1 // SPDX-License-Identifier: GPL-2.0+ 2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 3 * 4 * Copyright (C) 2004 Sun Microsystems Inc. 5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 6 * 7 * This driver uses the sungem driver (c) David Miller 8 * (davem@redhat.com) as its basis. 9 * 10 * The cassini chip has a number of features that distinguish it from 11 * the gem chip: 12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 13 * load balancing (non-VLAN mode) 14 * batching of multiple packets 15 * multiple CPU dispatching 16 * page-based RX descriptor engine with separate completion rings 17 * Gigabit support (GMII and PCS interface) 18 * MIF link up/down detection works 19 * 20 * RX is handled by page sized buffers that are attached as fragments to 21 * the skb. here's what's done: 22 * -- driver allocates pages at a time and keeps reference counts 23 * on them. 24 * -- the upper protocol layers assume that the header is in the skb 25 * itself. as a result, cassini will copy a small amount (64 bytes) 26 * to make them happy. 27 * -- driver appends the rest of the data pages as frags to skbuffs 28 * and increments the reference count 29 * -- on page reclamation, the driver swaps the page with a spare page. 30 * if that page is still in use, it frees its reference to that page, 31 * and allocates a new page for use. otherwise, it just recycles the 32 * the page. 33 * 34 * NOTE: cassini can parse the header. however, it's not worth it 35 * as long as the network stack requires a header copy. 36 * 37 * TX has 4 queues. currently these queues are used in a round-robin 38 * fashion for load balancing. They can also be used for QoS. for that 39 * to work, however, QoS information needs to be exposed down to the driver 40 * level so that subqueues get targeted to particular transmit rings. 41 * alternatively, the queues can be configured via use of the all-purpose 42 * ioctl. 43 * 44 * RX DATA: the rx completion ring has all the info, but the rx desc 45 * ring has all of the data. RX can conceivably come in under multiple 46 * interrupts, but the INT# assignment needs to be set up properly by 47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 48 * that. also, the two descriptor rings are designed to distinguish between 49 * encrypted and non-encrypted packets, but we use them for buffering 50 * instead. 51 * 52 * by default, the selective clear mask is set up to process rx packets. 53 */ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/kernel.h> 59 #include <linux/types.h> 60 #include <linux/compiler.h> 61 #include <linux/slab.h> 62 #include <linux/delay.h> 63 #include <linux/init.h> 64 #include <linux/interrupt.h> 65 #include <linux/vmalloc.h> 66 #include <linux/ioport.h> 67 #include <linux/pci.h> 68 #include <linux/mm.h> 69 #include <linux/highmem.h> 70 #include <linux/list.h> 71 #include <linux/dma-mapping.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/ethtool.h> 77 #include <linux/crc32.h> 78 #include <linux/random.h> 79 #include <linux/mii.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/mutex.h> 83 #include <linux/firmware.h> 84 85 #include <net/checksum.h> 86 87 #include <linux/atomic.h> 88 #include <asm/io.h> 89 #include <asm/byteorder.h> 90 #include <linux/uaccess.h> 91 92 #define cas_page_map(x) kmap_atomic((x)) 93 #define cas_page_unmap(x) kunmap_atomic((x)) 94 #define CAS_NCPUS num_online_cpus() 95 96 #define cas_skb_release(x) netif_rx(x) 97 98 /* select which firmware to use */ 99 #define USE_HP_WORKAROUND 100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 101 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 102 103 #include "cassini.h" 104 105 #define USE_TX_COMPWB /* use completion writeback registers */ 106 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 107 #define USE_RX_BLANK /* hw interrupt mitigation */ 108 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 109 110 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 111 * also, we need to make cp->lock finer-grained. 112 */ 113 #undef USE_PCI_INTB 114 #undef USE_PCI_INTC 115 #undef USE_PCI_INTD 116 #undef USE_QOS 117 118 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 119 120 /* rx processing options */ 121 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 122 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 123 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 124 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 125 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 126 127 #define DRV_MODULE_NAME "cassini" 128 #define DRV_MODULE_VERSION "1.6" 129 #define DRV_MODULE_RELDATE "21 May 2008" 130 131 #define CAS_DEF_MSG_ENABLE \ 132 (NETIF_MSG_DRV | \ 133 NETIF_MSG_PROBE | \ 134 NETIF_MSG_LINK | \ 135 NETIF_MSG_TIMER | \ 136 NETIF_MSG_IFDOWN | \ 137 NETIF_MSG_IFUP | \ 138 NETIF_MSG_RX_ERR | \ 139 NETIF_MSG_TX_ERR) 140 141 /* length of time before we decide the hardware is borked, 142 * and dev->tx_timeout() should be called to fix the problem 143 */ 144 #define CAS_TX_TIMEOUT (HZ) 145 #define CAS_LINK_TIMEOUT (22*HZ/10) 146 #define CAS_LINK_FAST_TIMEOUT (1) 147 148 /* timeout values for state changing. these specify the number 149 * of 10us delays to be used before giving up. 150 */ 151 #define STOP_TRIES_PHY 1000 152 #define STOP_TRIES 5000 153 154 /* specify a minimum frame size to deal with some fifo issues 155 * max mtu == 2 * page size - ethernet header - 64 - swivel = 156 * 2 * page_size - 0x50 157 */ 158 #define CAS_MIN_FRAME 97 159 #define CAS_1000MB_MIN_FRAME 255 160 #define CAS_MIN_MTU 60 161 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 162 163 #if 1 164 /* 165 * Eliminate these and use separate atomic counters for each, to 166 * avoid a race condition. 167 */ 168 #else 169 #define CAS_RESET_MTU 1 170 #define CAS_RESET_ALL 2 171 #define CAS_RESET_SPARE 3 172 #endif 173 174 static char version[] = 175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 176 177 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 178 static int link_mode; 179 180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 182 MODULE_LICENSE("GPL"); 183 MODULE_FIRMWARE("sun/cassini.bin"); 184 module_param(cassini_debug, int, 0); 185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 186 module_param(link_mode, int, 0); 187 MODULE_PARM_DESC(link_mode, "default link mode"); 188 189 /* 190 * Work around for a PCS bug in which the link goes down due to the chip 191 * being confused and never showing a link status of "up." 192 */ 193 #define DEFAULT_LINKDOWN_TIMEOUT 5 194 /* 195 * Value in seconds, for user input. 196 */ 197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 198 module_param(linkdown_timeout, int, 0); 199 MODULE_PARM_DESC(linkdown_timeout, 200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 201 202 /* 203 * value in 'ticks' (units used by jiffies). Set when we init the 204 * module because 'HZ' in actually a function call on some flavors of 205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 206 */ 207 static int link_transition_timeout; 208 209 210 211 static u16 link_modes[] = { 212 BMCR_ANENABLE, /* 0 : autoneg */ 213 0, /* 1 : 10bt half duplex */ 214 BMCR_SPEED100, /* 2 : 100bt half duplex */ 215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 218 }; 219 220 static const struct pci_device_id cas_pci_tbl[] = { 221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 225 { 0, } 226 }; 227 228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 229 230 static void cas_set_link_modes(struct cas *cp); 231 232 static inline void cas_lock_tx(struct cas *cp) 233 { 234 int i; 235 236 for (i = 0; i < N_TX_RINGS; i++) 237 spin_lock_nested(&cp->tx_lock[i], i); 238 } 239 240 /* WTZ: QA was finding deadlock problems with the previous 241 * versions after long test runs with multiple cards per machine. 242 * See if replacing cas_lock_all with safer versions helps. The 243 * symptoms QA is reporting match those we'd expect if interrupts 244 * aren't being properly restored, and we fixed a previous deadlock 245 * with similar symptoms by using save/restore versions in other 246 * places. 247 */ 248 #define cas_lock_all_save(cp, flags) \ 249 do { \ 250 struct cas *xxxcp = (cp); \ 251 spin_lock_irqsave(&xxxcp->lock, flags); \ 252 cas_lock_tx(xxxcp); \ 253 } while (0) 254 255 static inline void cas_unlock_tx(struct cas *cp) 256 { 257 int i; 258 259 for (i = N_TX_RINGS; i > 0; i--) 260 spin_unlock(&cp->tx_lock[i - 1]); 261 } 262 263 #define cas_unlock_all_restore(cp, flags) \ 264 do { \ 265 struct cas *xxxcp = (cp); \ 266 cas_unlock_tx(xxxcp); \ 267 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 268 } while (0) 269 270 static void cas_disable_irq(struct cas *cp, const int ring) 271 { 272 /* Make sure we won't get any more interrupts */ 273 if (ring == 0) { 274 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 275 return; 276 } 277 278 /* disable completion interrupts and selectively mask */ 279 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 280 switch (ring) { 281 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 282 #ifdef USE_PCI_INTB 283 case 1: 284 #endif 285 #ifdef USE_PCI_INTC 286 case 2: 287 #endif 288 #ifdef USE_PCI_INTD 289 case 3: 290 #endif 291 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 292 cp->regs + REG_PLUS_INTRN_MASK(ring)); 293 break; 294 #endif 295 default: 296 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 297 REG_PLUS_INTRN_MASK(ring)); 298 break; 299 } 300 } 301 } 302 303 static inline void cas_mask_intr(struct cas *cp) 304 { 305 int i; 306 307 for (i = 0; i < N_RX_COMP_RINGS; i++) 308 cas_disable_irq(cp, i); 309 } 310 311 static void cas_enable_irq(struct cas *cp, const int ring) 312 { 313 if (ring == 0) { /* all but TX_DONE */ 314 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 315 return; 316 } 317 318 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 319 switch (ring) { 320 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 321 #ifdef USE_PCI_INTB 322 case 1: 323 #endif 324 #ifdef USE_PCI_INTC 325 case 2: 326 #endif 327 #ifdef USE_PCI_INTD 328 case 3: 329 #endif 330 writel(INTRN_MASK_RX_EN, cp->regs + 331 REG_PLUS_INTRN_MASK(ring)); 332 break; 333 #endif 334 default: 335 break; 336 } 337 } 338 } 339 340 static inline void cas_unmask_intr(struct cas *cp) 341 { 342 int i; 343 344 for (i = 0; i < N_RX_COMP_RINGS; i++) 345 cas_enable_irq(cp, i); 346 } 347 348 static inline void cas_entropy_gather(struct cas *cp) 349 { 350 #ifdef USE_ENTROPY_DEV 351 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 352 return; 353 354 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 355 readl(cp->regs + REG_ENTROPY_IV), 356 sizeof(uint64_t)*8); 357 #endif 358 } 359 360 static inline void cas_entropy_reset(struct cas *cp) 361 { 362 #ifdef USE_ENTROPY_DEV 363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 364 return; 365 366 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 367 cp->regs + REG_BIM_LOCAL_DEV_EN); 368 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 369 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 370 371 /* if we read back 0x0, we don't have an entropy device */ 372 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 373 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 374 #endif 375 } 376 377 /* access to the phy. the following assumes that we've initialized the MIF to 378 * be in frame rather than bit-bang mode 379 */ 380 static u16 cas_phy_read(struct cas *cp, int reg) 381 { 382 u32 cmd; 383 int limit = STOP_TRIES_PHY; 384 385 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 386 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 387 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 388 cmd |= MIF_FRAME_TURN_AROUND_MSB; 389 writel(cmd, cp->regs + REG_MIF_FRAME); 390 391 /* poll for completion */ 392 while (limit-- > 0) { 393 udelay(10); 394 cmd = readl(cp->regs + REG_MIF_FRAME); 395 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 396 return cmd & MIF_FRAME_DATA_MASK; 397 } 398 return 0xFFFF; /* -1 */ 399 } 400 401 static int cas_phy_write(struct cas *cp, int reg, u16 val) 402 { 403 int limit = STOP_TRIES_PHY; 404 u32 cmd; 405 406 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 407 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 408 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 409 cmd |= MIF_FRAME_TURN_AROUND_MSB; 410 cmd |= val & MIF_FRAME_DATA_MASK; 411 writel(cmd, cp->regs + REG_MIF_FRAME); 412 413 /* poll for completion */ 414 while (limit-- > 0) { 415 udelay(10); 416 cmd = readl(cp->regs + REG_MIF_FRAME); 417 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 418 return 0; 419 } 420 return -1; 421 } 422 423 static void cas_phy_powerup(struct cas *cp) 424 { 425 u16 ctl = cas_phy_read(cp, MII_BMCR); 426 427 if ((ctl & BMCR_PDOWN) == 0) 428 return; 429 ctl &= ~BMCR_PDOWN; 430 cas_phy_write(cp, MII_BMCR, ctl); 431 } 432 433 static void cas_phy_powerdown(struct cas *cp) 434 { 435 u16 ctl = cas_phy_read(cp, MII_BMCR); 436 437 if (ctl & BMCR_PDOWN) 438 return; 439 ctl |= BMCR_PDOWN; 440 cas_phy_write(cp, MII_BMCR, ctl); 441 } 442 443 /* cp->lock held. note: the last put_page will free the buffer */ 444 static int cas_page_free(struct cas *cp, cas_page_t *page) 445 { 446 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size, 447 DMA_FROM_DEVICE); 448 __free_pages(page->buffer, cp->page_order); 449 kfree(page); 450 return 0; 451 } 452 453 #ifdef RX_COUNT_BUFFERS 454 #define RX_USED_ADD(x, y) ((x)->used += (y)) 455 #define RX_USED_SET(x, y) ((x)->used = (y)) 456 #else 457 #define RX_USED_ADD(x, y) do { } while(0) 458 #define RX_USED_SET(x, y) do { } while(0) 459 #endif 460 461 /* local page allocation routines for the receive buffers. jumbo pages 462 * require at least 8K contiguous and 8K aligned buffers. 463 */ 464 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 465 { 466 cas_page_t *page; 467 468 page = kmalloc(sizeof(cas_page_t), flags); 469 if (!page) 470 return NULL; 471 472 INIT_LIST_HEAD(&page->list); 473 RX_USED_SET(page, 0); 474 page->buffer = alloc_pages(flags, cp->page_order); 475 if (!page->buffer) 476 goto page_err; 477 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0, 478 cp->page_size, DMA_FROM_DEVICE); 479 return page; 480 481 page_err: 482 kfree(page); 483 return NULL; 484 } 485 486 /* initialize spare pool of rx buffers, but allocate during the open */ 487 static void cas_spare_init(struct cas *cp) 488 { 489 spin_lock(&cp->rx_inuse_lock); 490 INIT_LIST_HEAD(&cp->rx_inuse_list); 491 spin_unlock(&cp->rx_inuse_lock); 492 493 spin_lock(&cp->rx_spare_lock); 494 INIT_LIST_HEAD(&cp->rx_spare_list); 495 cp->rx_spares_needed = RX_SPARE_COUNT; 496 spin_unlock(&cp->rx_spare_lock); 497 } 498 499 /* used on close. free all the spare buffers. */ 500 static void cas_spare_free(struct cas *cp) 501 { 502 struct list_head list, *elem, *tmp; 503 504 /* free spare buffers */ 505 INIT_LIST_HEAD(&list); 506 spin_lock(&cp->rx_spare_lock); 507 list_splice_init(&cp->rx_spare_list, &list); 508 spin_unlock(&cp->rx_spare_lock); 509 list_for_each_safe(elem, tmp, &list) { 510 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 511 } 512 513 INIT_LIST_HEAD(&list); 514 #if 1 515 /* 516 * Looks like Adrian had protected this with a different 517 * lock than used everywhere else to manipulate this list. 518 */ 519 spin_lock(&cp->rx_inuse_lock); 520 list_splice_init(&cp->rx_inuse_list, &list); 521 spin_unlock(&cp->rx_inuse_lock); 522 #else 523 spin_lock(&cp->rx_spare_lock); 524 list_splice_init(&cp->rx_inuse_list, &list); 525 spin_unlock(&cp->rx_spare_lock); 526 #endif 527 list_for_each_safe(elem, tmp, &list) { 528 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 529 } 530 } 531 532 /* replenish spares if needed */ 533 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 534 { 535 struct list_head list, *elem, *tmp; 536 int needed, i; 537 538 /* check inuse list. if we don't need any more free buffers, 539 * just free it 540 */ 541 542 /* make a local copy of the list */ 543 INIT_LIST_HEAD(&list); 544 spin_lock(&cp->rx_inuse_lock); 545 list_splice_init(&cp->rx_inuse_list, &list); 546 spin_unlock(&cp->rx_inuse_lock); 547 548 list_for_each_safe(elem, tmp, &list) { 549 cas_page_t *page = list_entry(elem, cas_page_t, list); 550 551 /* 552 * With the lockless pagecache, cassini buffering scheme gets 553 * slightly less accurate: we might find that a page has an 554 * elevated reference count here, due to a speculative ref, 555 * and skip it as in-use. Ideally we would be able to reclaim 556 * it. However this would be such a rare case, it doesn't 557 * matter too much as we should pick it up the next time round. 558 * 559 * Importantly, if we find that the page has a refcount of 1 560 * here (our refcount), then we know it is definitely not inuse 561 * so we can reuse it. 562 */ 563 if (page_count(page->buffer) > 1) 564 continue; 565 566 list_del(elem); 567 spin_lock(&cp->rx_spare_lock); 568 if (cp->rx_spares_needed > 0) { 569 list_add(elem, &cp->rx_spare_list); 570 cp->rx_spares_needed--; 571 spin_unlock(&cp->rx_spare_lock); 572 } else { 573 spin_unlock(&cp->rx_spare_lock); 574 cas_page_free(cp, page); 575 } 576 } 577 578 /* put any inuse buffers back on the list */ 579 if (!list_empty(&list)) { 580 spin_lock(&cp->rx_inuse_lock); 581 list_splice(&list, &cp->rx_inuse_list); 582 spin_unlock(&cp->rx_inuse_lock); 583 } 584 585 spin_lock(&cp->rx_spare_lock); 586 needed = cp->rx_spares_needed; 587 spin_unlock(&cp->rx_spare_lock); 588 if (!needed) 589 return; 590 591 /* we still need spares, so try to allocate some */ 592 INIT_LIST_HEAD(&list); 593 i = 0; 594 while (i < needed) { 595 cas_page_t *spare = cas_page_alloc(cp, flags); 596 if (!spare) 597 break; 598 list_add(&spare->list, &list); 599 i++; 600 } 601 602 spin_lock(&cp->rx_spare_lock); 603 list_splice(&list, &cp->rx_spare_list); 604 cp->rx_spares_needed -= i; 605 spin_unlock(&cp->rx_spare_lock); 606 } 607 608 /* pull a page from the list. */ 609 static cas_page_t *cas_page_dequeue(struct cas *cp) 610 { 611 struct list_head *entry; 612 int recover; 613 614 spin_lock(&cp->rx_spare_lock); 615 if (list_empty(&cp->rx_spare_list)) { 616 /* try to do a quick recovery */ 617 spin_unlock(&cp->rx_spare_lock); 618 cas_spare_recover(cp, GFP_ATOMIC); 619 spin_lock(&cp->rx_spare_lock); 620 if (list_empty(&cp->rx_spare_list)) { 621 netif_err(cp, rx_err, cp->dev, 622 "no spare buffers available\n"); 623 spin_unlock(&cp->rx_spare_lock); 624 return NULL; 625 } 626 } 627 628 entry = cp->rx_spare_list.next; 629 list_del(entry); 630 recover = ++cp->rx_spares_needed; 631 spin_unlock(&cp->rx_spare_lock); 632 633 /* trigger the timer to do the recovery */ 634 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 635 #if 1 636 atomic_inc(&cp->reset_task_pending); 637 atomic_inc(&cp->reset_task_pending_spare); 638 schedule_work(&cp->reset_task); 639 #else 640 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 641 schedule_work(&cp->reset_task); 642 #endif 643 } 644 return list_entry(entry, cas_page_t, list); 645 } 646 647 648 static void cas_mif_poll(struct cas *cp, const int enable) 649 { 650 u32 cfg; 651 652 cfg = readl(cp->regs + REG_MIF_CFG); 653 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 654 655 if (cp->phy_type & CAS_PHY_MII_MDIO1) 656 cfg |= MIF_CFG_PHY_SELECT; 657 658 /* poll and interrupt on link status change. */ 659 if (enable) { 660 cfg |= MIF_CFG_POLL_EN; 661 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 662 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 663 } 664 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 665 cp->regs + REG_MIF_MASK); 666 writel(cfg, cp->regs + REG_MIF_CFG); 667 } 668 669 /* Must be invoked under cp->lock */ 670 static void cas_begin_auto_negotiation(struct cas *cp, 671 const struct ethtool_link_ksettings *ep) 672 { 673 u16 ctl; 674 #if 1 675 int lcntl; 676 int changed = 0; 677 int oldstate = cp->lstate; 678 int link_was_not_down = !