xref: /openbmc/linux/drivers/net/ethernet/sun/cassini.c (revision 8440bb9b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * (davem@redhat.com) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     the page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72 
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84 
85 #include <net/checksum.h>
86 
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 
92 #define cas_page_map(x)      kmap_atomic((x))
93 #define cas_page_unmap(x)    kunmap_atomic((x))
94 #define CAS_NCPUS            num_online_cpus()
95 
96 #define cas_skb_release(x)  netif_rx(x)
97 
98 /* select which firmware to use */
99 #define USE_HP_WORKAROUND
100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
102 
103 #include "cassini.h"
104 
105 #define USE_TX_COMPWB      /* use completion writeback registers */
106 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
107 #define USE_RX_BLANK       /* hw interrupt mitigation */
108 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
109 
110 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
111  * also, we need to make cp->lock finer-grained.
112  */
113 #undef  USE_PCI_INTB
114 #undef  USE_PCI_INTC
115 #undef  USE_PCI_INTD
116 #undef  USE_QOS
117 
118 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
119 
120 /* rx processing options */
121 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
122 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
123 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
124 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
125 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
126 
127 #define DRV_MODULE_NAME		"cassini"
128 #define DRV_MODULE_VERSION	"1.6"
129 #define DRV_MODULE_RELDATE	"21 May 2008"
130 
131 #define CAS_DEF_MSG_ENABLE	  \
132 	(NETIF_MSG_DRV		| \
133 	 NETIF_MSG_PROBE	| \
134 	 NETIF_MSG_LINK		| \
135 	 NETIF_MSG_TIMER	| \
136 	 NETIF_MSG_IFDOWN	| \
137 	 NETIF_MSG_IFUP		| \
138 	 NETIF_MSG_RX_ERR	| \
139 	 NETIF_MSG_TX_ERR)
140 
141 /* length of time before we decide the hardware is borked,
142  * and dev->tx_timeout() should be called to fix the problem
143  */
144 #define CAS_TX_TIMEOUT			(HZ)
145 #define CAS_LINK_TIMEOUT                (22*HZ/10)
146 #define CAS_LINK_FAST_TIMEOUT           (1)
147 
148 /* timeout values for state changing. these specify the number
149  * of 10us delays to be used before giving up.
150  */
151 #define STOP_TRIES_PHY 1000
152 #define STOP_TRIES     5000
153 
154 /* specify a minimum frame size to deal with some fifo issues
155  * max mtu == 2 * page size - ethernet header - 64 - swivel =
156  *            2 * page_size - 0x50
157  */
158 #define CAS_MIN_FRAME			97
159 #define CAS_1000MB_MIN_FRAME            255
160 #define CAS_MIN_MTU                     60
161 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
162 
163 #if 1
164 /*
165  * Eliminate these and use separate atomic counters for each, to
166  * avoid a race condition.
167  */
168 #else
169 #define CAS_RESET_MTU                   1
170 #define CAS_RESET_ALL                   2
171 #define CAS_RESET_SPARE                 3
172 #endif
173 
174 static char version[] =
175 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
176 
177 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
178 static int link_mode;
179 
180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182 MODULE_LICENSE("GPL");
183 MODULE_FIRMWARE("sun/cassini.bin");
184 module_param(cassini_debug, int, 0);
185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
186 module_param(link_mode, int, 0);
187 MODULE_PARM_DESC(link_mode, "default link mode");
188 
189 /*
190  * Work around for a PCS bug in which the link goes down due to the chip
191  * being confused and never showing a link status of "up."
192  */
193 #define DEFAULT_LINKDOWN_TIMEOUT 5
194 /*
195  * Value in seconds, for user input.
196  */
197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
198 module_param(linkdown_timeout, int, 0);
199 MODULE_PARM_DESC(linkdown_timeout,
200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
201 
202 /*
203  * value in 'ticks' (units used by jiffies). Set when we init the
204  * module because 'HZ' in actually a function call on some flavors of
205  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
206  */
207 static int link_transition_timeout;
208 
209 
210 
211 static u16 link_modes[] = {
212 	BMCR_ANENABLE,			 /* 0 : autoneg */
213 	0,				 /* 1 : 10bt half duplex */
214 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
215 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
216 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
217 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
218 };
219 
220 static const struct pci_device_id cas_pci_tbl[] = {
221 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
223 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
225 	{ 0, }
226 };
227 
228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
229 
230 static void cas_set_link_modes(struct cas *cp);
231 
232 static inline void cas_lock_tx(struct cas *cp)
233 {
234 	int i;
235 
236 	for (i = 0; i < N_TX_RINGS; i++)
237 		spin_lock_nested(&cp->tx_lock[i], i);
238 }
239 
240 static inline void cas_lock_all(struct cas *cp)
241 {
242 	spin_lock_irq(&cp->lock);
243 	cas_lock_tx(cp);
244 }
245 
246 /* WTZ: QA was finding deadlock problems with the previous
247  * versions after long test runs with multiple cards per machine.
248  * See if replacing cas_lock_all with safer versions helps. The
249  * symptoms QA is reporting match those we'd expect if interrupts
250  * aren't being properly restored, and we fixed a previous deadlock
251  * with similar symptoms by using save/restore versions in other
252  * places.
253  */
254 #define cas_lock_all_save(cp, flags) \
255 do { \
256 	struct cas *xxxcp = (cp); \
257 	spin_lock_irqsave(&xxxcp->lock, flags); \
258 	cas_lock_tx(xxxcp); \
259 } while (0)
260 
261 static inline void cas_unlock_tx(struct cas *cp)
262 {
263 	int i;
264 
265 	for (i = N_TX_RINGS; i > 0; i--)
266 		spin_unlock(&cp->tx_lock[i - 1]);
267 }
268 
269 static inline void cas_unlock_all(struct cas *cp)
270 {
271 	cas_unlock_tx(cp);
272 	spin_unlock_irq(&cp->lock);
273 }
274 
275 #define cas_unlock_all_restore(cp, flags) \
276 do { \
277 	struct cas *xxxcp = (cp); \
278 	cas_unlock_tx(xxxcp); \
279 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
280 } while (0)
281 
282 static void cas_disable_irq(struct cas *cp, const int ring)
283 {
284 	/* Make sure we won't get any more interrupts */
285 	if (ring == 0) {
286 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
287 		return;
288 	}
289 
290 	/* disable completion interrupts and selectively mask */
291 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
292 		switch (ring) {
293 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
294 #ifdef USE_PCI_INTB
295 		case 1:
296 #endif
297 #ifdef USE_PCI_INTC
298 		case 2:
299 #endif
300 #ifdef USE_PCI_INTD
301 		case 3:
302 #endif
303 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
304 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
305 			break;
306 #endif
307 		default:
308 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
309 			       REG_PLUS_INTRN_MASK(ring));
310 			break;
311 		}
312 	}
313 }
314 
315 static inline void cas_mask_intr(struct cas *cp)
316 {
317 	int i;
318 
319 	for (i = 0; i < N_RX_COMP_RINGS; i++)
320 		cas_disable_irq(cp, i);
321 }
322 
323 static void cas_enable_irq(struct cas *cp, const int ring)
324 {
325 	if (ring == 0) { /* all but TX_DONE */
326 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
327 		return;
328 	}
329 
330 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
331 		switch (ring) {
332 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
333 #ifdef USE_PCI_INTB
334 		case 1:
335 #endif
336 #ifdef USE_PCI_INTC
337 		case 2:
338 #endif
339 #ifdef USE_PCI_INTD
340 		case 3:
341 #endif
342 			writel(INTRN_MASK_RX_EN, cp->regs +
343 			       REG_PLUS_INTRN_MASK(ring));
344 			break;
345 #endif
346 		default:
347 			break;
348 		}
349 	}
350 }
351 
352 static inline void cas_unmask_intr(struct cas *cp)
353 {
354 	int i;
355 
356 	for (i = 0; i < N_RX_COMP_RINGS; i++)
357 		cas_enable_irq(cp, i);
358 }
359 
360 static inline void cas_entropy_gather(struct cas *cp)
361 {
362 #ifdef USE_ENTROPY_DEV
363 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
364 		return;
365 
366 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
367 			    readl(cp->regs + REG_ENTROPY_IV),
368 			    sizeof(uint64_t)*8);
369 #endif
370 }
371 
372 static inline void cas_entropy_reset(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376 		return;
377 
378 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
379 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
380 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
381 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
382 
383 	/* if we read back 0x0, we don't have an entropy device */
384 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
385 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
386 #endif
387 }
388 
389 /* access to the phy. the following assumes that we've initialized the MIF to
390  * be in frame rather than bit-bang mode
391  */
392 static u16 cas_phy_read(struct cas *cp, int reg)
393 {
394 	u32 cmd;
395 	int limit = STOP_TRIES_PHY;
396 
397 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
398 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
399 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
400 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
401 	writel(cmd, cp->regs + REG_MIF_FRAME);
402 
403 	/* poll for completion */
404 	while (limit-- > 0) {
405 		udelay(10);
406 		cmd = readl(cp->regs + REG_MIF_FRAME);
407 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
408 			return cmd & MIF_FRAME_DATA_MASK;
409 	}
410 	return 0xFFFF; /* -1 */
411 }
412 
413 static int cas_phy_write(struct cas *cp, int reg, u16 val)
414 {
415 	int limit = STOP_TRIES_PHY;
416 	u32 cmd;
417 
418 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
419 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
420 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
421 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
422 	cmd |= val & MIF_FRAME_DATA_MASK;
423 	writel(cmd, cp->regs + REG_MIF_FRAME);
424 
425 	/* poll for completion */
426 	while (limit-- > 0) {
427 		udelay(10);
428 		cmd = readl(cp->regs + REG_MIF_FRAME);
429 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
430 			return 0;
431 	}
432 	return -1;
433 }
434 
435 static void cas_phy_powerup(struct cas *cp)
436 {
437 	u16 ctl = cas_phy_read(cp, MII_BMCR);
438 
439 	if ((ctl & BMCR_PDOWN) == 0)
440 		return;
441 	ctl &= ~BMCR_PDOWN;
442 	cas_phy_write(cp, MII_BMCR, ctl);
443 }
444 
445 static void cas_phy_powerdown(struct cas *cp)
446 {
447 	u16 ctl = cas_phy_read(cp, MII_BMCR);
448 
449 	if (ctl & BMCR_PDOWN)
450 		return;
451 	ctl |= BMCR_PDOWN;
452 	cas_phy_write(cp, MII_BMCR, ctl);
453 }
454 
455 /* cp->lock held. note: the last put_page will free the buffer */
456 static int cas_page_free(struct cas *cp, cas_page_t *page)
457 {
458 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
459 		       PCI_DMA_FROMDEVICE);
460 	__free_pages(page->buffer, cp->page_order);
461 	kfree(page);
462 	return 0;
463 }
464 
465 #ifdef RX_COUNT_BUFFERS
466 #define RX_USED_ADD(x, y)       ((x)->used += (y))
467 #define RX_USED_SET(x, y)       ((x)->used  = (y))
468 #else
469 #define RX_USED_ADD(x, y)
470 #define RX_USED_SET(x, y)
471 #endif
472 
473 /* local page allocation routines for the receive buffers. jumbo pages
474  * require at least 8K contiguous and 8K aligned buffers.
475  */
476 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
477 {
478 	cas_page_t *page;
479 
480 	page = kmalloc(sizeof(cas_page_t), flags);
481 	if (!page)
482 		return NULL;
483 
484 	INIT_LIST_HEAD(&page->list);
485 	RX_USED_SET(page, 0);
486 	page->buffer = alloc_pages(flags, cp->page_order);
487 	if (!page->buffer)
488 		goto page_err;
489 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
490 				      cp->page_size, PCI_DMA_FROMDEVICE);
491 	return page;
492 
493 page_err:
494 	kfree(page);
495 	return NULL;
496 }
497 
498 /* initialize spare pool of rx buffers, but allocate during the open */
499 static void cas_spare_init(struct cas *cp)
500 {
501   	spin_lock(&cp->rx_inuse_lock);
502 	INIT_LIST_HEAD(&cp->rx_inuse_list);
503 	spin_unlock(&cp->rx_inuse_lock);
504 
505 	spin_lock(&cp->rx_spare_lock);
506 	INIT_LIST_HEAD(&cp->rx_spare_list);
507 	cp->rx_spares_needed = RX_SPARE_COUNT;
508 	spin_unlock(&cp->rx_spare_lock);
509 }
510 
511 /* used on close. free all the spare buffers. */
512 static void cas_spare_free(struct cas *cp)
513 {
514 	struct list_head list, *elem, *tmp;
515 
516 	/* free spare buffers */
517 	INIT_LIST_HEAD(&list);
518 	spin_lock(&cp->rx_spare_lock);
519 	list_splice_init(&cp->rx_spare_list, &list);
520 	spin_unlock(&cp->rx_spare_lock);
521 	list_for_each_safe(elem, tmp, &list) {
522 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
523 	}
524 
525 	INIT_LIST_HEAD(&list);
526 #if 1
527 	/*
528 	 * Looks like Adrian had protected this with a different
529 	 * lock than used everywhere else to manipulate this list.
530 	 */
531 	spin_lock(&cp->rx_inuse_lock);
532 	list_splice_init(&cp->rx_inuse_list, &list);
533 	spin_unlock(&cp->rx_inuse_lock);
534 #else
535 	spin_lock(&cp->rx_spare_lock);
536 	list_splice_init(&cp->rx_inuse_list, &list);
537 	spin_unlock(&cp->rx_spare_lock);
538 #endif
539 	list_for_each_safe(elem, tmp, &list) {
540 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
541 	}
542 }
543 
544 /* replenish spares if needed */
545 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
546 {
547 	struct list_head list, *elem, *tmp;
548 	int needed, i;
549 
550 	/* check inuse list. if we don't need any more free buffers,
551 	 * just free it
552 	 */
553 
554 	/* make a local copy of the list */
555 	INIT_LIST_HEAD(&list);
556 	spin_lock(&cp->rx_inuse_lock);
557 	list_splice_init(&cp->rx_inuse_list, &list);
558 	spin_unlock(&cp->rx_inuse_lock);
559 
560 	list_for_each_safe(elem, tmp, &list) {
561 		cas_page_t *page = list_entry(elem, cas_page_t, list);
562 
563 		/*
564 		 * With the lockless pagecache, cassini buffering scheme gets
565 		 * slightly less accurate: we might find that a page has an
566 		 * elevated reference count here, due to a speculative ref,
567 		 * and skip it as in-use. Ideally we would be able to reclaim
568 		 * it. However this would be such a rare case, it doesn't
569 		 * matter too much as we should pick it up the next time round.
570 		 *
571 		 * Importantly, if we find that the page has a refcount of 1
572 		 * here (our refcount), then we know it is definitely not inuse
573 		 * so we can reuse it.
574 		 */
575 		if (page_count(page->buffer) > 1)
576 			continue;
577 
578 		list_del(elem);
579 		spin_lock(&cp->rx_spare_lock);
580 		if (cp->rx_spares_needed > 0) {
581 			list_add(elem, &cp->rx_spare_list);
582 			cp->rx_spares_needed--;
583 			spin_unlock(&cp->rx_spare_lock);
584 		} else {
585 			spin_unlock(&cp->rx_spare_lock);
586 			cas_page_free(cp, page);
587 		}
588 	}
589 
590 	/* put any inuse buffers back on the list */
591 	if (!list_empty(&list)) {
592 		spin_lock(&cp->rx_inuse_lock);
593 		list_splice(&list, &cp->rx_inuse_list);
594 		spin_unlock(&cp->rx_inuse_lock);
595 	}
596 
597 	spin_lock(&cp->rx_spare_lock);
598 	needed = cp->rx_spares_needed;
599 	spin_unlock(&cp->rx_spare_lock);
600 	if (!needed)
601 		return;
602 
603 	/* we still need spares, so try to allocate some */
604 	INIT_LIST_HEAD(&list);
605 	i = 0;
606 	while (i < needed) {
607 		cas_page_t *spare = cas_page_alloc(cp, flags);
608 		if (!spare)
609 			break;
610 		list_add(&spare->list, &list);
611 		i++;
612 	}
613 
614 	spin_lock(&cp->rx_spare_lock);
615 	list_splice(&list, &cp->rx_spare_list);
616 	cp->rx_spares_needed -= i;
617 	spin_unlock(&cp->rx_spare_lock);
618 }
619 
620 /* pull a page from the list. */
621 static cas_page_t *cas_page_dequeue(struct cas *cp)
622 {
623 	struct list_head *entry;
624 	int recover;
625 
626 	spin_lock(&cp->rx_spare_lock);
627 	if (list_empty(&cp->rx_spare_list)) {
628 		/* try to do a quick recovery */
629 		spin_unlock(&cp->rx_spare_lock);
630 		cas_spare_recover(cp, GFP_ATOMIC);
631 		spin_lock(&cp->rx_spare_lock);
632 		if (list_empty(&cp->rx_spare_list)) {
633 			netif_err(cp, rx_err, cp->dev,
634 				  "no spare buffers available\n");
635 			spin_unlock(&cp->rx_spare_lock);
636 			return NULL;
637 		}
638 	}
639 
640 	entry = cp->rx_spare_list.next;
641 	list_del(entry);
642 	recover = ++cp->rx_spares_needed;
643 	spin_unlock(&cp->rx_spare_lock);
644 
645 	/* trigger the timer to do the recovery */
646 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
647 #if 1
648 		atomic_inc(&cp->reset_task_pending);
649 		atomic_inc(&cp->reset_task_pending_spare);
650 		schedule_work(&cp->reset_task);
651 #else
652 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
653 		schedule_work(&cp->reset_task);
654 #endif
655 	}
656 	return list_entry(entry, cas_page_t, list);
657 }
658 
659 
660 static void cas_mif_poll(struct cas *cp, const int enable)
661 {
662 	u32 cfg;
663 
664 	cfg  = readl(cp->regs + REG_MIF_CFG);
665 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
666 
667 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
668 		cfg |= MIF_CFG_PHY_SELECT;
669 
670 	/* poll and interrupt on link status change. */
671 	if (enable) {
672 		cfg |= MIF_CFG_POLL_EN;
673 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
674 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
675 	}
676 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
677 	       cp->regs + REG_MIF_MASK);
678 	writel(cfg, cp->regs + REG_MIF_CFG);
679 }
680 
681 /* Must be invoked under cp->lock */
682 static void cas_begin_auto_negotiation(struct cas *cp,
683 				       const struct ethtool_link_ksettings *ep)
684 {
685 	u16 ctl;
686 #if 1
687 	int lcntl;
688 	int changed = 0;
689 	int oldstate = cp->lstate;
690 	int link_was_not_down = !(oldstate == link_down);
691 #endif
692 	/* Setup link parameters */
693 	if (!ep)
694 		goto start_aneg;
695 	lcntl = cp->link_cntl;
696 	if (ep->base.autoneg == AUTONEG_ENABLE) {
697 		cp->link_cntl = BMCR_ANENABLE;
698 	} else {
699 		u32 speed = ep->base.speed;
700 		cp->link_cntl = 0;
701 		if (speed == SPEED_100)
702 			cp->link_cntl |= BMCR_SPEED100;
703 		else if (speed == SPEED_1000)
704 			cp->link_cntl |= CAS_BMCR_SPEED1000;
705 		if (ep->base.duplex == DUPLEX_FULL)
706 			cp->link_cntl |= BMCR_FULLDPLX;
707 	}
708 #if 1
709 	changed = (lcntl != cp->link_cntl);
710 #endif
711 start_aneg:
712 	if (cp->lstate == link_up) {
713 		netdev_info(cp->dev, "PCS link down\n");
714 	} else {
715 		if (changed) {
716 			netdev_info(cp->dev, "link configuration changed\n");
717 		}
718 	}
719 	cp->lstate = link_down;
720 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
721 	if (!cp->hw_running)
722 		return;
723 #if 1
724 	/*
725 	 * WTZ: If the old state was link_up, we turn off the carrier
726 	 * to replicate everything we do elsewhere on a link-down
727 	 * event when we were already in a link-up state..
728 	 */
729 	if (oldstate == link_up)
730 		netif_carrier_off(cp->dev);
731 	if (changed  && link_was_not_down) {
732 		/*
733 		 * WTZ: This branch will simply schedule a full reset after
734 		 * we explicitly changed link modes in an ioctl. See if this
735 		 * fixes the link-problems we were having for forced mode.
