xref: /openbmc/linux/drivers/net/ethernet/sun/cassini.c (revision 63dc02bd)
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86 
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98 
99 #include <net/checksum.h>
100 
101 #include <linux/atomic.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105 
106 #define cas_page_map(x)      kmap_atomic((x))
107 #define cas_page_unmap(x)    kunmap_atomic((x))
108 #define CAS_NCPUS            num_online_cpus()
109 
110 #define cas_skb_release(x)  netif_rx(x)
111 
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
116 
117 #include "cassini.h"
118 
119 #define USE_TX_COMPWB      /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
121 #define USE_RX_BLANK       /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
123 
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125  * also, we need to make cp->lock finer-grained.
126  */
127 #undef  USE_PCI_INTB
128 #undef  USE_PCI_INTC
129 #undef  USE_PCI_INTD
130 #undef  USE_QOS
131 
132 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
133 
134 /* rx processing options */
135 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
138 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
139 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
140 
141 #define DRV_MODULE_NAME		"cassini"
142 #define DRV_MODULE_VERSION	"1.6"
143 #define DRV_MODULE_RELDATE	"21 May 2008"
144 
145 #define CAS_DEF_MSG_ENABLE	  \
146 	(NETIF_MSG_DRV		| \
147 	 NETIF_MSG_PROBE	| \
148 	 NETIF_MSG_LINK		| \
149 	 NETIF_MSG_TIMER	| \
150 	 NETIF_MSG_IFDOWN	| \
151 	 NETIF_MSG_IFUP		| \
152 	 NETIF_MSG_RX_ERR	| \
153 	 NETIF_MSG_TX_ERR)
154 
155 /* length of time before we decide the hardware is borked,
156  * and dev->tx_timeout() should be called to fix the problem
157  */
158 #define CAS_TX_TIMEOUT			(HZ)
159 #define CAS_LINK_TIMEOUT                (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT           (1)
161 
162 /* timeout values for state changing. these specify the number
163  * of 10us delays to be used before giving up.
164  */
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES     5000
167 
168 /* specify a minimum frame size to deal with some fifo issues
169  * max mtu == 2 * page size - ethernet header - 64 - swivel =
170  *            2 * page_size - 0x50
171  */
172 #define CAS_MIN_FRAME			97
173 #define CAS_1000MB_MIN_FRAME            255
174 #define CAS_MIN_MTU                     60
175 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
176 
177 #if 1
178 /*
179  * Eliminate these and use separate atomic counters for each, to
180  * avoid a race condition.
181  */
182 #else
183 #define CAS_RESET_MTU                   1
184 #define CAS_RESET_ALL                   2
185 #define CAS_RESET_SPARE                 3
186 #endif
187 
188 static char version[] __devinitdata =
189 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
190 
191 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
193 
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
202 
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /*
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215 
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222 
223 
224 
225 static u16 link_modes[] __devinitdata = {
226 	BMCR_ANENABLE,			 /* 0 : autoneg */
227 	0,				 /* 1 : 10bt half duplex */
228 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
229 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
230 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
231 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
232 };
233 
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 	{ 0, }
240 };
241 
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243 
244 static void cas_set_link_modes(struct cas *cp);
245 
246 static inline void cas_lock_tx(struct cas *cp)
247 {
248 	int i;
249 
250 	for (i = 0; i < N_TX_RINGS; i++)
251 		spin_lock(&cp->tx_lock[i]);
252 }
253 
254 static inline void cas_lock_all(struct cas *cp)
255 {
256 	spin_lock_irq(&cp->lock);
257 	cas_lock_tx(cp);
258 }
259 
260 /* WTZ: QA was finding deadlock problems with the previous
261  * versions after long test runs with multiple cards per machine.
262  * See if replacing cas_lock_all with safer versions helps. The
263  * symptoms QA is reporting match those we'd expect if interrupts
264  * aren't being properly restored, and we fixed a previous deadlock
265  * with similar symptoms by using save/restore versions in other
266  * places.
267  */
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270 	struct cas *xxxcp = (cp); \
271 	spin_lock_irqsave(&xxxcp->lock, flags); \
272 	cas_lock_tx(xxxcp); \
273 } while (0)
274 
275 static inline void cas_unlock_tx(struct cas *cp)
276 {
277 	int i;
278 
279 	for (i = N_TX_RINGS; i > 0; i--)
280 		spin_unlock(&cp->tx_lock[i - 1]);
281 }
282 
283 static inline void cas_unlock_all(struct cas *cp)
284 {
285 	cas_unlock_tx(cp);
286 	spin_unlock_irq(&cp->lock);
287 }
288 
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291 	struct cas *xxxcp = (cp); \
292 	cas_unlock_tx(xxxcp); \
293 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
295 
296 static void cas_disable_irq(struct cas *cp, const int ring)
297 {
298 	/* Make sure we won't get any more interrupts */
299 	if (ring == 0) {
300 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301 		return;
302 	}
303 
304 	/* disable completion interrupts and selectively mask */
305 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306 		switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309 		case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312 		case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315 		case 3:
316 #endif
317 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
319 			break;
320 #endif
321 		default:
322 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323 			       REG_PLUS_INTRN_MASK(ring));
324 			break;
325 		}
326 	}
327 }
328 
329 static inline void cas_mask_intr(struct cas *cp)
330 {
331 	int i;
332 
333 	for (i = 0; i < N_RX_COMP_RINGS; i++)
334 		cas_disable_irq(cp, i);
335 }
336 
337 static void cas_enable_irq(struct cas *cp, const int ring)
338 {
339 	if (ring == 0) { /* all but TX_DONE */
340 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341 		return;
342 	}
343 
344 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345 		switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348 		case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351 		case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354 		case 3:
355 #endif
356 			writel(INTRN_MASK_RX_EN, cp->regs +
357 			       REG_PLUS_INTRN_MASK(ring));
358 			break;
359 #endif
360 		default:
361 			break;
362 		}
363 	}
364 }
365 
366 static inline void cas_unmask_intr(struct cas *cp)
367 {
368 	int i;
369 
370 	for (i = 0; i < N_RX_COMP_RINGS; i++)
371 		cas_enable_irq(cp, i);
372 }
373 
374 static inline void cas_entropy_gather(struct cas *cp)
375 {
376 #ifdef USE_ENTROPY_DEV
377 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378 		return;
379 
380 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381 			    readl(cp->regs + REG_ENTROPY_IV),
382 			    sizeof(uint64_t)*8);
383 #endif
384 }
385 
386 static inline void cas_entropy_reset(struct cas *cp)
387 {
388 #ifdef USE_ENTROPY_DEV
389 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390 		return;
391 
392 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
394 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396 
397 	/* if we read back 0x0, we don't have an entropy device */
398 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
401 }
402 
403 /* access to the phy. the following assumes that we've initialized the MIF to
404  * be in frame rather than bit-bang mode
405  */
406 static u16 cas_phy_read(struct cas *cp, int reg)
407 {
408 	u32 cmd;
409 	int limit = STOP_TRIES_PHY;
410 
411 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
415 	writel(cmd, cp->regs + REG_MIF_FRAME);
416 
417 	/* poll for completion */
418 	while (limit-- > 0) {
419 		udelay(10);
420 		cmd = readl(cp->regs + REG_MIF_FRAME);
421 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422 			return cmd & MIF_FRAME_DATA_MASK;
423 	}
424 	return 0xFFFF; /* -1 */
425 }
426 
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 {
429 	int limit = STOP_TRIES_PHY;
430 	u32 cmd;
431 
432 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
436 	cmd |= val & MIF_FRAME_DATA_MASK;
437 	writel(cmd, cp->regs + REG_MIF_FRAME);
438 
439 	/* poll for completion */
440 	while (limit-- > 0) {
441 		udelay(10);
442 		cmd = readl(cp->regs + REG_MIF_FRAME);
443 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444 			return 0;
445 	}
446 	return -1;
447 }
448 
449 static void cas_phy_powerup(struct cas *cp)
450 {
451 	u16 ctl = cas_phy_read(cp, MII_BMCR);
452 
453 	if ((ctl & BMCR_PDOWN) == 0)
454 		return;
455 	ctl &= ~BMCR_PDOWN;
456 	cas_phy_write(cp, MII_BMCR, ctl);
457 }
458 
459 static void cas_phy_powerdown(struct cas *cp)
460 {
461 	u16 ctl = cas_phy_read(cp, MII_BMCR);
462 
463 	if (ctl & BMCR_PDOWN)
464 		return;
465 	ctl |= BMCR_PDOWN;
466 	cas_phy_write(cp, MII_BMCR, ctl);
467 }
468 
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 {
472 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473 		       PCI_DMA_FROMDEVICE);
474 	__free_pages(page->buffer, cp->page_order);
475 	kfree(page);
476 	return 0;
477 }
478 
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y)       ((x)->used += (y))
481 #define RX_USED_SET(x, y)       ((x)->used  = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
486 
487 /* local page allocation routines for the receive buffers. jumbo pages
488  * require at least 8K contiguous and 8K aligned buffers.
489  */
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 {
492 	cas_page_t *page;
493 
494 	page = kmalloc(sizeof(cas_page_t), flags);
495 	if (!page)
496 		return NULL;
497 
498 	INIT_LIST_HEAD(&page->list);
499 	RX_USED_SET(page, 0);
500 	page->buffer = alloc_pages(flags, cp->page_order);
501 	if (!page->buffer)
502 		goto page_err;
503 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504 				      cp->page_size, PCI_DMA_FROMDEVICE);
505 	return page;
506 
507 page_err:
508 	kfree(page);
509 	return NULL;
510 }
511 
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
514 {
515   	spin_lock(&cp->rx_inuse_lock);
516 	INIT_LIST_HEAD(&cp->rx_inuse_list);
517 	spin_unlock(&cp->rx_inuse_lock);
518 
519 	spin_lock(&cp->rx_spare_lock);
520 	INIT_LIST_HEAD(&cp->rx_spare_list);
521 	cp->rx_spares_needed = RX_SPARE_COUNT;
522 	spin_unlock(&cp->rx_spare_lock);
523 }
524 
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
527 {
528 	struct list_head list, *elem, *tmp;
529 
530 	/* free spare buffers */
531 	INIT_LIST_HEAD(&list);
532 	spin_lock(&cp->rx_spare_lock);
533 	list_splice_init(&cp->rx_spare_list, &list);
534 	spin_unlock(&cp->rx_spare_lock);
535 	list_for_each_safe(elem, tmp, &list) {
536 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
537 	}
538 
539 	INIT_LIST_HEAD(&list);
540 #if 1
541 	/*
542 	 * Looks like Adrian had protected this with a different
543 	 * lock than used everywhere else to manipulate this list.
544 	 */
545 	spin_lock(&cp->rx_inuse_lock);
546 	list_splice_init(&cp->rx_inuse_list, &list);
547 	spin_unlock(&cp->rx_inuse_lock);
548 #else
549 	spin_lock(&cp->rx_spare_lock);
550 	list_splice_init(&cp->rx_inuse_list, &list);
551 	spin_unlock(&cp->rx_spare_lock);
552 #endif
553 	list_for_each_safe(elem, tmp, &list) {
554 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
555 	}
556 }
557 
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 {
561 	struct list_head list, *elem, *tmp;
562 	int needed, i;
563 
564 	/* check inuse list. if we don't need any more free buffers,
565 	 * just free it
566 	 */
567 
568 	/* make a local copy of the list */
569 	INIT_LIST_HEAD(&list);
570 	spin_lock(&cp->rx_inuse_lock);
571 	list_splice_init(&cp->rx_inuse_list, &list);
572 	spin_unlock(&cp->rx_inuse_lock);
573 
574 	list_for_each_safe(elem, tmp, &list) {
575 		cas_page_t *page = list_entry(elem, cas_page_t, list);
576 
577 		/*
578 		 * With the lockless pagecache, cassini buffering scheme gets
579 		 * slightly less accurate: we might find that a page has an
580 		 * elevated reference count here, due to a speculative ref,
581 		 * and skip it as in-use. Ideally we would be able to reclaim
582 		 * it. However this would be such a rare case, it doesn't
583 		 * matter too much as we should pick it up the next time round.
584 		 *
585 		 * Importantly, if we find that the page has a refcount of 1
586 		 * here (our refcount), then we know it is definitely not inuse
587 		 * so we can reuse it.
588 		 */
589 		if (page_count(page->buffer) > 1)
590 			continue;
591 
592 		list_del(elem);
593 		spin_lock(&cp->rx_spare_lock);
594 		if (cp->rx_spares_needed > 0) {
595 			list_add(elem, &cp->rx_spare_list);
596 			cp->rx_spares_needed--;
597 			spin_unlock(&cp->rx_spare_lock);
598 		} else {
599 			spin_unlock(&cp->rx_spare_lock);
600 			cas_page_free(cp, page);
601 		}
602 	}
603 
604 	/* put any inuse buffers back on the list */
605 	if (!list_empty(&list)) {
606 		spin_lock(&cp->rx_inuse_lock);
607 		list_splice(&list, &cp->rx_inuse_list);
608 		spin_unlock(&cp->rx_inuse_lock);
609 	}
610 
611 	spin_lock(&cp->rx_spare_lock);
612 	needed = cp->rx_spares_needed;
613 	spin_unlock(&cp->rx_spare_lock);
614 	if (!needed)
615 		return;
616 
617 	/* we still need spares, so try to allocate some */
618 	INIT_LIST_HEAD(&list);
619 	i = 0;
620 	while (i < needed) {
621 		cas_page_t *spare = cas_page_alloc(cp, flags);
622 		if (!spare)
623 			break;
624 		list_add(&spare->list, &list);
625 		i++;
626 	}
627 
628 	spin_lock(&cp->rx_spare_lock);
629 	list_splice(&list, &cp->rx_spare_list);
630 	cp->rx_spares_needed -= i;
631 	spin_unlock(&cp->rx_spare_lock);
632 }
633 
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 {
637 	struct list_head *entry;
638 	int recover;
639 
640 	spin_lock(&cp->rx_spare_lock);
641 	if (list_empty(&cp->rx_spare_list)) {
642 		/* try to do a quick recovery */
643 		spin_unlock(&cp->rx_spare_lock);
644 		cas_spare_recover(cp, GFP_ATOMIC);
645 		spin_lock(&cp->rx_spare_lock);
646 		if (list_empty(&cp->rx_spare_list)) {
647 			netif_err(cp, rx_err, cp->dev,
648 				  "no spare buffers available\n");
649 			spin_unlock(&cp->rx_spare_lock);
650 			return NULL;
651 		}
652 	}
653 
654 	entry = cp->rx_spare_list.next;
655 	list_del(entry);
656 	recover = ++cp->rx_spares_needed;
657 	spin_unlock(&cp->rx_spare_lock);
658 
659 	/* trigger the timer to do the recovery */
660 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662 		atomic_inc(&cp->reset_task_pending);
663 		atomic_inc(&cp->reset_task_pending_spare);
664 		schedule_work(&cp->reset_task);
665 #else
666 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667 		schedule_work(&cp->reset_task);
668 #endif
669 	}
670 	return list_entry(entry, cas_page_t, list);
671 }
672 
673 
674 static void cas_mif_poll(struct cas *cp, const int enable)
675 {
676 	u32 cfg;
677 
678 	cfg  = readl(cp->regs + REG_MIF_CFG);
679 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680 
681 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
682 		cfg |= MIF_CFG_PHY_SELECT;
683 
684 	/* poll and interrupt on link status change. */
685 	if (enable) {
686 		cfg |= MIF_CFG_POLL_EN;
687 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689 	}
690 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691 	       cp->regs + REG_MIF_MASK);
692 	writel(cfg, cp->regs + REG_MIF_CFG);
693 }
694 
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
697 {
698 	u16 ctl;
699 #if 1
700 	int lcntl;
701 	int changed = 0;
702 	int oldstate = cp->lstate;
703 	int link_was_not_down = !(oldstate == link_down);
704 #endif
705 	/* Setup link parameters */
706 	if (!ep)
707 		goto start_aneg;
708 	lcntl = cp->link_cntl;
709 	if (ep->autoneg == AUTONEG_ENABLE)
710 		cp->link_cntl = BMCR_ANENABLE;
711 	else {
712 		u32 speed = ethtool_cmd_speed(ep);
713 		cp->link_cntl = 0;
714 		if (speed == SPEED_100)
715 			cp->link_cntl |= BMCR_SPEED100;
716 		else if (speed == SPEED_1000)
717 			cp->link_cntl |= CAS_BMCR_SPEED1000;
718 		if (ep->duplex == DUPLEX_FULL)
719 			cp->link_cntl |= BMCR_FULLDPLX;
720 	}
721 #if 1
722 	changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725 	if (cp->lstate == link_up) {
726 		netdev_info(cp->dev, "PCS link down\n");
727 	} else {
728 		if (changed) {
729 			netdev_info(cp->dev, "link configuration changed\n");
730 		}
731 	}
732 	cp->lstate = link_down;
733 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734 	if (!cp->hw_running)
735 		return;
736 #if 1
737 	/*
738 	 * WTZ: If the old state was link_up, we turn off the carrier
739 	 * to replicate everything we do elsewhere on a link-down
740 	 * event when we were already in a link-up state..