(oldstate == link_down); 679 #endif 680 /* Setup link parameters */ 681 if (!ep) 682 goto start_aneg; 683 lcntl = cp->link_cntl; 684 if (ep->base.autoneg == AUTONEG_ENABLE) { 685 cp->link_cntl = BMCR_ANENABLE; 686 } else { 687 u32 speed = ep->base.speed; 688 cp->link_cntl = 0; 689 if (speed == SPEED_100) 690 cp->link_cntl |= BMCR_SPEED100; 691 else if (speed == SPEED_1000) 692 cp->link_cntl |= CAS_BMCR_SPEED1000; 693 if (ep->base.duplex == DUPLEX_FULL) 694 cp->link_cntl |= BMCR_FULLDPLX; 695 } 696 #if 1 697 changed = (lcntl != cp->link_cntl); 698 #endif 699 start_aneg: 700 if (cp->lstate == link_up) { 701 netdev_info(cp->dev, "PCS link down\n"); 702 } else { 703 if (changed) { 704 netdev_info(cp->dev, "link configuration changed\n"); 705 } 706 } 707 cp->lstate = link_down; 708 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 709 if (!cp->hw_running) 710 return; 711 #if 1 712 /* 713 * WTZ: If the old state was link_up, we turn off the carrier 714 * to replicate everything we do elsewhere on a link-down 715 * event when we were already in a link-up state.. 716 */ 717 if (oldstate == link_up) 718 netif_carrier_off(cp->dev); 719 if (changed && link_was_not_down) { 720 /* 721 * WTZ: This branch will simply schedule a full reset after 722 * we explicitly changed link modes in an ioctl. See if this 723 * fixes the link-problems we were having for forced mode. 724 */ 725 atomic_inc(&cp->reset_task_pending); 726 atomic_inc(&cp->reset_task_pending_all); 727 schedule_work(&cp->reset_task); 728 cp->timer_ticks = 0; 729 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 730 return; 731 } 732 #endif 733 if (cp->phy_type & CAS_PHY_SERDES) { 734 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 735 736 if (cp->link_cntl & BMCR_ANENABLE) { 737 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 738 cp->lstate = link_aneg; 739 } else { 740 if (cp->link_cntl & BMCR_FULLDPLX) 741 val |= PCS_MII_CTRL_DUPLEX; 742 val &= ~PCS_MII_AUTONEG_EN; 743 cp->lstate = link_force_ok; 744 } 745 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 746 writel(val, cp->regs + REG_PCS_MII_CTRL); 747 748 } else { 749 cas_mif_poll(cp, 0); 750 ctl = cas_phy_read(cp, MII_BMCR); 751 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 752 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 753 ctl |= cp->link_cntl; 754 if (ctl & BMCR_ANENABLE) { 755 ctl |= BMCR_ANRESTART; 756 cp->lstate = link_aneg; 757 } else { 758 cp->lstate = link_force_ok; 759 } 760 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 761 cas_phy_write(cp, MII_BMCR, ctl); 762 cas_mif_poll(cp, 1); 763 } 764 765 cp->timer_ticks = 0; 766 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 767 } 768 769 /* Must be invoked under cp->lock. */ 770 static int cas_reset_mii_phy(struct cas *cp) 771 { 772 int limit = STOP_TRIES_PHY; 773 u16 val; 774 775 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 776 udelay(100); 777 while (--limit) { 778 val = cas_phy_read(cp, MII_BMCR); 779 if ((val & BMCR_RESET) == 0) 780 break; 781 udelay(10); 782 } 783 return limit <= 0; 784 } 785 786 static void cas_saturn_firmware_init(struct cas *cp) 787 { 788 const struct firmware *fw; 789 const char fw_name[] = "sun/cassini.bin"; 790 int err; 791 792 if (PHY_NS_DP83065 != cp->phy_id) 793 return; 794 795 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 796 if (err) { 797 pr_err("Failed to load firmware \"%s\"\n", 798 fw_name); 799 return; 800 } 801 if (fw->size < 2) { 802 pr_err("bogus length %zu in \"%s\"\n", 803 fw->size, fw_name); 804 goto out; 805 } 806 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 807 cp->fw_size = fw->size - 2; 808 cp->fw_data = vmalloc(cp->fw_size); 809 if (!cp->fw_data) 810 goto out; 811 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 812 out: 813 release_firmware(fw); 814 } 815 816 static void cas_saturn_firmware_load(struct cas *cp) 817 { 818 int i; 819 820 if (!cp->fw_data) 821 return; 822 823 cas_phy_powerdown(cp); 824 825 /* expanded memory access mode */ 826 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 827 828 /* pointer configuration for new firmware */ 829 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 830 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 832 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 833 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 834 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 836 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 837 838 /* download new firmware */ 839 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 840 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 841 for (i = 0; i < cp->fw_size; i++) 842 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 843 844 /* enable firmware */ 845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 846 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 847 } 848 849 850 /* phy initialization */ 851 static void cas_phy_init(struct cas *cp) 852 { 853 u16 val; 854 855 /* if we're in MII/GMII mode, set up phy */ 856 if (CAS_PHY_MII(cp->phy_type)) { 857 writel(PCS_DATAPATH_MODE_MII, 858 cp->regs + REG_PCS_DATAPATH_MODE); 859 860 cas_mif_poll(cp, 0); 861 cas_reset_mii_phy(cp); /* take out of isolate mode */ 862 863 if (PHY_LUCENT_B0 == cp->phy_id) { 864 /* workaround link up/down issue with lucent */ 865 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 866 cas_phy_write(cp, MII_BMCR, 0x00f1); 867 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 868 869 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 870 /* workarounds for broadcom phy */ 871 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 872 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 873 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 874 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 875 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 876 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 877 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 878 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 879 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 880 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 881 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 882 883 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 884 val = cas_phy_read(cp, BROADCOM_MII_REG4); 885 val = cas_phy_read(cp, BROADCOM_MII_REG4); 886 if (val & 0x0080) { 887 /* link workaround */ 888 cas_phy_write(cp, BROADCOM_MII_REG4, 889 val & ~0x0080); 890 } 891 892 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 893 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 894 SATURN_PCFG_FSI : 0x0, 895 cp->regs + REG_SATURN_PCFG); 896 897 /* load firmware to address 10Mbps auto-negotiation 898 * issue. NOTE: this will need to be changed if the 899 * default firmware gets fixed. 900 */ 901 if (PHY_NS_DP83065 == cp->phy_id) { 902 cas_saturn_firmware_load(cp); 903 } 904 cas_phy_powerup(cp); 905 } 906 907 /* advertise capabilities */ 908 val = cas_phy_read(cp, MII_BMCR); 909 val &= ~BMCR_ANENABLE; 910 cas_phy_write(cp, MII_BMCR, val); 911 udelay(10); 912 913 cas_phy_write(cp, MII_ADVERTISE, 914 cas_phy_read(cp, MII_ADVERTISE) | 915 (ADVERTISE_10HALF | ADVERTISE_10FULL | 916 ADVERTISE_100HALF | ADVERTISE_100FULL | 917 CAS_ADVERTISE_PAUSE | 918 CAS_ADVERTISE_ASYM_PAUSE)); 919 920 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 921 /* make sure that we don't advertise half 922 * duplex to avoid a chip issue 923 */ 924 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 925 val &= ~CAS_ADVERTISE_1000HALF; 926 val |= CAS_ADVERTISE_1000FULL; 927 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 928 } 929 930 } else { 931 /* reset pcs for serdes */ 932 u32 val; 933 int limit; 934 935 writel(PCS_DATAPATH_MODE_SERDES, 936 cp->regs + REG_PCS_DATAPATH_MODE); 937 938 /* enable serdes pins on saturn */ 939 if (cp->cas_flags & CAS_FLAG_SATURN) 940 writel(0, cp->regs + REG_SATURN_PCFG); 941 942 /* Reset PCS unit. */ 943 val = readl(cp->regs + REG_PCS_MII_CTRL); 944 val |= PCS_MII_RESET; 945 writel(val, cp->regs + REG_PCS_MII_CTRL); 946 947 limit = STOP_TRIES; 948 while (--limit > 0) { 949 udelay(10); 950 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 951 PCS_MII_RESET) == 0) 952 break; 953 } 954 if (limit <= 0) 955 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 956 readl(cp->regs + REG_PCS_STATE_MACHINE)); 957 958 /* Make sure PCS is disabled while changing advertisement 959 * configuration. 960 */ 961 writel(0x0, cp->regs + REG_PCS_CFG); 962 963 /* Advertise all capabilities except half-duplex. */ 964 val = readl(cp->regs + REG_PCS_MII_ADVERT); 965 val &= ~PCS_MII_ADVERT_HD; 966 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 967 PCS_MII_ADVERT_ASYM_PAUSE); 968 writel(val, cp->regs + REG_PCS_MII_ADVERT); 969 970 /* enable PCS */ 971 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 972 973 /* pcs workaround: enable sync detect */ 974 writel(PCS_SERDES_CTRL_SYNCD_EN, 975 cp->regs + REG_PCS_SERDES_CTRL); 976 } 977 } 978 979 980 static int cas_pcs_link_check(struct cas *cp) 981 { 982 u32 stat, state_machine; 983 int retval = 0; 984 985 /* The link status bit latches on zero, so you must 986 * read it twice in such a case to see a transition 987 * to the link being up. 988 */ 989 stat = readl(cp->regs + REG_PCS_MII_STATUS); 990 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 991 stat = readl(cp->regs + REG_PCS_MII_STATUS); 992 993 /* The remote-fault indication is only valid 994 * when autoneg has completed. 995 */ 996 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 997 PCS_MII_STATUS_REMOTE_FAULT)) == 998 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 999 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1000 1001 /* work around link detection issue by querying the PCS state 1002 * machine directly. 1003 */ 1004 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1005 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1006 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1007 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1008 stat |= PCS_MII_STATUS_LINK_STATUS; 1009 } 1010 1011 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1012 if (cp->lstate != link_up) { 1013 if (cp->opened) { 1014 cp->lstate = link_up; 1015 cp->link_transition = LINK_TRANSITION_LINK_UP; 1016 1017 cas_set_link_modes(cp); 1018 netif_carrier_on(cp->dev); 1019 } 1020 } 1021 } else if (cp->lstate == link_up) { 1022 cp->lstate = link_down; 1023 if (link_transition_timeout != 0 && 1024 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1025 !cp->link_transition_jiffies_valid) { 1026 /* 1027 * force a reset, as a workaround for the 1028 * link-failure problem. May want to move this to a 1029 * point a bit earlier in the sequence. If we had 1030 * generated a reset a short time ago, we'll wait for 1031 * the link timer to check the status until a 1032 * timer expires (link_transistion_jiffies_valid is 1033 * true when the timer is running.) Instead of using 1034 * a system timer, we just do a check whenever the 1035 * link timer is running - this clears the flag after 1036 * a suitable delay. 1037 */ 1038 retval = 1; 1039 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1040 cp->link_transition_jiffies = jiffies; 1041 cp->link_transition_jiffies_valid = 1; 1042 } else { 1043 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1044 } 1045 netif_carrier_off(cp->dev); 1046 if (cp->opened) 1047 netif_info(cp, link, cp->dev, "PCS link down\n"); 1048 1049 /* Cassini only: if you force a mode, there can be 1050 * sync problems on link down. to fix that, the following 1051 * things need to be checked: 1052 * 1) read serialink state register 1053 * 2) read pcs status register to verify link down. 1054 * 3) if link down and serial link == 0x03, then you need 1055 * to global reset the chip. 1056 */ 1057 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1058 /* should check to see if we're in a forced mode */ 1059 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1060 if (stat == 0x03) 1061 return 1; 1062 } 1063 } else if (cp->lstate == link_down) { 1064 if (link_transition_timeout != 0 && 1065 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1066 !cp->link_transition_jiffies_valid) { 1067 /* force a reset, as a workaround for the 1068 * link-failure problem. May want to move 1069 * this to a point a bit earlier in the 1070 * sequence. 1071 */ 1072 retval = 1; 1073 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1074 cp->link_transition_jiffies = jiffies; 1075 cp->link_transition_jiffies_valid = 1; 1076 } else { 1077 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1078 } 1079 } 1080 1081 return retval; 1082 } 1083 1084 static int cas_pcs_interrupt(struct net_device *dev, 1085 struct cas *cp, u32 status) 1086 { 1087 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1088 1089 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1090 return 0; 1091 return cas_pcs_link_check(cp); 1092 } 1093 1094 static int cas_txmac_interrupt(struct net_device *dev, 1095 struct cas *cp, u32 status) 1096 { 1097 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1098 1099 if (!txmac_stat) 1100 return 0; 1101 1102 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1103 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1104 1105 /* Defer timer expiration is quite normal, 1106 * don't even log the event. 1107 */ 1108 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1109 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1110 return 0; 1111 1112 spin_lock(&cp->stat_lock[0]); 1113 if (txmac_stat & MAC_TX_UNDERRUN) { 1114 netdev_err(dev, "TX MAC xmit underrun\n"); 1115 cp->net_stats[0].tx_fifo_errors++; 1116 } 1117 1118 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1119 netdev_err(dev, "TX MAC max packet size error\n"); 1120 cp->net_stats[0].tx_errors++; 1121 } 1122 1123 /* The rest are all cases of one of the 16-bit TX 1124 * counters expiring. 1125 */ 1126 if (txmac_stat & MAC_TX_COLL_NORMAL) 1127 cp->net_stats[0].collisions += 0x10000; 1128 1129 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1130 cp->net_stats[0].tx_aborted_errors += 0x10000; 1131 cp->net_stats[0].collisions += 0x10000; 1132 } 1133 1134 if (txmac_stat & MAC_TX_COLL_LATE) { 1135 cp->net_stats[0].tx_aborted_errors += 0x10000; 1136 cp->net_stats[0].collisions += 0x10000; 1137 } 1138 spin_unlock(&cp->stat_lock[0]); 1139 1140 /* We do not keep track of MAC_TX_COLL_FIRST and 1141 * MAC_TX_PEAK_ATTEMPTS events. 1142 */ 1143 return 0; 1144 } 1145 1146 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1147 { 1148 cas_hp_inst_t *inst; 1149 u32 val; 1150 int i; 1151 1152 i = 0; 1153 while ((inst = firmware) && inst->note) { 1154 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1155 1156 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1157 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1158 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1159 1160 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1163 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1165 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1166 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1167 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1168 1169 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1172 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1173 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1174 ++firmware; 1175 ++i; 1176 } 1177 } 1178 1179 static void cas_init_rx_dma(struct cas *cp) 1180 { 1181 u64 desc_dma = cp->block_dvma; 1182 u32 val; 1183 int i, size; 1184 1185 /* rx free descriptors */ 1186 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1187 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1188 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1189 if ((N_RX_DESC_RINGS > 1) && 1190 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1191 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1192 writel(val, cp->regs + REG_RX_CFG); 1193 1194 val = (unsigned long) cp->init_rxds[0] - 1195 (unsigned long) cp->init_block; 1196 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1197 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1198 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1199 1200 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1201 /* rx desc 2 is for IPSEC packets. however, 1202 * we don't it that for that purpose. 1203 */ 1204 val = (unsigned long) cp->init_rxds[1] - 1205 (unsigned long) cp->init_block; 1206 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1207 writel((desc_dma + val) & 0xffffffff, cp->regs + 1208 REG_PLUS_RX_DB1_LOW); 1209 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1210 REG_PLUS_RX_KICK1); 1211 } 1212 1213 /* rx completion registers */ 1214 val = (unsigned long) cp->init_rxcs[0] - 1215 (unsigned long) cp->init_block; 1216 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1217 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1218 1219 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1220 /* rx comp 2-4 */ 1221 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1222 val = (unsigned long) cp->init_rxcs[i] - 1223 (unsigned long) cp->init_block; 1224 writel((desc_dma + val) >> 32, cp->regs + 1225 REG_PLUS_RX_CBN_HI(i)); 1226 writel((desc_dma + val) & 0xffffffff, cp->regs + 1227 REG_PLUS_RX_CBN_LOW(i)); 1228 } 1229 } 1230 1231 /* read selective clear regs to prevent spurious interrupts 1232 * on reset because complete == kick. 1233 * selective clear set up to prevent interrupts on resets 1234 */ 1235 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1236 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1237 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1238 for (i = 1; i < N_RX_COMP_RINGS; i++) 1239 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1240 1241 /* 2 is different from 3 and 4 */ 1242 if (N_RX_COMP_RINGS > 1) 1243 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1244 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1245 1246 for (i = 2; i < N_RX_COMP_RINGS; i++) 1247 writel(INTR_RX_DONE_ALT, 1248 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1249 } 1250 1251 /* set up pause thresholds */ 1252 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1253 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1254 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1255 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1256 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1257 1258 /* zero out dma reassembly buffers */ 1259 for (i = 0; i < 64; i++) { 1260 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1263 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1264 } 1265 1266 /* make sure address register is 0 for normal operation */ 1267 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1268 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1269 1270 /* interrupt mitigation */ 1271 #ifdef USE_RX_BLANK 1272 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1273 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1274 writel(val, cp->regs + REG_RX_BLANK); 1275 #else 1276 writel(0x0, cp->regs + REG_RX_BLANK); 1277 #endif 1278 1279 /* interrupt generation as a function of low water marks for 1280 * free desc and completion entries. these are used to trigger 1281 * housekeeping for rx descs. we don't use the free interrupt 1282 * as it's not very useful 1283 */ 1284 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1285 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1286 writel(val, cp->regs + REG_RX_AE_THRESH); 1287 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1288 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1289 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1290 } 1291 1292 /* Random early detect registers. useful for congestion avoidance. 