1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 2 * 3 * Copyright (C) 2004 Sun Microsystems Inc. 4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 * 19 * This driver uses the sungem driver (c) David Miller 20 * (davem@redhat.com) as its basis. 21 * 22 * The cassini chip has a number of features that distinguish it from 23 * the gem chip: 24 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 25 * load balancing (non-VLAN mode) 26 * batching of multiple packets 27 * multiple CPU dispatching 28 * page-based RX descriptor engine with separate completion rings 29 * Gigabit support (GMII and PCS interface) 30 * MIF link up/down detection works 31 * 32 * RX is handled by page sized buffers that are attached as fragments to 33 * the skb. here's what's done: 34 * -- driver allocates pages at a time and keeps reference counts 35 * on them. 36 * -- the upper protocol layers assume that the header is in the skb 37 * itself. as a result, cassini will copy a small amount (64 bytes) 38 * to make them happy. 39 * -- driver appends the rest of the data pages as frags to skbuffs 40 * and increments the reference count 41 * -- on page reclamation, the driver swaps the page with a spare page. 42 * if that page is still in use, it frees its reference to that page, 43 * and allocates a new page for use. otherwise, it just recycles the 44 * the page. 45 * 46 * NOTE: cassini can parse the header. however, it's not worth it 47 * as long as the network stack requires a header copy. 48 * 49 * TX has 4 queues. currently these queues are used in a round-robin 50 * fashion for load balancing. They can also be used for QoS. for that 51 * to work, however, QoS information needs to be exposed down to the driver 52 * level so that subqueues get targeted to particular transmit rings. 53 * alternatively, the queues can be configured via use of the all-purpose 54 * ioctl. 55 * 56 * RX DATA: the rx completion ring has all the info, but the rx desc 57 * ring has all of the data. RX can conceivably come in under multiple 58 * interrupts, but the INT# assignment needs to be set up properly by 59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 60 * that. also, the two descriptor rings are designed to distinguish between 61 * encrypted and non-encrypted packets, but we use them for buffering 62 * instead. 63 * 64 * by default, the selective clear mask is set up to process rx packets. 65 */ 66 67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 68 69 #include <linux/module.h> 70 #include <linux/kernel.h> 71 #include <linux/types.h> 72 #include <linux/compiler.h> 73 #include <linux/slab.h> 74 #include <linux/delay.h> 75 #include <linux/init.h> 76 #include <linux/interrupt.h> 77 #include <linux/vmalloc.h> 78 #include <linux/ioport.h> 79 #include <linux/pci.h> 80 #include <linux/mm.h> 81 #include <linux/highmem.h> 82 #include <linux/list.h> 83 #include <linux/dma-mapping.h> 84 85 #include <linux/netdevice.h> 86 #include <linux/etherdevice.h> 87 #include <linux/skbuff.h> 88 #include <linux/ethtool.h> 89 #include <linux/crc32.h> 90 #include <linux/random.h> 91 #include <linux/mii.h> 92 #include <linux/ip.h> 93 #include <linux/tcp.h> 94 #include <linux/mutex.h> 95 #include <linux/firmware.h> 96 97 #include <net/checksum.h> 98 99 #include <linux/atomic.h> 100 #include <asm/io.h> 101 #include <asm/byteorder.h> 102 #include <linux/uaccess.h> 103 104 #define cas_page_map(x) kmap_atomic((x)) 105 #define cas_page_unmap(x) kunmap_atomic((x)) 106 #define CAS_NCPUS num_online_cpus() 107 108 #define cas_skb_release(x) netif_rx(x) 109 110 /* select which firmware to use */ 111 #define USE_HP_WORKAROUND 112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 113 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 114 115 #include "cassini.h" 116 117 #define USE_TX_COMPWB /* use completion writeback registers */ 118 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 119 #define USE_RX_BLANK /* hw interrupt mitigation */ 120 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 121 122 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 123 * also, we need to make cp->lock finer-grained. 124 */ 125 #undef USE_PCI_INTB 126 #undef USE_PCI_INTC 127 #undef USE_PCI_INTD 128 #undef USE_QOS 129 130 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 131 132 /* rx processing options */ 133 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 134 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 135 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 136 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 137 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 138 139 #define DRV_MODULE_NAME "cassini" 140 #define DRV_MODULE_VERSION "1.6" 141 #define DRV_MODULE_RELDATE "21 May 2008" 142 143 #define CAS_DEF_MSG_ENABLE \ 144 (NETIF_MSG_DRV | \ 145 NETIF_MSG_PROBE | \ 146 NETIF_MSG_LINK | \ 147 NETIF_MSG_TIMER | \ 148 NETIF_MSG_IFDOWN | \ 149 NETIF_MSG_IFUP | \ 150 NETIF_MSG_RX_ERR | \ 151 NETIF_MSG_TX_ERR) 152 153 /* length of time before we decide the hardware is borked, 154 * and dev->tx_timeout() should be called to fix the problem 155 */ 156 #define CAS_TX_TIMEOUT (HZ) 157 #define CAS_LINK_TIMEOUT (22*HZ/10) 158 #define CAS_LINK_FAST_TIMEOUT (1) 159 160 /* timeout values for state changing. these specify the number 161 * of 10us delays to be used before giving up. 162 */ 163 #define STOP_TRIES_PHY 1000 164 #define STOP_TRIES 5000 165 166 /* specify a minimum frame size to deal with some fifo issues 167 * max mtu == 2 * page size - ethernet header - 64 - swivel = 168 * 2 * page_size - 0x50 169 */ 170 #define CAS_MIN_FRAME 97 171 #define CAS_1000MB_MIN_FRAME 255 172 #define CAS_MIN_MTU 60 173 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 174 175 #if 1 176 /* 177 * Eliminate these and use separate atomic counters for each, to 178 * avoid a race condition. 179 */ 180 #else 181 #define CAS_RESET_MTU 1 182 #define CAS_RESET_ALL 2 183 #define CAS_RESET_SPARE 3 184 #endif 185 186 static char version[] = 187 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 188 189 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 190 static int link_mode; 191 192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 194 MODULE_LICENSE("GPL"); 195 MODULE_FIRMWARE("sun/cassini.bin"); 196 module_param(cassini_debug, int, 0); 197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 198 module_param(link_mode, int, 0); 199 MODULE_PARM_DESC(link_mode, "default link mode"); 200 201 /* 202 * Work around for a PCS bug in which the link goes down due to the chip 203 * being confused and never showing a link status of "up." 204 */ 205 #define DEFAULT_LINKDOWN_TIMEOUT 5 206 /* 207 * Value in seconds, for user input. 208 */ 209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 210 module_param(linkdown_timeout, int, 0); 211 MODULE_PARM_DESC(linkdown_timeout, 212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 213 214 /* 215 * value in 'ticks' (units used by jiffies). Set when we init the 216 * module because 'HZ' in actually a function call on some flavors of 217 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 218 */ 219 static int link_transition_timeout; 220 221 222 223 static u16 link_modes[] = { 224 BMCR_ANENABLE, /* 0 : autoneg */ 225 0, /* 1 : 10bt half duplex */ 226 BMCR_SPEED100, /* 2 : 100bt half duplex */ 227 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 228 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 229 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 230 }; 231 232 static const struct pci_device_id cas_pci_tbl[] = { 233 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 235 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 237 { 0, } 238 }; 239 240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 241 242 static void cas_set_link_modes(struct cas *cp); 243 244 static inline void cas_lock_tx(struct cas *cp) 245 { 246 int i; 247 248 for (i = 0; i < N_TX_RINGS; i++) 249 spin_lock_nested(&cp->tx_lock[i], i); 250 } 251 252 static inline void cas_lock_all(struct cas *cp) 253 { 254 spin_lock_irq(&cp->lock); 255 cas_lock_tx(cp); 256 } 257 258 /* WTZ: QA was finding deadlock problems with the previous 259 * versions after long test runs with multiple cards per machine. 260 * See if replacing cas_lock_all with safer versions helps. The 261 * symptoms QA is reporting match those we'd expect if interrupts 262 * aren't being properly restored, and we fixed a previous deadlock 263 * with similar symptoms by using save/restore versions in other 264 * places. 265 */ 266 #define cas_lock_all_save(cp, flags) \ 267 do { \ 268 struct cas *xxxcp = (cp); \ 269 spin_lock_irqsave(&xxxcp->lock, flags); \ 270 cas_lock_tx(xxxcp); \ 271 } while (0) 272 273 static inline void cas_unlock_tx(struct cas *cp) 274 { 275 int i; 276 277 for (i = N_TX_RINGS; i > 0; i--) 278 spin_unlock(&cp->tx_lock[i - 1]); 279 } 280 281 static inline void cas_unlock_all(struct cas *cp) 282 { 283 cas_unlock_tx(cp); 284 spin_unlock_irq(&cp->lock); 285 } 286 287 #define cas_unlock_all_restore(cp, flags) \ 288 do { \ 289 struct cas *xxxcp = (cp); \ 290 cas_unlock_tx(xxxcp); \ 291 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 292 } while (0) 293 294 static void cas_disable_irq(struct cas *cp, const int ring) 295 { 296 /* Make sure we won't get any more interrupts */ 297 if (ring == 0) { 298 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 299 return; 300 } 301 302 /* disable completion interrupts and selectively mask */ 303 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 304 switch (ring) { 305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 306 #ifdef USE_PCI_INTB 307 case 1: 308 #endif 309 #ifdef USE_PCI_INTC 310 case 2: 311 #endif 312 #ifdef USE_PCI_INTD 313 case 3: 314 #endif 315 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 316 cp->regs + REG_PLUS_INTRN_MASK(ring)); 317 break; 318 #endif 319 default: 320 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 321 REG_PLUS_INTRN_MASK(ring)); 322 break; 323 } 324 } 325 } 326 327 static inline void cas_mask_intr(struct cas *cp) 328 { 329 int i; 330 331 for (i = 0; i < N_RX_COMP_RINGS; i++) 332 cas_disable_irq(cp, i); 333 } 334 335 static void cas_enable_irq(struct cas *cp, const int ring) 336 { 337 if (ring == 0) { /* all but TX_DONE */ 338 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 339 return; 340 } 341 342 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 343 switch (ring) { 344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 345 #ifdef USE_PCI_INTB 346 case 1: 347 #endif 348 #ifdef USE_PCI_INTC 349 case 2: 350 #endif 351 #ifdef USE_PCI_INTD 352 case 3: 353 #endif 354 writel(INTRN_MASK_RX_EN, cp->regs + 355 REG_PLUS_INTRN_MASK(ring)); 356 break; 357 #endif 358 default: 359 break; 360 } 361 } 362 } 363 364 static inline void cas_unmask_intr(struct cas *cp) 365 { 366 int i; 367 368 for (i = 0; i < N_RX_COMP_RINGS; i++) 369 cas_enable_irq(cp, i); 370 } 371 372 static inline void cas_entropy_gather(struct cas *cp) 373 { 374 #ifdef USE_ENTROPY_DEV 375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 376 return; 377 378 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 379 readl(cp->regs + REG_ENTROPY_IV), 380 sizeof(uint64_t)*8); 381 #endif 382 } 383 384 static inline void cas_entropy_reset(struct cas *cp) 385 { 386 #ifdef USE_ENTROPY_DEV 387 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 388 return; 389 390 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 391 cp->regs + REG_BIM_LOCAL_DEV_EN); 392 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 393 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 394 395 /* if we read back 0x0, we don't have an entropy device */ 396 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 397 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 398 #endif 399 } 400 401 /* access to the phy. the following assumes that we've initialized the MIF to 402 * be in frame rather than bit-bang mode 403 */ 404 static u16 cas_phy_read(struct cas *cp, int reg) 405 { 406 u32 cmd; 407 int limit = STOP_TRIES_PHY; 408 409 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 410 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 411 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 412 cmd |= MIF_FRAME_TURN_AROUND_MSB; 413 writel(cmd, cp->regs + REG_MIF_FRAME); 414 415 /* poll for completion */ 416 while (limit-- > 0) { 417 udelay(10); 418 cmd = readl(cp->regs + REG_MIF_FRAME); 419 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 420 return cmd & MIF_FRAME_DATA_MASK; 421 } 422 return 0xFFFF; /* -1 */ 423 } 424 425 static int cas_phy_write(struct cas *cp, int reg, u16 val) 426 { 427 int limit = STOP_TRIES_PHY; 428 u32 cmd; 429 430 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 431 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 432 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 433 cmd |= MIF_FRAME_TURN_AROUND_MSB; 434 cmd |= val & MIF_FRAME_DATA_MASK; 435 writel(cmd, cp->regs + REG_MIF_FRAME); 436 437 /* poll for completion */ 438 while (limit-- > 0) { 439 udelay(10); 440 cmd = readl(cp->regs + REG_MIF_FRAME); 441 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 442 return 0; 443 } 444 return -1; 445 } 446 447 static void cas_phy_powerup(struct cas *cp) 448 { 449 u16 ctl = cas_phy_read(cp, MII_BMCR); 450 451 if ((ctl & BMCR_PDOWN) == 0) 452 return; 453 ctl &= ~BMCR_PDOWN; 454 cas_phy_write(cp, MII_BMCR, ctl); 455 } 456 457 static void cas_phy_powerdown(struct cas *cp) 458 { 459 u16 ctl = cas_phy_read(cp, MII_BMCR); 460 461 if (ctl & BMCR_PDOWN) 462 return; 463 ctl |= BMCR_PDOWN; 464 cas_phy_write(cp, MII_BMCR, ctl); 465 } 466 467 /* cp->lock held. note: the last put_page will free the buffer */ 468 static int cas_page_free(struct cas *cp, cas_page_t *page) 469 { 470 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 471 PCI_DMA_FROMDEVICE); 472 __free_pages(page->buffer, cp->page_order); 473 kfree(page); 474 return 0; 475 } 476 477 #ifdef RX_COUNT_BUFFERS 478 #define RX_USED_ADD(x, y) ((x)->used += (y)) 479 #define RX_USED_SET(x, y) ((x)->used = (y)) 480 #else 481 #define RX_USED_ADD(x, y) 482 #define RX_USED_SET(x, y) 483 #endif 484 485 /* local page allocation routines for the receive buffers. jumbo pages 486 * require at least 8K contiguous and 8K aligned buffers. 487 */ 488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 489 { 490 cas_page_t *page; 491 492 page = kmalloc(sizeof(cas_page_t), flags); 493 if (!page) 494 return NULL; 495 496 INIT_LIST_HEAD(&page->list); 497 RX_USED_SET(page, 0); 498 page->buffer = alloc_pages(flags, cp->page_order); 499 if (!page->buffer) 500 goto page_err; 501 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 502 cp->page_size, PCI_DMA_FROMDEVICE); 503 return page; 504 505 page_err: 506 kfree(page); 507 return NULL; 508 } 509 510 /* initialize spare pool of rx buffers, but allocate during the open */ 511 static void cas_spare_init(struct cas *cp) 512 { 513 spin_lock(&cp->rx_inuse_lock); 514 INIT_LIST_HEAD(&cp->rx_inuse_list); 515 spin_unlock(&cp->rx_inuse_lock); 516 517 spin_lock(&cp->rx_spare_lock); 518 INIT_LIST_HEAD(&cp->rx_spare_list); 519 cp->rx_spares_needed = RX_SPARE_COUNT; 520 spin_unlock(&cp->rx_spare_lock); 521 } 522 523 /* used on close. free all the spare buffers. */ 524 static void cas_spare_free(struct cas *cp) 525 { 526 struct list_head list, *elem, *tmp; 527 528 /* free spare buffers */ 529 INIT_LIST_HEAD(&list); 530 spin_lock(&cp->rx_spare_lock); 531 list_splice_init(&cp->rx_spare_list, &list); 532 spin_unlock(&cp->rx_spare_lock); 533 list_for_each_safe(elem, tmp, &list) { 534 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 535 } 536 537 INIT_LIST_HEAD(&list); 538 #if 1 539 /* 540 * Looks like Adrian had protected this with a different 541 * lock than used everywhere else to manipulate this list. 542 */ 543 spin_lock(&cp->rx_inuse_lock); 544 list_splice_init(&cp->rx_inuse_list, &list); 545 spin_unlock(&cp->rx_inuse_lock); 546 #else 547 spin_lock(&cp->rx_spare_lock); 548 list_splice_init(&cp->rx_inuse_list, &list); 549 spin_unlock(&cp->rx_spare_lock); 550 #endif 551 list_for_each_safe(elem, tmp, &list) { 552 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 553 } 554 } 555 556 /* replenish spares if needed */ 557 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 558 { 559 struct list_head list, *elem, *tmp; 560 int needed, i; 561 562 /* check inuse list. if we don't need any more free buffers, 563 * just free it 564 */ 565 566 /* make a local copy of the list */ 567 INIT_LIST_HEAD(&list); 568 spin_lock(&cp->rx_inuse_lock); 569 list_splice_init(&cp->rx_inuse_list, &list); 570 spin_unlock(&cp->rx_inuse_lock); 571 572 list_for_each_safe(elem, tmp, &list) { 573 cas_page_t *page = list_entry(elem, cas_page_t, list); 574 575 /* 576 * With the lockless pagecache, cassini buffering scheme gets 577 * slightly less accurate: we might find that a page has an 578 * elevated reference count here, due to a speculative ref, 579 * and skip it as in-use. Ideally we would be able to reclaim 580 * it. However this would be such a rare case, it doesn't 581 * matter too much as we should pick it up the next time round. 582 * 583 * Importantly, if we find that the page has a refcount of 1 584 * here (our refcount), then we know it is definitely not inuse 585 * so we can reuse it. 586 */ 587 if (page_count(page->buffer) > 1) 588 continue; 589 590 list_del(elem); 591 spin_lock(&cp->rx_spare_lock); 592 if (cp->rx_spares_needed > 0) { 593 list_add(elem, &cp->rx_spare_list); 594 cp->rx_spares_needed--; 595 spin_unlock(&cp->rx_spare_lock); 596 } else { 597 spin_unlock(&cp->rx_spare_lock); 598 cas_page_free(cp, page); 599 } 600 } 601 602 /* put any inuse buffers back on the list */ 603 if (!list_empty(&list)) { 604 spin_lock(&cp->rx_inuse_lock); 605 list_splice(&list, &cp->rx_inuse_list); 606 spin_unlock(&cp->rx_inuse_lock); 607 } 608 609 spin_lock(&cp->rx_spare_lock); 610 needed = cp->rx_spares_needed; 611 spin_unlock(&cp->rx_spare_lock); 612 if (!needed) 613 return; 614 615 /* we still need spares, so try to allocate some */ 616 INIT_LIST_HEAD(&list); 617 i = 0; 618 while (i < needed) { 619 cas_page_t *spare = cas_page_alloc(cp, flags); 620 if (!spare) 621 break; 622 list_add(&spare->list, &list); 623 i++; 624 } 625 626 spin_lock(&cp->rx_spare_lock); 627 list_splice(&list, &cp->rx_spare_list); 628 cp->rx_spares_needed -= i; 629 spin_unlock(&cp->rx_spare_lock); 630 } 631 632 /* pull a page from the list. */ 633 static cas_page_t *cas_page_dequeue(struct cas *cp) 634 { 635 struct list_head *entry; 636 int recover; 637 638 spin_lock(&cp->rx_spare_lock); 639 if (list_empty(&cp->rx_spare_list)) { 640 /* try to do a quick recovery */ 641 spin_unlock(&cp->rx_spare_lock); 642 cas_spare_recover(cp, GFP_ATOMIC); 643 spin_lock(&cp->rx_spare_lock); 644 if (list_empty(&cp->rx_spare_list)) { 645 netif_err(cp, rx_err, cp->dev, 646 "no spare buffers available\n"); 647 spin_unlock(&cp->rx_spare_lock); 648 return NULL; 649 } 650 } 651 652 entry = cp->rx_spare_list.next; 653 list_del(entry); 654 recover = ++cp->rx_spares_needed; 655 spin_unlock(&cp->rx_spare_lock); 656 657 /* trigger the timer to do the recovery */ 658 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 659 #if 1 660 atomic_inc(&cp->reset_task_pending); 661 atomic_inc(&cp->reset_task_pending_spare); 662 schedule_work(&cp->reset_task); 663 #else 664 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 665 schedule_work(&cp->reset_task); 666 #endif 667 } 668 return list_entry(entry, cas_page_t, list); 669 } 670 671 672 static void cas_mif_poll(struct cas *cp, const int enable) 673 { 674 u32 cfg; 675 676 cfg = readl(cp->regs + REG_MIF_CFG); 677 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 678 679 if (cp->phy_type & CAS_PHY_MII_MDIO1) 680 cfg |= MIF_CFG_PHY_SELECT; 681 682 /* poll and interrupt on link status change. */ 683 if (enable) { 684 cfg |= MIF_CFG_POLL_EN; 685 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 686 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 687 } 688 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 689 cp->regs + REG_MIF_MASK); 690 writel(cfg, cp->regs + REG_MIF_CFG); 691 } 692 693 /* Must be invoked under cp->lock */ 694 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) 695 { 696 u16 ctl; 697 #if 1 698 int lcntl; 699 int changed = 0; 700 int oldstate = cp->lstate; 701 int link_was_not_down = !