UP; 1638 1639 if (cp->opened) { 1640 cas_set_link_modes(cp); 1641 netif_carrier_on(cp->dev); 1642 } 1643 } 1644 return 0; 1645 } 1646 1647 /* link not up. if the link was previously up, we restart the 1648 * whole process 1649 */ 1650 restart = 0; 1651 if (cp->lstate == link_up) { 1652 cp->lstate = link_down; 1653 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1654 1655 netif_carrier_off(cp->dev); 1656 if (cp->opened) 1657 netif_info(cp, link, cp->dev, "Link down\n"); 1658 restart = 1; 1659 1660 } else if (++cp->timer_ticks > 10) 1661 cas_mdio_link_not_up(cp); 1662 1663 return restart; 1664 } 1665 1666 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1667 u32 status) 1668 { 1669 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1670 u16 bmsr; 1671 1672 /* check for a link change */ 1673 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1674 return 0; 1675 1676 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1677 return cas_mii_link_check(cp, bmsr); 1678 } 1679 1680 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1681 u32 status) 1682 { 1683 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1684 1685 if (!stat) 1686 return 0; 1687 1688 netdev_err(dev, "PCI error [%04x:%04x]", 1689 stat, readl(cp->regs + REG_BIM_DIAG)); 1690 1691 /* cassini+ has this reserved */ 1692 if ((stat & PCI_ERR_BADACK) && 1693 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1694 pr_cont(" <No ACK64# during ABS64 cycle>"); 1695 1696 if (stat & PCI_ERR_DTRTO) 1697 pr_cont(" <Delayed transaction timeout>"); 1698 if (stat & PCI_ERR_OTHER) 1699 pr_cont(" <other>"); 1700 if (stat & PCI_ERR_BIM_DMA_WRITE) 1701 pr_cont(" <BIM DMA 0 write req>"); 1702 if (stat & PCI_ERR_BIM_DMA_READ) 1703 pr_cont(" <BIM DMA 0 read req>"); 1704 pr_cont("\n"); 1705 1706 if (stat & PCI_ERR_OTHER) { 1707 int pci_errs; 1708 1709 /* Interrogate PCI config space for the 1710 * true cause. 1711 */ 1712 pci_errs = pci_status_get_and_clear_errors(cp->pdev); 1713 1714 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 1715 if (pci_errs & PCI_STATUS_PARITY) 1716 netdev_err(dev, "PCI parity error detected\n"); 1717 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 1718 netdev_err(dev, "PCI target abort\n"); 1719 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 1720 netdev_err(dev, "PCI master acks target abort\n"); 1721 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 1722 netdev_err(dev, "PCI master abort\n"); 1723 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 1724 netdev_err(dev, "PCI system error SERR#\n"); 1725 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 1726 netdev_err(dev, "PCI parity error\n"); 1727 } 1728 1729 /* For all PCI errors, we should reset the chip. */ 1730 return 1; 1731 } 1732 1733 /* All non-normal interrupt conditions get serviced here. 1734 * Returns non-zero if we should just exit the interrupt 1735 * handler right now (ie. if we reset the card which invalidates 1736 * all of the other original irq status bits). 1737 */ 1738 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1739 u32 status) 1740 { 1741 if (status & INTR_RX_TAG_ERROR) { 1742 /* corrupt RX tag framing */ 1743 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1744 "corrupt rx tag framing\n"); 1745 spin_lock(&cp->stat_lock[0]); 1746 cp->net_stats[0].rx_errors++; 1747 spin_unlock(&cp->stat_lock[0]); 1748 goto do_reset; 1749 } 1750 1751 if (status & INTR_RX_LEN_MISMATCH) { 1752 /* length mismatch. */ 1753 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1754 "length mismatch for rx frame\n"); 1755 spin_lock(&cp->stat_lock[0]); 1756 cp->net_stats[0].rx_errors++; 1757 spin_unlock(&cp->stat_lock[0]); 1758 goto do_reset; 1759 } 1760 1761 if (status & INTR_PCS_STATUS) { 1762 if (cas_pcs_interrupt(dev, cp, status)) 1763 goto do_reset; 1764 } 1765 1766 if (status & INTR_TX_MAC_STATUS) { 1767 if (cas_txmac_interrupt(dev, cp, status)) 1768 goto do_reset; 1769 } 1770 1771 if (status & INTR_RX_MAC_STATUS) { 1772 if (cas_rxmac_interrupt(dev, cp, status)) 1773 goto do_reset; 1774 } 1775 1776 if (status & INTR_MAC_CTRL_STATUS) { 1777 if (cas_mac_interrupt(dev, cp, status)) 1778 goto do_reset; 1779 } 1780 1781 if (status & INTR_MIF_STATUS) { 1782 if (cas_mif_interrupt(dev, cp, status)) 1783 goto do_reset; 1784 } 1785 1786 if (status & INTR_PCI_ERROR_STATUS) { 1787 if (cas_pci_interrupt(dev, cp, status)) 1788 goto do_reset; 1789 } 1790 return 0; 1791 1792 do_reset: 1793 #if 1 1794 atomic_inc(&cp->reset_task_pending); 1795 atomic_inc(&cp->reset_task_pending_all); 1796 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1797 schedule_work(&cp->reset_task); 1798 #else 1799 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1800 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1801 schedule_work(&cp->reset_task); 1802 #endif 1803 return 1; 1804 } 1805 1806 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1807 * determining whether to do a netif_stop/wakeup 1808 */ 1809 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1810 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1811 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1812 const int len) 1813 { 1814 unsigned long off = addr + len; 1815 1816 if (CAS_TABORT(cp) == 1) 1817 return 0; 1818 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1819 return 0; 1820 return TX_TARGET_ABORT_LEN; 1821 } 1822 1823 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1824 { 1825 struct cas_tx_desc *txds; 1826 struct sk_buff **skbs; 1827 struct net_device *dev = cp->dev; 1828 int entry, count; 1829 1830 spin_lock(&cp->tx_lock[ring]); 1831 txds = cp->init_txds[ring]; 1832 skbs = cp->tx_skbs[ring]; 1833 entry = cp->tx_old[ring]; 1834 1835 count = TX_BUFF_COUNT(ring, entry, limit); 1836 while (entry != limit) { 1837 struct sk_buff *skb = skbs[entry]; 1838 dma_addr_t daddr; 1839 u32 dlen; 1840 int frag; 1841 1842 if (!skb) { 1843 /* this should never occur */ 1844 entry = TX_DESC_NEXT(ring, entry); 1845 continue; 1846 } 1847 1848 /* however, we might get only a partial skb release. */ 1849 count -= skb_shinfo(skb)->nr_frags + 1850 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1851 if (count < 0) 1852 break; 1853 1854 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1855 "tx[%d] done, slot %d\n", ring, entry); 1856 1857 skbs[entry] = NULL; 1858 cp->tx_tiny_use[ring][entry].nbufs = 0; 1859 1860 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1861 struct cas_tx_desc *txd = txds + entry; 1862 1863 daddr = le64_to_cpu(txd->buffer); 1864 dlen = CAS_VAL(TX_DESC_BUFLEN, 1865 le64_to_cpu(txd->control)); 1866 pci_unmap_page(cp->pdev, daddr, dlen, 1867 PCI_DMA_TODEVICE); 1868 entry = TX_DESC_NEXT(ring, entry); 1869 1870 /* tiny buffer may follow */ 1871 if (cp->tx_tiny_use[ring][entry].used) { 1872 cp->tx_tiny_use[ring][entry].used = 0; 1873 entry = TX_DESC_NEXT(ring, entry); 1874 } 1875 } 1876 1877 spin_lock(&cp->stat_lock[ring]); 1878 cp->net_stats[ring].tx_packets++; 1879 cp->net_stats[ring].tx_bytes += skb->len; 1880 spin_unlock(&cp->stat_lock[ring]); 1881 dev_consume_skb_irq(skb); 1882 } 1883 cp->tx_old[ring] = entry; 1884 1885 /* this is wrong for multiple tx rings. the net device needs 1886 * multiple queues for this to do the right thing. we wait 1887 * for 2*packets to be available when using tiny buffers 1888 */ 1889 if (netif_queue_stopped(dev) && 1890 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1891 netif_wake_queue(dev); 1892 spin_unlock(&cp->tx_lock[ring]); 1893 } 1894 1895 static void cas_tx(struct net_device *dev, struct cas *cp, 1896 u32 status) 1897 { 1898 int limit, ring; 1899 #ifdef USE_TX_COMPWB 1900 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1901 #endif 1902 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1903 "tx interrupt, status: 0x%x, %llx\n", 1904 status, (unsigned long long)compwb); 1905 /* process all the rings */ 1906 for (ring = 0; ring < N_TX_RINGS; ring++) { 1907 #ifdef USE_TX_COMPWB 1908 /* use the completion writeback registers */ 1909 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1910 CAS_VAL(TX_COMPWB_LSB, compwb); 1911 compwb = TX_COMPWB_NEXT(compwb); 1912 #else 1913 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1914 #endif 1915 if (cp->tx_old[ring] != limit) 1916 cas_tx_ringN(cp, ring, limit); 1917 } 1918 } 1919 1920 1921 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1922 int entry, const u64 *words, 1923 struct sk_buff **skbref) 1924 { 1925 int dlen, hlen, len, i, alloclen; 1926 int off, swivel = RX_SWIVEL_OFF_VAL; 1927 struct cas_page *page; 1928 struct sk_buff *skb; 1929 void *addr, *crcaddr; 1930 __sum16 csum; 1931 char *p; 1932 1933 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1934 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1935 len = hlen + dlen; 1936 1937 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1938 alloclen = len; 1939 else 1940 alloclen = max(hlen, RX_COPY_MIN); 1941 1942 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1943 if (skb == NULL) 1944 return -1; 1945 1946 *skbref = skb; 1947 skb_reserve(skb, swivel); 1948 1949 p = skb->data; 1950 addr = crcaddr = NULL; 1951 if (hlen) { /* always copy header pages */ 1952 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1953 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1954 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1955 swivel; 1956 1957 i = hlen; 1958 if (!dlen) /* attach FCS */ 1959 i += cp->crc_size; 1960 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1961 PCI_DMA_FROMDEVICE); 1962 addr = cas_page_map(page->buffer); 1963 memcpy(p, addr + off, i); 1964 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1965 PCI_DMA_FROMDEVICE); 1966 cas_page_unmap(addr); 1967 RX_USED_ADD(page, 0x100); 1968 p += hlen; 1969 swivel = 0; 1970 } 1971 1972 1973 if (alloclen < (hlen + dlen)) { 1974 skb_frag_t *frag = skb_shinfo(skb)->frags; 1975 1976 /* normal or jumbo packets. we use frags */ 1977 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 1978 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1979 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 1980 1981 hlen = min(cp->page_size - off, dlen); 1982 if (hlen < 0) { 1983 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1984 "rx page overflow: %d\n", hlen); 1985 dev_kfree_skb_irq(skb); 1986 return -1; 1987 } 1988 i = hlen; 1989 if (i == dlen) /* attach FCS */ 1990 i += cp->crc_size; 1991 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1992 PCI_DMA_FROMDEVICE); 1993 1994 /* make sure we always copy a header */ 1995 swivel = 0; 1996 if (p == (char *) skb->data) { /* not split */ 1997 addr = cas_page_map(page->buffer); 1998 memcpy(p, addr + off, RX_COPY_MIN); 1999 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2000 PCI_DMA_FROMDEVICE); 2001 cas_page_unmap(addr); 2002 off += RX_COPY_MIN; 2003 swivel = RX_COPY_MIN; 2004 RX_USED_ADD(page, cp->mtu_stride); 2005 } else { 2006 RX_USED_ADD(page, hlen); 2007 } 2008 skb_put(skb, alloclen); 2009 2010 skb_shinfo(skb)->nr_frags++; 2011 skb->data_len += hlen - swivel; 2012 skb->truesize += hlen - swivel; 2013 skb->len += hlen - swivel; 2014 2015 __skb_frag_set_page(frag, page->buffer); 2016 __skb_frag_ref(frag); 2017 skb_frag_off_set(frag, off); 2018 skb_frag_size_set(frag, hlen - swivel); 2019 2020 /* any more data? */ 2021 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2022 hlen = dlen; 2023 off = 0; 2024 2025 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2026 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2027 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2028 hlen + cp->crc_size, 2029 PCI_DMA_FROMDEVICE); 2030 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2031 hlen + cp->crc_size, 2032 PCI_DMA_FROMDEVICE); 2033 2034 skb_shinfo(skb)->nr_frags++; 2035 skb->data_len += hlen; 2036 skb->len += hlen; 2037 frag++; 2038 2039 __skb_frag_set_page(frag, page->buffer); 2040 __skb_frag_ref(frag); 2041 skb_frag_off_set(frag, 0); 2042 skb_frag_size_set(frag, hlen); 2043 RX_USED_ADD(page, hlen + cp->crc_size); 2044 } 2045 2046 if (cp->crc_size) { 2047 addr = cas_page_map(page->buffer); 2048 crcaddr = addr + off + hlen; 2049 } 2050 2051 } else { 2052 /* copying packet */ 2053 if (!dlen) 2054 goto end_copy_pkt; 2055 2056 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2057 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2058 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2059 hlen = min(cp->page_size - off, dlen); 2060 if (hlen < 0) { 2061 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2062 "rx page overflow: %d\n", hlen); 2063 dev_kfree_skb_irq(skb); 2064 return -1; 2065 } 2066 i = hlen; 2067 if (i == dlen) /* attach FCS */ 2068 i += cp->crc_size; 2069 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2070 PCI_DMA_FROMDEVICE); 2071 addr = cas_page_map(page->buffer); 2072 memcpy(p, addr + off, i); 2073 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2074 PCI_DMA_FROMDEVICE); 2075 cas_page_unmap(addr); 2076 if (p == (char *) skb->data) /* not split */ 2077 RX_USED_ADD(page, cp->mtu_stride); 2078 else 2079 RX_USED_ADD(page, i); 2080 2081 /* any more data? */ 2082 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2083 p += hlen; 2084 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2085 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2086 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2087 dlen + cp->crc_size, 2088 PCI_DMA_FROMDEVICE); 2089 addr = cas_page_map(page->buffer); 2090 memcpy(p, addr, dlen + cp->crc_size); 2091 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2092 dlen + cp->crc_size, 2093 PCI_DMA_FROMDEVICE); 2094 cas_page_unmap(addr); 2095 RX_USED_ADD(page, dlen + cp->crc_size); 2096 } 2097 end_copy_pkt: 2098 if (cp->crc_size) { 2099 addr = NULL; 2100 crcaddr = skb->data + alloclen; 2101 } 2102 skb_put(skb, alloclen); 2103 } 2104 2105 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2106 if (cp->crc_size) { 2107 /* checksum includes FCS. strip it out. */ 2108 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2109 csum_unfold(csum))); 2110 if (addr) 2111 cas_page_unmap(addr); 2112 } 2113 skb->protocol = eth_type_trans(skb, cp->dev); 2114 if (skb->protocol == htons(ETH_P_IP)) { 2115 skb->csum = csum_unfold(~csum); 2116 skb->ip_summed = CHECKSUM_COMPLETE; 2117 } else 2118 skb_checksum_none_assert(skb); 2119 return len; 2120 } 2121 2122 2123 /* we can handle up to 64 rx flows at a time. we do the same thing 2124 * as nonreassm except that we batch up the buffers. 