736 		 */
737 		atomic_inc(&cp->reset_task_pending);
738 		atomic_inc(&cp->reset_task_pending_all);
739 		schedule_work(&cp->reset_task);
740 		cp->timer_ticks = 0;
741 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
742 		return;
743 	}
744 #endif
745 	if (cp->phy_type & CAS_PHY_SERDES) {
746 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
747 
748 		if (cp->link_cntl & BMCR_ANENABLE) {
749 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
750 			cp->lstate = link_aneg;
751 		} else {
752 			if (cp->link_cntl & BMCR_FULLDPLX)
753 				val |= PCS_MII_CTRL_DUPLEX;
754 			val &= ~PCS_MII_AUTONEG_EN;
755 			cp->lstate = link_force_ok;
756 		}
757 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
758 		writel(val, cp->regs + REG_PCS_MII_CTRL);
759 
760 	} else {
761 		cas_mif_poll(cp, 0);
762 		ctl = cas_phy_read(cp, MII_BMCR);
763 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
764 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
765 		ctl |= cp->link_cntl;
766 		if (ctl & BMCR_ANENABLE) {
767 			ctl |= BMCR_ANRESTART;
768 			cp->lstate = link_aneg;
769 		} else {
770 			cp->lstate = link_force_ok;
771 		}
772 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
773 		cas_phy_write(cp, MII_BMCR, ctl);
774 		cas_mif_poll(cp, 1);
775 	}
776 
777 	cp->timer_ticks = 0;
778 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
779 }
780 
781 /* Must be invoked under cp->lock. */
782 static int cas_reset_mii_phy(struct cas *cp)
783 {
784 	int limit = STOP_TRIES_PHY;
785 	u16 val;
786 
787 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
788 	udelay(100);
789 	while (--limit) {
790 		val = cas_phy_read(cp, MII_BMCR);
791 		if ((val & BMCR_RESET) == 0)
792 			break;
793 		udelay(10);
794 	}
795 	return limit <= 0;
796 }
797 
798 static void cas_saturn_firmware_init(struct cas *cp)
799 {
800 	const struct firmware *fw;
801 	const char fw_name[] = "sun/cassini.bin";
802 	int err;
803 
804 	if (PHY_NS_DP83065 != cp->phy_id)
805 		return;
806 
807 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
808 	if (err) {
809 		pr_err("Failed to load firmware \"%s\"\n",
810 		       fw_name);
811 		return;
812 	}
813 	if (fw->size < 2) {
814 		pr_err("bogus length %zu in \"%s\"\n",
815 		       fw->size, fw_name);
816 		goto out;
817 	}
818 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
819 	cp->fw_size = fw->size - 2;
820 	cp->fw_data = vmalloc(cp->fw_size);
821 	if (!cp->fw_data)
822 		goto out;
823 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
824 out:
825 	release_firmware(fw);
826 }
827 
828 static void cas_saturn_firmware_load(struct cas *cp)
829 {
830 	int i;
831 
832 	if (!cp->fw_data)
833 		return;
834 
835 	cas_phy_powerdown(cp);
836 
837 	/* expanded memory access mode */
838 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
839 
840 	/* pointer configuration for new firmware */
841 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
842 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
843 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
844 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
845 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
846 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
847 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
848 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
849 
850 	/* download new firmware */
851 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
852 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
853 	for (i = 0; i < cp->fw_size; i++)
854 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
855 
856 	/* enable firmware */
857 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
858 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
859 }
860 
861 
862 /* phy initialization */
863 static void cas_phy_init(struct cas *cp)
864 {
865 	u16 val;
866 
867 	/* if we're in MII/GMII mode, set up phy */
868 	if (CAS_PHY_MII(cp->phy_type)) {
869 		writel(PCS_DATAPATH_MODE_MII,
870 		       cp->regs + REG_PCS_DATAPATH_MODE);
871 
872 		cas_mif_poll(cp, 0);
873 		cas_reset_mii_phy(cp); /* take out of isolate mode */
874 
875 		if (PHY_LUCENT_B0 == cp->phy_id) {
876 			/* workaround link up/down issue with lucent */
877 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
878 			cas_phy_write(cp, MII_BMCR, 0x00f1);
879 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
880 
881 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
882 			/* workarounds for broadcom phy */
883 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
884 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
885 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
886 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
887 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
888 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
889 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
890 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
891 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
892 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
893 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
894 
895 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
896 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
897 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
898 			if (val & 0x0080) {
899 				/* link workaround */
900 				cas_phy_write(cp, BROADCOM_MII_REG4,
901 					      val & ~0x0080);
902 			}
903 
904 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
905 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
906 			       SATURN_PCFG_FSI : 0x0,
907 			       cp->regs + REG_SATURN_PCFG);
908 
909 			/* load firmware to address 10Mbps auto-negotiation
910 			 * issue. NOTE: this will need to be changed if the
911 			 * default firmware gets fixed.
912 			 */
913 			if (PHY_NS_DP83065 == cp->phy_id) {
914 				cas_saturn_firmware_load(cp);
915 			}
916 			cas_phy_powerup(cp);
917 		}
918 
919 		/* advertise capabilities */
920 		val = cas_phy_read(cp, MII_BMCR);
921 		val &= ~BMCR_ANENABLE;
922 		cas_phy_write(cp, MII_BMCR, val);
923 		udelay(10);
924 
925 		cas_phy_write(cp, MII_ADVERTISE,
926 			      cas_phy_read(cp, MII_ADVERTISE) |
927 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
928 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
929 			       CAS_ADVERTISE_PAUSE |
930 			       CAS_ADVERTISE_ASYM_PAUSE));
931 
932 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
933 			/* make sure that we don't advertise half
934 			 * duplex to avoid a chip issue
935 			 */
936 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
937 			val &= ~CAS_ADVERTISE_1000HALF;
938 			val |= CAS_ADVERTISE_1000FULL;
939 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
940 		}
941 
942 	} else {
943 		/* reset pcs for serdes */
944 		u32 val;
945 		int limit;
946 
947 		writel(PCS_DATAPATH_MODE_SERDES,
948 		       cp->regs + REG_PCS_DATAPATH_MODE);
949 
950 		/* enable serdes pins on saturn */
951 		if (cp->cas_flags & CAS_FLAG_SATURN)
952 			writel(0, cp->regs + REG_SATURN_PCFG);
953 
954 		/* Reset PCS unit. */
955 		val = readl(cp->regs + REG_PCS_MII_CTRL);
956 		val |= PCS_MII_RESET;
957 		writel(val, cp->regs + REG_PCS_MII_CTRL);
958 
959 		limit = STOP_TRIES;
960 		while (--limit > 0) {
961 			udelay(10);
962 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
963 			     PCS_MII_RESET) == 0)
964 				break;
965 		}
966 		if (limit <= 0)
967 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
968 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
969 
970 		/* Make sure PCS is disabled while changing advertisement
971 		 * configuration.
972 		 */
973 		writel(0x0, cp->regs + REG_PCS_CFG);
974 
975 		/* Advertise all capabilities except half-duplex. */
976 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
977 		val &= ~PCS_MII_ADVERT_HD;
978 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
979 			PCS_MII_ADVERT_ASYM_PAUSE);
980 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
981 
982 		/* enable PCS */
983 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
984 
985 		/* pcs workaround: enable sync detect */
986 		writel(PCS_SERDES_CTRL_SYNCD_EN,
987 		       cp->regs + REG_PCS_SERDES_CTRL);
988 	}
989 }
990 
991 
992 static int cas_pcs_link_check(struct cas *cp)
993 {
994 	u32 stat, state_machine;
995 	int retval = 0;
996 
997 	/* The link status bit latches on zero, so you must
998 	 * read it twice in such a case to see a transition
999 	 * to the link being up.
1000 	 */
1001 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1002 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1003 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1004 
1005 	/* The remote-fault indication is only valid
1006 	 * when autoneg has completed.
1007 	 */
1008 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1009 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1010 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1011 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1012 
1013 	/* work around link detection issue by querying the PCS state
1014 	 * machine directly.
1015 	 */
1016 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1017 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1018 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1019 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1020 		stat |= PCS_MII_STATUS_LINK_STATUS;
1021 	}
1022 
1023 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1024 		if (cp->lstate != link_up) {
1025 			if (cp->opened) {
1026 				cp->lstate = link_up;
1027 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1028 
1029 				cas_set_link_modes(cp);
1030 				netif_carrier_on(cp->dev);
1031 			}
1032 		}
1033 	} else if (cp->lstate == link_up) {
1034 		cp->lstate = link_down;
1035 		if (link_transition_timeout != 0 &&
1036 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1037 		    !cp->link_transition_jiffies_valid) {
1038 			/*
1039 			 * force a reset, as a workaround for the
1040 			 * link-failure problem. May want to move this to a
1041 			 * point a bit earlier in the sequence. If we had
1042 			 * generated a reset a short time ago, we'll wait for
1043 			 * the link timer to check the status until a
1044 			 * timer expires (link_transistion_jiffies_valid is
1045 			 * true when the timer is running.)  Instead of using
1046 			 * a system timer, we just do a check whenever the
1047 			 * link timer is running - this clears the flag after
1048 			 * a suitable delay.
1049 			 */
1050 			retval = 1;
1051 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1052 			cp->link_transition_jiffies = jiffies;
1053 			cp->link_transition_jiffies_valid = 1;
1054 		} else {
1055 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1056 		}
1057 		netif_carrier_off(cp->dev);
1058 		if (cp->opened)
1059 			netif_info(cp, link, cp->dev, "PCS link down\n");
1060 
1061 		/* Cassini only: if you force a mode, there can be
1062 		 * sync problems on link down. to fix that, the following
1063 		 * things need to be checked:
1064 		 * 1) read serialink state register
1065 		 * 2) read pcs status register to verify link down.
1066 		 * 3) if link down and serial link == 0x03, then you need
1067 		 *    to global reset the chip.
1068 		 */
1069 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1070 			/* should check to see if we're in a forced mode */
1071 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1072 			if (stat == 0x03)
1073 				return 1;
1074 		}
1075 	} else if (cp->lstate == link_down) {
1076 		if (link_transition_timeout != 0 &&
1077 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1078 		    !cp->link_transition_jiffies_valid) {
1079 			/* force a reset, as a workaround for the
1080 			 * link-failure problem.  May want to move
1081 			 * this to a point a bit earlier in the
1082 			 * sequence.
1083 			 */
1084 			retval = 1;
1085 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1086 			cp->link_transition_jiffies = jiffies;
1087 			cp->link_transition_jiffies_valid = 1;
1088 		} else {
1089 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1090 		}
1091 	}
1092 
1093 	return retval;
1094 }
1095 
1096 static int cas_pcs_interrupt(struct net_device *dev,
1097 			     struct cas *cp, u32 status)
1098 {
1099 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1100 
1101 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1102 		return 0;
1103 	return cas_pcs_link_check(cp);
1104 }
1105 
1106 static int cas_txmac_interrupt(struct net_device *dev,
1107 			       struct cas *cp, u32 status)
1108 {
1109 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1110 
1111 	if (!txmac_stat)
1112 		return 0;
1113 
1114 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1115 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1116 
1117 	/* Defer timer expiration is quite normal,
1118 	 * don't even log the event.
1119 	 */
1120 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1121 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1122 		return 0;
1123 
1124 	spin_lock(&cp->stat_lock[0]);
1125 	if (txmac_stat & MAC_TX_UNDERRUN) {
1126 		netdev_err(dev, "TX MAC xmit underrun\n");
1127 		cp->net_stats[0].tx_fifo_errors++;
1128 	}
1129 
1130 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1131 		netdev_err(dev, "TX MAC max packet size error\n");
1132 		cp->net_stats[0].tx_errors++;
1133 	}
1134 
1135 	/* The rest are all cases of one of the 16-bit TX
1136 	 * counters expiring.
1137 	 */
1138 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1139 		cp->net_stats[0].collisions += 0x10000;
1140 
1141 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1142 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1143 		cp->net_stats[0].collisions += 0x10000;
1144 	}
1145 
1146 	if (txmac_stat & MAC_TX_COLL_LATE) {
1147 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1148 		cp->net_stats[0].collisions += 0x10000;
1149 	}
1150 	spin_unlock(&cp->stat_lock[0]);
1151 
1152 	/* We do not keep track of MAC_TX_COLL_FIRST and
1153 	 * MAC_TX_PEAK_ATTEMPTS events.
1154 	 */
1155 	return 0;
1156 }
1157 
1158 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1159 {
1160 	cas_hp_inst_t *inst;
1161 	u32 val;
1162 	int i;
1163 
1164 	i = 0;
1165 	while ((inst = firmware) && inst->note) {
1166 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1167 
1168 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1169 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1170 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1171 
1172 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1173 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1174 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1175 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1176 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1177 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1178 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1179 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1180 
1181 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1182 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1183 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1184 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1185 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1186 		++firmware;
1187 		++i;
1188 	}
1189 }
1190 
1191 static void cas_init_rx_dma(struct cas *cp)
1192 {
1193 	u64 desc_dma = cp->block_dvma;
1194 	u32 val;
1195 	int i, size;
1196 
1197 	/* rx free descriptors */
1198 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1199 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1200 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1201 	if ((N_RX_DESC_RINGS > 1) &&
1202 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1203 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1204 	writel(val, cp->regs + REG_RX_CFG);
1205 
1206 	val = (unsigned long) cp->init_rxds[0] -
1207 		(unsigned long) cp->init_block;
1208 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1209 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1210 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1211 
1212 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1213 		/* rx desc 2 is for IPSEC packets. however,
1214 		 * we don't it that for that purpose.
1215 		 */
1216 		val = (unsigned long) cp->init_rxds[1] -
1217 			(unsigned long) cp->init_block;
1218 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1219 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1220 		       REG_PLUS_RX_DB1_LOW);
1221 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1222 		       REG_PLUS_RX_KICK1);
1223 	}
1224 
1225 	/* rx completion registers */
1226 	val = (unsigned long) cp->init_rxcs[0] -
1227 		(unsigned long) cp->init_block;
1228 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1229 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1230 
1231 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1232 		/* rx comp 2-4 */
1233 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1234 			val = (unsigned long) cp->init_rxcs[i] -
1235 				(unsigned long) cp->init_block;
1236 			writel((desc_dma + val) >> 32, cp->regs +
1237 			       REG_PLUS_RX_CBN_HI(i));
1238 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1239 			       REG_PLUS_RX_CBN_LOW(i));
1240 		}
1241 	}
1242 
1243 	/* read selective clear regs to prevent spurious interrupts
1244 	 * on reset because complete == kick.
1245 	 * selective clear set up to prevent interrupts on resets
1246 	 */
1247 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1248 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1249 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1250 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1251 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1252 
1253 		/* 2 is different from 3 and 4 */
1254 		if (N_RX_COMP_RINGS > 1)
1255 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1256 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1257 
1258 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1259 			writel(INTR_RX_DONE_ALT,
1260 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1261 	}
1262 
1263 	/* set up pause thresholds */
1264 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1265 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1266 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1267 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1268 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1269 
1270 	/* zero out dma reassembly buffers */
1271 	for (i = 0; i < 64; i++) {
1272 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1273 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1274 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1275 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1276 	}
1277 
1278 	/* make sure address register is 0 for normal operation */
1279 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1280 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1281 
1282 	/* interrupt mitigation */
1283 #ifdef USE_RX_BLANK
1284 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1285 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1286 	writel(val, cp->regs + REG_RX_BLANK);
1287 #else
1288 	writel(0x0, cp->regs + REG_RX_BLANK);
1289 #endif
1290 
1291 	/* interrupt generation as a function of low water marks for
1292 	 * free desc and completion entries. these are used to trigger
1293 	 * housekeeping for rx descs. we don't use the free interrupt
1294 	 * as it's not very useful
1295 	 */
1296 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1297 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1298 	writel(val, cp->regs + REG_RX_AE_THRESH);
1299 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1300 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1301 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1302 	}
1303 
1304 	/* Random early detect registers. useful for congestion avoidance.
1305 	 * this should be tunable.
1306 	 */
1307 	writel(0x0, cp->regs + REG_RX_RED);
1308 
1309 	/* receive page sizes. default == 2K (0x800) */
1310 	val = 0;
1311 	if (cp->page_size == 0x1000)
1312 		val = 0x1;
1313 	else if (cp->page_size == 0x2000)
1314 		val = 0x2;
1315 	else if (cp->page_size == 0x4000)
1316 		val = 0x3;
1317 
1318 	/* round mtu + offset. constrain to page size. */
1319 	size = cp->dev->mtu + 64;
1320 	if (size > cp->page_size)
1321 		size = cp->page_size;
1322 
1323 	if (size <= 0x400)
1324 		i = 0x0;
1325 	else if (size <= 0x800)
1326 		i = 0x1;
1327 	else if (size <= 0x1000)
1328 		i = 0x2;
1329 	else
1330 		i = 0x3;
1331 
1332 	cp->mtu_stride = 1 << (i + 10);
1333 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1334 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1335 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1336 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1337 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1338 
1339 	/* enable the header parser if desired */
1340 	if (CAS_HP_FIRMWARE == cas_prog_null)
1341 		return;
1342 
1343 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1344 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1345 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1346 	writel(val, cp->regs + REG_HP_CFG);
1347 }
1348 
1349 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1350 {
1351 	memset(rxc, 0, sizeof(*rxc));
1352 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1353 }
1354 
1355 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1356  * flipping is protected by the fact that the chip will not
1357  * hand back the same page index while it's being processed.
1358  */
1359 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1360 {
1361 	cas_page_t *page = cp->rx_pages[1][index];
1362 	cas_page_t *new;
1363 
1364 	if (page_count(page->buffer) == 1)
1365 		return page;
1366 
1367 	new = cas_page_dequeue(cp);
1368 	if (new) {
1369 		spin_lock(&cp->rx_inuse_lock);
1370 		list_add(&page->list, &cp->rx_inuse_list);
1371 		spin_unlock(&cp->rx_inuse_lock);
1372 	}
1373 	return new;
1374 }
1375 
1376 /* this needs to be changed if we actually use the ENC RX DESC ring */
1377 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1378 				 const int index)
1379 {
1380 	cas_page_t **page0 = cp->rx_pages[0];
1381 	cas_page_t **page1 = cp->rx_pages[1];
1382 
1383 	/* swap if buffer is in use */
1384 	if (page_count(page0[index]->buffer) > 1) {
1385 		cas_page_t *new = cas_page_spare(cp, index);
1386 		if (new) {
1387 			page1[index] = page0[index];
1388 			page0[index] = new;
1389 		}
1390 	}
1391 	RX_USED_SET(page0[index], 0);
1392 	return page0[index];
1393 }
1394 
1395 static void cas_clean_rxds(struct cas *cp)
1396 {
1397 	/* only clean ring 0 as ring 1 is used for spare buffers */
1398         struct cas_rx_desc *rxd = cp->init_rxds[0];
1399 	int i, size;
1400 
1401 	/* release all rx flows */
1402 	for (i = 0; i < N_RX_FLOWS; i++) {
1403 		struct sk_buff *skb;
1404 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1405 			cas_skb_release(skb);
1406 		}
1407 	}
1408 
1409 	/* initialize descriptors */
1410 	size = RX_DESC_RINGN_SIZE(0);
1411 	for (i = 0; i < size; i++) {
1412 		cas_page_t *page = cas_page_swap(cp, 0, i);
1413 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1414 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1415 					    CAS_BASE(RX_INDEX_RING, 0));
1416 	}
1417 
1418 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1419 	cp->rx_last[0] = 0;
1420 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1421 }
1422 
1423 static void cas_clean_rxcs(struct cas *cp)
1424 {
1425 	int i, j;
1426 
1427 	/* take ownership of rx comp descriptors */
1428 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1429 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1430 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1431 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1432 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1433 			cas_rxc_init(rxc + j);
1434 		}
1435 	}
1436 }
1437 
1438 #if 0
1439 /* When we get a RX fifo overflow, the RX unit is probably hung
1440  * so we do the following.
1441  *
1442  * If any part of the reset goes wrong, we return 1 and that causes the
1443  * whole chip to be reset.