1293 * this should be tunable. 1294 */ 1295 writel(0x0, cp->regs + REG_RX_RED); 1296 1297 /* receive page sizes. default == 2K (0x800) */ 1298 val = 0; 1299 if (cp->page_size == 0x1000) 1300 val = 0x1; 1301 else if (cp->page_size == 0x2000) 1302 val = 0x2; 1303 else if (cp->page_size == 0x4000) 1304 val = 0x3; 1305 1306 /* round mtu + offset. constrain to page size. */ 1307 size = cp->dev->mtu + 64; 1308 if (size > cp->page_size) 1309 size = cp->page_size; 1310 1311 if (size <= 0x400) 1312 i = 0x0; 1313 else if (size <= 0x800) 1314 i = 0x1; 1315 else if (size <= 0x1000) 1316 i = 0x2; 1317 else 1318 i = 0x3; 1319 1320 cp->mtu_stride = 1 << (i + 10); 1321 val = CAS_BASE(RX_PAGE_SIZE, val); 1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1324 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1325 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1326 1327 /* enable the header parser if desired */ 1328 if (CAS_HP_FIRMWARE == cas_prog_null) 1329 return; 1330 1331 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1332 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1333 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1334 writel(val, cp->regs + REG_HP_CFG); 1335 } 1336 1337 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1338 { 1339 memset(rxc, 0, sizeof(*rxc)); 1340 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1341 } 1342 1343 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1344 * flipping is protected by the fact that the chip will not 1345 * hand back the same page index while it's being processed. 1346 */ 1347 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1348 { 1349 cas_page_t *page = cp->rx_pages[1][index]; 1350 cas_page_t *new; 1351 1352 if (page_count(page->buffer) == 1) 1353 return page; 1354 1355 new = cas_page_dequeue(cp); 1356 if (new) { 1357 spin_lock(&cp->rx_inuse_lock); 1358 list_add(&page->list, &cp->rx_inuse_list); 1359 spin_unlock(&cp->rx_inuse_lock); 1360 } 1361 return new; 1362 } 1363 1364 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1365 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1366 const int index) 1367 { 1368 cas_page_t **page0 = cp->rx_pages[0]; 1369 cas_page_t **page1 = cp->rx_pages[1]; 1370 1371 /* swap if buffer is in use */ 1372 if (page_count(page0[index]->buffer) > 1) { 1373 cas_page_t *new = cas_page_spare(cp, index); 1374 if (new) { 1375 page1[index] = page0[index]; 1376 page0[index] = new; 1377 } 1378 } 1379 RX_USED_SET(page0[index], 0); 1380 return page0[index]; 1381 } 1382 1383 static void cas_clean_rxds(struct cas *cp) 1384 { 1385 /* only clean ring 0 as ring 1 is used for spare buffers */ 1386 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1387 int i, size; 1388 1389 /* release all rx flows */ 1390 for (i = 0; i < N_RX_FLOWS; i++) { 1391 struct sk_buff *skb; 1392 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1393 cas_skb_release(skb); 1394 } 1395 } 1396 1397 /* initialize descriptors */ 1398 size = RX_DESC_RINGN_SIZE(0); 1399 for (i = 0; i < size; i++) { 1400 cas_page_t *page = cas_page_swap(cp, 0, i); 1401 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1402 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1403 CAS_BASE(RX_INDEX_RING, 0)); 1404 } 1405 1406 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1407 cp->rx_last[0] = 0; 1408 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1409 } 1410 1411 static void cas_clean_rxcs(struct cas *cp) 1412 { 1413 int i, j; 1414 1415 /* take ownership of rx comp descriptors */ 1416 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1417 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1418 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1419 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1420 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1421 cas_rxc_init(rxc + j); 1422 } 1423 } 1424 } 1425 1426 #if 0 1427 /* When we get a RX fifo overflow, the RX unit is probably hung 1428 * so we do the following. 1429 * 1430 * If any part of the reset goes wrong, we return 1 and that causes the 1431 * whole chip to be reset. 1432 */ 1433 static int cas_rxmac_reset(struct cas *cp) 1434 { 1435 struct net_device *dev = cp->dev; 1436 int limit; 1437 u32 val; 1438 1439 /* First, reset MAC RX. */ 1440 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1441 for (limit = 0; limit < STOP_TRIES; limit++) { 1442 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1443 break; 1444 udelay(10); 1445 } 1446 if (limit == STOP_TRIES) { 1447 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1448 return 1; 1449 } 1450 1451 /* Second, disable RX DMA. */ 1452 writel(0, cp->regs + REG_RX_CFG); 1453 for (limit = 0; limit < STOP_TRIES; limit++) { 1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1455 break; 1456 udelay(10); 1457 } 1458 if (limit == STOP_TRIES) { 1459 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1460 return 1; 1461 } 1462 1463 mdelay(5); 1464 1465 /* Execute RX reset command. */ 1466 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1467 for (limit = 0; limit < STOP_TRIES; limit++) { 1468 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1469 break; 1470 udelay(10); 1471 } 1472 if (limit == STOP_TRIES) { 1473 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1474 return 1; 1475 } 1476 1477 /* reset driver rx state */ 1478 cas_clean_rxds(cp); 1479 cas_clean_rxcs(cp); 1480 1481 /* Now, reprogram the rest of RX unit. */ 1482 cas_init_rx_dma(cp); 1483 1484 /* re-enable */ 1485 val = readl(cp->regs + REG_RX_CFG); 1486 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1487 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1488 val = readl(cp->regs + REG_MAC_RX_CFG); 1489 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1490 return 0; 1491 } 1492 #endif 1493 1494 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1495 u32 status) 1496 { 1497 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1498 1499 if (!stat) 1500 return 0; 1501 1502 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1503 1504 /* these are all rollovers */ 1505 spin_lock(&cp->stat_lock[0]); 1506 if (stat & MAC_RX_ALIGN_ERR) 1507 cp->net_stats[0].rx_frame_errors += 0x10000; 1508 1509 if (stat & MAC_RX_CRC_ERR) 1510 cp->net_stats[0].rx_crc_errors += 0x10000; 1511 1512 if (stat & MAC_RX_LEN_ERR) 1513 cp->net_stats[0].rx_length_errors += 0x10000; 1514 1515 if (stat & MAC_RX_OVERFLOW) { 1516 cp->net_stats[0].rx_over_errors++; 1517 cp->net_stats[0].rx_fifo_errors++; 1518 } 1519 1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1521 * events. 1522 */ 1523 spin_unlock(&cp->stat_lock[0]); 1524 return 0; 1525 } 1526 1527 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1528 u32 status) 1529 { 1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1531 1532 if (!stat) 1533 return 0; 1534 1535 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1536 "mac interrupt, stat: 0x%x\n", stat); 1537 1538 /* This interrupt is just for pause frame and pause 1539 * tracking. It is useful for diagnostics and debug 1540 * but probably by default we will mask these events. 1541 */ 1542 if (stat & MAC_CTRL_PAUSE_STATE) 1543 cp->pause_entered++; 1544 1545 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1546 cp->pause_last_time_recvd = (stat >> 16); 1547 1548 return 0; 1549 } 1550 1551 1552 /* Must be invoked under cp->lock. */ 1553 static inline int cas_mdio_link_not_up(struct cas *cp) 1554 { 1555 u16 val; 1556 1557 switch (cp->lstate) { 1558 case link_force_ret: 1559 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1560 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1561 cp->timer_ticks = 5; 1562 cp->lstate = link_force_ok; 1563 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1564 break; 1565 1566 case link_aneg: 1567 val = cas_phy_read(cp, MII_BMCR); 1568 1569 /* Try forced modes. we try things in the following order: 1570 * 1000 full -> 100 full/half -> 10 half 1571 */ 1572 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1573 val |= BMCR_FULLDPLX; 1574 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1575 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1576 cas_phy_write(cp, MII_BMCR, val); 1577 cp->timer_ticks = 5; 1578 cp->lstate = link_force_try; 1579 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1580 break; 1581 1582 case link_force_try: 1583 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1584 val = cas_phy_read(cp, MII_BMCR); 1585 cp->timer_ticks = 5; 1586 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1587 val &= ~CAS_BMCR_SPEED1000; 1588 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1589 cas_phy_write(cp, MII_BMCR, val); 1590 break; 1591 } 1592 1593 if (val & BMCR_SPEED100) { 1594 if (val & BMCR_FULLDPLX) /* fd failed */ 1595 val &= ~BMCR_FULLDPLX; 1596 else { /* 100Mbps failed */ 1597 val &= ~BMCR_SPEED100; 1598 } 1599 cas_phy_write(cp, MII_BMCR, val); 1600 break; 1601 } 1602 break; 1603 default: 1604 break; 1605 } 1606 return 0; 1607 } 1608 1609 1610 /* must be invoked with cp->lock held */ 1611 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1612 { 1613 int restart; 1614 1615 if (bmsr & BMSR_LSTATUS) { 1616 /* Ok, here we got a link. If we had it due to a forced 1617 * fallback, and we were configured for autoneg, we 1618 * retry a short autoneg pass. If you know your hub is 1619 * broken, use ethtool ;) 1620 */ 1621 if ((cp->lstate == link_force_try) && 1622 (cp->link_cntl & BMCR_ANENABLE)) { 1623 cp->lstate = link_force_ret; 1624 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1625 cas_mif_poll(cp, 0); 1626 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1627 cp->timer_ticks = 5; 1628 if (cp->opened) 1629 netif_info(cp, link, cp->dev, 1630 "Got link after fallback, retrying autoneg once...\n"); 1631 cas_phy_write(cp, MII_BMCR, 1632 cp->link_fcntl | BMCR_ANENABLE | 1633 BMCR_ANRESTART); 1634 cas_mif_poll(cp, 1); 1635 1636 } else if (cp->lstate != link_up) { 1637 cp->lstate = link_up; 1638 cp->link_transition = LINK_TRANSITION_LINK_UP; 1639 1640 if (cp->opened) { 1641 cas_set_link_modes(cp); 1642 netif_carrier_on(cp->dev); 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 /* link not up. if the link was previously up, we restart the 1649 * whole process 1650 */ 1651 restart = 0; 1652 if (cp->lstate == link_up) { 1653 cp->lstate = link_down; 1654 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1655 1656 netif_carrier_off(cp->dev); 1657 if (cp->opened) 1658 netif_info(cp, link, cp->dev, "Link down\n"); 1659 restart = 1; 1660 1661 } else if (++cp->timer_ticks > 10) 1662 cas_mdio_link_not_up(cp); 1663 1664 return restart; 1665 } 1666 1667 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1668 u32 status) 1669 { 1670 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1671 u16 bmsr; 1672 1673 /* check for a link change */ 1674 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1675 return 0; 1676 1677 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1678 return cas_mii_link_check(cp, bmsr); 1679 } 1680 1681 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1682 u32 status) 1683 { 1684 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1685 1686 if (!stat) 1687 return 0; 1688 1689 netdev_err(dev, "PCI error [%04x:%04x]", 1690 stat, readl(cp->regs + REG_BIM_DIAG)); 1691 1692 /* cassini+ has this reserved */ 1693 if ((stat & PCI_ERR_BADACK) && 1694 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1695 pr_cont(" <No ACK64# during ABS64 cycle>"); 1696 1697 if (stat & PCI_ERR_DTRTO) 1698 pr_cont(" <Delayed transaction timeout>"); 1699 if (stat & PCI_ERR_OTHER) 1700 pr_cont(" <other>"); 1701 if (stat & PCI_ERR_BIM_DMA_WRITE) 1702 pr_cont(" <BIM DMA 0 write req>"); 1703 if (stat & PCI_ERR_BIM_DMA_READ) 1704 pr_cont(" <BIM DMA 0 read req>"); 1705 pr_cont("\n"); 1706 1707 if (stat & PCI_ERR_OTHER) { 1708 int pci_errs; 1709 1710 /* Interrogate PCI config space for the 1711 * true cause. 1712 */ 1713 pci_errs = pci_status_get_and_clear_errors(cp->pdev); 1714 1715 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 1716 if (pci_errs & PCI_STATUS_PARITY) 1717 netdev_err(dev, "PCI parity error detected\n"); 1718 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 1719 netdev_err(dev, "PCI target abort\n"); 1720 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 1721 netdev_err(dev, "PCI master acks target abort\n"); 1722 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 1723 netdev_err(dev, "PCI master abort\n"); 1724 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 1725 netdev_err(dev, "PCI system error SERR#\n"); 1726 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 1727 netdev_err(dev, "PCI parity error\n"); 1728 } 1729 1730 /* For all PCI errors, we should reset the chip. */ 1731 return 1; 1732 } 1733 1734 /* All non-normal interrupt conditions get serviced here. 1735 * Returns non-zero if we should just exit the interrupt 1736 * handler right now (ie. if we reset the card which invalidates 1737 * all of the other original irq status bits). 1738 */ 1739 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1740 u32 status) 1741 { 1742 if (status & INTR_RX_TAG_ERROR) { 1743 /* corrupt RX tag framing */ 1744 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1745 "corrupt rx tag framing\n"); 1746 spin_lock(&cp->stat_lock[0]); 1747 cp->net_stats[0].rx_errors++; 1748 spin_unlock(&cp->stat_lock[0]); 1749 goto do_reset; 1750 } 1751 1752 if (status & INTR_RX_LEN_MISMATCH) { 1753 /* length mismatch. */ 1754 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1755 "length mismatch for rx frame\n"); 1756 spin_lock(&cp->stat_lock[0]); 1757 cp->net_stats[0].rx_errors++; 1758 spin_unlock(&cp->stat_lock[0]); 1759 goto do_reset; 1760 } 1761 1762 if (status & INTR_PCS_STATUS) { 1763 if (cas_pcs_interrupt(dev, cp, status)) 1764 goto do_reset; 1765 } 1766 1767 if (status & INTR_TX_MAC_STATUS) { 1768 if (cas_txmac_interrupt(dev, cp, status)) 1769 goto do_reset; 1770 } 1771 1772 if (status & INTR_RX_MAC_STATUS) { 1773 if (cas_rxmac_interrupt(dev, cp, status)) 1774 goto do_reset; 1775 } 1776 1777 if (status & INTR_MAC_CTRL_STATUS) { 1778 if (cas_mac_interrupt(dev, cp, status)) 1779 goto do_reset; 1780 } 1781 1782 if (status & INTR_MIF_STATUS) { 1783 if (cas_mif_interrupt(dev, cp, status)) 1784 goto do_reset; 1785 } 1786 1787 if (status & INTR_PCI_ERROR_STATUS) { 1788 if (cas_pci_interrupt(dev, cp, status)) 1789 goto do_reset; 1790 } 1791 return 0; 1792 1793 do_reset: 1794 #if 1 1795 atomic_inc(&cp->reset_task_pending); 1796 atomic_inc(&cp->reset_task_pending_all); 1797 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1798 schedule_work(&cp->reset_task); 1799 #else 1800 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1801 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1802 schedule_work(&cp->reset_task); 1803 #endif 1804 return 1; 1805 } 1806 1807 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1808 * determining whether to do a netif_stop/wakeup 1809 */ 1810 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1811 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1812 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1813 const int len) 1814 { 1815 unsigned long off = addr + len; 1816 1817 if (CAS_TABORT(cp) == 1) 1818 return 0; 1819 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1820 return 0; 1821 return TX_TARGET_ABORT_LEN; 1822 } 1823 1824 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1825 { 1826 struct cas_tx_desc *txds; 1827 struct sk_buff **skbs; 1828 struct net_device *dev = cp->dev; 1829 int entry, count; 1830 1831 spin_lock(&cp->tx_lock[ring]); 1832 txds = cp->init_txds[ring]; 1833 skbs = cp->tx_skbs[ring]; 1834 entry = cp->tx_old[ring]; 1835 1836 count = TX_BUFF_COUNT(ring, entry, limit); 1837 while (entry != limit) { 1838 struct sk_buff *skb = skbs[entry]; 1839 dma_addr_t daddr; 1840 u32 dlen; 1841 int frag; 1842 1843 if (!skb) { 1844 /* this should never occur */ 1845 entry = TX_DESC_NEXT(ring, entry); 1846 continue; 1847 } 1848 1849 /* however, we might get only a partial skb release. */ 1850 count -= skb_shinfo(skb)->nr_frags + 1851 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1852 if (count < 0) 1853 break; 1854 1855 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1856 "tx[%d] done, slot %d\n", ring, entry); 1857 1858 skbs[entry] = NULL; 1859 cp->tx_tiny_use[ring][entry].nbufs = 0; 1860 1861 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1862 struct cas_tx_desc *txd = txds + entry; 1863 1864 daddr = le64_to_cpu(txd->buffer); 1865 dlen = CAS_VAL(TX_DESC_BUFLEN, 1866 le64_to_cpu(txd->control)); 1867 dma_unmap_page(&cp->pdev->dev, daddr, dlen, 1868 DMA_TO_DEVICE); 1869 entry = TX_DESC_NEXT(ring, entry); 1870 1871 /* tiny buffer may follow */ 1872 if (cp->tx_tiny_use[ring][entry].used) { 1873 cp->tx_tiny_use[ring][entry].used = 0; 1874 entry = TX_DESC_NEXT(ring, entry); 1875 } 1876 } 1877 1878 spin_lock(&cp->stat_lock[ring]); 1879 cp->net_stats[ring].tx_packets++; 1880 cp->net_stats[ring].tx_bytes += skb->len; 1881 spin_unlock(&cp->stat_lock[ring]); 1882 dev_consume_skb_irq(skb); 1883 } 1884 cp->tx_old[ring] = entry; 1885 1886 /* this is wrong for multiple tx rings. the net device needs 1887 * multiple queues for this to do the right thing. we wait 1888 * for 2*packets to be available when using tiny buffers 1889 */ 1890 if (netif_queue_stopped(dev) && 1891 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1892 netif_wake_queue(dev); 1893 spin_unlock(&cp->tx_lock[ring]); 1894 } 1895 1896 static void cas_tx(struct net_device *dev, struct cas *cp, 1897 u32 status) 1898 { 1899 int limit, ring; 1900 #ifdef USE_TX_COMPWB 1901 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1902 #endif 1903 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1904 "tx interrupt, status: 0x%x, %llx\n", 1905 status, (unsigned long long)compwb); 1906 /* process all the rings */ 1907 for (ring = 0; ring < N_TX_RINGS; ring++) { 1908 #ifdef USE_TX_COMPWB 1909 /* use the completion writeback registers */ 1910 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1911 CAS_VAL(TX_COMPWB_LSB, compwb); 1912 compwb = TX_COMPWB_NEXT(compwb); 1913 #else 1914 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1915 #endif 1916 if (cp->tx_old[ring] != limit) 1917 cas_tx_ringN(cp, ring, limit); 1918 } 1919 } 1920 1921 1922 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1923 int entry, const u64 *words, 1924 struct sk_buff **skbref) 1925 { 1926 int dlen, hlen, len, i, alloclen; 1927 int off, swivel = RX_SWIVEL_OFF_VAL; 1928 struct cas_page *page; 1929 struct sk_buff *skb; 1930 void *addr, *crcaddr; 1931 __sum16 csum; 1932 char *p; 1933 1934 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1935 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1936 len = hlen + dlen; 1937 1938 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1939 alloclen = len; 1940 else 1941 alloclen = max(hlen, RX_COPY_MIN); 1942 1943 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1944 if (skb == NULL) 1945 return -1; 1946 1947 *skbref = skb; 1948 skb_reserve(skb, swivel); 1949 1950 p = skb->data; 1951 addr = crcaddr = NULL; 1952 if (hlen) { /* always copy header pages */ 1953 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1954 