741 	 */
742 	if (oldstate == link_up)
743 		netif_carrier_off(cp->dev);
744 	if (changed  && link_was_not_down) {
745 		/*
746 		 * WTZ: This branch will simply schedule a full reset after
747 		 * we explicitly changed link modes in an ioctl. See if this
748 		 * fixes the link-problems we were having for forced mode.
749 		 */
750 		atomic_inc(&cp->reset_task_pending);
751 		atomic_inc(&cp->reset_task_pending_all);
752 		schedule_work(&cp->reset_task);
753 		cp->timer_ticks = 0;
754 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755 		return;
756 	}
757 #endif
758 	if (cp->phy_type & CAS_PHY_SERDES) {
759 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760 
761 		if (cp->link_cntl & BMCR_ANENABLE) {
762 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 			cp->lstate = link_aneg;
764 		} else {
765 			if (cp->link_cntl & BMCR_FULLDPLX)
766 				val |= PCS_MII_CTRL_DUPLEX;
767 			val &= ~PCS_MII_AUTONEG_EN;
768 			cp->lstate = link_force_ok;
769 		}
770 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 		writel(val, cp->regs + REG_PCS_MII_CTRL);
772 
773 	} else {
774 		cas_mif_poll(cp, 0);
775 		ctl = cas_phy_read(cp, MII_BMCR);
776 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 		ctl |= cp->link_cntl;
779 		if (ctl & BMCR_ANENABLE) {
780 			ctl |= BMCR_ANRESTART;
781 			cp->lstate = link_aneg;
782 		} else {
783 			cp->lstate = link_force_ok;
784 		}
785 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 		cas_phy_write(cp, MII_BMCR, ctl);
787 		cas_mif_poll(cp, 1);
788 	}
789 
790 	cp->timer_ticks = 0;
791 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793 
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797 	int limit = STOP_TRIES_PHY;
798 	u16 val;
799 
800 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801 	udelay(100);
802 	while (--limit) {
803 		val = cas_phy_read(cp, MII_BMCR);
804 		if ((val & BMCR_RESET) == 0)
805 			break;
806 		udelay(10);
807 	}
808 	return limit <= 0;
809 }
810 
811 static int cas_saturn_firmware_init(struct cas *cp)
812 {
813 	const struct firmware *fw;
814 	const char fw_name[] = "sun/cassini.bin";
815 	int err;
816 
817 	if (PHY_NS_DP83065 != cp->phy_id)
818 		return 0;
819 
820 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821 	if (err) {
822 		pr_err("Failed to load firmware \"%s\"\n",
823 		       fw_name);
824 		return err;
825 	}
826 	if (fw->size < 2) {
827 		pr_err("bogus length %zu in \"%s\"\n",
828 		       fw->size, fw_name);
829 		err = -EINVAL;
830 		goto out;
831 	}
832 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
833 	cp->fw_size = fw->size - 2;
834 	cp->fw_data = vmalloc(cp->fw_size);
835 	if (!cp->fw_data) {
836 		err = -ENOMEM;
837 		goto out;
838 	}
839 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
840 out:
841 	release_firmware(fw);
842 	return err;
843 }
844 
845 static void cas_saturn_firmware_load(struct cas *cp)
846 {
847 	int i;
848 
849 	cas_phy_powerdown(cp);
850 
851 	/* expanded memory access mode */
852 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853 
854 	/* pointer configuration for new firmware */
855 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
856 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
857 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
858 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
859 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
860 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
861 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
862 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863 
864 	/* download new firmware */
865 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
866 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
867 	for (i = 0; i < cp->fw_size; i++)
868 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869 
870 	/* enable firmware */
871 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
872 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
873 }
874 
875 
876 /* phy initialization */
877 static void cas_phy_init(struct cas *cp)
878 {
879 	u16 val;
880 
881 	/* if we're in MII/GMII mode, set up phy */
882 	if (CAS_PHY_MII(cp->phy_type)) {
883 		writel(PCS_DATAPATH_MODE_MII,
884 		       cp->regs + REG_PCS_DATAPATH_MODE);
885 
886 		cas_mif_poll(cp, 0);
887 		cas_reset_mii_phy(cp); /* take out of isolate mode */
888 
889 		if (PHY_LUCENT_B0 == cp->phy_id) {
890 			/* workaround link up/down issue with lucent */
891 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
892 			cas_phy_write(cp, MII_BMCR, 0x00f1);
893 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894 
895 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
896 			/* workarounds for broadcom phy */
897 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
898 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
899 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
900 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
901 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
902 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
904 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
906 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
907 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908 
909 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
910 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
911 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
912 			if (val & 0x0080) {
913 				/* link workaround */
914 				cas_phy_write(cp, BROADCOM_MII_REG4,
915 					      val & ~0x0080);
916 			}
917 
918 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
919 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
920 			       SATURN_PCFG_FSI : 0x0,
921 			       cp->regs + REG_SATURN_PCFG);
922 
923 			/* load firmware to address 10Mbps auto-negotiation
924 			 * issue. NOTE: this will need to be changed if the
925 			 * default firmware gets fixed.
926 			 */
927 			if (PHY_NS_DP83065 == cp->phy_id) {
928 				cas_saturn_firmware_load(cp);
929 			}
930 			cas_phy_powerup(cp);
931 		}
932 
933 		/* advertise capabilities */
934 		val = cas_phy_read(cp, MII_BMCR);
935 		val &= ~BMCR_ANENABLE;
936 		cas_phy_write(cp, MII_BMCR, val);
937 		udelay(10);
938 
939 		cas_phy_write(cp, MII_ADVERTISE,
940 			      cas_phy_read(cp, MII_ADVERTISE) |
941 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
942 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
943 			       CAS_ADVERTISE_PAUSE |
944 			       CAS_ADVERTISE_ASYM_PAUSE));
945 
946 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
947 			/* make sure that we don't advertise half
948 			 * duplex to avoid a chip issue
949 			 */
950 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
951 			val &= ~CAS_ADVERTISE_1000HALF;
952 			val |= CAS_ADVERTISE_1000FULL;
953 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
954 		}
955 
956 	} else {
957 		/* reset pcs for serdes */
958 		u32 val;
959 		int limit;
960 
961 		writel(PCS_DATAPATH_MODE_SERDES,
962 		       cp->regs + REG_PCS_DATAPATH_MODE);
963 
964 		/* enable serdes pins on saturn */
965 		if (cp->cas_flags & CAS_FLAG_SATURN)
966 			writel(0, cp->regs + REG_SATURN_PCFG);
967 
968 		/* Reset PCS unit. */
969 		val = readl(cp->regs + REG_PCS_MII_CTRL);
970 		val |= PCS_MII_RESET;
971 		writel(val, cp->regs + REG_PCS_MII_CTRL);
972 
973 		limit = STOP_TRIES;
974 		while (--limit > 0) {
975 			udelay(10);
976 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
977 			     PCS_MII_RESET) == 0)
978 				break;
979 		}
980 		if (limit <= 0)
981 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
982 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
983 
984 		/* Make sure PCS is disabled while changing advertisement
985 		 * configuration.
986 		 */
987 		writel(0x0, cp->regs + REG_PCS_CFG);
988 
989 		/* Advertise all capabilities except half-duplex. */
990 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
991 		val &= ~PCS_MII_ADVERT_HD;
992 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
993 			PCS_MII_ADVERT_ASYM_PAUSE);
994 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
995 
996 		/* enable PCS */
997 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
998 
999 		/* pcs workaround: enable sync detect */
1000 		writel(PCS_SERDES_CTRL_SYNCD_EN,
1001 		       cp->regs + REG_PCS_SERDES_CTRL);
1002 	}
1003 }
1004 
1005 
1006 static int cas_pcs_link_check(struct cas *cp)
1007 {
1008 	u32 stat, state_machine;
1009 	int retval = 0;
1010 
1011 	/* The link status bit latches on zero, so you must
1012 	 * read it twice in such a case to see a transition
1013 	 * to the link being up.
1014 	 */
1015 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1017 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018 
1019 	/* The remote-fault indication is only valid
1020 	 * when autoneg has completed.
1021 	 */
1022 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1023 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1024 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1025 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026 
1027 	/* work around link detection issue by querying the PCS state
1028 	 * machine directly.
1029 	 */
1030 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1031 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1032 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1033 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1034 		stat |= PCS_MII_STATUS_LINK_STATUS;
1035 	}
1036 
1037 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1038 		if (cp->lstate != link_up) {
1039 			if (cp->opened) {
1040 				cp->lstate = link_up;
1041 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1042 
1043 				cas_set_link_modes(cp);
1044 				netif_carrier_on(cp->dev);
1045 			}
1046 		}
1047 	} else if (cp->lstate == link_up) {
1048 		cp->lstate = link_down;
1049 		if (link_transition_timeout != 0 &&
1050 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1051 		    !cp->link_transition_jiffies_valid) {
1052 			/*
1053 			 * force a reset, as a workaround for the
1054 			 * link-failure problem. May want to move this to a
1055 			 * point a bit earlier in the sequence. If we had
1056 			 * generated a reset a short time ago, we'll wait for
1057 			 * the link timer to check the status until a
1058 			 * timer expires (link_transistion_jiffies_valid is
1059 			 * true when the timer is running.)  Instead of using
1060 			 * a system timer, we just do a check whenever the
1061 			 * link timer is running - this clears the flag after
1062 			 * a suitable delay.
1063 			 */
1064 			retval = 1;
1065 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066 			cp->link_transition_jiffies = jiffies;
1067 			cp->link_transition_jiffies_valid = 1;
1068 		} else {
1069 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1070 		}
1071 		netif_carrier_off(cp->dev);
1072 		if (cp->opened)
1073 			netif_info(cp, link, cp->dev, "PCS link down\n");
1074 
1075 		/* Cassini only: if you force a mode, there can be
1076 		 * sync problems on link down. to fix that, the following
1077 		 * things need to be checked:
1078 		 * 1) read serialink state register
1079 		 * 2) read pcs status register to verify link down.
1080 		 * 3) if link down and serial link == 0x03, then you need
1081 		 *    to global reset the chip.
1082 		 */
1083 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1084 			/* should check to see if we're in a forced mode */
1085 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1086 			if (stat == 0x03)
1087 				return 1;
1088 		}
1089 	} else if (cp->lstate == link_down) {
1090 		if (link_transition_timeout != 0 &&
1091 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1092 		    !cp->link_transition_jiffies_valid) {
1093 			/* force a reset, as a workaround for the
1094 			 * link-failure problem.  May want to move
1095 			 * this to a point a bit earlier in the
1096 			 * sequence.
1097 			 */
1098 			retval = 1;
1099 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1100 			cp->link_transition_jiffies = jiffies;
1101 			cp->link_transition_jiffies_valid = 1;
1102 		} else {
1103 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1104 		}
1105 	}
1106 
1107 	return retval;
1108 }
1109 
1110 static int cas_pcs_interrupt(struct net_device *dev,
1111 			     struct cas *cp, u32 status)
1112 {
1113 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114 
1115 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116 		return 0;
1117 	return cas_pcs_link_check(cp);
1118 }
1119 
1120 static int cas_txmac_interrupt(struct net_device *dev,
1121 			       struct cas *cp, u32 status)
1122 {
1123 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124 
1125 	if (!txmac_stat)
1126 		return 0;
1127 
1128 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1129 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130 
1131 	/* Defer timer expiration is quite normal,
1132 	 * don't even log the event.
1133 	 */
1134 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1135 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1136 		return 0;
1137 
1138 	spin_lock(&cp->stat_lock[0]);
1139 	if (txmac_stat & MAC_TX_UNDERRUN) {
1140 		netdev_err(dev, "TX MAC xmit underrun\n");
1141 		cp->net_stats[0].tx_fifo_errors++;
1142 	}
1143 
1144 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1145 		netdev_err(dev, "TX MAC max packet size error\n");
1146 		cp->net_stats[0].tx_errors++;
1147 	}
1148 
1149 	/* The rest are all cases of one of the 16-bit TX
1150 	 * counters expiring.
1151 	 */
1152 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1153 		cp->net_stats[0].collisions += 0x10000;
1154 
1155 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1157 		cp->net_stats[0].collisions += 0x10000;
1158 	}
1159 
1160 	if (txmac_stat & MAC_TX_COLL_LATE) {
1161 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1162 		cp->net_stats[0].collisions += 0x10000;
1163 	}
1164 	spin_unlock(&cp->stat_lock[0]);
1165 
1166 	/* We do not keep track of MAC_TX_COLL_FIRST and
1167 	 * MAC_TX_PEAK_ATTEMPTS events.