1444  */
1445 static int cas_rxmac_reset(struct cas *cp)
1446 {
1447 	struct net_device *dev = cp->dev;
1448 	int limit;
1449 	u32 val;
1450 
1451 	/* First, reset MAC RX. */
1452 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1453 	for (limit = 0; limit < STOP_TRIES; limit++) {
1454 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1455 			break;
1456 		udelay(10);
1457 	}
1458 	if (limit == STOP_TRIES) {
1459 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1460 		return 1;
1461 	}
1462 
1463 	/* Second, disable RX DMA. */
1464 	writel(0, cp->regs + REG_RX_CFG);
1465 	for (limit = 0; limit < STOP_TRIES; limit++) {
1466 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1467 			break;
1468 		udelay(10);
1469 	}
1470 	if (limit == STOP_TRIES) {
1471 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1472 		return 1;
1473 	}
1474 
1475 	mdelay(5);
1476 
1477 	/* Execute RX reset command. */
1478 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1479 	for (limit = 0; limit < STOP_TRIES; limit++) {
1480 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1481 			break;
1482 		udelay(10);
1483 	}
1484 	if (limit == STOP_TRIES) {
1485 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1486 		return 1;
1487 	}
1488 
1489 	/* reset driver rx state */
1490 	cas_clean_rxds(cp);
1491 	cas_clean_rxcs(cp);
1492 
1493 	/* Now, reprogram the rest of RX unit. */
1494 	cas_init_rx_dma(cp);
1495 
1496 	/* re-enable */
1497 	val = readl(cp->regs + REG_RX_CFG);
1498 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1499 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1500 	val = readl(cp->regs + REG_MAC_RX_CFG);
1501 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1502 	return 0;
1503 }
1504 #endif
1505 
1506 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1507 			       u32 status)
1508 {
1509 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1510 
1511 	if (!stat)
1512 		return 0;
1513 
1514 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1515 
1516 	/* these are all rollovers */
1517 	spin_lock(&cp->stat_lock[0]);
1518 	if (stat & MAC_RX_ALIGN_ERR)
1519 		cp->net_stats[0].rx_frame_errors += 0x10000;
1520 
1521 	if (stat & MAC_RX_CRC_ERR)
1522 		cp->net_stats[0].rx_crc_errors += 0x10000;
1523 
1524 	if (stat & MAC_RX_LEN_ERR)
1525 		cp->net_stats[0].rx_length_errors += 0x10000;
1526 
1527 	if (stat & MAC_RX_OVERFLOW) {
1528 		cp->net_stats[0].rx_over_errors++;
1529 		cp->net_stats[0].rx_fifo_errors++;
1530 	}
1531 
1532 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1533 	 * events.
1534 	 */
1535 	spin_unlock(&cp->stat_lock[0]);
1536 	return 0;
1537 }
1538 
1539 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1540 			     u32 status)
1541 {
1542 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1543 
1544 	if (!stat)
1545 		return 0;
1546 
1547 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1548 		     "mac interrupt, stat: 0x%x\n", stat);
1549 
1550 	/* This interrupt is just for pause frame and pause
1551 	 * tracking.  It is useful for diagnostics and debug
1552 	 * but probably by default we will mask these events.
1553 	 */
1554 	if (stat & MAC_CTRL_PAUSE_STATE)
1555 		cp->pause_entered++;
1556 
1557 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1558 		cp->pause_last_time_recvd = (stat >> 16);
1559 
1560 	return 0;
1561 }
1562 
1563 
1564 /* Must be invoked under cp->lock. */
1565 static inline int cas_mdio_link_not_up(struct cas *cp)
1566 {
1567 	u16 val;
1568 
1569 	switch (cp->lstate) {
1570 	case link_force_ret:
1571 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1572 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1573 		cp->timer_ticks = 5;
1574 		cp->lstate = link_force_ok;
1575 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1576 		break;
1577 
1578 	case link_aneg:
1579 		val = cas_phy_read(cp, MII_BMCR);
1580 
1581 		/* Try forced modes. we try things in the following order:
1582 		 * 1000 full -> 100 full/half -> 10 half
1583 		 */
1584 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1585 		val |= BMCR_FULLDPLX;
1586 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1587 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1588 		cas_phy_write(cp, MII_BMCR, val);
1589 		cp->timer_ticks = 5;
1590 		cp->lstate = link_force_try;
1591 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592 		break;
1593 
1594 	case link_force_try:
1595 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1596 		val = cas_phy_read(cp, MII_BMCR);
1597 		cp->timer_ticks = 5;
1598 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1599 			val &= ~CAS_BMCR_SPEED1000;
1600 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1601 			cas_phy_write(cp, MII_BMCR, val);
1602 			break;
1603 		}
1604 
1605 		if (val & BMCR_SPEED100) {
1606 			if (val & BMCR_FULLDPLX) /* fd failed */
1607 				val &= ~BMCR_FULLDPLX;
1608 			else { /* 100Mbps failed */
1609 				val &= ~BMCR_SPEED100;
1610 			}
1611 			cas_phy_write(cp, MII_BMCR, val);
1612 			break;
1613 		}
1614 	default:
1615 		break;
1616 	}
1617 	return 0;
1618 }
1619 
1620 
1621 /* must be invoked with cp->lock held */
1622 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1623 {
1624 	int restart;
1625 
1626 	if (bmsr & BMSR_LSTATUS) {
1627 		/* Ok, here we got a link. If we had it due to a forced
1628 		 * fallback, and we were configured for autoneg, we
1629 		 * retry a short autoneg pass. If you know your hub is
1630 		 * broken, use ethtool ;)
1631 		 */
1632 		if ((cp->lstate == link_force_try) &&
1633 		    (cp->link_cntl & BMCR_ANENABLE)) {
1634 			cp->lstate = link_force_ret;
1635 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1636 			cas_mif_poll(cp, 0);
1637 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1638 			cp->timer_ticks = 5;
1639 			if (cp->opened)
1640 				netif_info(cp, link, cp->dev,
1641 					   "Got link after fallback, retrying autoneg once...\n");
1642 			cas_phy_write(cp, MII_BMCR,
1643 				      cp->link_fcntl | BMCR_ANENABLE |
1644 				      BMCR_ANRESTART);
1645 			cas_mif_poll(cp, 1);
1646 
1647 		} else if (cp->lstate != link_up) {
1648 			cp->lstate = link_up;
1649 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1650 
1651 			if (cp->opened) {
1652 				cas_set_link_modes(cp);
1653 				netif_carrier_on(cp->dev);
1654 			}
1655 		}
1656 		return 0;
1657 	}
1658 
1659 	/* link not up. if the link was previously up, we restart the
1660 	 * whole process
1661 	 */
1662 	restart = 0;
1663 	if (cp->lstate == link_up) {
1664 		cp->lstate = link_down;
1665 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1666 
1667 		netif_carrier_off(cp->dev);
1668 		if (cp->opened)
1669 			netif_info(cp, link, cp->dev, "Link down\n");
1670 		restart = 1;
1671 
1672 	} else if (++cp->timer_ticks > 10)
1673 		cas_mdio_link_not_up(cp);
1674 
1675 	return restart;
1676 }
1677 
1678 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1679 			     u32 status)
1680 {
1681 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1682 	u16 bmsr;
1683 
1684 	/* check for a link change */
1685 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1686 		return 0;
1687 
1688 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1689 	return cas_mii_link_check(cp, bmsr);
1690 }
1691 
1692 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1693 			     u32 status)
1694 {
1695 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1696 
1697 	if (!stat)
1698 		return 0;
1699 
1700 	netdev_err(dev, "PCI error [%04x:%04x]",
1701 		   stat, readl(cp->regs + REG_BIM_DIAG));
1702 
1703 	/* cassini+ has this reserved */
1704 	if ((stat & PCI_ERR_BADACK) &&
1705 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1706 		pr_cont(" <No ACK64# during ABS64 cycle>");
1707 
1708 	if (stat & PCI_ERR_DTRTO)
1709 		pr_cont(" <Delayed transaction timeout>");
1710 	if (stat & PCI_ERR_OTHER)
1711 		pr_cont(" <other>");
1712 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1713 		pr_cont(" <BIM DMA 0 write req>");
1714 	if (stat & PCI_ERR_BIM_DMA_READ)
1715 		pr_cont(" <BIM DMA 0 read req>");
1716 	pr_cont("\n");
1717 
1718 	if (stat & PCI_ERR_OTHER) {
1719 		u16 cfg;
1720 
1721 		/* Interrogate PCI config space for the
1722 		 * true cause.
1723 		 */
1724 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1725 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1726 		if (cfg & PCI_STATUS_PARITY)
1727 			netdev_err(dev, "PCI parity error detected\n");
1728 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1729 			netdev_err(dev, "PCI target abort\n");
1730 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1731 			netdev_err(dev, "PCI master acks target abort\n");
1732 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1733 			netdev_err(dev, "PCI master abort\n");
1734 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1735 			netdev_err(dev, "PCI system error SERR#\n");
1736 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1737 			netdev_err(dev, "PCI parity error\n");
1738 
1739 		/* Write the error bits back to clear them. */
1740 		cfg &= (PCI_STATUS_PARITY |
1741 			PCI_STATUS_SIG_TARGET_ABORT |
1742 			PCI_STATUS_REC_TARGET_ABORT |
1743 			PCI_STATUS_REC_MASTER_ABORT |
1744 			PCI_STATUS_SIG_SYSTEM_ERROR |
1745 			PCI_STATUS_DETECTED_PARITY);
1746 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1747 	}
1748 
1749 	/* For all PCI errors, we should reset the chip. */
1750 	return 1;
1751 }
1752 
1753 /* All non-normal interrupt conditions get serviced here.
1754  * Returns non-zero if we should just exit the interrupt
1755  * handler right now (ie. if we reset the card which invalidates
1756  * all of the other original irq status bits).
1757  */
1758 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1759 			    u32 status)
1760 {
1761 	if (status & INTR_RX_TAG_ERROR) {
1762 		/* corrupt RX tag framing */
1763 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1764 			     "corrupt rx tag framing\n");
1765 		spin_lock(&cp->stat_lock[0]);
1766 		cp->net_stats[0].rx_errors++;
1767 		spin_unlock(&cp->stat_lock[0]);
1768 		goto do_reset;
1769 	}
1770 
1771 	if (status & INTR_RX_LEN_MISMATCH) {
1772 		/* length mismatch. */
1773 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1774 			     "length mismatch for rx frame\n");
1775 		spin_lock(&cp->stat_lock[0]);
1776 		cp->net_stats[0].rx_errors++;
1777 		spin_unlock(&cp->stat_lock[0]);
1778 		goto do_reset;
1779 	}
1780 
1781 	if (status & INTR_PCS_STATUS) {
1782 		if (cas_pcs_interrupt(dev, cp, status))
1783 			goto do_reset;
1784 	}
1785 
1786 	if (status & INTR_TX_MAC_STATUS) {
1787 		if (cas_txmac_interrupt(dev, cp, status))
1788 			goto do_reset;
1789 	}
1790 
1791 	if (status & INTR_RX_MAC_STATUS) {
1792 		if (cas_rxmac_interrupt(dev, cp, status))
1793 			goto do_reset;
1794 	}
1795 
1796 	if (status & INTR_MAC_CTRL_STATUS) {
1797 		if (cas_mac_interrupt(dev, cp, status))
1798 			goto do_reset;
1799 	}
1800 
1801 	if (status & INTR_MIF_STATUS) {
1802 		if (cas_mif_interrupt(dev, cp, status))
1803 			goto do_reset;
1804 	}
1805 
1806 	if (status & INTR_PCI_ERROR_STATUS) {
1807 		if (cas_pci_interrupt(dev, cp, status))
1808 			goto do_reset;
1809 	}
1810 	return 0;
1811 
1812 do_reset:
1813 #if 1
1814 	atomic_inc(&cp->reset_task_pending);
1815 	atomic_inc(&cp->reset_task_pending_all);
1816 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1817 	schedule_work(&cp->reset_task);
1818 #else
1819 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1820 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1821 	schedule_work(&cp->reset_task);
1822 #endif
1823 	return 1;
1824 }
1825 
1826 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1827  *       determining whether to do a netif_stop/wakeup
1828  */
1829 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1830 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1831 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1832 				  const int len)
1833 {
1834 	unsigned long off = addr + len;
1835 
1836 	if (CAS_TABORT(cp) == 1)
1837 		return 0;
1838 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1839 		return 0;
1840 	return TX_TARGET_ABORT_LEN;
1841 }
1842 
1843 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1844 {
1845 	struct cas_tx_desc *txds;
1846 	struct sk_buff **skbs;
1847 	struct net_device *dev = cp->dev;
1848 	int entry, count;
1849 
1850 	spin_lock(&cp->tx_lock[ring]);
1851 	txds = cp->init_txds[ring];
1852 	skbs = cp->tx_skbs[ring];
1853 	entry = cp->tx_old[ring];
1854 
1855 	count = TX_BUFF_COUNT(ring, entry, limit);
1856 	while (entry != limit) {
1857 		struct sk_buff *skb = skbs[entry];
1858 		dma_addr_t daddr;
1859 		u32 dlen;
1860 		int frag;
1861 
1862 		if (!skb) {
1863 			/* this should never occur */
1864 			entry = TX_DESC_NEXT(ring, entry);
1865 			continue;
1866 		}
1867 
1868 		/* however, we might get only a partial skb release. */
1869 		count -= skb_shinfo(skb)->nr_frags +
1870 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1871 		if (count < 0)
1872 			break;
1873 
1874 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1875 			     "tx[%d] done, slot %d\n", ring, entry);
1876 
1877 		skbs[entry] = NULL;
1878 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1879 
1880 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1881 			struct cas_tx_desc *txd = txds + entry;
1882 
1883 			daddr = le64_to_cpu(txd->buffer);
1884 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1885 				       le64_to_cpu(txd->control));
1886 			pci_unmap_page(cp->pdev, daddr, dlen,
1887 				       PCI_DMA_TODEVICE);
1888 			entry = TX_DESC_NEXT(ring, entry);
1889 
1890 			/* tiny buffer may follow */
1891 			if (cp->tx_tiny_use[ring][entry].used) {
1892 				cp->tx_tiny_use[ring][entry].used = 0;
1893 				entry = TX_DESC_NEXT(ring, entry);
1894 			}
1895 		}
1896 
1897 		spin_lock(&cp->stat_lock[ring]);
1898 		cp->net_stats[ring].tx_packets++;
1899 		cp->net_stats[ring].tx_bytes += skb->len;
1900 		spin_unlock(&cp->stat_lock[ring]);
1901 		dev_consume_skb_irq(skb);
1902 	}
1903 	cp->tx_old[ring] = entry;
1904 
1905 	/* this is wrong for multiple tx rings. the net device needs
1906 	 * multiple queues for this to do the right thing.  we wait
1907 	 * for 2*packets to be available when using tiny buffers
1908 	 */
1909 	if (netif_queue_stopped(dev) &&
1910 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1911 		netif_wake_queue(dev);
1912 	spin_unlock(&cp->tx_lock[ring]);
1913 }
1914 
1915 static void cas_tx(struct net_device *dev, struct cas *cp,
1916 		   u32 status)
1917 {
1918         int limit, ring;
1919 #ifdef USE_TX_COMPWB
1920 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1921 #endif
1922 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1923 		     "tx interrupt, status: 0x%x, %llx\n",
1924 		     status, (unsigned long long)compwb);
1925 	/* process all the rings */
1926 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1927 #ifdef USE_TX_COMPWB
1928 		/* use the completion writeback registers */
1929 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1930 			CAS_VAL(TX_COMPWB_LSB, compwb);
1931 		compwb = TX_COMPWB_NEXT(compwb);
1932 #else
1933 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1934 #endif
1935 		if (cp->tx_old[ring] != limit)
1936 			cas_tx_ringN(cp, ring, limit);
1937 	}
1938 }
1939 
1940 
1941 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1942 			      int entry, const u64 *words,
1943 			      struct sk_buff **skbref)
1944 {
1945 	int dlen, hlen, len, i, alloclen;
1946 	int off, swivel = RX_SWIVEL_OFF_VAL;
1947 	struct cas_page *page;
1948 	struct sk_buff *skb;
1949 	void *addr, *crcaddr;
1950 	__sum16 csum;
1951 	char *p;
1952 
1953 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1954 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1955 	len  = hlen + dlen;
1956 
1957 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1958 		alloclen = len;
1959 	else
1960 		alloclen = max(hlen, RX_COPY_MIN);
1961 
1962 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1963 	if (skb == NULL)
1964 		return -1;
1965 
1966 	*skbref = skb;
1967 	skb_reserve(skb, swivel);
1968 
1969 	p = skb->data;
1970 	addr = crcaddr = NULL;
1971 	if (hlen) { /* always copy header pages */
1972 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1973 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1974 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1975 			swivel;
1976 
1977 		i = hlen;
1978 		if (!dlen) /* attach FCS */
1979 			i += cp->crc_size;
1980 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1981 				    PCI_DMA_FROMDEVICE);
1982 		addr = cas_page_map(page->buffer);
1983 		memcpy(p, addr + off, i);
1984 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1985 				    PCI_DMA_FROMDEVICE);
1986 		cas_page_unmap(addr);
1987 		RX_USED_ADD(page, 0x100);
1988 		p += hlen;
1989 		swivel = 0;
1990 	}
1991 
1992 
1993 	if (alloclen < (hlen + dlen)) {
1994 		skb_frag_t *frag = skb_shinfo(skb)->frags;
1995 
1996 		/* normal or jumbo packets. we use frags */
1997 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1998 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1999 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2000 
2001 		hlen = min(cp->page_size - off, dlen);
2002 		if (hlen < 0) {
2003 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2004 				     "rx page overflow: %d\n", hlen);
2005 			dev_kfree_skb_irq(skb);
2006 			return -1;
2007 		}
2008 		i = hlen;
2009 		if (i == dlen)  /* attach FCS */
2010 			i += cp->crc_size;
2011 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2012 				    PCI_DMA_FROMDEVICE);
2013 
2014 		/* make sure we always copy a header */
2015 		swivel = 0;
2016 		if (p == (char *) skb->data) { /* not split */
2017 			addr = cas_page_map(page->buffer);
2018 			memcpy(p, addr + off, RX_COPY_MIN);
2019 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2020 					PCI_DMA_FROMDEVICE);
2021 			cas_page_unmap(addr);
2022 			off += RX_COPY_MIN;
2023 			swivel = RX_COPY_MIN;
2024 			RX_USED_ADD(page, cp->mtu_stride);
2025 		} else {
2026 			RX_USED_ADD(page, hlen);
2027 		}
2028 		skb_put(skb, alloclen);
2029 
2030 		skb_shinfo(skb)->nr_frags++;
2031 		skb->data_len += hlen - swivel;
2032 		skb->truesize += hlen - swivel;
2033 		skb->len      += hlen - swivel;
2034 
2035 		__skb_frag_set_page(frag, page->buffer);
2036 		__skb_frag_ref(frag);
2037 		frag->page_offset = off;
2038 		skb_frag_size_set(frag, hlen - swivel);
2039 
2040 		/* any more data? */
2041 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2042 			hlen = dlen;
2043 			off = 0;
2044 
2045 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2046 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2047 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2048 					    hlen + cp->crc_size,
2049 					    PCI_DMA_FROMDEVICE);
2050 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2051 					    hlen + cp->crc_size,
2052 					    PCI_DMA_FROMDEVICE);
2053 
2054 			skb_shinfo(skb)->nr_frags++;
2055 			skb->data_len += hlen;
2056 			skb->len      += hlen;
2057 			frag++;
2058 
2059 			__skb_frag_set_page(frag, page->buffer);
2060 			__skb_frag_ref(frag);
2061 			frag->page_offset = 0;
2062 			skb_frag_size_set(frag, hlen);
2063 			RX_USED_ADD(page, hlen + cp->crc_size);
2064 		}
2065 
2066 		if (cp->crc_size) {
2067 			addr = cas_page_map(page->buffer);
2068 			crcaddr  = addr + off + hlen;
2069 		}
2070 
2071 	} else {
2072 		/* copying packet */
2073 		if (!dlen)
2074 			goto end_copy_pkt;
2075 
2076 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2077 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2078 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2079 		hlen = min(cp->page_size - off, dlen);
2080 		if (hlen < 0) {
2081 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2082 				     "rx page overflow: %d\n", hlen);
2083 			dev_kfree_skb_irq(skb);
2084 			return -1;
2085 		}
2086 		i = hlen;
2087 		if (i == dlen) /* attach FCS */
2088 			i += cp->crc_size;
2089 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2090 				    PCI_DMA_FROMDEVICE);
2091 		addr = cas_page_map(page->buffer);
2092 		memcpy(p, addr + off, i);
2093 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2094 				    PCI_DMA_FROMDEVICE);
2095 		cas_page_unmap(addr);
2096 		if (p == (char *) skb->data) /* not split */
2097 			RX_USED_ADD(page, cp->mtu_stride);
2098 		else
2099 			RX_USED_ADD(page, i);
2100 
2101 		/* any more data? */
2102 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2103 			p += hlen;
2104 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2105 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2106 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2107 					    dlen + cp->crc_size,
2108 					    PCI_DMA_FROMDEVICE);
2109 			addr = cas_page_map(page->buffer);
2110 			memcpy(p, addr, dlen + cp->crc_size);
2111 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2112 					    dlen + cp->crc_size,
2113 					    PCI_DMA_FROMDEVICE);
2114 			cas_page_unmap(addr);
2115 			RX_USED_ADD(page, dlen + cp->crc_size);
2116 		}
2117 end_copy_pkt:
2118 		if (cp->crc_size) {
2119 			addr    = NULL;
2120 			crcaddr = skb->data + alloclen;
2121 		}
2122 		skb_put(skb, alloclen);
2123 	}
2124 
2125 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2126 	if (cp->crc_size) {
2127 		/* checksum includes FCS. strip it out. */
2128 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2129 					      csum_unfold(csum)));
2130 		if (addr)
2131 			cas_page_unmap(addr);
2132 	}
2133 	skb->protocol = eth_type_trans(skb, cp->dev);
2134 	if (skb->protocol == htons(ETH_P_IP)) {
2135 		skb->csum = csum_unfold(~csum);
2136 		skb->ip_summed = CHECKSUM_COMPLETE;
2137 	} else
2138 		skb_checksum_none_assert(skb);
2139 	return len;
2140 }
2141 
2142 
2143 /* we can handle up to 64 rx flows at a time. we do the same thing
2144  * as nonreassm except that we batch up the buffers.