(oldstate == link_down); 702 #endif 703 /* Setup link parameters */ 704 if (!ep) 705 goto start_aneg; 706 lcntl = cp->link_cntl; 707 if (ep->autoneg == AUTONEG_ENABLE) 708 cp->link_cntl = BMCR_ANENABLE; 709 else { 710 u32 speed = ethtool_cmd_speed(ep); 711 cp->link_cntl = 0; 712 if (speed == SPEED_100) 713 cp->link_cntl |= BMCR_SPEED100; 714 else if (speed == SPEED_1000) 715 cp->link_cntl |= CAS_BMCR_SPEED1000; 716 if (ep->duplex == DUPLEX_FULL) 717 cp->link_cntl |= BMCR_FULLDPLX; 718 } 719 #if 1 720 changed = (lcntl != cp->link_cntl); 721 #endif 722 start_aneg: 723 if (cp->lstate == link_up) { 724 netdev_info(cp->dev, "PCS link down\n"); 725 } else { 726 if (changed) { 727 netdev_info(cp->dev, "link configuration changed\n"); 728 } 729 } 730 cp->lstate = link_down; 731 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 732 if (!cp->hw_running) 733 return; 734 #if 1 735 /* 736 * WTZ: If the old state was link_up, we turn off the carrier 737 * to replicate everything we do elsewhere on a link-down 738 * event when we were already in a link-up state.. 739 */ 740 if (oldstate == link_up) 741 netif_carrier_off(cp->dev); 742 if (changed && link_was_not_down) { 743 /* 744 * WTZ: This branch will simply schedule a full reset after 745 * we explicitly changed link modes in an ioctl. See if this 746 * fixes the link-problems we were having for forced mode. 747 */ 748 atomic_inc(&cp->reset_task_pending); 749 atomic_inc(&cp->reset_task_pending_all); 750 schedule_work(&cp->reset_task); 751 cp->timer_ticks = 0; 752 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 753 return; 754 } 755 #endif 756 if (cp->phy_type & CAS_PHY_SERDES) { 757 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 758 759 if (cp->link_cntl & BMCR_ANENABLE) { 760 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 761 cp->lstate = link_aneg; 762 } else { 763 if (cp->link_cntl & BMCR_FULLDPLX) 764 val |= PCS_MII_CTRL_DUPLEX; 765 val &= ~PCS_MII_AUTONEG_EN; 766 cp->lstate = link_force_ok; 767 } 768 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 769 writel(val, cp->regs + REG_PCS_MII_CTRL); 770 771 } else { 772 cas_mif_poll(cp, 0); 773 ctl = cas_phy_read(cp, MII_BMCR); 774 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 775 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 776 ctl |= cp->link_cntl; 777 if (ctl & BMCR_ANENABLE) { 778 ctl |= BMCR_ANRESTART; 779 cp->lstate = link_aneg; 780 } else { 781 cp->lstate = link_force_ok; 782 } 783 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 784 cas_phy_write(cp, MII_BMCR, ctl); 785 cas_mif_poll(cp, 1); 786 } 787 788 cp->timer_ticks = 0; 789 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 790 } 791 792 /* Must be invoked under cp->lock. */ 793 static int cas_reset_mii_phy(struct cas *cp) 794 { 795 int limit = STOP_TRIES_PHY; 796 u16 val; 797 798 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 799 udelay(100); 800 while (--limit) { 801 val = cas_phy_read(cp, MII_BMCR); 802 if ((val & BMCR_RESET) == 0) 803 break; 804 udelay(10); 805 } 806 return limit <= 0; 807 } 808 809 static void cas_saturn_firmware_init(struct cas *cp) 810 { 811 const struct firmware *fw; 812 const char fw_name[] = "sun/cassini.bin"; 813 int err; 814 815 if (PHY_NS_DP83065 != cp->phy_id) 816 return; 817 818 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 819 if (err) { 820 pr_err("Failed to load firmware \"%s\"\n", 821 fw_name); 822 return; 823 } 824 if (fw->size < 2) { 825 pr_err("bogus length %zu in \"%s\"\n", 826 fw->size, fw_name); 827 goto out; 828 } 829 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 830 cp->fw_size = fw->size - 2; 831 cp->fw_data = vmalloc(cp->fw_size); 832 if (!cp->fw_data) 833 goto out; 834 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 835 out: 836 release_firmware(fw); 837 } 838 839 static void cas_saturn_firmware_load(struct cas *cp) 840 { 841 int i; 842 843 if (!cp->fw_data) 844 return; 845 846 cas_phy_powerdown(cp); 847 848 /* expanded memory access mode */ 849 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 850 851 /* pointer configuration for new firmware */ 852 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 853 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 854 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 855 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 857 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 859 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 860 861 /* download new firmware */ 862 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 863 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 864 for (i = 0; i < cp->fw_size; i++) 865 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 866 867 /* enable firmware */ 868 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 869 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 870 } 871 872 873 /* phy initialization */ 874 static void cas_phy_init(struct cas *cp) 875 { 876 u16 val; 877 878 /* if we're in MII/GMII mode, set up phy */ 879 if (CAS_PHY_MII(cp->phy_type)) { 880 writel(PCS_DATAPATH_MODE_MII, 881 cp->regs + REG_PCS_DATAPATH_MODE); 882 883 cas_mif_poll(cp, 0); 884 cas_reset_mii_phy(cp); /* take out of isolate mode */ 885 886 if (PHY_LUCENT_B0 == cp->phy_id) { 887 /* workaround link up/down issue with lucent */ 888 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 889 cas_phy_write(cp, MII_BMCR, 0x00f1); 890 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 891 892 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 893 /* workarounds for broadcom phy */ 894 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 895 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 896 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 897 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 898 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 905 906 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 907 val = cas_phy_read(cp, BROADCOM_MII_REG4); 908 val = cas_phy_read(cp, BROADCOM_MII_REG4); 909 if (val & 0x0080) { 910 /* link workaround */ 911 cas_phy_write(cp, BROADCOM_MII_REG4, 912 val & ~0x0080); 913 } 914 915 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 916 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 917 SATURN_PCFG_FSI : 0x0, 918 cp->regs + REG_SATURN_PCFG); 919 920 /* load firmware to address 10Mbps auto-negotiation 921 * issue. NOTE: this will need to be changed if the 922 * default firmware gets fixed. 923 */ 924 if (PHY_NS_DP83065 == cp->phy_id) { 925 cas_saturn_firmware_load(cp); 926 } 927 cas_phy_powerup(cp); 928 } 929 930 /* advertise capabilities */ 931 val = cas_phy_read(cp, MII_BMCR); 932 val &= ~BMCR_ANENABLE; 933 cas_phy_write(cp, MII_BMCR, val); 934 udelay(10); 935 936 cas_phy_write(cp, MII_ADVERTISE, 937 cas_phy_read(cp, MII_ADVERTISE) | 938 (ADVERTISE_10HALF | ADVERTISE_10FULL | 939 ADVERTISE_100HALF | ADVERTISE_100FULL | 940 CAS_ADVERTISE_PAUSE | 941 CAS_ADVERTISE_ASYM_PAUSE)); 942 943 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 944 /* make sure that we don't advertise half 945 * duplex to avoid a chip issue 946 */ 947 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 948 val &= ~CAS_ADVERTISE_1000HALF; 949 val |= CAS_ADVERTISE_1000FULL; 950 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 951 } 952 953 } else { 954 /* reset pcs for serdes */ 955 u32 val; 956 int limit; 957 958 writel(PCS_DATAPATH_MODE_SERDES, 959 cp->regs + REG_PCS_DATAPATH_MODE); 960 961 /* enable serdes pins on saturn */ 962 if (cp->cas_flags & CAS_FLAG_SATURN) 963 writel(0, cp->regs + REG_SATURN_PCFG); 964 965 /* Reset PCS unit. */ 966 val = readl(cp->regs + REG_PCS_MII_CTRL); 967 val |= PCS_MII_RESET; 968 writel(val, cp->regs + REG_PCS_MII_CTRL); 969 970 limit = STOP_TRIES; 971 while (--limit > 0) { 972 udelay(10); 973 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 974 PCS_MII_RESET) == 0) 975 break; 976 } 977 if (limit <= 0) 978 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 979 readl(cp->regs + REG_PCS_STATE_MACHINE)); 980 981 /* Make sure PCS is disabled while changing advertisement 982 * configuration. 983 */ 984 writel(0x0, cp->regs + REG_PCS_CFG); 985 986 /* Advertise all capabilities except half-duplex. */ 987 val = readl(cp->regs + REG_PCS_MII_ADVERT); 988 val &= ~PCS_MII_ADVERT_HD; 989 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 990 PCS_MII_ADVERT_ASYM_PAUSE); 991 writel(val, cp->regs + REG_PCS_MII_ADVERT); 992 993 /* enable PCS */ 994 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 995 996 /* pcs workaround: enable sync detect */ 997 writel(PCS_SERDES_CTRL_SYNCD_EN, 998 cp->regs + REG_PCS_SERDES_CTRL); 999 } 1000 } 1001 1002 1003 static int cas_pcs_link_check(struct cas *cp) 1004 { 1005 u32 stat, state_machine; 1006 int retval = 0; 1007 1008 /* The link status bit latches on zero, so you must 1009 * read it twice in such a case to see a transition 1010 * to the link being up. 1011 */ 1012 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1013 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1014 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1015 1016 /* The remote-fault indication is only valid 1017 * when autoneg has completed. 1018 */ 1019 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1020 PCS_MII_STATUS_REMOTE_FAULT)) == 1021 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1022 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1023 1024 /* work around link detection issue by querying the PCS state 1025 * machine directly. 1026 */ 1027 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1028 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1029 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1030 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1031 stat |= PCS_MII_STATUS_LINK_STATUS; 1032 } 1033 1034 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1035 if (cp->lstate != link_up) { 1036 if (cp->opened) { 1037 cp->lstate = link_up; 1038 cp->link_transition = LINK_TRANSITION_LINK_UP; 1039 1040 cas_set_link_modes(cp); 1041 netif_carrier_on(cp->dev); 1042 } 1043 } 1044 } else if (cp->lstate == link_up) { 1045 cp->lstate = link_down; 1046 if (link_transition_timeout != 0 && 1047 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1048 !cp->link_transition_jiffies_valid) { 1049 /* 1050 * force a reset, as a workaround for the 1051 * link-failure problem. May want to move this to a 1052 * point a bit earlier in the sequence. If we had 1053 * generated a reset a short time ago, we'll wait for 1054 * the link timer to check the status until a 1055 * timer expires (link_transistion_jiffies_valid is 1056 * true when the timer is running.) Instead of using 1057 * a system timer, we just do a check whenever the 1058 * link timer is running - this clears the flag after 1059 * a suitable delay. 1060 */ 1061 retval = 1; 1062 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1063 cp->link_transition_jiffies = jiffies; 1064 cp->link_transition_jiffies_valid = 1; 1065 } else { 1066 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1067 } 1068 netif_carrier_off(cp->dev); 1069 if (cp->opened) 1070 netif_info(cp, link, cp->dev, "PCS link down\n"); 1071 1072 /* Cassini only: if you force a mode, there can be 1073 * sync problems on link down. to fix that, the following 1074 * things need to be checked: 1075 * 1) read serialink state register 1076 * 2) read pcs status register to verify link down. 1077 * 3) if link down and serial link == 0x03, then you need 1078 * to global reset the chip. 1079 */ 1080 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1081 /* should check to see if we're in a forced mode */ 1082 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1083 if (stat == 0x03) 1084 return 1; 1085 } 1086 } else if (cp->lstate == link_down) { 1087 if (link_transition_timeout != 0 && 1088 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1089 !cp->link_transition_jiffies_valid) { 1090 /* force a reset, as a workaround for the 1091 * link-failure problem. May want to move 1092 * this to a point a bit earlier in the 1093 * sequence. 1094 */ 1095 retval = 1; 1096 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1097 cp->link_transition_jiffies = jiffies; 1098 cp->link_transition_jiffies_valid = 1; 1099 } else { 1100 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1101 } 1102 } 1103 1104 return retval; 1105 } 1106 1107 static int cas_pcs_interrupt(struct net_device *dev, 1108 struct cas *cp, u32 status) 1109 { 1110 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1111 1112 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1113 return 0; 1114 return cas_pcs_link_check(cp); 1115 } 1116 1117 static int cas_txmac_interrupt(struct net_device *dev, 1118 struct cas *cp, u32 status) 1119 { 1120 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1121 1122 if (!txmac_stat) 1123 return 0; 1124 1125 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1126 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1127 1128 /* Defer timer expiration is quite normal, 1129 * don't even log the event. 1130 */ 1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1133 return 0; 1134 1135 spin_lock(&cp->stat_lock[0]); 1136 if (txmac_stat & MAC_TX_UNDERRUN) { 1137 netdev_err(dev, "TX MAC xmit underrun\n"); 1138 cp->net_stats[0].tx_fifo_errors++; 1139 } 1140 1141 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1142 netdev_err(dev, "TX MAC max packet size error\n"); 1143 cp->net_stats[0].tx_errors++; 1144 } 1145 1146 /* The rest are all cases of one of the 16-bit TX 1147 * counters expiring. 1148 */ 1149 if (txmac_stat & MAC_TX_COLL_NORMAL) 1150 cp->net_stats[0].collisions += 0x10000; 1151 1152 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1153 cp->net_stats[0].tx_aborted_errors += 0x10000; 1154 cp->net_stats[0].collisions += 0x10000; 1155 } 1156 1157 if (txmac_stat & MAC_TX_COLL_LATE) { 1158 cp->net_stats[0].tx_aborted_errors += 0x10000; 1159 cp->net_stats[0].collisions += 0x10000; 1160 } 1161 spin_unlock(&cp->stat_lock[0]); 1162 1163 /* We do not keep track of MAC_TX_COLL_FIRST and 1164 * MAC_TX_PEAK_ATTEMPTS events. 1165 */ 1166 return 0; 1167 } 1168 1169 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1170 { 1171 cas_hp_inst_t *inst; 1172 u32 val; 1173 int i; 1174 1175 i = 0; 1176 while ((inst = firmware) && inst->note) { 1177 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1178 1179 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1180 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1181 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1182 1183 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1184 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1185 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1186 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1187 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1188 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1189 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1190 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1191 1192 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1193 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1194 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1196 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1197 ++firmware; 1198 ++i; 1199 } 1200 } 1201 1202 static void cas_init_rx_dma(struct cas *cp) 1203 { 1204 u64 desc_dma = cp->block_dvma; 1205 u32 val; 1206 int i, size; 1207 1208 /* rx free descriptors */ 1209 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1210 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1211 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1212 if ((N_RX_DESC_RINGS > 1) && 1213 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1214 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1215 writel(val, cp->regs + REG_RX_CFG); 1216 1217 val = (unsigned long) cp->init_rxds[0] - 1218 (unsigned long) cp->init_block; 1219 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1220 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1221 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1222 1223 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1224 /* rx desc 2 is for IPSEC packets. however, 1225 * we don't it that for that purpose. 1226 */ 1227 val = (unsigned long) cp->init_rxds[1] - 1228 (unsigned long) cp->init_block; 1229 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1230 writel((desc_dma + val) & 0xffffffff, cp->regs + 1231 REG_PLUS_RX_DB1_LOW); 1232 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1233 REG_PLUS_RX_KICK1); 1234 } 1235 1236 /* rx completion registers */ 1237 val = (unsigned long) cp->init_rxcs[0] - 1238 (unsigned long) cp->init_block; 1239 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1240 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1241 1242 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1243 /* rx comp 2-4 */ 1244 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1245 val = (unsigned long) cp->init_rxcs[i] - 1246 (unsigned long) cp->init_block; 1247 writel((desc_dma + val) >> 32, cp->regs + 1248 REG_PLUS_RX_CBN_HI(i)); 1249 writel((desc_dma + val) & 0xffffffff, cp->regs + 1250 REG_PLUS_RX_CBN_LOW(i)); 1251 } 1252 } 1253 1254 /* read selective clear regs to prevent spurious interrupts 1255 * on reset because complete == kick. 1256 * selective clear set up to prevent interrupts on resets 1257 */ 1258 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1259 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1260 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1261 for (i = 1; i < N_RX_COMP_RINGS; i++) 1262 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1263 1264 /* 2 is different from 3 and 4 */ 1265 if (N_RX_COMP_RINGS > 1) 1266 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1267 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1268 1269 for (i = 2; i < N_RX_COMP_RINGS; i++) 1270 writel(INTR_RX_DONE_ALT, 1271 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1272 } 1273 1274 /* set up pause thresholds */ 1275 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1276 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1277 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1278 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1279 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1280 1281 /* zero out dma reassembly buffers */ 1282 for (i = 0; i < 64; i++) { 1283 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1284 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1285 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1287 } 1288 1289 /* make sure address register is 0 for normal operation */ 1290 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1291 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1292 1293 /* interrupt mitigation */ 1294 #ifdef USE_RX_BLANK 1295 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1296 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1297 writel(val, cp->regs + REG_RX_BLANK); 1298 #else 1299 writel(0x0, cp->regs + REG_RX_BLANK); 1300 #endif 1301 1302 /* interrupt generation as a function of low water marks for 1303 * free desc and completion entries. these are used to trigger 1304 * housekeeping for rx descs. we don't use the free interrupt 1305 * as it's not very useful 1306 */ 1307 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1308 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1309 writel(val, cp->regs + REG_RX_AE_THRESH); 1310 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1311 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1312 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1313 } 1314 1315 /* Random early detect registers. useful for congestion avoidance. 