1168 	 */
1169 	return 0;
1170 }
1171 
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 {
1174 	cas_hp_inst_t *inst;
1175 	u32 val;
1176 	int i;
1177 
1178 	i = 0;
1179 	while ((inst = firmware) && inst->note) {
1180 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 
1182 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 
1186 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194 
1195 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200 		++firmware;
1201 		++i;
1202 	}
1203 }
1204 
1205 static void cas_init_rx_dma(struct cas *cp)
1206 {
1207 	u64 desc_dma = cp->block_dvma;
1208 	u32 val;
1209 	int i, size;
1210 
1211 	/* rx free descriptors */
1212 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215 	if ((N_RX_DESC_RINGS > 1) &&
1216 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1217 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218 	writel(val, cp->regs + REG_RX_CFG);
1219 
1220 	val = (unsigned long) cp->init_rxds[0] -
1221 		(unsigned long) cp->init_block;
1222 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 
1226 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227 		/* rx desc 2 is for IPSEC packets. however,
1228 		 * we don't it that for that purpose.
1229 		 */
1230 		val = (unsigned long) cp->init_rxds[1] -
1231 			(unsigned long) cp->init_block;
1232 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1234 		       REG_PLUS_RX_DB1_LOW);
1235 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1236 		       REG_PLUS_RX_KICK1);
1237 	}
1238 
1239 	/* rx completion registers */
1240 	val = (unsigned long) cp->init_rxcs[0] -
1241 		(unsigned long) cp->init_block;
1242 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 
1245 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246 		/* rx comp 2-4 */
1247 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248 			val = (unsigned long) cp->init_rxcs[i] -
1249 				(unsigned long) cp->init_block;
1250 			writel((desc_dma + val) >> 32, cp->regs +
1251 			       REG_PLUS_RX_CBN_HI(i));
1252 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1253 			       REG_PLUS_RX_CBN_LOW(i));
1254 		}
1255 	}
1256 
1257 	/* read selective clear regs to prevent spurious interrupts
1258 	 * on reset because complete == kick.
1259 	 * selective clear set up to prevent interrupts on resets
1260 	 */
1261 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1265 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266 
1267 		/* 2 is different from 3 and 4 */
1268 		if (N_RX_COMP_RINGS > 1)
1269 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1270 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 
1272 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1273 			writel(INTR_RX_DONE_ALT,
1274 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275 	}
1276 
1277 	/* set up pause thresholds */
1278 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1281 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 
1284 	/* zero out dma reassembly buffers */
1285 	for (i = 0; i < 64; i++) {
1286 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290 	}
1291 
1292 	/* make sure address register is 0 for normal operation */
1293 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 
1296 	/* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300 	writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302 	writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1304 
1305 	/* interrupt generation as a function of low water marks for
1306 	 * free desc and completion entries. these are used to trigger
1307 	 * housekeeping for rx descs. we don't use the free interrupt
1308 	 * as it's not very useful
1309 	 */
1310 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312 	writel(val, cp->regs + REG_RX_AE_THRESH);
1313 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316 	}
1317 
1318 	/* Random early detect registers. useful for congestion avoidance.
1319 	 * this should be tunable.
1320 	 */
1321 	writel(0x0, cp->regs + REG_RX_RED);
1322 
1323 	/* receive page sizes. default == 2K (0x800) */
1324 	val = 0;
1325 	if (cp->page_size == 0x1000)
1326 		val = 0x1;
1327 	else if (cp->page_size == 0x2000)
1328 		val = 0x2;
1329 	else if (cp->page_size == 0x4000)
1330 		val = 0x3;
1331 
1332 	/* round mtu + offset. constrain to page size. */
1333 	size = cp->dev->mtu + 64;
1334 	if (size > cp->page_size)
1335 		size = cp->page_size;
1336 
1337 	if (size <= 0x400)
1338 		i = 0x0;
1339 	else if (size <= 0x800)
1340 		i = 0x1;
1341 	else if (size <= 0x1000)
1342 		i = 0x2;
1343 	else
1344 		i = 0x3;
1345 
1346 	cp->mtu_stride = 1 << (i + 10);
1347 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1348 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 
1353 	/* enable the header parser if desired */
1354 	if (CAS_HP_FIRMWARE == cas_prog_null)
1355 		return;
1356 
1357 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360 	writel(val, cp->regs + REG_HP_CFG);
1361 }
1362 
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 {
1365 	memset(rxc, 0, sizeof(*rxc));
1366 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1367 }
1368 
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370  * flipping is protected by the fact that the chip will not
1371  * hand back the same page index while it's being processed.
1372  */
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 {
1375 	cas_page_t *page = cp->rx_pages[1][index];
1376 	cas_page_t *new;
1377 
1378 	if (page_count(page->buffer) == 1)
1379 		return page;
1380 
1381 	new = cas_page_dequeue(cp);
1382 	if (new) {
1383 		spin_lock(&cp->rx_inuse_lock);
1384 		list_add(&page->list, &cp->rx_inuse_list);
1385 		spin_unlock(&cp->rx_inuse_lock);
1386 	}
1387 	return new;
1388 }
1389 
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392 				 const int index)
1393 {
1394 	cas_page_t **page0 = cp->rx_pages[0];
1395 	cas_page_t **page1 = cp->rx_pages[1];
1396 
1397 	/* swap if buffer is in use */
1398 	if (page_count(page0[index]->buffer) > 1) {
1399 		cas_page_t *new = cas_page_spare(cp, index);
1400 		if (new) {
1401 			page1[index] = page0[index];
1402 			page0[index] = new;
1403 		}
1404 	}
1405 	RX_USED_SET(page0[index], 0);
1406 	return page0[index];
1407 }
1408 
1409 static void cas_clean_rxds(struct cas *cp)
1410 {
1411 	/* only clean ring 0 as ring 1 is used for spare buffers */
1412         struct cas_rx_desc *rxd = cp->init_rxds[0];
1413 	int i, size;
1414 
1415 	/* release all rx flows */
1416 	for (i = 0; i < N_RX_FLOWS; i++) {
1417 		struct sk_buff *skb;
1418 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419 			cas_skb_release(skb);
1420 		}
1421 	}
1422 
1423 	/* initialize descriptors */
1424 	size = RX_DESC_RINGN_SIZE(0);
1425 	for (i = 0; i < size; i++) {
1426 		cas_page_t *page = cas_page_swap(cp, 0, i);
1427 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429 					    CAS_BASE(RX_INDEX_RING, 0));
1430 	}
1431 
1432 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1433 	cp->rx_last[0] = 0;
1434 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 }
1436 
1437 static void cas_clean_rxcs(struct cas *cp)
1438 {
1439 	int i, j;
1440 
1441 	/* take ownership of rx comp descriptors */
1442 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447 			cas_rxc_init(rxc + j);
1448 		}
1449 	}
1450 }
1451 
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454  * so we do the following.
1455  *
1456  * If any part of the reset goes wrong, we return 1 and that causes the
1457  * whole chip to be reset.
1458  */
1459 static int cas_rxmac_reset(struct cas *cp)
1460 {
1461 	struct net_device *dev = cp->dev;
1462 	int limit;
1463 	u32 val;
1464 
1465 	/* First, reset MAC RX. */
1466 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467 	for (limit = 0; limit < STOP_TRIES; limit++) {
1468 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469 			break;
1470 		udelay(10);
1471 	}
1472 	if (limit == STOP_TRIES) {
1473 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1474 		return 1;
1475 	}
1476 
1477 	/* Second, disable RX DMA. */
1478 	writel(0, cp->regs + REG_RX_CFG);
1479 	for (limit = 0; limit < STOP_TRIES; limit++) {
1480 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481 			break;
1482 		udelay(10);
1483 	}
1484 	if (limit == STOP_TRIES) {
1485 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1486 		return 1;
1487 	}
1488 
1489 	mdelay(5);
1490 
1491 	/* Execute RX reset command. */
1492 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1493 	for (limit = 0; limit < STOP_TRIES; limit++) {
1494 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495 			break;
1496 		udelay(10);
1497 	}
1498 	if (limit == STOP_TRIES) {
1499 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1500 		return 1;
1501 	}
1502 
1503 	/* reset driver rx state */
1504 	cas_clean_rxds(cp);
1505 	cas_clean_rxcs(cp);
1506 
1507 	/* Now, reprogram the rest of RX unit. */
1508 	cas_init_rx_dma(cp);
1509 
1510 	/* re-enable */
1511 	val = readl(cp->regs + REG_RX_CFG);
1512 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1513 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1514 	val = readl(cp->regs + REG_MAC_RX_CFG);
1515 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1516 	return 0;
1517 }
1518 #endif
1519 
1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1521 			       u32 status)
1522 {
1523 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1524 
1525 	if (!stat)
1526 		return 0;
1527 
1528 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529 
1530 	/* these are all rollovers */
1531 	spin_lock(&cp->stat_lock[0]);
1532 	if (stat & MAC_RX_ALIGN_ERR)
1533 		cp->net_stats[0].rx_frame_errors += 0x10000;
1534 
1535 	if (stat & MAC_RX_CRC_ERR)
1536 		cp->net_stats[0].rx_crc_errors += 0x10000;
1537 
1538 	if (stat & MAC_RX_LEN_ERR)
1539 		cp->net_stats[0].rx_length_errors += 0x10000;
1540 
1541 	if (stat & MAC_RX_OVERFLOW) {
1542 		cp->net_stats[0].rx_over_errors++;
1543 		cp->net_stats[0].rx_fifo_errors++;
1544 	}
1545 
1546 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1547 	 * events.
1548 	 */
1549 	spin_unlock(&cp->stat_lock[0]);
1550 	return 0;
1551 }
1552 
1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1554 			     u32 status)
1555 {
1556 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1557 
1558 	if (!stat)
1559 		return 0;
1560 
1561 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1562 		     "mac interrupt, stat: 0x%x\n", stat);
1563 
1564 	/* This interrupt is just for pause frame and pause
1565 	 * tracking.  It is useful for diagnostics and debug
1566 	 * but probably by default we will mask these events.
1567 	 */
1568 	if (stat & MAC_CTRL_PAUSE_STATE)
1569 		cp->pause_entered++;
1570 
1571 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1572 		cp->pause_last_time_recvd = (stat >> 16);
1573 
1574 	return 0;
1575 }
1576 
1577 
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas *cp)
1580 {
1581 	u16 val;
1582 
1583 	switch (cp->lstate) {
1584 	case link_force_ret:
1585 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1586 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1587 		cp->timer_ticks = 5;
1588 		cp->lstate = link_force_ok;
1589 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1590 		break;
1591 
1592 	case link_aneg:
1593 		val = cas_phy_read(cp, MII_BMCR);
1594 
1595 		/* Try forced modes. we try things in the following order:
1596 		 * 1000 full -> 100 full/half -> 10 half
1597 		 */
1598 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1599 		val |= BMCR_FULLDPLX;
1600 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1601 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1602 		cas_phy_write(cp, MII_BMCR, val);
1603 		cp->timer_ticks = 5;
1604 		cp->lstate = link_force_try;
1605 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1606 		break;
1607 
1608 	case link_force_try:
1609 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610 		val = cas_phy_read(cp, MII_BMCR);
1611 		cp->timer_ticks = 5;
1612 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1613 			val &= ~CAS_BMCR_SPEED1000;
1614 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1615 			cas_phy_write(cp, MII_BMCR, val);
1616 			break;
1617 		}
1618 
1619 		if (val & BMCR_SPEED100) {
1620 			if (val & BMCR_FULLDPLX) /* fd failed */
1621 				val &= ~BMCR_FULLDPLX;
1622 			else { /* 100Mbps failed */
1623 				val &= ~BMCR_SPEED100;
1624 			}
1625 			cas_phy_write(cp, MII_BMCR, val);
1626 			break;
1627 		}
1628 	default:
1629 		break;
1630 	}
1631 	return 0;
1632 }
1633 
1634 
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1637 {
1638 	int restart;
1639 
1640 	if (bmsr & BMSR_LSTATUS) {
1641 		/* Ok, here we got a link. If we had it due to a forced
1642 		 * fallback, and we were configured for autoneg, we
1643 		 * retry a short autoneg pass. If you know your hub is
1644 		 * broken, use ethtool ;)
1645 		 */
1646 		if ((cp->lstate == link_force_try) &&
1647 		    (cp->link_cntl & BMCR_ANENABLE)) {
1648 			cp->lstate = link_force_ret;
1649 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1650 			cas_mif_poll(cp, 0);
1651 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1652 			cp->timer_ticks = 5;
1653 			if (cp->opened)
1654 				netif_info(cp, link, cp->dev,
1655 					   "Got link after fallback, retrying autoneg once...\n");
1656 			cas_phy_write(cp, MII_BMCR,
1657 				      cp->link_fcntl | BMCR_ANENABLE |
1658 				      BMCR_ANRESTART);
1659 			cas_mif_poll(cp, 1);
1660 
1661 		} else if (cp->lstate != link_up) {
1662 			cp->lstate = link_up;
1663 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1664 
1665 			if (cp->opened) {
1666 				cas_set_link_modes(cp);
1667 				netif_carrier_on(cp->dev);
1668 			}
1669 		}
1670 		return 0;
1671 	}
1672 
1673 	/* link not up. if the link was previously up, we restart the
1674 	 * whole process
1675 	 */
1676 	restart = 0;
1677 	if (cp->lstate == link_up) {
1678 		cp->lstate = link_down;
1679 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1680 
1681 		netif_carrier_off(cp->dev);
1682 		if (cp->opened)
1683 			netif_info(cp, link, cp->dev, "Link down\n");
1684 		restart = 1;
1685 
1686 	} else if (++cp->timer_ticks > 10)
1687 		cas_mdio_link_not_up(cp);
1688 
1689 	return restart;
1690 }
1691 
1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1693 			     u32 status)
1694 {
1695 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1696 	u16 bmsr;
1697 
1698 	/* check for a link change */
1699 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1700 		return 0;
1701 
1702 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1703 	return cas_mii_link_check(cp, bmsr);
1704 }
1705 
1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1707 			     u32 status)
1708 {
1709 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1710 
1711 	if (!stat)
1712 		return 0;
1713 
1714 	netdev_err(dev, "PCI error [%04x:%04x]",
1715 		   stat, readl(cp->regs + REG_BIM_DIAG));
1716 
1717 	/* cassini+ has this reserved */
1718 	if ((stat & PCI_ERR_BADACK) &&
1719 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1720 		pr_cont(" <No ACK64# during ABS64 cycle>");
1721 
1722 	if (stat & PCI_ERR_DTRTO)
1723 		pr_cont(" <Delayed transaction timeout>");
1724 	if (stat & PCI_ERR_OTHER)
1725 		pr_cont(" <other>");
1726 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1727 		pr_cont(" <BIM DMA 0 write req>");
1728 	if (stat & PCI_ERR_BIM_DMA_READ)
1729 		pr_cont(" <BIM DMA 0 read req>");
1730 	pr_cont("\n");
1731 
1732 	if (stat & PCI_ERR_OTHER) {
1733 		u16 cfg;
1734 
1735 		/* Interrogate PCI config space for the
1736 		 * true cause.