2145  * NOTE: we currently just treat each flow as a bunch of packets that
2146  *       we pass up. a better way would be to coalesce the packets
2147  *       into a jumbo packet. to do that, we need to do the following:
2148  *       1) the first packet will have a clean split between header and
2149  *          data. save both.
2150  *       2) each time the next flow packet comes in, extend the
2151  *          data length and merge the checksums.
2152  *       3) on flow release, fix up the header.
2153  *       4) make sure the higher layer doesn't care.
2154  * because packets get coalesced, we shouldn't run into fragment count
2155  * issues.
2156  */
2157 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2158 				   struct sk_buff *skb)
2159 {
2160 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2161 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2162 
2163 	/* this is protected at a higher layer, so no need to
2164 	 * do any additional locking here. stick the buffer
2165 	 * at the end.
2166 	 */
2167 	__skb_queue_tail(flow, skb);
2168 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2169 		while ((skb = __skb_dequeue(flow))) {
2170 			cas_skb_release(skb);
2171 		}
2172 	}
2173 }
2174 
2175 /* put rx descriptor back on ring. if a buffer is in use by a higher
2176  * layer, this will need to put in a replacement.
2177  */
2178 static void cas_post_page(struct cas *cp, const int ring, const int index)
2179 {
2180 	cas_page_t *new;
2181 	int entry;
2182 
2183 	entry = cp->rx_old[ring];
2184 
2185 	new = cas_page_swap(cp, ring, index);
2186 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2187 	cp->init_rxds[ring][entry].index  =
2188 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2189 			    CAS_BASE(RX_INDEX_RING, ring));
2190 
2191 	entry = RX_DESC_ENTRY(ring, entry + 1);
2192 	cp->rx_old[ring] = entry;
2193 
2194 	if (entry % 4)
2195 		return;
2196 
2197 	if (ring == 0)
2198 		writel(entry, cp->regs + REG_RX_KICK);
2199 	else if ((N_RX_DESC_RINGS > 1) &&
2200 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2201 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2202 }
2203 
2204 
2205 /* only when things are bad */
2206 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2207 {
2208 	unsigned int entry, last, count, released;
2209 	int cluster;
2210 	cas_page_t **page = cp->rx_pages[ring];
2211 
2212 	entry = cp->rx_old[ring];
2213 
2214 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2215 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2216 
2217 	cluster = -1;
2218 	count = entry & 0x3;
2219 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2220 	released = 0;
2221 	while (entry != last) {
2222 		/* make a new buffer if it's still in use */
2223 		if (page_count(page[entry]->buffer) > 1) {
2224 			cas_page_t *new = cas_page_dequeue(cp);
2225 			if (!new) {
2226 				/* let the timer know that we need to
2227 				 * do this again
2228 				 */
2229 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2230 				if (!timer_pending(&cp->link_timer))
2231 					mod_timer(&cp->link_timer, jiffies +
2232 						  CAS_LINK_FAST_TIMEOUT);
2233 				cp->rx_old[ring]  = entry;
2234 				cp->rx_last[ring] = num ? num - released : 0;
2235 				return -ENOMEM;
2236 			}
2237 			spin_lock(&cp->rx_inuse_lock);
2238 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2239 			spin_unlock(&cp->rx_inuse_lock);
2240 			cp->init_rxds[ring][entry].buffer =
2241 				cpu_to_le64(new->dma_addr);
2242 			page[entry] = new;
2243 
2244 		}
2245 
2246 		if (++count == 4) {
2247 			cluster = entry;
2248 			count = 0;
2249 		}
2250 		released++;
2251 		entry = RX_DESC_ENTRY(ring, entry + 1);
2252 	}
2253 	cp->rx_old[ring] = entry;
2254 
2255 	if (cluster < 0)
2256 		return 0;
2257 
2258 	if (ring == 0)
2259 		writel(cluster, cp->regs + REG_RX_KICK);
2260 	else if ((N_RX_DESC_RINGS > 1) &&
2261 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2262 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2263 	return 0;
2264 }
2265 
2266 
2267 /* process a completion ring. packets are set up in three basic ways:
2268  * small packets: should be copied header + data in single buffer.
2269  * large packets: header and data in a single buffer.
2270  * split packets: header in a separate buffer from data.
2271  *                data may be in multiple pages. data may be > 256
2272  *                bytes but in a single page.
2273  *
2274  * NOTE: RX page posting is done in this routine as well. while there's
2275  *       the capability of using multiple RX completion rings, it isn't
2276  *       really worthwhile due to the fact that the page posting will
2277  *       force serialization on the single descriptor ring.
2278  */
2279 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2280 {
2281 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2282 	int entry, drops;
2283 	int npackets = 0;
2284 
2285 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2286 		     "rx[%d] interrupt, done: %d/%d\n",
2287 		     ring,
2288 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2289 
2290 	entry = cp->rx_new[ring];
2291 	drops = 0;
2292 	while (1) {
2293 		struct cas_rx_comp *rxc = rxcs + entry;
2294 		struct sk_buff *uninitialized_var(skb);
2295 		int type, len;
2296 		u64 words[4];
2297 		int i, dring;
2298 
2299 		words[0] = le64_to_cpu(rxc->word1);
2300 		words[1] = le64_to_cpu(rxc->word2);
2301 		words[2] = le64_to_cpu(rxc->word3);
2302 		words[3] = le64_to_cpu(rxc->word4);
2303 
2304 		/* don't touch if still owned by hw */
2305 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2306 		if (type == 0)
2307 			break;
2308 
2309 		/* hw hasn't cleared the zero bit yet */
2310 		if (words[3] & RX_COMP4_ZERO) {
2311 			break;
2312 		}
2313 
2314 		/* get info on the packet */
2315 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2316 			spin_lock(&cp->stat_lock[ring]);
2317 			cp->net_stats[ring].rx_errors++;
2318 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2319 				cp->net_stats[ring].rx_length_errors++;
2320 			if (words[3] & RX_COMP4_BAD)
2321 				cp->net_stats[ring].rx_crc_errors++;
2322 			spin_unlock(&cp->stat_lock[ring]);
2323 
2324 			/* We'll just return it to Cassini. */
2325 		drop_it:
2326 			spin_lock(&cp->stat_lock[ring]);
2327 			++cp->net_stats[ring].rx_dropped;
2328 			spin_unlock(&cp->stat_lock[ring]);
2329 			goto next;
2330 		}
2331 
2332 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2333 		if (len < 0) {
2334 			++drops;
2335 			goto drop_it;
2336 		}
2337 
2338 		/* see if it's a flow re-assembly or not. the driver
2339 		 * itself handles release back up.
2340 		 */
2341 		if (RX_DONT_BATCH || (type == 0x2)) {
2342 			/* non-reassm: these always get released */
2343 			cas_skb_release(skb);
2344 		} else {
2345 			cas_rx_flow_pkt(cp, words, skb);
2346 		}
2347 
2348 		spin_lock(&cp->stat_lock[ring]);
2349 		cp->net_stats[ring].rx_packets++;
2350 		cp->net_stats[ring].rx_bytes += len;
2351 		spin_unlock(&cp->stat_lock[ring]);
2352 
2353 	next:
2354 		npackets++;
2355 
2356 		/* should it be released? */
2357 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2358 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2359 			dring = CAS_VAL(RX_INDEX_RING, i);
2360 			i = CAS_VAL(RX_INDEX_NUM, i);
2361 			cas_post_page(cp, dring, i);
2362 		}
2363 
2364 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2365 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2366 			dring = CAS_VAL(RX_INDEX_RING, i);
2367 			i = CAS_VAL(RX_INDEX_NUM, i);
2368 			cas_post_page(cp, dring, i);
2369 		}
2370 
2371 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2372 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2373 			dring = CAS_VAL(RX_INDEX_RING, i);
2374 			i = CAS_VAL(RX_INDEX_NUM, i);
2375 			cas_post_page(cp, dring, i);
2376 		}
2377 
2378 		/* skip to the next entry */
2379 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2380 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2381 #ifdef USE_NAPI
2382 		if (budget && (npackets >= budget))
2383 			break;
2384 #endif
2385 	}
2386 	cp->rx_new[ring] = entry;
2387 
2388 	if (drops)
2389 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2390 	return npackets;
2391 }
2392 
2393 
2394 /* put completion entries back on the ring */
2395 static void cas_post_rxcs_ringN(struct net_device *dev,
2396 				struct cas *cp, int ring)
2397 {
2398 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2399 	int last, entry;
2400 
2401 	last = cp->rx_cur[ring];
2402 	entry = cp->rx_new[ring];
2403 	netif_printk(cp, intr, KERN_DEBUG, dev,
2404 		     "rxc[%d] interrupt, done: %d/%d\n",
2405 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2406 
2407 	/* zero and re-mark descriptors */
2408 	while (last != entry) {
2409 		cas_rxc_init(rxc + last);
2410 		last = RX_COMP_ENTRY(ring, last + 1);
2411 	}
2412 	cp->rx_cur[ring] = last;
2413 
2414 	if (ring == 0)
2415 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2416 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2417 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2418 }
2419 
2420 
2421 
2422 /* cassini can use all four PCI interrupts for the completion ring.
2423  * rings 3 and 4 are identical
2424  */
2425 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2426 static inline void cas_handle_irqN(struct net_device *dev,
2427 				   struct cas *cp, const u32 status,
2428 				   const int ring)
2429 {
2430 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2431 		cas_post_rxcs_ringN(dev, cp, ring);
2432 }
2433 
2434 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2435 {
2436 	struct net_device *dev = dev_id;
2437 	struct cas *cp = netdev_priv(dev);
2438 	unsigned long flags;
2439 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2440 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2441 
2442 	/* check for shared irq */
2443 	if (status == 0)
2444 		return IRQ_NONE;
2445 
2446 	spin_lock_irqsave(&cp->lock, flags);
2447 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2448 #ifdef USE_NAPI
2449 		cas_mask_intr(cp);
2450 		napi_schedule(&cp->napi);
2451 #else
2452 		cas_rx_ringN(cp, ring, 0);
2453 #endif
2454 		status &= ~INTR_RX_DONE_ALT;
2455 	}
2456 
2457 	if (status)
2458 		cas_handle_irqN(dev, cp, status, ring);
2459 	spin_unlock_irqrestore(&cp->lock, flags);
2460 	return IRQ_HANDLED;
2461 }
2462 #endif
2463 
2464 #ifdef USE_PCI_INTB
2465 /* everything but rx packets */
2466 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2467 {
2468 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2469 		/* Frame arrived, no free RX buffers available.
2470 		 * NOTE: we can get this on a link transition. */
2471 		cas_post_rxds_ringN(cp, 1, 0);
2472 		spin_lock(&cp->stat_lock[1]);
2473 		cp->net_stats[1].rx_dropped++;
2474 		spin_unlock(&cp->stat_lock[1]);
2475 	}
2476 
2477 	if (status & INTR_RX_BUF_AE_1)
2478 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2479 				    RX_AE_FREEN_VAL(1));
2480 
2481 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2482 		cas_post_rxcs_ringN(cp, 1);
2483 }
2484 
2485 /* ring 2 handles a few more events than 3 and 4 */
2486 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2487 {
2488 	struct net_device *dev = dev_id;
2489 	struct cas *cp = netdev_priv(dev);
2490 	unsigned long flags;
2491 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2492 
2493 	/* check for shared interrupt */
2494 	if (status == 0)
2495 		return IRQ_NONE;
2496 
2497 	spin_lock_irqsave(&cp->lock, flags);
2498 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2499 #ifdef USE_NAPI
2500 		cas_mask_intr(cp);
2501 		napi_schedule(&cp->napi);
2502 #else
2503 		cas_rx_ringN(cp, 1, 0);
2504 #endif
2505 		status &= ~INTR_RX_DONE_ALT;
2506 	}
2507 	if (status)
2508 		cas_handle_irq1(cp, status);
2509 	spin_unlock_irqrestore(&cp->lock, flags);
2510 	return IRQ_HANDLED;
2511 }
2512 #endif
2513 
2514 static inline void cas_handle_irq(struct net_device *dev,
2515 				  struct cas *cp, const u32 status)
2516 {
2517 	/* housekeeping interrupts */
2518 	if (status & INTR_ERROR_MASK)
2519 		cas_abnormal_irq(dev, cp, status);
2520 
2521 	if (status & INTR_RX_BUF_UNAVAIL) {
2522 		/* Frame arrived, no free RX buffers available.
2523 		 * NOTE: we can get this on a link transition.
2524 		 */
2525 		cas_post_rxds_ringN(cp, 0, 0);
2526 		spin_lock(&cp->stat_lock[0]);
2527 		cp->net_stats[0].rx_dropped++;
2528 		spin_unlock(&cp->stat_lock[0]);
2529 	} else if (status & INTR_RX_BUF_AE) {
2530 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2531 				    RX_AE_FREEN_VAL(0));
2532 	}
2533 
2534 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2535 		cas_post_rxcs_ringN(dev, cp, 0);
2536 }
2537 
2538 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2539 {
2540 	struct net_device *dev = dev_id;
2541 	struct cas *cp = netdev_priv(dev);
2542 	unsigned long flags;
2543 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2544 
2545 	if (status == 0)
2546 		return IRQ_NONE;
2547 
2548 	spin_lock_irqsave(&cp->lock, flags);
2549 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2550 		cas_tx(dev, cp, status);
2551 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2552 	}
2553 
2554 	if (status & INTR_RX_DONE) {
2555 #ifdef USE_NAPI
2556 		cas_mask_intr(cp);
2557 		napi_schedule(&cp->napi);
2558 #else
2559 		cas_rx_ringN(cp, 0, 0);
2560 #endif
2561 		status &= ~INTR_RX_DONE;
2562 	}
2563 
2564 	if (status)
2565 		cas_handle_irq(dev, cp, status);
2566 	spin_unlock_irqrestore(&cp->lock, flags);
2567 	return IRQ_HANDLED;
2568 }
2569 
2570 
2571 #ifdef USE_NAPI
2572 static int cas_poll(struct napi_struct *napi, int budget)
2573 {
2574 	struct cas *cp = container_of(napi, struct cas, napi);
2575 	struct net_device *dev = cp->dev;
2576 	int i, enable_intr, credits;
2577 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2578 	unsigned long flags;
2579 
2580 	spin_lock_irqsave(&cp->lock, flags);
2581 	cas_tx(dev, cp, status);
2582 	spin_unlock_irqrestore(&cp->lock, flags);
2583 
2584 	/* NAPI rx packets. we spread the credits across all of the
2585 	 * rxc rings
2586 	 *
2587 	 * to make sure we're fair with the work we loop through each
2588 	 * ring N_RX_COMP_RING times with a request of
2589 	 * budget / N_RX_COMP_RINGS
2590 	 */
2591 	enable_intr = 1;
2592 	credits = 0;
2593 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2594 		int j;
2595 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2596 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2597 			if (credits >= budget) {
2598 				enable_intr = 0;
2599 				goto rx_comp;
2600 			}
2601 		}
2602 	}
2603 
2604 rx_comp:
2605 	/* final rx completion */
2606 	spin_lock_irqsave(&cp->lock, flags);
2607 	if (status)
2608 		cas_handle_irq(dev, cp, status);
2609 
2610 #ifdef USE_PCI_INTB
2611 	if (N_RX_COMP_RINGS > 1) {
2612 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2613 		if (status)
2614 			cas_handle_irq1(dev, cp, status);
2615 	}
2616 #endif
2617 
2618 #ifdef USE_PCI_INTC
2619 	if (N_RX_COMP_RINGS > 2) {
2620 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2621 		if (status)
2622 			cas_handle_irqN(dev, cp, status, 2);
2623 	}
2624 #endif
2625 
2626 #ifdef USE_PCI_INTD
2627 	if (N_RX_COMP_RINGS > 3) {
2628 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2629 		if (status)
2630 			cas_handle_irqN(dev, cp, status, 3);
2631 	}
2632 #endif
2633 	spin_unlock_irqrestore(&cp->lock, flags);
2634 	if (enable_intr) {
2635 		napi_complete(napi);
2636 		cas_unmask_intr(cp);
2637 	}
2638 	return credits;
2639 }
2640 #endif
2641 
2642 #ifdef CONFIG_NET_POLL_CONTROLLER
2643 static void cas_netpoll(struct net_device *dev)
2644 {
2645 	struct cas *cp = netdev_priv(dev);
2646 
2647 	cas_disable_irq(cp, 0);
2648 	cas_interrupt(cp->pdev->irq, dev);
2649 	cas_enable_irq(cp, 0);
2650 
2651 #ifdef USE_PCI_INTB
2652 	if (N_RX_COMP_RINGS > 1) {
2653 		/* cas_interrupt1(); */
2654 	}
2655 #endif
2656 #ifdef USE_PCI_INTC
2657 	if (N_RX_COMP_RINGS > 2) {
2658 		/* cas_interruptN(); */
2659 	}
2660 #endif
2661 #ifdef USE_PCI_INTD
2662 	if (N_RX_COMP_RINGS > 3) {
2663 		/* cas_interruptN(); */
2664 	}
2665 #endif
2666 }
2667 #endif
2668 
2669 static void cas_tx_timeout(struct net_device *dev)
2670 {
2671 	struct cas *cp = netdev_priv(dev);
2672 
2673 	netdev_err(dev, "transmit timed out, resetting\n");
2674 	if (!cp->hw_running) {
2675 		netdev_err(dev, "hrm.. hw not running!\n");
2676 		return;
2677 	}
2678 
2679 	netdev_err(dev, "MIF_STATE[%08x]\n",
2680 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2681 
2682 	netdev_err(dev, "MAC_STATE[%08x]\n",
2683 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2684 
2685 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2686 		   readl(cp->regs + REG_TX_CFG),
2687 		   readl(cp->regs + REG_MAC_TX_STATUS),
2688 		   readl(cp->regs + REG_MAC_TX_CFG),
2689 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2690 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2691 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2692 		   readl(cp->regs + REG_TX_SM_1),
2693 		   readl(cp->regs + REG_TX_SM_2));
2694 
2695 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2696 		   readl(cp->regs + REG_RX_CFG),
2697 		   readl(cp->regs + REG_MAC_RX_STATUS),
2698 		   readl(cp->regs + REG_MAC_RX_CFG));
2699 
2700 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2701 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2702 		   readl(cp->regs + REG_HP_STATUS0),
2703 		   readl(cp->regs + REG_HP_STATUS1),
2704 		   readl(cp->regs + REG_HP_STATUS2));
2705 
2706 #if 1
2707 	atomic_inc(&cp->reset_task_pending);
2708 	atomic_inc(&cp->reset_task_pending_all);
2709 	schedule_work(&cp->reset_task);
2710 #else
2711 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2712 	schedule_work(&cp->reset_task);
2713 #endif
2714 }
2715 
2716 static inline int cas_intme(int ring, int entry)
2717 {
2718 	/* Algorithm: IRQ every 1/2 of descriptors. */
2719 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2720 		return 1;
2721 	return 0;
2722 }
2723 
2724 
2725 static void cas_write_txd(struct cas *cp, int ring, int entry,
2726 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2727 {
2728 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2729 
2730 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2731 	if (cas_intme(ring, entry))
2732 		ctrl |= TX_DESC_INTME;
2733 	if (last)
2734 		ctrl |= TX_DESC_EOF;
2735 	txd->control = cpu_to_le64(ctrl);
2736 	txd->buffer = cpu_to_le64(mapping);
2737 }
2738 
2739 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2740 				const int entry)
2741 {
2742 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2743 }
2744 
2745 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2746 				     const int entry, const int tentry)
2747 {
2748 	cp->tx_tiny_use[ring][tentry].nbufs++;
2749 	cp->tx_tiny_use[ring][entry].used = 1;
2750 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2751 }
2752 
2753 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2754 				    struct sk_buff *skb)
2755 {
2756 	struct net_device *dev = cp->dev;
2757 	int entry, nr_frags, frag, tabort, tentry;
2758 	dma_addr_t mapping;
2759 	unsigned long flags;
2760 	u64 ctrl;
2761 	u32 len;
2762 
2763 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2764 
2765 	/* This is a hard error, log it. */
2766 	if (TX_BUFFS_AVAIL(cp, ring) <=
2767 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2768 		netif_stop_queue(dev);
2769 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2770 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2771 		return 1;
2772 	}
2773 
2774 	ctrl = 0;
2775 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2776 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2777 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2778 
2779 		ctrl =  TX_DESC_CSUM_EN |
2780 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2781 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2782 	}
2783 
2784 	entry = cp->tx_new[ring];
2785 	cp->tx_skbs[ring][entry] = skb;
2786 
2787 	nr_frags = skb_shinfo(skb)->nr_frags;
2788 	len = skb_headlen(skb);
2789 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2790 			       offset_in_page(skb->data), len,
2791 			       PCI_DMA_TODEVICE);
2792 
2793 	tentry = entry;
2794 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2795 	if (unlikely(tabort)) {
2796 		/* NOTE: len is always >  tabort */
2797 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2798 			      ctrl | TX_DESC_SOF, 0);
2799 		entry = TX_DESC_NEXT(ring, entry);
2800 
2801 		skb_copy_from_linear_data_offset(skb, len - tabort,
2802 			      tx_tiny_buf(cp, ring, entry), tabort);
2803 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2804 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2805 			      (nr_frags == 0));
2806 	} else {
2807 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2808 			      TX_DESC_SOF, (nr_frags == 0));
2809 	}
2810 	entry = TX_DESC_NEXT(ring, entry);
2811 
2812 	for (frag = 0; frag < nr_frags; frag++) {
2813 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2814 
2815 		len = skb_frag_size(fragp);
2816 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2817 					   DMA_TO_DEVICE);
2818 
2819 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2820 		if (unlikely(tabort)) {
2821 			void *addr;
2822 
2823 			/* NOTE: len is always > tabort */
2824 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2825 				      ctrl, 0);
2826 			entry = TX_DESC_NEXT(ring, entry);
2827 
2828 			addr = cas_page_map(skb_frag_page(fragp));
2829 			memcpy(tx_tiny_buf(cp, ring, entry),
2830 			       addr + fragp->page_offset + len - tabort,
2831 			       tabort);
2832 			cas_page_unmap(addr);
2833 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2834 			len     = tabort;
2835 		}
2836 
2837 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2838 			      (frag + 1 == nr_frags));
2839 		entry = TX_DESC_NEXT(ring, entry);
2840 	}
2841 
2842 	cp->tx_new[ring] = entry;
2843 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2844 		netif_stop_queue(dev);
2845 
2846 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2847 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2848 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2849 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2850 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2851 	return 0;
2852 }
2853 
2854 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2855 {
2856 	struct cas *cp = netdev_priv(dev);
2857 
2858 	/* this is only used as a load-balancing hint, so it doesn't
2859 	 * need to be SMP safe
2860 	 */
2861 	static int ring;
2862 
2863 	if (skb_padto(skb, cp->min_frame_size))
2864 		return NETDEV_TX_OK;
2865 
2866 	/* XXX: we need some higher-level QoS hooks to steer packets to
2867 	 *      individual queues.