1316 * this should be tunable. 1317 */ 1318 writel(0x0, cp->regs + REG_RX_RED); 1319 1320 /* receive page sizes. default == 2K (0x800) */ 1321 val = 0; 1322 if (cp->page_size == 0x1000) 1323 val = 0x1; 1324 else if (cp->page_size == 0x2000) 1325 val = 0x2; 1326 else if (cp->page_size == 0x4000) 1327 val = 0x3; 1328 1329 /* round mtu + offset. constrain to page size. */ 1330 size = cp->dev->mtu + 64; 1331 if (size > cp->page_size) 1332 size = cp->page_size; 1333 1334 if (size <= 0x400) 1335 i = 0x0; 1336 else if (size <= 0x800) 1337 i = 0x1; 1338 else if (size <= 0x1000) 1339 i = 0x2; 1340 else 1341 i = 0x3; 1342 1343 cp->mtu_stride = 1 << (i + 10); 1344 val = CAS_BASE(RX_PAGE_SIZE, val); 1345 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1346 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1348 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1349 1350 /* enable the header parser if desired */ 1351 if (CAS_HP_FIRMWARE == cas_prog_null) 1352 return; 1353 1354 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1355 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1356 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1357 writel(val, cp->regs + REG_HP_CFG); 1358 } 1359 1360 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1361 { 1362 memset(rxc, 0, sizeof(*rxc)); 1363 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1364 } 1365 1366 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1367 * flipping is protected by the fact that the chip will not 1368 * hand back the same page index while it's being processed. 1369 */ 1370 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1371 { 1372 cas_page_t *page = cp->rx_pages[1][index]; 1373 cas_page_t *new; 1374 1375 if (page_count(page->buffer) == 1) 1376 return page; 1377 1378 new = cas_page_dequeue(cp); 1379 if (new) { 1380 spin_lock(&cp->rx_inuse_lock); 1381 list_add(&page->list, &cp->rx_inuse_list); 1382 spin_unlock(&cp->rx_inuse_lock); 1383 } 1384 return new; 1385 } 1386 1387 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1388 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1389 const int index) 1390 { 1391 cas_page_t **page0 = cp->rx_pages[0]; 1392 cas_page_t **page1 = cp->rx_pages[1]; 1393 1394 /* swap if buffer is in use */ 1395 if (page_count(page0[index]->buffer) > 1) { 1396 cas_page_t *new = cas_page_spare(cp, index); 1397 if (new) { 1398 page1[index] = page0[index]; 1399 page0[index] = new; 1400 } 1401 } 1402 RX_USED_SET(page0[index], 0); 1403 return page0[index]; 1404 } 1405 1406 static void cas_clean_rxds(struct cas *cp) 1407 { 1408 /* only clean ring 0 as ring 1 is used for spare buffers */ 1409 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1410 int i, size; 1411 1412 /* release all rx flows */ 1413 for (i = 0; i < N_RX_FLOWS; i++) { 1414 struct sk_buff *skb; 1415 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1416 cas_skb_release(skb); 1417 } 1418 } 1419 1420 /* initialize descriptors */ 1421 size = RX_DESC_RINGN_SIZE(0); 1422 for (i = 0; i < size; i++) { 1423 cas_page_t *page = cas_page_swap(cp, 0, i); 1424 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1425 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1426 CAS_BASE(RX_INDEX_RING, 0)); 1427 } 1428 1429 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1430 cp->rx_last[0] = 0; 1431 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1432 } 1433 1434 static void cas_clean_rxcs(struct cas *cp) 1435 { 1436 int i, j; 1437 1438 /* take ownership of rx comp descriptors */ 1439 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1440 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1441 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1442 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1443 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1444 cas_rxc_init(rxc + j); 1445 } 1446 } 1447 } 1448 1449 #if 0 1450 /* When we get a RX fifo overflow, the RX unit is probably hung 1451 * so we do the following. 1452 * 1453 * If any part of the reset goes wrong, we return 1 and that causes the 1454 * whole chip to be reset. 1455 */ 1456 static int cas_rxmac_reset(struct cas *cp) 1457 { 1458 struct net_device *dev = cp->dev; 1459 int limit; 1460 u32 val; 1461 1462 /* First, reset MAC RX. */ 1463 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1464 for (limit = 0; limit < STOP_TRIES; limit++) { 1465 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1466 break; 1467 udelay(10); 1468 } 1469 if (limit == STOP_TRIES) { 1470 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1471 return 1; 1472 } 1473 1474 /* Second, disable RX DMA. */ 1475 writel(0, cp->regs + REG_RX_CFG); 1476 for (limit = 0; limit < STOP_TRIES; limit++) { 1477 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1478 break; 1479 udelay(10); 1480 } 1481 if (limit == STOP_TRIES) { 1482 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1483 return 1; 1484 } 1485 1486 mdelay(5); 1487 1488 /* Execute RX reset command. */ 1489 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1490 for (limit = 0; limit < STOP_TRIES; limit++) { 1491 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1492 break; 1493 udelay(10); 1494 } 1495 if (limit == STOP_TRIES) { 1496 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1497 return 1; 1498 } 1499 1500 /* reset driver rx state */ 1501 cas_clean_rxds(cp); 1502 cas_clean_rxcs(cp); 1503 1504 /* Now, reprogram the rest of RX unit. */ 1505 cas_init_rx_dma(cp); 1506 1507 /* re-enable */ 1508 val = readl(cp->regs + REG_RX_CFG); 1509 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1510 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1511 val = readl(cp->regs + REG_MAC_RX_CFG); 1512 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1513 return 0; 1514 } 1515 #endif 1516 1517 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1518 u32 status) 1519 { 1520 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1521 1522 if (!stat) 1523 return 0; 1524 1525 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1526 1527 /* these are all rollovers */ 1528 spin_lock(&cp->stat_lock[0]); 1529 if (stat & MAC_RX_ALIGN_ERR) 1530 cp->net_stats[0].rx_frame_errors += 0x10000; 1531 1532 if (stat & MAC_RX_CRC_ERR) 1533 cp->net_stats[0].rx_crc_errors += 0x10000; 1534 1535 if (stat & MAC_RX_LEN_ERR) 1536 cp->net_stats[0].rx_length_errors += 0x10000; 1537 1538 if (stat & MAC_RX_OVERFLOW) { 1539 cp->net_stats[0].rx_over_errors++; 1540 cp->net_stats[0].rx_fifo_errors++; 1541 } 1542 1543 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1544 * events. 1545 */ 1546 spin_unlock(&cp->stat_lock[0]); 1547 return 0; 1548 } 1549 1550 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1551 u32 status) 1552 { 1553 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1554 1555 if (!stat) 1556 return 0; 1557 1558 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1559 "mac interrupt, stat: 0x%x\n", stat); 1560 1561 /* This interrupt is just for pause frame and pause 1562 * tracking. It is useful for diagnostics and debug 1563 * but probably by default we will mask these events. 1564 */ 1565 if (stat & MAC_CTRL_PAUSE_STATE) 1566 cp->pause_entered++; 1567 1568 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1569 cp->pause_last_time_recvd = (stat >> 16); 1570 1571 return 0; 1572 } 1573 1574 1575 /* Must be invoked under cp->lock. */ 1576 static inline int cas_mdio_link_not_up(struct cas *cp) 1577 { 1578 u16 val; 1579 1580 switch (cp->lstate) { 1581 case link_force_ret: 1582 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1583 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1584 cp->timer_ticks = 5; 1585 cp->lstate = link_force_ok; 1586 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1587 break; 1588 1589 case link_aneg: 1590 val = cas_phy_read(cp, MII_BMCR); 1591 1592 /* Try forced modes. we try things in the following order: 1593 * 1000 full -> 100 full/half -> 10 half 1594 */ 1595 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1596 val |= BMCR_FULLDPLX; 1597 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1598 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1599 cas_phy_write(cp, MII_BMCR, val); 1600 cp->timer_ticks = 5; 1601 cp->lstate = link_force_try; 1602 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1603 break; 1604 1605 case link_force_try: 1606 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1607 val = cas_phy_read(cp, MII_BMCR); 1608 cp->timer_ticks = 5; 1609 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1610 val &= ~CAS_BMCR_SPEED1000; 1611 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1612 cas_phy_write(cp, MII_BMCR, val); 1613 break; 1614 } 1615 1616 if (val & BMCR_SPEED100) { 1617 if (val & BMCR_FULLDPLX) /* fd failed */ 1618 val &= ~BMCR_FULLDPLX; 1619 else { /* 100Mbps failed */ 1620 val &= ~BMCR_SPEED100; 1621 } 1622 cas_phy_write(cp, MII_BMCR, val); 1623 break; 1624 } 1625 default: 1626 break; 1627 } 1628 return 0; 1629 } 1630 1631 1632 /* must be invoked with cp->lock held */ 1633 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1634 { 1635 int restart; 1636 1637 if (bmsr & BMSR_LSTATUS) { 1638 /* Ok, here we got a link. If we had it due to a forced 1639 * fallback, and we were configured for autoneg, we 1640 * retry a short autoneg pass. If you know your hub is 1641 * broken, use ethtool ;) 1642 */ 1643 if ((cp->lstate == link_force_try) && 1644 (cp->link_cntl & BMCR_ANENABLE)) { 1645 cp->lstate = link_force_ret; 1646 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1647 cas_mif_poll(cp, 0); 1648 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1649 cp->timer_ticks = 5; 1650 if (cp->opened) 1651 netif_info(cp, link, cp->dev, 1652 "Got link after fallback, retrying autoneg once...\n"); 1653 cas_phy_write(cp, MII_BMCR, 1654 cp->link_fcntl | BMCR_ANENABLE | 1655 BMCR_ANRESTART); 1656 cas_mif_poll(cp, 1); 1657 1658 } else if (cp->lstate != link_up) { 1659 cp->lstate = link_up; 1660 cp->link_transition = LINK_TRANSITION_LINK_UP; 1661 1662 if (cp->opened) { 1663 cas_set_link_modes(cp); 1664 netif_carrier_on(cp->dev); 1665 } 1666 } 1667 return 0; 1668 } 1669 1670 /* link not up. if the link was previously up, we restart the 1671 * whole process 1672 */ 1673 restart = 0; 1674 if (cp->lstate == link_up) { 1675 cp->lstate = link_down; 1676 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1677 1678 netif_carrier_off(cp->dev); 1679 if (cp->opened) 1680 netif_info(cp, link, cp->dev, "Link down\n"); 1681 restart = 1; 1682 1683 } else if (++cp->timer_ticks > 10) 1684 cas_mdio_link_not_up(cp); 1685 1686 return restart; 1687 } 1688 1689 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1690 u32 status) 1691 { 1692 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1693 u16 bmsr; 1694 1695 /* check for a link change */ 1696 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1697 return 0; 1698 1699 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1700 return cas_mii_link_check(cp, bmsr); 1701 } 1702 1703 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1704 u32 status) 1705 { 1706 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1707 1708 if (!stat) 1709 return 0; 1710 1711 netdev_err(dev, "PCI error [%04x:%04x]", 1712 stat, readl(cp->regs + REG_BIM_DIAG)); 1713 1714 /* cassini+ has this reserved */ 1715 if ((stat & PCI_ERR_BADACK) && 1716 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1717 pr_cont(" <No ACK64# during ABS64 cycle>"); 1718 1719 if (stat & PCI_ERR_DTRTO) 1720 pr_cont(" <Delayed transaction timeout>"); 1721 if (stat & PCI_ERR_OTHER) 1722 pr_cont(" <other>"); 1723 if (stat & PCI_ERR_BIM_DMA_WRITE) 1724 pr_cont(" <BIM DMA 0 write req>"); 1725 if (stat & PCI_ERR_BIM_DMA_READ) 1726 pr_cont(" <BIM DMA 0 read req>"); 1727 pr_cont("\n"); 1728 1729 if (stat & PCI_ERR_OTHER) { 1730 u16 cfg; 1731 1732 /* Interrogate PCI config space for the 1733 * true cause. 1734 */ 1735 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); 1736 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); 1737 if (cfg & PCI_STATUS_PARITY) 1738 netdev_err(dev, "PCI parity error detected\n"); 1739 if (cfg & PCI_STATUS_SIG_TARGET_ABORT) 1740 netdev_err(dev, "PCI target abort\n"); 1741 if (cfg & PCI_STATUS_REC_TARGET_ABORT) 1742 netdev_err(dev, "PCI master acks target abort\n"); 1743 if (cfg & PCI_STATUS_REC_MASTER_ABORT) 1744 netdev_err(dev, "PCI master abort\n"); 1745 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) 1746 netdev_err(dev, "PCI system error SERR#\n"); 1747 if (cfg & PCI_STATUS_DETECTED_PARITY) 1748 netdev_err(dev, "PCI parity error\n"); 1749 1750 /* Write the error bits back to clear them. */ 1751 cfg &= (PCI_STATUS_PARITY | 1752 PCI_STATUS_SIG_TARGET_ABORT | 1753 PCI_STATUS_REC_TARGET_ABORT | 1754 PCI_STATUS_REC_MASTER_ABORT | 1755 PCI_STATUS_SIG_SYSTEM_ERROR | 1756 PCI_STATUS_DETECTED_PARITY); 1757 pci_write_config_word(cp->pdev, PCI_STATUS, cfg); 1758 } 1759 1760 /* For all PCI errors, we should reset the chip. */ 1761 return 1; 1762 } 1763 1764 /* All non-normal interrupt conditions get serviced here. 1765 * Returns non-zero if we should just exit the interrupt 1766 * handler right now (ie. if we reset the card which invalidates 1767 * all of the other original irq status bits). 1768 */ 1769 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1770 u32 status) 1771 { 1772 if (status & INTR_RX_TAG_ERROR) { 1773 /* corrupt RX tag framing */ 1774 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1775 "corrupt rx tag framing\n"); 1776 spin_lock(&cp->stat_lock[0]); 1777 cp->net_stats[0].rx_errors++; 1778 spin_unlock(&cp->stat_lock[0]); 1779 goto do_reset; 1780 } 1781 1782 if (status & INTR_RX_LEN_MISMATCH) { 1783 /* length mismatch. */ 1784 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1785 "length mismatch for rx frame\n"); 1786 spin_lock(&cp->stat_lock[0]); 1787 cp->net_stats[0].rx_errors++; 1788 spin_unlock(&cp->stat_lock[0]); 1789 goto do_reset; 1790 } 1791 1792 if (status & INTR_PCS_STATUS) { 1793 if (cas_pcs_interrupt(dev, cp, status)) 1794 goto do_reset; 1795 } 1796 1797 if (status & INTR_TX_MAC_STATUS) { 1798 if (cas_txmac_interrupt(dev, cp, status)) 1799 goto do_reset; 1800 } 1801 1802 if (status & INTR_RX_MAC_STATUS) { 1803 if (cas_rxmac_interrupt(dev, cp, status)) 1804 goto do_reset; 1805 } 1806 1807 if (status & INTR_MAC_CTRL_STATUS) { 1808 if (cas_mac_interrupt(dev, cp, status)) 1809 goto do_reset; 1810 } 1811 1812 if (status & INTR_MIF_STATUS) { 1813 if (cas_mif_interrupt(dev, cp, status)) 1814 goto do_reset; 1815 } 1816 1817 if (status & INTR_PCI_ERROR_STATUS) { 1818 if (cas_pci_interrupt(dev, cp, status)) 1819 goto do_reset; 1820 } 1821 return 0; 1822 1823 do_reset: 1824 #if 1 1825 atomic_inc(&cp->reset_task_pending); 1826 atomic_inc(&cp->reset_task_pending_all); 1827 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1828 schedule_work(&cp->reset_task); 1829 #else 1830 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1831 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1832 schedule_work(&cp->reset_task); 1833 #endif 1834 return 1; 1835 } 1836 1837 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1838 * determining whether to do a netif_stop/wakeup 1839 */ 1840 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1841 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1842 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1843 const int len) 1844 { 1845 unsigned long off = addr + len; 1846 1847 if (CAS_TABORT(cp) == 1) 1848 return 0; 1849 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1850 return 0; 1851 return TX_TARGET_ABORT_LEN; 1852 } 1853 1854 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1855 { 1856 struct cas_tx_desc *txds; 1857 struct sk_buff **skbs; 1858 struct net_device *dev = cp->dev; 1859 int entry, count; 1860 1861 spin_lock(&cp->tx_lock[ring]); 1862 txds = cp->init_txds[ring]; 1863 skbs = cp->tx_skbs[ring]; 1864 entry = cp->tx_old[ring]; 1865 1866 count = TX_BUFF_COUNT(ring, entry, limit); 1867 while (entry != limit) { 1868 struct sk_buff *skb = skbs[entry]; 1869 dma_addr_t daddr; 1870 u32 dlen; 1871 int frag; 1872 1873 if (!skb) { 1874 /* this should never occur */ 1875 entry = TX_DESC_NEXT(ring, entry); 1876 continue; 1877 } 1878 1879 /* however, we might get only a partial skb release. */ 1880 count -= skb_shinfo(skb)->nr_frags + 1881 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1882 if (count < 0) 1883 break; 1884 1885 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1886 "tx[%d] done, slot %d\n", ring, entry); 1887 1888 skbs[entry] = NULL; 1889 cp->tx_tiny_use[ring][entry].nbufs = 0; 1890 1891 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1892 struct cas_tx_desc *txd = txds + entry; 1893 1894 daddr = le64_to_cpu(txd->buffer); 1895 dlen = CAS_VAL(TX_DESC_BUFLEN, 1896 le64_to_cpu(txd->control)); 1897 pci_unmap_page(cp->pdev, daddr, dlen, 1898 PCI_DMA_TODEVICE); 1899 entry = TX_DESC_NEXT(ring, entry); 1900 1901 /* tiny buffer may follow */ 1902 if (cp->tx_tiny_use[ring][entry].used) { 1903 cp->tx_tiny_use[ring][entry].used = 0; 1904 entry = TX_DESC_NEXT(ring, entry); 1905 } 1906 } 1907 1908 spin_lock(&cp->stat_lock[ring]); 1909 cp->net_stats[ring].tx_packets++; 1910 cp->net_stats[ring].tx_bytes += skb->len; 1911 spin_unlock(&cp->stat_lock[ring]); 1912 dev_kfree_skb_irq(skb); 1913 } 1914 cp->tx_old[ring] = entry; 1915 1916 /* this is wrong for multiple tx rings. the net device needs 1917 * multiple queues for this to do the right thing. we wait 1918 * for 2*packets to be available when using tiny buffers 1919 */ 1920 if (netif_queue_stopped(dev) && 1921 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1922 netif_wake_queue(dev); 1923 spin_unlock(&cp->tx_lock[ring]); 1924 } 1925 1926 static void cas_tx(struct net_device *dev, struct cas *cp, 1927 u32 status) 1928 { 1929 int limit, ring; 1930 #ifdef USE_TX_COMPWB 1931 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1932 #endif 1933 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1934 "tx interrupt, status: 0x%x, %llx\n", 1935 status, (unsigned long long)compwb); 1936 /* process all the rings */ 1937 for (ring = 0; ring < N_TX_RINGS; ring++) { 1938 #ifdef USE_TX_COMPWB 1939 /* use the completion writeback registers */ 1940 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1941 CAS_VAL(TX_COMPWB_LSB, compwb); 1942 compwb = TX_COMPWB_NEXT(compwb); 1943 #else 1944 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1945 #endif 1946 if (cp->tx_old[ring] != limit) 1947 cas_tx_ringN(cp, ring, limit); 1948 } 1949 } 1950 1951 1952 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1953 int entry, const u64 *words, 1954 struct sk_buff **skbref) 1955 { 1956 int dlen, hlen, len, i, alloclen; 1957 int off, swivel = RX_SWIVEL_OFF_VAL; 1958 struct cas_page *page; 1959 struct sk_buff *skb; 1960 void *addr, *crcaddr; 1961 __sum16 csum; 1962 char *p; 1963 1964 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1965 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1966 len = hlen + dlen; 1967 