1737 		 */
1738 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1739 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1740 		if (cfg & PCI_STATUS_PARITY)
1741 			netdev_err(dev, "PCI parity error detected\n");
1742 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1743 			netdev_err(dev, "PCI target abort\n");
1744 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1745 			netdev_err(dev, "PCI master acks target abort\n");
1746 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1747 			netdev_err(dev, "PCI master abort\n");
1748 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1749 			netdev_err(dev, "PCI system error SERR#\n");
1750 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1751 			netdev_err(dev, "PCI parity error\n");
1752 
1753 		/* Write the error bits back to clear them. */
1754 		cfg &= (PCI_STATUS_PARITY |
1755 			PCI_STATUS_SIG_TARGET_ABORT |
1756 			PCI_STATUS_REC_TARGET_ABORT |
1757 			PCI_STATUS_REC_MASTER_ABORT |
1758 			PCI_STATUS_SIG_SYSTEM_ERROR |
1759 			PCI_STATUS_DETECTED_PARITY);
1760 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1761 	}
1762 
1763 	/* For all PCI errors, we should reset the chip. */
1764 	return 1;
1765 }
1766 
1767 /* All non-normal interrupt conditions get serviced here.
1768  * Returns non-zero if we should just exit the interrupt
1769  * handler right now (ie. if we reset the card which invalidates
1770  * all of the other original irq status bits).
1771  */
1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1773 			    u32 status)
1774 {
1775 	if (status & INTR_RX_TAG_ERROR) {
1776 		/* corrupt RX tag framing */
1777 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1778 			     "corrupt rx tag framing\n");
1779 		spin_lock(&cp->stat_lock[0]);
1780 		cp->net_stats[0].rx_errors++;
1781 		spin_unlock(&cp->stat_lock[0]);
1782 		goto do_reset;
1783 	}
1784 
1785 	if (status & INTR_RX_LEN_MISMATCH) {
1786 		/* length mismatch. */
1787 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1788 			     "length mismatch for rx frame\n");
1789 		spin_lock(&cp->stat_lock[0]);
1790 		cp->net_stats[0].rx_errors++;
1791 		spin_unlock(&cp->stat_lock[0]);
1792 		goto do_reset;
1793 	}
1794 
1795 	if (status & INTR_PCS_STATUS) {
1796 		if (cas_pcs_interrupt(dev, cp, status))
1797 			goto do_reset;
1798 	}
1799 
1800 	if (status & INTR_TX_MAC_STATUS) {
1801 		if (cas_txmac_interrupt(dev, cp, status))
1802 			goto do_reset;
1803 	}
1804 
1805 	if (status & INTR_RX_MAC_STATUS) {
1806 		if (cas_rxmac_interrupt(dev, cp, status))
1807 			goto do_reset;
1808 	}
1809 
1810 	if (status & INTR_MAC_CTRL_STATUS) {
1811 		if (cas_mac_interrupt(dev, cp, status))
1812 			goto do_reset;
1813 	}
1814 
1815 	if (status & INTR_MIF_STATUS) {
1816 		if (cas_mif_interrupt(dev, cp, status))
1817 			goto do_reset;
1818 	}
1819 
1820 	if (status & INTR_PCI_ERROR_STATUS) {
1821 		if (cas_pci_interrupt(dev, cp, status))
1822 			goto do_reset;
1823 	}
1824 	return 0;
1825 
1826 do_reset:
1827 #if 1
1828 	atomic_inc(&cp->reset_task_pending);
1829 	atomic_inc(&cp->reset_task_pending_all);
1830 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1831 	schedule_work(&cp->reset_task);
1832 #else
1833 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1834 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1835 	schedule_work(&cp->reset_task);
1836 #endif
1837 	return 1;
1838 }
1839 
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841  *       determining whether to do a netif_stop/wakeup
1842  */
1843 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1846 				  const int len)
1847 {
1848 	unsigned long off = addr + len;
1849 
1850 	if (CAS_TABORT(cp) == 1)
1851 		return 0;
1852 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853 		return 0;
1854 	return TX_TARGET_ABORT_LEN;
1855 }
1856 
1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 {
1859 	struct cas_tx_desc *txds;
1860 	struct sk_buff **skbs;
1861 	struct net_device *dev = cp->dev;
1862 	int entry, count;
1863 
1864 	spin_lock(&cp->tx_lock[ring]);
1865 	txds = cp->init_txds[ring];
1866 	skbs = cp->tx_skbs[ring];
1867 	entry = cp->tx_old[ring];
1868 
1869 	count = TX_BUFF_COUNT(ring, entry, limit);
1870 	while (entry != limit) {
1871 		struct sk_buff *skb = skbs[entry];
1872 		dma_addr_t daddr;
1873 		u32 dlen;
1874 		int frag;
1875 
1876 		if (!skb) {
1877 			/* this should never occur */
1878 			entry = TX_DESC_NEXT(ring, entry);
1879 			continue;
1880 		}
1881 
1882 		/* however, we might get only a partial skb release. */
1883 		count -= skb_shinfo(skb)->nr_frags +
1884 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1885 		if (count < 0)
1886 			break;
1887 
1888 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1889 			     "tx[%d] done, slot %d\n", ring, entry);
1890 
1891 		skbs[entry] = NULL;
1892 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1893 
1894 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895 			struct cas_tx_desc *txd = txds + entry;
1896 
1897 			daddr = le64_to_cpu(txd->buffer);
1898 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1899 				       le64_to_cpu(txd->control));
1900 			pci_unmap_page(cp->pdev, daddr, dlen,
1901 				       PCI_DMA_TODEVICE);
1902 			entry = TX_DESC_NEXT(ring, entry);
1903 
1904 			/* tiny buffer may follow */
1905 			if (cp->tx_tiny_use[ring][entry].used) {
1906 				cp->tx_tiny_use[ring][entry].used = 0;
1907 				entry = TX_DESC_NEXT(ring, entry);
1908 			}
1909 		}
1910 
1911 		spin_lock(&cp->stat_lock[ring]);
1912 		cp->net_stats[ring].tx_packets++;
1913 		cp->net_stats[ring].tx_bytes += skb->len;
1914 		spin_unlock(&cp->stat_lock[ring]);
1915 		dev_kfree_skb_irq(skb);
1916 	}
1917 	cp->tx_old[ring] = entry;
1918 
1919 	/* this is wrong for multiple tx rings. the net device needs
1920 	 * multiple queues for this to do the right thing.  we wait
1921 	 * for 2*packets to be available when using tiny buffers
1922 	 */
1923 	if (netif_queue_stopped(dev) &&
1924 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925 		netif_wake_queue(dev);
1926 	spin_unlock(&cp->tx_lock[ring]);
1927 }
1928 
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1930 		   u32 status)
1931 {
1932         int limit, ring;
1933 #ifdef USE_TX_COMPWB
1934 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 #endif
1936 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1937 		     "tx interrupt, status: 0x%x, %llx\n",
1938 		     status, (unsigned long long)compwb);
1939 	/* process all the rings */
1940 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942 		/* use the completion writeback registers */
1943 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944 			CAS_VAL(TX_COMPWB_LSB, compwb);
1945 		compwb = TX_COMPWB_NEXT(compwb);
1946 #else
1947 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 #endif
1949 		if (cp->tx_old[ring] != limit)
1950 			cas_tx_ringN(cp, ring, limit);
1951 	}
1952 }
1953 
1954 
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956 			      int entry, const u64 *words,
1957 			      struct sk_buff **skbref)
1958 {
1959 	int dlen, hlen, len, i, alloclen;
1960 	int off, swivel = RX_SWIVEL_OFF_VAL;
1961 	struct cas_page *page;
1962 	struct sk_buff *skb;
1963 	void *addr, *crcaddr;
1964 	__sum16 csum;
1965 	char *p;
1966 
1967 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1969 	len  = hlen + dlen;
1970 
1971 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1972 		alloclen = len;
1973 	else
1974 		alloclen = max(hlen, RX_COPY_MIN);
1975 
1976 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1977 	if (skb == NULL)
1978 		return -1;
1979 
1980 	*skbref = skb;
1981 	skb_reserve(skb, swivel);
1982 
1983 	p = skb->data;
1984 	addr = crcaddr = NULL;
1985 	if (hlen) { /* always copy header pages */
1986 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1989 			swivel;
1990 
1991 		i = hlen;
1992 		if (!dlen) /* attach FCS */
1993 			i += cp->crc_size;
1994 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1995 				    PCI_DMA_FROMDEVICE);
1996 		addr = cas_page_map(page->buffer);
1997 		memcpy(p, addr + off, i);
1998 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1999 				    PCI_DMA_FROMDEVICE);
2000 		cas_page_unmap(addr);
2001 		RX_USED_ADD(page, 0x100);
2002 		p += hlen;
2003 		swivel = 0;
2004 	}
2005 
2006 
2007 	if (alloclen < (hlen + dlen)) {
2008 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2009 
2010 		/* normal or jumbo packets. we use frags */
2011 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014 
2015 		hlen = min(cp->page_size - off, dlen);
2016 		if (hlen < 0) {
2017 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2018 				     "rx page overflow: %d\n", hlen);
2019 			dev_kfree_skb_irq(skb);
2020 			return -1;
2021 		}
2022 		i = hlen;
2023 		if (i == dlen)  /* attach FCS */
2024 			i += cp->crc_size;
2025 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2026 				    PCI_DMA_FROMDEVICE);
2027 
2028 		/* make sure we always copy a header */
2029 		swivel = 0;
2030 		if (p == (char *) skb->data) { /* not split */
2031 			addr = cas_page_map(page->buffer);
2032 			memcpy(p, addr + off, RX_COPY_MIN);
2033 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2034 					PCI_DMA_FROMDEVICE);
2035 			cas_page_unmap(addr);
2036 			off += RX_COPY_MIN;
2037 			swivel = RX_COPY_MIN;
2038 			RX_USED_ADD(page, cp->mtu_stride);
2039 		} else {
2040 			RX_USED_ADD(page, hlen);
2041 		}
2042 		skb_put(skb, alloclen);
2043 
2044 		skb_shinfo(skb)->nr_frags++;
2045 		skb->data_len += hlen - swivel;
2046 		skb->truesize += hlen - swivel;
2047 		skb->len      += hlen - swivel;
2048 
2049 		__skb_frag_set_page(frag, page->buffer);
2050 		__skb_frag_ref(frag);
2051 		frag->page_offset = off;
2052 		skb_frag_size_set(frag, hlen - swivel);
2053 
2054 		/* any more data? */
2055 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2056 			hlen = dlen;
2057 			off = 0;
2058 
2059 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2060 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2061 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2062 					    hlen + cp->crc_size,
2063 					    PCI_DMA_FROMDEVICE);
2064 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2065 					    hlen + cp->crc_size,
2066 					    PCI_DMA_FROMDEVICE);
2067 
2068 			skb_shinfo(skb)->nr_frags++;
2069 			skb->data_len += hlen;
2070 			skb->len      += hlen;
2071 			frag++;
2072 
2073 			__skb_frag_set_page(frag, page->buffer);
2074 			__skb_frag_ref(frag);
2075 			frag->page_offset = 0;
2076 			skb_frag_size_set(frag, hlen);
2077 			RX_USED_ADD(page, hlen + cp->crc_size);
2078 		}
2079 
2080 		if (cp->crc_size) {
2081 			addr = cas_page_map(page->buffer);
2082 			crcaddr  = addr + off + hlen;
2083 		}
2084 
2085 	} else {
2086 		/* copying packet */
2087 		if (!dlen)
2088 			goto end_copy_pkt;
2089 
2090 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2091 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2093 		hlen = min(cp->page_size - off, dlen);
2094 		if (hlen < 0) {
2095 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2096 				     "rx page overflow: %d\n", hlen);
2097 			dev_kfree_skb_irq(skb);
2098 			return -1;
2099 		}
2100 		i = hlen;
2101 		if (i == dlen) /* attach FCS */
2102 			i += cp->crc_size;
2103 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2104 				    PCI_DMA_FROMDEVICE);
2105 		addr = cas_page_map(page->buffer);
2106 		memcpy(p, addr + off, i);
2107 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2108 				    PCI_DMA_FROMDEVICE);
2109 		cas_page_unmap(addr);
2110 		if (p == (char *) skb->data) /* not split */
2111 			RX_USED_ADD(page, cp->mtu_stride);
2112 		else
2113 			RX_USED_ADD(page, i);
2114 
2115 		/* any more data? */
2116 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117 			p += hlen;
2118 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2119 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2120 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2121 					    dlen + cp->crc_size,
2122 					    PCI_DMA_FROMDEVICE);
2123 			addr = cas_page_map(page->buffer);
2124 			memcpy(p, addr, dlen + cp->crc_size);
2125 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2126 					    dlen + cp->crc_size,
2127 					    PCI_DMA_FROMDEVICE);
2128 			cas_page_unmap(addr);
2129 			RX_USED_ADD(page, dlen + cp->crc_size);
2130 		}
2131 end_copy_pkt:
2132 		if (cp->crc_size) {
2133 			addr    = NULL;
2134 			crcaddr = skb->data + alloclen;
2135 		}
2136 		skb_put(skb, alloclen);
2137 	}
2138 
2139 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140 	if (cp->crc_size) {
2141 		/* checksum includes FCS. strip it out. */
2142 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2143 					      csum_unfold(csum)));
2144 		if (addr)
2145 			cas_page_unmap(addr);
2146 	}
2147 	skb->protocol = eth_type_trans(skb, cp->dev);
2148 	if (skb->protocol == htons(ETH_P_IP)) {
2149 		skb->csum = csum_unfold(~csum);
2150 		skb->ip_summed = CHECKSUM_COMPLETE;
2151 	} else
2152 		skb_checksum_none_assert(skb);
2153 	return len;
2154 }
2155 
2156 
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158  * as nonreassm except that we batch up the buffers.
2159  * NOTE: we currently just treat each flow as a bunch of packets that
2160  *       we pass up. a better way would be to coalesce the packets
2161  *       into a jumbo packet. to do that, we need to do the following:
2162  *       1) the first packet will have a clean split between header and
2163  *          data. save both.
2164  *       2) each time the next flow packet comes in, extend the
2165  *          data length and merge the checksums.
2166  *       3) on flow release, fix up the header.
2167  *       4) make sure the higher layer doesn't care.
2168  * because packets get coalesced, we shouldn't run into fragment count
2169  * issues.
2170  */
2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2172 				   struct sk_buff *skb)
2173 {
2174 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2175 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176 
2177 	/* this is protected at a higher layer, so no need to
2178 	 * do any additional locking here. stick the buffer
2179 	 * at the end.
2180 	 */
2181 	__skb_queue_tail(flow, skb);
2182 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2183 		while ((skb = __skb_dequeue(flow))) {
2184 			cas_skb_release(skb);
2185 		}
2186 	}
2187 }
2188 
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190  * layer, this will need to put in a replacement.