2125 * NOTE: we currently just treat each flow as a bunch of packets that 2126 * we pass up. a better way would be to coalesce the packets 2127 * into a jumbo packet. to do that, we need to do the following: 2128 * 1) the first packet will have a clean split between header and 2129 * data. save both. 2130 * 2) each time the next flow packet comes in, extend the 2131 * data length and merge the checksums. 2132 * 3) on flow release, fix up the header. 2133 * 4) make sure the higher layer doesn't care. 2134 * because packets get coalesced, we shouldn't run into fragment count 2135 * issues. 2136 */ 2137 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2138 struct sk_buff *skb) 2139 { 2140 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2141 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2142 2143 /* this is protected at a higher layer, so no need to 2144 * do any additional locking here. stick the buffer 2145 * at the end. 2146 */ 2147 __skb_queue_tail(flow, skb); 2148 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2149 while ((skb = __skb_dequeue(flow))) { 2150 cas_skb_release(skb); 2151 } 2152 } 2153 } 2154 2155 /* put rx descriptor back on ring. if a buffer is in use by a higher 2156 * layer, this will need to put in a replacement. 2157 */ 2158 static void cas_post_page(struct cas *cp, const int ring, const int index) 2159 { 2160 cas_page_t *new; 2161 int entry; 2162 2163 entry = cp->rx_old[ring]; 2164 2165 new = cas_page_swap(cp, ring, index); 2166 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2167 cp->init_rxds[ring][entry].index = 2168 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2169 CAS_BASE(RX_INDEX_RING, ring)); 2170 2171 entry = RX_DESC_ENTRY(ring, entry + 1); 2172 cp->rx_old[ring] = entry; 2173 2174 if (entry % 4) 2175 return; 2176 2177 if (ring == 0) 2178 writel(entry, cp->regs + REG_RX_KICK); 2179 else if ((N_RX_DESC_RINGS > 1) && 2180 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2181 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2182 } 2183 2184 2185 /* only when things are bad */ 2186 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2187 { 2188 unsigned int entry, last, count, released; 2189 int cluster; 2190 cas_page_t **page = cp->rx_pages[ring]; 2191 2192 entry = cp->rx_old[ring]; 2193 2194 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2195 "rxd[%d] interrupt, done: %d\n", ring, entry); 2196 2197 cluster = -1; 2198 count = entry & 0x3; 2199 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2200 released = 0; 2201 while (entry != last) { 2202 /* make a new buffer if it's still in use */ 2203 if (page_count(page[entry]->buffer) > 1) { 2204 cas_page_t *new = cas_page_dequeue(cp); 2205 if (!new) { 2206 /* let the timer know that we need to 2207 * do this again 2208 */ 2209 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2210 if (!timer_pending(&cp->link_timer)) 2211 mod_timer(&cp->link_timer, jiffies + 2212 CAS_LINK_FAST_TIMEOUT); 2213 cp->rx_old[ring] = entry; 2214 cp->rx_last[ring] = num ? num - released : 0; 2215 return -ENOMEM; 2216 } 2217 spin_lock(&cp->rx_inuse_lock); 2218 list_add(&page[entry]->list, &cp->rx_inuse_list); 2219 spin_unlock(&cp->rx_inuse_lock); 2220 cp->init_rxds[ring][entry].buffer = 2221 cpu_to_le64(new->dma_addr); 2222 page[entry] = new; 2223 2224 } 2225 2226 if (++count == 4) { 2227 cluster = entry; 2228 count = 0; 2229 } 2230 released++; 2231 entry = RX_DESC_ENTRY(ring, entry + 1); 2232 } 2233 cp->rx_old[ring] = entry; 2234 2235 if (cluster < 0) 2236 return 0; 2237 2238 if (ring == 0) 2239 writel(cluster, cp->regs + REG_RX_KICK); 2240 else if ((N_RX_DESC_RINGS > 1) && 2241 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2242 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2243 return 0; 2244 } 2245 2246 2247 /* process a completion ring. packets are set up in three basic ways: 2248 * small packets: should be copied header + data in single buffer. 2249 * large packets: header and data in a single buffer. 2250 * split packets: header in a separate buffer from data. 2251 * data may be in multiple pages. data may be > 256 2252 * bytes but in a single page. 2253 * 2254 * NOTE: RX page posting is done in this routine as well. while there's 2255 * the capability of using multiple RX completion rings, it isn't 2256 * really worthwhile due to the fact that the page posting will 2257 * force serialization on the single descriptor ring. 2258 */ 2259 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2260 { 2261 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2262 int entry, drops; 2263 int npackets = 0; 2264 2265 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2266 "rx[%d] interrupt, done: %d/%d\n", 2267 ring, 2268 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2269 2270 entry = cp->rx_new[ring]; 2271 drops = 0; 2272 while (1) { 2273 struct cas_rx_comp *rxc = rxcs + entry; 2274 struct sk_buff *uninitialized_var(skb); 2275 int type, len; 2276 u64 words[4]; 2277 int i, dring; 2278 2279 words[0] = le64_to_cpu(rxc->word1); 2280 words[1] = le64_to_cpu(rxc->word2); 2281 words[2] = le64_to_cpu(rxc->word3); 2282 words[3] = le64_to_cpu(rxc->word4); 2283 2284 /* don't touch if still owned by hw */ 2285 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2286 if (type == 0) 2287 break; 2288 2289 /* hw hasn't cleared the zero bit yet */ 2290 if (words[3] & RX_COMP4_ZERO) { 2291 break; 2292 } 2293 2294 /* get info on the packet */ 2295 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2296 spin_lock(&cp->stat_lock[ring]); 2297 cp->net_stats[ring].rx_errors++; 2298 if (words[3] & RX_COMP4_LEN_MISMATCH) 2299 cp->net_stats[ring].rx_length_errors++; 2300 if (words[3] & RX_COMP4_BAD) 2301 cp->net_stats[ring].rx_crc_errors++; 2302 spin_unlock(&cp->stat_lock[ring]); 2303 2304 /* We'll just return it to Cassini. */ 2305 drop_it: 2306 spin_lock(&cp->stat_lock[ring]); 2307 ++cp->net_stats[ring].rx_dropped; 2308 spin_unlock(&cp->stat_lock[ring]); 2309 goto next; 2310 } 2311 2312 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2313 if (len < 0) { 2314 ++drops; 2315 goto drop_it; 2316 } 2317 2318 /* see if it's a flow re-assembly or not. the driver 2319 * itself handles release back up. 2320 */ 2321 if (RX_DONT_BATCH || (type == 0x2)) { 2322 /* non-reassm: these always get released */ 2323 cas_skb_release(skb); 2324 } else { 2325 cas_rx_flow_pkt(cp, words, skb); 2326 } 2327 2328 spin_lock(&cp->stat_lock[ring]); 2329 cp->net_stats[ring].rx_packets++; 2330 cp->net_stats[ring].rx_bytes += len; 2331 spin_unlock(&cp->stat_lock[ring]); 2332 2333 next: 2334 npackets++; 2335 2336 /* should it be released? */ 2337 if (words[0] & RX_COMP1_RELEASE_HDR) { 2338 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2339 dring = CAS_VAL(RX_INDEX_RING, i); 2340 i = CAS_VAL(RX_INDEX_NUM, i); 2341 cas_post_page(cp, dring, i); 2342 } 2343 2344 if (words[0] & RX_COMP1_RELEASE_DATA) { 2345 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2346 dring = CAS_VAL(RX_INDEX_RING, i); 2347 i = CAS_VAL(RX_INDEX_NUM, i); 2348 cas_post_page(cp, dring, i); 2349 } 2350 2351 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2352 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2353 dring = CAS_VAL(RX_INDEX_RING, i); 2354 i = CAS_VAL(RX_INDEX_NUM, i); 2355 cas_post_page(cp, dring, i); 2356 } 2357 2358 /* skip to the next entry */ 2359 entry = RX_COMP_ENTRY(ring, entry + 1 + 2360 CAS_VAL(RX_COMP1_SKIP, words[0])); 2361 #ifdef USE_NAPI 2362 if (budget && (npackets >= budget)) 2363 break; 2364 #endif 2365 } 2366 cp->rx_new[ring] = entry; 2367 2368 if (drops) 2369 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2370 return npackets; 2371 } 2372 2373 2374 /* put completion entries back on the ring */ 2375 static void cas_post_rxcs_ringN(struct net_device *dev, 2376 struct cas *cp, int ring) 2377 { 2378 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2379 int last, entry; 2380 2381 last = cp->rx_cur[ring]; 2382 entry = cp->rx_new[ring]; 2383 netif_printk(cp, intr, KERN_DEBUG, dev, 2384 "rxc[%d] interrupt, done: %d/%d\n", 2385 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2386 2387 /* zero and re-mark descriptors */ 2388 while (last != entry) { 2389 cas_rxc_init(rxc + last); 2390 last = RX_COMP_ENTRY(ring, last + 1); 2391 } 2392 cp->rx_cur[ring] = last; 2393 2394 if (ring == 0) 2395 writel(last, cp->regs + REG_RX_COMP_TAIL); 2396 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2397 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2398 } 2399 2400 2401 2402 /* cassini can use all four PCI interrupts for the completion ring. 2403 * rings 3 and 4 are identical 2404 */ 2405 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2406 static inline void cas_handle_irqN(struct net_device *dev, 2407 struct cas *cp, const u32 status, 2408 const int ring) 2409 { 2410 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2411 cas_post_rxcs_ringN(dev, cp, ring); 2412 } 2413 2414 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2415 { 2416 struct net_device *dev = dev_id; 2417 struct cas *cp = netdev_priv(dev); 2418 unsigned long flags; 2419 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2420 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2421 2422 /* check for shared irq */ 2423 if (status == 0) 2424 return IRQ_NONE; 2425 2426 spin_lock_irqsave(&cp->lock, flags); 2427 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2428 #ifdef USE_NAPI 2429 cas_mask_intr(cp); 2430 napi_schedule(&cp->napi); 2431 #else 2432 cas_rx_ringN(cp, ring, 0); 2433 #endif 2434 status &= ~INTR_RX_DONE_ALT; 2435 } 2436 2437 if (status) 2438 cas_handle_irqN(dev, cp, status, ring); 2439 spin_unlock_irqrestore(&cp->lock, flags); 2440 return IRQ_HANDLED; 2441 } 2442 #endif 2443 2444 #ifdef USE_PCI_INTB 2445 /* everything but rx packets */ 2446 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2447 { 2448 if (status & INTR_RX_BUF_UNAVAIL_1) { 2449 /* Frame arrived, no free RX buffers available. 2450 * NOTE: we can get this on a link transition. */ 2451 cas_post_rxds_ringN(cp, 1, 0); 2452 spin_lock(&cp->stat_lock[1]); 2453 cp->net_stats[1].rx_dropped++; 2454 spin_unlock(&cp->stat_lock[1]); 2455 } 2456 2457 if (status & INTR_RX_BUF_AE_1) 2458 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2459 RX_AE_FREEN_VAL(1)); 2460 2461 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2462 cas_post_rxcs_ringN(cp, 1); 2463 } 2464 2465 /* ring 2 handles a few more events than 3 and 4 */ 2466 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2467 { 2468 struct net_device *dev = dev_id; 2469 struct cas *cp = netdev_priv(dev); 2470 unsigned long flags; 2471 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2472 2473 /* check for shared interrupt */ 2474 if (status == 0) 2475 return IRQ_NONE; 2476 2477 spin_lock_irqsave(&cp->lock, flags); 2478 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2479 #ifdef USE_NAPI 2480 cas_mask_intr(cp); 2481 napi_schedule(&cp->napi); 2482 #else 2483 cas_rx_ringN(cp, 1, 0); 2484 #endif 2485 status &= ~INTR_RX_DONE_ALT; 2486 } 2487 if (status) 2488 cas_handle_irq1(cp, status); 2489 spin_unlock_irqrestore(&cp->lock, flags); 2490 return IRQ_HANDLED; 2491 } 2492 #endif 2493 2494 static inline void cas_handle_irq(struct net_device *dev, 2495 struct cas *cp, const u32 status) 2496 { 2497 /* housekeeping interrupts */ 2498 if (status & INTR_ERROR_MASK) 2499 cas_abnormal_irq(dev, cp, status); 2500 2501 if (status & INTR_RX_BUF_UNAVAIL) { 2502 /* Frame arrived, no free RX buffers available. 2503 * NOTE: we can get this on a link transition. 