1968 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1969 alloclen = len; 1970 else 1971 alloclen = max(hlen, RX_COPY_MIN); 1972 1973 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1974 if (skb == NULL) 1975 return -1; 1976 1977 *skbref = skb; 1978 skb_reserve(skb, swivel); 1979 1980 p = skb->data; 1981 addr = crcaddr = NULL; 1982 if (hlen) { /* always copy header pages */ 1983 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1984 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1985 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1986 swivel; 1987 1988 i = hlen; 1989 if (!dlen) /* attach FCS */ 1990 i += cp->crc_size; 1991 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1992 PCI_DMA_FROMDEVICE); 1993 addr = cas_page_map(page->buffer); 1994 memcpy(p, addr + off, i); 1995 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1996 PCI_DMA_FROMDEVICE); 1997 cas_page_unmap(addr); 1998 RX_USED_ADD(page, 0x100); 1999 p += hlen; 2000 swivel = 0; 2001 } 2002 2003 2004 if (alloclen < (hlen + dlen)) { 2005 skb_frag_t *frag = skb_shinfo(skb)->frags; 2006 2007 /* normal or jumbo packets. we use frags */ 2008 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2009 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2010 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2011 2012 hlen = min(cp->page_size - off, dlen); 2013 if (hlen < 0) { 2014 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2015 "rx page overflow: %d\n", hlen); 2016 dev_kfree_skb_irq(skb); 2017 return -1; 2018 } 2019 i = hlen; 2020 if (i == dlen) /* attach FCS */ 2021 i += cp->crc_size; 2022 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2023 PCI_DMA_FROMDEVICE); 2024 2025 /* make sure we always copy a header */ 2026 swivel = 0; 2027 if (p == (char *) skb->data) { /* not split */ 2028 addr = cas_page_map(page->buffer); 2029 memcpy(p, addr + off, RX_COPY_MIN); 2030 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2031 PCI_DMA_FROMDEVICE); 2032 cas_page_unmap(addr); 2033 off += RX_COPY_MIN; 2034 swivel = RX_COPY_MIN; 2035 RX_USED_ADD(page, cp->mtu_stride); 2036 } else { 2037 RX_USED_ADD(page, hlen); 2038 } 2039 skb_put(skb, alloclen); 2040 2041 skb_shinfo(skb)->nr_frags++; 2042 skb->data_len += hlen - swivel; 2043 skb->truesize += hlen - swivel; 2044 skb->len += hlen - swivel; 2045 2046 __skb_frag_set_page(frag, page->buffer); 2047 __skb_frag_ref(frag); 2048 frag->page_offset = off; 2049 skb_frag_size_set(frag, hlen - swivel); 2050 2051 /* any more data? */ 2052 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2053 hlen = dlen; 2054 off = 0; 2055 2056 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2057 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2058 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2059 hlen + cp->crc_size, 2060 PCI_DMA_FROMDEVICE); 2061 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2062 hlen + cp->crc_size, 2063 PCI_DMA_FROMDEVICE); 2064 2065 skb_shinfo(skb)->nr_frags++; 2066 skb->data_len += hlen; 2067 skb->len += hlen; 2068 frag++; 2069 2070 __skb_frag_set_page(frag, page->buffer); 2071 __skb_frag_ref(frag); 2072 frag->page_offset = 0; 2073 skb_frag_size_set(frag, hlen); 2074 RX_USED_ADD(page, hlen + cp->crc_size); 2075 } 2076 2077 if (cp->crc_size) { 2078 addr = cas_page_map(page->buffer); 2079 crcaddr = addr + off + hlen; 2080 } 2081 2082 } else { 2083 /* copying packet */ 2084 if (!dlen) 2085 goto end_copy_pkt; 2086 2087 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2088 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2089 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2090 hlen = min(cp->page_size - off, dlen); 2091 if (hlen < 0) { 2092 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2093 "rx page overflow: %d\n", hlen); 2094 dev_kfree_skb_irq(skb); 2095 return -1; 2096 } 2097 i = hlen; 2098 if (i == dlen) /* attach FCS */ 2099 i += cp->crc_size; 2100 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2101 PCI_DMA_FROMDEVICE); 2102 addr = cas_page_map(page->buffer); 2103 memcpy(p, addr + off, i); 2104 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2105 PCI_DMA_FROMDEVICE); 2106 cas_page_unmap(addr); 2107 if (p == (char *) skb->data) /* not split */ 2108 RX_USED_ADD(page, cp->mtu_stride); 2109 else 2110 RX_USED_ADD(page, i); 2111 2112 /* any more data? */ 2113 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2114 p += hlen; 2115 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2116 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2117 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2118 dlen + cp->crc_size, 2119 PCI_DMA_FROMDEVICE); 2120 addr = cas_page_map(page->buffer); 2121 memcpy(p, addr, dlen + cp->crc_size); 2122 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2123 dlen + cp->crc_size, 2124 PCI_DMA_FROMDEVICE); 2125 cas_page_unmap(addr); 2126 RX_USED_ADD(page, dlen + cp->crc_size); 2127 } 2128 end_copy_pkt: 2129 if (cp->crc_size) { 2130 addr = NULL; 2131 crcaddr = skb->data + alloclen; 2132 } 2133 skb_put(skb, alloclen); 2134 } 2135 2136 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2137 if (cp->crc_size) { 2138 /* checksum includes FCS. strip it out. */ 2139 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2140 csum_unfold(csum))); 2141 if (addr) 2142 cas_page_unmap(addr); 2143 } 2144 skb->protocol = eth_type_trans(skb, cp->dev); 2145 if (skb->protocol == htons(ETH_P_IP)) { 2146 skb->csum = csum_unfold(~csum); 2147 skb->ip_summed = CHECKSUM_COMPLETE; 2148 } else 2149 skb_checksum_none_assert(skb); 2150 return len; 2151 } 2152 2153 2154 /* we can handle up to 64 rx flows at a time. we do the same thing 2155 * as nonreassm except that we batch up the buffers. 2156 * NOTE: we currently just treat each flow as a bunch of packets that 2157 * we pass up. a better way would be to coalesce the packets 2158 * into a jumbo packet. to do that, we need to do the following: 2159 * 1) the first packet will have a clean split between header and 2160 * data. save both. 2161 * 2) each time the next flow packet comes in, extend the 2162 * data length and merge the checksums. 2163 * 3) on flow release, fix up the header. 2164 * 4) make sure the higher layer doesn't care. 2165 * because packets get coalesced, we shouldn't run into fragment count 2166 * issues. 2167 */ 2168 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2169 struct sk_buff *skb) 2170 { 2171 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2172 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2173 2174 /* this is protected at a higher layer, so no need to 2175 * do any additional locking here. stick the buffer 2176 * at the end. 2177 */ 2178 __skb_queue_tail(flow, skb); 2179 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2180 while ((skb = __skb_dequeue(flow))) { 2181 cas_skb_release(skb); 2182 } 2183 } 2184 } 2185 2186 /* put rx descriptor back on ring. if a buffer is in use by a higher 2187 * layer, this will need to put in a replacement. 2188 */ 2189 static void cas_post_page(struct cas *cp, const int ring, const int index) 2190 { 2191 cas_page_t *new; 2192 int entry; 2193 2194 entry = cp->rx_old[ring]; 2195 2196 new = cas_page_swap(cp, ring, index); 2197 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2198 cp->init_rxds[ring][entry].index = 2199 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2200 CAS_BASE(RX_INDEX_RING, ring)); 2201 2202 entry = RX_DESC_ENTRY(ring, entry + 1); 2203 cp->rx_old[ring] = entry; 2204 2205 if (entry % 4) 2206 return; 2207 2208 if (ring == 0) 2209 writel(entry, cp->regs + REG_RX_KICK); 2210 else if ((N_RX_DESC_RINGS > 1) && 2211 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2212 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2213 } 2214 2215 2216 /* only when things are bad */ 2217 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2218 { 2219 unsigned int entry, last, count, released; 2220 int cluster; 2221 cas_page_t **page = cp->rx_pages[ring]; 2222 2223 entry = cp->rx_old[ring]; 2224 2225 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2226 "rxd[%d] interrupt, done: %d\n", ring, entry); 2227 2228 cluster = -1; 2229 count = entry & 0x3; 2230 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2231 released = 0; 2232 while (entry != last) { 2233 /* make a new buffer if it's still in use */ 2234 if (page_count(page[entry]->buffer) > 1) { 2235 cas_page_t *new = cas_page_dequeue(cp); 2236 if (!new) { 2237 /* let the timer know that we need to 2238 * do this again 2239 */ 2240 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2241 if (!timer_pending(&cp->link_timer)) 2242 mod_timer(&cp->link_timer, jiffies + 2243 CAS_LINK_FAST_TIMEOUT); 2244 cp->rx_old[ring] = entry; 2245 cp->rx_last[ring] = num ? num - released : 0; 2246 return -ENOMEM; 2247 } 2248 spin_lock(&cp->rx_inuse_lock); 2249 list_add(&page[entry]->list, &cp->rx_inuse_list); 2250 spin_unlock(&cp->rx_inuse_lock); 2251 cp->init_rxds[ring][entry].buffer = 2252 cpu_to_le64(new->dma_addr); 2253 page[entry] = new; 2254 2255 } 2256 2257 if (++count == 4) { 2258 cluster = entry; 2259 count = 0; 2260 } 2261 released++; 2262 entry = RX_DESC_ENTRY(ring, entry + 1); 2263 } 2264 cp->rx_old[ring] = entry; 2265 2266 if (cluster < 0) 2267 return 0; 2268 2269 if (ring == 0) 2270 writel(cluster, cp->regs + REG_RX_KICK); 2271 else if ((N_RX_DESC_RINGS > 1) && 2272 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2273 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2274 return 0; 2275 } 2276 2277 2278 /* process a completion ring. packets are set up in three basic ways: 2279 * small packets: should be copied header + data in single buffer. 2280 * large packets: header and data in a single buffer. 2281 * split packets: header in a separate buffer from data. 2282 * data may be in multiple pages. data may be > 256 2283 * bytes but in a single page. 2284 * 2285 * NOTE: RX page posting is done in this routine as well. while there's 2286 * the capability of using multiple RX completion rings, it isn't 2287 * really worthwhile due to the fact that the page posting will 2288 * force serialization on the single descriptor ring. 2289 */ 2290 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2291 { 2292 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2293 int entry, drops; 2294 int npackets = 0; 2295 2296 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2297 "rx[%d] interrupt, done: %d/%d\n", 2298 ring, 2299 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2300 2301 entry = cp->rx_new[ring]; 2302 drops = 0; 2303 while (1) { 2304 struct cas_rx_comp *rxc = rxcs + entry; 2305 struct sk_buff *uninitialized_var(skb); 2306 int type, len; 2307 u64 words[4]; 2308 int i, dring; 2309 2310 words[0] = le64_to_cpu(rxc->word1); 2311 words[1] = le64_to_cpu(rxc->word2); 2312 words[2] = le64_to_cpu(rxc->word3); 2313 words[3] = le64_to_cpu(rxc->word4); 2314 2315 /* don't touch if still owned by hw */ 2316 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2317 if (type == 0) 2318 break; 2319 2320 /* hw hasn't cleared the zero bit yet */ 2321 if (words[3] & RX_COMP4_ZERO) { 2322 break; 2323 } 2324 2325 /* get info on the packet */ 2326 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2327 spin_lock(&cp->stat_lock[ring]); 2328 cp->net_stats[ring].rx_errors++; 2329 if (words[3] & RX_COMP4_LEN_MISMATCH) 2330 cp->net_stats[ring].rx_length_errors++; 2331 if (words[3] & RX_COMP4_BAD) 2332 cp->net_stats[ring].rx_crc_errors++; 2333 spin_unlock(&cp->stat_lock[ring]); 2334 2335 /* We'll just return it to Cassini. */ 2336 drop_it: 2337 spin_lock(&cp->stat_lock[ring]); 2338 ++cp->net_stats[ring].rx_dropped; 2339 spin_unlock(&cp->stat_lock[ring]); 2340 goto next; 2341 } 2342 2343 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2344 if (len < 0) { 2345 ++drops; 2346 goto drop_it; 2347 } 2348 2349 /* see if it's a flow re-assembly or not. the driver 2350 * itself handles release back up. 2351 */ 2352 if (RX_DONT_BATCH || (type == 0x2)) { 2353 /* non-reassm: these always get released */ 2354 cas_skb_release(skb); 2355 } else { 2356 cas_rx_flow_pkt(cp, words, skb); 2357 } 2358 2359 spin_lock(&cp->stat_lock[ring]); 2360 cp->net_stats[ring].rx_packets++; 2361 cp->net_stats[ring].rx_bytes += len; 2362 spin_unlock(&cp->stat_lock[ring]); 2363 2364 next: 2365 npackets++; 2366 2367 /* should it be released? */ 2368 if (words[0] & RX_COMP1_RELEASE_HDR) { 2369 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2370 dring = CAS_VAL(RX_INDEX_RING, i); 2371 i = CAS_VAL(RX_INDEX_NUM, i); 2372 cas_post_page(cp, dring, i); 2373 } 2374 2375 if (words[0] & RX_COMP1_RELEASE_DATA) { 2376 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2377 dring = CAS_VAL(RX_INDEX_RING, i); 2378 i = CAS_VAL(RX_INDEX_NUM, i); 2379 cas_post_page(cp, dring, i); 2380 } 2381 2382 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2383 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2384 dring = CAS_VAL(RX_INDEX_RING, i); 2385 i = CAS_VAL(RX_INDEX_NUM, i); 2386 cas_post_page(cp, dring, i); 2387 } 2388 2389 /* skip to the next entry */ 2390 entry = RX_COMP_ENTRY(ring, entry + 1 + 2391 CAS_VAL(RX_COMP1_SKIP, words[0])); 2392 #ifdef USE_NAPI 2393 if (budget && (npackets >= budget)) 2394 break; 2395 #endif 2396 } 2397 cp->rx_new[ring] = entry; 2398 2399 if (drops) 2400 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2401 return npackets; 2402 } 2403 2404 2405 /* put completion entries back on the ring */ 2406 static void cas_post_rxcs_ringN(struct net_device *dev, 2407 struct cas *cp, int ring) 2408 { 2409 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2410 int last, entry; 2411 2412 last = cp->rx_cur[ring]; 2413 entry = cp->rx_new[ring]; 2414 netif_printk(cp, intr, KERN_DEBUG, dev, 2415 "rxc[%d] interrupt, done: %d/%d\n", 2416 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2417 2418 /* zero and re-mark descriptors */ 2419 while (last != entry) { 2420 cas_rxc_init(rxc + last); 2421 last = RX_COMP_ENTRY(ring, last + 1); 2422 } 2423 cp->rx_cur[ring] = last; 2424 2425 if (ring == 0) 2426 writel(last, cp->regs + REG_RX_COMP_TAIL); 2427 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2428 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2429 } 2430 2431 2432 2433 /* cassini can use all four PCI interrupts for the completion ring. 2434 * rings 3 and 4 are identical 2435 */ 2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2437 static inline void cas_handle_irqN(struct net_device *dev, 2438 struct cas *cp, const u32 status, 2439 const int ring) 2440 { 2441 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2442 cas_post_rxcs_ringN(dev, cp, ring); 2443 } 2444 2445 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2446 { 2447 struct net_device *dev = dev_id; 2448 struct cas *cp = netdev_priv(dev); 2449 unsigned long flags; 2450 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2451 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2452 2453 /* check for shared irq */ 2454 if (status == 0) 2455 return IRQ_NONE; 2456 2457 spin_lock_irqsave(&cp->lock, flags); 2458 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2459 #ifdef USE_NAPI 2460 cas_mask_intr(cp); 2461 napi_schedule(&cp->napi); 2462 #else 2463 cas_rx_ringN(cp, ring, 0); 2464 #endif 2465 status &= ~INTR_RX_DONE_ALT; 2466 } 2467 2468 if (status) 2469 cas_handle_irqN(dev, cp, status, ring); 2470 spin_unlock_irqrestore(&cp->lock, flags); 2471 return IRQ_HANDLED; 2472 } 2473 #endif 2474 2475 #ifdef USE_PCI_INTB 2476 /* everything but rx packets */ 2477 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2478 { 2479 if (status & INTR_RX_BUF_UNAVAIL_1) { 2480 /* Frame arrived, no free RX buffers available. 2481 * NOTE: we can get this on a link transition. */ 2482 cas_post_rxds_ringN(cp, 1, 0); 2483 spin_lock(&cp->stat_lock[1]); 2484 cp->net_stats[1].rx_dropped++; 2485 spin_unlock(&cp->stat_lock[1]); 2486 } 2487 2488 if (status & INTR_RX_BUF_AE_1) 2489 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2490 RX_AE_FREEN_VAL(1)); 2491 2492 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2493 cas_post_rxcs_ringN(cp, 1); 2494 } 2495 2496 /* ring 2 handles a few more events than 3 and 4 */ 2497 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2498 { 2499 struct net_device *dev = dev_id; 2500 struct cas *cp = netdev_priv(dev); 2501 unsigned long flags; 2502 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2503 2504 /* check for shared interrupt */ 2505 if (status == 0) 2506 return IRQ_NONE; 2507 2508 spin_lock_irqsave(&cp->lock, flags); 2509 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2510 #ifdef USE_NAPI 2511 cas_mask_intr(cp); 2512 napi_schedule(&cp->napi); 2513 #else 2514 cas_rx_ringN(cp, 1, 0); 2515 #endif 2516 status &= ~INTR_RX_DONE_ALT; 2517 } 2518 if (status) 2519 cas_handle_irq1(cp, status); 2520 spin_unlock_irqrestore(&cp->lock, flags); 2521 return IRQ_HANDLED; 2522 } 2523 #endif 2524 2525 static inline void cas_handle_irq(struct net_device *dev, 2526 struct cas *cp, const u32 status) 2527 { 2528 /* housekeeping interrupts */ 2529 if (status & INTR_ERROR_MASK) 2530 cas_abnormal_irq(dev, cp, status); 2531 2532 if (status & INTR_RX_BUF_UNAVAIL) { 2533 /* Frame arrived, no free RX buffers available. 2534 * NOTE: we can get this on a link transition. 2535 */ 2536 cas_post_rxds_ringN(cp, 0, 0); 2537 spin_lock(&cp->stat_lock[0]); 2538 cp->net_stats[0].rx_dropped++; 2539 spin_unlock(&cp->stat_lock[0]); 2540 } else if (status & INTR_RX_BUF_AE) { 2541 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2542 RX_AE_FREEN_VAL(0)); 2543 } 2544 2545 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2546 cas_post_rxcs_ringN(dev, cp, 0); 2547 } 2548 2549 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2550 { 2551 struct net_device *dev = dev_id; 2552 struct cas *cp = netdev_priv(dev); 2553 unsigned long flags; 2554 u32 status = readl(cp->regs + REG_INTR_STATUS); 2555 2556 if (status == 0) 2557 return IRQ_NONE; 2558 2559 spin_lock_irqsave(&cp->lock, flags); 2560 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2561 cas_tx(dev, cp, status); 2562 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2563 } 2564 2565 if (status & INTR_RX_DONE) { 2566 #ifdef USE_NAPI 2567 cas_mask_intr(cp); 2568 napi_schedule(&cp->napi); 2569 #else 2570 cas_rx_ringN(cp, 0, 0); 2571 #endif 2572 status &= ~INTR_RX_DONE; 2573 } 2574 2575 if (status) 2576 cas_handle_irq(dev, cp, status); 2577 spin_unlock_irqrestore(&cp->lock, flags); 2578 return IRQ_HANDLED; 2579 } 2580 2581 2582 #ifdef USE_NAPI 2583 static int cas_poll(struct napi_struct *napi, int budget) 2584 { 2585 struct cas *cp = container_of(napi, struct cas, napi); 2586 struct net_device *dev = cp->dev; 2587 int i, enable_intr, credits; 2588 u32 status = readl(cp->regs + REG_INTR_STATUS); 2589 unsigned long flags; 2590 2591 spin_lock_irqsave(&cp->lock, flags); 2592 cas_tx(dev, cp, status); 2593 spin_unlock_irqrestore(&cp->lock, flags); 2594 2595 /* NAPI rx packets. we spread the credits across all of the 2596 * rxc rings 2597 * 2598 * to make sure we're fair with the work we loop through each 2599 * ring N_RX_COMP_RING times with a request of 2600 * budget / N_RX_COMP_RINGS 2601 */ 2602 enable_intr = 1; 2603 credits = 0; 2604 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2605 int j; 2606 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2607 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2608 if (credits >= budget) { 2609 enable_intr = 0; 2610 goto rx_comp; 2611 } 2612 } 2613 } 2614 2615 rx_comp: 2616 /* final rx completion */ 2617 spin_lock_irqsave(&cp->lock, flags); 2618 if (status) 2619 cas_handle_irq(dev, cp, status); 2620 2621 #ifdef USE_PCI_INTB 2622 if (N_RX_COMP_RINGS > 1) { 2623 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2624 if (status) 2625 cas_handle_irq1(dev, cp, status); 2626 } 2627 #endif 2628 2629 #ifdef USE_PCI_INTC 2630 if (N_RX_COMP_RINGS > 2) { 2631 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2632 if (status) 2633 cas_handle_irqN(dev, cp, status, 2); 2634 } 2635 #endif 2636 2637 #ifdef USE_PCI_INTD 2638 if (N_RX_COMP_RINGS > 3) { 2639 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2640 if (status) 2641 cas_handle_irqN(dev, cp, status, 3); 2642 } 2643 #endif 2644 spin_unlock_irqrestore(&cp->lock, flags); 2645 if (enable_intr) { 2646 napi_complete(napi); 2647 cas_unmask_intr(cp); 2648 } 2649 return credits; 2650 } 2651 #endif 2652 2653 #ifdef CONFIG_NET_POLL_CONTROLLER 2654 static void cas_netpoll(struct net_device *dev) 2655 { 2656 struct cas *cp = netdev_priv(dev); 2657 2658 cas_disable_irq(cp, 0); 2659 cas_interrupt(cp->pdev->irq, dev); 2660 cas_enable_irq(cp, 0); 2661 2662 #ifdef USE_PCI_INTB 2663 if (N_RX_COMP_RINGS > 1) { 2664 /* cas_interrupt1(); */ 2665 } 2666 #endif 2667 #ifdef USE_PCI_INTC 2668 if (N_RX_COMP_RINGS > 2) { 2669 /* cas_interruptN(); */ 2670 } 2671 #endif 2672 #ifdef USE_PCI_INTD 2673 if (N_RX_COMP_RINGS > 3) { 2674 /* cas_interruptN(); */ 2675 } 2676 #endif 2677 } 2678 #endif 2679 2680 static void cas_tx_timeout(struct net_device *dev) 2681 { 2682 struct cas *cp = netdev_priv(dev); 2683 2684 netdev_err(dev, "transmit timed out, resetting\n"); 2685 if (!cp->hw_running) { 2686 netdev_err(dev, "hrm.. hw not running!