2191  */
2192 static void cas_post_page(struct cas *cp, const int ring, const int index)
2193 {
2194 	cas_page_t *new;
2195 	int entry;
2196 
2197 	entry = cp->rx_old[ring];
2198 
2199 	new = cas_page_swap(cp, ring, index);
2200 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2201 	cp->init_rxds[ring][entry].index  =
2202 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2203 			    CAS_BASE(RX_INDEX_RING, ring));
2204 
2205 	entry = RX_DESC_ENTRY(ring, entry + 1);
2206 	cp->rx_old[ring] = entry;
2207 
2208 	if (entry % 4)
2209 		return;
2210 
2211 	if (ring == 0)
2212 		writel(entry, cp->regs + REG_RX_KICK);
2213 	else if ((N_RX_DESC_RINGS > 1) &&
2214 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2215 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2216 }
2217 
2218 
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 {
2222 	unsigned int entry, last, count, released;
2223 	int cluster;
2224 	cas_page_t **page = cp->rx_pages[ring];
2225 
2226 	entry = cp->rx_old[ring];
2227 
2228 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2229 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2230 
2231 	cluster = -1;
2232 	count = entry & 0x3;
2233 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234 	released = 0;
2235 	while (entry != last) {
2236 		/* make a new buffer if it's still in use */
2237 		if (page_count(page[entry]->buffer) > 1) {
2238 			cas_page_t *new = cas_page_dequeue(cp);
2239 			if (!new) {
2240 				/* let the timer know that we need to
2241 				 * do this again
2242 				 */
2243 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2244 				if (!timer_pending(&cp->link_timer))
2245 					mod_timer(&cp->link_timer, jiffies +
2246 						  CAS_LINK_FAST_TIMEOUT);
2247 				cp->rx_old[ring]  = entry;
2248 				cp->rx_last[ring] = num ? num - released : 0;
2249 				return -ENOMEM;
2250 			}
2251 			spin_lock(&cp->rx_inuse_lock);
2252 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2253 			spin_unlock(&cp->rx_inuse_lock);
2254 			cp->init_rxds[ring][entry].buffer =
2255 				cpu_to_le64(new->dma_addr);
2256 			page[entry] = new;
2257 
2258 		}
2259 
2260 		if (++count == 4) {
2261 			cluster = entry;
2262 			count = 0;
2263 		}
2264 		released++;
2265 		entry = RX_DESC_ENTRY(ring, entry + 1);
2266 	}
2267 	cp->rx_old[ring] = entry;
2268 
2269 	if (cluster < 0)
2270 		return 0;
2271 
2272 	if (ring == 0)
2273 		writel(cluster, cp->regs + REG_RX_KICK);
2274 	else if ((N_RX_DESC_RINGS > 1) &&
2275 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2276 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2277 	return 0;
2278 }
2279 
2280 
2281 /* process a completion ring. packets are set up in three basic ways:
2282  * small packets: should be copied header + data in single buffer.
2283  * large packets: header and data in a single buffer.
2284  * split packets: header in a separate buffer from data.
2285  *                data may be in multiple pages. data may be > 256
2286  *                bytes but in a single page.
2287  *
2288  * NOTE: RX page posting is done in this routine as well. while there's
2289  *       the capability of using multiple RX completion rings, it isn't
2290  *       really worthwhile due to the fact that the page posting will
2291  *       force serialization on the single descriptor ring.
2292  */
2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 {
2295 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2296 	int entry, drops;
2297 	int npackets = 0;
2298 
2299 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2300 		     "rx[%d] interrupt, done: %d/%d\n",
2301 		     ring,
2302 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303 
2304 	entry = cp->rx_new[ring];
2305 	drops = 0;
2306 	while (1) {
2307 		struct cas_rx_comp *rxc = rxcs + entry;
2308 		struct sk_buff *uninitialized_var(skb);
2309 		int type, len;
2310 		u64 words[4];
2311 		int i, dring;
2312 
2313 		words[0] = le64_to_cpu(rxc->word1);
2314 		words[1] = le64_to_cpu(rxc->word2);
2315 		words[2] = le64_to_cpu(rxc->word3);
2316 		words[3] = le64_to_cpu(rxc->word4);
2317 
2318 		/* don't touch if still owned by hw */
2319 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2320 		if (type == 0)
2321 			break;
2322 
2323 		/* hw hasn't cleared the zero bit yet */
2324 		if (words[3] & RX_COMP4_ZERO) {
2325 			break;
2326 		}
2327 
2328 		/* get info on the packet */
2329 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2330 			spin_lock(&cp->stat_lock[ring]);
2331 			cp->net_stats[ring].rx_errors++;
2332 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2333 				cp->net_stats[ring].rx_length_errors++;
2334 			if (words[3] & RX_COMP4_BAD)
2335 				cp->net_stats[ring].rx_crc_errors++;
2336 			spin_unlock(&cp->stat_lock[ring]);
2337 
2338 			/* We'll just return it to Cassini. */
2339 		drop_it:
2340 			spin_lock(&cp->stat_lock[ring]);
2341 			++cp->net_stats[ring].rx_dropped;
2342 			spin_unlock(&cp->stat_lock[ring]);
2343 			goto next;
2344 		}
2345 
2346 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2347 		if (len < 0) {
2348 			++drops;
2349 			goto drop_it;
2350 		}
2351 
2352 		/* see if it's a flow re-assembly or not. the driver
2353 		 * itself handles release back up.
2354 		 */
2355 		if (RX_DONT_BATCH || (type == 0x2)) {
2356 			/* non-reassm: these always get released */
2357 			cas_skb_release(skb);
2358 		} else {
2359 			cas_rx_flow_pkt(cp, words, skb);
2360 		}
2361 
2362 		spin_lock(&cp->stat_lock[ring]);
2363 		cp->net_stats[ring].rx_packets++;
2364 		cp->net_stats[ring].rx_bytes += len;
2365 		spin_unlock(&cp->stat_lock[ring]);
2366 
2367 	next:
2368 		npackets++;
2369 
2370 		/* should it be released? */
2371 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2372 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2373 			dring = CAS_VAL(RX_INDEX_RING, i);
2374 			i = CAS_VAL(RX_INDEX_NUM, i);
2375 			cas_post_page(cp, dring, i);
2376 		}
2377 
2378 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2379 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2380 			dring = CAS_VAL(RX_INDEX_RING, i);
2381 			i = CAS_VAL(RX_INDEX_NUM, i);
2382 			cas_post_page(cp, dring, i);
2383 		}
2384 
2385 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2386 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2387 			dring = CAS_VAL(RX_INDEX_RING, i);
2388 			i = CAS_VAL(RX_INDEX_NUM, i);
2389 			cas_post_page(cp, dring, i);
2390 		}
2391 
2392 		/* skip to the next entry */
2393 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2394 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 #ifdef USE_NAPI
2396 		if (budget && (npackets >= budget))
2397 			break;
2398 #endif
2399 	}
2400 	cp->rx_new[ring] = entry;
2401 
2402 	if (drops)
2403 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2404 	return npackets;
2405 }
2406 
2407 
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device *dev,
2410 				struct cas *cp, int ring)
2411 {
2412 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2413 	int last, entry;
2414 
2415 	last = cp->rx_cur[ring];
2416 	entry = cp->rx_new[ring];
2417 	netif_printk(cp, intr, KERN_DEBUG, dev,
2418 		     "rxc[%d] interrupt, done: %d/%d\n",
2419 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420 
2421 	/* zero and re-mark descriptors */
2422 	while (last != entry) {
2423 		cas_rxc_init(rxc + last);
2424 		last = RX_COMP_ENTRY(ring, last + 1);
2425 	}
2426 	cp->rx_cur[ring] = last;
2427 
2428 	if (ring == 0)
2429 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2430 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2431 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2432 }
2433 
2434 
2435 
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437  * rings 3 and 4 are identical
2438  */
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device *dev,
2441 				   struct cas *cp, const u32 status,
2442 				   const int ring)
2443 {
2444 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2445 		cas_post_rxcs_ringN(dev, cp, ring);
2446 }
2447 
2448 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 {
2450 	struct net_device *dev = dev_id;
2451 	struct cas *cp = netdev_priv(dev);
2452 	unsigned long flags;
2453 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2454 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455 
2456 	/* check for shared irq */
2457 	if (status == 0)
2458 		return IRQ_NONE;
2459 
2460 	spin_lock_irqsave(&cp->lock, flags);
2461 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2462 #ifdef USE_NAPI
2463 		cas_mask_intr(cp);
2464 		napi_schedule(&cp->napi);
2465 #else
2466 		cas_rx_ringN(cp, ring, 0);
2467 #endif
2468 		status &= ~INTR_RX_DONE_ALT;
2469 	}
2470 
2471 	if (status)
2472 		cas_handle_irqN(dev, cp, status, ring);
2473 	spin_unlock_irqrestore(&cp->lock, flags);
2474 	return IRQ_HANDLED;
2475 }
2476 #endif
2477 
2478 #ifdef USE_PCI_INTB
2479 /* everything but rx packets */
2480 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 {
2482 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2483 		/* Frame arrived, no free RX buffers available.
2484 		 * NOTE: we can get this on a link transition. */
2485 		cas_post_rxds_ringN(cp, 1, 0);
2486 		spin_lock(&cp->stat_lock[1]);
2487 		cp->net_stats[1].rx_dropped++;
2488 		spin_unlock(&cp->stat_lock[1]);
2489 	}
2490 
2491 	if (status & INTR_RX_BUF_AE_1)
2492 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2493 				    RX_AE_FREEN_VAL(1));
2494 
2495 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2496 		cas_post_rxcs_ringN(cp, 1);
2497 }
2498 
2499 /* ring 2 handles a few more events than 3 and 4 */
2500 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 {
2502 	struct net_device *dev = dev_id;
2503 	struct cas *cp = netdev_priv(dev);
2504 	unsigned long flags;
2505 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506 
2507 	/* check for shared interrupt */
2508 	if (status == 0)
2509 		return IRQ_NONE;
2510 
2511 	spin_lock_irqsave(&cp->lock, flags);
2512 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2513 #ifdef USE_NAPI
2514 		cas_mask_intr(cp);
2515 		napi_schedule(&cp->napi);
2516 #else
2517 		cas_rx_ringN(cp, 1, 0);
2518 #endif
2519 		status &= ~INTR_RX_DONE_ALT;
2520 	}
2521 	if (status)
2522 		cas_handle_irq1(cp, status);
2523 	spin_unlock_irqrestore(&cp->lock, flags);
2524 	return IRQ_HANDLED;
2525 }
2526 #endif
2527 
2528 static inline void cas_handle_irq(struct net_device *dev,
2529 				  struct cas *cp, const u32 status)
2530 {
2531 	/* housekeeping interrupts */
2532 	if (status & INTR_ERROR_MASK)
2533 		cas_abnormal_irq(dev, cp, status);
2534 
2535 	if (status & INTR_RX_BUF_UNAVAIL) {
2536 		/* Frame arrived, no free RX buffers available.
2537 		 * NOTE: we can get this on a link transition.