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1955 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1956 swivel; 1957 1958 i = hlen; 1959 if (!dlen) /* attach FCS */ 1960 i += cp->crc_size; 1961 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 1962 i, DMA_FROM_DEVICE); 1963 addr = cas_page_map(page->buffer); 1964 memcpy(p, addr + off, i); 1965 dma_sync_single_for_device(&cp->pdev->dev, 1966 page->dma_addr + off, i, 1967 DMA_FROM_DEVICE); 1968 cas_page_unmap(addr); 1969 RX_USED_ADD(page, 0x100); 1970 p += hlen; 1971 swivel = 0; 1972 } 1973 1974 1975 if (alloclen < (hlen + dlen)) { 1976 skb_frag_t *frag = skb_shinfo(skb)->frags; 1977 1978 /* normal or jumbo packets. we use frags */ 1979 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 1980 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1981 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 1982 1983 hlen = min(cp->page_size - off, dlen); 1984 if (hlen < 0) { 1985 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1986 "rx page overflow: %d\n", hlen); 1987 dev_kfree_skb_irq(skb); 1988 return -1; 1989 } 1990 i = hlen; 1991 if (i == dlen) /* attach FCS */ 1992 i += cp->crc_size; 1993 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 1994 i, DMA_FROM_DEVICE); 1995 1996 /* make sure we always copy a header */ 1997 swivel = 0; 1998 if (p == (char *) skb->data) { /* not split */ 1999 addr = cas_page_map(page->buffer); 2000 memcpy(p, addr + off, RX_COPY_MIN); 2001 dma_sync_single_for_device(&cp->pdev->dev, 2002 page->dma_addr + off, i, 2003 DMA_FROM_DEVICE); 2004 cas_page_unmap(addr); 2005 off += RX_COPY_MIN; 2006 swivel = RX_COPY_MIN; 2007 RX_USED_ADD(page, cp->mtu_stride); 2008 } else { 2009 RX_USED_ADD(page, hlen); 2010 } 2011 skb_put(skb, alloclen); 2012 2013 skb_shinfo(skb)->nr_frags++; 2014 skb->data_len += hlen - swivel; 2015 skb->truesize += hlen - swivel; 2016 skb->len += hlen - swivel; 2017 2018 __skb_frag_set_page(frag, page->buffer); 2019 __skb_frag_ref(frag); 2020 skb_frag_off_set(frag, off); 2021 skb_frag_size_set(frag, hlen - swivel); 2022 2023 /* any more data? */ 2024 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2025 hlen = dlen; 2026 off = 0; 2027 2028 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2030 dma_sync_single_for_cpu(&cp->pdev->dev, 2031 page->dma_addr, 2032 hlen + cp->crc_size, 2033 DMA_FROM_DEVICE); 2034 dma_sync_single_for_device(&cp->pdev->dev, 2035 page->dma_addr, 2036 hlen + cp->crc_size, 2037 DMA_FROM_DEVICE); 2038 2039 skb_shinfo(skb)->nr_frags++; 2040 skb->data_len += hlen; 2041 skb->len += hlen; 2042 frag++; 2043 2044 __skb_frag_set_page(frag, page->buffer); 2045 __skb_frag_ref(frag); 2046 skb_frag_off_set(frag, 0); 2047 skb_frag_size_set(frag, hlen); 2048 RX_USED_ADD(page, hlen + cp->crc_size); 2049 } 2050 2051 if (cp->crc_size) { 2052 addr = cas_page_map(page->buffer); 2053 crcaddr = addr + off + hlen; 2054 } 2055 2056 } else { 2057 /* copying packet */ 2058 if (!dlen) 2059 goto end_copy_pkt; 2060 2061 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2062 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2063 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2064 hlen = min(cp->page_size - off, dlen); 2065 if (hlen < 0) { 2066 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2067 "rx page overflow: %d\n", hlen); 2068 dev_kfree_skb_irq(skb); 2069 return -1; 2070 } 2071 i = hlen; 2072 if (i == dlen) /* attach FCS */ 2073 i += cp->crc_size; 2074 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 2075 i, DMA_FROM_DEVICE); 2076 addr = cas_page_map(page->buffer); 2077 memcpy(p, addr + off, i); 2078 dma_sync_single_for_device(&cp->pdev->dev, 2079 page->dma_addr + off, i, 2080 DMA_FROM_DEVICE); 2081 cas_page_unmap(addr); 2082 if (p == (char *) skb->data) /* not split */ 2083 RX_USED_ADD(page, cp->mtu_stride); 2084 else 2085 RX_USED_ADD(page, i); 2086 2087 /* any more data? */ 2088 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2089 p += hlen; 2090 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2091 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2092 dma_sync_single_for_cpu(&cp->pdev->dev, 2093 page->dma_addr, 2094 dlen + cp->crc_size, 2095 DMA_FROM_DEVICE); 2096 addr = cas_page_map(page->buffer); 2097 memcpy(p, addr, dlen + cp->crc_size); 2098 dma_sync_single_for_device(&cp->pdev->dev, 2099 page->dma_addr, 2100 dlen + cp->crc_size, 2101 DMA_FROM_DEVICE); 2102 cas_page_unmap(addr); 2103 RX_USED_ADD(page, dlen + cp->crc_size); 2104 } 2105 end_copy_pkt: 2106 if (cp->crc_size) { 2107 addr = NULL; 2108 crcaddr = skb->data + alloclen; 2109 } 2110 skb_put(skb, alloclen); 2111 } 2112 2113 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2114 if (cp->crc_size) { 2115 /* checksum includes FCS. strip it out. */ 2116 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2117 csum_unfold(csum))); 2118 if (addr) 2119 cas_page_unmap(addr); 2120 } 2121 skb->protocol = eth_type_trans(skb, cp->dev); 2122 if (skb->protocol == htons(ETH_P_IP)) { 2123 skb->csum = csum_unfold(~csum); 2124 skb->ip_summed = CHECKSUM_COMPLETE; 2125 } else 2126 skb_checksum_none_assert(skb); 2127 return len; 2128 } 2129 2130 2131 /* we can handle up to 64 rx flows at a time. we do the same thing 2132 * as nonreassm except that we batch up the buffers. 2133 * NOTE: we currently just treat each flow as a bunch of packets that 2134 * we pass up. a better way would be to coalesce the packets 2135 * into a jumbo packet. to do that, we need to do the following: 2136 * 1) the first packet will have a clean split between header and 2137 * data. save both. 2138 * 2) each time the next flow packet comes in, extend the 2139 * data length and merge the checksums. 2140 * 3) on flow release, fix up the header. 2141 * 4) make sure the higher layer doesn't care. 2142 * because packets get coalesced, we shouldn't run into fragment count 2143 * issues. 2144 */ 2145 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2146 struct sk_buff *skb) 2147 { 2148 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2149 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2150 2151 /* this is protected at a higher layer, so no need to 2152 * do any additional locking here. stick the buffer 2153 * at the end. 2154 */ 2155 __skb_queue_tail(flow, skb); 2156 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2157 while ((skb = __skb_dequeue(flow))) { 2158 cas_skb_release(skb); 2159 } 2160 } 2161 } 2162 2163 /* put rx descriptor back on ring. if a buffer is in use by a higher 2164 * layer, this will need to put in a replacement. 2165 */ 2166 static void cas_post_page(struct cas *cp, const int ring, const int index) 2167 { 2168 cas_page_t *new; 2169 int entry; 2170 2171 entry = cp->rx_old[ring]; 2172 2173 new = cas_page_swap(cp, ring, index); 2174 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2175 cp->init_rxds[ring][entry].index = 2176 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2177 CAS_BASE(RX_INDEX_RING, ring)); 2178 2179 entry = RX_DESC_ENTRY(ring, entry + 1); 2180 cp->rx_old[ring] = entry; 2181 2182 if (entry % 4) 2183 return; 2184 2185 if (ring == 0) 2186 writel(entry, cp->regs + REG_RX_KICK); 2187 else if ((N_RX_DESC_RINGS > 1) && 2188 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2189 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2190 } 2191 2192 2193 /* only when things are bad */ 2194 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2195 { 2196 unsigned int entry, last, count, released; 2197 int cluster; 2198 cas_page_t **page = cp->rx_pages[ring]; 2199 2200 entry = cp->rx_old[ring]; 2201 2202 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2203 "rxd[%d] interrupt, done: %d\n", ring, entry); 2204 2205 cluster = -1; 2206 count = entry & 0x3; 2207 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2208 released = 0; 2209 while (entry != last) { 2210 /* make a new buffer if it's still in use */ 2211 if (page_count(page[entry]->buffer) > 1) { 2212 cas_page_t *new = cas_page_dequeue(cp); 2213 if (!new) { 2214 /* let the timer know that we need to 2215 * do this again 2216 */ 2217 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2218 if (!timer_pending(&cp->link_timer)) 2219 mod_timer(&cp->link_timer, jiffies + 2220 CAS_LINK_FAST_TIMEOUT); 2221 cp->rx_old[ring] = entry; 2222 cp->rx_last[ring] = num ? num - released : 0; 2223 return -ENOMEM; 2224 } 2225 spin_lock(&cp->rx_inuse_lock); 2226 list_add(&page[entry]->list, &cp->rx_inuse_list); 2227 spin_unlock(&cp->rx_inuse_lock); 2228 cp->init_rxds[ring][entry].buffer = 2229 cpu_to_le64(new->dma_addr); 2230 page[entry] = new; 2231 2232 } 2233 2234 if (++count == 4) { 2235 cluster = entry; 2236 count = 0; 2237 } 2238 released++; 2239 entry = RX_DESC_ENTRY(ring, entry + 1); 2240 } 2241 cp->rx_old[ring] = entry; 2242 2243 if (cluster < 0) 2244 return 0; 2245 2246 if (ring == 0) 2247 writel(cluster, cp->regs + REG_RX_KICK); 2248 else if ((N_RX_DESC_RINGS > 1) && 2249 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2250 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2251 return 0; 2252 } 2253 2254 2255 /* process a completion ring. packets are set up in three basic ways: 2256 * small packets: should be copied header + data in single buffer. 2257 * large packets: header and data in a single buffer. 2258 * split packets: header in a separate buffer from data. 2259 * data may be in multiple pages. data may be > 256 2260 * bytes but in a single page. 2261 * 2262 * NOTE: RX page posting is done in this routine as well. while there's 2263 * the capability of using multiple RX completion rings, it isn't 2264 * really worthwhile due to the fact that the page posting will 2265 * force serialization on the single descriptor ring. 2266 */ 2267 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2268 { 2269 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2270 int entry, drops; 2271 int npackets = 0; 2272 2273 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2274 "rx[%d] interrupt, done: %d/%d\n", 2275 ring, 2276 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2277 2278 entry = cp->rx_new[ring]; 2279 drops = 0; 2280 while (1) { 2281 struct cas_rx_comp *rxc = rxcs + entry; 2282 struct sk_buff *skb; 2283 int type, len; 2284 u64 words[4]; 2285 int i, dring; 2286 2287 words[0] = le64_to_cpu(rxc->word1); 2288 words[1] = le64_to_cpu(rxc->word2); 2289 words[2] = le64_to_cpu(rxc->word3); 2290 words[3] = le64_to_cpu(rxc->word4); 2291 2292 /* don't touch if still owned by hw */ 2293 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2294 if (type == 0) 2295 break; 2296 2297 /* hw hasn't cleared the zero bit yet */ 2298 if (words[3] & RX_COMP4_ZERO) { 2299 break; 2300 } 2301 2302 /* get info on the packet */ 2303 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2304 spin_lock(&cp->stat_lock[ring]); 2305 cp->net_stats[ring].rx_errors++; 2306 if (words[3] & RX_COMP4_LEN_MISMATCH) 2307 cp->net_stats[ring].rx_length_errors++; 2308 if (words[3] & RX_COMP4_BAD) 2309 cp->net_stats[ring].rx_crc_errors++; 2310 spin_unlock(&cp->stat_lock[ring]); 2311 2312 /* We'll just return it to Cassini. */ 2313 drop_it: 2314 spin_lock(&cp->stat_lock[ring]); 2315 ++cp->net_stats[ring].rx_dropped; 2316 spin_unlock(&cp->stat_lock[ring]); 2317 goto next; 2318 } 2319 2320 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2321 if (len < 0) { 2322 ++drops; 2323 goto drop_it; 2324 } 2325 2326 /* see if it's a flow re-assembly or not. the driver 2327 * itself handles release back up. 2328 */ 2329 if (RX_DONT_BATCH || (type == 0x2)) { 2330 /* non-reassm: these always get released */ 2331 cas_skb_release(skb); 2332 } else { 2333 cas_rx_flow_pkt(cp, words, skb); 2334 } 2335 2336 spin_lock(&cp->stat_lock[ring]); 2337 cp->net_stats[ring].rx_packets++; 2338 cp->net_stats[ring].rx_bytes += len; 2339 spin_unlock(&cp->stat_lock[ring]); 2340 2341 next: 2342 npackets++; 2343 2344 /* should it be released? */ 2345 if (words[0] & RX_COMP1_RELEASE_HDR) { 2346 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2347 dring = CAS_VAL(RX_INDEX_RING, i); 2348 i = CAS_VAL(RX_INDEX_NUM, i); 2349 cas_post_page(cp, dring, i); 2350 } 2351 2352 if (words[0] & RX_COMP1_RELEASE_DATA) { 2353 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2354 dring = CAS_VAL(RX_INDEX_RING, i); 2355 i = CAS_VAL(RX_INDEX_NUM, i); 2356 cas_post_page(cp, dring, i); 2357 } 2358 2359 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2360 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2361 dring = CAS_VAL(RX_INDEX_RING, i); 2362 i = CAS_VAL(RX_INDEX_NUM, i); 2363 cas_post_page(cp, dring, i); 2364 } 2365 2366 /* skip to the next entry */ 2367 entry = RX_COMP_ENTRY(ring, entry + 1 + 2368 CAS_VAL(RX_COMP1_SKIP, words[0])); 2369 #ifdef USE_NAPI 2370 if (budget && (npackets >= budget)) 2371 break; 2372 #endif 2373 } 2374 cp->rx_new[ring] = entry; 2375 2376 if (drops) 2377 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2378 return npackets; 2379 } 2380 2381 2382 /* put completion entries back on the ring */ 2383 static void cas_post_rxcs_ringN(struct net_device *dev, 2384 struct cas *cp, int ring) 2385 { 2386 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2387 int last, entry; 2388 2389 last = cp->rx_cur[ring]; 2390 entry = cp->rx_new[ring]; 2391 netif_printk(cp, intr, KERN_DEBUG, dev, 2392 "rxc[%d] interrupt, done: %d/%d\n", 2393 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2394 2395 /* zero and re-mark descriptors */ 2396 while (last != entry) { 2397 cas_rxc_init(rxc + last); 2398 last = RX_COMP_ENTRY(ring, last + 1); 2399 } 2400 cp->rx_cur[ring] = last; 2401 2402 if (ring == 0) 2403 writel(last, cp->regs + REG_RX_COMP_TAIL); 2404 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2405 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2406 } 2407 2408 2409 2410 /* cassini can use all four PCI interrupts for the completion ring. 2411 * rings 3 and 4 are identical 2412 */ 2413 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2414 static inline void cas_handle_irqN(struct net_device *dev, 2415 struct cas *cp, const u32 status, 2416 const int ring) 2417 { 2418 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2419 cas_post_rxcs_ringN(dev, cp, ring); 2420 } 2421 2422 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2423 { 2424 struct net_device *dev = dev_id; 2425 struct cas *cp = netdev_priv(dev); 2426 unsigned long flags; 2427 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2428 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2429 2430 /* check for shared irq */ 2431 if (status == 0) 2432 return IRQ_NONE; 2433 2434 spin_lock_irqsave(&cp->lock, flags); 2435 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2436 #ifdef USE_NAPI 2437 cas_mask_intr(cp); 2438 napi_schedule(&cp->napi); 2439 #else 2440 cas_rx_ringN(cp, ring, 0); 2441 #endif 2442 status &= ~INTR_RX_DONE_ALT; 2443 } 2444 2445 if (status) 2446 cas_handle_irqN(dev, cp, status, ring); 2447 spin_unlock_irqrestore(&cp->lock, flags); 2448 return IRQ_HANDLED; 2449 } 2450 #endif 2451 2452 #ifdef USE_PCI_INTB 2453 /* everything but rx packets */ 2454 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2455 { 2456 if (status & INTR_RX_BUF_UNAVAIL_1) { 2457 /* Frame arrived, no free RX buffers available. 2458 * NOTE: we can get this on a link transition. */ 2459 cas_post_rxds_ringN(cp, 1, 0); 2460 spin_lock(&cp->stat_lock[1]); 2461 cp->net_stats[1].rx_dropped++; 2462 spin_unlock(&cp->stat_lock[1]); 2463 } 2464 2465 if (status & INTR_RX_BUF_AE_1) 2466 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2467 RX_AE_FREEN_VAL(1)); 2468 2469 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2470 cas_post_rxcs_ringN(cp, 1); 2471 } 2472 2473 /* ring 2 handles a few more events than 3 and 4 */ 2474 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2475 { 2476 struct net_device *dev = dev_id; 2477 struct cas *cp = netdev_priv(dev); 2478 unsigned long flags; 2479 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2480 2481 /* check for shared interrupt */ 2482 if (status == 0) 2483 return IRQ_NONE; 2484 2485 spin_lock_irqsave(&cp->lock, flags); 2486 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2487 #ifdef USE_NAPI 2488 cas_mask_intr(cp); 2489 napi_schedule(&cp->napi); 2490 #else 2491 cas_rx_ringN(cp, 1, 0); 2492 #endif 2493 status &= ~INTR_RX_DONE_ALT; 2494 } 2495 if (status) 2496 cas_handle_irq1(cp, status); 2497 spin_unlock_irqrestore(&cp->lock, flags); 2498 return IRQ_HANDLED; 2499 } 2500 #endif 2501 2502 static inline void cas_handle_irq(struct net_device *dev, 2503 struct cas *cp, const u32 status) 2504 { 2505 /* housekeeping interrupts */ 2506 if (status & INTR_ERROR_MASK) 2507 cas_abnormal_irq(dev, cp, status); 2508 2509 if (status & INTR_RX_BUF_UNAVAIL) { 2510 /* Frame arrived, no free RX buffers available. 2511 * NOTE: we can get this on a link transition. 2512 */ 2513 cas_post_rxds_ringN(cp, 0, 0); 2514 spin_lock(&cp->stat_lock[0]); 2515 cp->net_stats[0].rx_dropped++; 2516 spin_unlock(&cp->stat_lock[0]); 2517 } else if (status & INTR_RX_BUF_AE) { 2518 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2519 RX_AE_FREEN_VAL(0)); 2520 } 2521 2522 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2523 cas_post_rxcs_ringN(dev, cp, 0); 2524 } 2525 2526 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2527 { 2528 struct net_device *dev = dev_id; 2529 struct cas *cp = netdev_priv(dev); 2530 unsigned long flags; 2531 u32 status = readl(cp->regs + REG_INTR_STATUS); 2532 2533 if (status == 0) 2534 return IRQ_NONE; 2535 2536 spin_lock_irqsave(&cp->lock, flags); 2537 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2538 cas_tx(dev, cp, status); 2539 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2540 } 2541 2542 if (status & INTR_RX_DONE) { 2543 #ifdef USE_NAPI 2544 cas_mask_intr(cp); 2545 napi_schedule(&cp->napi); 2546 #else 2547 cas_rx_ringN(cp, 0, 0); 2548 #endif 2549 status &= ~INTR_RX_DONE; 2550 } 2551 2552 if (status) 2553 cas_handle_irq(dev, cp, status); 2554 spin_unlock_irqrestore(&cp->lock, flags); 2555 return IRQ_HANDLED; 2556 } 2557 2558 2559 #ifdef USE_NAPI 2560 static int cas_poll(struct napi_struct *napi, int budget) 2561 { 2562 struct cas *cp = container_of(napi, struct cas, napi); 2563 struct net_device *dev = cp->dev; 2564 int i, enable_intr, credits; 2565 u32 status = readl(cp->regs + REG_INTR_STATUS); 2566 unsigned long flags; 2567 2568 spin_lock_irqsave(&cp->lock, flags); 2569 cas_tx(dev, cp, status); 2570 spin_unlock_irqrestore(&cp->lock, flags); 2571 2572 /* NAPI rx packets. we spread the credits across all of the 2573 * rxc rings 2574 * 2575 * to make sure we're fair with the work we loop through each 2576 * ring N_RX_COMP_RING times with a request of 2577 * budget / N_RX_COMP_RINGS 2578 */ 2579 enable_intr = 1; 2580 credits = 0; 2581 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2582 int j; 2583 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2584 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2585 if (credits >= budget) { 2586 enable_intr = 0; 2587 goto rx_comp; 2588 } 2589 } 2590 } 2591 2592 rx_comp: 2593 /* final rx completion */ 2594 spin_lock_irqsave(&cp->lock, flags); 2595 if (status) 2596 cas_handle_irq(dev, cp, status); 2597 2598 #ifdef USE_PCI_INTB 2599 if (N_RX_COMP_RINGS > 1) { 2600 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2601 if (status) 2602 cas_handle_irq1(dev, cp, status); 2603 } 2604 #endif 2605 2606 #ifdef USE_PCI_INTC 2607 if (N_RX_COMP_RINGS > 2) { 2608 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2609 if (status) 2610 cas_handle_irqN(dev, cp, status, 2); 2611 } 2612 #endif 2613 2614 #ifdef USE_PCI_INTD 2615 if (N_RX_COMP_RINGS > 3) { 2616 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2617 if (status) 2618 cas_handle_irqN(dev, cp, status, 3); 2619 } 2620 #endif 2621 spin_unlock_irqrestore(&cp->lock, flags); 2622 if (enable_intr) { 2623 napi_complete(napi); 2624 cas_unmask_intr(cp); 2625 } 2626 return credits; 2627 } 2628 #endif 2629 2630 #ifdef CONFIG_NET_POLL_CONTROLLER 2631 static void cas_netpoll(struct net_device *dev) 2632 { 2633 struct cas *cp = netdev_priv(dev); 2634 2635 cas_disable_irq(cp, 0); 2636 cas_interrupt(cp->pdev->irq, dev); 2637 cas_enable_irq(cp, 0); 2638 2639 #ifdef USE_PCI_INTB 2640 if (N_RX_COMP_RINGS > 1) { 2641 /* cas_interrupt1(); */ 2642 } 2643 #endif 2644 #ifdef USE_PCI_INTC 2645 if (N_RX_COMP_RINGS > 2) { 2646 /* cas_interruptN(); */ 2647 } 2648 #endif 2649 #ifdef USE_PCI_INTD 2650 if (N_RX_COMP_RINGS > 3) { 2651 /* cas_interruptN(); */ 2652 } 2653 #endif 2654 } 2655 #endif 2656 2657 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue) 2658 { 2659 struct cas *cp = netdev_priv(dev); 2660 2661 netdev_err(dev, "transmit timed out, resetting\n"); 2662 if (!cp->hw_running) { 2663 netdev_err(dev, "hrm.. hw not running!