2504 */ 2505 cas_post_rxds_ringN(cp, 0, 0); 2506 spin_lock(&cp->stat_lock[0]); 2507 cp->net_stats[0].rx_dropped++; 2508 spin_unlock(&cp->stat_lock[0]); 2509 } else if (status & INTR_RX_BUF_AE) { 2510 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2511 RX_AE_FREEN_VAL(0)); 2512 } 2513 2514 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2515 cas_post_rxcs_ringN(dev, cp, 0); 2516 } 2517 2518 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2519 { 2520 struct net_device *dev = dev_id; 2521 struct cas *cp = netdev_priv(dev); 2522 unsigned long flags; 2523 u32 status = readl(cp->regs + REG_INTR_STATUS); 2524 2525 if (status == 0) 2526 return IRQ_NONE; 2527 2528 spin_lock_irqsave(&cp->lock, flags); 2529 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2530 cas_tx(dev, cp, status); 2531 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2532 } 2533 2534 if (status & INTR_RX_DONE) { 2535 #ifdef USE_NAPI 2536 cas_mask_intr(cp); 2537 napi_schedule(&cp->napi); 2538 #else 2539 cas_rx_ringN(cp, 0, 0); 2540 #endif 2541 status &= ~INTR_RX_DONE; 2542 } 2543 2544 if (status) 2545 cas_handle_irq(dev, cp, status); 2546 spin_unlock_irqrestore(&cp->lock, flags); 2547 return IRQ_HANDLED; 2548 } 2549 2550 2551 #ifdef USE_NAPI 2552 static int cas_poll(struct napi_struct *napi, int budget) 2553 { 2554 struct cas *cp = container_of(napi, struct cas, napi); 2555 struct net_device *dev = cp->dev; 2556 int i, enable_intr, credits; 2557 u32 status = readl(cp->regs + REG_INTR_STATUS); 2558 unsigned long flags; 2559 2560 spin_lock_irqsave(&cp->lock, flags); 2561 cas_tx(dev, cp, status); 2562 spin_unlock_irqrestore(&cp->lock, flags); 2563 2564 /* NAPI rx packets. we spread the credits across all of the 2565 * rxc rings 2566 * 2567 * to make sure we're fair with the work we loop through each 2568 * ring N_RX_COMP_RING times with a request of 2569 * budget / N_RX_COMP_RINGS 2570 */ 2571 enable_intr = 1; 2572 credits = 0; 2573 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2574 int j; 2575 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2576 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2577 if (credits >= budget) { 2578 enable_intr = 0; 2579 goto rx_comp; 2580 } 2581 } 2582 } 2583 2584 rx_comp: 2585 /* final rx completion */ 2586 spin_lock_irqsave(&cp->lock, flags); 2587 if (status) 2588 cas_handle_irq(dev, cp, status); 2589 2590 #ifdef USE_PCI_INTB 2591 if (N_RX_COMP_RINGS > 1) { 2592 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2593 if (status) 2594 cas_handle_irq1(dev, cp, status); 2595 } 2596 #endif 2597 2598 #ifdef USE_PCI_INTC 2599 if (N_RX_COMP_RINGS > 2) { 2600 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2601 if (status) 2602 cas_handle_irqN(dev, cp, status, 2); 2603 } 2604 #endif 2605 2606 #ifdef USE_PCI_INTD 2607 if (N_RX_COMP_RINGS > 3) { 2608 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2609 if (status) 2610 cas_handle_irqN(dev, cp, status, 3); 2611 } 2612 #endif 2613 spin_unlock_irqrestore(&cp->lock, flags); 2614 if (enable_intr) { 2615 napi_complete(napi); 2616 cas_unmask_intr(cp); 2617 } 2618 return credits; 2619 } 2620 #endif 2621 2622 #ifdef CONFIG_NET_POLL_CONTROLLER 2623 static void cas_netpoll(struct net_device *dev) 2624 { 2625 struct cas *cp = netdev_priv(dev); 2626 2627 cas_disable_irq(cp, 0); 2628 cas_interrupt(cp->pdev->irq, dev); 2629 cas_enable_irq(cp, 0); 2630 2631 #ifdef USE_PCI_INTB 2632 if (N_RX_COMP_RINGS > 1) { 2633 /* cas_interrupt1(); */ 2634 } 2635 #endif 2636 #ifdef USE_PCI_INTC 2637 if (N_RX_COMP_RINGS > 2) { 2638 /* cas_interruptN(); */ 2639 } 2640 #endif 2641 #ifdef USE_PCI_INTD 2642 if (N_RX_COMP_RINGS > 3) { 2643 /* cas_interruptN(); */ 2644 } 2645 #endif 2646 } 2647 #endif 2648 2649 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue) 2650 { 2651 struct cas *cp = netdev_priv(dev); 2652 2653 netdev_err(dev, "transmit timed out, resetting\n"); 2654 if (!cp->hw_running) { 2655 netdev_err(dev, "hrm.. hw not running!\n"); 2656 return; 2657 } 2658 2659 netdev_err(dev, "MIF_STATE[%08x]\n", 2660 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2661 2662 netdev_err(dev, "MAC_STATE[%08x]\n", 2663 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2664 2665 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2666 readl(cp->regs + REG_TX_CFG), 2667 readl(cp->regs + REG_MAC_TX_STATUS), 2668 readl(cp->regs + REG_MAC_TX_CFG), 2669 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2670 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2671 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2672 readl(cp->regs + REG_TX_SM_1), 2673 readl(cp->regs + REG_TX_SM_2)); 2674 2675 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2676 readl(cp->regs + REG_RX_CFG), 2677 readl(cp->regs + REG_MAC_RX_STATUS), 2678 readl(cp->regs + REG_MAC_RX_CFG)); 2679 2680 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2681 readl(cp->regs + REG_HP_STATE_MACHINE), 2682 readl(cp->regs + REG_HP_STATUS0), 2683 readl(cp->regs + REG_HP_STATUS1), 2684 readl(cp->regs + REG_HP_STATUS2)); 2685 2686 #if 1 2687 atomic_inc(&cp->reset_task_pending); 2688 atomic_inc(&cp->reset_task_pending_all); 2689 schedule_work(&cp->reset_task); 2690 #else 2691 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2692 schedule_work(&cp->reset_task); 2693 #endif 2694 } 2695 2696 static inline int cas_intme(int ring, int entry) 2697 { 2698 /* Algorithm: IRQ every 1/2 of descriptors. */ 2699 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2700 return 1; 2701 return 0; 2702 } 2703 2704 2705 static void cas_write_txd(struct cas *cp, int ring, int entry, 2706 dma_addr_t mapping, int len, u64 ctrl, int last) 2707 { 2708 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2709 2710 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2711 if (cas_intme(ring, entry)) 2712 ctrl |= TX_DESC_INTME; 2713 if (last) 2714 ctrl |= TX_DESC_EOF; 2715 txd->control = cpu_to_le64(ctrl); 2716 txd->buffer = cpu_to_le64(mapping); 2717 } 2718 2719 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2720 const int entry) 2721 { 2722 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2723 } 2724 2725 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2726 const int entry, const int tentry) 2727 { 2728 cp->tx_tiny_use[ring][tentry].nbufs++; 2729 cp->tx_tiny_use[ring][entry].used = 1; 2730 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2731 } 2732 2733 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2734 struct sk_buff *skb) 2735 { 2736 struct net_device *dev = cp->dev; 2737 int entry, nr_frags, frag, tabort, tentry; 2738 dma_addr_t mapping; 2739 unsigned long flags; 2740 u64 ctrl; 2741 u32 len; 2742 2743 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2744 2745 /* This is a hard error, log it. */ 2746 if (TX_BUFFS_AVAIL(cp, ring) <= 2747 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2748 netif_stop_queue(dev); 2749 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2750 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2751 return 1; 2752 } 2753 2754 ctrl = 0; 2755 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2756 const u64 csum_start_off = skb_checksum_start_offset(skb); 2757 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2758 2759 ctrl = TX_DESC_CSUM_EN | 2760 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2761 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2762 } 2763 2764 entry = cp->tx_new[ring]; 2765 cp->tx_skbs[ring][entry] = skb; 2766 2767 nr_frags = skb_shinfo(skb)->nr_frags; 2768 len = skb_headlen(skb); 2769 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2770 offset_in_page(skb->data), len, 2771 PCI_DMA_TODEVICE); 2772 2773 tentry = entry; 2774 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2775 if (unlikely(tabort)) { 2776 /* NOTE: len is always > tabort */ 2777 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2778 ctrl | TX_DESC_SOF, 0); 2779 entry = TX_DESC_NEXT(ring, entry); 2780 2781 skb_copy_from_linear_data_offset(skb, len - tabort, 2782 tx_tiny_buf(cp, ring, entry), tabort); 2783 mapping = tx_tiny_map(cp, ring, entry, tentry); 2784 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2785 (nr_frags == 0)); 2786 } else { 2787 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2788 TX_DESC_SOF, (nr_frags == 0)); 2789 } 2790 entry = TX_DESC_NEXT(ring, entry); 2791 2792 for (frag = 0; frag < nr_frags; frag++) { 2793 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2794 2795 len = skb_frag_size(fragp); 2796 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2797 DMA_TO_DEVICE); 2798 2799 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len); 2800 if (unlikely(tabort)) { 2801 void *addr; 2802 2803 /* NOTE: len is always > tabort */ 2804 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2805 ctrl, 0); 2806 entry = TX_DESC_NEXT(ring, entry); 2807 2808 addr = cas_page_map(skb_frag_page(fragp)); 2809 memcpy(tx_tiny_buf(cp, ring, entry), 2810 addr + skb_frag_off(fragp) + len - tabort, 2811 tabort); 2812 cas_page_unmap(addr); 2813 mapping = tx_tiny_map(cp, ring, entry, tentry); 2814 len = tabort; 2815 } 2816 2817 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2818 (frag + 1 == nr_frags)); 2819 entry = TX_DESC_NEXT(ring, entry); 2820 } 2821 2822 cp->tx_new[ring] = entry; 2823 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2824 netif_stop_queue(dev); 2825 2826 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2827 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2828 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2829 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2830 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2831 return 0; 2832 } 2833 2834 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2835 { 2836 struct cas *cp = netdev_priv(dev); 2837 2838 /* this is only used as a load-balancing hint, so it doesn't 2839 * need to be SMP safe 2840 */ 2841 static int ring; 2842 2843 if (skb_padto(skb, cp->min_frame_size)) 2844 return NETDEV_TX_OK; 2845 2846 /* XXX: we need some higher-level QoS hooks to steer packets to 2847 * individual queues. 2848 */ 2849 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2850 return NETDEV_TX_BUSY; 2851 return NETDEV_TX_OK; 2852 } 2853 2854 static void cas_init_tx_dma(struct cas *cp) 2855 { 2856 u64 desc_dma = cp->block_dvma; 2857 unsigned long off; 2858 u32 val; 2859 int i; 2860 2861 /* set up tx completion writeback registers. must be 8-byte aligned */ 2862 #ifdef USE_TX_COMPWB 2863 off = offsetof(struct cas_init_block, tx_compwb); 2864 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2865 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2866 #endif 2867 2868 /* enable completion writebacks, enable paced mode, 2869 * disable read pipe, and disable pre-interrupt compwbs 2870 */ 2871 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2872 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2873 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2874 TX_CFG_INTR_COMPWB_DIS; 2875 2876 /* write out tx ring info and tx desc bases */ 2877 for (i = 0; i < MAX_TX_RINGS; i++) { 2878 off = (unsigned long) cp->init_txds[i] - 2879 (unsigned long) cp->init_block; 2880 2881 val |= CAS_TX_RINGN_BASE(i); 2882 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2883 writel((desc_dma + off) & 0xffffffff, cp->regs + 2884 REG_TX_DBN_LOW(i)); 2885 /* don't zero out the kick register here as the system 2886 * will wedge 2887 */ 2888 } 2889 writel(val, cp->regs + REG_TX_CFG); 2890 2891 /* program max burst sizes. these numbers should be different 2892 * if doing QoS. 2893 */ 2894 #ifdef USE_QOS 2895 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2896 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2897 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2898 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2899 #else 2900 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2901 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2902 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2903 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2904 #endif 2905 } 2906 2907 /* Must be invoked under cp->lock. */ 2908 static inline void cas_init_dma(struct cas *cp) 2909 { 2910 cas_init_tx_dma(cp); 2911 cas_init_rx_dma(cp); 2912 } 2913 2914 static void cas_process_mc_list(struct cas *cp) 2915 { 2916 u16 hash_table[16]; 2917 u32 crc; 2918 struct netdev_hw_addr *ha; 2919 int i = 1; 2920 2921 memset(hash_table, 0, sizeof(hash_table)); 2922 netdev_for_each_mc_addr(ha, cp->dev) { 2923 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2924 /* use the alternate mac address registers for the 2925 * first 15 multicast addresses 2926 */ 2927 writel((ha->addr[4] << 8) | ha->addr[5], 2928 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2929 writel((ha->addr[2] << 8) | ha->addr[3], 2930 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2931 writel((ha->addr[0] << 8) | ha->addr[1], 2932 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2933 i++; 2934 } 2935 else { 2936 /* use hw hash table for the next series of 2937 * multicast addresses 2938 */ 2939 crc = ether_crc_le(ETH_ALEN, ha->addr); 2940 crc >>= 24; 2941 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2942 } 2943 } 2944 for (i = 0; i < 16; i++) 2945 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2946 } 2947 2948 /* Must be invoked under cp->lock. */ 2949 static u32 cas_setup_multicast(struct cas *cp) 2950 { 2951 u32 rxcfg = 0; 2952 int i; 2953 2954 if (cp->dev->flags & IFF_PROMISC) { 2955 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2956 2957 } else if (cp->dev->flags & IFF_ALLMULTI) { 2958 for (i=0; i < 16; i++) 2959 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2960 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2961 2962 } else { 2963 cas_process_mc_list(cp); 2964 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2965 } 2966 2967 return rxcfg; 2968 } 2969 2970 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 2971 static void cas_clear_mac_err(struct cas *cp) 2972 { 2973 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 2974 writel(0, cp->regs + REG_MAC_COLL_FIRST); 2975 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 2976 writel(0, cp->regs + REG_MAC_COLL_LATE); 2977 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 2978 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 2979 writel(0, cp->regs + REG_MAC_RECV_FRAME); 2980 writel(0, cp->regs + REG_MAC_LEN_ERR); 2981 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 2982 writel(0, cp->regs + REG_MAC_FCS_ERR); 2983 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 2984 } 2985 2986 2987 static void cas_mac_reset(struct cas *cp) 2988 { 2989 int i; 2990 2991 /* do both TX and RX reset */ 2992 writel(0x1, cp->regs + REG_MAC_TX_RESET); 2993 writel(0x1, cp->regs + REG_MAC_RX_RESET); 2994 2995 /* wait for TX */ 2996 i = STOP_TRIES; 2997 while (i-- > 0) { 2998 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 2999 break; 3000 udelay(10); 3001 } 3002 3003 /* wait for RX */ 3004 i = STOP_TRIES; 3005 while (i-- > 0) { 3006 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3007 break; 3008 udelay(10); 3009 } 3010 3011 if (readl(cp->regs + REG_MAC_TX_RESET) | 3012 readl(cp->regs + REG_MAC_RX_RESET)) 3013 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3014 readl(cp->regs + REG_MAC_TX_RESET), 3015 readl(cp->regs + REG_MAC_RX_RESET), 3016 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3017 } 3018 3019 3020 /* Must be invoked under cp->lock. */ 3021 static void cas_init_mac(struct cas *cp) 3022 { 3023 unsigned char *e = &cp->dev->dev_addr[0]; 3024 int i; 3025 cas_mac_reset(cp); 3026 3027 /* setup core arbitration weight register */ 3028 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3029 3030 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3031 /* set the infinite burst register for chips that don't have 3032 * pci issues. 