2868 	 */
2869 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2870 		return NETDEV_TX_BUSY;
2871 	return NETDEV_TX_OK;
2872 }
2873 
2874 static void cas_init_tx_dma(struct cas *cp)
2875 {
2876 	u64 desc_dma = cp->block_dvma;
2877 	unsigned long off;
2878 	u32 val;
2879 	int i;
2880 
2881 	/* set up tx completion writeback registers. must be 8-byte aligned */
2882 #ifdef USE_TX_COMPWB
2883 	off = offsetof(struct cas_init_block, tx_compwb);
2884 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2885 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2886 #endif
2887 
2888 	/* enable completion writebacks, enable paced mode,
2889 	 * disable read pipe, and disable pre-interrupt compwbs
2890 	 */
2891 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2892 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2893 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2894 		TX_CFG_INTR_COMPWB_DIS;
2895 
2896 	/* write out tx ring info and tx desc bases */
2897 	for (i = 0; i < MAX_TX_RINGS; i++) {
2898 		off = (unsigned long) cp->init_txds[i] -
2899 			(unsigned long) cp->init_block;
2900 
2901 		val |= CAS_TX_RINGN_BASE(i);
2902 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2903 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2904 		       REG_TX_DBN_LOW(i));
2905 		/* don't zero out the kick register here as the system
2906 		 * will wedge
2907 		 */
2908 	}
2909 	writel(val, cp->regs + REG_TX_CFG);
2910 
2911 	/* program max burst sizes. these numbers should be different
2912 	 * if doing QoS.
2913 	 */
2914 #ifdef USE_QOS
2915 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2916 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2917 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2918 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2919 #else
2920 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2921 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2922 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2923 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2924 #endif
2925 }
2926 
2927 /* Must be invoked under cp->lock. */
2928 static inline void cas_init_dma(struct cas *cp)
2929 {
2930 	cas_init_tx_dma(cp);
2931 	cas_init_rx_dma(cp);
2932 }
2933 
2934 static void cas_process_mc_list(struct cas *cp)
2935 {
2936 	u16 hash_table[16];
2937 	u32 crc;
2938 	struct netdev_hw_addr *ha;
2939 	int i = 1;
2940 
2941 	memset(hash_table, 0, sizeof(hash_table));
2942 	netdev_for_each_mc_addr(ha, cp->dev) {
2943 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2944 			/* use the alternate mac address registers for the
2945 			 * first 15 multicast addresses
2946 			 */
2947 			writel((ha->addr[4] << 8) | ha->addr[5],
2948 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2949 			writel((ha->addr[2] << 8) | ha->addr[3],
2950 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2951 			writel((ha->addr[0] << 8) | ha->addr[1],
2952 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2953 			i++;
2954 		}
2955 		else {
2956 			/* use hw hash table for the next series of
2957 			 * multicast addresses
2958 			 */
2959 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2960 			crc >>= 24;
2961 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2962 		}
2963 	}
2964 	for (i = 0; i < 16; i++)
2965 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2966 }
2967 
2968 /* Must be invoked under cp->lock. */
2969 static u32 cas_setup_multicast(struct cas *cp)
2970 {
2971 	u32 rxcfg = 0;
2972 	int i;
2973 
2974 	if (cp->dev->flags & IFF_PROMISC) {
2975 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2976 
2977 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2978 	    	for (i=0; i < 16; i++)
2979 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2980 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2981 
2982 	} else {
2983 		cas_process_mc_list(cp);
2984 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2985 	}
2986 
2987 	return rxcfg;
2988 }
2989 
2990 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2991 static void cas_clear_mac_err(struct cas *cp)
2992 {
2993 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2994 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
2995 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2996 	writel(0, cp->regs + REG_MAC_COLL_LATE);
2997 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2998 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2999 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3000 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3001 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3002 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3003 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3004 }
3005 
3006 
3007 static void cas_mac_reset(struct cas *cp)
3008 {
3009 	int i;
3010 
3011 	/* do both TX and RX reset */
3012 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3013 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3014 
3015 	/* wait for TX */
3016 	i = STOP_TRIES;
3017 	while (i-- > 0) {
3018 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3019 			break;
3020 		udelay(10);
3021 	}
3022 
3023 	/* wait for RX */
3024 	i = STOP_TRIES;
3025 	while (i-- > 0) {
3026 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3027 			break;
3028 		udelay(10);
3029 	}
3030 
3031 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3032 	    readl(cp->regs + REG_MAC_RX_RESET))
3033 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3034 			   readl(cp->regs + REG_MAC_TX_RESET),
3035 			   readl(cp->regs + REG_MAC_RX_RESET),
3036 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3037 }
3038 
3039 
3040 /* Must be invoked under cp->lock. */
3041 static void cas_init_mac(struct cas *cp)
3042 {
3043 	unsigned char *e = &cp->dev->dev_addr[0];
3044 	int i;
3045 	cas_mac_reset(cp);
3046 
3047 	/* setup core arbitration weight register */
3048 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3049 
3050 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3051 	/* set the infinite burst register for chips that don't have
3052 	 * pci issues.
3053 	 */
3054 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3055 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3056 #endif
3057 
3058 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3059 
3060 	writel(0x00, cp->regs + REG_MAC_IPG0);
3061 	writel(0x08, cp->regs + REG_MAC_IPG1);
3062 	writel(0x04, cp->regs + REG_MAC_IPG2);
3063 
3064 	/* change later for 802.3z */
3065 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3066 
3067 	/* min frame + FCS */
3068 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3069 
3070 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3071 	 * specify the maximum frame size to prevent RX tag errors on
3072 	 * oversized frames.
3073 	 */
3074 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3075 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3076 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3077 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3078 
3079 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3080 	 * workaround saturn half-duplex issue by increasing preamble
3081 	 * size to 65 bytes.
3082 	 */
3083 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3084 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3085 	else
3086 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3087 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3088 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3089 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3090 
3091 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3092 
3093 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3094 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3095 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3096 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3097 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3098 
3099 	/* setup mac address in perfect filter array */
3100 	for (i = 0; i < 45; i++)
3101 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3102 
3103 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3104 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3105 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3106 
3107 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3108 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3109 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3110 
3111 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3112 
3113 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3114 	cas_clear_mac_err(cp);
3115 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3116 
3117 	/* Setup MAC interrupts.  We want to get all of the interesting
3118 	 * counter expiration events, but we do not want to hear about
3119 	 * normal rx/tx as the DMA engine tells us that.
3120 	 */
3121 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3122 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3123 
3124 	/* Don't enable even the PAUSE interrupts for now, we
3125 	 * make no use of those events other than to record them.
3126 	 */
3127 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3128 }
3129 
3130 /* Must be invoked under cp->lock. */
3131 static void cas_init_pause_thresholds(struct cas *cp)
3132 {
3133 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3134 	 * full RX fifo size effectively disables PAUSE generation
3135 	 */
3136 	if (cp->rx_fifo_size <= (2 * 1024)) {
3137 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3138 	} else {
3139 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3140 		if (max_frame * 3 > cp->rx_fifo_size) {
3141 			cp->rx_pause_off = 7104;
3142 			cp->rx_pause_on  = 960;
3143 		} else {
3144 			int off = (cp->rx_fifo_size - (max_frame * 2));
3145 			int on = off - max_frame;
3146 			cp->rx_pause_off = off;
3147 			cp->rx_pause_on = on;
3148 		}
3149 	}
3150 }
3151 
3152 static int cas_vpd_match(const void __iomem *p, const char *str)
3153 {
3154 	int len = strlen(str) + 1;
3155 	int i;
3156 
3157 	for (i = 0; i < len; i++) {
3158 		if (readb(p + i) != str[i])
3159 			return 0;
3160 	}
3161 	return 1;
3162 }
3163 
3164 
3165 /* get the mac address by reading the vpd information in the rom.
3166  * also get the phy type and determine if there's an entropy generator.
3167  * NOTE: this is a bit convoluted for the following reasons:
3168  *  1) vpd info has order-dependent mac addresses for multinic cards
3169  *  2) the only way to determine the nic order is to use the slot
3170  *     number.
3171  *  3) fiber cards don't have bridges, so their slot numbers don't
3172  *     mean anything.
3173  *  4) we don't actually know we have a fiber card until after
3174  *     the mac addresses are parsed.
3175  */
3176 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3177 			    const int offset)
3178 {
3179 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3180 	void __iomem *base, *kstart;
3181 	int i, len;
3182 	int found = 0;
3183 #define VPD_FOUND_MAC        0x01
3184 #define VPD_FOUND_PHY        0x02
3185 
3186 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3187 	int mac_off  = 0;
3188 
3189 #if defined(CONFIG_SPARC)
3190 	const unsigned char *addr;
3191 #endif
3192 
3193 	/* give us access to the PROM */
3194 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3195 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3196 
3197 	/* check for an expansion rom */
3198 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3199 		goto use_random_mac_addr;
3200 
3201 	/* search for beginning of vpd */
3202 	base = NULL;
3203 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3204 		/* check for PCIR */
3205 		if ((readb(p + i + 0) == 0x50) &&
3206 		    (readb(p + i + 1) == 0x43) &&
3207 		    (readb(p + i + 2) == 0x49) &&
3208 		    (readb(p + i + 3) == 0x52)) {
3209 			base = p + (readb(p + i + 8) |
3210 				    (readb(p + i + 9) << 8));
3211 			break;
3212 		}
3213 	}
3214 
3215 	if (!base || (readb(base) != 0x82))
3216 		goto use_random_mac_addr;
3217 
3218 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3219 	while (i < EXPANSION_ROM_SIZE) {
3220 		if (readb(base + i) != 0x90) /* no vpd found */
3221 			goto use_random_mac_addr;
3222 
3223 		/* found a vpd field */
3224 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3225 
3226 		/* extract keywords */
3227 		kstart = base + i + 3;
3228 		p = kstart;
3229 		while ((p - kstart) < len) {
3230 			int klen = readb(p + 2);
3231 			int j;
3232 			char type;
3233 
3234 			p += 3;
3235 
3236 			/* look for the following things:
3237 			 * -- correct length == 29
3238 			 * 3 (type) + 2 (size) +
3239 			 * 18 (strlen("local-mac-address") + 1) +
3240 			 * 6 (mac addr)
3241 			 * -- VPD Instance 'I'
3242 			 * -- VPD Type Bytes 'B'
3243 			 * -- VPD data length == 6
3244 			 * -- property string == local-mac-address
3245 			 *
3246 			 * -- correct length == 24
3247 			 * 3 (type) + 2 (size) +
3248 			 * 12 (strlen("entropy-dev") + 1) +
3249 			 * 7 (strlen("vms110") + 1)
3250 			 * -- VPD Instance 'I'
3251 			 * -- VPD Type String 'B'
3252 			 * -- VPD data length == 7
3253 			 * -- property string == entropy-dev
3254 			 *
3255 			 * -- correct length == 18
3256 			 * 3 (type) + 2 (size) +
3257 			 * 9 (strlen("phy-type") + 1) +
3258 			 * 4 (strlen("pcs") + 1)
3259 			 * -- VPD Instance 'I'
3260 			 * -- VPD Type String 'S'
3261 			 * -- VPD data length == 4
3262 			 * -- property string == phy-type
3263 			 *
3264 			 * -- correct length == 23
3265 			 * 3 (type) + 2 (size) +
3266 			 * 14 (strlen("phy-interface") + 1) +
3267 			 * 4 (strlen("pcs") + 1)
3268 			 * -- VPD Instance 'I'
3269 			 * -- VPD Type String 'S'
3270 			 * -- VPD data length == 4
3271 			 * -- property string == phy-interface
3272 			 */
3273 			if (readb(p) != 'I')
3274 				goto next;
3275 
3276 			/* finally, check string and length */
3277 			type = readb(p + 3);
3278 			if (type == 'B') {
3279 				if ((klen == 29) && readb(p + 4) == 6 &&
3280 				    cas_vpd_match(p + 5,
3281 						  "local-mac-address")) {
3282 					if (mac_off++ > offset)
3283 						goto next;
3284 
3285 					/* set mac address */
3286 					for (j = 0; j < 6; j++)
3287 						dev_addr[j] =
3288 							readb(p + 23 + j);
3289 					goto found_mac;
3290 				}
3291 			}
3292 
3293 			if (type != 'S')
3294 				goto next;
3295 
3296 #ifdef USE_ENTROPY_DEV
3297 			if ((klen == 24) &&
3298 			    cas_vpd_match(p + 5, "entropy-dev") &&
3299 			    cas_vpd_match(p + 17, "vms110")) {
3300 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3301 				goto next;
3302 			}
3303 #endif
3304 
3305 			if (found & VPD_FOUND_PHY)
3306 				goto next;
3307 
3308 			if ((klen == 18) && readb(p + 4) == 4 &&
3309 			    cas_vpd_match(p + 5, "phy-type")) {
3310 				if (cas_vpd_match(p + 14, "pcs")) {
3311 					phy_type = CAS_PHY_SERDES;
3312 					goto found_phy;
3313 				}
3314 			}
3315 
3316 			if ((klen == 23) && readb(p + 4) == 4 &&
3317 			    cas_vpd_match(p + 5, "phy-interface")) {
3318 				if (cas_vpd_match(p + 19, "pcs")) {
3319 					phy_type = CAS_PHY_SERDES;
3320 					goto found_phy;
3321 				}
3322 			}
3323 found_mac:
3324 			found |= VPD_FOUND_MAC;
3325 			goto next;
3326 
3327 found_phy:
3328 			found |= VPD_FOUND_PHY;
3329 
3330 next:
3331 			p += klen;
3332 		}
3333 		i += len + 3;
3334 	}
3335 
3336 use_random_mac_addr:
3337 	if (found & VPD_FOUND_MAC)
3338 		goto done;
3339 
3340 #if defined(CONFIG_SPARC)
3341 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3342 	if (addr != NULL) {
3343 		memcpy(dev_addr, addr, ETH_ALEN);
3344 		goto done;
3345 	}
3346 #endif
3347 
3348 	/* Sun MAC prefix then 3 random bytes. */
3349 	pr_info("MAC address not found in ROM VPD\n");
3350 	dev_addr[0] = 0x08;
3351 	dev_addr[1] = 0x00;
3352 	dev_addr[2] = 0x20;
3353 	get_random_bytes(dev_addr + 3, 3);
3354 
3355 done:
3356 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3357 	return phy_type;
3358 }
3359 
3360 /* check pci invariants */
3361 static void cas_check_pci_invariants(struct cas *cp)
3362 {
3363 	struct pci_dev *pdev = cp->pdev;
3364 
3365 	cp->cas_flags = 0;
3366 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3367 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3368 		if (pdev->revision >= CAS_ID_REVPLUS)
3369 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3370 		if (pdev->revision < CAS_ID_REVPLUS02u)
3371 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3372 
3373 		/* Original Cassini supports HW CSUM, but it's not
3374 		 * enabled by default as it can trigger TX hangs.
3375 		 */
3376 		if (pdev->revision < CAS_ID_REV2)
3377 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3378 	} else {
3379 		/* Only sun has original cassini chips.  */
3380 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3381 
3382 		/* We use a flag because the same phy might be externally
3383 		 * connected.
3384 		 */
3385 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3386 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3387 			cp->cas_flags |= CAS_FLAG_SATURN;
3388 	}
3389 }
3390 
3391 
3392 static int cas_check_invariants(struct cas *cp)
3393 {
3394 	struct pci_dev *pdev = cp->pdev;
3395 	u32 cfg;
3396 	int i;
3397 
3398 	/* get page size for rx buffers. */
3399 	cp->page_order = 0;
3400 #ifdef USE_PAGE_ORDER
3401 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3402 		/* see if we can allocate larger pages */
3403 		struct page *page = alloc_pages(GFP_ATOMIC,
3404 						CAS_JUMBO_PAGE_SHIFT -
3405 						PAGE_SHIFT);
3406 		if (page) {
3407 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3408 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3409 		} else {
3410 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3411 		}
3412 	}
3413 #endif
3414 	cp->page_size = (PAGE_SIZE << cp->page_order);
3415 
3416 	/* Fetch the FIFO configurations. */
3417 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3418 	cp->rx_fifo_size = RX_FIFO_SIZE;
3419 
3420 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3421 	 * they're both connected.