2538 		 */
2539 		cas_post_rxds_ringN(cp, 0, 0);
2540 		spin_lock(&cp->stat_lock[0]);
2541 		cp->net_stats[0].rx_dropped++;
2542 		spin_unlock(&cp->stat_lock[0]);
2543 	} else if (status & INTR_RX_BUF_AE) {
2544 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2545 				    RX_AE_FREEN_VAL(0));
2546 	}
2547 
2548 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2549 		cas_post_rxcs_ringN(dev, cp, 0);
2550 }
2551 
2552 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 {
2554 	struct net_device *dev = dev_id;
2555 	struct cas *cp = netdev_priv(dev);
2556 	unsigned long flags;
2557 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2558 
2559 	if (status == 0)
2560 		return IRQ_NONE;
2561 
2562 	spin_lock_irqsave(&cp->lock, flags);
2563 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2564 		cas_tx(dev, cp, status);
2565 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2566 	}
2567 
2568 	if (status & INTR_RX_DONE) {
2569 #ifdef USE_NAPI
2570 		cas_mask_intr(cp);
2571 		napi_schedule(&cp->napi);
2572 #else
2573 		cas_rx_ringN(cp, 0, 0);
2574 #endif
2575 		status &= ~INTR_RX_DONE;
2576 	}
2577 
2578 	if (status)
2579 		cas_handle_irq(dev, cp, status);
2580 	spin_unlock_irqrestore(&cp->lock, flags);
2581 	return IRQ_HANDLED;
2582 }
2583 
2584 
2585 #ifdef USE_NAPI
2586 static int cas_poll(struct napi_struct *napi, int budget)
2587 {
2588 	struct cas *cp = container_of(napi, struct cas, napi);
2589 	struct net_device *dev = cp->dev;
2590 	int i, enable_intr, credits;
2591 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2592 	unsigned long flags;
2593 
2594 	spin_lock_irqsave(&cp->lock, flags);
2595 	cas_tx(dev, cp, status);
2596 	spin_unlock_irqrestore(&cp->lock, flags);
2597 
2598 	/* NAPI rx packets. we spread the credits across all of the
2599 	 * rxc rings
2600 	 *
2601 	 * to make sure we're fair with the work we loop through each
2602 	 * ring N_RX_COMP_RING times with a request of
2603 	 * budget / N_RX_COMP_RINGS
2604 	 */
2605 	enable_intr = 1;
2606 	credits = 0;
2607 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2608 		int j;
2609 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2610 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2611 			if (credits >= budget) {
2612 				enable_intr = 0;
2613 				goto rx_comp;
2614 			}
2615 		}
2616 	}
2617 
2618 rx_comp:
2619 	/* final rx completion */
2620 	spin_lock_irqsave(&cp->lock, flags);
2621 	if (status)
2622 		cas_handle_irq(dev, cp, status);
2623 
2624 #ifdef USE_PCI_INTB
2625 	if (N_RX_COMP_RINGS > 1) {
2626 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2627 		if (status)
2628 			cas_handle_irq1(dev, cp, status);
2629 	}
2630 #endif
2631 
2632 #ifdef USE_PCI_INTC
2633 	if (N_RX_COMP_RINGS > 2) {
2634 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2635 		if (status)
2636 			cas_handle_irqN(dev, cp, status, 2);
2637 	}
2638 #endif
2639 
2640 #ifdef USE_PCI_INTD
2641 	if (N_RX_COMP_RINGS > 3) {
2642 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2643 		if (status)
2644 			cas_handle_irqN(dev, cp, status, 3);
2645 	}
2646 #endif
2647 	spin_unlock_irqrestore(&cp->lock, flags);
2648 	if (enable_intr) {
2649 		napi_complete(napi);
2650 		cas_unmask_intr(cp);
2651 	}
2652 	return credits;
2653 }
2654 #endif
2655 
2656 #ifdef CONFIG_NET_POLL_CONTROLLER
2657 static void cas_netpoll(struct net_device *dev)
2658 {
2659 	struct cas *cp = netdev_priv(dev);
2660 
2661 	cas_disable_irq(cp, 0);
2662 	cas_interrupt(cp->pdev->irq, dev);
2663 	cas_enable_irq(cp, 0);
2664 
2665 #ifdef USE_PCI_INTB
2666 	if (N_RX_COMP_RINGS > 1) {
2667 		/* cas_interrupt1(); */
2668 	}
2669 #endif
2670 #ifdef USE_PCI_INTC
2671 	if (N_RX_COMP_RINGS > 2) {
2672 		/* cas_interruptN(); */
2673 	}
2674 #endif
2675 #ifdef USE_PCI_INTD
2676 	if (N_RX_COMP_RINGS > 3) {
2677 		/* cas_interruptN(); */
2678 	}
2679 #endif
2680 }
2681 #endif
2682 
2683 static void cas_tx_timeout(struct net_device *dev)
2684 {
2685 	struct cas *cp = netdev_priv(dev);
2686 
2687 	netdev_err(dev, "transmit timed out, resetting\n");
2688 	if (!cp->hw_running) {
2689 		netdev_err(dev, "hrm.. hw not running!\n");
2690 		return;
2691 	}
2692 
2693 	netdev_err(dev, "MIF_STATE[%08x]\n",
2694 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2695 
2696 	netdev_err(dev, "MAC_STATE[%08x]\n",
2697 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2698 
2699 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700 		   readl(cp->regs + REG_TX_CFG),
2701 		   readl(cp->regs + REG_MAC_TX_STATUS),
2702 		   readl(cp->regs + REG_MAC_TX_CFG),
2703 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2704 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2705 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2706 		   readl(cp->regs + REG_TX_SM_1),
2707 		   readl(cp->regs + REG_TX_SM_2));
2708 
2709 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2710 		   readl(cp->regs + REG_RX_CFG),
2711 		   readl(cp->regs + REG_MAC_RX_STATUS),
2712 		   readl(cp->regs + REG_MAC_RX_CFG));
2713 
2714 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2715 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2716 		   readl(cp->regs + REG_HP_STATUS0),
2717 		   readl(cp->regs + REG_HP_STATUS1),
2718 		   readl(cp->regs + REG_HP_STATUS2));
2719 
2720 #if 1
2721 	atomic_inc(&cp->reset_task_pending);
2722 	atomic_inc(&cp->reset_task_pending_all);
2723 	schedule_work(&cp->reset_task);
2724 #else
2725 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2726 	schedule_work(&cp->reset_task);
2727 #endif
2728 }
2729 
2730 static inline int cas_intme(int ring, int entry)
2731 {
2732 	/* Algorithm: IRQ every 1/2 of descriptors. */
2733 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2734 		return 1;
2735 	return 0;
2736 }
2737 
2738 
2739 static void cas_write_txd(struct cas *cp, int ring, int entry,
2740 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2741 {
2742 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743 
2744 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2745 	if (cas_intme(ring, entry))
2746 		ctrl |= TX_DESC_INTME;
2747 	if (last)
2748 		ctrl |= TX_DESC_EOF;
2749 	txd->control = cpu_to_le64(ctrl);
2750 	txd->buffer = cpu_to_le64(mapping);
2751 }
2752 
2753 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2754 				const int entry)
2755 {
2756 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2757 }
2758 
2759 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2760 				     const int entry, const int tentry)
2761 {
2762 	cp->tx_tiny_use[ring][tentry].nbufs++;
2763 	cp->tx_tiny_use[ring][entry].used = 1;
2764 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2765 }
2766 
2767 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2768 				    struct sk_buff *skb)
2769 {
2770 	struct net_device *dev = cp->dev;
2771 	int entry, nr_frags, frag, tabort, tentry;
2772 	dma_addr_t mapping;
2773 	unsigned long flags;
2774 	u64 ctrl;
2775 	u32 len;
2776 
2777 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778 
2779 	/* This is a hard error, log it. */
2780 	if (TX_BUFFS_AVAIL(cp, ring) <=
2781 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2782 		netif_stop_queue(dev);
2783 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2784 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2785 		return 1;
2786 	}
2787 
2788 	ctrl = 0;
2789 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2790 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2791 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2792 
2793 		ctrl =  TX_DESC_CSUM_EN |
2794 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2795 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2796 	}
2797 
2798 	entry = cp->tx_new[ring];
2799 	cp->tx_skbs[ring][entry] = skb;
2800 
2801 	nr_frags = skb_shinfo(skb)->nr_frags;
2802 	len = skb_headlen(skb);
2803 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2804 			       offset_in_page(skb->data), len,
2805 			       PCI_DMA_TODEVICE);
2806 
2807 	tentry = entry;
2808 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2809 	if (unlikely(tabort)) {
2810 		/* NOTE: len is always >  tabort */
2811 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812 			      ctrl | TX_DESC_SOF, 0);
2813 		entry = TX_DESC_NEXT(ring, entry);
2814 
2815 		skb_copy_from_linear_data_offset(skb, len - tabort,
2816 			      tx_tiny_buf(cp, ring, entry), tabort);
2817 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2818 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2819 			      (nr_frags == 0));
2820 	} else {
2821 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2822 			      TX_DESC_SOF, (nr_frags == 0));
2823 	}
2824 	entry = TX_DESC_NEXT(ring, entry);
2825 
2826 	for (frag = 0; frag < nr_frags; frag++) {
2827 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828 
2829 		len = skb_frag_size(fragp);
2830 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2831 					   DMA_TO_DEVICE);
2832 
2833 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2834 		if (unlikely(tabort)) {
2835 			void *addr;
2836 
2837 			/* NOTE: len is always > tabort */
2838 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2839 				      ctrl, 0);
2840 			entry = TX_DESC_NEXT(ring, entry);
2841 
2842 			addr = cas_page_map(skb_frag_page(fragp));
2843 			memcpy(tx_tiny_buf(cp, ring, entry),
2844 			       addr + fragp->page_offset + len - tabort,
2845 			       tabort);
2846 			cas_page_unmap(addr);
2847 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2848 			len     = tabort;
2849 		}
2850 
2851 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2852 			      (frag + 1 == nr_frags));
2853 		entry = TX_DESC_NEXT(ring, entry);
2854 	}
2855 
2856 	cp->tx_new[ring] = entry;
2857 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2858 		netif_stop_queue(dev);
2859 
2860 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2861 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2862 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2863 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2864 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2865 	return 0;
2866 }
2867 
2868 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2869 {
2870 	struct cas *cp = netdev_priv(dev);
2871 
2872 	/* this is only used as a load-balancing hint, so it doesn't
2873 	 * need to be SMP safe
2874 	 */
2875 	static int ring;
2876 
2877 	if (skb_padto(skb, cp->min_frame_size))
2878 		return NETDEV_TX_OK;
2879 
2880 	/* XXX: we need some higher-level QoS hooks to steer packets to
2881 	 *      individual queues.
2882 	 */
2883 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2884 		return NETDEV_TX_BUSY;
2885 	return NETDEV_TX_OK;
2886 }
2887 
2888 static void cas_init_tx_dma(struct cas *cp)
2889 {
2890 	u64 desc_dma = cp->block_dvma;
2891 	unsigned long off;
2892 	u32 val;
2893 	int i;
2894 
2895 	/* set up tx completion writeback registers. must be 8-byte aligned */
2896 #ifdef USE_TX_COMPWB
2897 	off = offsetof(struct cas_init_block, tx_compwb);
2898 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2899 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2900 #endif
2901 
2902 	/* enable completion writebacks, enable paced mode,
2903 	 * disable read pipe, and disable pre-interrupt compwbs
2904 	 */
2905 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2906 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2907 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2908 		TX_CFG_INTR_COMPWB_DIS;
2909 
2910 	/* write out tx ring info and tx desc bases */
2911 	for (i = 0; i < MAX_TX_RINGS; i++) {
2912 		off = (unsigned long) cp->init_txds[i] -
2913 			(unsigned long) cp->init_block;
2914 
2915 		val |= CAS_TX_RINGN_BASE(i);
2916 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2917 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2918 		       REG_TX_DBN_LOW(i));
2919 		/* don't zero out the kick register here as the system
2920 		 * will wedge
2921 		 */
2922 	}
2923 	writel(val, cp->regs + REG_TX_CFG);
2924 
2925 	/* program max burst sizes. these numbers should be different
2926 	 * if doing QoS.
2927 	 */
2928 #ifdef USE_QOS
2929 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2930 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2931 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2932 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2933 #else
2934 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2935 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2936 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2937 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2938 #endif
2939 }
2940 
2941 /* Must be invoked under cp->lock. */
2942 static inline void cas_init_dma(struct cas *cp)
2943 {
2944 	cas_init_tx_dma(cp);
2945 	cas_init_rx_dma(cp);
2946 }
2947 
2948 static void cas_process_mc_list(struct cas *cp)
2949 {
2950 	u16 hash_table[16];
2951 	u32 crc;
2952 	struct netdev_hw_addr *ha;
2953 	int i = 1;
2954 
2955 	memset(hash_table, 0, sizeof(hash_table));
2956 	netdev_for_each_mc_addr(ha, cp->dev) {
2957 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2958 			/* use the alternate mac address registers for the
2959 			 * first 15 multicast addresses
2960 			 */
2961 			writel((ha->addr[4] << 8) | ha->addr[5],
2962 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2963 			writel((ha->addr[2] << 8) | ha->addr[3],
2964 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2965 			writel((ha->addr[0] << 8) | ha->addr[1],
2966 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2967 			i++;
2968 		}
2969 		else {
2970 			/* use hw hash table for the next series of
2971 			 * multicast addresses
2972 			 */
2973 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2974 			crc >>= 24;
2975 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2976 		}
2977 	}
2978 	for (i = 0; i < 16; i++)
2979 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2980 }
2981 
2982 /* Must be invoked under cp->lock. */
2983 static u32 cas_setup_multicast(struct cas *cp)
2984 {
2985 	u32 rxcfg = 0;
2986 	int i;
2987 
2988 	if (cp->dev->flags & IFF_PROMISC) {
2989 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990 
2991 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2992 	    	for (i=0; i < 16; i++)
2993 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2994 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2995 
2996 	} else {
2997 		cas_process_mc_list(cp);
2998 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2999 	}
3000 
3001 	return rxcfg;
3002 }
3003 
3004 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3005 static void cas_clear_mac_err(struct cas *cp)
3006 {
3007 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3008 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3009 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3010 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3011 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3012 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3013 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3014 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3015 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3016 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3017 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3018 }
3019 
3020 
3021 static void cas_mac_reset(struct cas *cp)
3022 {
3023 	int i;
3024 
3025 	/* do both TX and RX reset */
3026 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3027 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3028 
3029 	/* wait for TX */
3030 	i = STOP_TRIES;
3031 	while (i-- > 0) {
3032 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3033 			break;
3034 		udelay(10);
3035 	}
3036 
3037 	/* wait for RX */
3038 	i = STOP_TRIES;
3039 	while (i-- > 0) {
3040 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3041 			break;
3042 		udelay(10);
3043 	}
3044 
3045 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3046 	    readl(cp->regs + REG_MAC_RX_RESET))
3047 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3048 			   readl(cp->regs + REG_MAC_TX_RESET),
3049 			   readl(cp->regs + REG_MAC_RX_RESET),
3050 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3051 }
3052 
3053 
3054 /* Must be invoked under cp->lock. */
3055 static void cas_init_mac(struct cas *cp)
3056 {
3057 	unsigned char *e = &cp->dev->dev_addr[0];
3058 	int i;
3059 	cas_mac_reset(cp);
3060 
3061 	/* setup core arbitration weight register */
3062 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3063 
3064 	/* XXX Use pci_dma_burst_advice() */
3065 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3066 	/* set the infinite burst register for chips that don't have
3067 	 * pci issues.
3068 	 */
3069 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3070 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3071 #endif
3072 
3073 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3074 
3075 	writel(0x00, cp->regs + REG_MAC_IPG0);
3076 	writel(0x08, cp->regs + REG_MAC_IPG1);
3077 	writel(0x04, cp->regs + REG_MAC_IPG2);
3078 
3079 	/* change later for 802.3z */
3080 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3081 
3082 	/* min frame + FCS */
3083 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3084 
3085 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3086 	 * specify the maximum frame size to prevent RX tag errors on
3087 	 * oversized frames.
3088 	 */
3089 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3090 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3091 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3092 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3093 
3094 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3095 	 * workaround saturn half-duplex issue by increasing preamble
3096 	 * size to 65 bytes.
3097 	 */
3098 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3099 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3100 	else
3101 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3102 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3103 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3104 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3105 
3106 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3107 
3108 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3109 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3110 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3111 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3112 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3113 
3114 	/* setup mac address in perfect filter array */
3115 	for (i = 0; i < 45; i++)
3116 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3117 
3118 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3119 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3120 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3121 
3122 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3123 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3124 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3125 
3126 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3127 
3128 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3129 	cas_clear_mac_err(cp);
3130 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3131 
3132 	/* Setup MAC interrupts.  We want to get all of the interesting
3133 	 * counter expiration events, but we do not want to hear about
3134 	 * normal rx/tx as the DMA engine tells us that.
3135 	 */
3136 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3137 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3138 
3139 	/* Don't enable even the PAUSE interrupts for now, we
3140 	 * make no use of those events other than to record them.
3141 	 */
3142 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3143 }
3144 
3145 /* Must be invoked under cp->lock. */
3146 static void cas_init_pause_thresholds(struct cas *cp)
3147 {
3148 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3149 	 * full RX fifo size effectively disables PAUSE generation
3150 	 */
3151 	if (cp->rx_fifo_size <= (2 * 1024)) {
3152 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3153 	} else {
3154 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3155 		if (max_frame * 3 > cp->rx_fifo_size) {
3156 			cp->rx_pause_off = 7104;
3157 			cp->rx_pause_on  = 960;
3158 		} else {
3159 			int off = (cp->rx_fifo_size - (max_frame * 2));
3160 			int on = off - max_frame;
3161 			cp->rx_pause_off = off;
3162 			cp->rx_pause_on = on;
3163 		}
3164 	}
3165 }
3166 
3167 static int cas_vpd_match(const void __iomem *p, const char *str)
3168 {
3169 	int len = strlen(str) + 1;
3170 	int i;
3171 
3172 	for (i = 0; i < len; i++) {
3173 		if (readb(p + i) != str[i])
3174 			return 0;
3175 	}
3176 	return 1;
3177 }
3178 
3179 
3180 /* get the mac address by reading the vpd information in the rom.
3181  * also get the phy type and determine if there's an entropy generator.
3182  * NOTE: this is a bit convoluted for the following reasons:
3183  *  1) vpd info has order-dependent mac addresses for multinic cards
3184  *  2) the only way to determine the nic order is to use the slot
3185  *     number.
3186  *  3) fiber cards don't have bridges, so their slot numbers don't
3187  *     mean anything.
3188  *  4) we don't actually know we have a fiber card until after
3189  *     the mac addresses are parsed.