3033 */ 3034 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3035 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3036 #endif 3037 3038 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3039 3040 writel(0x00, cp->regs + REG_MAC_IPG0); 3041 writel(0x08, cp->regs + REG_MAC_IPG1); 3042 writel(0x04, cp->regs + REG_MAC_IPG2); 3043 3044 /* change later for 802.3z */ 3045 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3046 3047 /* min frame + FCS */ 3048 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3049 3050 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3051 * specify the maximum frame size to prevent RX tag errors on 3052 * oversized frames. 3053 */ 3054 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3055 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3056 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3057 cp->regs + REG_MAC_FRAMESIZE_MAX); 3058 3059 /* NOTE: crc_size is used as a surrogate for half-duplex. 3060 * workaround saturn half-duplex issue by increasing preamble 3061 * size to 65 bytes. 3062 */ 3063 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3064 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3065 else 3066 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3067 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3068 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3069 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3070 3071 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3072 3073 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3074 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3075 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3076 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3077 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3078 3079 /* setup mac address in perfect filter array */ 3080 for (i = 0; i < 45; i++) 3081 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3082 3083 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3084 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3085 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3086 3087 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3088 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3089 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3090 3091 cp->mac_rx_cfg = cas_setup_multicast(cp); 3092 3093 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3094 cas_clear_mac_err(cp); 3095 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3096 3097 /* Setup MAC interrupts. We want to get all of the interesting 3098 * counter expiration events, but we do not want to hear about 3099 * normal rx/tx as the DMA engine tells us that. 3100 */ 3101 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3102 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3103 3104 /* Don't enable even the PAUSE interrupts for now, we 3105 * make no use of those events other than to record them. 3106 */ 3107 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3108 } 3109 3110 /* Must be invoked under cp->lock. */ 3111 static void cas_init_pause_thresholds(struct cas *cp) 3112 { 3113 /* Calculate pause thresholds. Setting the OFF threshold to the 3114 * full RX fifo size effectively disables PAUSE generation 3115 */ 3116 if (cp->rx_fifo_size <= (2 * 1024)) { 3117 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3118 } else { 3119 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3120 if (max_frame * 3 > cp->rx_fifo_size) { 3121 cp->rx_pause_off = 7104; 3122 cp->rx_pause_on = 960; 3123 } else { 3124 int off = (cp->rx_fifo_size - (max_frame * 2)); 3125 int on = off - max_frame; 3126 cp->rx_pause_off = off; 3127 cp->rx_pause_on = on; 3128 } 3129 } 3130 } 3131 3132 static int cas_vpd_match(const void __iomem *p, const char *str) 3133 { 3134 int len = strlen(str) + 1; 3135 int i; 3136 3137 for (i = 0; i < len; i++) { 3138 if (readb(p + i) != str[i]) 3139 return 0; 3140 } 3141 return 1; 3142 } 3143 3144 3145 /* get the mac address by reading the vpd information in the rom. 3146 * also get the phy type and determine if there's an entropy generator. 3147 * NOTE: this is a bit convoluted for the following reasons: 3148 * 1) vpd info has order-dependent mac addresses for multinic cards 3149 * 2) the only way to determine the nic order is to use the slot 3150 * number. 3151 * 3) fiber cards don't have bridges, so their slot numbers don't 3152 * mean anything. 3153 * 4) we don't actually know we have a fiber card until after 3154 * the mac addresses are parsed. 3155 */ 3156 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3157 const int offset) 3158 { 3159 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3160 void __iomem *base, *kstart; 3161 int i, len; 3162 int found = 0; 3163 #define VPD_FOUND_MAC 0x01 3164 #define VPD_FOUND_PHY 0x02 3165 3166 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3167 int mac_off = 0; 3168 3169 #if defined(CONFIG_SPARC) 3170 const unsigned char *addr; 3171 #endif 3172 3173 /* give us access to the PROM */ 3174 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3175 cp->regs + REG_BIM_LOCAL_DEV_EN); 3176 3177 /* check for an expansion rom */ 3178 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3179 goto use_random_mac_addr; 3180 3181 /* search for beginning of vpd */ 3182 base = NULL; 3183 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3184 /* check for PCIR */ 3185 if ((readb(p + i + 0) == 0x50) && 3186 (readb(p + i + 1) == 0x43) && 3187 (readb(p + i + 2) == 0x49) && 3188 (readb(p + i + 3) == 0x52)) { 3189 base = p + (readb(p + i + 8) | 3190 (readb(p + i + 9) << 8)); 3191 break; 3192 } 3193 } 3194 3195 if (!base || (readb(base) != 0x82)) 3196 goto use_random_mac_addr; 3197 3198 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3199 while (i < EXPANSION_ROM_SIZE) { 3200 if (readb(base + i) != 0x90) /* no vpd found */ 3201 goto use_random_mac_addr; 3202 3203 /* found a vpd field */ 3204 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3205 3206 /* extract keywords */ 3207 kstart = base + i + 3; 3208 p = kstart; 3209 while ((p - kstart) < len) { 3210 int klen = readb(p + 2); 3211 int j; 3212 char type; 3213 3214 p += 3; 3215 3216 /* look for the following things: 3217 * -- correct length == 29 3218 * 3 (type) + 2 (size) + 3219 * 18 (strlen("local-mac-address") + 1) + 3220 * 6 (mac addr) 3221 * -- VPD Instance 'I' 3222 * -- VPD Type Bytes 'B' 3223 * -- VPD data length == 6 3224 * -- property string == local-mac-address 3225 * 3226 * -- correct length == 24 3227 * 3 (type) + 2 (size) + 3228 * 12 (strlen("entropy-dev") + 1) + 3229 * 7 (strlen("vms110") + 1) 3230 * -- VPD Instance 'I' 3231 * -- VPD Type String 'B' 3232 * -- VPD data length == 7 3233 * -- property string == entropy-dev 3234 * 3235 * -- correct length == 18 3236 * 3 (type) + 2 (size) + 3237 * 9 (strlen("phy-type") + 1) + 3238 * 4 (strlen("pcs") + 1) 3239 * -- VPD Instance 'I' 3240 * -- VPD Type String 'S' 3241 * -- VPD data length == 4 3242 * -- property string == phy-type 3243 * 3244 * -- correct length == 23 3245 * 3 (type) + 2 (size) + 3246 * 14 (strlen("phy-interface") + 1) + 3247 * 4 (strlen("pcs") + 1) 3248 * -- VPD Instance 'I' 3249 * -- VPD Type String 'S' 3250 * -- VPD data length == 4 3251 * -- property string == phy-interface 3252 */ 3253 if (readb(p) != 'I') 3254 goto next; 3255 3256 /* finally, check string and length */ 3257 type = readb(p + 3); 3258 if (type == 'B') { 3259 if ((klen == 29) && readb(p + 4) == 6 && 3260 cas_vpd_match(p + 5, 3261 "local-mac-address")) { 3262 if (mac_off++ > offset) 3263 goto next; 3264 3265 /* set mac address */ 3266 for (j = 0; j < 6; j++) 3267 dev_addr[j] = 3268 readb(p + 23 + j); 3269 goto found_mac; 3270 } 3271 } 3272 3273 if (type != 'S') 3274 goto next; 3275 3276 #ifdef USE_ENTROPY_DEV 3277 if ((klen == 24) && 3278 cas_vpd_match(p + 5, "entropy-dev") && 3279 cas_vpd_match(p + 17, "vms110")) { 3280 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3281 goto next; 3282 } 3283 #endif 3284 3285 if (found & VPD_FOUND_PHY) 3286 goto next; 3287 3288 if ((klen == 18) && readb(p + 4) == 4 && 3289 cas_vpd_match(p + 5, "phy-type")) { 3290 if (cas_vpd_match(p + 14, "pcs")) { 3291 phy_type = CAS_PHY_SERDES; 3292 goto found_phy; 3293 } 3294 } 3295 3296 if ((klen == 23) && readb(p + 4) == 4 && 3297 cas_vpd_match(p + 5, "phy-interface")) { 3298 if (cas_vpd_match(p + 19, "pcs")) { 3299 phy_type = CAS_PHY_SERDES; 3300 goto found_phy; 3301 } 3302 } 3303 found_mac: 3304 found |= VPD_FOUND_MAC; 3305 goto next; 3306 3307 found_phy: 3308 found |= VPD_FOUND_PHY; 3309 3310 next: 3311 p += klen; 3312 } 3313 i += len + 3; 3314 } 3315 3316 use_random_mac_addr: 3317 if (found & VPD_FOUND_MAC) 3318 goto done; 3319 3320 #if defined(CONFIG_SPARC) 3321 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3322 if (addr != NULL) { 3323 memcpy(dev_addr, addr, ETH_ALEN); 3324 goto done; 3325 } 3326 #endif 3327 3328 /* Sun MAC prefix then 3 random bytes. */ 3329 pr_info("MAC address not found in ROM VPD\n"); 3330 dev_addr[0] = 0x08; 3331 dev_addr[1] = 0x00; 3332 dev_addr[2] = 0x20; 3333 get_random_bytes(dev_addr + 3, 3); 3334 3335 done: 3336 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3337 return phy_type; 3338 } 3339 3340 /* check pci invariants */ 3341 static void cas_check_pci_invariants(struct cas *cp) 3342 { 3343 struct pci_dev *pdev = cp->pdev; 3344 3345 cp->cas_flags = 0; 3346 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3347 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3348 if (pdev->revision >= CAS_ID_REVPLUS) 3349 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3350 if (pdev->revision < CAS_ID_REVPLUS02u) 3351 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3352 3353 /* Original Cassini supports HW CSUM, but it's not 3354 * enabled by default as it can trigger TX hangs. 3355 */ 3356 if (pdev->revision < CAS_ID_REV2) 3357 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3358 } else { 3359 /* Only sun has original cassini chips. */ 3360 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3361 3362 /* We use a flag because the same phy might be externally 3363 * connected. 3364 */ 3365 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3366 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3367 cp->cas_flags |= CAS_FLAG_SATURN; 3368 } 3369 } 3370 3371 3372 static int cas_check_invariants(struct cas *cp) 3373 { 3374 struct pci_dev *pdev = cp->pdev; 3375 u32 cfg; 3376 int i; 3377 3378 /* get page size for rx buffers. */ 3379 cp->page_order = 0; 3380 #ifdef USE_PAGE_ORDER 3381 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3382 /* see if we can allocate larger pages */ 3383 struct page *page = alloc_pages(GFP_ATOMIC, 3384 CAS_JUMBO_PAGE_SHIFT - 3385 PAGE_SHIFT); 3386 if (page) { 3387 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3388 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3389 } else { 3390 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3391 } 3392 } 3393 #endif 3394 cp->page_size = (PAGE_SIZE << cp->page_order); 3395 3396 /* Fetch the FIFO configurations. */ 3397 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3398 cp->rx_fifo_size = RX_FIFO_SIZE; 3399 3400 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3401 * they're both connected. 