3422 	 */
3423 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3424 					PCI_SLOT(pdev->devfn));
3425 	if (cp->phy_type & CAS_PHY_SERDES) {
3426 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3427 		return 0; /* no more checking needed */
3428 	}
3429 
3430 	/* MII */
3431 	cfg = readl(cp->regs + REG_MIF_CFG);
3432 	if (cfg & MIF_CFG_MDIO_1) {
3433 		cp->phy_type = CAS_PHY_MII_MDIO1;
3434 	} else if (cfg & MIF_CFG_MDIO_0) {
3435 		cp->phy_type = CAS_PHY_MII_MDIO0;
3436 	}
3437 
3438 	cas_mif_poll(cp, 0);
3439 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3440 
3441 	for (i = 0; i < 32; i++) {
3442 		u32 phy_id;
3443 		int j;
3444 
3445 		for (j = 0; j < 3; j++) {
3446 			cp->phy_addr = i;
3447 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3448 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3449 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3450 				cp->phy_id = phy_id;
3451 				goto done;
3452 			}
3453 		}
3454 	}
3455 	pr_err("MII phy did not respond [%08x]\n",
3456 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3457 	return -1;
3458 
3459 done:
3460 	/* see if we can do gigabit */
3461 	cfg = cas_phy_read(cp, MII_BMSR);
3462 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3463 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3464 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3465 	return 0;
3466 }
3467 
3468 /* Must be invoked under cp->lock. */
3469 static inline void cas_start_dma(struct cas *cp)
3470 {
3471 	int i;
3472 	u32 val;
3473 	int txfailed = 0;
3474 
3475 	/* enable dma */
3476 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3477 	writel(val, cp->regs + REG_TX_CFG);
3478 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3479 	writel(val, cp->regs + REG_RX_CFG);
3480 
3481 	/* enable the mac */
3482 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3483 	writel(val, cp->regs + REG_MAC_TX_CFG);
3484 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3485 	writel(val, cp->regs + REG_MAC_RX_CFG);
3486 
3487 	i = STOP_TRIES;
3488 	while (i-- > 0) {
3489 		val = readl(cp->regs + REG_MAC_TX_CFG);
3490 		if ((val & MAC_TX_CFG_EN))
3491 			break;
3492 		udelay(10);
3493 	}
3494 	if (i < 0) txfailed = 1;
3495 	i = STOP_TRIES;
3496 	while (i-- > 0) {
3497 		val = readl(cp->regs + REG_MAC_RX_CFG);
3498 		if ((val & MAC_RX_CFG_EN)) {
3499 			if (txfailed) {
3500 				netdev_err(cp->dev,
3501 					   "enabling mac failed [tx:%08x:%08x]\n",
3502 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3503 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3504 			}
3505 			goto enable_rx_done;
3506 		}
3507 		udelay(10);
3508 	}
3509 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3510 		   (txfailed ? "tx,rx" : "rx"),
3511 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3512 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3513 
3514 enable_rx_done:
3515 	cas_unmask_intr(cp); /* enable interrupts */
3516 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3517 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3518 
3519 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3520 		if (N_RX_DESC_RINGS > 1)
3521 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3522 			       cp->regs + REG_PLUS_RX_KICK1);
3523 
3524 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3525 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3526 	}
3527 }
3528 
3529 /* Must be invoked under cp->lock. */
3530 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3531 				   int *pause)
3532 {
3533 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3534 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3535 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3536 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3537 		*pause |= 0x10;
3538 	*spd = 1000;
3539 }
3540 
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3543 				   int *pause)
3544 {
3545 	u32 val;
3546 
3547 	*fd = 0;
3548 	*spd = 10;
3549 	*pause = 0;
3550 
3551 	/* use GMII registers */
3552 	val = cas_phy_read(cp, MII_LPA);
3553 	if (val & CAS_LPA_PAUSE)
3554 		*pause = 0x01;
3555 
3556 	if (val & CAS_LPA_ASYM_PAUSE)
3557 		*pause |= 0x10;
3558 
3559 	if (val & LPA_DUPLEX)
3560 		*fd = 1;
3561 	if (val & LPA_100)
3562 		*spd = 100;
3563 
3564 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3565 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3566 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3567 			*spd = 1000;
3568 		if (val & CAS_LPA_1000FULL)
3569 			*fd = 1;
3570 	}
3571 }
3572 
3573 /* A link-up condition has occurred, initialize and enable the
3574  * rest of the chip.
3575  *
3576  * Must be invoked under cp->lock.
3577  */
3578 static void cas_set_link_modes(struct cas *cp)
3579 {
3580 	u32 val;
3581 	int full_duplex, speed, pause;
3582 
3583 	full_duplex = 0;
3584 	speed = 10;
3585 	pause = 0;
3586 
3587 	if (CAS_PHY_MII(cp->phy_type)) {
3588 		cas_mif_poll(cp, 0);
3589 		val = cas_phy_read(cp, MII_BMCR);
3590 		if (val & BMCR_ANENABLE) {
3591 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3592 					       &pause);
3593 		} else {
3594 			if (val & BMCR_FULLDPLX)
3595 				full_duplex = 1;
3596 
3597 			if (val & BMCR_SPEED100)
3598 				speed = 100;
3599 			else if (val & CAS_BMCR_SPEED1000)
3600 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3601 					1000 : 100;
3602 		}
3603 		cas_mif_poll(cp, 1);
3604 
3605 	} else {
3606 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3607 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3608 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3609 			if (val & PCS_MII_CTRL_DUPLEX)
3610 				full_duplex = 1;
3611 		}
3612 	}
3613 
3614 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3615 		   speed, full_duplex ? "full" : "half");
3616 
3617 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3618 	if (CAS_PHY_MII(cp->phy_type)) {
3619 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3620 		if (!full_duplex)
3621 			val |= MAC_XIF_DISABLE_ECHO;
3622 	}
3623 	if (full_duplex)
3624 		val |= MAC_XIF_FDPLX_LED;
3625 	if (speed == 1000)
3626 		val |= MAC_XIF_GMII_MODE;
3627 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3628 
3629 	/* deal with carrier and collision detect. */
3630 	val = MAC_TX_CFG_IPG_EN;
3631 	if (full_duplex) {
3632 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3633 		val |= MAC_TX_CFG_IGNORE_COLL;
3634 	} else {
3635 #ifndef USE_CSMA_CD_PROTO
3636 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3637 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3638 #endif
3639 	}
3640 	/* val now set up for REG_MAC_TX_CFG */
3641 
3642 	/* If gigabit and half-duplex, enable carrier extension
3643 	 * mode.  increase slot time to 512 bytes as well.
3644 	 * else, disable it and make sure slot time is 64 bytes.
3645 	 * also activate checksum bug workaround
3646 	 */
3647 	if ((speed == 1000) && !full_duplex) {
3648 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3649 		       cp->regs + REG_MAC_TX_CFG);
3650 
3651 		val = readl(cp->regs + REG_MAC_RX_CFG);
3652 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3653 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3654 		       cp->regs + REG_MAC_RX_CFG);
3655 
3656 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3657 
3658 		cp->crc_size = 4;
3659 		/* minimum size gigabit frame at half duplex */
3660 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3661 
3662 	} else {
3663 		writel(val, cp->regs + REG_MAC_TX_CFG);
3664 
3665 		/* checksum bug workaround. don't strip FCS when in
3666 		 * half-duplex mode
3667 		 */
3668 		val = readl(cp->regs + REG_MAC_RX_CFG);
3669 		if (full_duplex) {
3670 			val |= MAC_RX_CFG_STRIP_FCS;
3671 			cp->crc_size = 0;
3672 			cp->min_frame_size = CAS_MIN_MTU;
3673 		} else {
3674 			val &= ~MAC_RX_CFG_STRIP_FCS;
3675 			cp->crc_size = 4;
3676 			cp->min_frame_size = CAS_MIN_FRAME;
3677 		}
3678 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3679 		       cp->regs + REG_MAC_RX_CFG);
3680 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3681 	}
3682 
3683 	if (netif_msg_link(cp)) {
3684 		if (pause & 0x01) {
3685 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3686 				    cp->rx_fifo_size,
3687 				    cp->rx_pause_off,
3688 				    cp->rx_pause_on);
3689 		} else if (pause & 0x10) {
3690 			netdev_info(cp->dev, "TX pause enabled\n");
3691 		} else {
3692 			netdev_info(cp->dev, "Pause is disabled\n");
3693 		}
3694 	}
3695 
3696 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3697 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3698 	if (pause) { /* symmetric or asymmetric pause */
3699 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3700 		if (pause & 0x01) { /* symmetric pause */
3701 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3702 		}
3703 	}
3704 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3705 	cas_start_dma(cp);
3706 }
3707 
3708 /* Must be invoked under cp->lock. */
3709 static void cas_init_hw(struct cas *cp, int restart_link)
3710 {
3711 	if (restart_link)
3712 		cas_phy_init(cp);
3713 
3714 	cas_init_pause_thresholds(cp);
3715 	cas_init_mac(cp);
3716 	cas_init_dma(cp);
3717 
3718 	if (restart_link) {
3719 		/* Default aneg parameters */
3720 		cp->timer_ticks = 0;
3721 		cas_begin_auto_negotiation(cp, NULL);
3722 	} else if (cp->lstate == link_up) {
3723 		cas_set_link_modes(cp);
3724 		netif_carrier_on(cp->dev);
3725 	}
3726 }
3727 
3728 /* Must be invoked under cp->lock. on earlier cassini boards,
3729  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3730  * let it settle out, and then restore pci state.
3731  */
3732 static void cas_hard_reset(struct cas *cp)
3733 {
3734 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3735 	udelay(20);
3736 	pci_restore_state(cp->pdev);
3737 }
3738 
3739 
3740 static void cas_global_reset(struct cas *cp, int blkflag)
3741 {
3742 	int limit;
3743 
3744 	/* issue a global reset. don't use RSTOUT. */
3745 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3746 		/* For PCS, when the blkflag is set, we should set the
3747 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3748 		 * the last autonegotiation from being cleared.  We'll
3749 		 * need some special handling if the chip is set into a
3750 		 * loopback mode.
3751 		 */
3752 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3753 		       cp->regs + REG_SW_RESET);
3754 	} else {
3755 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3756 	}
3757 
3758 	/* need to wait at least 3ms before polling register */
3759 	mdelay(3);
3760 
3761 	limit = STOP_TRIES;
3762 	while (limit-- > 0) {
3763 		u32 val = readl(cp->regs + REG_SW_RESET);
3764 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3765 			goto done;
3766 		udelay(10);
3767 	}
3768 	netdev_err(cp->dev, "sw reset failed\n");
3769 
3770 done:
3771 	/* enable various BIM interrupts */
3772 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3773 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3774 
3775 	/* clear out pci error status mask for handled errors.
3776 	 * we don't deal with DMA counter overflows as they happen
3777 	 * all the time.
3778 	 */
3779 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3780 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3781 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3782 	       REG_PCI_ERR_STATUS_MASK);
3783 
3784 	/* set up for MII by default to address mac rx reset timeout
3785 	 * issue
3786 	 */
3787 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3788 }
3789 
3790 static void cas_reset(struct cas *cp, int blkflag)
3791 {
3792 	u32 val;
3793 
3794 	cas_mask_intr(cp);
3795 	cas_global_reset(cp, blkflag);
3796 	cas_mac_reset(cp);
3797 	cas_entropy_reset(cp);
3798 
3799 	/* disable dma engines. */
3800 	val = readl(cp->regs + REG_TX_CFG);
3801 	val &= ~TX_CFG_DMA_EN;
3802 	writel(val, cp->regs + REG_TX_CFG);
3803 
3804 	val = readl(cp->regs + REG_RX_CFG);
3805 	val &= ~RX_CFG_DMA_EN;
3806 	writel(val, cp->regs + REG_RX_CFG);
3807 
3808 	/* program header parser */
3809 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3810 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3811 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3812 	} else {
3813 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3814 	}
3815 
3816 	/* clear out error registers */
3817 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3818 	cas_clear_mac_err(cp);
3819 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3820 }
3821 
3822 /* Shut down the chip, must be called with pm_mutex held.  */
3823 static void cas_shutdown(struct cas *cp)
3824 {
3825 	unsigned long flags;
3826 
3827 	/* Make us not-running to avoid timers respawning */
3828 	cp->hw_running = 0;
3829 
3830 	del_timer_sync(&cp->link_timer);
3831 
3832 	/* Stop the reset task */
3833 #if 0
3834 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3835 	       atomic_read(&cp->reset_task_pending_spare) ||
3836 	       atomic_read(&cp->reset_task_pending_all))
3837 		schedule();
3838 
3839 #else
3840 	while (atomic_read(&cp->reset_task_pending))
3841 		schedule();
3842 #endif
3843 	/* Actually stop the chip */
3844 	cas_lock_all_save(cp, flags);
3845 	cas_reset(cp, 0);
3846 	if (cp->cas_flags & CAS_FLAG_SATURN)
3847 		cas_phy_powerdown(cp);
3848 	cas_unlock_all_restore(cp, flags);
3849 }
3850 
3851 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3852 {
3853 	struct cas *cp = netdev_priv(dev);
3854 
3855 	dev->mtu = new_mtu;
3856 	if (!netif_running(dev) || !netif_device_present(dev))
3857 		return 0;
3858 
3859 	/* let the reset task handle it */
3860 #if 1
3861 	atomic_inc(&cp->reset_task_pending);
3862 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3863 		atomic_inc(&cp->reset_task_pending_all);
3864 	} else {
3865 		atomic_inc(&cp->reset_task_pending_mtu);
3866 	}
3867 	schedule_work(&cp->reset_task);
3868 #else
3869 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3870 		   CAS_RESET_ALL : CAS_RESET_MTU);
3871 	pr_err("reset called in cas_change_mtu\n");
3872 	schedule_work(&cp->reset_task);
3873 #endif
3874 
3875 	flush_work(&cp->reset_task);
3876 	return 0;
3877 }
3878 
3879 static void cas_clean_txd(struct cas *cp, int ring)
3880 {
3881 	struct cas_tx_desc *txd = cp->init_txds[ring];
3882 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3883 	u64 daddr, dlen;
3884 	int i, size;
3885 
3886 	size = TX_DESC_RINGN_SIZE(ring);
3887 	for (i = 0; i < size; i++) {
3888 		int frag;
3889 
3890 		if (skbs[i] == NULL)
3891 			continue;
3892 
3893 		skb = skbs[i];
3894 		skbs[i] = NULL;
3895 
3896 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3897 			int ent = i & (size - 1);
3898 
3899 			/* first buffer is never a tiny buffer and so
3900 			 * needs to be unmapped.
3901 			 */
3902 			daddr = le64_to_cpu(txd[ent].buffer);
3903 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3904 					 le64_to_cpu(txd[ent].control));
3905 			pci_unmap_page(cp->pdev, daddr, dlen,
3906 				       PCI_DMA_TODEVICE);
3907 
3908 			if (frag != skb_shinfo(skb)->nr_frags) {
3909 				i++;
3910 
3911 				/* next buffer might by a tiny buffer.
3912 				 * skip past it.
3913 				 */
3914 				ent = i & (size - 1);
3915 				if (cp->tx_tiny_use[ring][ent].used)
3916 					i++;
3917 			}
3918 		}
3919 		dev_kfree_skb_any(skb);
3920 	}
3921 
3922 	/* zero out tiny buf usage */
3923 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3924 }
3925 
3926 /* freed on close */
3927 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3928 {
3929 	cas_page_t **page = cp->rx_pages[ring];
3930 	int i, size;
3931 
3932 	size = RX_DESC_RINGN_SIZE(ring);
3933 	for (i = 0; i < size; i++) {
3934 		if (page[i]) {
3935 			cas_page_free(cp, page[i]);
3936 			page[i] = NULL;
3937 		}
3938 	}
3939 }
3940 
3941 static void cas_free_rxds(struct cas *cp)
3942 {
3943 	int i;
3944 
3945 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3946 		cas_free_rx_desc(cp, i);
3947 }
3948 
3949 /* Must be invoked under cp->lock. */
3950 static void cas_clean_rings(struct cas *cp)
3951 {
3952 	int i;
3953 
3954 	/* need to clean all tx rings */
3955 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3956 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3957 	for (i = 0; i < N_TX_RINGS; i++)
3958 		cas_clean_txd(cp, i);
3959 
3960 	/* zero out init block */
3961 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3962 	cas_clean_rxds(cp);
3963 	cas_clean_rxcs(cp);
3964 }
3965 
3966 /* allocated on open */
3967 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3968 {
3969 	cas_page_t **page = cp->rx_pages[ring];
3970 	int size, i = 0;
3971 
3972 	size = RX_DESC_RINGN_SIZE(ring);
3973 	for (i = 0; i < size; i++) {
3974 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3975 			return -1;
3976 	}
3977 	return 0;
3978 }
3979 
3980 static int cas_alloc_rxds(struct cas *cp)
3981 {
3982 	int i;
3983 
3984 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3985 		if (cas_alloc_rx_desc(cp, i) < 0) {
3986 			cas_free_rxds(cp);
3987 			return -1;
3988 		}
3989 	}
3990 	return 0;
3991 }
3992 
3993 static void cas_reset_task(struct work_struct *work)
3994 {
3995 	struct cas *cp = container_of(work, struct cas, reset_task);
3996 #if 0
3997 	int pending = atomic_read(&cp->reset_task_pending);
3998 #else
3999 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4000 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4001 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4002 
4003 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4004 		/* We can have more tasks scheduled than actually
4005 		 * needed.
4006 		 */
4007 		atomic_dec(&cp->reset_task_pending);
4008 		return;
4009 	}
4010 #endif
4011 	/* The link went down, we reset the ring, but keep
4012 	 * DMA stopped. Use this function for reset
4013 	 * on error as well.
4014 	 */
4015 	if (cp->hw_running) {
4016 		unsigned long flags;
4017 
4018 		/* Make sure we don't get interrupts or tx packets */
4019 		netif_device_detach(cp->dev);
4020 		cas_lock_all_save(cp, flags);
4021 
4022 		if (cp->opened) {
4023 			/* We call cas_spare_recover when we call cas_open.
4024 			 * but we do not initialize the lists cas_spare_recover
4025 			 * uses until cas_open is called.
4026 			 */
4027 			cas_spare_recover(cp, GFP_ATOMIC);
4028 		}
4029 #if 1
4030 		/* test => only pending_spare set */
4031 		if (!pending_all && !pending_mtu)
4032 			goto done;
4033 #else
4034 		if (pending == CAS_RESET_SPARE)
4035 			goto done;
4036 #endif
4037 		/* when pending == CAS_RESET_ALL, the following
4038 		 * call to cas_init_hw will restart auto negotiation.
4039 		 * Setting the second argument of cas_reset to
4040 		 * !(pending == CAS_RESET_ALL) will set this argument
4041 		 * to 1 (avoiding reinitializing the PHY for the normal
4042 		 * PCS case) when auto negotiation is not restarted.
4043 		 */
4044 #if 1
4045 		cas_reset(cp, !(pending_all > 0));
4046 		if (cp->opened)
4047 			cas_clean_rings(cp);
4048 		cas_init_hw(cp, (pending_all > 0));
4049 #else
4050 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4051 		if (cp->opened)
4052 			cas_clean_rings(cp);
4053 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4054 #endif
4055 
4056 done:
4057 		cas_unlock_all_restore(cp, flags);
4058 		netif_device_attach(cp->dev);
4059 	}
4060 #if 1
4061 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4062 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4063 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4064 	atomic_dec(&cp->reset_task_pending);
4065 #else
4066 	atomic_set(&cp->reset_task_pending, 0);
4067 #endif
4068 }
4069 
4070 static void cas_link_timer(struct timer_list *t)
4071 {
4072 	struct cas *cp = from_timer(cp, t, link_timer);
4073 	int mask, pending = 0, reset = 0;
4074 	unsigned long flags;
4075 
4076 	if (link_transition_timeout != 0 &&
4077 	    cp->link_transition_jiffies_valid &&
4078 	    ((jiffies - cp->link_transition_jiffies) >
4079 	      (link_transition_timeout))) {
4080 		/* One-second counter so link-down workaround doesn't
4081 		 * cause resets to occur so fast as to fool the switch
4082 		 * into thinking the link is down.