3190  */
3191 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3192 			    const int offset)
3193 {
3194 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3195 	void __iomem *base, *kstart;
3196 	int i, len;
3197 	int found = 0;
3198 #define VPD_FOUND_MAC        0x01
3199 #define VPD_FOUND_PHY        0x02
3200 
3201 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3202 	int mac_off  = 0;
3203 
3204 #if defined(CONFIG_SPARC)
3205 	const unsigned char *addr;
3206 #endif
3207 
3208 	/* give us access to the PROM */
3209 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3210 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3211 
3212 	/* check for an expansion rom */
3213 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3214 		goto use_random_mac_addr;
3215 
3216 	/* search for beginning of vpd */
3217 	base = NULL;
3218 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3219 		/* check for PCIR */
3220 		if ((readb(p + i + 0) == 0x50) &&
3221 		    (readb(p + i + 1) == 0x43) &&
3222 		    (readb(p + i + 2) == 0x49) &&
3223 		    (readb(p + i + 3) == 0x52)) {
3224 			base = p + (readb(p + i + 8) |
3225 				    (readb(p + i + 9) << 8));
3226 			break;
3227 		}
3228 	}
3229 
3230 	if (!base || (readb(base) != 0x82))
3231 		goto use_random_mac_addr;
3232 
3233 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3234 	while (i < EXPANSION_ROM_SIZE) {
3235 		if (readb(base + i) != 0x90) /* no vpd found */
3236 			goto use_random_mac_addr;
3237 
3238 		/* found a vpd field */
3239 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3240 
3241 		/* extract keywords */
3242 		kstart = base + i + 3;
3243 		p = kstart;
3244 		while ((p - kstart) < len) {
3245 			int klen = readb(p + 2);
3246 			int j;
3247 			char type;
3248 
3249 			p += 3;
3250 
3251 			/* look for the following things:
3252 			 * -- correct length == 29
3253 			 * 3 (type) + 2 (size) +
3254 			 * 18 (strlen("local-mac-address") + 1) +
3255 			 * 6 (mac addr)
3256 			 * -- VPD Instance 'I'
3257 			 * -- VPD Type Bytes 'B'
3258 			 * -- VPD data length == 6
3259 			 * -- property string == local-mac-address
3260 			 *
3261 			 * -- correct length == 24
3262 			 * 3 (type) + 2 (size) +
3263 			 * 12 (strlen("entropy-dev") + 1) +
3264 			 * 7 (strlen("vms110") + 1)
3265 			 * -- VPD Instance 'I'
3266 			 * -- VPD Type String 'B'
3267 			 * -- VPD data length == 7
3268 			 * -- property string == entropy-dev
3269 			 *
3270 			 * -- correct length == 18
3271 			 * 3 (type) + 2 (size) +
3272 			 * 9 (strlen("phy-type") + 1) +
3273 			 * 4 (strlen("pcs") + 1)
3274 			 * -- VPD Instance 'I'
3275 			 * -- VPD Type String 'S'
3276 			 * -- VPD data length == 4
3277 			 * -- property string == phy-type
3278 			 *
3279 			 * -- correct length == 23
3280 			 * 3 (type) + 2 (size) +
3281 			 * 14 (strlen("phy-interface") + 1) +
3282 			 * 4 (strlen("pcs") + 1)
3283 			 * -- VPD Instance 'I'
3284 			 * -- VPD Type String 'S'
3285 			 * -- VPD data length == 4
3286 			 * -- property string == phy-interface
3287 			 */
3288 			if (readb(p) != 'I')
3289 				goto next;
3290 
3291 			/* finally, check string and length */
3292 			type = readb(p + 3);
3293 			if (type == 'B') {
3294 				if ((klen == 29) && readb(p + 4) == 6 &&
3295 				    cas_vpd_match(p + 5,
3296 						  "local-mac-address")) {
3297 					if (mac_off++ > offset)
3298 						goto next;
3299 
3300 					/* set mac address */
3301 					for (j = 0; j < 6; j++)
3302 						dev_addr[j] =
3303 							readb(p + 23 + j);
3304 					goto found_mac;
3305 				}
3306 			}
3307 
3308 			if (type != 'S')
3309 				goto next;
3310 
3311 #ifdef USE_ENTROPY_DEV
3312 			if ((klen == 24) &&
3313 			    cas_vpd_match(p + 5, "entropy-dev") &&
3314 			    cas_vpd_match(p + 17, "vms110")) {
3315 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3316 				goto next;
3317 			}
3318 #endif
3319 
3320 			if (found & VPD_FOUND_PHY)
3321 				goto next;
3322 
3323 			if ((klen == 18) && readb(p + 4) == 4 &&
3324 			    cas_vpd_match(p + 5, "phy-type")) {
3325 				if (cas_vpd_match(p + 14, "pcs")) {
3326 					phy_type = CAS_PHY_SERDES;
3327 					goto found_phy;
3328 				}
3329 			}
3330 
3331 			if ((klen == 23) && readb(p + 4) == 4 &&
3332 			    cas_vpd_match(p + 5, "phy-interface")) {
3333 				if (cas_vpd_match(p + 19, "pcs")) {
3334 					phy_type = CAS_PHY_SERDES;
3335 					goto found_phy;
3336 				}
3337 			}
3338 found_mac:
3339 			found |= VPD_FOUND_MAC;
3340 			goto next;
3341 
3342 found_phy:
3343 			found |= VPD_FOUND_PHY;
3344 
3345 next:
3346 			p += klen;
3347 		}
3348 		i += len + 3;
3349 	}
3350 
3351 use_random_mac_addr:
3352 	if (found & VPD_FOUND_MAC)
3353 		goto done;
3354 
3355 #if defined(CONFIG_SPARC)
3356 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3357 	if (addr != NULL) {
3358 		memcpy(dev_addr, addr, 6);
3359 		goto done;
3360 	}
3361 #endif
3362 
3363 	/* Sun MAC prefix then 3 random bytes. */
3364 	pr_info("MAC address not found in ROM VPD\n");
3365 	dev_addr[0] = 0x08;
3366 	dev_addr[1] = 0x00;
3367 	dev_addr[2] = 0x20;
3368 	get_random_bytes(dev_addr + 3, 3);
3369 
3370 done:
3371 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3372 	return phy_type;
3373 }
3374 
3375 /* check pci invariants */
3376 static void cas_check_pci_invariants(struct cas *cp)
3377 {
3378 	struct pci_dev *pdev = cp->pdev;
3379 
3380 	cp->cas_flags = 0;
3381 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3382 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3383 		if (pdev->revision >= CAS_ID_REVPLUS)
3384 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3385 		if (pdev->revision < CAS_ID_REVPLUS02u)
3386 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3387 
3388 		/* Original Cassini supports HW CSUM, but it's not
3389 		 * enabled by default as it can trigger TX hangs.
3390 		 */
3391 		if (pdev->revision < CAS_ID_REV2)
3392 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3393 	} else {
3394 		/* Only sun has original cassini chips.  */
3395 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3396 
3397 		/* We use a flag because the same phy might be externally
3398 		 * connected.
3399 		 */
3400 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3401 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3402 			cp->cas_flags |= CAS_FLAG_SATURN;
3403 	}
3404 }
3405 
3406 
3407 static int cas_check_invariants(struct cas *cp)
3408 {
3409 	struct pci_dev *pdev = cp->pdev;
3410 	u32 cfg;
3411 	int i;
3412 
3413 	/* get page size for rx buffers. */
3414 	cp->page_order = 0;
3415 #ifdef USE_PAGE_ORDER
3416 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3417 		/* see if we can allocate larger pages */
3418 		struct page *page = alloc_pages(GFP_ATOMIC,
3419 						CAS_JUMBO_PAGE_SHIFT -
3420 						PAGE_SHIFT);
3421 		if (page) {
3422 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3423 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3424 		} else {
3425 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3426 		}
3427 	}
3428 #endif
3429 	cp->page_size = (PAGE_SIZE << cp->page_order);
3430 
3431 	/* Fetch the FIFO configurations. */
3432 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3433 	cp->rx_fifo_size = RX_FIFO_SIZE;
3434 
3435 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3436 	 * they're both connected.
3437 	 */
3438 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3439 					PCI_SLOT(pdev->devfn));
3440 	if (cp->phy_type & CAS_PHY_SERDES) {
3441 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3442 		return 0; /* no more checking needed */
3443 	}
3444 
3445 	/* MII */
3446 	cfg = readl(cp->regs + REG_MIF_CFG);
3447 	if (cfg & MIF_CFG_MDIO_1) {
3448 		cp->phy_type = CAS_PHY_MII_MDIO1;
3449 	} else if (cfg & MIF_CFG_MDIO_0) {
3450 		cp->phy_type = CAS_PHY_MII_MDIO0;
3451 	}
3452 
3453 	cas_mif_poll(cp, 0);
3454 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3455 
3456 	for (i = 0; i < 32; i++) {
3457 		u32 phy_id;
3458 		int j;
3459 
3460 		for (j = 0; j < 3; j++) {
3461 			cp->phy_addr = i;
3462 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3463 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3464 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3465 				cp->phy_id = phy_id;
3466 				goto done;
3467 			}
3468 		}
3469 	}
3470 	pr_err("MII phy did not respond [%08x]\n",
3471 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3472 	return -1;
3473 
3474 done:
3475 	/* see if we can do gigabit */
3476 	cfg = cas_phy_read(cp, MII_BMSR);
3477 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3478 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3479 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3480 	return 0;
3481 }
3482 
3483 /* Must be invoked under cp->lock. */
3484 static inline void cas_start_dma(struct cas *cp)
3485 {
3486 	int i;
3487 	u32 val;
3488 	int txfailed = 0;
3489 
3490 	/* enable dma */
3491 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3492 	writel(val, cp->regs + REG_TX_CFG);
3493 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3494 	writel(val, cp->regs + REG_RX_CFG);
3495 
3496 	/* enable the mac */
3497 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3498 	writel(val, cp->regs + REG_MAC_TX_CFG);
3499 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3500 	writel(val, cp->regs + REG_MAC_RX_CFG);
3501 
3502 	i = STOP_TRIES;
3503 	while (i-- > 0) {
3504 		val = readl(cp->regs + REG_MAC_TX_CFG);
3505 		if ((val & MAC_TX_CFG_EN))
3506 			break;
3507 		udelay(10);
3508 	}
3509 	if (i < 0) txfailed = 1;
3510 	i = STOP_TRIES;
3511 	while (i-- > 0) {
3512 		val = readl(cp->regs + REG_MAC_RX_CFG);
3513 		if ((val & MAC_RX_CFG_EN)) {
3514 			if (txfailed) {
3515 				netdev_err(cp->dev,
3516 					   "enabling mac failed [tx:%08x:%08x]\n",
3517 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3518 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3519 			}
3520 			goto enable_rx_done;
3521 		}
3522 		udelay(10);
3523 	}
3524 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3525 		   (txfailed ? "tx,rx" : "rx"),
3526 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3527 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3528 
3529 enable_rx_done:
3530 	cas_unmask_intr(cp); /* enable interrupts */
3531 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3532 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3533 
3534 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3535 		if (N_RX_DESC_RINGS > 1)
3536 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3537 			       cp->regs + REG_PLUS_RX_KICK1);
3538 
3539 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3540 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3541 	}
3542 }
3543 
3544 /* Must be invoked under cp->lock. */
3545 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3546 				   int *pause)
3547 {
3548 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3549 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3550 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3551 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3552 		*pause |= 0x10;
3553 	*spd = 1000;
3554 }
3555 
3556 /* Must be invoked under cp->lock. */
3557 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3558 				   int *pause)
3559 {
3560 	u32 val;
3561 
3562 	*fd = 0;
3563 	*spd = 10;
3564 	*pause = 0;
3565 
3566 	/* use GMII registers */
3567 	val = cas_phy_read(cp, MII_LPA);
3568 	if (val & CAS_LPA_PAUSE)
3569 		*pause = 0x01;
3570 
3571 	if (val & CAS_LPA_ASYM_PAUSE)
3572 		*pause |= 0x10;
3573 
3574 	if (val & LPA_DUPLEX)
3575 		*fd = 1;
3576 	if (val & LPA_100)
3577 		*spd = 100;
3578 
3579 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3580 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3581 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3582 			*spd = 1000;
3583 		if (val & CAS_LPA_1000FULL)
3584 			*fd = 1;
3585 	}
3586 }
3587 
3588 /* A link-up condition has occurred, initialize and enable the
3589  * rest of the chip.
3590  *
3591  * Must be invoked under cp->lock.
3592  */
3593 static void cas_set_link_modes(struct cas *cp)
3594 {
3595 	u32 val;
3596 	int full_duplex, speed, pause;
3597 
3598 	full_duplex = 0;
3599 	speed = 10;
3600 	pause = 0;
3601 
3602 	if (CAS_PHY_MII(cp->phy_type)) {
3603 		cas_mif_poll(cp, 0);
3604 		val = cas_phy_read(cp, MII_BMCR);
3605 		if (val & BMCR_ANENABLE) {
3606 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3607 					       &pause);
3608 		} else {
3609 			if (val & BMCR_FULLDPLX)
3610 				full_duplex = 1;
3611 
3612 			if (val & BMCR_SPEED100)
3613 				speed = 100;
3614 			else if (val & CAS_BMCR_SPEED1000)
3615 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3616 					1000 : 100;
3617 		}
3618 		cas_mif_poll(cp, 1);
3619 
3620 	} else {
3621 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3622 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3623 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3624 			if (val & PCS_MII_CTRL_DUPLEX)
3625 				full_duplex = 1;
3626 		}
3627 	}
3628 
3629 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3630 		   speed, full_duplex ? "full" : "half");
3631 
3632 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3633 	if (CAS_PHY_MII(cp->phy_type)) {
3634 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3635 		if (!full_duplex)
3636 			val |= MAC_XIF_DISABLE_ECHO;
3637 	}
3638 	if (full_duplex)
3639 		val |= MAC_XIF_FDPLX_LED;
3640 	if (speed == 1000)
3641 		val |= MAC_XIF_GMII_MODE;
3642 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3643 
3644 	/* deal with carrier and collision detect. */
3645 	val = MAC_TX_CFG_IPG_EN;
3646 	if (full_duplex) {
3647 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3648 		val |= MAC_TX_CFG_IGNORE_COLL;
3649 	} else {
3650 #ifndef USE_CSMA_CD_PROTO
3651 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3652 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3653 #endif
3654 	}
3655 	/* val now set up for REG_MAC_TX_CFG */
3656 
3657 	/* If gigabit and half-duplex, enable carrier extension
3658 	 * mode.  increase slot time to 512 bytes as well.
3659 	 * else, disable it and make sure slot time is 64 bytes.