\n"); 2687 return; 2688 } 2689 2690 netdev_err(dev, "MIF_STATE[%08x]\n", 2691 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2692 2693 netdev_err(dev, "MAC_STATE[%08x]\n", 2694 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2695 2696 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2697 readl(cp->regs + REG_TX_CFG), 2698 readl(cp->regs + REG_MAC_TX_STATUS), 2699 readl(cp->regs + REG_MAC_TX_CFG), 2700 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2701 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2702 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2703 readl(cp->regs + REG_TX_SM_1), 2704 readl(cp->regs + REG_TX_SM_2)); 2705 2706 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2707 readl(cp->regs + REG_RX_CFG), 2708 readl(cp->regs + REG_MAC_RX_STATUS), 2709 readl(cp->regs + REG_MAC_RX_CFG)); 2710 2711 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2712 readl(cp->regs + REG_HP_STATE_MACHINE), 2713 readl(cp->regs + REG_HP_STATUS0), 2714 readl(cp->regs + REG_HP_STATUS1), 2715 readl(cp->regs + REG_HP_STATUS2)); 2716 2717 #if 1 2718 atomic_inc(&cp->reset_task_pending); 2719 atomic_inc(&cp->reset_task_pending_all); 2720 schedule_work(&cp->reset_task); 2721 #else 2722 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2723 schedule_work(&cp->reset_task); 2724 #endif 2725 } 2726 2727 static inline int cas_intme(int ring, int entry) 2728 { 2729 /* Algorithm: IRQ every 1/2 of descriptors. */ 2730 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2731 return 1; 2732 return 0; 2733 } 2734 2735 2736 static void cas_write_txd(struct cas *cp, int ring, int entry, 2737 dma_addr_t mapping, int len, u64 ctrl, int last) 2738 { 2739 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2740 2741 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2742 if (cas_intme(ring, entry)) 2743 ctrl |= TX_DESC_INTME; 2744 if (last) 2745 ctrl |= TX_DESC_EOF; 2746 txd->control = cpu_to_le64(ctrl); 2747 txd->buffer = cpu_to_le64(mapping); 2748 } 2749 2750 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2751 const int entry) 2752 { 2753 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2754 } 2755 2756 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2757 const int entry, const int tentry) 2758 { 2759 cp->tx_tiny_use[ring][tentry].nbufs++; 2760 cp->tx_tiny_use[ring][entry].used = 1; 2761 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2762 } 2763 2764 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2765 struct sk_buff *skb) 2766 { 2767 struct net_device *dev = cp->dev; 2768 int entry, nr_frags, frag, tabort, tentry; 2769 dma_addr_t mapping; 2770 unsigned long flags; 2771 u64 ctrl; 2772 u32 len; 2773 2774 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2775 2776 /* This is a hard error, log it. */ 2777 if (TX_BUFFS_AVAIL(cp, ring) <= 2778 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2779 netif_stop_queue(dev); 2780 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2781 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2782 return 1; 2783 } 2784 2785 ctrl = 0; 2786 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2787 const u64 csum_start_off = skb_checksum_start_offset(skb); 2788 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2789 2790 ctrl = TX_DESC_CSUM_EN | 2791 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2792 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2793 } 2794 2795 entry = cp->tx_new[ring]; 2796 cp->tx_skbs[ring][entry] = skb; 2797 2798 nr_frags = skb_shinfo(skb)->nr_frags; 2799 len = skb_headlen(skb); 2800 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2801 offset_in_page(skb->data), len, 2802 PCI_DMA_TODEVICE); 2803 2804 tentry = entry; 2805 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2806 if (unlikely(tabort)) { 2807 /* NOTE: len is always > tabort */ 2808 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2809 ctrl | TX_DESC_SOF, 0); 2810 entry = TX_DESC_NEXT(ring, entry); 2811 2812 skb_copy_from_linear_data_offset(skb, len - tabort, 2813 tx_tiny_buf(cp, ring, entry), tabort); 2814 mapping = tx_tiny_map(cp, ring, entry, tentry); 2815 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2816 (nr_frags == 0)); 2817 } else { 2818 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2819 TX_DESC_SOF, (nr_frags == 0)); 2820 } 2821 entry = TX_DESC_NEXT(ring, entry); 2822 2823 for (frag = 0; frag < nr_frags; frag++) { 2824 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2825 2826 len = skb_frag_size(fragp); 2827 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2828 DMA_TO_DEVICE); 2829 2830 tabort = cas_calc_tabort(cp, fragp->page_offset, len); 2831 if (unlikely(tabort)) { 2832 void *addr; 2833 2834 /* NOTE: len is always > tabort */ 2835 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2836 ctrl, 0); 2837 entry = TX_DESC_NEXT(ring, entry); 2838 2839 addr = cas_page_map(skb_frag_page(fragp)); 2840 memcpy(tx_tiny_buf(cp, ring, entry), 2841 addr + fragp->page_offset + len - tabort, 2842 tabort); 2843 cas_page_unmap(addr); 2844 mapping = tx_tiny_map(cp, ring, entry, tentry); 2845 len = tabort; 2846 } 2847 2848 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2849 (frag + 1 == nr_frags)); 2850 entry = TX_DESC_NEXT(ring, entry); 2851 } 2852 2853 cp->tx_new[ring] = entry; 2854 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2855 netif_stop_queue(dev); 2856 2857 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2858 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2859 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2860 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2861 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2862 return 0; 2863 } 2864 2865 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2866 { 2867 struct cas *cp = netdev_priv(dev); 2868 2869 /* this is only used as a load-balancing hint, so it doesn't 2870 * need to be SMP safe 2871 */ 2872 static int ring; 2873 2874 if (skb_padto(skb, cp->min_frame_size)) 2875 return NETDEV_TX_OK; 2876 2877 /* XXX: we need some higher-level QoS hooks to steer packets to 2878 * individual queues. 2879 */ 2880 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2881 return NETDEV_TX_BUSY; 2882 return NETDEV_TX_OK; 2883 } 2884 2885 static void cas_init_tx_dma(struct cas *cp) 2886 { 2887 u64 desc_dma = cp->block_dvma; 2888 unsigned long off; 2889 u32 val; 2890 int i; 2891 2892 /* set up tx completion writeback registers. must be 8-byte aligned */ 2893 #ifdef USE_TX_COMPWB 2894 off = offsetof(struct cas_init_block, tx_compwb); 2895 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2896 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2897 #endif 2898 2899 /* enable completion writebacks, enable paced mode, 2900 * disable read pipe, and disable pre-interrupt compwbs 2901 */ 2902 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2903 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2904 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2905 TX_CFG_INTR_COMPWB_DIS; 2906 2907 /* write out tx ring info and tx desc bases */ 2908 for (i = 0; i < MAX_TX_RINGS; i++) { 2909 off = (unsigned long) cp->init_txds[i] - 2910 (unsigned long) cp->init_block; 2911 2912 val |= CAS_TX_RINGN_BASE(i); 2913 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2914 writel((desc_dma + off) & 0xffffffff, cp->regs + 2915 REG_TX_DBN_LOW(i)); 2916 /* don't zero out the kick register here as the system 2917 * will wedge 2918 */ 2919 } 2920 writel(val, cp->regs + REG_TX_CFG); 2921 2922 /* program max burst sizes. these numbers should be different 2923 * if doing QoS. 2924 */ 2925 #ifdef USE_QOS 2926 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2927 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2928 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2929 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2930 #else 2931 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2932 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2933 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2934 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2935 #endif 2936 } 2937 2938 /* Must be invoked under cp->lock. */ 2939 static inline void cas_init_dma(struct cas *cp) 2940 { 2941 cas_init_tx_dma(cp); 2942 cas_init_rx_dma(cp); 2943 } 2944 2945 static void cas_process_mc_list(struct cas *cp) 2946 { 2947 u16 hash_table[16]; 2948 u32 crc; 2949 struct netdev_hw_addr *ha; 2950 int i = 1; 2951 2952 memset(hash_table, 0, sizeof(hash_table)); 2953 netdev_for_each_mc_addr(ha, cp->dev) { 2954 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2955 /* use the alternate mac address registers for the 2956 * first 15 multicast addresses 2957 */ 2958 writel((ha->addr[4] << 8) | ha->addr[5], 2959 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2960 writel((ha->addr[2] << 8) | ha->addr[3], 2961 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2962 writel((ha->addr[0] << 8) | ha->addr[1], 2963 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2964 i++; 2965 } 2966 else { 2967 /* use hw hash table for the next series of 2968 * multicast addresses 2969 */ 2970 crc = ether_crc_le(ETH_ALEN, ha->addr); 2971 crc >>= 24; 2972 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2973 } 2974 } 2975 for (i = 0; i < 16; i++) 2976 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2977 } 2978 2979 /* Must be invoked under cp->lock. */ 2980 static u32 cas_setup_multicast(struct cas *cp) 2981 { 2982 u32 rxcfg = 0; 2983 int i; 2984 2985 if (cp->dev->flags & IFF_PROMISC) { 2986 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2987 2988 } else if (cp->dev->flags & IFF_ALLMULTI) { 2989 for (i=0; i < 16; i++) 2990 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2991 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2992 2993 } else { 2994 cas_process_mc_list(cp); 2995 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2996 } 2997 2998 return rxcfg; 2999 } 3000 3001 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 3002 static void cas_clear_mac_err(struct cas *cp) 3003 { 3004 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 3005 writel(0, cp->regs + REG_MAC_COLL_FIRST); 3006 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 3007 writel(0, cp->regs + REG_MAC_COLL_LATE); 3008 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 3009 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 3010 writel(0, cp->regs + REG_MAC_RECV_FRAME); 3011 writel(0, cp->regs + REG_MAC_LEN_ERR); 3012 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 3013 writel(0, cp->regs + REG_MAC_FCS_ERR); 3014 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 3015 } 3016 3017 3018 static void cas_mac_reset(struct cas *cp) 3019 { 3020 int i; 3021 3022 /* do both TX and RX reset */ 3023 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3024 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3025 3026 /* wait for TX */ 3027 i = STOP_TRIES; 3028 while (i-- > 0) { 3029 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3030 break; 3031 udelay(10); 3032 } 3033 3034 /* wait for RX */ 3035 i = STOP_TRIES; 3036 while (i-- > 0) { 3037 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3038 break; 3039 udelay(10); 3040 } 3041 3042 if (readl(cp->regs + REG_MAC_TX_RESET) | 3043 readl(cp->regs + REG_MAC_RX_RESET)) 3044 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3045 readl(cp->regs + REG_MAC_TX_RESET), 3046 readl(cp->regs + REG_MAC_RX_RESET), 3047 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3048 } 3049 3050 3051 /* Must be invoked under cp->lock. */ 3052 static void cas_init_mac(struct cas *cp) 3053 { 3054 unsigned char *e = &cp->dev->dev_addr[0]; 3055 int i; 3056 cas_mac_reset(cp); 3057 3058 /* setup core arbitration weight register */ 3059 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3060 3061 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3062 /* set the infinite burst register for chips that don't have 3063 * pci issues. 3064 */ 3065 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3066 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3067 #endif 3068 3069 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3070 3071 writel(0x00, cp->regs + REG_MAC_IPG0); 3072 writel(0x08, cp->regs + REG_MAC_IPG1); 3073 writel(0x04, cp->regs + REG_MAC_IPG2); 3074 3075 /* change later for 802.3z */ 3076 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3077 3078 /* min frame + FCS */ 3079 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3080 3081 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3082 * specify the maximum frame size to prevent RX tag errors on 3083 * oversized frames. 3084 */ 3085 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3086 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3087 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3088 cp->regs + REG_MAC_FRAMESIZE_MAX); 3089 3090 /* NOTE: crc_size is used as a surrogate for half-duplex. 3091 * workaround saturn half-duplex issue by increasing preamble 3092 * size to 65 bytes. 3093 */ 3094 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3095 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3096 else 3097 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3098 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3099 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3100 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3101 3102 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3103 3104 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3105 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3106 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3109 3110 /* setup mac address in perfect filter array */ 3111 for (i = 0; i < 45; i++) 3112 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3113 3114 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3115 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3116 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3117 3118 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3119 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3120 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3121 3122 cp->mac_rx_cfg = cas_setup_multicast(cp); 3123 3124 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3125 cas_clear_mac_err(cp); 3126 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3127 3128 /* Setup MAC interrupts. We want to get all of the interesting 3129 * counter expiration events, but we do not want to hear about 3130 * normal rx/tx as the DMA engine tells us that. 3131 */ 3132 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3133 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3134 3135 /* Don't enable even the PAUSE interrupts for now, we 3136 * make no use of those events other than to record them. 3137 */ 3138 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3139 } 3140 3141 /* Must be invoked under cp->lock. */ 3142 static void cas_init_pause_thresholds(struct cas *cp) 3143 { 3144 /* Calculate pause thresholds. Setting the OFF threshold to the 3145 * full RX fifo size effectively disables PAUSE generation 3146 */ 3147 if (cp->rx_fifo_size <= (2 * 1024)) { 3148 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3149 } else { 3150 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3151 if (max_frame * 3 > cp->rx_fifo_size) { 3152 cp->rx_pause_off = 7104; 3153 cp->rx_pause_on = 960; 3154 } else { 3155 int off = (cp->rx_fifo_size - (max_frame * 2)); 3156 int on = off - max_frame; 3157 cp->rx_pause_off = off; 3158 cp->rx_pause_on = on; 3159 } 3160 } 3161 } 3162 3163 static int cas_vpd_match(const void __iomem *p, const char *str) 3164 { 3165 int len = strlen(str) + 1; 3166 int i; 3167 3168 for (i = 0; i < len; i++) { 3169 if (readb(p + i) != str[i]) 3170 return 0; 3171 } 3172 return 1; 3173 } 3174 3175 3176 /* get the mac address by reading the vpd information in the rom. 3177 * also get the phy type and determine if there's an entropy generator. 3178 * NOTE: this is a bit convoluted for the following reasons: 3179 * 1) vpd info has order-dependent mac addresses for multinic cards 3180 * 2) the only way to determine the nic order is to use the slot 3181 * number. 3182 * 3) fiber cards don't have bridges, so their slot numbers don't 3183 * mean anything. 3184 * 4) we don't actually know we have a fiber card until after 3185 * the mac addresses are parsed. 