\n"); 2664 return; 2665 } 2666 2667 netdev_err(dev, "MIF_STATE[%08x]\n", 2668 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2669 2670 netdev_err(dev, "MAC_STATE[%08x]\n", 2671 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2672 2673 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2674 readl(cp->regs + REG_TX_CFG), 2675 readl(cp->regs + REG_MAC_TX_STATUS), 2676 readl(cp->regs + REG_MAC_TX_CFG), 2677 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2678 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2679 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2680 readl(cp->regs + REG_TX_SM_1), 2681 readl(cp->regs + REG_TX_SM_2)); 2682 2683 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2684 readl(cp->regs + REG_RX_CFG), 2685 readl(cp->regs + REG_MAC_RX_STATUS), 2686 readl(cp->regs + REG_MAC_RX_CFG)); 2687 2688 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2689 readl(cp->regs + REG_HP_STATE_MACHINE), 2690 readl(cp->regs + REG_HP_STATUS0), 2691 readl(cp->regs + REG_HP_STATUS1), 2692 readl(cp->regs + REG_HP_STATUS2)); 2693 2694 #if 1 2695 atomic_inc(&cp->reset_task_pending); 2696 atomic_inc(&cp->reset_task_pending_all); 2697 schedule_work(&cp->reset_task); 2698 #else 2699 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2700 schedule_work(&cp->reset_task); 2701 #endif 2702 } 2703 2704 static inline int cas_intme(int ring, int entry) 2705 { 2706 /* Algorithm: IRQ every 1/2 of descriptors. */ 2707 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2708 return 1; 2709 return 0; 2710 } 2711 2712 2713 static void cas_write_txd(struct cas *cp, int ring, int entry, 2714 dma_addr_t mapping, int len, u64 ctrl, int last) 2715 { 2716 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2717 2718 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2719 if (cas_intme(ring, entry)) 2720 ctrl |= TX_DESC_INTME; 2721 if (last) 2722 ctrl |= TX_DESC_EOF; 2723 txd->control = cpu_to_le64(ctrl); 2724 txd->buffer = cpu_to_le64(mapping); 2725 } 2726 2727 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2728 const int entry) 2729 { 2730 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2731 } 2732 2733 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2734 const int entry, const int tentry) 2735 { 2736 cp->tx_tiny_use[ring][tentry].nbufs++; 2737 cp->tx_tiny_use[ring][entry].used = 1; 2738 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2739 } 2740 2741 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2742 struct sk_buff *skb) 2743 { 2744 struct net_device *dev = cp->dev; 2745 int entry, nr_frags, frag, tabort, tentry; 2746 dma_addr_t mapping; 2747 unsigned long flags; 2748 u64 ctrl; 2749 u32 len; 2750 2751 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2752 2753 /* This is a hard error, log it. */ 2754 if (TX_BUFFS_AVAIL(cp, ring) <= 2755 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2756 netif_stop_queue(dev); 2757 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2758 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2759 return 1; 2760 } 2761 2762 ctrl = 0; 2763 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2764 const u64 csum_start_off = skb_checksum_start_offset(skb); 2765 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2766 2767 ctrl = TX_DESC_CSUM_EN | 2768 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2769 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2770 } 2771 2772 entry = cp->tx_new[ring]; 2773 cp->tx_skbs[ring][entry] = skb; 2774 2775 nr_frags = skb_shinfo(skb)->nr_frags; 2776 len = skb_headlen(skb); 2777 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data), 2778 offset_in_page(skb->data), len, DMA_TO_DEVICE); 2779 2780 tentry = entry; 2781 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2782 if (unlikely(tabort)) { 2783 /* NOTE: len is always > tabort */ 2784 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2785 ctrl | TX_DESC_SOF, 0); 2786 entry = TX_DESC_NEXT(ring, entry); 2787 2788 skb_copy_from_linear_data_offset(skb, len - tabort, 2789 tx_tiny_buf(cp, ring, entry), tabort); 2790 mapping = tx_tiny_map(cp, ring, entry, tentry); 2791 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2792 (nr_frags == 0)); 2793 } else { 2794 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2795 TX_DESC_SOF, (nr_frags == 0)); 2796 } 2797 entry = TX_DESC_NEXT(ring, entry); 2798 2799 for (frag = 0; frag < nr_frags; frag++) { 2800 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2801 2802 len = skb_frag_size(fragp); 2803 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2804 DMA_TO_DEVICE); 2805 2806 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len); 2807 if (unlikely(tabort)) { 2808 void *addr; 2809 2810 /* NOTE: len is always > tabort */ 2811 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2812 ctrl, 0); 2813 entry = TX_DESC_NEXT(ring, entry); 2814 2815 addr = cas_page_map(skb_frag_page(fragp)); 2816 memcpy(tx_tiny_buf(cp, ring, entry), 2817 addr + skb_frag_off(fragp) + len - tabort, 2818 tabort); 2819 cas_page_unmap(addr); 2820 mapping = tx_tiny_map(cp, ring, entry, tentry); 2821 len = tabort; 2822 } 2823 2824 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2825 (frag + 1 == nr_frags)); 2826 entry = TX_DESC_NEXT(ring, entry); 2827 } 2828 2829 cp->tx_new[ring] = entry; 2830 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2831 netif_stop_queue(dev); 2832 2833 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2834 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2835 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2836 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2837 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2838 return 0; 2839 } 2840 2841 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2842 { 2843 struct cas *cp = netdev_priv(dev); 2844 2845 /* this is only used as a load-balancing hint, so it doesn't 2846 * need to be SMP safe 2847 */ 2848 static int ring; 2849 2850 if (skb_padto(skb, cp->min_frame_size)) 2851 return NETDEV_TX_OK; 2852 2853 /* XXX: we need some higher-level QoS hooks to steer packets to 2854 * individual queues. 2855 */ 2856 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2857 return NETDEV_TX_BUSY; 2858 return NETDEV_TX_OK; 2859 } 2860 2861 static void cas_init_tx_dma(struct cas *cp) 2862 { 2863 u64 desc_dma = cp->block_dvma; 2864 unsigned long off; 2865 u32 val; 2866 int i; 2867 2868 /* set up tx completion writeback registers. must be 8-byte aligned */ 2869 #ifdef USE_TX_COMPWB 2870 off = offsetof(struct cas_init_block, tx_compwb); 2871 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2872 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2873 #endif 2874 2875 /* enable completion writebacks, enable paced mode, 2876 * disable read pipe, and disable pre-interrupt compwbs 2877 */ 2878 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2879 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2880 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2881 TX_CFG_INTR_COMPWB_DIS; 2882 2883 /* write out tx ring info and tx desc bases */ 2884 for (i = 0; i < MAX_TX_RINGS; i++) { 2885 off = (unsigned long) cp->init_txds[i] - 2886 (unsigned long) cp->init_block; 2887 2888 val |= CAS_TX_RINGN_BASE(i); 2889 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2890 writel((desc_dma + off) & 0xffffffff, cp->regs + 2891 REG_TX_DBN_LOW(i)); 2892 /* don't zero out the kick register here as the system 2893 * will wedge 2894 */ 2895 } 2896 writel(val, cp->regs + REG_TX_CFG); 2897 2898 /* program max burst sizes. these numbers should be different 2899 * if doing QoS. 2900 */ 2901 #ifdef USE_QOS 2902 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2903 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2904 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2905 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2906 #else 2907 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2908 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2909 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2910 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2911 #endif 2912 } 2913 2914 /* Must be invoked under cp->lock. */ 2915 static inline void cas_init_dma(struct cas *cp) 2916 { 2917 cas_init_tx_dma(cp); 2918 cas_init_rx_dma(cp); 2919 } 2920 2921 static void cas_process_mc_list(struct cas *cp) 2922 { 2923 u16 hash_table[16]; 2924 u32 crc; 2925 struct netdev_hw_addr *ha; 2926 int i = 1; 2927 2928 memset(hash_table, 0, sizeof(hash_table)); 2929 netdev_for_each_mc_addr(ha, cp->dev) { 2930 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2931 /* use the alternate mac address registers for the 2932 * first 15 multicast addresses 2933 */ 2934 writel((ha->addr[4] << 8) | ha->addr[5], 2935 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2936 writel((ha->addr[2] << 8) | ha->addr[3], 2937 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2938 writel((ha->addr[0] << 8) | ha->addr[1], 2939 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2940 i++; 2941 } 2942 else { 2943 /* use hw hash table for the next series of 2944 * multicast addresses 2945 */ 2946 crc = ether_crc_le(ETH_ALEN, ha->addr); 2947 crc >>= 24; 2948 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2949 } 2950 } 2951 for (i = 0; i < 16; i++) 2952 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2953 } 2954 2955 /* Must be invoked under cp->lock. */ 2956 static u32 cas_setup_multicast(struct cas *cp) 2957 { 2958 u32 rxcfg = 0; 2959 int i; 2960 2961 if (cp->dev->flags & IFF_PROMISC) { 2962 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2963 2964 } else if (cp->dev->flags & IFF_ALLMULTI) { 2965 for (i=0; i < 16; i++) 2966 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2967 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2968 2969 } else { 2970 cas_process_mc_list(cp); 2971 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2972 } 2973 2974 return rxcfg; 2975 } 2976 2977 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 2978 static void cas_clear_mac_err(struct cas *cp) 2979 { 2980 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 2981 writel(0, cp->regs + REG_MAC_COLL_FIRST); 2982 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 2983 writel(0, cp->regs + REG_MAC_COLL_LATE); 2984 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 2985 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 2986 writel(0, cp->regs + REG_MAC_RECV_FRAME); 2987 writel(0, cp->regs + REG_MAC_LEN_ERR); 2988 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 2989 writel(0, cp->regs + REG_MAC_FCS_ERR); 2990 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 2991 } 2992 2993 2994 static void cas_mac_reset(struct cas *cp) 2995 { 2996 int i; 2997 2998 /* do both TX and RX reset */ 2999 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3000 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3001 3002 /* wait for TX */ 3003 i = STOP_TRIES; 3004 while (i-- > 0) { 3005 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3006 break; 3007 udelay(10); 3008 } 3009 3010 /* wait for RX */ 3011 i = STOP_TRIES; 3012 while (i-- > 0) { 3013 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3014 break; 3015 udelay(10); 3016 } 3017 3018 if (readl(cp->regs + REG_MAC_TX_RESET) | 3019 readl(cp->regs + REG_MAC_RX_RESET)) 3020 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3021 readl(cp->regs + REG_MAC_TX_RESET), 3022 readl(cp->regs + REG_MAC_RX_RESET), 3023 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3024 } 3025 3026 3027 /* Must be invoked under cp->lock. */ 3028 static void cas_init_mac(struct cas *cp) 3029 { 3030 unsigned char *e = &cp->dev->dev_addr[0]; 3031 int i; 3032 cas_mac_reset(cp); 3033 3034 /* setup core arbitration weight register */ 3035 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3036 3037 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3038 /* set the infinite burst register for chips that don't have 3039 * pci issues. 3040 */ 3041 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3042 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3043 #endif 3044 3045 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3046 3047 writel(0x00, cp->regs + REG_MAC_IPG0); 3048 writel(0x08, cp->regs + REG_MAC_IPG1); 3049 writel(0x04, cp->regs + REG_MAC_IPG2); 3050 3051 /* change later for 802.3z */ 3052 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3053 3054 /* min frame + FCS */ 3055 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3056 3057 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3058 * specify the maximum frame size to prevent RX tag errors on 3059 * oversized frames. 3060 */ 3061 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3062 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3063 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3064 cp->regs + REG_MAC_FRAMESIZE_MAX); 3065 3066 /* NOTE: crc_size is used as a surrogate for half-duplex. 3067 * workaround saturn half-duplex issue by increasing preamble 3068 * size to 65 bytes. 3069 */ 3070 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3071 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3072 else 3073 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3074 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3075 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3076 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3077 3078 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3079 3080 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3081 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3082 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3083 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3084 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3085 3086 /* setup mac address in perfect filter array */ 3087 for (i = 0; i < 45; i++) 3088 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3089 3090 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3091 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3092 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3093 3094 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3095 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3096 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3097 3098 cp->mac_rx_cfg = cas_setup_multicast(cp); 3099 3100 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3101 cas_clear_mac_err(cp); 3102 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3103 3104 /* Setup MAC interrupts. We want to get all of the interesting 3105 * counter expiration events, but we do not want to hear about 3106 * normal rx/tx as the DMA engine tells us that. 3107 */ 3108 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3109 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3110 3111 /* Don't enable even the PAUSE interrupts for now, we 3112 * make no use of those events other than to record them. 3113 */ 3114 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3115 } 3116 3117 /* Must be invoked under cp->lock. */ 3118 static void cas_init_pause_thresholds(struct cas *cp) 3119 { 3120 /* Calculate pause thresholds. Setting the OFF threshold to the 3121 * full RX fifo size effectively disables PAUSE generation 3122 */ 3123 if (cp->rx_fifo_size <= (2 * 1024)) { 3124 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3125 } else { 3126 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3127 if (max_frame * 3 > cp->rx_fifo_size) { 3128 cp->rx_pause_off = 7104; 3129 cp->rx_pause_on = 960; 3130 } else { 3131 int off = (cp->rx_fifo_size - (max_frame * 2)); 3132 int on = off - max_frame; 3133 cp->rx_pause_off = off; 3134 cp->rx_pause_on = on; 3135 } 3136 } 3137 } 3138 3139 static int cas_vpd_match(const void __iomem *p, const char *str) 3140 { 3141 int len = strlen(str) + 1; 3142 int i; 3143 3144 for (i = 0; i < len; i++) { 3145 if (readb(p + i) != str[i]) 3146 return 0; 3147 } 3148 return 1; 3149 } 3150 3151 3152 /* get the mac address by reading the vpd information in the rom. 3153 * also get the phy type and determine if there's an entropy generator. 3154 * NOTE: this is a bit convoluted for the following reasons: 3155 * 1) vpd info has order-dependent mac addresses for multinic cards 3156 * 2) the only way to determine the nic order is to use the slot 3157 * number. 3158 * 3) fiber cards don't have bridges, so their slot numbers don't 3159 * mean anything. 3160 * 4) we don't actually know we have a fiber card until after 3161 * the mac addresses are parsed. 