4083 		 */
4084 		cp->link_transition_jiffies_valid = 0;
4085 	}
4086 
4087 	if (!cp->hw_running)
4088 		return;
4089 
4090 	spin_lock_irqsave(&cp->lock, flags);
4091 	cas_lock_tx(cp);
4092 	cas_entropy_gather(cp);
4093 
4094 	/* If the link task is still pending, we just
4095 	 * reschedule the link timer
4096 	 */
4097 #if 1
4098 	if (atomic_read(&cp->reset_task_pending_all) ||
4099 	    atomic_read(&cp->reset_task_pending_spare) ||
4100 	    atomic_read(&cp->reset_task_pending_mtu))
4101 		goto done;
4102 #else
4103 	if (atomic_read(&cp->reset_task_pending))
4104 		goto done;
4105 #endif
4106 
4107 	/* check for rx cleaning */
4108 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4109 		int i, rmask;
4110 
4111 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4112 			rmask = CAS_FLAG_RXD_POST(i);
4113 			if ((mask & rmask) == 0)
4114 				continue;
4115 
4116 			/* post_rxds will do a mod_timer */
4117 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4118 				pending = 1;
4119 				continue;
4120 			}
4121 			cp->cas_flags &= ~rmask;
4122 		}
4123 	}
4124 
4125 	if (CAS_PHY_MII(cp->phy_type)) {
4126 		u16 bmsr;
4127 		cas_mif_poll(cp, 0);
4128 		bmsr = cas_phy_read(cp, MII_BMSR);
4129 		/* WTZ: Solaris driver reads this twice, but that
4130 		 * may be due to the PCS case and the use of a
4131 		 * common implementation. Read it twice here to be
4132 		 * safe.
4133 		 */
4134 		bmsr = cas_phy_read(cp, MII_BMSR);
4135 		cas_mif_poll(cp, 1);
4136 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4137 		reset = cas_mii_link_check(cp, bmsr);
4138 	} else {
4139 		reset = cas_pcs_link_check(cp);
4140 	}
4141 
4142 	if (reset)
4143 		goto done;
4144 
4145 	/* check for tx state machine confusion */
4146 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4147 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4148 		u32 wptr, rptr;
4149 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4150 
4151 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4152 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4153 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4154 				     "tx err: MAC_STATE[%08x]\n", val);
4155 			reset = 1;
4156 			goto done;
4157 		}
4158 
4159 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4160 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4161 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4162 		if ((val == 0) && (wptr != rptr)) {
4163 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4164 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4165 				     val, wptr, rptr);
4166 			reset = 1;
4167 		}
4168 
4169 		if (reset)
4170 			cas_hard_reset(cp);
4171 	}
4172 
4173 done:
4174 	if (reset) {
4175 #if 1
4176 		atomic_inc(&cp->reset_task_pending);
4177 		atomic_inc(&cp->reset_task_pending_all);
4178 		schedule_work(&cp->reset_task);
4179 #else
4180 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4181 		pr_err("reset called in cas_link_timer\n");
4182 		schedule_work(&cp->reset_task);
4183 #endif
4184 	}
4185 
4186 	if (!pending)
4187 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4188 	cas_unlock_tx(cp);
4189 	spin_unlock_irqrestore(&cp->lock, flags);
4190 }
4191 
4192 /* tiny buffers are used to avoid target abort issues with
4193  * older cassini's
4194  */
4195 static void cas_tx_tiny_free(struct cas *cp)
4196 {
4197 	struct pci_dev *pdev = cp->pdev;
4198 	int i;
4199 
4200 	for (i = 0; i < N_TX_RINGS; i++) {
4201 		if (!cp->tx_tiny_bufs[i])
4202 			continue;
4203 
4204 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4205 				    cp->tx_tiny_bufs[i],
4206 				    cp->tx_tiny_dvma[i]);
4207 		cp->tx_tiny_bufs[i] = NULL;
4208 	}
4209 }
4210 
4211 static int cas_tx_tiny_alloc(struct cas *cp)
4212 {
4213 	struct pci_dev *pdev = cp->pdev;
4214 	int i;
4215 
4216 	for (i = 0; i < N_TX_RINGS; i++) {
4217 		cp->tx_tiny_bufs[i] =
4218 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4219 					     &cp->tx_tiny_dvma[i]);
4220 		if (!cp->tx_tiny_bufs[i]) {
4221 			cas_tx_tiny_free(cp);
4222 			return -1;
4223 		}
4224 	}
4225 	return 0;
4226 }
4227 
4228 
4229 static int cas_open(struct net_device *dev)
4230 {
4231 	struct cas *cp = netdev_priv(dev);
4232 	int hw_was_up, err;
4233 	unsigned long flags;
4234 
4235 	mutex_lock(&cp->pm_mutex);
4236 
4237 	hw_was_up = cp->hw_running;
4238 
4239 	/* The power-management mutex protects the hw_running
4240 	 * etc. state so it is safe to do this bit without cp->lock
4241 	 */
4242 	if (!cp->hw_running) {
4243 		/* Reset the chip */
4244 		cas_lock_all_save(cp, flags);
4245 		/* We set the second arg to cas_reset to zero
4246 		 * because cas_init_hw below will have its second
4247 		 * argument set to non-zero, which will force
4248 		 * autonegotiation to start.
4249 		 */
4250 		cas_reset(cp, 0);
4251 		cp->hw_running = 1;
4252 		cas_unlock_all_restore(cp, flags);
4253 	}
4254 
4255 	err = -ENOMEM;
4256 	if (cas_tx_tiny_alloc(cp) < 0)
4257 		goto err_unlock;
4258 
4259 	/* alloc rx descriptors */
4260 	if (cas_alloc_rxds(cp) < 0)
4261 		goto err_tx_tiny;
4262 
4263 	/* allocate spares */
4264 	cas_spare_init(cp);
4265 	cas_spare_recover(cp, GFP_KERNEL);
4266 
4267 	/* We can now request the interrupt as we know it's masked
4268 	 * on the controller. cassini+ has up to 4 interrupts
4269 	 * that can be used, but you need to do explicit pci interrupt
4270 	 * mapping to expose them
4271 	 */
4272 	if (request_irq(cp->pdev->irq, cas_interrupt,
4273 			IRQF_SHARED, dev->name, (void *) dev)) {
4274 		netdev_err(cp->dev, "failed to request irq !\n");
4275 		err = -EAGAIN;
4276 		goto err_spare;
4277 	}
4278 
4279 #ifdef USE_NAPI
4280 	napi_enable(&cp->napi);
4281 #endif
4282 	/* init hw */
4283 	cas_lock_all_save(cp, flags);
4284 	cas_clean_rings(cp);
4285 	cas_init_hw(cp, !hw_was_up);
4286 	cp->opened = 1;
4287 	cas_unlock_all_restore(cp, flags);
4288 
4289 	netif_start_queue(dev);
4290 	mutex_unlock(&cp->pm_mutex);
4291 	return 0;
4292 
4293 err_spare:
4294 	cas_spare_free(cp);
4295 	cas_free_rxds(cp);
4296 err_tx_tiny:
4297 	cas_tx_tiny_free(cp);
4298 err_unlock:
4299 	mutex_unlock(&cp->pm_mutex);
4300 	return err;
4301 }
4302 
4303 static int cas_close(struct net_device *dev)
4304 {
4305 	unsigned long flags;
4306 	struct cas *cp = netdev_priv(dev);
4307 
4308 #ifdef USE_NAPI
4309 	napi_disable(&cp->napi);
4310 #endif
4311 	/* Make sure we don't get distracted by suspend/resume */
4312 	mutex_lock(&cp->pm_mutex);
4313 
4314 	netif_stop_queue(dev);
4315 
4316 	/* Stop traffic, mark us closed */
4317 	cas_lock_all_save(cp, flags);
4318 	cp->opened = 0;
4319 	cas_reset(cp, 0);
4320 	cas_phy_init(cp);
4321 	cas_begin_auto_negotiation(cp, NULL);
4322 	cas_clean_rings(cp);
4323 	cas_unlock_all_restore(cp, flags);
4324 
4325 	free_irq(cp->pdev->irq, (void *) dev);
4326 	cas_spare_free(cp);
4327 	cas_free_rxds(cp);
4328 	cas_tx_tiny_free(cp);
4329 	mutex_unlock(&cp->pm_mutex);
4330 	return 0;
4331 }
4332 
4333 static struct {
4334 	const char name[ETH_GSTRING_LEN];
4335 } ethtool_cassini_statnames[] = {
4336 	{"collisions"},
4337 	{"rx_bytes"},
4338 	{"rx_crc_errors"},
4339 	{"rx_dropped"},
4340 	{"rx_errors"},
4341 	{"rx_fifo_errors"},
4342 	{"rx_frame_errors"},
4343 	{"rx_length_errors"},
4344 	{"rx_over_errors"},
4345 	{"rx_packets"},
4346 	{"tx_aborted_errors"},
4347 	{"tx_bytes"},
4348 	{"tx_dropped"},
4349 	{"tx_errors"},
4350 	{"tx_fifo_errors"},
4351 	{"tx_packets"}
4352 };
4353 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4354 
4355 static struct {
4356 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4357 } ethtool_register_table[] = {
4358 	{-MII_BMSR},
4359 	{-MII_BMCR},
4360 	{REG_CAWR},
4361 	{REG_INF_BURST},
4362 	{REG_BIM_CFG},
4363 	{REG_RX_CFG},
4364 	{REG_HP_CFG},
4365 	{REG_MAC_TX_CFG},
4366 	{REG_MAC_RX_CFG},
4367 	{REG_MAC_CTRL_CFG},
4368 	{REG_MAC_XIF_CFG},
4369 	{REG_MIF_CFG},
4370 	{REG_PCS_CFG},
4371 	{REG_SATURN_PCFG},
4372 	{REG_PCS_MII_STATUS},
4373 	{REG_PCS_STATE_MACHINE},
4374 	{REG_MAC_COLL_EXCESS},
4375 	{REG_MAC_COLL_LATE}
4376 };
4377 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4378 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4379 
4380 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4381 {
4382 	u8 *p;
4383 	int i;
4384 	unsigned long flags;
4385 
4386 	spin_lock_irqsave(&cp->lock, flags);
4387 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4388 		u16 hval;
4389 		u32 val;
4390 		if (ethtool_register_table[i].offsets < 0) {
4391 			hval = cas_phy_read(cp,
4392 				    -ethtool_register_table[i].offsets);
4393 			val = hval;
4394 		} else {
4395 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4396 		}
4397 		memcpy(p, (u8 *)&val, sizeof(u32));
4398 	}
4399 	spin_unlock_irqrestore(&cp->lock, flags);
4400 }
4401 
4402 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4403 {
4404 	struct cas *cp = netdev_priv(dev);
4405 	struct net_device_stats *stats = cp->net_stats;
4406 	unsigned long flags;
4407 	int i;
4408 	unsigned long tmp;
4409 
4410 	/* we collate all of the stats into net_stats[N_TX_RING] */
4411 	if (!cp->hw_running)
4412 		return stats + N_TX_RINGS;
4413 
4414 	/* collect outstanding stats */
4415 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4416 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4417 	 * in case the chip somehow puts any garbage in the other bits.
4418 	 * Also, counter usage didn't seem to mach what Adrian did
4419 	 * in the parts of the code that set these quantities. Made
4420 	 * that consistent.
4421 	 */
4422 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4423 	stats[N_TX_RINGS].rx_crc_errors +=
4424 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4425 	stats[N_TX_RINGS].rx_frame_errors +=
4426 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4427 	stats[N_TX_RINGS].rx_length_errors +=
4428 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4429 #if 1
4430 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4431 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4432 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4433 	stats[N_TX_RINGS].collisions +=
4434 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4435 #else
4436 	stats[N_TX_RINGS].tx_aborted_errors +=
4437 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4438 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4439 		readl(cp->regs + REG_MAC_COLL_LATE);
4440 #endif
4441 	cas_clear_mac_err(cp);
4442 
4443 	/* saved bits that are unique to ring 0 */
4444 	spin_lock(&cp->stat_lock[0]);
4445 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4446 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4447 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4448 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4449 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4450 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4451 	spin_unlock(&cp->stat_lock[0]);
4452 
4453 	for (i = 0; i < N_TX_RINGS; i++) {
4454 		spin_lock(&cp->stat_lock[i]);
4455 		stats[N_TX_RINGS].rx_length_errors +=
4456 			stats[i].rx_length_errors;
4457 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4458 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4459 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4460 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4461 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4462 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4463 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4464 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4465 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4466 		memset(stats + i, 0, sizeof(struct net_device_stats));
4467 		spin_unlock(&cp->stat_lock[i]);
4468 	}
4469 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4470 	return stats + N_TX_RINGS;
4471 }
4472 
4473 
4474 static void cas_set_multicast(struct net_device *dev)
4475 {
4476 	struct cas *cp = netdev_priv(dev);
4477 	u32 rxcfg, rxcfg_new;
4478 	unsigned long flags;
4479 	int limit = STOP_TRIES;
4480 
4481 	if (!cp->hw_running)
4482 		return;
4483 
4484 	spin_lock_irqsave(&cp->lock, flags);
4485 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4486 
4487 	/* disable RX MAC and wait for completion */
4488 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4489 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4490 		if (!limit--)
4491 			break;
4492 		udelay(10);
4493 	}
4494 
4495 	/* disable hash filter and wait for completion */
4496 	limit = STOP_TRIES;
4497 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4498 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4499 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4500 		if (!limit--)
4501 			break;
4502 		udelay(10);
4503 	}
4504 
4505 	/* program hash filters */
4506 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4507 	rxcfg |= rxcfg_new;
4508 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4509 	spin_unlock_irqrestore(&cp->lock, flags);
4510 }
4511 
4512 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4513 {
4514 	struct cas *cp = netdev_priv(dev);
4515 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4516 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4517 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4518 }
4519 
4520 static int cas_get_link_ksettings(struct net_device *dev,
4521 				  struct ethtool_link_ksettings *cmd)
4522 {
4523 	struct cas *cp = netdev_priv(dev);
4524 	u16 bmcr;
4525 	int full_duplex, speed, pause;
4526 	unsigned long flags;
4527 	enum link_state linkstate = link_up;
4528 	u32 supported, advertising;
4529 
4530 	advertising = 0;
4531 	supported = SUPPORTED_Autoneg;
4532 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4533 		supported |= SUPPORTED_1000baseT_Full;
4534 		advertising |= ADVERTISED_1000baseT_Full;
4535 	}
4536 
4537 	/* Record PHY settings if HW is on. */
4538 	spin_lock_irqsave(&cp->lock, flags);
4539 	bmcr = 0;
4540 	linkstate = cp->lstate;
4541 	if (CAS_PHY_MII(cp->phy_type)) {
4542 		cmd->base.port = PORT_MII;
4543 		cmd->base.phy_address = cp->phy_addr;
4544 		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4545 			ADVERTISED_10baseT_Half |
4546 			ADVERTISED_10baseT_Full |
4547 			ADVERTISED_100baseT_Half |
4548 			ADVERTISED_100baseT_Full;
4549 
4550 		supported |=
4551 			(SUPPORTED_10baseT_Half |
4552 			 SUPPORTED_10baseT_Full |
4553 			 SUPPORTED_100baseT_Half |
4554 			 SUPPORTED_100baseT_Full |
4555 			 SUPPORTED_TP | SUPPORTED_MII);
4556 
4557 		if (cp->hw_running) {
4558 			cas_mif_poll(cp, 0);
4559 			bmcr = cas_phy_read(cp, MII_BMCR);
4560 			cas_read_mii_link_mode(cp, &full_duplex,
4561 					       &speed, &pause);
4562 			cas_mif_poll(cp, 1);
4563 		}
4564 
4565 	} else {
4566 		cmd->base.port = PORT_FIBRE;
4567 		cmd->base.phy_address = 0;
4568 		supported   |= SUPPORTED_FIBRE;
4569 		advertising |= ADVERTISED_FIBRE;
4570 
4571 		if (cp->hw_running) {
4572 			/* pcs uses the same bits as mii */
4573 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4574 			cas_read_pcs_link_mode(cp, &full_duplex,
4575 					       &speed, &pause);
4576 		}
4577 	}
4578 	spin_unlock_irqrestore(&cp->lock, flags);
4579 
4580 	if (bmcr & BMCR_ANENABLE) {
4581 		advertising |= ADVERTISED_Autoneg;
4582 		cmd->base.autoneg = AUTONEG_ENABLE;
4583 		cmd->base.speed =  ((speed == 10) ?
4584 					    SPEED_10 :
4585 					    ((speed == 1000) ?
4586 					     SPEED_1000 : SPEED_100));
4587 		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4588 	} else {
4589 		cmd->base.autoneg = AUTONEG_DISABLE;
4590 		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4591 					    SPEED_1000 :
4592 					    ((bmcr & BMCR_SPEED100) ?
4593 					     SPEED_100 : SPEED_10));
4594 		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4595 			DUPLEX_FULL : DUPLEX_HALF;
4596 	}
4597 	if (linkstate != link_up) {
4598 		/* Force these to "unknown" if the link is not up and
4599 		 * autonogotiation in enabled. We can set the link
4600 		 * speed to 0, but not cmd->duplex,
4601 		 * because its legal values are 0 and 1.  Ethtool will
4602 		 * print the value reported in parentheses after the
4603 		 * word "Unknown" for unrecognized values.
4604 		 *
4605 		 * If in forced mode, we report the speed and duplex
4606 		 * settings that we configured.