3186 */ 3187 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3188 const int offset) 3189 { 3190 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3191 void __iomem *base, *kstart; 3192 int i, len; 3193 int found = 0; 3194 #define VPD_FOUND_MAC 0x01 3195 #define VPD_FOUND_PHY 0x02 3196 3197 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3198 int mac_off = 0; 3199 3200 #if defined(CONFIG_SPARC) 3201 const unsigned char *addr; 3202 #endif 3203 3204 /* give us access to the PROM */ 3205 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3206 cp->regs + REG_BIM_LOCAL_DEV_EN); 3207 3208 /* check for an expansion rom */ 3209 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3210 goto use_random_mac_addr; 3211 3212 /* search for beginning of vpd */ 3213 base = NULL; 3214 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3215 /* check for PCIR */ 3216 if ((readb(p + i + 0) == 0x50) && 3217 (readb(p + i + 1) == 0x43) && 3218 (readb(p + i + 2) == 0x49) && 3219 (readb(p + i + 3) == 0x52)) { 3220 base = p + (readb(p + i + 8) | 3221 (readb(p + i + 9) << 8)); 3222 break; 3223 } 3224 } 3225 3226 if (!base || (readb(base) != 0x82)) 3227 goto use_random_mac_addr; 3228 3229 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3230 while (i < EXPANSION_ROM_SIZE) { 3231 if (readb(base + i) != 0x90) /* no vpd found */ 3232 goto use_random_mac_addr; 3233 3234 /* found a vpd field */ 3235 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3236 3237 /* extract keywords */ 3238 kstart = base + i + 3; 3239 p = kstart; 3240 while ((p - kstart) < len) { 3241 int klen = readb(p + 2); 3242 int j; 3243 char type; 3244 3245 p += 3; 3246 3247 /* look for the following things: 3248 * -- correct length == 29 3249 * 3 (type) + 2 (size) + 3250 * 18 (strlen("local-mac-address") + 1) + 3251 * 6 (mac addr) 3252 * -- VPD Instance 'I' 3253 * -- VPD Type Bytes 'B' 3254 * -- VPD data length == 6 3255 * -- property string == local-mac-address 3256 * 3257 * -- correct length == 24 3258 * 3 (type) + 2 (size) + 3259 * 12 (strlen("entropy-dev") + 1) + 3260 * 7 (strlen("vms110") + 1) 3261 * -- VPD Instance 'I' 3262 * -- VPD Type String 'B' 3263 * -- VPD data length == 7 3264 * -- property string == entropy-dev 3265 * 3266 * -- correct length == 18 3267 * 3 (type) + 2 (size) + 3268 * 9 (strlen("phy-type") + 1) + 3269 * 4 (strlen("pcs") + 1) 3270 * -- VPD Instance 'I' 3271 * -- VPD Type String 'S' 3272 * -- VPD data length == 4 3273 * -- property string == phy-type 3274 * 3275 * -- correct length == 23 3276 * 3 (type) + 2 (size) + 3277 * 14 (strlen("phy-interface") + 1) + 3278 * 4 (strlen("pcs") + 1) 3279 * -- VPD Instance 'I' 3280 * -- VPD Type String 'S' 3281 * -- VPD data length == 4 3282 * -- property string == phy-interface 3283 */ 3284 if (readb(p) != 'I') 3285 goto next; 3286 3287 /* finally, check string and length */ 3288 type = readb(p + 3); 3289 if (type == 'B') { 3290 if ((klen == 29) && readb(p + 4) == 6 && 3291 cas_vpd_match(p + 5, 3292 "local-mac-address")) { 3293 if (mac_off++ > offset) 3294 goto next; 3295 3296 /* set mac address */ 3297 for (j = 0; j < 6; j++) 3298 dev_addr[j] = 3299 readb(p + 23 + j); 3300 goto found_mac; 3301 } 3302 } 3303 3304 if (type != 'S') 3305 goto next; 3306 3307 #ifdef USE_ENTROPY_DEV 3308 if ((klen == 24) && 3309 cas_vpd_match(p + 5, "entropy-dev") && 3310 cas_vpd_match(p + 17, "vms110")) { 3311 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3312 goto next; 3313 } 3314 #endif 3315 3316 if (found & VPD_FOUND_PHY) 3317 goto next; 3318 3319 if ((klen == 18) && readb(p + 4) == 4 && 3320 cas_vpd_match(p + 5, "phy-type")) { 3321 if (cas_vpd_match(p + 14, "pcs")) { 3322 phy_type = CAS_PHY_SERDES; 3323 goto found_phy; 3324 } 3325 } 3326 3327 if ((klen == 23) && readb(p + 4) == 4 && 3328 cas_vpd_match(p + 5, "phy-interface")) { 3329 if (cas_vpd_match(p + 19, "pcs")) { 3330 phy_type = CAS_PHY_SERDES; 3331 goto found_phy; 3332 } 3333 } 3334 found_mac: 3335 found |= VPD_FOUND_MAC; 3336 goto next; 3337 3338 found_phy: 3339 found |= VPD_FOUND_PHY; 3340 3341 next: 3342 p += klen; 3343 } 3344 i += len + 3; 3345 } 3346 3347 use_random_mac_addr: 3348 if (found & VPD_FOUND_MAC) 3349 goto done; 3350 3351 #if defined(CONFIG_SPARC) 3352 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3353 if (addr != NULL) { 3354 memcpy(dev_addr, addr, ETH_ALEN); 3355 goto done; 3356 } 3357 #endif 3358 3359 /* Sun MAC prefix then 3 random bytes. */ 3360 pr_info("MAC address not found in ROM VPD\n"); 3361 dev_addr[0] = 0x08; 3362 dev_addr[1] = 0x00; 3363 dev_addr[2] = 0x20; 3364 get_random_bytes(dev_addr + 3, 3); 3365 3366 done: 3367 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3368 return phy_type; 3369 } 3370 3371 /* check pci invariants */ 3372 static void cas_check_pci_invariants(struct cas *cp) 3373 { 3374 struct pci_dev *pdev = cp->pdev; 3375 3376 cp->cas_flags = 0; 3377 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3378 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3379 if (pdev->revision >= CAS_ID_REVPLUS) 3380 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3381 if (pdev->revision < CAS_ID_REVPLUS02u) 3382 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3383 3384 /* Original Cassini supports HW CSUM, but it's not 3385 * enabled by default as it can trigger TX hangs. 3386 */ 3387 if (pdev->revision < CAS_ID_REV2) 3388 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3389 } else { 3390 /* Only sun has original cassini chips. */ 3391 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3392 3393 /* We use a flag because the same phy might be externally 3394 * connected. 3395 */ 3396 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3397 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3398 cp->cas_flags |= CAS_FLAG_SATURN; 3399 } 3400 } 3401 3402 3403 static int cas_check_invariants(struct cas *cp) 3404 { 3405 struct pci_dev *pdev = cp->pdev; 3406 u32 cfg; 3407 int i; 3408 3409 /* get page size for rx buffers. */ 3410 cp->page_order = 0; 3411 #ifdef USE_PAGE_ORDER 3412 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3413 /* see if we can allocate larger pages */ 3414 struct page *page = alloc_pages(GFP_ATOMIC, 3415 CAS_JUMBO_PAGE_SHIFT - 3416 PAGE_SHIFT); 3417 if (page) { 3418 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3419 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3420 } else { 3421 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3422 } 3423 } 3424 #endif 3425 cp->page_size = (PAGE_SIZE << cp->page_order); 3426 3427 /* Fetch the FIFO configurations. */ 3428 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3429 cp->rx_fifo_size = RX_FIFO_SIZE; 3430 3431 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3432 * they're both connected. 3433 */ 3434 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3435 PCI_SLOT(pdev->devfn)); 3436 if (cp->phy_type & CAS_PHY_SERDES) { 3437 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3438 return 0; /* no more checking needed */ 3439 } 3440 3441 /* MII */ 3442 cfg = readl(cp->regs + REG_MIF_CFG); 3443 if (cfg & MIF_CFG_MDIO_1) { 3444 cp->phy_type = CAS_PHY_MII_MDIO1; 3445 } else if (cfg & MIF_CFG_MDIO_0) { 3446 cp->phy_type = CAS_PHY_MII_MDIO0; 3447 } 3448 3449 cas_mif_poll(cp, 0); 3450 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3451 3452 for (i = 0; i < 32; i++) { 3453 u32 phy_id; 3454 int j; 3455 3456 for (j = 0; j < 3; j++) { 3457 cp->phy_addr = i; 3458 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3459 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3460 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3461 cp->phy_id = phy_id; 3462 goto done; 3463 } 3464 } 3465 } 3466 pr_err("MII phy did not respond [%08x]\n", 3467 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3468 return -1; 3469 3470 done: 3471 /* see if we can do gigabit */ 3472 cfg = cas_phy_read(cp, MII_BMSR); 3473 if ((cfg & CAS_BMSR_1000_EXTEND) && 3474 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3475 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3476 return 0; 3477 } 3478 3479 /* Must be invoked under cp->lock. */ 3480 static inline void cas_start_dma(struct cas *cp) 3481 { 3482 int i; 3483 u32 val; 3484 int txfailed = 0; 3485 3486 /* enable dma */ 3487 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3488 writel(val, cp->regs + REG_TX_CFG); 3489 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3490 writel(val, cp->regs + REG_RX_CFG); 3491 3492 /* enable the mac */ 3493 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3494 writel(val, cp->regs + REG_MAC_TX_CFG); 3495 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3496 writel(val, cp->regs + REG_MAC_RX_CFG); 3497 3498 i = STOP_TRIES; 3499 while (i-- > 0) { 3500 val = readl(cp->regs + REG_MAC_TX_CFG); 3501 if ((val & MAC_TX_CFG_EN)) 3502 break; 3503 udelay(10); 3504 } 3505 if (i < 0) txfailed = 1; 3506 i = STOP_TRIES; 3507 while (i-- > 0) { 3508 val = readl(cp->regs + REG_MAC_RX_CFG); 3509 if ((val & MAC_RX_CFG_EN)) { 3510 if (txfailed) { 3511 netdev_err(cp->dev, 3512 "enabling mac failed [tx:%08x:%08x]\n", 3513 readl(cp->regs + REG_MIF_STATE_MACHINE), 3514 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3515 } 3516 goto enable_rx_done; 3517 } 3518 udelay(10); 3519 } 3520 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3521 (txfailed ? "tx,rx" : "rx"), 3522 readl(cp->regs + REG_MIF_STATE_MACHINE), 3523 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3524 3525 enable_rx_done: 3526 cas_unmask_intr(cp); /* enable interrupts */ 3527 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3528 writel(0, cp->regs + REG_RX_COMP_TAIL); 3529 3530 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3531 if (N_RX_DESC_RINGS > 1) 3532 writel(RX_DESC_RINGN_SIZE(1) - 4, 3533 cp->regs + REG_PLUS_RX_KICK1); 3534 3535 for (i = 1; i < N_RX_COMP_RINGS; i++) 3536 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3537 } 3538 } 3539 3540 /* Must be invoked under cp->lock. */ 3541 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3542 int *pause) 3543 { 3544 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3545 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3546 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3547 if (val & PCS_MII_LPA_ASYM_PAUSE) 3548 *pause |= 0x10; 3549 *spd = 1000; 3550 } 3551 3552 /* Must be invoked under cp->lock. */ 3553 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3554 int *pause) 3555 { 3556 u32 val; 3557 3558 *fd = 0; 3559 *spd = 10; 3560 *pause = 0; 3561 3562 /* use GMII registers */ 3563 val = cas_phy_read(cp, MII_LPA); 3564 if (val & CAS_LPA_PAUSE) 3565 *pause = 0x01; 3566 3567 if (val & CAS_LPA_ASYM_PAUSE) 3568 *pause |= 0x10; 3569 3570 if (val & LPA_DUPLEX) 3571 *fd = 1; 3572 if (val & LPA_100) 3573 *spd = 100; 3574 3575 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3576 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3577 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3578 *spd = 1000; 3579 if (val & CAS_LPA_1000FULL) 3580 *fd = 1; 3581 } 3582 } 3583 3584 /* A link-up condition has occurred, initialize and enable the 3585 * rest of the chip. 3586 * 3587 * Must be invoked under cp->lock. 3588 */ 3589 static void cas_set_link_modes(struct cas *cp) 3590 { 3591 u32 val; 3592 int full_duplex, speed, pause; 3593 3594 full_duplex = 0; 3595 speed = 10; 3596 pause = 0; 3597 3598 if (CAS_PHY_MII(cp->phy_type)) { 3599 cas_mif_poll(cp, 0); 3600 val = cas_phy_read(cp, MII_BMCR); 3601 if (val & BMCR_ANENABLE) { 3602 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3603 &pause); 3604 } else { 3605 if (val & BMCR_FULLDPLX) 3606 full_duplex = 1; 3607 3608 if (val & BMCR_SPEED100) 3609 speed = 100; 3610 else if (val & CAS_BMCR_SPEED1000) 3611 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3612 1000 : 100; 3613 } 3614 cas_mif_poll(cp, 1); 3615 3616 } else { 3617 val = readl(cp->regs + REG_PCS_MII_CTRL); 3618 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3619 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3620 if (val & PCS_MII_CTRL_DUPLEX) 3621 full_duplex = 1; 3622 } 3623 } 3624 3625 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3626 speed, full_duplex ? "full" : "half"); 3627 3628 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3629 if (CAS_PHY_MII(cp->phy_type)) { 3630 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3631 if (!full_duplex) 3632 val |= MAC_XIF_DISABLE_ECHO; 3633 } 3634 if (full_duplex) 3635 val |= MAC_XIF_FDPLX_LED; 3636 if (speed == 1000) 3637 val |= MAC_XIF_GMII_MODE; 3638 writel(val, cp->regs + REG_MAC_XIF_CFG); 3639 3640 /* deal with carrier and collision detect. */ 3641 val = MAC_TX_CFG_IPG_EN; 3642 if (full_duplex) { 3643 val |= MAC_TX_CFG_IGNORE_CARRIER; 3644 val |= MAC_TX_CFG_IGNORE_COLL; 3645 } else { 3646 #ifndef USE_CSMA_CD_PROTO 3647 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3648 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3649 #endif 3650 } 3651 /* val now set up for REG_MAC_TX_CFG */ 3652 3653 /* If gigabit and half-duplex, enable carrier extension 3654 * mode. increase slot time to 512 bytes as well. 3655 * else, disable it and make sure slot time is 64 bytes. 3656 * also activate checksum bug workaround 3657 */ 3658 if ((speed == 1000) && !full_duplex) { 3659 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3660 cp->regs + REG_MAC_TX_CFG); 3661 3662 val = readl(cp->regs + REG_MAC_RX_CFG); 3663 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3664 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3665 cp->regs + REG_MAC_RX_CFG); 3666 3667 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3668 3669 cp->crc_size = 4; 3670 /* minimum size gigabit frame at half duplex */ 3671 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3672 3673 } else { 3674 writel(val, cp->regs + REG_MAC_TX_CFG); 3675 3676 /* checksum bug workaround. don't strip FCS when in 3677 * half-duplex mode 3678 */ 3679 val = readl(cp->regs + REG_MAC_RX_CFG); 3680 if (full_duplex) { 3681 val |= MAC_RX_CFG_STRIP_FCS; 3682 cp->crc_size = 0; 3683 cp->min_frame_size = CAS_MIN_MTU; 3684 } else { 3685 val &= ~MAC_RX_CFG_STRIP_FCS; 3686 cp->crc_size = 4; 3687 cp->min_frame_size = CAS_MIN_FRAME; 3688 } 3689 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3690 cp->regs + REG_MAC_RX_CFG); 3691 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3692 } 3693 3694 if (netif_msg_link(cp)) { 3695 if (pause & 0x01) { 3696 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3697 cp->rx_fifo_size, 3698 cp->rx_pause_off, 3699 cp->rx_pause_on); 3700 } else if (pause & 0x10) { 3701 netdev_info(cp->dev, "TX pause enabled\n"); 3702 } else { 3703 netdev_info(cp->dev, "Pause is disabled\n"); 3704 } 3705 } 3706 3707 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3708 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3709 if (pause) { /* symmetric or asymmetric pause */ 3710 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3711 if (pause & 0x01) { /* symmetric pause */ 3712 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3713 } 3714 } 3715 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3716 cas_start_dma(cp); 3717 } 3718 3719 /* Must be invoked under cp->lock. */ 3720 static void cas_init_hw(struct cas *cp, int restart_link) 3721 { 3722 if (restart_link) 3723 cas_phy_init(cp); 3724 3725 cas_init_pause_thresholds(cp); 3726 cas_init_mac(cp); 3727 cas_init_dma(cp); 3728 3729 if (restart_link) { 3730 /* Default aneg parameters */ 3731 cp->timer_ticks = 0; 3732 cas_begin_auto_negotiation(cp, NULL); 3733 } else if (cp->lstate == link_up) { 3734 cas_set_link_modes(cp); 3735 netif_carrier_on(cp->dev); 3736 } 3737 } 3738 3739 /* Must be invoked under cp->lock. on earlier cassini boards, 3740 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3741 * let it settle out, and then restore pci state. 3742 */ 3743 static void cas_hard_reset(struct cas *cp) 3744 { 3745 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3746 udelay(20); 3747 pci_restore_state(cp->pdev); 3748 } 3749 3750 3751 static void cas_global_reset(struct cas *cp, int blkflag) 3752 { 3753 int limit; 3754 3755 /* issue a global reset. don't use RSTOUT. */ 3756 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3757 /* For PCS, when the blkflag is set, we should set the 3758 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3759 * the last autonegotiation from being cleared. We'll 3760 * need some special handling if the chip is set into a 3761 * loopback mode. 3762 */ 3763 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3764 cp->regs + REG_SW_RESET); 3765 } else { 3766 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3767 } 3768 3769 /* need to wait at least 3ms before polling register */ 3770 mdelay(3); 3771 3772 limit = STOP_TRIES; 3773 while (limit-- > 0) { 3774 u32 val = readl(cp->regs + REG_SW_RESET); 3775 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3776 goto done; 3777 udelay(10); 3778 } 3779 netdev_err(cp->dev, "sw reset failed\n"); 3780 3781 done: 3782 /* enable various BIM interrupts */ 3783 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3784 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3785 3786 /* clear out pci error status mask for handled errors. 3787 * we don't deal with DMA counter overflows as they happen 3788 * all the time. 3789 */ 3790 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3791 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3792 PCI_ERR_BIM_DMA_READ), cp->regs + 3793 REG_PCI_ERR_STATUS_MASK); 3794 3795 /* set up for MII by default to address mac rx reset timeout 3796 * issue 3797 */ 3798 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3799 } 3800 3801 static void cas_reset(struct cas *cp, int blkflag) 3802 { 3803 u32 val; 3804 3805 cas_mask_intr(cp); 3806 cas_global_reset(cp, blkflag); 3807 cas_mac_reset(cp); 3808 cas_entropy_reset(cp); 3809 3810 /* disable dma engines. */ 3811 val = readl(cp->regs + REG_TX_CFG); 3812 val &= ~TX_CFG_DMA_EN; 3813 writel(val, cp->regs + REG_TX_CFG); 3814 3815 val = readl(cp->regs + REG_RX_CFG); 3816 val &= ~RX_CFG_DMA_EN; 3817 writel(val, cp->regs + REG_RX_CFG); 3818 3819 /* program header parser */ 3820 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3821 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3822 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3823 } else { 3824 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3825 } 3826 3827 /* clear out error registers */ 3828 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3829 cas_clear_mac_err(cp); 3830 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3831 } 3832 3833 /* Shut down the chip, must be called with pm_mutex held. */ 3834 static void cas_shutdown(struct cas *cp) 3835 { 3836 unsigned long flags; 3837 3838 /* Make us not-running to avoid timers respawning */ 3839 cp->hw_running = 0; 3840 3841 del_timer_sync(&cp->link_timer); 3842 3843 /* Stop the reset task */ 3844 #if 0 3845 while (atomic_read(&cp->reset_task_pending_mtu) || 3846 atomic_read(&cp->reset_task_pending_spare) || 3847 atomic_read(&cp->reset_task_pending_all)) 3848 schedule(); 3849 3850 #else 3851 while (atomic_read(&cp->reset_task_pending)) 3852 schedule(); 3853 #endif 3854 /* Actually stop the chip */ 3855 cas_lock_all_save(cp, flags); 3856 cas_reset(cp, 0); 3857 if (cp->cas_flags & CAS_FLAG_SATURN) 3858 cas_phy_powerdown(cp); 3859 cas_unlock_all_restore(cp, flags); 3860 } 3861 3862 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3863 { 3864 struct cas *cp = netdev_priv(dev); 3865 3866 dev->mtu = new_mtu; 3867 if (!netif_running(dev) || !netif_device_present(dev)) 3868 return 0; 3869 3870 /* let the reset task handle it */ 3871 #if 1 3872 atomic_inc(&cp->reset_task_pending); 3873 if ((cp->phy_type & CAS_PHY_SERDES)) { 3874 atomic_inc(&cp->reset_task_pending_all); 3875 } else { 3876 atomic_inc(&cp->reset_task_pending_mtu); 3877 } 3878 schedule_work(&cp->reset_task); 3879 #else 3880 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3881 CAS_RESET_ALL : CAS_RESET_MTU); 3882 pr_err("reset called in cas_change_mtu\n"); 3883 schedule_work(&cp->reset_task); 3884 #endif 3885 3886 flush_work(&cp->reset_task); 3887 return 0; 3888 } 3889 3890 static void cas_clean_txd(struct cas *cp, int ring) 3891 { 3892 struct cas_tx_desc *txd = cp->init_txds[ring]; 3893 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3894 u64 daddr, dlen; 3895 int i, size; 3896 3897 size = TX_DESC_RINGN_SIZE(ring); 3898 for (i = 0; i < size; i++) { 3899 int frag; 3900 3901 if (skbs[i] == NULL) 3902 continue; 3903 3904 skb = skbs[i]; 3905 skbs[i] = NULL; 3906 3907 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3908 int ent = i & (size - 1); 3909 3910 /* first buffer is never a tiny buffer and so 3911 * needs to be unmapped. 3912 */ 3913 daddr = le64_to_cpu(txd[ent].buffer); 3914 dlen = CAS_VAL(TX_DESC_BUFLEN, 3915 le64_to_cpu(txd[ent].control)); 3916 pci_unmap_page(cp->pdev, daddr, dlen, 3917 PCI_DMA_TODEVICE); 3918 3919 if (frag != skb_shinfo(skb)->nr_frags) { 3920 i++; 3921 3922 /* next buffer might by a tiny buffer. 