3162 */ 3163 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3164 const int offset) 3165 { 3166 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3167 void __iomem *base, *kstart; 3168 int i, len; 3169 int found = 0; 3170 #define VPD_FOUND_MAC 0x01 3171 #define VPD_FOUND_PHY 0x02 3172 3173 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3174 int mac_off = 0; 3175 3176 #if defined(CONFIG_SPARC) 3177 const unsigned char *addr; 3178 #endif 3179 3180 /* give us access to the PROM */ 3181 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3182 cp->regs + REG_BIM_LOCAL_DEV_EN); 3183 3184 /* check for an expansion rom */ 3185 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3186 goto use_random_mac_addr; 3187 3188 /* search for beginning of vpd */ 3189 base = NULL; 3190 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3191 /* check for PCIR */ 3192 if ((readb(p + i + 0) == 0x50) && 3193 (readb(p + i + 1) == 0x43) && 3194 (readb(p + i + 2) == 0x49) && 3195 (readb(p + i + 3) == 0x52)) { 3196 base = p + (readb(p + i + 8) | 3197 (readb(p + i + 9) << 8)); 3198 break; 3199 } 3200 } 3201 3202 if (!base || (readb(base) != 0x82)) 3203 goto use_random_mac_addr; 3204 3205 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3206 while (i < EXPANSION_ROM_SIZE) { 3207 if (readb(base + i) != 0x90) /* no vpd found */ 3208 goto use_random_mac_addr; 3209 3210 /* found a vpd field */ 3211 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3212 3213 /* extract keywords */ 3214 kstart = base + i + 3; 3215 p = kstart; 3216 while ((p - kstart) < len) { 3217 int klen = readb(p + 2); 3218 int j; 3219 char type; 3220 3221 p += 3; 3222 3223 /* look for the following things: 3224 * -- correct length == 29 3225 * 3 (type) + 2 (size) + 3226 * 18 (strlen("local-mac-address") + 1) + 3227 * 6 (mac addr) 3228 * -- VPD Instance 'I' 3229 * -- VPD Type Bytes 'B' 3230 * -- VPD data length == 6 3231 * -- property string == local-mac-address 3232 * 3233 * -- correct length == 24 3234 * 3 (type) + 2 (size) + 3235 * 12 (strlen("entropy-dev") + 1) + 3236 * 7 (strlen("vms110") + 1) 3237 * -- VPD Instance 'I' 3238 * -- VPD Type String 'B' 3239 * -- VPD data length == 7 3240 * -- property string == entropy-dev 3241 * 3242 * -- correct length == 18 3243 * 3 (type) + 2 (size) + 3244 * 9 (strlen("phy-type") + 1) + 3245 * 4 (strlen("pcs") + 1) 3246 * -- VPD Instance 'I' 3247 * -- VPD Type String 'S' 3248 * -- VPD data length == 4 3249 * -- property string == phy-type 3250 * 3251 * -- correct length == 23 3252 * 3 (type) + 2 (size) + 3253 * 14 (strlen("phy-interface") + 1) + 3254 * 4 (strlen("pcs") + 1) 3255 * -- VPD Instance 'I' 3256 * -- VPD Type String 'S' 3257 * -- VPD data length == 4 3258 * -- property string == phy-interface 3259 */ 3260 if (readb(p) != 'I') 3261 goto next; 3262 3263 /* finally, check string and length */ 3264 type = readb(p + 3); 3265 if (type == 'B') { 3266 if ((klen == 29) && readb(p + 4) == 6 && 3267 cas_vpd_match(p + 5, 3268 "local-mac-address")) { 3269 if (mac_off++ > offset) 3270 goto next; 3271 3272 /* set mac address */ 3273 for (j = 0; j < 6; j++) 3274 dev_addr[j] = 3275 readb(p + 23 + j); 3276 goto found_mac; 3277 } 3278 } 3279 3280 if (type != 'S') 3281 goto next; 3282 3283 #ifdef USE_ENTROPY_DEV 3284 if ((klen == 24) && 3285 cas_vpd_match(p + 5, "entropy-dev") && 3286 cas_vpd_match(p + 17, "vms110")) { 3287 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3288 goto next; 3289 } 3290 #endif 3291 3292 if (found & VPD_FOUND_PHY) 3293 goto next; 3294 3295 if ((klen == 18) && readb(p + 4) == 4 && 3296 cas_vpd_match(p + 5, "phy-type")) { 3297 if (cas_vpd_match(p + 14, "pcs")) { 3298 phy_type = CAS_PHY_SERDES; 3299 goto found_phy; 3300 } 3301 } 3302 3303 if ((klen == 23) && readb(p + 4) == 4 && 3304 cas_vpd_match(p + 5, "phy-interface")) { 3305 if (cas_vpd_match(p + 19, "pcs")) { 3306 phy_type = CAS_PHY_SERDES; 3307 goto found_phy; 3308 } 3309 } 3310 found_mac: 3311 found |= VPD_FOUND_MAC; 3312 goto next; 3313 3314 found_phy: 3315 found |= VPD_FOUND_PHY; 3316 3317 next: 3318 p += klen; 3319 } 3320 i += len + 3; 3321 } 3322 3323 use_random_mac_addr: 3324 if (found & VPD_FOUND_MAC) 3325 goto done; 3326 3327 #if defined(CONFIG_SPARC) 3328 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3329 if (addr != NULL) { 3330 memcpy(dev_addr, addr, ETH_ALEN); 3331 goto done; 3332 } 3333 #endif 3334 3335 /* Sun MAC prefix then 3 random bytes. */ 3336 pr_info("MAC address not found in ROM VPD\n"); 3337 dev_addr[0] = 0x08; 3338 dev_addr[1] = 0x00; 3339 dev_addr[2] = 0x20; 3340 get_random_bytes(dev_addr + 3, 3); 3341 3342 done: 3343 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3344 return phy_type; 3345 } 3346 3347 /* check pci invariants */ 3348 static void cas_check_pci_invariants(struct cas *cp) 3349 { 3350 struct pci_dev *pdev = cp->pdev; 3351 3352 cp->cas_flags = 0; 3353 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3354 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3355 if (pdev->revision >= CAS_ID_REVPLUS) 3356 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3357 if (pdev->revision < CAS_ID_REVPLUS02u) 3358 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3359 3360 /* Original Cassini supports HW CSUM, but it's not 3361 * enabled by default as it can trigger TX hangs. 3362 */ 3363 if (pdev->revision < CAS_ID_REV2) 3364 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3365 } else { 3366 /* Only sun has original cassini chips. */ 3367 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3368 3369 /* We use a flag because the same phy might be externally 3370 * connected. 3371 */ 3372 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3373 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3374 cp->cas_flags |= CAS_FLAG_SATURN; 3375 } 3376 } 3377 3378 3379 static int cas_check_invariants(struct cas *cp) 3380 { 3381 struct pci_dev *pdev = cp->pdev; 3382 u32 cfg; 3383 int i; 3384 3385 /* get page size for rx buffers. */ 3386 cp->page_order = 0; 3387 #ifdef USE_PAGE_ORDER 3388 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3389 /* see if we can allocate larger pages */ 3390 struct page *page = alloc_pages(GFP_ATOMIC, 3391 CAS_JUMBO_PAGE_SHIFT - 3392 PAGE_SHIFT); 3393 if (page) { 3394 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3395 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3396 } else { 3397 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3398 } 3399 } 3400 #endif 3401 cp->page_size = (PAGE_SIZE << cp->page_order); 3402 3403 /* Fetch the FIFO configurations. */ 3404 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3405 cp->rx_fifo_size = RX_FIFO_SIZE; 3406 3407 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3408 * they're both connected. 3409 */ 3410 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3411 PCI_SLOT(pdev->devfn)); 3412 if (cp->phy_type & CAS_PHY_SERDES) { 3413 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3414 return 0; /* no more checking needed */ 3415 } 3416 3417 /* MII */ 3418 cfg = readl(cp->regs + REG_MIF_CFG); 3419 if (cfg & MIF_CFG_MDIO_1) { 3420 cp->phy_type = CAS_PHY_MII_MDIO1; 3421 } else if (cfg & MIF_CFG_MDIO_0) { 3422 cp->phy_type = CAS_PHY_MII_MDIO0; 3423 } 3424 3425 cas_mif_poll(cp, 0); 3426 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3427 3428 for (i = 0; i < 32; i++) { 3429 u32 phy_id; 3430 int j; 3431 3432 for (j = 0; j < 3; j++) { 3433 cp->phy_addr = i; 3434 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3435 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3436 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3437 cp->phy_id = phy_id; 3438 goto done; 3439 } 3440 } 3441 } 3442 pr_err("MII phy did not respond [%08x]\n", 3443 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3444 return -1; 3445 3446 done: 3447 /* see if we can do gigabit */ 3448 cfg = cas_phy_read(cp, MII_BMSR); 3449 if ((cfg & CAS_BMSR_1000_EXTEND) && 3450 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3451 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3452 return 0; 3453 } 3454 3455 /* Must be invoked under cp->lock. */ 3456 static inline void cas_start_dma(struct cas *cp) 3457 { 3458 int i; 3459 u32 val; 3460 int txfailed = 0; 3461 3462 /* enable dma */ 3463 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3464 writel(val, cp->regs + REG_TX_CFG); 3465 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3466 writel(val, cp->regs + REG_RX_CFG); 3467 3468 /* enable the mac */ 3469 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3470 writel(val, cp->regs + REG_MAC_TX_CFG); 3471 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3472 writel(val, cp->regs + REG_MAC_RX_CFG); 3473 3474 i = STOP_TRIES; 3475 while (i-- > 0) { 3476 val = readl(cp->regs + REG_MAC_TX_CFG); 3477 if ((val & MAC_TX_CFG_EN)) 3478 break; 3479 udelay(10); 3480 } 3481 if (i < 0) txfailed = 1; 3482 i = STOP_TRIES; 3483 while (i-- > 0) { 3484 val = readl(cp->regs + REG_MAC_RX_CFG); 3485 if ((val & MAC_RX_CFG_EN)) { 3486 if (txfailed) { 3487 netdev_err(cp->dev, 3488 "enabling mac failed [tx:%08x:%08x]\n", 3489 readl(cp->regs + REG_MIF_STATE_MACHINE), 3490 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3491 } 3492 goto enable_rx_done; 3493 } 3494 udelay(10); 3495 } 3496 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3497 (txfailed ? "tx,rx" : "rx"), 3498 readl(cp->regs + REG_MIF_STATE_MACHINE), 3499 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3500 3501 enable_rx_done: 3502 cas_unmask_intr(cp); /* enable interrupts */ 3503 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3504 writel(0, cp->regs + REG_RX_COMP_TAIL); 3505 3506 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3507 if (N_RX_DESC_RINGS > 1) 3508 writel(RX_DESC_RINGN_SIZE(1) - 4, 3509 cp->regs + REG_PLUS_RX_KICK1); 3510 3511 for (i = 1; i < N_RX_COMP_RINGS; i++) 3512 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3513 } 3514 } 3515 3516 /* Must be invoked under cp->lock. */ 3517 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3518 int *pause) 3519 { 3520 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3521 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3522 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3523 if (val & PCS_MII_LPA_ASYM_PAUSE) 3524 *pause |= 0x10; 3525 *spd = 1000; 3526 } 3527 3528 /* Must be invoked under cp->lock. */ 3529 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3530 int *pause) 3531 { 3532 u32 val; 3533 3534 *fd = 0; 3535 *spd = 10; 3536 *pause = 0; 3537 3538 /* use GMII registers */ 3539 val = cas_phy_read(cp, MII_LPA); 3540 if (val & CAS_LPA_PAUSE) 3541 *pause = 0x01; 3542 3543 if (val & CAS_LPA_ASYM_PAUSE) 3544 *pause |= 0x10; 3545 3546 if (val & LPA_DUPLEX) 3547 *fd = 1; 3548 if (val & LPA_100) 3549 *spd = 100; 3550 3551 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3552 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3553 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3554 *spd = 1000; 3555 if (val & CAS_LPA_1000FULL) 3556 *fd = 1; 3557 } 3558 } 3559 3560 /* A link-up condition has occurred, initialize and enable the 3561 * rest of the chip. 3562 * 3563 * Must be invoked under cp->lock. 3564 */ 3565 static void cas_set_link_modes(struct cas *cp) 3566 { 3567 u32 val; 3568 int full_duplex, speed, pause; 3569 3570 full_duplex = 0; 3571 speed = 10; 3572 pause = 0; 3573 3574 if (CAS_PHY_MII(cp->phy_type)) { 3575 cas_mif_poll(cp, 0); 3576 val = cas_phy_read(cp, MII_BMCR); 3577 if (val & BMCR_ANENABLE) { 3578 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3579 &pause); 3580 } else { 3581 if (val & BMCR_FULLDPLX) 3582 full_duplex = 1; 3583 3584 if (val & BMCR_SPEED100) 3585 speed = 100; 3586 else if (val & CAS_BMCR_SPEED1000) 3587 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3588 1000 : 100; 3589 } 3590 cas_mif_poll(cp, 1); 3591 3592 } else { 3593 val = readl(cp->regs + REG_PCS_MII_CTRL); 3594 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3595 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3596 if (val & PCS_MII_CTRL_DUPLEX) 3597 full_duplex = 1; 3598 } 3599 } 3600 3601 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3602 speed, full_duplex ? "full" : "half"); 3603 3604 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3605 if (CAS_PHY_MII(cp->phy_type)) { 3606 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3607 if (!full_duplex) 3608 val |= MAC_XIF_DISABLE_ECHO; 3609 } 3610 if (full_duplex) 3611 val |= MAC_XIF_FDPLX_LED; 3612 if (speed == 1000) 3613 val |= MAC_XIF_GMII_MODE; 3614 writel(val, cp->regs + REG_MAC_XIF_CFG); 3615 3616 /* deal with carrier and collision detect. */ 3617 val = MAC_TX_CFG_IPG_EN; 3618 if (full_duplex) { 3619 val |= MAC_TX_CFG_IGNORE_CARRIER; 3620 val |= MAC_TX_CFG_IGNORE_COLL; 3621 } else { 3622 #ifndef USE_CSMA_CD_PROTO 3623 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3624 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3625 #endif 3626 } 3627 /* val now set up for REG_MAC_TX_CFG */ 3628 3629 /* If gigabit and half-duplex, enable carrier extension 3630 * mode. increase slot time to 512 bytes as well. 3631 * else, disable it and make sure slot time is 64 bytes. 3632 * also activate checksum bug workaround 3633 */ 3634 if ((speed == 1000) && !full_duplex) { 3635 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3636 cp->regs + REG_MAC_TX_CFG); 3637 3638 val = readl(cp->regs + REG_MAC_RX_CFG); 3639 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3640 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3641 cp->regs + REG_MAC_RX_CFG); 3642 3643 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3644 3645 cp->crc_size = 4; 3646 /* minimum size gigabit frame at half duplex */ 3647 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3648 3649 } else { 3650 writel(val, cp->regs + REG_MAC_TX_CFG); 3651 3652 /* checksum bug workaround. don't strip FCS when in 3653 * half-duplex mode 3654 */ 3655 val = readl(cp->regs + REG_MAC_RX_CFG); 3656 if (full_duplex) { 3657 val |= MAC_RX_CFG_STRIP_FCS; 3658 cp->crc_size = 0; 3659 cp->min_frame_size = CAS_MIN_MTU; 3660 } else { 3661 val &= ~MAC_RX_CFG_STRIP_FCS; 3662 cp->crc_size = 4; 3663 cp->min_frame_size = CAS_MIN_FRAME; 3664 } 3665 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3666 cp->regs + REG_MAC_RX_CFG); 3667 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3668 } 3669 3670 if (netif_msg_link(cp)) { 3671 if (pause & 0x01) { 3672 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3673 cp->rx_fifo_size, 3674 cp->rx_pause_off, 3675 cp->rx_pause_on); 3676 } else if (pause & 0x10) { 3677 netdev_info(cp->dev, "TX pause enabled\n"); 3678 } else { 3679 netdev_info(cp->dev, "Pause is disabled\n"); 3680 } 3681 } 3682 3683 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3684 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3685 if (pause) { /* symmetric or asymmetric pause */ 3686 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3687 if (pause & 0x01) { /* symmetric pause */ 3688 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3689 } 3690 } 3691 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3692 cas_start_dma(cp); 3693 } 3694 3695 /* Must be invoked under cp->lock. */ 3696 static void cas_init_hw(struct cas *cp, int restart_link) 3697 { 3698 if (restart_link) 3699 cas_phy_init(cp); 3700 3701 cas_init_pause_thresholds(cp); 3702 cas_init_mac(cp); 3703 cas_init_dma(cp); 3704 3705 if (restart_link) { 3706 /* Default aneg parameters */ 3707 cp->timer_ticks = 0; 3708 cas_begin_auto_negotiation(cp, NULL); 3709 } else if (cp->lstate == link_up) { 3710 cas_set_link_modes(cp); 3711 netif_carrier_on(cp->dev); 3712 } 3713 } 3714 3715 /* Must be invoked under cp->lock. on earlier cassini boards, 3716 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3717 * let it settle out, and then restore pci state. 3718 */ 3719 static void cas_hard_reset(struct cas *cp) 3720 { 3721 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3722 udelay(20); 3723 pci_restore_state(cp->pdev); 3724 } 3725 3726 3727 static void cas_global_reset(struct cas *cp, int blkflag) 3728 { 3729 int limit; 3730 3731 /* issue a global reset. don't use RSTOUT. */ 3732 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3733 /* For PCS, when the blkflag is set, we should set the 3734 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3735 * the last autonegotiation from being cleared. We'll 3736 * need some special handling if the chip is set into a 3737 * loopback mode. 3738 */ 3739 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3740 cp->regs + REG_SW_RESET); 3741 } else { 3742 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3743 } 3744 3745 /* need to wait at least 3ms before polling register */ 3746 mdelay(3); 3747 3748 limit = STOP_TRIES; 3749 while (limit-- > 0) { 3750 u32 val = readl(cp->regs + REG_SW_RESET); 3751 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3752 goto done; 3753 udelay(10); 3754 } 3755 netdev_err(cp->dev, "sw reset failed\n"); 3756 3757 done: 3758 /* enable various BIM interrupts */ 3759 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3760 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3761 3762 /* clear out pci error status mask for handled errors. 3763 * we don't deal with DMA counter overflows as they happen 3764 * all the time. 3765 */ 3766 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3767 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3768 PCI_ERR_BIM_DMA_READ), cp->regs + 3769 REG_PCI_ERR_STATUS_MASK); 3770 3771 /* set up for MII by default to address mac rx reset timeout 3772 * issue 3773 */ 3774 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3775 } 3776 3777 static void cas_reset(struct cas *cp, int blkflag) 3778 { 3779 u32 val; 3780 3781 cas_mask_intr(cp); 3782 cas_global_reset(cp, blkflag); 3783 cas_mac_reset(cp); 3784 cas_entropy_reset(cp); 3785 3786 /* disable dma engines. */ 3787 val = readl(cp->regs + REG_TX_CFG); 3788 val &= ~TX_CFG_DMA_EN; 3789 writel(val, cp->regs + REG_TX_CFG); 3790 3791 val = readl(cp->regs + REG_RX_CFG); 3792 val &= ~RX_CFG_DMA_EN; 3793 writel(val, cp->regs + REG_RX_CFG); 3794 3795 /* program header parser */ 3796 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3797 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3798 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3799 } else { 3800 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3801 } 3802 3803 /* clear out error registers */ 3804 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3805 cas_clear_mac_err(cp); 3806 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3807 } 3808 3809 /* Shut down the chip, must be called with pm_mutex held. */ 3810 static void cas_shutdown(struct cas *cp) 3811 { 3812 unsigned long flags; 3813 3814 /* Make us not-running to avoid timers respawning */ 3815 cp->hw_running = 0; 3816 3817 del_timer_sync(&cp->link_timer); 3818 3819 /* Stop the reset task */ 3820 #if 0 3821 while (atomic_read(&cp->reset_task_pending_mtu) || 3822 atomic_read(&cp->reset_task_pending_spare) || 3823 atomic_read(&cp->reset_task_pending_all)) 3824 schedule(); 3825 3826 #else 3827 while (atomic_read(&cp->reset_task_pending)) 3828 schedule(); 3829 #endif 3830 /* Actually stop the chip */ 3831 cas_lock_all_save(cp, flags); 3832 cas_reset(cp, 0); 3833 if (cp->cas_flags & CAS_FLAG_SATURN) 3834 cas_phy_powerdown(cp); 3835 cas_unlock_all_restore(cp, flags); 3836 } 3837 3838 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3839 { 3840 struct cas *cp = netdev_priv(dev); 3841 3842 dev->mtu = new_mtu; 3843 if (!netif_running(dev) || !netif_device_present(dev)) 3844 return 0; 3845 3846 /* let the reset task handle it */ 3847 #if 1 3848 atomic_inc(&cp->reset_task_pending); 3849 if ((cp->phy_type & CAS_PHY_SERDES)) { 3850 atomic_inc(&cp->reset_task_pending_all); 3851 } else { 3852 atomic_inc(&cp->reset_task_pending_mtu); 3853 } 3854 schedule_work(&cp->reset_task); 3855 #else 3856 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3857 CAS_RESET_ALL : CAS_RESET_MTU); 3858 pr_err("reset called in cas_change_mtu\n"); 3859 schedule_work(&cp->reset_task); 3860 #endif 3861 3862 flush_work(&cp->reset_task); 3863 return 0; 3864 } 3865 3866 static void cas_clean_txd(struct cas *cp, int ring) 3867 { 3868 struct cas_tx_desc *txd = cp->init_txds[ring]; 3869 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3870 u64 daddr, dlen; 3871 int i, size; 3872 3873 size = TX_DESC_RINGN_SIZE(ring); 3874 for (i = 0; i < size; i++) { 3875 int frag; 3876 3877 if (skbs[i] == NULL) 3878 continue; 3879 3880 skb = skbs[i]; 3881 skbs[i] = NULL; 3882 3883 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3884 int ent = i & (size - 1); 3885 3886 /* first buffer is never a tiny buffer and so 3887 * needs to be unmapped. 3888 */ 3889 daddr = le64_to_cpu(txd[ent].buffer); 3890 dlen = CAS_VAL(TX_DESC_BUFLEN, 3891 le64_to_cpu(txd[ent].control)); 3892 dma_unmap_page(&cp->pdev->dev, daddr, dlen, 3893 DMA_TO_DEVICE); 3894 3895 if (frag != skb_shinfo(skb)->nr_frags) { 3896 i++; 3897 3898 /* next buffer might by a tiny buffer. 