4607 		 */
4608 		if (cp->link_cntl & BMCR_ANENABLE) {
4609 			cmd->base.speed = 0;
4610 			cmd->base.duplex = 0xff;
4611 		} else {
4612 			cmd->base.speed = SPEED_10;
4613 			if (cp->link_cntl & BMCR_SPEED100) {
4614 				cmd->base.speed = SPEED_100;
4615 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4616 				cmd->base.speed = SPEED_1000;
4617 			}
4618 			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4619 				DUPLEX_FULL : DUPLEX_HALF;
4620 		}
4621 	}
4622 
4623 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4624 						supported);
4625 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4626 						advertising);
4627 
4628 	return 0;
4629 }
4630 
4631 static int cas_set_link_ksettings(struct net_device *dev,
4632 				  const struct ethtool_link_ksettings *cmd)
4633 {
4634 	struct cas *cp = netdev_priv(dev);
4635 	unsigned long flags;
4636 	u32 speed = cmd->base.speed;
4637 
4638 	/* Verify the settings we care about. */
4639 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4640 	    cmd->base.autoneg != AUTONEG_DISABLE)
4641 		return -EINVAL;
4642 
4643 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4644 	    ((speed != SPEED_1000 &&
4645 	      speed != SPEED_100 &&
4646 	      speed != SPEED_10) ||
4647 	     (cmd->base.duplex != DUPLEX_HALF &&
4648 	      cmd->base.duplex != DUPLEX_FULL)))
4649 		return -EINVAL;
4650 
4651 	/* Apply settings and restart link process. */
4652 	spin_lock_irqsave(&cp->lock, flags);
4653 	cas_begin_auto_negotiation(cp, cmd);
4654 	spin_unlock_irqrestore(&cp->lock, flags);
4655 	return 0;
4656 }
4657 
4658 static int cas_nway_reset(struct net_device *dev)
4659 {
4660 	struct cas *cp = netdev_priv(dev);
4661 	unsigned long flags;
4662 
4663 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4664 		return -EINVAL;
4665 
4666 	/* Restart link process. */
4667 	spin_lock_irqsave(&cp->lock, flags);
4668 	cas_begin_auto_negotiation(cp, NULL);
4669 	spin_unlock_irqrestore(&cp->lock, flags);
4670 
4671 	return 0;
4672 }
4673 
4674 static u32 cas_get_link(struct net_device *dev)
4675 {
4676 	struct cas *cp = netdev_priv(dev);
4677 	return cp->lstate == link_up;
4678 }
4679 
4680 static u32 cas_get_msglevel(struct net_device *dev)
4681 {
4682 	struct cas *cp = netdev_priv(dev);
4683 	return cp->msg_enable;
4684 }
4685 
4686 static void cas_set_msglevel(struct net_device *dev, u32 value)
4687 {
4688 	struct cas *cp = netdev_priv(dev);
4689 	cp->msg_enable = value;
4690 }
4691 
4692 static int cas_get_regs_len(struct net_device *dev)
4693 {
4694 	struct cas *cp = netdev_priv(dev);
4695 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4696 }
4697 
4698 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4699 			     void *p)
4700 {
4701 	struct cas *cp = netdev_priv(dev);
4702 	regs->version = 0;
4703 	/* cas_read_regs handles locks (cp->lock).  */
4704 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4705 }
4706 
4707 static int cas_get_sset_count(struct net_device *dev, int sset)
4708 {
4709 	switch (sset) {
4710 	case ETH_SS_STATS:
4711 		return CAS_NUM_STAT_KEYS;
4712 	default:
4713 		return -EOPNOTSUPP;
4714 	}
4715 }
4716 
4717 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4718 {
4719 	 memcpy(data, &ethtool_cassini_statnames,
4720 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4721 }
4722 
4723 static void cas_get_ethtool_stats(struct net_device *dev,
4724 				      struct ethtool_stats *estats, u64 *data)
4725 {
4726 	struct cas *cp = netdev_priv(dev);
4727 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4728 	int i = 0;
4729 	data[i++] = stats->collisions;
4730 	data[i++] = stats->rx_bytes;
4731 	data[i++] = stats->rx_crc_errors;
4732 	data[i++] = stats->rx_dropped;
4733 	data[i++] = stats->rx_errors;
4734 	data[i++] = stats->rx_fifo_errors;
4735 	data[i++] = stats->rx_frame_errors;
4736 	data[i++] = stats->rx_length_errors;
4737 	data[i++] = stats->rx_over_errors;
4738 	data[i++] = stats->rx_packets;
4739 	data[i++] = stats->tx_aborted_errors;
4740 	data[i++] = stats->tx_bytes;
4741 	data[i++] = stats->tx_dropped;
4742 	data[i++] = stats->tx_errors;
4743 	data[i++] = stats->tx_fifo_errors;
4744 	data[i++] = stats->tx_packets;
4745 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4746 }
4747 
4748 static const struct ethtool_ops cas_ethtool_ops = {
4749 	.get_drvinfo		= cas_get_drvinfo,
4750 	.nway_reset		= cas_nway_reset,
4751 	.get_link		= cas_get_link,
4752 	.get_msglevel		= cas_get_msglevel,
4753 	.set_msglevel		= cas_set_msglevel,
4754 	.get_regs_len		= cas_get_regs_len,
4755 	.get_regs		= cas_get_regs,
4756 	.get_sset_count		= cas_get_sset_count,
4757 	.get_strings		= cas_get_strings,
4758 	.get_ethtool_stats	= cas_get_ethtool_stats,
4759 	.get_link_ksettings	= cas_get_link_ksettings,
4760 	.set_link_ksettings	= cas_set_link_ksettings,
4761 };
4762 
4763 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4764 {
4765 	struct cas *cp = netdev_priv(dev);
4766 	struct mii_ioctl_data *data = if_mii(ifr);
4767 	unsigned long flags;
4768 	int rc = -EOPNOTSUPP;
4769 
4770 	/* Hold the PM mutex while doing ioctl's or we may collide
4771 	 * with open/close and power management and oops.
4772 	 */
4773 	mutex_lock(&cp->pm_mutex);
4774 	switch (cmd) {
4775 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4776 		data->phy_id = cp->phy_addr;
4777 		/* Fallthrough... */
4778 
4779 	case SIOCGMIIREG:		/* Read MII PHY register. */
4780 		spin_lock_irqsave(&cp->lock, flags);
4781 		cas_mif_poll(cp, 0);
4782 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4783 		cas_mif_poll(cp, 1);
4784 		spin_unlock_irqrestore(&cp->lock, flags);
4785 		rc = 0;
4786 		break;
4787 
4788 	case SIOCSMIIREG:		/* Write MII PHY register. */
4789 		spin_lock_irqsave(&cp->lock, flags);
4790 		cas_mif_poll(cp, 0);
4791 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4792 		cas_mif_poll(cp, 1);
4793 		spin_unlock_irqrestore(&cp->lock, flags);
4794 		break;
4795 	default:
4796 		break;
4797 	}
4798 
4799 	mutex_unlock(&cp->pm_mutex);
4800 	return rc;
4801 }
4802 
4803 /* When this chip sits underneath an Intel 31154 bridge, it is the
4804  * only subordinate device and we can tweak the bridge settings to
4805  * reflect that fact.
4806  */
4807 static void cas_program_bridge(struct pci_dev *cas_pdev)
4808 {
4809 	struct pci_dev *pdev = cas_pdev->bus->self;
4810 	u32 val;
4811 
4812 	if (!pdev)
4813 		return;
4814 
4815 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4816 		return;
4817 
4818 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4819 	 * Arbiter Control/Status Register which lives at offset
4820 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4821 	 * is much simpler so that's how we do this.
4822 	 */
4823 	pci_read_config_dword(pdev, 0x40, &val);
4824 	val &= ~0x00040000;
4825 	pci_write_config_dword(pdev, 0x40, val);
4826 
4827 	/* Max out the Multi-Transaction Timer settings since
4828 	 * Cassini is the only device present.
4829 	 *
4830 	 * The register is 16-bit and lives at 0x50.  When the
4831 	 * settings are enabled, it extends the GRANT# signal
4832 	 * for a requestor after a transaction is complete.  This
4833 	 * allows the next request to run without first needing
4834 	 * to negotiate the GRANT# signal back.
4835 	 *
4836 	 * Bits 12:10 define the grant duration:
4837 	 *
4838 	 *	1	--	16 clocks
4839 	 *	2	--	32 clocks
4840 	 *	3	--	64 clocks
4841 	 *	4	--	128 clocks
4842 	 *	5	--	256 clocks
4843 	 *
4844 	 * All other values are illegal.
4845 	 *
4846 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4847 	 * GRANT# signal treatment.  We set them all.
4848 	 */
4849 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4850 
4851 	/* The Read Prefecth Policy register is 16-bit and sits at
4852 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4853 	 * enable it and max out all of the settings since only one
4854 	 * device is sitting underneath and thus bandwidth sharing is
4855 	 * not an issue.
4856 	 *
4857 	 * The register has several 3 bit fields, which indicates a
4858 	 * multiplier applied to the base amount of prefetching the
4859 	 * chip would do.  These fields are at:
4860 	 *
4861 	 *	15:13	---	ReRead Primary Bus
4862 	 *	12:10	---	FirstRead Primary Bus
4863 	 *	09:07	---	ReRead Secondary Bus
4864 	 *	06:04	---	FirstRead Secondary Bus
4865 	 *
4866 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4867 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4868 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4869 	 * the individual REQ/GNT pairs [2:0].
4870 	 */
4871 	pci_write_config_word(pdev, 0x52,
4872 			      (0x7 << 13) |
4873 			      (0x7 << 10) |
4874 			      (0x7 <<  7) |
4875 			      (0x7 <<  4) |
4876 			      (0xf <<  0));
4877 
4878 	/* Force cacheline size to 0x8 */
4879 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4880 
4881 	/* Force latency timer to maximum setting so Cassini can
4882 	 * sit on the bus as long as it likes.
4883 	 */
4884 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4885 }
4886 
4887 static const struct net_device_ops cas_netdev_ops = {
4888 	.ndo_open		= cas_open,
4889 	.ndo_stop		= cas_close,
4890 	.ndo_start_xmit		= cas_start_xmit,
4891 	.ndo_get_stats 		= cas_get_stats,
4892 	.ndo_set_rx_mode	= cas_set_multicast,
4893 	.ndo_do_ioctl		= cas_ioctl,
4894 	.ndo_tx_timeout		= cas_tx_timeout,
4895 	.ndo_change_mtu		= cas_change_mtu,
4896 	.ndo_set_mac_address	= eth_mac_addr,
4897 	.ndo_validate_addr	= eth_validate_addr,
4898 #ifdef CONFIG_NET_POLL_CONTROLLER
4899 	.ndo_poll_controller	= cas_netpoll,
4900 #endif
4901 };
4902 
4903 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4904 {
4905 	static int cas_version_printed = 0;
4906 	unsigned long casreg_len;
4907 	struct net_device *dev;
4908 	struct cas *cp;
4909 	int i, err, pci_using_dac;
4910 	u16 pci_cmd;
4911 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4912 
4913 	if (cas_version_printed++ == 0)
4914 		pr_info("%s", version);
4915 
4916 	err = pci_enable_device(pdev);
4917 	if (err) {
4918 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4919 		return err;
4920 	}
4921 
4922 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4923 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4924 		       "base address, aborting\n");
4925 		err = -ENODEV;
4926 		goto err_out_disable_pdev;
4927 	}
4928 
4929 	dev = alloc_etherdev(sizeof(*cp));
4930 	if (!dev) {
4931 		err = -ENOMEM;
4932 		goto err_out_disable_pdev;
4933 	}
4934 	SET_NETDEV_DEV(dev, &pdev->dev);
4935 
4936 	err = pci_request_regions(pdev, dev->name);
4937 	if (err) {
4938 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4939 		goto err_out_free_netdev;
4940 	}
4941 	pci_set_master(pdev);
4942 
4943 	/* we must always turn on parity response or else parity
4944 	 * doesn't get generated properly. disable SERR/PERR as well.
4945 	 * in addition, we want to turn MWI on.
4946 	 */
4947 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4948 	pci_cmd &= ~PCI_COMMAND_SERR;
4949 	pci_cmd |= PCI_COMMAND_PARITY;
4950 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4951 	if (pci_try_set_mwi(pdev))
4952 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4953 
4954 	cas_program_bridge(pdev);
4955 
4956 	/*
4957 	 * On some architectures, the default cache line size set
4958 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4959 	 * it for this case.  To start, we'll print some configuration
4960 	 * data.
4961 	 */
4962 #if 1
4963 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4964 			     &orig_cacheline_size);
4965 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4966 		cas_cacheline_size =
4967 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4968 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4969 		if (pci_write_config_byte(pdev,
4970 					  PCI_CACHE_LINE_SIZE,
4971 					  cas_cacheline_size)) {
4972 			dev_err(&pdev->dev, "Could not set PCI cache "
4973 			       "line size\n");
4974 			goto err_write_cacheline;
4975 		}
4976 	}
4977 #endif
4978 
4979 
4980 	/* Configure DMA attributes. */
4981 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4982 		pci_using_dac = 1;
4983 		err = pci_set_consistent_dma_mask(pdev,
4984 						  DMA_BIT_MASK(64));
4985 		if (err < 0) {
4986 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4987 			       "for consistent allocations\n");
4988 			goto err_out_free_res;
4989 		}
4990 
4991 	} else {
4992 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4993 		if (err) {
4994 			dev_err(&pdev->dev, "No usable DMA configuration, "
4995 			       "aborting\n");
4996 			goto err_out_free_res;
4997 		}
4998 		pci_using_dac = 0;
4999 	}
5000 
5001 	casreg_len = pci_resource_len(pdev, 0);
5002 
5003 	cp = netdev_priv(dev);
5004 	cp->pdev = pdev;
5005 #if 1
5006 	/* A value of 0 indicates we never explicitly set it */
5007 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5008 #endif
5009 	cp->dev = dev;
5010 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5011 	  cassini_debug;
5012 
5013 #if defined(CONFIG_SPARC)
5014 	cp->of_node = pci_device_to_OF_node(pdev);
5015 #endif
5016 
5017 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5018 	cp->link_transition_jiffies_valid = 0;
5019 
5020 	spin_lock_init(&cp->lock);
5021 	spin_lock_init(&cp->rx_inuse_lock);
5022 	spin_lock_init(&cp->rx_spare_lock);
5023 	for (i = 0; i < N_TX_RINGS; i++) {
5024 		spin_lock_init(&cp->stat_lock[i]);
5025 		spin_lock_init(&cp->tx_lock[i]);
5026 	}
5027 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5028 	mutex_init(&cp->pm_mutex);
5029 
5030 	timer_setup(&cp->link_timer, cas_link_timer, 0);
5031 
5032 #if 1
5033 	/* Just in case the implementation of atomic operations
5034 	 * change so that an explicit initialization is necessary.
5035 	 */
5036 	atomic_set(&cp->reset_task_pending, 0);
5037 	atomic_set(&cp->reset_task_pending_all, 0);
5038 	atomic_set(&cp->reset_task_pending_spare, 0);
5039 	atomic_set(&cp->reset_task_pending_mtu, 0);
5040 #endif
5041 	INIT_WORK(&cp->reset_task, cas_reset_task);
5042 
5043 	/* Default link parameters */
5044 	if (link_mode >= 0 && link_mode < 6)
5045 		cp->link_cntl = link_modes[link_mode];
5046 	else
5047 		cp->link_cntl = BMCR_ANENABLE;
5048 	cp->lstate = link_down;
5049 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5050 	netif_carrier_off(cp->dev);
5051 	cp->timer_ticks = 0;
5052 
5053 	/* give us access to cassini registers */
5054 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5055 	if (!cp->regs) {
5056 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5057 		goto err_out_free_res;
5058 	}
5059 	cp->casreg_len = casreg_len;
5060 
5061 	pci_save_state(pdev);
5062 	cas_check_pci_invariants(cp);
5063 	cas_hard_reset(cp);
5064 	cas_reset(cp, 0);
5065 	if (cas_check_invariants(cp))
5066 		goto err_out_iounmap;
5067 	if (cp->cas_flags & CAS_FLAG_SATURN)
5068 		cas_saturn_firmware_init(cp);
5069 
5070 	cp->init_block = (struct cas_init_block *)
5071 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5072 				     &cp->block_dvma);
5073 	if (!cp->init_block) {
5074 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5075 		goto err_out_iounmap;
5076 	}
5077 
5078 	for (i = 0; i < N_TX_RINGS; i++)
5079 		cp->init_txds[i] = cp->init_block->txds[i];
5080 
5081 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5082 		cp->init_rxds[i] = cp->init_block->rxds[i];
5083 
5084 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5085 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5086 
5087 	for (i = 0; i < N_RX_FLOWS; i++)
5088 		skb_queue_head_init(&cp->rx_flows[i]);
5089 
5090 	dev->netdev_ops = &cas_netdev_ops;
5091 	dev->ethtool_ops = &cas_ethtool_ops;
5092 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5093 
5094 #ifdef USE_NAPI
5095 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5096 #endif
5097 	dev->irq = pdev->irq;
5098 	dev->dma = 0;
5099 
5100 	/* Cassini features. */
5101 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5102 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5103 
5104 	if (pci_using_dac)
5105 		dev->features |= NETIF_F_HIGHDMA;
5106 
5107 	/* MTU range: 60 - varies or 9000 */
5108 	dev->min_mtu = CAS_MIN_MTU;
5109 	dev->max_mtu = CAS_MAX_MTU;
5110 
5111 	if (register_netdev(dev)) {
5112 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5113 		goto err_out_free_consistent;
5114 	}
5115 
5116 	i = readl(cp->regs + REG_BIM_CFG);
5117 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5118 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5119 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5120 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5121 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5122 		    dev->dev_addr);
5123 
5124 	pci_set_drvdata(pdev, dev);
5125 	cp->hw_running = 1;
5126 	cas_entropy_reset(cp);
5127 	cas_phy_init(cp);
5128 	cas_begin_auto_negotiation(cp, NULL);
5129 	return 0;
5130 
5131 err_out_free_consistent:
5132 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5133 			    cp->init_block, cp->block_dvma);
5134 
5135 err_out_iounmap:
5136 	mutex_lock(&cp->pm_mutex);
5137 	if (cp->hw_running)
5138 		cas_shutdown(cp);
5139 	mutex_unlock(&cp->pm_mutex);
5140 
5141 	pci_iounmap(pdev, cp->regs);
5142 
5143 
5144 err_out_free_res:
5145 	pci_release_regions(pdev);
5146 
5147 err_write_cacheline:
5148 	/* Try to restore it in case the error occurred after we
5149 	 * set it.
5150 	 */
5151 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5152 
5153 err_out_free_netdev:
5154 	free_netdev(dev);
5155 
5156 err_out_disable_pdev:
5157 	pci_disable_device(pdev);
5158 	return -ENODEV;
5159 }
5160 
5161 static void cas_remove_one(struct pci_dev *pdev)
5162 {
5163 	struct net_device *dev = pci_get_drvdata(pdev);
5164 	struct cas *cp;
5165 	if (!dev)
5166 		return;
5167 
5168 	cp = netdev_priv(dev);
5169 	unregister_netdev(dev);
5170 
5171 	vfree(cp->fw_data);
5172 
5173 	mutex_lock(&cp->pm_mutex);
5174 	cancel_work_sync(&cp->reset_task);
5175 	if (cp->hw_running)
5176 		cas_shutdown(cp);
5177 	mutex_unlock(&cp->pm_mutex);
5178 
5179 #if 1
5180 	if (cp->orig_cacheline_size) {
5181 		/* Restore the cache line size if we had modified
5182 		 * it.
5183 		 */
5184 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5185 				      cp->orig_cacheline_size);
5186 	}
5187 #endif
5188 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5189 			    cp->init_block, cp->block_dvma);
5190 	pci_iounmap(pdev, cp->regs);
5191 	free_netdev(dev);
5192 	pci_release_regions(pdev);
5193 	pci_disable_device(pdev);
5194 }
5195 
5196 #ifdef CONFIG_PM
5197 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5198 {
5199 	struct net_device *dev = pci_get_drvdata(pdev);
5200 	struct cas *cp = netdev_priv(dev);
5201 	unsigned long flags;
5202 
5203 	mutex_lock(&cp->pm_mutex);
5204 
5205 	/* If the driver is opened, we stop the DMA */
5206 	if (cp->opened) {
5207 		netif_device_detach(dev);
5208 
5209 		cas_lock_all_save(cp, flags);
5210 
5211 		/* We can set the second arg of cas_reset to 0
5212 		 * because on resume, we'll call cas_init_hw with
5213 		 * its second arg set so that autonegotiation is
5214 		 * restarted.
5215 		 */
5216 		cas_reset(cp, 0);
5217 		cas_clean_rings(cp);
5218 		cas_unlock_all_restore(cp, flags);
5219 	}
5220 
5221 	if (cp->hw_running)
5222 		cas_shutdown(cp);
5223 	mutex_unlock(&cp->pm_mutex);
5224 
5225 	return 0;
5226 }
5227 
5228 static int cas_resume(struct pci_dev *pdev)
5229 {
5230 	struct net_device *dev = pci_get_drvdata(pdev);
5231 	struct cas *cp = netdev_priv(dev);
5232 
5233 	netdev_info(dev, "resuming\n");
5234 
5235 	mutex_lock(&cp->pm_mutex);
5236 	cas_hard_reset(cp);
5237 	if (cp->opened) {
5238 		unsigned long flags;
5239 		cas_lock_all_save(cp, flags);
5240 		cas_reset(cp, 0);
5241 		cp->hw_running = 1;
5242 		cas_clean_rings(cp);
5243 		cas_init_hw(cp, 1);
5244 		cas_unlock_all_restore(cp, flags);
5245 
5246 		netif_device_attach(dev);
5247 	}
5248 	mutex_unlock(&cp->pm_mutex);
5249 	return 0;
5250 }
5251 #endif /* CONFIG_PM */
5252 
5253 static struct pci_driver cas_driver = {
5254 	.name		= DRV_MODULE_NAME,
5255 	.id_table	= cas_pci_tbl,
5256 	.probe		= cas_init_one,
5257 	.remove		= cas_remove_one,
5258 #ifdef CONFIG_PM
5259 	.suspend	= cas_suspend,
5260 	.resume		= cas_resume
5261 #endif
5262 };
5263 
5264 static int __init cas_init(void)
5265 {
5266 	if (linkdown_timeout > 0)
5267 		link_transition_timeout = linkdown_timeout * HZ;
5268 	else
5269 		link_transition_timeout = 0;
5270 
5271 	return pci_register_driver(&cas_driver);
5272 }
5273 
5274 static void __exit cas_cleanup(void)
5275 {
5276 	pci_unregister_driver(&cas_driver);
5277 }
5278 
5279 module_init(cas_init);
5280 module_exit(cas_cleanup);
5281