3923 * skip past it. 3924 */ 3925 ent = i & (size - 1); 3926 if (cp->tx_tiny_use[ring][ent].used) 3927 i++; 3928 } 3929 } 3930 dev_kfree_skb_any(skb); 3931 } 3932 3933 /* zero out tiny buf usage */ 3934 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3935 } 3936 3937 /* freed on close */ 3938 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3939 { 3940 cas_page_t **page = cp->rx_pages[ring]; 3941 int i, size; 3942 3943 size = RX_DESC_RINGN_SIZE(ring); 3944 for (i = 0; i < size; i++) { 3945 if (page[i]) { 3946 cas_page_free(cp, page[i]); 3947 page[i] = NULL; 3948 } 3949 } 3950 } 3951 3952 static void cas_free_rxds(struct cas *cp) 3953 { 3954 int i; 3955 3956 for (i = 0; i < N_RX_DESC_RINGS; i++) 3957 cas_free_rx_desc(cp, i); 3958 } 3959 3960 /* Must be invoked under cp->lock. */ 3961 static void cas_clean_rings(struct cas *cp) 3962 { 3963 int i; 3964 3965 /* need to clean all tx rings */ 3966 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3967 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3968 for (i = 0; i < N_TX_RINGS; i++) 3969 cas_clean_txd(cp, i); 3970 3971 /* zero out init block */ 3972 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3973 cas_clean_rxds(cp); 3974 cas_clean_rxcs(cp); 3975 } 3976 3977 /* allocated on open */ 3978 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3979 { 3980 cas_page_t **page = cp->rx_pages[ring]; 3981 int size, i = 0; 3982 3983 size = RX_DESC_RINGN_SIZE(ring); 3984 for (i = 0; i < size; i++) { 3985 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3986 return -1; 3987 } 3988 return 0; 3989 } 3990 3991 static int cas_alloc_rxds(struct cas *cp) 3992 { 3993 int i; 3994 3995 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3996 if (cas_alloc_rx_desc(cp, i) < 0) { 3997 cas_free_rxds(cp); 3998 return -1; 3999 } 4000 } 4001 return 0; 4002 } 4003 4004 static void cas_reset_task(struct work_struct *work) 4005 { 4006 struct cas *cp = container_of(work, struct cas, reset_task); 4007 #if 0 4008 int pending = atomic_read(&cp->reset_task_pending); 4009 #else 4010 int pending_all = atomic_read(&cp->reset_task_pending_all); 4011 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 4012 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 4013 4014 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 4015 /* We can have more tasks scheduled than actually 4016 * needed. 4017 */ 4018 atomic_dec(&cp->reset_task_pending); 4019 return; 4020 } 4021 #endif 4022 /* The link went down, we reset the ring, but keep 4023 * DMA stopped. Use this function for reset 4024 * on error as well. 4025 */ 4026 if (cp->hw_running) { 4027 unsigned long flags; 4028 4029 /* Make sure we don't get interrupts or tx packets */ 4030 netif_device_detach(cp->dev); 4031 cas_lock_all_save(cp, flags); 4032 4033 if (cp->opened) { 4034 /* We call cas_spare_recover when we call cas_open. 4035 * but we do not initialize the lists cas_spare_recover 4036 * uses until cas_open is called. 4037 */ 4038 cas_spare_recover(cp, GFP_ATOMIC); 4039 } 4040 #if 1 4041 /* test => only pending_spare set */ 4042 if (!pending_all && !pending_mtu) 4043 goto done; 4044 #else 4045 if (pending == CAS_RESET_SPARE) 4046 goto done; 4047 #endif 4048 /* when pending == CAS_RESET_ALL, the following 4049 * call to cas_init_hw will restart auto negotiation. 4050 * Setting the second argument of cas_reset to 4051 * !(pending == CAS_RESET_ALL) will set this argument 4052 * to 1 (avoiding reinitializing the PHY for the normal 4053 * PCS case) when auto negotiation is not restarted. 4054 */ 4055 #if 1 4056 cas_reset(cp, !(pending_all > 0)); 4057 if (cp->opened) 4058 cas_clean_rings(cp); 4059 cas_init_hw(cp, (pending_all > 0)); 4060 #else 4061 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4062 if (cp->opened) 4063 cas_clean_rings(cp); 4064 cas_init_hw(cp, pending == CAS_RESET_ALL); 4065 #endif 4066 4067 done: 4068 cas_unlock_all_restore(cp, flags); 4069 netif_device_attach(cp->dev); 4070 } 4071 #if 1 4072 atomic_sub(pending_all, &cp->reset_task_pending_all); 4073 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4074 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4075 atomic_dec(&cp->reset_task_pending); 4076 #else 4077 atomic_set(&cp->reset_task_pending, 0); 4078 #endif 4079 } 4080 4081 static void cas_link_timer(unsigned long data) 4082 { 4083 struct cas *cp = (struct cas *) data; 4084 int mask, pending = 0, reset = 0; 4085 unsigned long flags; 4086 4087 if (link_transition_timeout != 0 && 4088 cp->link_transition_jiffies_valid && 4089 ((jiffies - cp->link_transition_jiffies) > 4090 (link_transition_timeout))) { 4091 /* One-second counter so link-down workaround doesn't 4092 * cause resets to occur so fast as to fool the switch 4093 * into thinking the link is down. 4094 */ 4095 cp->link_transition_jiffies_valid = 0; 4096 } 4097 4098 if (!cp->hw_running) 4099 return; 4100 4101 spin_lock_irqsave(&cp->lock, flags); 4102 cas_lock_tx(cp); 4103 cas_entropy_gather(cp); 4104 4105 /* If the link task is still pending, we just 4106 * reschedule the link timer 4107 */ 4108 #if 1 4109 if (atomic_read(&cp->reset_task_pending_all) || 4110 atomic_read(&cp->reset_task_pending_spare) || 4111 atomic_read(&cp->reset_task_pending_mtu)) 4112 goto done; 4113 #else 4114 if (atomic_read(&cp->reset_task_pending)) 4115 goto done; 4116 #endif 4117 4118 /* check for rx cleaning */ 4119 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4120 int i, rmask; 4121 4122 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4123 rmask = CAS_FLAG_RXD_POST(i); 4124 if ((mask & rmask) == 0) 4125 continue; 4126 4127 /* post_rxds will do a mod_timer */ 4128 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4129 pending = 1; 4130 continue; 4131 } 4132 cp->cas_flags &= ~rmask; 4133 } 4134 } 4135 4136 if (CAS_PHY_MII(cp->phy_type)) { 4137 u16 bmsr; 4138 cas_mif_poll(cp, 0); 4139 bmsr = cas_phy_read(cp, MII_BMSR); 4140 /* WTZ: Solaris driver reads this twice, but that 4141 * may be due to the PCS case and the use of a 4142 * common implementation. Read it twice here to be 4143 * safe. 4144 */ 4145 bmsr = cas_phy_read(cp, MII_BMSR); 4146 cas_mif_poll(cp, 1); 4147 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4148 reset = cas_mii_link_check(cp, bmsr); 4149 } else { 4150 reset = cas_pcs_link_check(cp); 4151 } 4152 4153 if (reset) 4154 goto done; 4155 4156 /* check for tx state machine confusion */ 4157 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4158 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4159 u32 wptr, rptr; 4160 int tlm = CAS_VAL(MAC_SM_TLM, val); 4161 4162 if (((tlm == 0x5) || (tlm == 0x3)) && 4163 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4164 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4165 "tx err: MAC_STATE[%08x]\n", val); 4166 reset = 1; 4167 goto done; 4168 } 4169 4170 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4171 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4172 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4173 if ((val == 0) && (wptr != rptr)) { 4174 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4175 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4176 val, wptr, rptr); 4177 reset = 1; 4178 } 4179 4180 if (reset) 4181 cas_hard_reset(cp); 4182 } 4183 4184 done: 4185 if (reset) { 4186 #if 1 4187 atomic_inc(&cp->reset_task_pending); 4188 atomic_inc(&cp->reset_task_pending_all); 4189 schedule_work(&cp->reset_task); 4190 #else 4191 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4192 pr_err("reset called in cas_link_timer\n"); 4193 schedule_work(&cp->reset_task); 4194 #endif 4195 } 4196 4197 if (!pending) 4198 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4199 cas_unlock_tx(cp); 4200 spin_unlock_irqrestore(&cp->lock, flags); 4201 } 4202 4203 /* tiny buffers are used to avoid target abort issues with 4204 * older cassini's 4205 */ 4206 static void cas_tx_tiny_free(struct cas *cp) 4207 { 4208 struct pci_dev *pdev = cp->pdev; 4209 int i; 4210 4211 for (i = 0; i < N_TX_RINGS; i++) { 4212 if (!cp->tx_tiny_bufs[i]) 4213 continue; 4214 4215 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4216 cp->tx_tiny_bufs[i], 4217 cp->tx_tiny_dvma[i]); 4218 cp->tx_tiny_bufs[i] = NULL; 4219 } 4220 } 4221 4222 static int cas_tx_tiny_alloc(struct cas *cp) 4223 { 4224 struct pci_dev *pdev = cp->pdev; 4225 int i; 4226 4227 for (i = 0; i < N_TX_RINGS; i++) { 4228 cp->tx_tiny_bufs[i] = 4229 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4230 &cp->tx_tiny_dvma[i]); 4231 if (!cp->tx_tiny_bufs[i]) { 4232 cas_tx_tiny_free(cp); 4233 return -1; 4234 } 4235 } 4236 return 0; 4237 } 4238 4239 4240 static int cas_open(struct net_device *dev) 4241 { 4242 struct cas *cp = netdev_priv(dev); 4243 int hw_was_up, err; 4244 unsigned long flags; 4245 4246 mutex_lock(&cp->pm_mutex); 4247 4248 hw_was_up = cp->hw_running; 4249 4250 /* The power-management mutex protects the hw_running 4251 * etc. state so it is safe to do this bit without cp->lock 4252 */ 4253 if (!cp->hw_running) { 4254 /* Reset the chip */ 4255 cas_lock_all_save(cp, flags); 4256 /* We set the second arg to cas_reset to zero 4257 * because cas_init_hw below will have its second 4258 * argument set to non-zero, which will force 4259 * autonegotiation to start. 4260 */ 4261 cas_reset(cp, 0); 4262 cp->hw_running = 1; 4263 cas_unlock_all_restore(cp, flags); 4264 } 4265 4266 err = -ENOMEM; 4267 if (cas_tx_tiny_alloc(cp) < 0) 4268 goto err_unlock; 4269 4270 /* alloc rx descriptors */ 4271 if (cas_alloc_rxds(cp) < 0) 4272 goto err_tx_tiny; 4273 4274 /* allocate spares */ 4275 cas_spare_init(cp); 4276 cas_spare_recover(cp, GFP_KERNEL); 4277 4278 /* We can now request the interrupt as we know it's masked 4279 * on the controller. cassini+ has up to 4 interrupts 4280 * that can be used, but you need to do explicit pci interrupt 4281 * mapping to expose them 4282 */ 4283 if (request_irq(cp->pdev->irq, cas_interrupt, 4284 IRQF_SHARED, dev->name, (void *) dev)) { 4285 netdev_err(cp->dev, "failed to request irq !\n"); 4286 err = -EAGAIN; 4287 goto err_spare; 4288 } 4289 4290 #ifdef USE_NAPI 4291 napi_enable(&cp->napi); 4292 #endif 4293 /* init hw */ 4294 cas_lock_all_save(cp, flags); 4295 cas_clean_rings(cp); 4296 cas_init_hw(cp, !hw_was_up); 4297 cp->opened = 1; 4298 cas_unlock_all_restore(cp, flags); 4299 4300 netif_start_queue(dev); 4301 mutex_unlock(&cp->pm_mutex); 4302 return 0; 4303 4304 err_spare: 4305 cas_spare_free(cp); 4306 cas_free_rxds(cp); 4307 err_tx_tiny: 4308 cas_tx_tiny_free(cp); 4309 err_unlock: 4310 mutex_unlock(&cp->pm_mutex); 4311 return err; 4312 } 4313 4314 static int cas_close(struct net_device *dev) 4315 { 4316 unsigned long flags; 4317 struct cas *cp = netdev_priv(dev); 4318 4319 #ifdef USE_NAPI 4320 napi_disable(&cp->napi); 4321 #endif 4322 /* Make sure we don't get distracted by suspend/resume */ 4323 mutex_lock(&cp->pm_mutex); 4324 4325 netif_stop_queue(dev); 4326 4327 /* Stop traffic, mark us closed */ 4328 cas_lock_all_save(cp, flags); 4329 cp->opened = 0; 4330 cas_reset(cp, 0); 4331 cas_phy_init(cp); 4332 cas_begin_auto_negotiation(cp, NULL); 4333 cas_clean_rings(cp); 4334 cas_unlock_all_restore(cp, flags); 4335 4336 free_irq(cp->pdev->irq, (void *) dev); 4337 cas_spare_free(cp); 4338 cas_free_rxds(cp); 4339 cas_tx_tiny_free(cp); 4340 mutex_unlock(&cp->pm_mutex); 4341 return 0; 4342 } 4343 4344 static struct { 4345 const char name[ETH_GSTRING_LEN]; 4346 } ethtool_cassini_statnames[] = { 4347 {"collisions"}, 4348 {"rx_bytes"}, 4349 {"rx_crc_errors"}, 4350 {"rx_dropped"}, 4351 {"rx_errors"}, 4352 {"rx_fifo_errors"}, 4353 {"rx_frame_errors"}, 4354 {"rx_length_errors"}, 4355 {"rx_over_errors"}, 4356 {"rx_packets"}, 4357 {"tx_aborted_errors"}, 4358 {"tx_bytes"}, 4359 {"tx_dropped"}, 4360 {"tx_errors"}, 4361 {"tx_fifo_errors"}, 4362 {"tx_packets"} 4363 }; 4364 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4365 4366 static struct { 4367 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4368 } ethtool_register_table[] = { 4369 {-MII_BMSR}, 4370 {-MII_BMCR}, 4371 {REG_CAWR}, 4372 {REG_INF_BURST}, 4373 {REG_BIM_CFG}, 4374 {REG_RX_CFG}, 4375 {REG_HP_CFG}, 4376 {REG_MAC_TX_CFG}, 4377 {REG_MAC_RX_CFG}, 4378 {REG_MAC_CTRL_CFG}, 4379 {REG_MAC_XIF_CFG}, 4380 {REG_MIF_CFG}, 4381 {REG_PCS_CFG}, 4382 {REG_SATURN_PCFG}, 4383 {REG_PCS_MII_STATUS}, 4384 {REG_PCS_STATE_MACHINE}, 4385 {REG_MAC_COLL_EXCESS}, 4386 {REG_MAC_COLL_LATE} 4387 }; 4388 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4389 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4390 4391 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4392 { 4393 u8 *p; 4394 int i; 4395 unsigned long flags; 4396 4397 spin_lock_irqsave(&cp->lock, flags); 4398 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4399 u16 hval; 4400 u32 val; 4401 if (ethtool_register_table[i].offsets < 0) { 4402 hval = cas_phy_read(cp, 4403 -ethtool_register_table[i].offsets); 4404 val = hval; 4405 } else { 4406 val= readl(cp->regs+ethtool_register_table[i].offsets); 4407 } 4408 memcpy(p, (u8 *)&val, sizeof(u32)); 4409 } 4410 spin_unlock_irqrestore(&cp->lock, flags); 4411 } 4412 4413 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4414 { 4415 struct cas *cp = netdev_priv(dev); 4416 struct net_device_stats *stats = cp->net_stats; 4417 unsigned long flags; 4418 int i; 4419 unsigned long tmp; 4420 4421 /* we collate all of the stats into net_stats[N_TX_RING] */ 4422 if (!cp->hw_running) 4423 return stats + N_TX_RINGS; 4424 4425 /* collect outstanding stats */ 4426 /* WTZ: the Cassini spec gives these as 16 bit counters but 4427 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4428 * in case the chip somehow puts any garbage in the other bits. 4429 * Also, counter usage didn't seem to mach what Adrian did 4430 * in the parts of the code that set these quantities. Made 4431 * that consistent. 4432 */ 4433 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4434 stats[N_TX_RINGS].rx_crc_errors += 4435 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4436 stats[N_TX_RINGS].rx_frame_errors += 4437 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4438 stats[N_TX_RINGS].rx_length_errors += 4439 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4440 #if 1 4441 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4442 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4443 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4444 stats[N_TX_RINGS].collisions += 4445 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4446 #else 4447 stats[N_TX_RINGS].tx_aborted_errors += 4448 readl(cp->regs + REG_MAC_COLL_EXCESS); 4449 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4450 readl(cp->regs + REG_MAC_COLL_LATE); 4451 #endif 4452 cas_clear_mac_err(cp); 4453 4454 /* saved bits that are unique to ring 0 */ 4455 spin_lock(&cp->stat_lock[0]); 4456 stats[N_TX_RINGS].collisions += stats[0].collisions; 4457 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4458 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4459 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4460 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4461 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4462 spin_unlock(&cp->stat_lock[0]); 4463 4464 for (i = 0; i < N_TX_RINGS; i++) { 4465 spin_lock(&cp->stat_lock[i]); 4466 stats[N_TX_RINGS].rx_length_errors += 4467 stats[i].rx_length_errors; 4468 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4469 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4470 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4471 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4472 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4473 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4474 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4475 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4476 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4477 memset(stats + i, 0, sizeof(struct net_device_stats)); 4478 spin_unlock(&cp->stat_lock[i]); 4479 } 4480 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4481 return stats + N_TX_RINGS; 4482 } 4483 4484 4485 static void cas_set_multicast(struct net_device *dev) 4486 { 4487 struct cas *cp = netdev_priv(dev); 4488 u32 rxcfg, rxcfg_new; 4489 unsigned long flags; 4490 int limit = STOP_TRIES; 4491 4492 if (!cp->hw_running) 4493 return; 4494 4495 spin_lock_irqsave(&cp->lock, flags); 4496 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4497 4498 /* disable RX MAC and wait for completion */ 4499 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4500 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4501 if (!limit--) 4502 break; 4503 udelay(10); 4504 } 4505 4506 /* disable hash filter and wait for completion */ 4507 limit = STOP_TRIES; 4508 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4509 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4510 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4511 if (!limit--) 4512 break; 4513 udelay(10); 4514 } 4515 4516 /* program hash filters */ 4517 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4518 rxcfg |= rxcfg_new; 4519 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4520 spin_unlock_irqrestore(&cp->lock, flags); 4521 } 4522 4523 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4524 { 4525 struct cas *cp = netdev_priv(dev); 4526 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4527 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4528 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4529 } 4530 4531 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4532 { 4533 struct cas *cp = netdev_priv(dev); 4534 u16 bmcr; 4535 int full_duplex, speed, pause; 4536 unsigned long flags; 4537 enum link_state linkstate = link_up; 4538 4539 cmd->advertising = 0; 4540 cmd->supported = SUPPORTED_Autoneg; 4541 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4542 cmd->supported |= SUPPORTED_1000baseT_Full; 4543 cmd->advertising |= ADVERTISED_1000baseT_Full; 4544 } 4545 4546 /* Record PHY settings if HW is on. */ 4547 spin_lock_irqsave(&cp->lock, flags); 4548 bmcr = 0; 4549 linkstate = cp->lstate; 4550 if (CAS_PHY_MII(cp->phy_type)) { 4551 cmd->port = PORT_MII; 4552 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? 4553 XCVR_INTERNAL : XCVR_EXTERNAL; 4554 cmd->phy_address = cp->phy_addr; 4555 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | 4556 ADVERTISED_10baseT_Half | 4557 ADVERTISED_10baseT_Full | 4558 ADVERTISED_100baseT_Half | 4559 ADVERTISED_100baseT_Full; 4560 4561 cmd->supported |= 4562 (SUPPORTED_10baseT_Half | 4563 SUPPORTED_10baseT_Full | 4564 SUPPORTED_100baseT_Half | 4565 SUPPORTED_100baseT_Full | 4566 SUPPORTED_TP | SUPPORTED_MII); 4567 4568 if (cp->hw_running) { 4569 cas_mif_poll(cp, 0); 4570 bmcr = cas_phy_read(cp, MII_BMCR); 4571 cas_read_mii_link_mode(cp, &full_duplex, 4572 &speed, &pause); 4573 cas_mif_poll(cp, 1); 4574 } 4575 4576 } else { 4577 cmd->port = PORT_FIBRE; 4578 cmd->transceiver = XCVR_INTERNAL; 4579 cmd->phy_address = 0; 4580 cmd->supported |= SUPPORTED_FIBRE; 4581 cmd->advertising |= ADVERTISED_FIBRE; 4582 4583 if (cp->hw_running) { 4584 /* pcs uses the same bits as mii */ 4585 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4586 cas_read_pcs_link_mode(cp, &full_duplex, 4587 &speed, &pause); 4588 } 4589 } 4590 spin_unlock_irqrestore(&cp->lock, flags); 4591 4592 if (bmcr & BMCR_ANENABLE) { 4593 cmd->advertising |= ADVERTISED_Autoneg; 4594 cmd->autoneg = AUTONEG_ENABLE; 4595 ethtool_cmd_speed_set(cmd, ((speed == 10) ? 4596 SPEED_10 : 4597 ((speed == 1000) ? 4598 SPEED_1000 : SPEED_100))); 4599 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4600 } else { 4601 cmd->autoneg = AUTONEG_DISABLE; 4602 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ? 4603 SPEED_1000 : 4604 ((bmcr & BMCR_SPEED100) ? 4605 SPEED_100 : SPEED_10))); 4606 cmd->duplex = 4607 (bmcr & BMCR_FULLDPLX) ? 4608 DUPLEX_FULL : DUPLEX_HALF; 4609 } 4610 if (linkstate != link_up) { 4611 /* Force these to "unknown" if the link is not up and 4612 * autonogotiation in enabled. We can set the link 4613 * speed to 0, but not cmd->duplex, 4614 * because its legal values are 0 and 1. Ethtool will 4615 * print the value reported in parentheses after the 4616 * word "Unknown" for unrecognized values. 