3899 * skip past it. 3900 */ 3901 ent = i & (size - 1); 3902 if (cp->tx_tiny_use[ring][ent].used) 3903 i++; 3904 } 3905 } 3906 dev_kfree_skb_any(skb); 3907 } 3908 3909 /* zero out tiny buf usage */ 3910 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3911 } 3912 3913 /* freed on close */ 3914 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3915 { 3916 cas_page_t **page = cp->rx_pages[ring]; 3917 int i, size; 3918 3919 size = RX_DESC_RINGN_SIZE(ring); 3920 for (i = 0; i < size; i++) { 3921 if (page[i]) { 3922 cas_page_free(cp, page[i]); 3923 page[i] = NULL; 3924 } 3925 } 3926 } 3927 3928 static void cas_free_rxds(struct cas *cp) 3929 { 3930 int i; 3931 3932 for (i = 0; i < N_RX_DESC_RINGS; i++) 3933 cas_free_rx_desc(cp, i); 3934 } 3935 3936 /* Must be invoked under cp->lock. */ 3937 static void cas_clean_rings(struct cas *cp) 3938 { 3939 int i; 3940 3941 /* need to clean all tx rings */ 3942 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3943 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3944 for (i = 0; i < N_TX_RINGS; i++) 3945 cas_clean_txd(cp, i); 3946 3947 /* zero out init block */ 3948 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3949 cas_clean_rxds(cp); 3950 cas_clean_rxcs(cp); 3951 } 3952 3953 /* allocated on open */ 3954 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3955 { 3956 cas_page_t **page = cp->rx_pages[ring]; 3957 int size, i = 0; 3958 3959 size = RX_DESC_RINGN_SIZE(ring); 3960 for (i = 0; i < size; i++) { 3961 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3962 return -1; 3963 } 3964 return 0; 3965 } 3966 3967 static int cas_alloc_rxds(struct cas *cp) 3968 { 3969 int i; 3970 3971 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3972 if (cas_alloc_rx_desc(cp, i) < 0) { 3973 cas_free_rxds(cp); 3974 return -1; 3975 } 3976 } 3977 return 0; 3978 } 3979 3980 static void cas_reset_task(struct work_struct *work) 3981 { 3982 struct cas *cp = container_of(work, struct cas, reset_task); 3983 #if 0 3984 int pending = atomic_read(&cp->reset_task_pending); 3985 #else 3986 int pending_all = atomic_read(&cp->reset_task_pending_all); 3987 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 3988 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 3989 3990 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 3991 /* We can have more tasks scheduled than actually 3992 * needed. 3993 */ 3994 atomic_dec(&cp->reset_task_pending); 3995 return; 3996 } 3997 #endif 3998 /* The link went down, we reset the ring, but keep 3999 * DMA stopped. Use this function for reset 4000 * on error as well. 4001 */ 4002 if (cp->hw_running) { 4003 unsigned long flags; 4004 4005 /* Make sure we don't get interrupts or tx packets */ 4006 netif_device_detach(cp->dev); 4007 cas_lock_all_save(cp, flags); 4008 4009 if (cp->opened) { 4010 /* We call cas_spare_recover when we call cas_open. 4011 * but we do not initialize the lists cas_spare_recover 4012 * uses until cas_open is called. 4013 */ 4014 cas_spare_recover(cp, GFP_ATOMIC); 4015 } 4016 #if 1 4017 /* test => only pending_spare set */ 4018 if (!pending_all && !pending_mtu) 4019 goto done; 4020 #else 4021 if (pending == CAS_RESET_SPARE) 4022 goto done; 4023 #endif 4024 /* when pending == CAS_RESET_ALL, the following 4025 * call to cas_init_hw will restart auto negotiation. 4026 * Setting the second argument of cas_reset to 4027 * !(pending == CAS_RESET_ALL) will set this argument 4028 * to 1 (avoiding reinitializing the PHY for the normal 4029 * PCS case) when auto negotiation is not restarted. 4030 */ 4031 #if 1 4032 cas_reset(cp, !(pending_all > 0)); 4033 if (cp->opened) 4034 cas_clean_rings(cp); 4035 cas_init_hw(cp, (pending_all > 0)); 4036 #else 4037 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4038 if (cp->opened) 4039 cas_clean_rings(cp); 4040 cas_init_hw(cp, pending == CAS_RESET_ALL); 4041 #endif 4042 4043 done: 4044 cas_unlock_all_restore(cp, flags); 4045 netif_device_attach(cp->dev); 4046 } 4047 #if 1 4048 atomic_sub(pending_all, &cp->reset_task_pending_all); 4049 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4050 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4051 atomic_dec(&cp->reset_task_pending); 4052 #else 4053 atomic_set(&cp->reset_task_pending, 0); 4054 #endif 4055 } 4056 4057 static void cas_link_timer(struct timer_list *t) 4058 { 4059 struct cas *cp = from_timer(cp, t, link_timer); 4060 int mask, pending = 0, reset = 0; 4061 unsigned long flags; 4062 4063 if (link_transition_timeout != 0 && 4064 cp->link_transition_jiffies_valid && 4065 ((jiffies - cp->link_transition_jiffies) > 4066 (link_transition_timeout))) { 4067 /* One-second counter so link-down workaround doesn't 4068 * cause resets to occur so fast as to fool the switch 4069 * into thinking the link is down. 4070 */ 4071 cp->link_transition_jiffies_valid = 0; 4072 } 4073 4074 if (!cp->hw_running) 4075 return; 4076 4077 spin_lock_irqsave(&cp->lock, flags); 4078 cas_lock_tx(cp); 4079 cas_entropy_gather(cp); 4080 4081 /* If the link task is still pending, we just 4082 * reschedule the link timer 4083 */ 4084 #if 1 4085 if (atomic_read(&cp->reset_task_pending_all) || 4086 atomic_read(&cp->reset_task_pending_spare) || 4087 atomic_read(&cp->reset_task_pending_mtu)) 4088 goto done; 4089 #else 4090 if (atomic_read(&cp->reset_task_pending)) 4091 goto done; 4092 #endif 4093 4094 /* check for rx cleaning */ 4095 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4096 int i, rmask; 4097 4098 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4099 rmask = CAS_FLAG_RXD_POST(i); 4100 if ((mask & rmask) == 0) 4101 continue; 4102 4103 /* post_rxds will do a mod_timer */ 4104 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4105 pending = 1; 4106 continue; 4107 } 4108 cp->cas_flags &= ~rmask; 4109 } 4110 } 4111 4112 if (CAS_PHY_MII(cp->phy_type)) { 4113 u16 bmsr; 4114 cas_mif_poll(cp, 0); 4115 bmsr = cas_phy_read(cp, MII_BMSR); 4116 /* WTZ: Solaris driver reads this twice, but that 4117 * may be due to the PCS case and the use of a 4118 * common implementation. Read it twice here to be 4119 * safe. 4120 */ 4121 bmsr = cas_phy_read(cp, MII_BMSR); 4122 cas_mif_poll(cp, 1); 4123 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4124 reset = cas_mii_link_check(cp, bmsr); 4125 } else { 4126 reset = cas_pcs_link_check(cp); 4127 } 4128 4129 if (reset) 4130 goto done; 4131 4132 /* check for tx state machine confusion */ 4133 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4134 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4135 u32 wptr, rptr; 4136 int tlm = CAS_VAL(MAC_SM_TLM, val); 4137 4138 if (((tlm == 0x5) || (tlm == 0x3)) && 4139 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4140 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4141 "tx err: MAC_STATE[%08x]\n", val); 4142 reset = 1; 4143 goto done; 4144 } 4145 4146 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4147 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4148 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4149 if ((val == 0) && (wptr != rptr)) { 4150 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4151 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4152 val, wptr, rptr); 4153 reset = 1; 4154 } 4155 4156 if (reset) 4157 cas_hard_reset(cp); 4158 } 4159 4160 done: 4161 if (reset) { 4162 #if 1 4163 atomic_inc(&cp->reset_task_pending); 4164 atomic_inc(&cp->reset_task_pending_all); 4165 schedule_work(&cp->reset_task); 4166 #else 4167 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4168 pr_err("reset called in cas_link_timer\n"); 4169 schedule_work(&cp->reset_task); 4170 #endif 4171 } 4172 4173 if (!pending) 4174 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4175 cas_unlock_tx(cp); 4176 spin_unlock_irqrestore(&cp->lock, flags); 4177 } 4178 4179 /* tiny buffers are used to avoid target abort issues with 4180 * older cassini's 4181 */ 4182 static void cas_tx_tiny_free(struct cas *cp) 4183 { 4184 struct pci_dev *pdev = cp->pdev; 4185 int i; 4186 4187 for (i = 0; i < N_TX_RINGS; i++) { 4188 if (!cp->tx_tiny_bufs[i]) 4189 continue; 4190 4191 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK, 4192 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]); 4193 cp->tx_tiny_bufs[i] = NULL; 4194 } 4195 } 4196 4197 static int cas_tx_tiny_alloc(struct cas *cp) 4198 { 4199 struct pci_dev *pdev = cp->pdev; 4200 int i; 4201 4202 for (i = 0; i < N_TX_RINGS; i++) { 4203 cp->tx_tiny_bufs[i] = 4204 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK, 4205 &cp->tx_tiny_dvma[i], GFP_KERNEL); 4206 if (!cp->tx_tiny_bufs[i]) { 4207 cas_tx_tiny_free(cp); 4208 return -1; 4209 } 4210 } 4211 return 0; 4212 } 4213 4214 4215 static int cas_open(struct net_device *dev) 4216 { 4217 struct cas *cp = netdev_priv(dev); 4218 int hw_was_up, err; 4219 unsigned long flags; 4220 4221 mutex_lock(&cp->pm_mutex); 4222 4223 hw_was_up = cp->hw_running; 4224 4225 /* The power-management mutex protects the hw_running 4226 * etc. state so it is safe to do this bit without cp->lock 4227 */ 4228 if (!cp->hw_running) { 4229 /* Reset the chip */ 4230 cas_lock_all_save(cp, flags); 4231 /* We set the second arg to cas_reset to zero 4232 * because cas_init_hw below will have its second 4233 * argument set to non-zero, which will force 4234 * autonegotiation to start. 4235 */ 4236 cas_reset(cp, 0); 4237 cp->hw_running = 1; 4238 cas_unlock_all_restore(cp, flags); 4239 } 4240 4241 err = -ENOMEM; 4242 if (cas_tx_tiny_alloc(cp) < 0) 4243 goto err_unlock; 4244 4245 /* alloc rx descriptors */ 4246 if (cas_alloc_rxds(cp) < 0) 4247 goto err_tx_tiny; 4248 4249 /* allocate spares */ 4250 cas_spare_init(cp); 4251 cas_spare_recover(cp, GFP_KERNEL); 4252 4253 /* We can now request the interrupt as we know it's masked 4254 * on the controller. cassini+ has up to 4 interrupts 4255 * that can be used, but you need to do explicit pci interrupt 4256 * mapping to expose them 4257 */ 4258 if (request_irq(cp->pdev->irq, cas_interrupt, 4259 IRQF_SHARED, dev->name, (void *) dev)) { 4260 netdev_err(cp->dev, "failed to request irq !\n"); 4261 err = -EAGAIN; 4262 goto err_spare; 4263 } 4264 4265 #ifdef USE_NAPI 4266 napi_enable(&cp->napi); 4267 #endif 4268 /* init hw */ 4269 cas_lock_all_save(cp, flags); 4270 cas_clean_rings(cp); 4271 cas_init_hw(cp, !hw_was_up); 4272 cp->opened = 1; 4273 cas_unlock_all_restore(cp, flags); 4274 4275 netif_start_queue(dev); 4276 mutex_unlock(&cp->pm_mutex); 4277 return 0; 4278 4279 err_spare: 4280 cas_spare_free(cp); 4281 cas_free_rxds(cp); 4282 err_tx_tiny: 4283 cas_tx_tiny_free(cp); 4284 err_unlock: 4285 mutex_unlock(&cp->pm_mutex); 4286 return err; 4287 } 4288 4289 static int cas_close(struct net_device *dev) 4290 { 4291 unsigned long flags; 4292 struct cas *cp = netdev_priv(dev); 4293 4294 #ifdef USE_NAPI 4295 napi_disable(&cp->napi); 4296 #endif 4297 /* Make sure we don't get distracted by suspend/resume */ 4298 mutex_lock(&cp->pm_mutex); 4299 4300 netif_stop_queue(dev); 4301 4302 /* Stop traffic, mark us closed */ 4303 cas_lock_all_save(cp, flags); 4304 cp->opened = 0; 4305 cas_reset(cp, 0); 4306 cas_phy_init(cp); 4307 cas_begin_auto_negotiation(cp, NULL); 4308 cas_clean_rings(cp); 4309 cas_unlock_all_restore(cp, flags); 4310 4311 free_irq(cp->pdev->irq, (void *) dev); 4312 cas_spare_free(cp); 4313 cas_free_rxds(cp); 4314 cas_tx_tiny_free(cp); 4315 mutex_unlock(&cp->pm_mutex); 4316 return 0; 4317 } 4318 4319 static struct { 4320 const char name[ETH_GSTRING_LEN]; 4321 } ethtool_cassini_statnames[] = { 4322 {"collisions"}, 4323 {"rx_bytes"}, 4324 {"rx_crc_errors"}, 4325 {"rx_dropped"}, 4326 {"rx_errors"}, 4327 {"rx_fifo_errors"}, 4328 {"rx_frame_errors"}, 4329 {"rx_length_errors"}, 4330 {"rx_over_errors"}, 4331 {"rx_packets"}, 4332 {"tx_aborted_errors"}, 4333 {"tx_bytes"}, 4334 {"tx_dropped"}, 4335 {"tx_errors"}, 4336 {"tx_fifo_errors"}, 4337 {"tx_packets"} 4338 }; 4339 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4340 4341 static struct { 4342 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4343 } ethtool_register_table[] = { 4344 {-MII_BMSR}, 4345 {-MII_BMCR}, 4346 {REG_CAWR}, 4347 {REG_INF_BURST}, 4348 {REG_BIM_CFG}, 4349 {REG_RX_CFG}, 4350 {REG_HP_CFG}, 4351 {REG_MAC_TX_CFG}, 4352 {REG_MAC_RX_CFG}, 4353 {REG_MAC_CTRL_CFG}, 4354 {REG_MAC_XIF_CFG}, 4355 {REG_MIF_CFG}, 4356 {REG_PCS_CFG}, 4357 {REG_SATURN_PCFG}, 4358 {REG_PCS_MII_STATUS}, 4359 {REG_PCS_STATE_MACHINE}, 4360 {REG_MAC_COLL_EXCESS}, 4361 {REG_MAC_COLL_LATE} 4362 }; 4363 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4364 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4365 4366 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4367 { 4368 u8 *p; 4369 int i; 4370 unsigned long flags; 4371 4372 spin_lock_irqsave(&cp->lock, flags); 4373 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4374 u16 hval; 4375 u32 val; 4376 if (ethtool_register_table[i].offsets < 0) { 4377 hval = cas_phy_read(cp, 4378 -ethtool_register_table[i].offsets); 4379 val = hval; 4380 } else { 4381 val= readl(cp->regs+ethtool_register_table[i].offsets); 4382 } 4383 memcpy(p, (u8 *)&val, sizeof(u32)); 4384 } 4385 spin_unlock_irqrestore(&cp->lock, flags); 4386 } 4387 4388 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4389 { 4390 struct cas *cp = netdev_priv(dev); 4391 struct net_device_stats *stats = cp->net_stats; 4392 unsigned long flags; 4393 int i; 4394 unsigned long tmp; 4395 4396 /* we collate all of the stats into net_stats[N_TX_RING] */ 4397 if (!cp->hw_running) 4398 return stats + N_TX_RINGS; 4399 4400 /* collect outstanding stats */ 4401 /* WTZ: the Cassini spec gives these as 16 bit counters but 4402 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4403 * in case the chip somehow puts any garbage in the other bits. 4404 * Also, counter usage didn't seem to mach what Adrian did 4405 * in the parts of the code that set these quantities. Made 4406 * that consistent. 4407 */ 4408 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4409 stats[N_TX_RINGS].rx_crc_errors += 4410 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4411 stats[N_TX_RINGS].rx_frame_errors += 4412 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4413 stats[N_TX_RINGS].rx_length_errors += 4414 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4415 #if 1 4416 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4417 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4418 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4419 stats[N_TX_RINGS].collisions += 4420 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4421 #else 4422 stats[N_TX_RINGS].tx_aborted_errors += 4423 readl(cp->regs + REG_MAC_COLL_EXCESS); 4424 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4425 readl(cp->regs + REG_MAC_COLL_LATE); 4426 #endif 4427 cas_clear_mac_err(cp); 4428 4429 /* saved bits that are unique to ring 0 */ 4430 spin_lock(&cp->stat_lock[0]); 4431 stats[N_TX_RINGS].collisions += stats[0].collisions; 4432 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4433 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4434 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4435 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4436 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4437 spin_unlock(&cp->stat_lock[0]); 4438 4439 for (i = 0; i < N_TX_RINGS; i++) { 4440 spin_lock(&cp->stat_lock[i]); 4441 stats[N_TX_RINGS].rx_length_errors += 4442 stats[i].rx_length_errors; 4443 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4444 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4445 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4446 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4447 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4448 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4449 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4450 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4451 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4452 memset(stats + i, 0, sizeof(struct net_device_stats)); 4453 spin_unlock(&cp->stat_lock[i]); 4454 } 4455 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4456 return stats + N_TX_RINGS; 4457 } 4458 4459 4460 static void cas_set_multicast(struct net_device *dev) 4461 { 4462 struct cas *cp = netdev_priv(dev); 4463 u32 rxcfg, rxcfg_new; 4464 unsigned long flags; 4465 int limit = STOP_TRIES; 4466 4467 if (!cp->hw_running) 4468 return; 4469 4470 spin_lock_irqsave(&cp->lock, flags); 4471 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4472 4473 /* disable RX MAC and wait for completion */ 4474 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4475 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4476 if (!limit--) 4477 break; 4478 udelay(10); 4479 } 4480 4481 /* disable hash filter and wait for completion */ 4482 limit = STOP_TRIES; 4483 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4484 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4485 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4486 if (!limit--) 4487 break; 4488 udelay(10); 4489 } 4490 4491 /* program hash filters */ 4492 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4493 rxcfg |= rxcfg_new; 4494 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4495 spin_unlock_irqrestore(&cp->lock, flags); 4496 } 4497 4498 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4499 { 4500 struct cas *cp = netdev_priv(dev); 4501 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4502 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4503 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4504 } 4505 4506 static int cas_get_link_ksettings(struct net_device *dev, 4507 struct ethtool_link_ksettings *cmd) 4508 { 4509 struct cas *cp = netdev_priv(dev); 4510 u16 bmcr; 4511 int full_duplex, speed, pause; 4512 unsigned long flags; 4513 enum link_state linkstate = link_up; 4514 u32 supported, advertising; 4515 4516 advertising = 0; 4517 supported = SUPPORTED_Autoneg; 4518 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4519 supported |= SUPPORTED_1000baseT_Full; 4520 advertising |= ADVERTISED_1000baseT_Full; 4521 } 4522 4523 /* Record PHY settings if HW is on. */ 4524 spin_lock_irqsave(&cp->lock, flags); 4525 bmcr = 0; 4526 linkstate = cp->lstate; 4527 if (CAS_PHY_MII(cp->phy_type)) { 4528 cmd->base.port = PORT_MII; 4529 cmd->base.phy_address = cp->phy_addr; 4530 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4531 ADVERTISED_10baseT_Half | 4532 ADVERTISED_10baseT_Full | 4533 ADVERTISED_100baseT_Half | 4534 ADVERTISED_100baseT_Full; 4535 4536 supported |= 4537 (SUPPORTED_10baseT_Half | 4538 SUPPORTED_10baseT_Full | 4539 SUPPORTED_100baseT_Half | 4540 SUPPORTED_100baseT_Full | 4541 SUPPORTED_TP | SUPPORTED_MII); 4542 4543 if (cp->hw_running) { 4544 cas_mif_poll(cp, 0); 4545 bmcr = cas_phy_read(cp, MII_BMCR); 4546 cas_read_mii_link_mode(cp, &full_duplex, 4547 &speed, &pause); 4548 cas_mif_poll(cp, 1); 4549 } 4550 4551 } else { 4552 cmd->base.port = PORT_FIBRE; 4553 cmd->base.phy_address = 0; 4554 supported |= SUPPORTED_FIBRE; 4555 advertising |= ADVERTISED_FIBRE; 4556 4557 if (cp->hw_running) { 4558 /* pcs uses the same bits as mii */ 4559 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4560 cas_read_pcs_link_mode(cp, &full_duplex, 4561 &speed, &pause); 4562 } 4563 } 4564 spin_unlock_irqrestore(&cp->lock, flags); 4565 4566 if (bmcr & BMCR_ANENABLE) { 4567 advertising |= ADVERTISED_Autoneg; 4568 cmd->base.autoneg = AUTONEG_ENABLE; 4569 cmd->base.speed = ((speed == 10) ? 4570 SPEED_10 : 4571 ((speed == 1000) ? 4572 SPEED_1000 : SPEED_100)); 4573 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4574 } else { 4575 cmd->base.autoneg = AUTONEG_DISABLE; 4576 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4577 SPEED_1000 : 4578 ((bmcr & BMCR_SPEED100) ? 4579 SPEED_100 : SPEED_10)); 4580 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4581 DUPLEX_FULL : DUPLEX_HALF; 4582 } 4583 if (linkstate != link_up) { 4584 /* Force these to "unknown" if the link is not up and 4585 * autonogotiation in enabled. We can set the link 4586 * speed to 0, but not cmd->duplex, 4587 * because its legal values are 0 and 1. Ethtool will 4588 * print the value reported in parentheses after the 4589 * word "Unknown" for unrecognized values. 4590 * 4591 * If in forced mode, we report the speed and duplex 4592 * settings that we configured. 