3402 */ 3403 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3404 PCI_SLOT(pdev->devfn)); 3405 if (cp->phy_type & CAS_PHY_SERDES) { 3406 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3407 return 0; /* no more checking needed */ 3408 } 3409 3410 /* MII */ 3411 cfg = readl(cp->regs + REG_MIF_CFG); 3412 if (cfg & MIF_CFG_MDIO_1) { 3413 cp->phy_type = CAS_PHY_MII_MDIO1; 3414 } else if (cfg & MIF_CFG_MDIO_0) { 3415 cp->phy_type = CAS_PHY_MII_MDIO0; 3416 } 3417 3418 cas_mif_poll(cp, 0); 3419 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3420 3421 for (i = 0; i < 32; i++) { 3422 u32 phy_id; 3423 int j; 3424 3425 for (j = 0; j < 3; j++) { 3426 cp->phy_addr = i; 3427 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3428 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3429 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3430 cp->phy_id = phy_id; 3431 goto done; 3432 } 3433 } 3434 } 3435 pr_err("MII phy did not respond [%08x]\n", 3436 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3437 return -1; 3438 3439 done: 3440 /* see if we can do gigabit */ 3441 cfg = cas_phy_read(cp, MII_BMSR); 3442 if ((cfg & CAS_BMSR_1000_EXTEND) && 3443 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3444 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3445 return 0; 3446 } 3447 3448 /* Must be invoked under cp->lock. */ 3449 static inline void cas_start_dma(struct cas *cp) 3450 { 3451 int i; 3452 u32 val; 3453 int txfailed = 0; 3454 3455 /* enable dma */ 3456 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3457 writel(val, cp->regs + REG_TX_CFG); 3458 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3459 writel(val, cp->regs + REG_RX_CFG); 3460 3461 /* enable the mac */ 3462 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3463 writel(val, cp->regs + REG_MAC_TX_CFG); 3464 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3465 writel(val, cp->regs + REG_MAC_RX_CFG); 3466 3467 i = STOP_TRIES; 3468 while (i-- > 0) { 3469 val = readl(cp->regs + REG_MAC_TX_CFG); 3470 if ((val & MAC_TX_CFG_EN)) 3471 break; 3472 udelay(10); 3473 } 3474 if (i < 0) txfailed = 1; 3475 i = STOP_TRIES; 3476 while (i-- > 0) { 3477 val = readl(cp->regs + REG_MAC_RX_CFG); 3478 if ((val & MAC_RX_CFG_EN)) { 3479 if (txfailed) { 3480 netdev_err(cp->dev, 3481 "enabling mac failed [tx:%08x:%08x]\n", 3482 readl(cp->regs + REG_MIF_STATE_MACHINE), 3483 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3484 } 3485 goto enable_rx_done; 3486 } 3487 udelay(10); 3488 } 3489 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3490 (txfailed ? "tx,rx" : "rx"), 3491 readl(cp->regs + REG_MIF_STATE_MACHINE), 3492 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3493 3494 enable_rx_done: 3495 cas_unmask_intr(cp); /* enable interrupts */ 3496 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3497 writel(0, cp->regs + REG_RX_COMP_TAIL); 3498 3499 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3500 if (N_RX_DESC_RINGS > 1) 3501 writel(RX_DESC_RINGN_SIZE(1) - 4, 3502 cp->regs + REG_PLUS_RX_KICK1); 3503 3504 for (i = 1; i < N_RX_COMP_RINGS; i++) 3505 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3506 } 3507 } 3508 3509 /* Must be invoked under cp->lock. */ 3510 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3511 int *pause) 3512 { 3513 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3514 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3515 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3516 if (val & PCS_MII_LPA_ASYM_PAUSE) 3517 *pause |= 0x10; 3518 *spd = 1000; 3519 } 3520 3521 /* Must be invoked under cp->lock. */ 3522 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3523 int *pause) 3524 { 3525 u32 val; 3526 3527 *fd = 0; 3528 *spd = 10; 3529 *pause = 0; 3530 3531 /* use GMII registers */ 3532 val = cas_phy_read(cp, MII_LPA); 3533 if (val & CAS_LPA_PAUSE) 3534 *pause = 0x01; 3535 3536 if (val & CAS_LPA_ASYM_PAUSE) 3537 *pause |= 0x10; 3538 3539 if (val & LPA_DUPLEX) 3540 *fd = 1; 3541 if (val & LPA_100) 3542 *spd = 100; 3543 3544 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3545 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3546 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3547 *spd = 1000; 3548 if (val & CAS_LPA_1000FULL) 3549 *fd = 1; 3550 } 3551 } 3552 3553 /* A link-up condition has occurred, initialize and enable the 3554 * rest of the chip. 3555 * 3556 * Must be invoked under cp->lock. 3557 */ 3558 static void cas_set_link_modes(struct cas *cp) 3559 { 3560 u32 val; 3561 int full_duplex, speed, pause; 3562 3563 full_duplex = 0; 3564 speed = 10; 3565 pause = 0; 3566 3567 if (CAS_PHY_MII(cp->phy_type)) { 3568 cas_mif_poll(cp, 0); 3569 val = cas_phy_read(cp, MII_BMCR); 3570 if (val & BMCR_ANENABLE) { 3571 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3572 &pause); 3573 } else { 3574 if (val & BMCR_FULLDPLX) 3575 full_duplex = 1; 3576 3577 if (val & BMCR_SPEED100) 3578 speed = 100; 3579 else if (val & CAS_BMCR_SPEED1000) 3580 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3581 1000 : 100; 3582 } 3583 cas_mif_poll(cp, 1); 3584 3585 } else { 3586 val = readl(cp->regs + REG_PCS_MII_CTRL); 3587 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3588 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3589 if (val & PCS_MII_CTRL_DUPLEX) 3590 full_duplex = 1; 3591 } 3592 } 3593 3594 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3595 speed, full_duplex ? "full" : "half"); 3596 3597 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3598 if (CAS_PHY_MII(cp->phy_type)) { 3599 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3600 if (!full_duplex) 3601 val |= MAC_XIF_DISABLE_ECHO; 3602 } 3603 if (full_duplex) 3604 val |= MAC_XIF_FDPLX_LED; 3605 if (speed == 1000) 3606 val |= MAC_XIF_GMII_MODE; 3607 writel(val, cp->regs + REG_MAC_XIF_CFG); 3608 3609 /* deal with carrier and collision detect. */ 3610 val = MAC_TX_CFG_IPG_EN; 3611 if (full_duplex) { 3612 val |= MAC_TX_CFG_IGNORE_CARRIER; 3613 val |= MAC_TX_CFG_IGNORE_COLL; 3614 } else { 3615 #ifndef USE_CSMA_CD_PROTO 3616 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3617 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3618 #endif 3619 } 3620 /* val now set up for REG_MAC_TX_CFG */ 3621 3622 /* If gigabit and half-duplex, enable carrier extension 3623 * mode. increase slot time to 512 bytes as well. 3624 * else, disable it and make sure slot time is 64 bytes. 3625 * also activate checksum bug workaround 3626 */ 3627 if ((speed == 1000) && !full_duplex) { 3628 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3629 cp->regs + REG_MAC_TX_CFG); 3630 3631 val = readl(cp->regs + REG_MAC_RX_CFG); 3632 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3633 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3634 cp->regs + REG_MAC_RX_CFG); 3635 3636 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3637 3638 cp->crc_size = 4; 3639 /* minimum size gigabit frame at half duplex */ 3640 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3641 3642 } else { 3643 writel(val, cp->regs + REG_MAC_TX_CFG); 3644 3645 /* checksum bug workaround. don't strip FCS when in 3646 * half-duplex mode 3647 */ 3648 val = readl(cp->regs + REG_MAC_RX_CFG); 3649 if (full_duplex) { 3650 val |= MAC_RX_CFG_STRIP_FCS; 3651 cp->crc_size = 0; 3652 cp->min_frame_size = CAS_MIN_MTU; 3653 } else { 3654 val &= ~MAC_RX_CFG_STRIP_FCS; 3655 cp->crc_size = 4; 3656 cp->min_frame_size = CAS_MIN_FRAME; 3657 } 3658 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3659 cp->regs + REG_MAC_RX_CFG); 3660 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3661 } 3662 3663 if (netif_msg_link(cp)) { 3664 if (pause & 0x01) { 3665 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3666 cp->rx_fifo_size, 3667 cp->rx_pause_off, 3668 cp->rx_pause_on); 3669 } else if (pause & 0x10) { 3670 netdev_info(cp->dev, "TX pause enabled\n"); 3671 } else { 3672 netdev_info(cp->dev, "Pause is disabled\n"); 3673 } 3674 } 3675 3676 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3677 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3678 if (pause) { /* symmetric or asymmetric pause */ 3679 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3680 if (pause & 0x01) { /* symmetric pause */ 3681 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3682 } 3683 } 3684 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3685 cas_start_dma(cp); 3686 } 3687 3688 /* Must be invoked under cp->lock. */ 3689 static void cas_init_hw(struct cas *cp, int restart_link) 3690 { 3691 if (restart_link) 3692 cas_phy_init(cp); 3693 3694 cas_init_pause_thresholds(cp); 3695 cas_init_mac(cp); 3696 cas_init_dma(cp); 3697 3698 if (restart_link) { 3699 /* Default aneg parameters */ 3700 cp->timer_ticks = 0; 3701 cas_begin_auto_negotiation(cp, NULL); 3702 } else if (cp->lstate == link_up) { 3703 cas_set_link_modes(cp); 3704 netif_carrier_on(cp->dev); 3705 } 3706 } 3707 3708 /* Must be invoked under cp->lock. on earlier cassini boards, 3709 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3710 * let it settle out, and then restore pci state. 3711 */ 3712 static void cas_hard_reset(struct cas *cp) 3713 { 3714 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3715 udelay(20); 3716 pci_restore_state(cp->pdev); 3717 } 3718 3719 3720 static void cas_global_reset(struct cas *cp, int blkflag) 3721 { 3722 int limit; 3723 3724 /* issue a global reset. don't use RSTOUT. */ 3725 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3726 /* For PCS, when the blkflag is set, we should set the 3727 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3728 * the last autonegotiation from being cleared. We'll 3729 * need some special handling if the chip is set into a 3730 * loopback mode. 3731 */ 3732 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3733 cp->regs + REG_SW_RESET); 3734 } else { 3735 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3736 } 3737 3738 /* need to wait at least 3ms before polling register */ 3739 mdelay(3); 3740 3741 limit = STOP_TRIES; 3742 while (limit-- > 0) { 3743 u32 val = readl(cp->regs + REG_SW_RESET); 3744 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3745 goto done; 3746 udelay(10); 3747 } 3748 netdev_err(cp->dev, "sw reset failed\n"); 3749 3750 done: 3751 /* enable various BIM interrupts */ 3752 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3753 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3754 3755 /* clear out pci error status mask for handled errors. 3756 * we don't deal with DMA counter overflows as they happen 3757 * all the time. 3758 */ 3759 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3760 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3761 PCI_ERR_BIM_DMA_READ), cp->regs + 3762 REG_PCI_ERR_STATUS_MASK); 3763 3764 /* set up for MII by default to address mac rx reset timeout 3765 * issue 3766 */ 3767 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3768 } 3769 3770 static void cas_reset(struct cas *cp, int blkflag) 3771 { 3772 u32 val; 3773 3774 cas_mask_intr(cp); 3775 cas_global_reset(cp, blkflag); 3776 cas_mac_reset(cp); 3777 cas_entropy_reset(cp); 3778 3779 /* disable dma engines. */ 3780 val = readl(cp->regs + REG_TX_CFG); 3781 val &= ~TX_CFG_DMA_EN; 3782 writel(val, cp->regs + REG_TX_CFG); 3783 3784 val = readl(cp->regs + REG_RX_CFG); 3785 val &= ~RX_CFG_DMA_EN; 3786 writel(val, cp->regs + REG_RX_CFG); 3787 3788 /* program header parser */ 3789 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3790 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3791 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3792 } else { 3793 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3794 } 3795 3796 /* clear out error registers */ 3797 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3798 cas_clear_mac_err(cp); 3799 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3800 } 3801 3802 /* Shut down the chip, must be called with pm_mutex held. */ 3803 static void cas_shutdown(struct cas *cp) 3804 { 3805 unsigned long flags; 3806 3807 /* Make us not-running to avoid timers respawning */ 3808 cp->hw_running = 0; 3809 3810 del_timer_sync(&cp->link_timer); 3811 3812 /* Stop the reset task */ 3813 #if 0 3814 while (atomic_read(&cp->reset_task_pending_mtu) || 3815 atomic_read(&cp->reset_task_pending_spare) || 3816 atomic_read(&cp->reset_task_pending_all)) 3817 schedule(); 3818 3819 #else 3820 while (atomic_read(&cp->reset_task_pending)) 3821 schedule(); 3822 #endif 3823 /* Actually stop the chip */ 3824 cas_lock_all_save(cp, flags); 3825 cas_reset(cp, 0); 3826 if (cp->cas_flags & CAS_FLAG_SATURN) 3827 cas_phy_powerdown(cp); 3828 cas_unlock_all_restore(cp, flags); 3829 } 3830 3831 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3832 { 3833 struct cas *cp = netdev_priv(dev); 3834 3835 dev->mtu = new_mtu; 3836 if (!netif_running(dev) || !netif_device_present(dev)) 3837 return 0; 3838 3839 /* let the reset task handle it */ 3840 #if 1 3841 atomic_inc(&cp->reset_task_pending); 3842 if ((cp->phy_type & CAS_PHY_SERDES)) { 3843 atomic_inc(&cp->reset_task_pending_all); 3844 } else { 3845 atomic_inc(&cp->reset_task_pending_mtu); 3846 } 3847 schedule_work(&cp->reset_task); 3848 #else 3849 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3850 CAS_RESET_ALL : CAS_RESET_MTU); 3851 pr_err("reset called in cas_change_mtu\n"); 3852 schedule_work(&cp->reset_task); 3853 #endif 3854 3855 flush_work(&cp->reset_task); 3856 return 0; 3857 } 3858 3859 static void cas_clean_txd(struct cas *cp, int ring) 3860 { 3861 struct cas_tx_desc *txd = cp->init_txds[ring]; 3862 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3863 u64 daddr, dlen; 3864 int i, size; 3865 3866 size = TX_DESC_RINGN_SIZE(ring); 3867 for (i = 0; i < size; i++) { 3868 int frag; 3869 3870 if (skbs[i] == NULL) 3871 continue; 3872 3873 skb = skbs[i]; 3874 skbs[i] = NULL; 3875 3876 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3877 int ent = i & (size - 1); 3878 3879 /* first buffer is never a tiny buffer and so 3880 * needs to be unmapped. 