4617 * 4618 * If in forced mode, we report the speed and duplex 4619 * settings that we configured. 4620 */ 4621 if (cp->link_cntl & BMCR_ANENABLE) { 4622 ethtool_cmd_speed_set(cmd, 0); 4623 cmd->duplex = 0xff; 4624 } else { 4625 ethtool_cmd_speed_set(cmd, SPEED_10); 4626 if (cp->link_cntl & BMCR_SPEED100) { 4627 ethtool_cmd_speed_set(cmd, SPEED_100); 4628 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4629 ethtool_cmd_speed_set(cmd, SPEED_1000); 4630 } 4631 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? 4632 DUPLEX_FULL : DUPLEX_HALF; 4633 } 4634 } 4635 return 0; 4636 } 4637 4638 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4639 { 4640 struct cas *cp = netdev_priv(dev); 4641 unsigned long flags; 4642 u32 speed = ethtool_cmd_speed(cmd); 4643 4644 /* Verify the settings we care about. */ 4645 if (cmd->autoneg != AUTONEG_ENABLE && 4646 cmd->autoneg != AUTONEG_DISABLE) 4647 return -EINVAL; 4648 4649 if (cmd->autoneg == AUTONEG_DISABLE && 4650 ((speed != SPEED_1000 && 4651 speed != SPEED_100 && 4652 speed != SPEED_10) || 4653 (cmd->duplex != DUPLEX_HALF && 4654 cmd->duplex != DUPLEX_FULL))) 4655 return -EINVAL; 4656 4657 /* Apply settings and restart link process. */ 4658 spin_lock_irqsave(&cp->lock, flags); 4659 cas_begin_auto_negotiation(cp, cmd); 4660 spin_unlock_irqrestore(&cp->lock, flags); 4661 return 0; 4662 } 4663 4664 static int cas_nway_reset(struct net_device *dev) 4665 { 4666 struct cas *cp = netdev_priv(dev); 4667 unsigned long flags; 4668 4669 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4670 return -EINVAL; 4671 4672 /* Restart link process. */ 4673 spin_lock_irqsave(&cp->lock, flags); 4674 cas_begin_auto_negotiation(cp, NULL); 4675 spin_unlock_irqrestore(&cp->lock, flags); 4676 4677 return 0; 4678 } 4679 4680 static u32 cas_get_link(struct net_device *dev) 4681 { 4682 struct cas *cp = netdev_priv(dev); 4683 return cp->lstate == link_up; 4684 } 4685 4686 static u32 cas_get_msglevel(struct net_device *dev) 4687 { 4688 struct cas *cp = netdev_priv(dev); 4689 return cp->msg_enable; 4690 } 4691 4692 static void cas_set_msglevel(struct net_device *dev, u32 value) 4693 { 4694 struct cas *cp = netdev_priv(dev); 4695 cp->msg_enable = value; 4696 } 4697 4698 static int cas_get_regs_len(struct net_device *dev) 4699 { 4700 struct cas *cp = netdev_priv(dev); 4701 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4702 } 4703 4704 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4705 void *p) 4706 { 4707 struct cas *cp = netdev_priv(dev); 4708 regs->version = 0; 4709 /* cas_read_regs handles locks (cp->lock). */ 4710 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4711 } 4712 4713 static int cas_get_sset_count(struct net_device *dev, int sset) 4714 { 4715 switch (sset) { 4716 case ETH_SS_STATS: 4717 return CAS_NUM_STAT_KEYS; 4718 default: 4719 return -EOPNOTSUPP; 4720 } 4721 } 4722 4723 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4724 { 4725 memcpy(data, ðtool_cassini_statnames, 4726 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4727 } 4728 4729 static void cas_get_ethtool_stats(struct net_device *dev, 4730 struct ethtool_stats *estats, u64 *data) 4731 { 4732 struct cas *cp = netdev_priv(dev); 4733 struct net_device_stats *stats = cas_get_stats(cp->dev); 4734 int i = 0; 4735 data[i++] = stats->collisions; 4736 data[i++] = stats->rx_bytes; 4737 data[i++] = stats->rx_crc_errors; 4738 data[i++] = stats->rx_dropped; 4739 data[i++] = stats->rx_errors; 4740 data[i++] = stats->rx_fifo_errors; 4741 data[i++] = stats->rx_frame_errors; 4742 data[i++] = stats->rx_length_errors; 4743 data[i++] = stats->rx_over_errors; 4744 data[i++] = stats->rx_packets; 4745 data[i++] = stats->tx_aborted_errors; 4746 data[i++] = stats->tx_bytes; 4747 data[i++] = stats->tx_dropped; 4748 data[i++] = stats->tx_errors; 4749 data[i++] = stats->tx_fifo_errors; 4750 data[i++] = stats->tx_packets; 4751 BUG_ON(i != CAS_NUM_STAT_KEYS); 4752 } 4753 4754 static const struct ethtool_ops cas_ethtool_ops = { 4755 .get_drvinfo = cas_get_drvinfo, 4756 .get_settings = cas_get_settings, 4757 .set_settings = cas_set_settings, 4758 .nway_reset = cas_nway_reset, 4759 .get_link = cas_get_link, 4760 .get_msglevel = cas_get_msglevel, 4761 .set_msglevel = cas_set_msglevel, 4762 .get_regs_len = cas_get_regs_len, 4763 .get_regs = cas_get_regs, 4764 .get_sset_count = cas_get_sset_count, 4765 .get_strings = cas_get_strings, 4766 .get_ethtool_stats = cas_get_ethtool_stats, 4767 }; 4768 4769 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4770 { 4771 struct cas *cp = netdev_priv(dev); 4772 struct mii_ioctl_data *data = if_mii(ifr); 4773 unsigned long flags; 4774 int rc = -EOPNOTSUPP; 4775 4776 /* Hold the PM mutex while doing ioctl's or we may collide 4777 * with open/close and power management and oops. 4778 */ 4779 mutex_lock(&cp->pm_mutex); 4780 switch (cmd) { 4781 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4782 data->phy_id = cp->phy_addr; 4783 /* Fallthrough... */ 4784 4785 case SIOCGMIIREG: /* Read MII PHY register. */ 4786 spin_lock_irqsave(&cp->lock, flags); 4787 cas_mif_poll(cp, 0); 4788 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4789 cas_mif_poll(cp, 1); 4790 spin_unlock_irqrestore(&cp->lock, flags); 4791 rc = 0; 4792 break; 4793 4794 case SIOCSMIIREG: /* Write MII PHY register. */ 4795 spin_lock_irqsave(&cp->lock, flags); 4796 cas_mif_poll(cp, 0); 4797 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4798 cas_mif_poll(cp, 1); 4799 spin_unlock_irqrestore(&cp->lock, flags); 4800 break; 4801 default: 4802 break; 4803 } 4804 4805 mutex_unlock(&cp->pm_mutex); 4806 return rc; 4807 } 4808 4809 /* When this chip sits underneath an Intel 31154 bridge, it is the 4810 * only subordinate device and we can tweak the bridge settings to 4811 * reflect that fact. 4812 */ 4813 static void cas_program_bridge(struct pci_dev *cas_pdev) 4814 { 4815 struct pci_dev *pdev = cas_pdev->bus->self; 4816 u32 val; 4817 4818 if (!pdev) 4819 return; 4820 4821 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4822 return; 4823 4824 /* Clear bit 10 (Bus Parking Control) in the Secondary 4825 * Arbiter Control/Status Register which lives at offset 4826 * 0x41. Using a 32-bit word read/modify/write at 0x40 4827 * is much simpler so that's how we do this. 4828 */ 4829 pci_read_config_dword(pdev, 0x40, &val); 4830 val &= ~0x00040000; 4831 pci_write_config_dword(pdev, 0x40, val); 4832 4833 /* Max out the Multi-Transaction Timer settings since 4834 * Cassini is the only device present. 4835 * 4836 * The register is 16-bit and lives at 0x50. When the 4837 * settings are enabled, it extends the GRANT# signal 4838 * for a requestor after a transaction is complete. This 4839 * allows the next request to run without first needing 4840 * to negotiate the GRANT# signal back. 4841 * 4842 * Bits 12:10 define the grant duration: 4843 * 4844 * 1 -- 16 clocks 4845 * 2 -- 32 clocks 4846 * 3 -- 64 clocks 4847 * 4 -- 128 clocks 4848 * 5 -- 256 clocks 4849 * 4850 * All other values are illegal. 4851 * 4852 * Bits 09:00 define which REQ/GNT signal pairs get the 4853 * GRANT# signal treatment. We set them all. 4854 */ 4855 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4856 4857 /* The Read Prefecth Policy register is 16-bit and sits at 4858 * offset 0x52. It enables a "smart" pre-fetch policy. We 4859 * enable it and max out all of the settings since only one 4860 * device is sitting underneath and thus bandwidth sharing is 4861 * not an issue. 4862 * 4863 * The register has several 3 bit fields, which indicates a 4864 * multiplier applied to the base amount of prefetching the 4865 * chip would do. These fields are at: 4866 * 4867 * 15:13 --- ReRead Primary Bus 4868 * 12:10 --- FirstRead Primary Bus 4869 * 09:07 --- ReRead Secondary Bus 4870 * 06:04 --- FirstRead Secondary Bus 4871 * 4872 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4873 * get enabled on. Bit 3 is a grouped enabler which controls 4874 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4875 * the individual REQ/GNT pairs [2:0]. 4876 */ 4877 pci_write_config_word(pdev, 0x52, 4878 (0x7 << 13) | 4879 (0x7 << 10) | 4880 (0x7 << 7) | 4881 (0x7 << 4) | 4882 (0xf << 0)); 4883 4884 /* Force cacheline size to 0x8 */ 4885 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4886 4887 /* Force latency timer to maximum setting so Cassini can 4888 * sit on the bus as long as it likes. 4889 */ 4890 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4891 } 4892 4893 static const struct net_device_ops cas_netdev_ops = { 4894 .ndo_open = cas_open, 4895 .ndo_stop = cas_close, 4896 .ndo_start_xmit = cas_start_xmit, 4897 .ndo_get_stats = cas_get_stats, 4898 .ndo_set_rx_mode = cas_set_multicast, 4899 .ndo_do_ioctl = cas_ioctl, 4900 .ndo_tx_timeout = cas_tx_timeout, 4901 .ndo_change_mtu = cas_change_mtu, 4902 .ndo_set_mac_address = eth_mac_addr, 4903 .ndo_validate_addr = eth_validate_addr, 4904 #ifdef CONFIG_NET_POLL_CONTROLLER 4905 .ndo_poll_controller = cas_netpoll, 4906 #endif 4907 }; 4908 4909 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4910 { 4911 static int cas_version_printed = 0; 4912 unsigned long casreg_len; 4913 struct net_device *dev; 4914 struct cas *cp; 4915 int i, err, pci_using_dac; 4916 u16 pci_cmd; 4917 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4918 4919 if (cas_version_printed++ == 0) 4920 pr_info("%s", version); 4921 4922 err = pci_enable_device(pdev); 4923 if (err) { 4924 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4925 return err; 4926 } 4927 4928 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4929 dev_err(&pdev->dev, "Cannot find proper PCI device " 4930 "base address, aborting\n"); 4931 err = -ENODEV; 4932 goto err_out_disable_pdev; 4933 } 4934 4935 dev = alloc_etherdev(sizeof(*cp)); 4936 if (!dev) { 4937 err = -ENOMEM; 4938 goto err_out_disable_pdev; 4939 } 4940 SET_NETDEV_DEV(dev, &pdev->dev); 4941 4942 err = pci_request_regions(pdev, dev->name); 4943 if (err) { 4944 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4945 goto err_out_free_netdev; 4946 } 4947 pci_set_master(pdev); 4948 4949 /* we must always turn on parity response or else parity 4950 * doesn't get generated properly. disable SERR/PERR as well. 4951 * in addition, we want to turn MWI on. 4952 */ 4953 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4954 pci_cmd &= ~PCI_COMMAND_SERR; 4955 pci_cmd |= PCI_COMMAND_PARITY; 4956 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4957 if (pci_try_set_mwi(pdev)) 4958 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4959 4960 cas_program_bridge(pdev); 4961 4962 /* 4963 * On some architectures, the default cache line size set 4964 * by pci_try_set_mwi reduces perforamnce. We have to increase 4965 * it for this case. To start, we'll print some configuration 4966 * data. 4967 */ 4968 #if 1 4969 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4970 &orig_cacheline_size); 4971 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4972 cas_cacheline_size = 4973 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4974 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4975 if (pci_write_config_byte(pdev, 4976 PCI_CACHE_LINE_SIZE, 4977 cas_cacheline_size)) { 4978 dev_err(&pdev->dev, "Could not set PCI cache " 4979 "line size\n"); 4980 goto err_write_cacheline; 4981 } 4982 } 4983 #endif 4984 4985 4986 /* Configure DMA attributes. */ 4987 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4988 pci_using_dac = 1; 4989 err = pci_set_consistent_dma_mask(pdev, 4990 DMA_BIT_MASK(64)); 4991 if (err < 0) { 4992 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4993 "for consistent allocations\n"); 4994 goto err_out_free_res; 4995 } 4996 4997 } else { 4998 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4999 if (err) { 5000 dev_err(&pdev->dev, "No usable DMA configuration, " 5001 "aborting\n"); 5002 goto err_out_free_res; 5003 } 5004 pci_using_dac = 0; 5005 } 5006 5007 casreg_len = pci_resource_len(pdev, 0); 5008 5009 cp = netdev_priv(dev); 5010 cp->pdev = pdev; 5011 #if 1 5012 /* A value of 0 indicates we never explicitly set it */ 5013 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5014 #endif 5015 cp->dev = dev; 5016 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5017 cassini_debug; 5018 5019 #if defined(CONFIG_SPARC) 5020 cp->of_node = pci_device_to_OF_node(pdev); 5021 #endif 5022 5023 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5024 cp->link_transition_jiffies_valid = 0; 5025 5026 spin_lock_init(&cp->lock); 5027 spin_lock_init(&cp->rx_inuse_lock); 5028 spin_lock_init(&cp->rx_spare_lock); 5029 for (i = 0; i < N_TX_RINGS; i++) { 5030 spin_lock_init(&cp->stat_lock[i]); 5031 spin_lock_init(&cp->tx_lock[i]); 5032 } 5033 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5034 mutex_init(&cp->pm_mutex); 5035 5036 init_timer(&cp->link_timer); 5037 cp->link_timer.function = cas_link_timer; 5038 cp->link_timer.data = (unsigned long) cp; 5039 5040 #if 1 5041 /* Just in case the implementation of atomic operations 5042 * change so that an explicit initialization is necessary. 5043 */ 5044 atomic_set(&cp->reset_task_pending, 0); 5045 atomic_set(&cp->reset_task_pending_all, 0); 5046 atomic_set(&cp->reset_task_pending_spare, 0); 5047 atomic_set(&cp->reset_task_pending_mtu, 0); 5048 #endif 5049 INIT_WORK(&cp->reset_task, cas_reset_task); 5050 5051 /* Default link parameters */ 5052 if (link_mode >= 0 && link_mode < 6) 5053 cp->link_cntl = link_modes[link_mode]; 5054 else 5055 cp->link_cntl = BMCR_ANENABLE; 5056 cp->lstate = link_down; 5057 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5058 netif_carrier_off(cp->dev); 5059 cp->timer_ticks = 0; 5060 5061 /* give us access to cassini registers */ 5062 cp->regs = pci_iomap(pdev, 0, casreg_len); 5063 if (!cp->regs) { 5064 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5065 goto err_out_free_res; 5066 } 5067 cp->casreg_len = casreg_len; 5068 5069 pci_save_state(pdev); 5070 cas_check_pci_invariants(cp); 5071 cas_hard_reset(cp); 5072 cas_reset(cp, 0); 5073 if (cas_check_invariants(cp)) 5074 goto err_out_iounmap; 5075 if (cp->cas_flags & CAS_FLAG_SATURN) 5076 cas_saturn_firmware_init(cp); 5077 5078 cp->init_block = (struct cas_init_block *) 5079 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5080 &cp->block_dvma); 5081 if (!cp->init_block) { 5082 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5083 goto err_out_iounmap; 5084 } 5085 5086 for (i = 0; i < N_TX_RINGS; i++) 5087 cp->init_txds[i] = cp->init_block->txds[i]; 5088 5089 for (i = 0; i < N_RX_DESC_RINGS; i++) 5090 cp->init_rxds[i] = cp->init_block->rxds[i]; 5091 5092 for (i = 0; i < N_RX_COMP_RINGS; i++) 5093 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5094 5095 for (i = 0; i < N_RX_FLOWS; i++) 5096 skb_queue_head_init(&cp->rx_flows[i]); 5097 5098 dev->netdev_ops = &cas_netdev_ops; 5099 dev->ethtool_ops = &cas_ethtool_ops; 5100 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5101 5102 #ifdef USE_NAPI 5103 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5104 #endif 5105 dev->irq = pdev->irq; 5106 dev->dma = 0; 5107 5108 /* Cassini features. */ 5109 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5110 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5111 5112 if (pci_using_dac) 5113 dev->features |= NETIF_F_HIGHDMA; 5114 5115 /* MTU range: 60 - varies or 9000 */ 5116 dev->min_mtu = CAS_MIN_MTU; 5117 dev->max_mtu = CAS_MAX_MTU; 5118 5119 if (register_netdev(dev)) { 5120 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5121 goto err_out_free_consistent; 5122 } 5123 5124 i = readl(cp->regs + REG_BIM_CFG); 5125 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5126 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5127 (i & BIM_CFG_32BIT) ? "32" : "64", 5128 (i & BIM_CFG_66MHZ) ? "66" : "33", 5129 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5130 dev->dev_addr); 5131 5132 pci_set_drvdata(pdev, dev); 5133 cp->hw_running = 1; 5134 cas_entropy_reset(cp); 5135 cas_phy_init(cp); 5136 cas_begin_auto_negotiation(cp, NULL); 5137 return 0; 5138 5139 err_out_free_consistent: 5140 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5141 cp->init_block, cp->block_dvma); 5142 5143 err_out_iounmap: 5144 mutex_lock(&cp->pm_mutex); 5145 if (cp->hw_running) 5146 cas_shutdown(cp); 5147 mutex_unlock(&cp->pm_mutex); 5148 5149 pci_iounmap(pdev, cp->regs); 5150 5151 5152 err_out_free_res: 5153 pci_release_regions(pdev); 5154 5155 err_write_cacheline: 5156 /* Try to restore it in case the error occurred after we 5157 * set it. 5158 */ 5159 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5160 5161 err_out_free_netdev: 5162 free_netdev(dev); 5163 5164 err_out_disable_pdev: 5165 pci_disable_device(pdev); 5166 return -ENODEV; 5167 } 5168 5169 static void cas_remove_one(struct pci_dev *pdev) 5170 { 5171 struct net_device *dev = pci_get_drvdata(pdev); 5172 struct cas *cp; 5173 if (!dev) 5174 return; 5175 5176 cp = netdev_priv(dev); 5177 unregister_netdev(dev); 5178 5179 vfree(cp->fw_data); 5180 5181 mutex_lock(&cp->pm_mutex); 5182 cancel_work_sync(&cp->reset_task); 5183 if (cp->hw_running) 5184 cas_shutdown(cp); 5185 mutex_unlock(&cp->pm_mutex); 5186 5187 #if 1 5188 if (cp->orig_cacheline_size) { 5189 /* Restore the cache line size if we had modified 5190 * it. 5191 */ 5192 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5193 cp->orig_cacheline_size); 5194 } 5195 #endif 5196 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5197 cp->init_block, cp->block_dvma); 5198 pci_iounmap(pdev, cp->regs); 5199 free_netdev(dev); 5200 pci_release_regions(pdev); 5201 pci_disable_device(pdev); 5202 } 5203 5204 #ifdef CONFIG_PM 5205 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5206 { 5207 struct net_device *dev = pci_get_drvdata(pdev); 5208 struct cas *cp = netdev_priv(dev); 5209 unsigned long flags; 5210 5211 mutex_lock(&cp->pm_mutex); 5212 5213 /* If the driver is opened, we stop the DMA */ 5214 if (cp->opened) { 5215 netif_device_detach(dev); 5216 5217 cas_lock_all_save(cp, flags); 5218 5219 /* We can set the second arg of cas_reset to 0 5220 * because on resume, we'll call cas_init_hw with 5221 * its second arg set so that autonegotiation is 5222 * restarted. 5223 */ 5224 cas_reset(cp, 0); 5225 cas_clean_rings(cp); 5226 cas_unlock_all_restore(cp, flags); 5227 } 5228 5229 if (cp->hw_running) 5230 cas_shutdown(cp); 5231 mutex_unlock(&cp->pm_mutex); 5232 5233 return 0; 5234 } 5235 5236 static int cas_resume(struct pci_dev *pdev) 5237 { 5238 struct net_device *dev = pci_get_drvdata(pdev); 5239 struct cas *cp = netdev_priv(dev); 5240 5241 netdev_info(dev, "resuming\n"); 5242 5243 mutex_lock(&cp->pm_mutex); 5244 cas_hard_reset(cp); 5245 if (cp->opened) { 5246 unsigned long flags; 5247 cas_lock_all_save(cp, flags); 5248 cas_reset(cp, 0); 5249 cp->hw_running = 1; 5250 cas_clean_rings(cp); 5251 cas_init_hw(cp, 1); 5252 cas_unlock_all_restore(cp, flags); 5253 5254 netif_device_attach(dev); 5255 } 5256 mutex_unlock(&cp->pm_mutex); 5257 return 0; 5258 } 5259 #endif /* CONFIG_PM */ 5260 5261 static struct pci_driver cas_driver = { 5262 .name = DRV_MODULE_NAME, 5263 .id_table = cas_pci_tbl, 5264 .probe = cas_init_one, 5265 .remove = cas_remove_one, 5266 #ifdef CONFIG_PM 5267 .suspend = cas_suspend, 5268 .resume = cas_resume 5269 #endif 5270 }; 5271 5272 static int __init cas_init(void) 5273 { 5274 if (linkdown_timeout > 0) 5275 link_transition_timeout = linkdown_timeout * HZ; 5276 else 5277 link_transition_timeout = 0; 5278 5279 return pci_register_driver(&cas_driver); 5280 } 5281 5282 static void __exit cas_cleanup(void) 5283 { 5284 pci_unregister_driver(&cas_driver); 5285 } 5286 5287 module_init(cas_init); 5288 module_exit(cas_cleanup); 5289