4593 */ 4594 if (cp->link_cntl & BMCR_ANENABLE) { 4595 cmd->base.speed = 0; 4596 cmd->base.duplex = 0xff; 4597 } else { 4598 cmd->base.speed = SPEED_10; 4599 if (cp->link_cntl & BMCR_SPEED100) { 4600 cmd->base.speed = SPEED_100; 4601 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4602 cmd->base.speed = SPEED_1000; 4603 } 4604 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4605 DUPLEX_FULL : DUPLEX_HALF; 4606 } 4607 } 4608 4609 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4610 supported); 4611 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4612 advertising); 4613 4614 return 0; 4615 } 4616 4617 static int cas_set_link_ksettings(struct net_device *dev, 4618 const struct ethtool_link_ksettings *cmd) 4619 { 4620 struct cas *cp = netdev_priv(dev); 4621 unsigned long flags; 4622 u32 speed = cmd->base.speed; 4623 4624 /* Verify the settings we care about. */ 4625 if (cmd->base.autoneg != AUTONEG_ENABLE && 4626 cmd->base.autoneg != AUTONEG_DISABLE) 4627 return -EINVAL; 4628 4629 if (cmd->base.autoneg == AUTONEG_DISABLE && 4630 ((speed != SPEED_1000 && 4631 speed != SPEED_100 && 4632 speed != SPEED_10) || 4633 (cmd->base.duplex != DUPLEX_HALF && 4634 cmd->base.duplex != DUPLEX_FULL))) 4635 return -EINVAL; 4636 4637 /* Apply settings and restart link process. */ 4638 spin_lock_irqsave(&cp->lock, flags); 4639 cas_begin_auto_negotiation(cp, cmd); 4640 spin_unlock_irqrestore(&cp->lock, flags); 4641 return 0; 4642 } 4643 4644 static int cas_nway_reset(struct net_device *dev) 4645 { 4646 struct cas *cp = netdev_priv(dev); 4647 unsigned long flags; 4648 4649 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4650 return -EINVAL; 4651 4652 /* Restart link process. */ 4653 spin_lock_irqsave(&cp->lock, flags); 4654 cas_begin_auto_negotiation(cp, NULL); 4655 spin_unlock_irqrestore(&cp->lock, flags); 4656 4657 return 0; 4658 } 4659 4660 static u32 cas_get_link(struct net_device *dev) 4661 { 4662 struct cas *cp = netdev_priv(dev); 4663 return cp->lstate == link_up; 4664 } 4665 4666 static u32 cas_get_msglevel(struct net_device *dev) 4667 { 4668 struct cas *cp = netdev_priv(dev); 4669 return cp->msg_enable; 4670 } 4671 4672 static void cas_set_msglevel(struct net_device *dev, u32 value) 4673 { 4674 struct cas *cp = netdev_priv(dev); 4675 cp->msg_enable = value; 4676 } 4677 4678 static int cas_get_regs_len(struct net_device *dev) 4679 { 4680 struct cas *cp = netdev_priv(dev); 4681 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4682 } 4683 4684 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4685 void *p) 4686 { 4687 struct cas *cp = netdev_priv(dev); 4688 regs->version = 0; 4689 /* cas_read_regs handles locks (cp->lock). */ 4690 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4691 } 4692 4693 static int cas_get_sset_count(struct net_device *dev, int sset) 4694 { 4695 switch (sset) { 4696 case ETH_SS_STATS: 4697 return CAS_NUM_STAT_KEYS; 4698 default: 4699 return -EOPNOTSUPP; 4700 } 4701 } 4702 4703 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4704 { 4705 memcpy(data, ðtool_cassini_statnames, 4706 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4707 } 4708 4709 static void cas_get_ethtool_stats(struct net_device *dev, 4710 struct ethtool_stats *estats, u64 *data) 4711 { 4712 struct cas *cp = netdev_priv(dev); 4713 struct net_device_stats *stats = cas_get_stats(cp->dev); 4714 int i = 0; 4715 data[i++] = stats->collisions; 4716 data[i++] = stats->rx_bytes; 4717 data[i++] = stats->rx_crc_errors; 4718 data[i++] = stats->rx_dropped; 4719 data[i++] = stats->rx_errors; 4720 data[i++] = stats->rx_fifo_errors; 4721 data[i++] = stats->rx_frame_errors; 4722 data[i++] = stats->rx_length_errors; 4723 data[i++] = stats->rx_over_errors; 4724 data[i++] = stats->rx_packets; 4725 data[i++] = stats->tx_aborted_errors; 4726 data[i++] = stats->tx_bytes; 4727 data[i++] = stats->tx_dropped; 4728 data[i++] = stats->tx_errors; 4729 data[i++] = stats->tx_fifo_errors; 4730 data[i++] = stats->tx_packets; 4731 BUG_ON(i != CAS_NUM_STAT_KEYS); 4732 } 4733 4734 static const struct ethtool_ops cas_ethtool_ops = { 4735 .get_drvinfo = cas_get_drvinfo, 4736 .nway_reset = cas_nway_reset, 4737 .get_link = cas_get_link, 4738 .get_msglevel = cas_get_msglevel, 4739 .set_msglevel = cas_set_msglevel, 4740 .get_regs_len = cas_get_regs_len, 4741 .get_regs = cas_get_regs, 4742 .get_sset_count = cas_get_sset_count, 4743 .get_strings = cas_get_strings, 4744 .get_ethtool_stats = cas_get_ethtool_stats, 4745 .get_link_ksettings = cas_get_link_ksettings, 4746 .set_link_ksettings = cas_set_link_ksettings, 4747 }; 4748 4749 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4750 { 4751 struct cas *cp = netdev_priv(dev); 4752 struct mii_ioctl_data *data = if_mii(ifr); 4753 unsigned long flags; 4754 int rc = -EOPNOTSUPP; 4755 4756 /* Hold the PM mutex while doing ioctl's or we may collide 4757 * with open/close and power management and oops. 4758 */ 4759 mutex_lock(&cp->pm_mutex); 4760 switch (cmd) { 4761 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4762 data->phy_id = cp->phy_addr; 4763 fallthrough; 4764 4765 case SIOCGMIIREG: /* Read MII PHY register. */ 4766 spin_lock_irqsave(&cp->lock, flags); 4767 cas_mif_poll(cp, 0); 4768 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4769 cas_mif_poll(cp, 1); 4770 spin_unlock_irqrestore(&cp->lock, flags); 4771 rc = 0; 4772 break; 4773 4774 case SIOCSMIIREG: /* Write MII PHY register. */ 4775 spin_lock_irqsave(&cp->lock, flags); 4776 cas_mif_poll(cp, 0); 4777 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4778 cas_mif_poll(cp, 1); 4779 spin_unlock_irqrestore(&cp->lock, flags); 4780 break; 4781 default: 4782 break; 4783 } 4784 4785 mutex_unlock(&cp->pm_mutex); 4786 return rc; 4787 } 4788 4789 /* When this chip sits underneath an Intel 31154 bridge, it is the 4790 * only subordinate device and we can tweak the bridge settings to 4791 * reflect that fact. 4792 */ 4793 static void cas_program_bridge(struct pci_dev *cas_pdev) 4794 { 4795 struct pci_dev *pdev = cas_pdev->bus->self; 4796 u32 val; 4797 4798 if (!pdev) 4799 return; 4800 4801 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4802 return; 4803 4804 /* Clear bit 10 (Bus Parking Control) in the Secondary 4805 * Arbiter Control/Status Register which lives at offset 4806 * 0x41. Using a 32-bit word read/modify/write at 0x40 4807 * is much simpler so that's how we do this. 4808 */ 4809 pci_read_config_dword(pdev, 0x40, &val); 4810 val &= ~0x00040000; 4811 pci_write_config_dword(pdev, 0x40, val); 4812 4813 /* Max out the Multi-Transaction Timer settings since 4814 * Cassini is the only device present. 4815 * 4816 * The register is 16-bit and lives at 0x50. When the 4817 * settings are enabled, it extends the GRANT# signal 4818 * for a requestor after a transaction is complete. This 4819 * allows the next request to run without first needing 4820 * to negotiate the GRANT# signal back. 4821 * 4822 * Bits 12:10 define the grant duration: 4823 * 4824 * 1 -- 16 clocks 4825 * 2 -- 32 clocks 4826 * 3 -- 64 clocks 4827 * 4 -- 128 clocks 4828 * 5 -- 256 clocks 4829 * 4830 * All other values are illegal. 4831 * 4832 * Bits 09:00 define which REQ/GNT signal pairs get the 4833 * GRANT# signal treatment. We set them all. 4834 */ 4835 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4836 4837 /* The Read Prefecth Policy register is 16-bit and sits at 4838 * offset 0x52. It enables a "smart" pre-fetch policy. We 4839 * enable it and max out all of the settings since only one 4840 * device is sitting underneath and thus bandwidth sharing is 4841 * not an issue. 4842 * 4843 * The register has several 3 bit fields, which indicates a 4844 * multiplier applied to the base amount of prefetching the 4845 * chip would do. These fields are at: 4846 * 4847 * 15:13 --- ReRead Primary Bus 4848 * 12:10 --- FirstRead Primary Bus 4849 * 09:07 --- ReRead Secondary Bus 4850 * 06:04 --- FirstRead Secondary Bus 4851 * 4852 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4853 * get enabled on. Bit 3 is a grouped enabler which controls 4854 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4855 * the individual REQ/GNT pairs [2:0]. 4856 */ 4857 pci_write_config_word(pdev, 0x52, 4858 (0x7 << 13) | 4859 (0x7 << 10) | 4860 (0x7 << 7) | 4861 (0x7 << 4) | 4862 (0xf << 0)); 4863 4864 /* Force cacheline size to 0x8 */ 4865 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4866 4867 /* Force latency timer to maximum setting so Cassini can 4868 * sit on the bus as long as it likes. 4869 */ 4870 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4871 } 4872 4873 static const struct net_device_ops cas_netdev_ops = { 4874 .ndo_open = cas_open, 4875 .ndo_stop = cas_close, 4876 .ndo_start_xmit = cas_start_xmit, 4877 .ndo_get_stats = cas_get_stats, 4878 .ndo_set_rx_mode = cas_set_multicast, 4879 .ndo_do_ioctl = cas_ioctl, 4880 .ndo_tx_timeout = cas_tx_timeout, 4881 .ndo_change_mtu = cas_change_mtu, 4882 .ndo_set_mac_address = eth_mac_addr, 4883 .ndo_validate_addr = eth_validate_addr, 4884 #ifdef CONFIG_NET_POLL_CONTROLLER 4885 .ndo_poll_controller = cas_netpoll, 4886 #endif 4887 }; 4888 4889 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4890 { 4891 static int cas_version_printed = 0; 4892 unsigned long casreg_len; 4893 struct net_device *dev; 4894 struct cas *cp; 4895 int i, err, pci_using_dac; 4896 u16 pci_cmd; 4897 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4898 4899 if (cas_version_printed++ == 0) 4900 pr_info("%s", version); 4901 4902 err = pci_enable_device(pdev); 4903 if (err) { 4904 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4905 return err; 4906 } 4907 4908 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4909 dev_err(&pdev->dev, "Cannot find proper PCI device " 4910 "base address, aborting\n"); 4911 err = -ENODEV; 4912 goto err_out_disable_pdev; 4913 } 4914 4915 dev = alloc_etherdev(sizeof(*cp)); 4916 if (!dev) { 4917 err = -ENOMEM; 4918 goto err_out_disable_pdev; 4919 } 4920 SET_NETDEV_DEV(dev, &pdev->dev); 4921 4922 err = pci_request_regions(pdev, dev->name); 4923 if (err) { 4924 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4925 goto err_out_free_netdev; 4926 } 4927 pci_set_master(pdev); 4928 4929 /* we must always turn on parity response or else parity 4930 * doesn't get generated properly. disable SERR/PERR as well. 4931 * in addition, we want to turn MWI on. 4932 */ 4933 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4934 pci_cmd &= ~PCI_COMMAND_SERR; 4935 pci_cmd |= PCI_COMMAND_PARITY; 4936 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4937 if (pci_try_set_mwi(pdev)) 4938 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4939 4940 cas_program_bridge(pdev); 4941 4942 /* 4943 * On some architectures, the default cache line size set 4944 * by pci_try_set_mwi reduces perforamnce. We have to increase 4945 * it for this case. To start, we'll print some configuration 4946 * data. 4947 */ 4948 #if 1 4949 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4950 &orig_cacheline_size); 4951 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4952 cas_cacheline_size = 4953 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4954 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4955 if (pci_write_config_byte(pdev, 4956 PCI_CACHE_LINE_SIZE, 4957 cas_cacheline_size)) { 4958 dev_err(&pdev->dev, "Could not set PCI cache " 4959 "line size\n"); 4960 goto err_out_free_res; 4961 } 4962 } 4963 #endif 4964 4965 4966 /* Configure DMA attributes. */ 4967 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 4968 pci_using_dac = 1; 4969 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 4970 if (err < 0) { 4971 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4972 "for consistent allocations\n"); 4973 goto err_out_free_res; 4974 } 4975 4976 } else { 4977 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 4978 if (err) { 4979 dev_err(&pdev->dev, "No usable DMA configuration, " 4980 "aborting\n"); 4981 goto err_out_free_res; 4982 } 4983 pci_using_dac = 0; 4984 } 4985 4986 casreg_len = pci_resource_len(pdev, 0); 4987 4988 cp = netdev_priv(dev); 4989 cp->pdev = pdev; 4990 #if 1 4991 /* A value of 0 indicates we never explicitly set it */ 4992 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 4993 #endif 4994 cp->dev = dev; 4995 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 4996 cassini_debug; 4997 4998 #if defined(CONFIG_SPARC) 4999 cp->of_node = pci_device_to_OF_node(pdev); 5000 #endif 5001 5002 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5003 cp->link_transition_jiffies_valid = 0; 5004 5005 spin_lock_init(&cp->lock); 5006 spin_lock_init(&cp->rx_inuse_lock); 5007 spin_lock_init(&cp->rx_spare_lock); 5008 for (i = 0; i < N_TX_RINGS; i++) { 5009 spin_lock_init(&cp->stat_lock[i]); 5010 spin_lock_init(&cp->tx_lock[i]); 5011 } 5012 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5013 mutex_init(&cp->pm_mutex); 5014 5015 timer_setup(&cp->link_timer, cas_link_timer, 0); 5016 5017 #if 1 5018 /* Just in case the implementation of atomic operations 5019 * change so that an explicit initialization is necessary. 5020 */ 5021 atomic_set(&cp->reset_task_pending, 0); 5022 atomic_set(&cp->reset_task_pending_all, 0); 5023 atomic_set(&cp->reset_task_pending_spare, 0); 5024 atomic_set(&cp->reset_task_pending_mtu, 0); 5025 #endif 5026 INIT_WORK(&cp->reset_task, cas_reset_task); 5027 5028 /* Default link parameters */ 5029 if (link_mode >= 0 && link_mode < 6) 5030 cp->link_cntl = link_modes[link_mode]; 5031 else 5032 cp->link_cntl = BMCR_ANENABLE; 5033 cp->lstate = link_down; 5034 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5035 netif_carrier_off(cp->dev); 5036 cp->timer_ticks = 0; 5037 5038 /* give us access to cassini registers */ 5039 cp->regs = pci_iomap(pdev, 0, casreg_len); 5040 if (!cp->regs) { 5041 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5042 goto err_out_free_res; 5043 } 5044 cp->casreg_len = casreg_len; 5045 5046 pci_save_state(pdev); 5047 cas_check_pci_invariants(cp); 5048 cas_hard_reset(cp); 5049 cas_reset(cp, 0); 5050 if (cas_check_invariants(cp)) 5051 goto err_out_iounmap; 5052 if (cp->cas_flags & CAS_FLAG_SATURN) 5053 cas_saturn_firmware_init(cp); 5054 5055 cp->init_block = 5056 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block), 5057 &cp->block_dvma, GFP_KERNEL); 5058 if (!cp->init_block) { 5059 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5060 goto err_out_iounmap; 5061 } 5062 5063 for (i = 0; i < N_TX_RINGS; i++) 5064 cp->init_txds[i] = cp->init_block->txds[i]; 5065 5066 for (i = 0; i < N_RX_DESC_RINGS; i++) 5067 cp->init_rxds[i] = cp->init_block->rxds[i]; 5068 5069 for (i = 0; i < N_RX_COMP_RINGS; i++) 5070 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5071 5072 for (i = 0; i < N_RX_FLOWS; i++) 5073 skb_queue_head_init(&cp->rx_flows[i]); 5074 5075 dev->netdev_ops = &cas_netdev_ops; 5076 dev->ethtool_ops = &cas_ethtool_ops; 5077 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5078 5079 #ifdef USE_NAPI 5080 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5081 #endif 5082 dev->irq = pdev->irq; 5083 dev->dma = 0; 5084 5085 /* Cassini features. */ 5086 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5087 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5088 5089 if (pci_using_dac) 5090 dev->features |= NETIF_F_HIGHDMA; 5091 5092 /* MTU range: 60 - varies or 9000 */ 5093 dev->min_mtu = CAS_MIN_MTU; 5094 dev->max_mtu = CAS_MAX_MTU; 5095 5096 if (register_netdev(dev)) { 5097 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5098 goto err_out_free_consistent; 5099 } 5100 5101 i = readl(cp->regs + REG_BIM_CFG); 5102 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5103 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5104 (i & BIM_CFG_32BIT) ? "32" : "64", 5105 (i & BIM_CFG_66MHZ) ? "66" : "33", 5106 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5107 dev->dev_addr); 5108 5109 pci_set_drvdata(pdev, dev); 5110 cp->hw_running = 1; 5111 cas_entropy_reset(cp); 5112 cas_phy_init(cp); 5113 cas_begin_auto_negotiation(cp, NULL); 5114 return 0; 5115 5116 err_out_free_consistent: 5117 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block), 5118 cp->init_block, cp->block_dvma); 5119 5120 err_out_iounmap: 5121 mutex_lock(&cp->pm_mutex); 5122 if (cp->hw_running) 5123 cas_shutdown(cp); 5124 mutex_unlock(&cp->pm_mutex); 5125 5126 pci_iounmap(pdev, cp->regs); 5127 5128 5129 err_out_free_res: 5130 pci_release_regions(pdev); 5131 5132 /* Try to restore it in case the error occurred after we 5133 * set it. 5134 */ 5135 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5136 5137 err_out_free_netdev: 5138 free_netdev(dev); 5139 5140 err_out_disable_pdev: 5141 pci_disable_device(pdev); 5142 return -ENODEV; 5143 } 5144 5145 static void cas_remove_one(struct pci_dev *pdev) 5146 { 5147 struct net_device *dev = pci_get_drvdata(pdev); 5148 struct cas *cp; 5149 if (!dev) 5150 return; 5151 5152 cp = netdev_priv(dev); 5153 unregister_netdev(dev); 5154 5155 vfree(cp->fw_data); 5156 5157 mutex_lock(&cp->pm_mutex); 5158 cancel_work_sync(&cp->reset_task); 5159 if (cp->hw_running) 5160 cas_shutdown(cp); 5161 mutex_unlock(&cp->pm_mutex); 5162 5163 #if 1 5164 if (cp->orig_cacheline_size) { 5165 /* Restore the cache line size if we had modified 5166 * it. 5167 */ 5168 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5169 cp->orig_cacheline_size); 5170 } 5171 #endif 5172 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block), 5173 cp->init_block, cp->block_dvma); 5174 pci_iounmap(pdev, cp->regs); 5175 free_netdev(dev); 5176 pci_release_regions(pdev); 5177 pci_disable_device(pdev); 5178 } 5179 5180 static int __maybe_unused cas_suspend(struct device *dev_d) 5181 { 5182 struct net_device *dev = dev_get_drvdata(dev_d); 5183 struct cas *cp = netdev_priv(dev); 5184 unsigned long flags; 5185 5186 mutex_lock(&cp->pm_mutex); 5187 5188 /* If the driver is opened, we stop the DMA */ 5189 if (cp->opened) { 5190 netif_device_detach(dev); 5191 5192 cas_lock_all_save(cp, flags); 5193 5194 /* We can set the second arg of cas_reset to 0 5195 * because on resume, we'll call cas_init_hw with 5196 * its second arg set so that autonegotiation is 5197 * restarted. 5198 */ 5199 cas_reset(cp, 0); 5200 cas_clean_rings(cp); 5201 cas_unlock_all_restore(cp, flags); 5202 } 5203 5204 if (cp->hw_running) 5205 cas_shutdown(cp); 5206 mutex_unlock(&cp->pm_mutex); 5207 5208 return 0; 5209 } 5210 5211 static int __maybe_unused cas_resume(struct device *dev_d) 5212 { 5213 struct net_device *dev = dev_get_drvdata(dev_d); 5214 struct cas *cp = netdev_priv(dev); 5215 5216 netdev_info(dev, "resuming\n"); 5217 5218 mutex_lock(&cp->pm_mutex); 5219 cas_hard_reset(cp); 5220 if (cp->opened) { 5221 unsigned long flags; 5222 cas_lock_all_save(cp, flags); 5223 cas_reset(cp, 0); 5224 cp->hw_running = 1; 5225 cas_clean_rings(cp); 5226 cas_init_hw(cp, 1); 5227 cas_unlock_all_restore(cp, flags); 5228 5229 netif_device_attach(dev); 5230 } 5231 mutex_unlock(&cp->pm_mutex); 5232 return 0; 5233 } 5234 5235 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume); 5236 5237 static struct pci_driver cas_driver = { 5238 .name = DRV_MODULE_NAME, 5239 .id_table = cas_pci_tbl, 5240 .probe = cas_init_one, 5241 .remove = cas_remove_one, 5242 .driver.pm = &cas_pm_ops, 5243 }; 5244 5245 static int __init cas_init(void) 5246 { 5247 if (linkdown_timeout > 0) 5248 link_transition_timeout = linkdown_timeout * HZ; 5249 else 5250 link_transition_timeout = 0; 5251 5252 return pci_register_driver(&cas_driver); 5253 } 5254 5255 static void __exit cas_cleanup(void) 5256 { 5257 pci_unregister_driver(&cas_driver); 5258 } 5259 5260 module_init(cas_init); 5261 module_exit(cas_cleanup); 5262