3881 */ 3882 daddr = le64_to_cpu(txd[ent].buffer); 3883 dlen = CAS_VAL(TX_DESC_BUFLEN, 3884 le64_to_cpu(txd[ent].control)); 3885 pci_unmap_page(cp->pdev, daddr, dlen, 3886 PCI_DMA_TODEVICE); 3887 3888 if (frag != skb_shinfo(skb)->nr_frags) { 3889 i++; 3890 3891 /* next buffer might by a tiny buffer. 3892 * skip past it. 3893 */ 3894 ent = i & (size - 1); 3895 if (cp->tx_tiny_use[ring][ent].used) 3896 i++; 3897 } 3898 } 3899 dev_kfree_skb_any(skb); 3900 } 3901 3902 /* zero out tiny buf usage */ 3903 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3904 } 3905 3906 /* freed on close */ 3907 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3908 { 3909 cas_page_t **page = cp->rx_pages[ring]; 3910 int i, size; 3911 3912 size = RX_DESC_RINGN_SIZE(ring); 3913 for (i = 0; i < size; i++) { 3914 if (page[i]) { 3915 cas_page_free(cp, page[i]); 3916 page[i] = NULL; 3917 } 3918 } 3919 } 3920 3921 static void cas_free_rxds(struct cas *cp) 3922 { 3923 int i; 3924 3925 for (i = 0; i < N_RX_DESC_RINGS; i++) 3926 cas_free_rx_desc(cp, i); 3927 } 3928 3929 /* Must be invoked under cp->lock. */ 3930 static void cas_clean_rings(struct cas *cp) 3931 { 3932 int i; 3933 3934 /* need to clean all tx rings */ 3935 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3936 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3937 for (i = 0; i < N_TX_RINGS; i++) 3938 cas_clean_txd(cp, i); 3939 3940 /* zero out init block */ 3941 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3942 cas_clean_rxds(cp); 3943 cas_clean_rxcs(cp); 3944 } 3945 3946 /* allocated on open */ 3947 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3948 { 3949 cas_page_t **page = cp->rx_pages[ring]; 3950 int size, i = 0; 3951 3952 size = RX_DESC_RINGN_SIZE(ring); 3953 for (i = 0; i < size; i++) { 3954 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3955 return -1; 3956 } 3957 return 0; 3958 } 3959 3960 static int cas_alloc_rxds(struct cas *cp) 3961 { 3962 int i; 3963 3964 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3965 if (cas_alloc_rx_desc(cp, i) < 0) { 3966 cas_free_rxds(cp); 3967 return -1; 3968 } 3969 } 3970 return 0; 3971 } 3972 3973 static void cas_reset_task(struct work_struct *work) 3974 { 3975 struct cas *cp = container_of(work, struct cas, reset_task); 3976 #if 0 3977 int pending = atomic_read(&cp->reset_task_pending); 3978 #else 3979 int pending_all = atomic_read(&cp->reset_task_pending_all); 3980 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 3981 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 3982 3983 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 3984 /* We can have more tasks scheduled than actually 3985 * needed. 3986 */ 3987 atomic_dec(&cp->reset_task_pending); 3988 return; 3989 } 3990 #endif 3991 /* The link went down, we reset the ring, but keep 3992 * DMA stopped. Use this function for reset 3993 * on error as well. 3994 */ 3995 if (cp->hw_running) { 3996 unsigned long flags; 3997 3998 /* Make sure we don't get interrupts or tx packets */ 3999 netif_device_detach(cp->dev); 4000 cas_lock_all_save(cp, flags); 4001 4002 if (cp->opened) { 4003 /* We call cas_spare_recover when we call cas_open. 4004 * but we do not initialize the lists cas_spare_recover 4005 * uses until cas_open is called. 4006 */ 4007 cas_spare_recover(cp, GFP_ATOMIC); 4008 } 4009 #if 1 4010 /* test => only pending_spare set */ 4011 if (!pending_all && !pending_mtu) 4012 goto done; 4013 #else 4014 if (pending == CAS_RESET_SPARE) 4015 goto done; 4016 #endif 4017 /* when pending == CAS_RESET_ALL, the following 4018 * call to cas_init_hw will restart auto negotiation. 4019 * Setting the second argument of cas_reset to 4020 * !(pending == CAS_RESET_ALL) will set this argument 4021 * to 1 (avoiding reinitializing the PHY for the normal 4022 * PCS case) when auto negotiation is not restarted. 4023 */ 4024 #if 1 4025 cas_reset(cp, !(pending_all > 0)); 4026 if (cp->opened) 4027 cas_clean_rings(cp); 4028 cas_init_hw(cp, (pending_all > 0)); 4029 #else 4030 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4031 if (cp->opened) 4032 cas_clean_rings(cp); 4033 cas_init_hw(cp, pending == CAS_RESET_ALL); 4034 #endif 4035 4036 done: 4037 cas_unlock_all_restore(cp, flags); 4038 netif_device_attach(cp->dev); 4039 } 4040 #if 1 4041 atomic_sub(pending_all, &cp->reset_task_pending_all); 4042 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4043 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4044 atomic_dec(&cp->reset_task_pending); 4045 #else 4046 atomic_set(&cp->reset_task_pending, 0); 4047 #endif 4048 } 4049 4050 static void cas_link_timer(struct timer_list *t) 4051 { 4052 struct cas *cp = from_timer(cp, t, link_timer); 4053 int mask, pending = 0, reset = 0; 4054 unsigned long flags; 4055 4056 if (link_transition_timeout != 0 && 4057 cp->link_transition_jiffies_valid && 4058 ((jiffies - cp->link_transition_jiffies) > 4059 (link_transition_timeout))) { 4060 /* One-second counter so link-down workaround doesn't 4061 * cause resets to occur so fast as to fool the switch 4062 * into thinking the link is down. 4063 */ 4064 cp->link_transition_jiffies_valid = 0; 4065 } 4066 4067 if (!cp->hw_running) 4068 return; 4069 4070 spin_lock_irqsave(&cp->lock, flags); 4071 cas_lock_tx(cp); 4072 cas_entropy_gather(cp); 4073 4074 /* If the link task is still pending, we just 4075 * reschedule the link timer 4076 */ 4077 #if 1 4078 if (atomic_read(&cp->reset_task_pending_all) || 4079 atomic_read(&cp->reset_task_pending_spare) || 4080 atomic_read(&cp->reset_task_pending_mtu)) 4081 goto done; 4082 #else 4083 if (atomic_read(&cp->reset_task_pending)) 4084 goto done; 4085 #endif 4086 4087 /* check for rx cleaning */ 4088 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4089 int i, rmask; 4090 4091 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4092 rmask = CAS_FLAG_RXD_POST(i); 4093 if ((mask & rmask) == 0) 4094 continue; 4095 4096 /* post_rxds will do a mod_timer */ 4097 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4098 pending = 1; 4099 continue; 4100 } 4101 cp->cas_flags &= ~rmask; 4102 } 4103 } 4104 4105 if (CAS_PHY_MII(cp->phy_type)) { 4106 u16 bmsr; 4107 cas_mif_poll(cp, 0); 4108 bmsr = cas_phy_read(cp, MII_BMSR); 4109 /* WTZ: Solaris driver reads this twice, but that 4110 * may be due to the PCS case and the use of a 4111 * common implementation. Read it twice here to be 4112 * safe. 4113 */ 4114 bmsr = cas_phy_read(cp, MII_BMSR); 4115 cas_mif_poll(cp, 1); 4116 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4117 reset = cas_mii_link_check(cp, bmsr); 4118 } else { 4119 reset = cas_pcs_link_check(cp); 4120 } 4121 4122 if (reset) 4123 goto done; 4124 4125 /* check for tx state machine confusion */ 4126 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4127 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4128 u32 wptr, rptr; 4129 int tlm = CAS_VAL(MAC_SM_TLM, val); 4130 4131 if (((tlm == 0x5) || (tlm == 0x3)) && 4132 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4133 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4134 "tx err: MAC_STATE[%08x]\n", val); 4135 reset = 1; 4136 goto done; 4137 } 4138 4139 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4140 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4141 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4142 if ((val == 0) && (wptr != rptr)) { 4143 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4144 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4145 val, wptr, rptr); 4146 reset = 1; 4147 } 4148 4149 if (reset) 4150 cas_hard_reset(cp); 4151 } 4152 4153 done: 4154 if (reset) { 4155 #if 1 4156 atomic_inc(&cp->reset_task_pending); 4157 atomic_inc(&cp->reset_task_pending_all); 4158 schedule_work(&cp->reset_task); 4159 #else 4160 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4161 pr_err("reset called in cas_link_timer\n"); 4162 schedule_work(&cp->reset_task); 4163 #endif 4164 } 4165 4166 if (!pending) 4167 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4168 cas_unlock_tx(cp); 4169 spin_unlock_irqrestore(&cp->lock, flags); 4170 } 4171 4172 /* tiny buffers are used to avoid target abort issues with 4173 * older cassini's 4174 */ 4175 static void cas_tx_tiny_free(struct cas *cp) 4176 { 4177 struct pci_dev *pdev = cp->pdev; 4178 int i; 4179 4180 for (i = 0; i < N_TX_RINGS; i++) { 4181 if (!cp->tx_tiny_bufs[i]) 4182 continue; 4183 4184 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4185 cp->tx_tiny_bufs[i], 4186 cp->tx_tiny_dvma[i]); 4187 cp->tx_tiny_bufs[i] = NULL; 4188 } 4189 } 4190 4191 static int cas_tx_tiny_alloc(struct cas *cp) 4192 { 4193 struct pci_dev *pdev = cp->pdev; 4194 int i; 4195 4196 for (i = 0; i < N_TX_RINGS; i++) { 4197 cp->tx_tiny_bufs[i] = 4198 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4199 &cp->tx_tiny_dvma[i]); 4200 if (!cp->tx_tiny_bufs[i]) { 4201 cas_tx_tiny_free(cp); 4202 return -1; 4203 } 4204 } 4205 return 0; 4206 } 4207 4208 4209 static int cas_open(struct net_device *dev) 4210 { 4211 struct cas *cp = netdev_priv(dev); 4212 int hw_was_up, err; 4213 unsigned long flags; 4214 4215 mutex_lock(&cp->pm_mutex); 4216 4217 hw_was_up = cp->hw_running; 4218 4219 /* The power-management mutex protects the hw_running 4220 * etc. state so it is safe to do this bit without cp->lock 4221 */ 4222 if (!cp->hw_running) { 4223 /* Reset the chip */ 4224 cas_lock_all_save(cp, flags); 4225 /* We set the second arg to cas_reset to zero 4226 * because cas_init_hw below will have its second 4227 * argument set to non-zero, which will force 4228 * autonegotiation to start. 4229 */ 4230 cas_reset(cp, 0); 4231 cp->hw_running = 1; 4232 cas_unlock_all_restore(cp, flags); 4233 } 4234 4235 err = -ENOMEM; 4236 if (cas_tx_tiny_alloc(cp) < 0) 4237 goto err_unlock; 4238 4239 /* alloc rx descriptors */ 4240 if (cas_alloc_rxds(cp) < 0) 4241 goto err_tx_tiny; 4242 4243 /* allocate spares */ 4244 cas_spare_init(cp); 4245 cas_spare_recover(cp, GFP_KERNEL); 4246 4247 /* We can now request the interrupt as we know it's masked 4248 * on the controller. cassini+ has up to 4 interrupts 4249 * that can be used, but you need to do explicit pci interrupt 4250 * mapping to expose them 4251 */ 4252 if (request_irq(cp->pdev->irq, cas_interrupt, 4253 IRQF_SHARED, dev->name, (void *) dev)) { 4254 netdev_err(cp->dev, "failed to request irq !\n"); 4255 err = -EAGAIN; 4256 goto err_spare; 4257 } 4258 4259 #ifdef USE_NAPI 4260 napi_enable(&cp->napi); 4261 #endif 4262 /* init hw */ 4263 cas_lock_all_save(cp, flags); 4264 cas_clean_rings(cp); 4265 cas_init_hw(cp, !hw_was_up); 4266 cp->opened = 1; 4267 cas_unlock_all_restore(cp, flags); 4268 4269 netif_start_queue(dev); 4270 mutex_unlock(&cp->pm_mutex); 4271 return 0; 4272 4273 err_spare: 4274 cas_spare_free(cp); 4275 cas_free_rxds(cp); 4276 err_tx_tiny: 4277 cas_tx_tiny_free(cp); 4278 err_unlock: 4279 mutex_unlock(&cp->pm_mutex); 4280 return err; 4281 } 4282 4283 static int cas_close(struct net_device *dev) 4284 { 4285 unsigned long flags; 4286 struct cas *cp = netdev_priv(dev); 4287 4288 #ifdef USE_NAPI 4289 napi_disable(&cp->napi); 4290 #endif 4291 /* Make sure we don't get distracted by suspend/resume */ 4292 mutex_lock(&cp->pm_mutex); 4293 4294 netif_stop_queue(dev); 4295 4296 /* Stop traffic, mark us closed */ 4297 cas_lock_all_save(cp, flags); 4298 cp->opened = 0; 4299 cas_reset(cp, 0); 4300 cas_phy_init(cp); 4301 cas_begin_auto_negotiation(cp, NULL); 4302 cas_clean_rings(cp); 4303 cas_unlock_all_restore(cp, flags); 4304 4305 free_irq(cp->pdev->irq, (void *) dev); 4306 cas_spare_free(cp); 4307 cas_free_rxds(cp); 4308 cas_tx_tiny_free(cp); 4309 mutex_unlock(&cp->pm_mutex); 4310 return 0; 4311 } 4312 4313 static struct { 4314 const char name[ETH_GSTRING_LEN]; 4315 } ethtool_cassini_statnames[] = { 4316 {"collisions"}, 4317 {"rx_bytes"}, 4318 {"rx_crc_errors"}, 4319 {"rx_dropped"}, 4320 {"rx_errors"}, 4321 {"rx_fifo_errors"}, 4322 {"rx_frame_errors"}, 4323 {"rx_length_errors"}, 4324 {"rx_over_errors"}, 4325 {"rx_packets"}, 4326 {"tx_aborted_errors"}, 4327 {"tx_bytes"}, 4328 {"tx_dropped"}, 4329 {"tx_errors"}, 4330 {"tx_fifo_errors"}, 4331 {"tx_packets"} 4332 }; 4333 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4334 4335 static struct { 4336 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4337 } ethtool_register_table[] = { 4338 {-MII_BMSR}, 4339 {-MII_BMCR}, 4340 {REG_CAWR}, 4341 {REG_INF_BURST}, 4342 {REG_BIM_CFG}, 4343 {REG_RX_CFG}, 4344 {REG_HP_CFG}, 4345 {REG_MAC_TX_CFG}, 4346 {REG_MAC_RX_CFG}, 4347 {REG_MAC_CTRL_CFG}, 4348 {REG_MAC_XIF_CFG}, 4349 {REG_MIF_CFG}, 4350 {REG_PCS_CFG}, 4351 {REG_SATURN_PCFG}, 4352 {REG_PCS_MII_STATUS}, 4353 {REG_PCS_STATE_MACHINE}, 4354 {REG_MAC_COLL_EXCESS}, 4355 {REG_MAC_COLL_LATE} 4356 }; 4357 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4358 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4359 4360 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4361 { 4362 u8 *p; 4363 int i; 4364 unsigned long flags; 4365 4366 spin_lock_irqsave(&cp->lock, flags); 4367 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4368 u16 hval; 4369 u32 val; 4370 if (ethtool_register_table[i].offsets < 0) { 4371 hval = cas_phy_read(cp, 4372 -ethtool_register_table[i].offsets); 4373 val = hval; 4374 } else { 4375 val= readl(cp->regs+ethtool_register_table[i].offsets); 4376 } 4377 memcpy(p, (u8 *)&val, sizeof(u32)); 4378 } 4379 spin_unlock_irqrestore(&cp->lock, flags); 4380 } 4381 4382 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4383 { 4384 struct cas *cp = netdev_priv(dev); 4385 struct net_device_stats *stats = cp->net_stats; 4386 unsigned long flags; 4387 int i; 4388 unsigned long tmp; 4389 4390 /* we collate all of the stats into net_stats[N_TX_RING] */ 4391 if (!cp->hw_running) 4392 return stats + N_TX_RINGS; 4393 4394 /* collect outstanding stats */ 4395 /* WTZ: the Cassini spec gives these as 16 bit counters but 4396 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4397 * in case the chip somehow puts any garbage in the other bits. 4398 * Also, counter usage didn't seem to mach what Adrian did 4399 * in the parts of the code that set these quantities. Made 4400 * that consistent. 4401 */ 4402 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4403 stats[N_TX_RINGS].rx_crc_errors += 4404 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4405 stats[N_TX_RINGS].rx_frame_errors += 4406 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4407 stats[N_TX_RINGS].rx_length_errors += 4408 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4409 #if 1 4410 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4411 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4412 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4413 stats[N_TX_RINGS].collisions += 4414 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4415 #else 4416 stats[N_TX_RINGS].tx_aborted_errors += 4417 readl(cp->regs + REG_MAC_COLL_EXCESS); 4418 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4419 readl(cp->regs + REG_MAC_COLL_LATE); 4420 #endif 4421 cas_clear_mac_err(cp); 4422 4423 /* saved bits that are unique to ring 0 */ 4424 spin_lock(&cp->stat_lock[0]); 4425 stats[N_TX_RINGS].collisions += stats[0].collisions; 4426 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4427 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4428 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4429 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4430 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4431 spin_unlock(&cp->stat_lock[0]); 4432 4433 for (i = 0; i < N_TX_RINGS; i++) { 4434 spin_lock(&cp->stat_lock[i]); 4435 stats[N_TX_RINGS].rx_length_errors += 4436 stats[i].rx_length_errors; 4437 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4438 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4439 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4440 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4441 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4442 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4443 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4444 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4445 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4446 memset(stats + i, 0, sizeof(struct net_device_stats)); 4447 spin_unlock(&cp->stat_lock[i]); 4448 } 4449 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4450 return stats + N_TX_RINGS; 4451 } 4452 4453 4454 static void cas_set_multicast(struct net_device *dev) 4455 { 4456 struct cas *cp = netdev_priv(dev); 4457 u32 rxcfg, rxcfg_new; 4458 unsigned long flags; 4459 int limit = STOP_TRIES; 4460 4461 if (!cp->hw_running) 4462 return; 4463 4464 spin_lock_irqsave(&cp->lock, flags); 4465 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4466 4467 /* disable RX MAC and wait for completion */ 4468 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4469 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4470 if (!limit--) 4471 break; 4472 udelay(10); 4473 } 4474 4475 /* disable hash filter and wait for completion */ 4476 limit = STOP_TRIES; 4477 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4478 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4479 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4480 if (!limit--) 4481 break; 4482 udelay(10); 4483 } 4484 4485 /* program hash filters */ 4486 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4487 rxcfg |= rxcfg_new; 4488 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4489 spin_unlock_irqrestore(&cp->lock, flags); 4490 } 4491 4492 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4493 { 4494 struct cas *cp = netdev_priv(dev); 4495 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4496 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4497 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4498 } 4499 4500 static int cas_get_link_ksettings(struct net_device *dev, 4501 struct ethtool_link_ksettings *cmd) 4502 { 4503 struct cas *cp = netdev_priv(dev); 4504 u16 bmcr; 4505 int full_duplex, speed, pause; 4506 unsigned long flags; 4507 enum link_state linkstate = link_up; 4508 u32 supported, advertising; 4509 4510 advertising = 0; 4511 supported = SUPPORTED_Autoneg; 4512 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4513 supported |= SUPPORTED_1000baseT_Full; 4514 advertising |= ADVERTISED_1000baseT_Full; 4515 } 4516 4517 /* Record PHY settings if HW is on. */ 4518 spin_lock_irqsave(&cp->lock, flags); 4519 bmcr = 0; 4520 linkstate = cp->lstate; 4521 if (CAS_PHY_MII(cp->phy_type)) { 4522 cmd->base.port = PORT_MII; 4523 cmd->base.phy_address = cp->phy_addr; 4524 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4525 ADVERTISED_10baseT_Half | 4526 ADVERTISED_10baseT_Full | 4527 ADVERTISED_100baseT_Half | 4528 ADVERTISED_100baseT_Full; 4529 4530 supported |= 4531 (SUPPORTED_10baseT_Half | 4532 SUPPORTED_10baseT_Full | 4533 SUPPORTED_100baseT_Half | 4534 SUPPORTED_100baseT_Full | 4535 SUPPORTED_TP | SUPPORTED_MII); 4536 4537 if (cp->hw_running) { 4538 cas_mif_poll(cp, 0); 4539 bmcr = cas_phy_read(cp, MII_BMCR); 4540 cas_read_mii_link_mode(cp, &full_duplex, 4541 &speed, &pause); 4542 cas_mif_poll(cp, 1); 4543 } 4544 4545 } else { 4546 cmd->base.port = PORT_FIBRE; 4547 cmd->base.phy_address = 0; 4548 supported |= SUPPORTED_FIBRE; 4549 advertising |= ADVERTISED_FIBRE; 4550 4551 if (cp->hw_running) { 4552 /* pcs uses the same bits as mii */ 4553 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4554 cas_read_pcs_link_mode(cp, &full_duplex, 4555 &speed, &pause); 4556 } 4557 } 4558 spin_unlock_irqrestore(&cp->lock, flags); 4559 4560 if (bmcr & BMCR_ANENABLE) { 4561 advertising |= ADVERTISED_Autoneg; 4562 cmd->base.autoneg = AUTONEG_ENABLE; 4563 cmd->base.speed = ((speed == 10) ? 4564 SPEED_10 : 4565 ((speed == 1000) ? 4566 SPEED_1000 : SPEED_100)); 4567 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4568 } else { 4569 cmd->base.autoneg = AUTONEG_DISABLE; 4570 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4571 SPEED_1000 : 4572 ((bmcr & BMCR_SPEED100) ? 4573 SPEED_100 : SPEED_10)); 4574 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4575 DUPLEX_FULL : DUPLEX_HALF; 4576 } 4577 if (linkstate != link_up) { 4578 /* Force these to "unknown" if the link is not up and 4579 * autonogotiation in enabled. We can set the link 4580 * speed to 0, but not cmd->duplex, 4581 * because its legal values are 0 and 1. Ethtool will 4582 * print the value reported in parentheses after the 4583 * word "Unknown" for unrecognized values. 4584 * 4585 * If in forced mode, we report the speed and duplex 4586 * settings that we configured. 4587 */ 4588 if (cp->link_cntl & BMCR_ANENABLE) { 4589 cmd->base.speed = 0; 4590 cmd->base.duplex = 0xff; 4591 } else { 4592 cmd->base.speed = SPEED_10; 4593 if (cp->link_cntl & BMCR_SPEED100) { 4594 cmd->base.speed = SPEED_100; 4595 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4596 cmd->base.speed = SPEED_1000; 4597 } 4598 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4599 DUPLEX_FULL : DUPLEX_HALF; 4600 } 4601 } 4602 4603 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4604 supported); 4605 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4606 advertising); 4607 4608 return 0; 4609 } 4610 4611 static int cas_set_link_ksettings(struct net_device *dev, 4612 const struct ethtool_link_ksettings *cmd) 4613 { 4614 struct cas *cp = netdev_priv(dev); 4615 unsigned long flags; 4616 u32 speed = cmd->base.speed; 4617 4618 /* Verify the settings we care about. */ 4619 if (cmd->base.autoneg != AUTONEG_ENABLE && 4620 cmd->base.autoneg != AUTONEG_DISABLE) 4621 return -EINVAL; 4622 4623 if (cmd->base.autoneg == AUTONEG_DISABLE && 4624 ((speed != SPEED_1000 && 4625 speed != SPEED_100 && 4626 speed != SPEED_10) || 4627 (cmd->base.duplex != DUPLEX_HALF && 4628 cmd->base.duplex != DUPLEX_FULL))) 4629 return -EINVAL; 4630 4631 /* Apply settings and restart link process. */ 4632 spin_lock_irqsave(&cp->lock, flags); 4633 cas_begin_auto_negotiation(cp, cmd); 4634 spin_unlock_irqrestore(&cp->lock, flags); 4635 return 0; 4636 } 4637 4638 static int cas_nway_reset(struct net_device *dev) 4639 { 4640 struct cas *cp = netdev_priv(dev); 4641 unsigned long flags; 4642 4643 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4644 return -EINVAL; 4645 4646 /* Restart link process. */ 4647 spin_lock_irqsave(&cp->lock, flags); 4648 cas_begin_auto_negotiation(cp, NULL); 4649 spin_unlock_irqrestore(&cp->lock, flags); 4650 4651 return 0; 4652 } 4653 4654 static u32 cas_get_link(struct net_device *dev) 4655 { 4656 struct cas *cp = netdev_priv(dev); 4657 return cp->lstate == link_up; 4658 } 4659 4660 static u32 cas_get_msglevel(struct net_device *dev) 4661 { 4662 struct cas *cp = netdev_priv(dev); 4663 return cp->msg_enable; 4664 } 4665 4666 static void cas_set_msglevel(struct net_device *dev, u32 value) 4667 { 4668 struct cas *cp = netdev_priv(dev); 4669 cp->msg_enable = value; 4670 } 4671 4672 static int cas_get_regs_len(struct net_device *dev) 4673 { 4674 struct cas *cp = netdev_priv(dev); 4675 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4676 } 4677 4678 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4679 void *p) 4680 { 4681 struct cas *cp = netdev_priv(dev); 4682 regs->version = 0; 4683 /* cas_read_regs handles locks (cp->lock). */ 4684 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4685 } 4686 4687 static int cas_get_sset_count(struct net_device *dev, int sset) 4688 { 4689 switch (sset) { 4690 case ETH_SS_STATS: 4691 return CAS_NUM_STAT_KEYS; 4692 default: 4693 return -EOPNOTSUPP; 4694 } 4695 } 4696 4697 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4698 { 4699 memcpy(data, ðtool_cassini_statnames, 4700 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4701 } 4702 4703 static void cas_get_ethtool_stats(struct net_device *dev, 4704 struct ethtool_stats *estats, u64 *data) 4705 { 4706 struct cas *cp = netdev_priv(dev); 4707 struct net_device_stats *stats = cas_get_stats(cp->dev); 4708 int i = 0; 4709 data[i++] = stats->collisions; 4710 data[i++] = stats->rx_bytes; 4711 data[i++] = stats->rx_crc_errors; 4712 data[i++] = stats->rx_dropped; 4713 data[i++] = stats->rx_errors; 4714 data[i++] = stats->rx_fifo_errors; 4715 data[i++] = stats->rx_frame_errors; 4716 data[i++] = stats->rx_length_errors; 4717 data[i++] = stats->rx_over_errors; 4718 data[i++] = stats->rx_packets; 4719 data[i++] = stats->tx_aborted_errors; 4720 data[i++] = stats->tx_bytes; 4721 data[i++] = stats->tx_dropped; 4722 data[i++] = stats->tx_errors; 4723 data[i++] = stats->tx_fifo_errors; 4724 data[i++] = stats->tx_packets; 4725 BUG_ON(i != CAS_NUM_STAT_KEYS); 4726 } 4727 4728 static const struct ethtool_ops cas_ethtool_ops = { 4729 .get_drvinfo = cas_get_drvinfo, 4730 .nway_reset = cas_nway_reset, 4731 .get_link = cas_get_link, 4732 .get_msglevel = cas_get_msglevel, 4733 .set_msglevel = cas_set_msglevel, 4734 .get_regs_len = cas_get_regs_len, 4735 .get_regs = cas_get_regs, 4736 .get_sset_count = cas_get_sset_count, 4737 .get_strings = cas_get_strings, 4738 .get_ethtool_stats = cas_get_ethtool_stats, 4739 .get_link_ksettings = cas_get_link_ksettings, 4740 .set_link_ksettings = cas_set_link_ksettings, 4741 }; 4742 4743 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4744 { 4745 struct cas *cp = netdev_priv(dev); 4746 struct mii_ioctl_data *data = if_mii(ifr); 4747 unsigned long flags; 4748 int rc = -EOPNOTSUPP; 4749 4750 /* Hold the PM mutex while doing ioctl's or we may collide 4751 * with open/close and power management and oops. 4752 */ 4753 mutex_lock(&cp->pm_mutex); 4754 switch (cmd) { 4755 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4756 data->phy_id = cp->phy_addr; 4757 /* Fallthrough... */ 4758 4759 case SIOCGMIIREG: /* Read MII PHY register. */ 4760 spin_lock_irqsave(&cp->lock, flags); 4761 cas_mif_poll(cp, 0); 4762 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4763 cas_mif_poll(cp, 1); 4764 spin_unlock_irqrestore(&cp->lock, flags); 4765 rc = 0; 4766 break; 4767 4768 case SIOCSMIIREG: /* Write MII PHY register. */ 4769 spin_lock_irqsave(&cp->lock, flags); 4770 cas_mif_poll(cp, 0); 4771 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4772 cas_mif_poll(cp, 1); 4773 spin_unlock_irqrestore(&cp->lock, flags); 4774 break; 4775 default: 4776 break; 4777 } 4778 4779 mutex_unlock(&cp->pm_mutex); 4780 return rc; 4781 } 4782 4783 /* When this chip sits underneath an Intel 31154 bridge, it is the 4784 * only subordinate device and we can tweak the bridge settings to 4785 * reflect that fact. 4786 */ 4787 static void cas_program_bridge(struct pci_dev *cas_pdev) 4788 { 4789 struct pci_dev *pdev = cas_pdev->bus->self; 4790 u32 val; 4791 4792 if (!pdev) 4793 return; 4794 4795 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4796 return; 4797 4798 /* Clear bit 10 (Bus Parking Control) in the Secondary 4799 * Arbiter Control/Status Register which lives at offset 4800 * 0x41. Using a 32-bit word read/modify/write at 0x40 4801 * is much simpler so that's how we do this. 4802 */ 4803 pci_read_config_dword(pdev, 0x40, &val); 4804 val &= ~0x00040000; 4805 pci_write_config_dword(pdev, 0x40, val); 4806 4807 /* Max out the Multi-Transaction Timer settings since 4808 * Cassini is the only device present. 4809 * 4810 * The register is 16-bit and lives at 0x50. When the 4811 * settings are enabled, it extends the GRANT# signal 4812 * for a requestor after a transaction is complete. This 4813 * allows the next request to run without first needing 4814 * to negotiate the GRANT# signal back. 4815 * 4816 * Bits 12:10 define the grant duration: 4817 * 4818 * 1 -- 16 clocks 4819 * 2 -- 32 clocks 4820 * 3 -- 64 clocks 4821 * 4 -- 128 clocks 4822 * 5 -- 256 clocks 4823 * 4824 * All other values are illegal. 4825 * 4826 * Bits 09:00 define which REQ/GNT signal pairs get the 4827 * GRANT# signal treatment. We set them all. 4828 */ 4829 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4830 4831 /* The Read Prefecth Policy register is 16-bit and sits at 4832 * offset 0x52. It enables a "smart" pre-fetch policy. We 4833 * enable it and max out all of the settings since only one 4834 * device is sitting underneath and thus bandwidth sharing is 4835 * not an issue. 4836 * 4837 * The register has several 3 bit fields, which indicates a 4838 * multiplier applied to the base amount of prefetching the 4839 * chip would do. These fields are at: 4840 * 4841 * 15:13 --- ReRead Primary Bus 4842 * 12:10 --- FirstRead Primary Bus 4843 * 09:07 --- ReRead Secondary Bus 4844 * 06:04 --- FirstRead Secondary Bus 4845 * 4846 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4847 * get enabled on. Bit 3 is a grouped enabler which controls 4848 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4849 * the individual REQ/GNT pairs [2:0]. 4850 */ 4851 pci_write_config_word(pdev, 0x52, 4852 (0x7 << 13) | 4853 (0x7 << 10) | 4854 (0x7 << 7) | 4855 (0x7 << 4) | 4856 (0xf << 0)); 4857 4858 /* Force cacheline size to 0x8 */ 4859 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4860 4861 /* Force latency timer to maximum setting so Cassini can 4862 * sit on the bus as long as it likes. 4863 */ 4864 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4865 } 4866 4867 static const struct net_device_ops cas_netdev_ops = { 4868 .ndo_open = cas_open, 4869 .ndo_stop = cas_close, 4870 .ndo_start_xmit = cas_start_xmit, 4871 .ndo_get_stats = cas_get_stats, 4872 .ndo_set_rx_mode = cas_set_multicast, 4873 .ndo_do_ioctl = cas_ioctl, 4874 .ndo_tx_timeout = cas_tx_timeout, 4875 .ndo_change_mtu = cas_change_mtu, 4876 .ndo_set_mac_address = eth_mac_addr, 4877 .ndo_validate_addr = eth_validate_addr, 4878 #ifdef CONFIG_NET_POLL_CONTROLLER 4879 .ndo_poll_controller = cas_netpoll, 4880 #endif 4881 }; 4882 4883 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4884 { 4885 static int cas_version_printed = 0; 4886 unsigned long casreg_len; 4887 struct net_device *dev; 4888 struct cas *cp; 4889 int i, err, pci_using_dac; 4890 u16 pci_cmd; 4891 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4892 4893 if (cas_version_printed++ == 0) 4894 pr_info("%s", version); 4895 4896 err = pci_enable_device(pdev); 4897 if (err) { 4898 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4899 return err; 4900 } 4901 4902 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4903 dev_err(&pdev->dev, "Cannot find proper PCI device " 4904 "base address, aborting\n"); 4905 err = -ENODEV; 4906 goto err_out_disable_pdev; 4907 } 4908 4909 dev = alloc_etherdev(sizeof(*cp)); 4910 if (!dev) { 4911 err = -ENOMEM; 4912 goto err_out_disable_pdev; 4913 } 4914 SET_NETDEV_DEV(dev, &pdev->dev); 4915 4916 err = pci_request_regions(pdev, dev->name); 4917 if (err) { 4918 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4919 goto err_out_free_netdev; 4920 } 4921 pci_set_master(pdev); 4922 4923 /* we must always turn on parity response or else parity 4924 * doesn't get generated properly. disable SERR/PERR as well. 4925 * in addition, we want to turn MWI on. 4926 */ 4927 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4928 pci_cmd &= ~PCI_COMMAND_SERR; 4929 pci_cmd |= PCI_COMMAND_PARITY; 4930 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4931 if (pci_try_set_mwi(pdev)) 4932 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4933 4934 cas_program_bridge(pdev); 4935 4936 /* 4937 * On some architectures, the default cache line size set 4938 * by pci_try_set_mwi reduces perforamnce. We have to increase 4939 * it for this case. To start, we'll print some configuration 4940 * data. 4941 */ 4942 #if 1 4943 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4944 &orig_cacheline_size); 4945 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4946 cas_cacheline_size = 4947 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4948 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4949 if (pci_write_config_byte(pdev, 4950 PCI_CACHE_LINE_SIZE, 4951 cas_cacheline_size)) { 4952 dev_err(&pdev->dev, "Could not set PCI cache " 4953 "line size\n"); 4954 goto err_out_free_res; 4955 } 4956 } 4957 #endif 4958 4959 4960 /* Configure DMA attributes. */ 4961 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4962 pci_using_dac = 1; 4963 err = pci_set_consistent_dma_mask(pdev, 4964 DMA_BIT_MASK(64)); 4965 if (err < 0) { 4966 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4967 "for consistent allocations\n"); 4968 goto err_out_free_res; 4969 } 4970 4971 } else { 4972 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4973 if (err) { 4974 dev_err(&pdev->dev, "No usable DMA configuration, " 4975 "aborting\n"); 4976 goto err_out_free_res; 4977 } 4978 pci_using_dac = 0; 4979 } 4980 4981 casreg_len = pci_resource_len(pdev, 0); 4982 4983 cp = netdev_priv(dev); 4984 cp->pdev = pdev; 4985 #if 1 4986 /* A value of 0 indicates we never explicitly set it */ 4987 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 4988 #endif 4989 cp->dev = dev; 4990 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 4991 cassini_debug; 4992 4993 #if defined(CONFIG_SPARC) 4994 cp->of_node = pci_device_to_OF_node(pdev); 4995 #endif 4996 4997 cp->link_transition = LINK_TRANSITION_UNKNOWN; 4998 cp->link_transition_jiffies_valid = 0; 4999 5000 spin_lock_init(&cp->lock); 5001 spin_lock_init(&cp->rx_inuse_lock); 5002 spin_lock_init(&cp->rx_spare_lock); 5003 for (i = 0; i < N_TX_RINGS; i++) { 5004 spin_lock_init(&cp->stat_lock[i]); 5005 spin_lock_init(&cp->tx_lock[i]); 5006 } 5007 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5008 mutex_init(&cp->pm_mutex); 5009 5010 timer_setup(&cp->link_timer, cas_link_timer, 0); 5011 5012 #if 1 5013 /* Just in case the implementation of atomic operations 5014 * change so that an explicit initialization is necessary. 5015 */ 5016 atomic_set(&cp->reset_task_pending, 0); 5017 atomic_set(&cp->reset_task_pending_all, 0); 5018 atomic_set(&cp->reset_task_pending_spare, 0); 5019 atomic_set(&cp->reset_task_pending_mtu, 0); 5020 #endif 5021 INIT_WORK(&cp->reset_task, cas_reset_task); 5022 5023 /* Default link parameters */ 5024 if (link_mode >= 0 && link_mode < 6) 5025 cp->link_cntl = link_modes[link_mode]; 5026 else 5027 cp->link_cntl = BMCR_ANENABLE; 5028 cp->lstate = link_down; 5029 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5030 netif_carrier_off(cp->dev); 5031 cp->timer_ticks = 0; 5032 5033 /* give us access to cassini registers */ 5034 cp->regs = pci_iomap(pdev, 0, casreg_len); 5035 if (!cp->regs) { 5036 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5037 goto err_out_free_res; 5038 } 5039 cp->casreg_len = casreg_len; 5040 5041 pci_save_state(pdev); 5042 cas_check_pci_invariants(cp); 5043 cas_hard_reset(cp); 5044 cas_reset(cp, 0); 5045 if (cas_check_invariants(cp)) 5046 goto err_out_iounmap; 5047 if (cp->cas_flags & CAS_FLAG_SATURN) 5048 cas_saturn_firmware_init(cp); 5049 5050 cp->init_block = 5051 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5052 &cp->block_dvma); 5053 if (!cp->init_block) { 5054 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5055 goto err_out_iounmap; 5056 } 5057 5058 for (i = 0; i < N_TX_RINGS; i++) 5059 cp->init_txds[i] = cp->init_block->txds[i]; 5060 5061 for (i = 0; i < N_RX_DESC_RINGS; i++) 5062 cp->init_rxds[i] = cp->init_block->rxds[i]; 5063 5064 for (i = 0; i < N_RX_COMP_RINGS; i++) 5065 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5066 5067 for (i = 0; i < N_RX_FLOWS; i++) 5068 skb_queue_head_init(&cp->rx_flows[i]); 5069 5070 dev->netdev_ops = &cas_netdev_ops; 5071 dev->ethtool_ops = &cas_ethtool_ops; 5072 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5073 5074 #ifdef USE_NAPI 5075 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5076 #endif 5077 dev->irq = pdev->irq; 5078 dev->dma = 0; 5079 5080 /* Cassini features. */ 5081 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5082 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5083 5084 if (pci_using_dac) 5085 dev->features |= NETIF_F_HIGHDMA; 5086 5087 /* MTU range: 60 - varies or 9000 */ 5088 dev->min_mtu = CAS_MIN_MTU; 5089 dev->max_mtu = CAS_MAX_MTU; 5090 5091 if (register_netdev(dev)) { 5092 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5093 goto err_out_free_consistent; 5094 } 5095 5096 i = readl(cp->regs + REG_BIM_CFG); 5097 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5098 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5099 (i & BIM_CFG_32BIT) ? "32" : "64", 5100 (i & BIM_CFG_66MHZ) ? "66" : "33", 5101 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5102 dev->dev_addr); 5103 5104 pci_set_drvdata(pdev, dev); 5105 cp->hw_running = 1; 5106 cas_entropy_reset(cp); 5107 cas_phy_init(cp); 5108 cas_begin_auto_negotiation(cp, NULL); 5109 return 0; 5110 5111 err_out_free_consistent: 5112 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5113 cp->init_block, cp->block_dvma); 5114 5115 err_out_iounmap: 5116 mutex_lock(&cp->pm_mutex); 5117 if (cp->hw_running) 5118 cas_shutdown(cp); 5119 mutex_unlock(&cp->pm_mutex); 5120 5121 pci_iounmap(pdev, cp->regs); 5122 5123 5124 err_out_free_res: 5125 pci_release_regions(pdev); 5126 5127 /* Try to restore it in case the error occurred after we 5128 * set it. 5129 */ 5130 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5131 5132 err_out_free_netdev: 5133 free_netdev(dev); 5134 5135 err_out_disable_pdev: 5136 pci_disable_device(pdev); 5137 return -ENODEV; 5138 } 5139 5140 static void cas_remove_one(struct pci_dev *pdev) 5141 { 5142 struct net_device *dev = pci_get_drvdata(pdev); 5143 struct cas *cp; 5144 if (!dev) 5145 return; 5146 5147 cp = netdev_priv(dev); 5148 unregister_netdev(dev); 5149 5150 vfree(cp->fw_data); 5151 5152 mutex_lock(&cp->pm_mutex); 5153 cancel_work_sync(&cp->reset_task); 5154 if (cp->hw_running) 5155 cas_shutdown(cp); 5156 mutex_unlock(&cp->pm_mutex); 5157 5158 #if 1 5159 if (cp->orig_cacheline_size) { 5160 /* Restore the cache line size if we had modified 5161 * it. 5162 */ 5163 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5164 cp->orig_cacheline_size); 5165 } 5166 #endif 5167 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5168 cp->init_block, cp->block_dvma); 5169 pci_iounmap(pdev, cp->regs); 5170 free_netdev(dev); 5171 pci_release_regions(pdev); 5172 pci_disable_device(pdev); 5173 } 5174 5175 #ifdef CONFIG_PM 5176 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5177 { 5178 struct net_device *dev = pci_get_drvdata(pdev); 5179 struct cas *cp = netdev_priv(dev); 5180 unsigned long flags; 5181 5182 mutex_lock(&cp->pm_mutex); 5183 5184 /* If the driver is opened, we stop the DMA */ 5185 if (cp->opened) { 5186 netif_device_detach(dev); 5187 5188 cas_lock_all_save(cp, flags); 5189 5190 /* We can set the second arg of cas_reset to 0 5191 * because on resume, we'll call cas_init_hw with 5192 * its second arg set so that autonegotiation is 5193 * restarted. 5194 */ 5195 cas_reset(cp, 0); 5196 cas_clean_rings(cp); 5197 cas_unlock_all_restore(cp, flags); 5198 } 5199 5200 if (cp->hw_running) 5201 cas_shutdown(cp); 5202 mutex_unlock(&cp->pm_mutex); 5203 5204 return 0; 5205 } 5206 5207 static int cas_resume(struct pci_dev *pdev) 5208 { 5209 struct net_device *dev = pci_get_drvdata(pdev); 5210 struct cas *cp = netdev_priv(dev); 5211 5212 netdev_info(dev, "resuming\n"); 5213 5214 mutex_lock(&cp->pm_mutex); 5215 cas_hard_reset(cp); 5216 if (cp->opened) { 5217 unsigned long flags; 5218 cas_lock_all_save(cp, flags); 5219 cas_reset(cp, 0); 5220 cp->hw_running = 1; 5221 cas_clean_rings(cp); 5222 cas_init_hw(cp, 1); 5223 cas_unlock_all_restore(cp, flags); 5224 5225 netif_device_attach(dev); 5226 } 5227 mutex_unlock(&cp->pm_mutex); 5228 return 0; 5229 } 5230 #endif /* CONFIG_PM */ 5231 5232 static struct pci_driver cas_driver = { 5233 .name = DRV_MODULE_NAME, 5234 .id_table = cas_pci_tbl, 5235 .probe = cas_init_one, 5236 .remove = cas_remove_one, 5237 #ifdef CONFIG_PM 5238 .suspend = cas_suspend, 5239 .resume = cas_resume 5240 #endif 5241 }; 5242 5243 static int __init cas_init(void) 5244 { 5245 if (linkdown_timeout > 0) 5246 link_transition_timeout = linkdown_timeout * HZ; 5247 else 5248 link_transition_timeout = 0; 5249 5250 return pci_register_driver(&cas_driver); 5251 } 5252 5253 static void __exit cas_cleanup(void) 5254 { 5255 pci_unregister_driver(&cas_driver); 5256 } 5257 5258 module_init(cas_init); 5259 module_exit(cas_cleanup); 5260