3660 	 * also activate checksum bug workaround
3661 	 */
3662 	if ((speed == 1000) && !full_duplex) {
3663 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3664 		       cp->regs + REG_MAC_TX_CFG);
3665 
3666 		val = readl(cp->regs + REG_MAC_RX_CFG);
3667 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3668 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3669 		       cp->regs + REG_MAC_RX_CFG);
3670 
3671 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3672 
3673 		cp->crc_size = 4;
3674 		/* minimum size gigabit frame at half duplex */
3675 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3676 
3677 	} else {
3678 		writel(val, cp->regs + REG_MAC_TX_CFG);
3679 
3680 		/* checksum bug workaround. don't strip FCS when in
3681 		 * half-duplex mode
3682 		 */
3683 		val = readl(cp->regs + REG_MAC_RX_CFG);
3684 		if (full_duplex) {
3685 			val |= MAC_RX_CFG_STRIP_FCS;
3686 			cp->crc_size = 0;
3687 			cp->min_frame_size = CAS_MIN_MTU;
3688 		} else {
3689 			val &= ~MAC_RX_CFG_STRIP_FCS;
3690 			cp->crc_size = 4;
3691 			cp->min_frame_size = CAS_MIN_FRAME;
3692 		}
3693 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3694 		       cp->regs + REG_MAC_RX_CFG);
3695 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3696 	}
3697 
3698 	if (netif_msg_link(cp)) {
3699 		if (pause & 0x01) {
3700 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3701 				    cp->rx_fifo_size,
3702 				    cp->rx_pause_off,
3703 				    cp->rx_pause_on);
3704 		} else if (pause & 0x10) {
3705 			netdev_info(cp->dev, "TX pause enabled\n");
3706 		} else {
3707 			netdev_info(cp->dev, "Pause is disabled\n");
3708 		}
3709 	}
3710 
3711 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3712 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3713 	if (pause) { /* symmetric or asymmetric pause */
3714 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3715 		if (pause & 0x01) { /* symmetric pause */
3716 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3717 		}
3718 	}
3719 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3720 	cas_start_dma(cp);
3721 }
3722 
3723 /* Must be invoked under cp->lock. */
3724 static void cas_init_hw(struct cas *cp, int restart_link)
3725 {
3726 	if (restart_link)
3727 		cas_phy_init(cp);
3728 
3729 	cas_init_pause_thresholds(cp);
3730 	cas_init_mac(cp);
3731 	cas_init_dma(cp);
3732 
3733 	if (restart_link) {
3734 		/* Default aneg parameters */
3735 		cp->timer_ticks = 0;
3736 		cas_begin_auto_negotiation(cp, NULL);
3737 	} else if (cp->lstate == link_up) {
3738 		cas_set_link_modes(cp);
3739 		netif_carrier_on(cp->dev);
3740 	}
3741 }
3742 
3743 /* Must be invoked under cp->lock. on earlier cassini boards,
3744  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3745  * let it settle out, and then restore pci state.
3746  */
3747 static void cas_hard_reset(struct cas *cp)
3748 {
3749 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3750 	udelay(20);
3751 	pci_restore_state(cp->pdev);
3752 }
3753 
3754 
3755 static void cas_global_reset(struct cas *cp, int blkflag)
3756 {
3757 	int limit;
3758 
3759 	/* issue a global reset. don't use RSTOUT. */
3760 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3761 		/* For PCS, when the blkflag is set, we should set the
3762 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3763 		 * the last autonegotiation from being cleared.  We'll
3764 		 * need some special handling if the chip is set into a
3765 		 * loopback mode.
3766 		 */
3767 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3768 		       cp->regs + REG_SW_RESET);
3769 	} else {
3770 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3771 	}
3772 
3773 	/* need to wait at least 3ms before polling register */
3774 	mdelay(3);
3775 
3776 	limit = STOP_TRIES;
3777 	while (limit-- > 0) {
3778 		u32 val = readl(cp->regs + REG_SW_RESET);
3779 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3780 			goto done;
3781 		udelay(10);
3782 	}
3783 	netdev_err(cp->dev, "sw reset failed\n");
3784 
3785 done:
3786 	/* enable various BIM interrupts */
3787 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3788 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3789 
3790 	/* clear out pci error status mask for handled errors.
3791 	 * we don't deal with DMA counter overflows as they happen
3792 	 * all the time.
3793 	 */
3794 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3795 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3796 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3797 	       REG_PCI_ERR_STATUS_MASK);
3798 
3799 	/* set up for MII by default to address mac rx reset timeout
3800 	 * issue
3801 	 */
3802 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3803 }
3804 
3805 static void cas_reset(struct cas *cp, int blkflag)
3806 {
3807 	u32 val;
3808 
3809 	cas_mask_intr(cp);
3810 	cas_global_reset(cp, blkflag);
3811 	cas_mac_reset(cp);
3812 	cas_entropy_reset(cp);
3813 
3814 	/* disable dma engines. */
3815 	val = readl(cp->regs + REG_TX_CFG);
3816 	val &= ~TX_CFG_DMA_EN;
3817 	writel(val, cp->regs + REG_TX_CFG);
3818 
3819 	val = readl(cp->regs + REG_RX_CFG);
3820 	val &= ~RX_CFG_DMA_EN;
3821 	writel(val, cp->regs + REG_RX_CFG);
3822 
3823 	/* program header parser */
3824 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3825 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3826 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3827 	} else {
3828 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3829 	}
3830 
3831 	/* clear out error registers */
3832 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3833 	cas_clear_mac_err(cp);
3834 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3835 }
3836 
3837 /* Shut down the chip, must be called with pm_mutex held.  */
3838 static void cas_shutdown(struct cas *cp)
3839 {
3840 	unsigned long flags;
3841 
3842 	/* Make us not-running to avoid timers respawning */
3843 	cp->hw_running = 0;
3844 
3845 	del_timer_sync(&cp->link_timer);
3846 
3847 	/* Stop the reset task */
3848 #if 0
3849 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3850 	       atomic_read(&cp->reset_task_pending_spare) ||
3851 	       atomic_read(&cp->reset_task_pending_all))
3852 		schedule();
3853 
3854 #else
3855 	while (atomic_read(&cp->reset_task_pending))
3856 		schedule();
3857 #endif
3858 	/* Actually stop the chip */
3859 	cas_lock_all_save(cp, flags);
3860 	cas_reset(cp, 0);
3861 	if (cp->cas_flags & CAS_FLAG_SATURN)
3862 		cas_phy_powerdown(cp);
3863 	cas_unlock_all_restore(cp, flags);
3864 }
3865 
3866 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3867 {
3868 	struct cas *cp = netdev_priv(dev);
3869 
3870 	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3871 		return -EINVAL;
3872 
3873 	dev->mtu = new_mtu;
3874 	if (!netif_running(dev) || !netif_device_present(dev))
3875 		return 0;
3876 
3877 	/* let the reset task handle it */
3878 #if 1
3879 	atomic_inc(&cp->reset_task_pending);
3880 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3881 		atomic_inc(&cp->reset_task_pending_all);
3882 	} else {
3883 		atomic_inc(&cp->reset_task_pending_mtu);
3884 	}
3885 	schedule_work(&cp->reset_task);
3886 #else
3887 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3888 		   CAS_RESET_ALL : CAS_RESET_MTU);
3889 	pr_err("reset called in cas_change_mtu\n");
3890 	schedule_work(&cp->reset_task);
3891 #endif
3892 
3893 	flush_work_sync(&cp->reset_task);
3894 	return 0;
3895 }
3896 
3897 static void cas_clean_txd(struct cas *cp, int ring)
3898 {
3899 	struct cas_tx_desc *txd = cp->init_txds[ring];
3900 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3901 	u64 daddr, dlen;
3902 	int i, size;
3903 
3904 	size = TX_DESC_RINGN_SIZE(ring);
3905 	for (i = 0; i < size; i++) {
3906 		int frag;
3907 
3908 		if (skbs[i] == NULL)
3909 			continue;
3910 
3911 		skb = skbs[i];
3912 		skbs[i] = NULL;
3913 
3914 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3915 			int ent = i & (size - 1);
3916 
3917 			/* first buffer is never a tiny buffer and so
3918 			 * needs to be unmapped.
3919 			 */
3920 			daddr = le64_to_cpu(txd[ent].buffer);
3921 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3922 					 le64_to_cpu(txd[ent].control));
3923 			pci_unmap_page(cp->pdev, daddr, dlen,
3924 				       PCI_DMA_TODEVICE);
3925 
3926 			if (frag != skb_shinfo(skb)->nr_frags) {
3927 				i++;
3928 
3929 				/* next buffer might by a tiny buffer.
3930 				 * skip past it.
3931 				 */
3932 				ent = i & (size - 1);
3933 				if (cp->tx_tiny_use[ring][ent].used)
3934 					i++;
3935 			}
3936 		}
3937 		dev_kfree_skb_any(skb);
3938 	}
3939 
3940 	/* zero out tiny buf usage */
3941 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3942 }
3943 
3944 /* freed on close */
3945 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3946 {
3947 	cas_page_t **page = cp->rx_pages[ring];
3948 	int i, size;
3949 
3950 	size = RX_DESC_RINGN_SIZE(ring);
3951 	for (i = 0; i < size; i++) {
3952 		if (page[i]) {
3953 			cas_page_free(cp, page[i]);
3954 			page[i] = NULL;
3955 		}
3956 	}
3957 }
3958 
3959 static void cas_free_rxds(struct cas *cp)
3960 {
3961 	int i;
3962 
3963 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3964 		cas_free_rx_desc(cp, i);
3965 }
3966 
3967 /* Must be invoked under cp->lock. */
3968 static void cas_clean_rings(struct cas *cp)
3969 {
3970 	int i;
3971 
3972 	/* need to clean all tx rings */
3973 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3974 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3975 	for (i = 0; i < N_TX_RINGS; i++)
3976 		cas_clean_txd(cp, i);
3977 
3978 	/* zero out init block */
3979 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3980 	cas_clean_rxds(cp);
3981 	cas_clean_rxcs(cp);
3982 }
3983 
3984 /* allocated on open */
3985 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3986 {
3987 	cas_page_t **page = cp->rx_pages[ring];
3988 	int size, i = 0;
3989 
3990 	size = RX_DESC_RINGN_SIZE(ring);
3991 	for (i = 0; i < size; i++) {
3992 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3993 			return -1;
3994 	}
3995 	return 0;
3996 }
3997 
3998 static int cas_alloc_rxds(struct cas *cp)
3999 {
4000 	int i;
4001 
4002 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4003 		if (cas_alloc_rx_desc(cp, i) < 0) {
4004 			cas_free_rxds(cp);
4005 			return -1;
4006 		}
4007 	}
4008 	return 0;
4009 }
4010 
4011 static void cas_reset_task(struct work_struct *work)
4012 {
4013 	struct cas *cp = container_of(work, struct cas, reset_task);
4014 #if 0
4015 	int pending = atomic_read(&cp->reset_task_pending);
4016 #else
4017 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4018 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4019 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4020 
4021 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4022 		/* We can have more tasks scheduled than actually
4023 		 * needed.
4024 		 */
4025 		atomic_dec(&cp->reset_task_pending);
4026 		return;
4027 	}
4028 #endif
4029 	/* The link went down, we reset the ring, but keep
4030 	 * DMA stopped. Use this function for reset
4031 	 * on error as well.
4032 	 */
4033 	if (cp->hw_running) {
4034 		unsigned long flags;
4035 
4036 		/* Make sure we don't get interrupts or tx packets */
4037 		netif_device_detach(cp->dev);
4038 		cas_lock_all_save(cp, flags);
4039 
4040 		if (cp->opened) {
4041 			/* We call cas_spare_recover when we call cas_open.
4042 			 * but we do not initialize the lists cas_spare_recover
4043 			 * uses until cas_open is called.
4044 			 */
4045 			cas_spare_recover(cp, GFP_ATOMIC);
4046 		}
4047 #if 1
4048 		/* test => only pending_spare set */
4049 		if (!pending_all && !pending_mtu)
4050 			goto done;
4051 #else
4052 		if (pending == CAS_RESET_SPARE)
4053 			goto done;
4054 #endif
4055 		/* when pending == CAS_RESET_ALL, the following
4056 		 * call to cas_init_hw will restart auto negotiation.
4057 		 * Setting the second argument of cas_reset to
4058 		 * !(pending == CAS_RESET_ALL) will set this argument
4059 		 * to 1 (avoiding reinitializing the PHY for the normal
4060 		 * PCS case) when auto negotiation is not restarted.
4061 		 */
4062 #if 1
4063 		cas_reset(cp, !(pending_all > 0));
4064 		if (cp->opened)
4065 			cas_clean_rings(cp);
4066 		cas_init_hw(cp, (pending_all > 0));
4067 #else
4068 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4069 		if (cp->opened)
4070 			cas_clean_rings(cp);
4071 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4072 #endif
4073 
4074 done:
4075 		cas_unlock_all_restore(cp, flags);
4076 		netif_device_attach(cp->dev);
4077 	}
4078 #if 1
4079 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4080 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4081 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4082 	atomic_dec(&cp->reset_task_pending);
4083 #else
4084 	atomic_set(&cp->reset_task_pending, 0);
4085 #endif
4086 }
4087 
4088 static void cas_link_timer(unsigned long data)
4089 {
4090 	struct cas *cp = (struct cas *) data;
4091 	int mask, pending = 0, reset = 0;
4092 	unsigned long flags;
4093 
4094 	if (link_transition_timeout != 0 &&
4095 	    cp->link_transition_jiffies_valid &&
4096 	    ((jiffies - cp->link_transition_jiffies) >
4097 	      (link_transition_timeout))) {
4098 		/* One-second counter so link-down workaround doesn't
4099 		 * cause resets to occur so fast as to fool the switch
4100 		 * into thinking the link is down.
4101 		 */
4102 		cp->link_transition_jiffies_valid = 0;
4103 	}
4104 
4105 	if (!cp->hw_running)
4106 		return;
4107 
4108 	spin_lock_irqsave(&cp->lock, flags);
4109 	cas_lock_tx(cp);
4110 	cas_entropy_gather(cp);
4111 
4112 	/* If the link task is still pending, we just
4113 	 * reschedule the link timer
4114 	 */
4115 #if 1
4116 	if (atomic_read(&cp->reset_task_pending_all) ||
4117 	    atomic_read(&cp->reset_task_pending_spare) ||
4118 	    atomic_read(&cp->reset_task_pending_mtu))
4119 		goto done;
4120 #else
4121 	if (atomic_read(&cp->reset_task_pending))
4122 		goto done;
4123 #endif
4124 
4125 	/* check for rx cleaning */
4126 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4127 		int i, rmask;
4128 
4129 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4130 			rmask = CAS_FLAG_RXD_POST(i);
4131 			if ((mask & rmask) == 0)
4132 				continue;
4133 
4134 			/* post_rxds will do a mod_timer */
4135 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4136 				pending = 1;
4137 				continue;
4138 			}
4139 			cp->cas_flags &= ~rmask;
4140 		}
4141 	}
4142 
4143 	if (CAS_PHY_MII(cp->phy_type)) {
4144 		u16 bmsr;
4145 		cas_mif_poll(cp, 0);
4146 		bmsr = cas_phy_read(cp, MII_BMSR);
4147 		/* WTZ: Solaris driver reads this twice, but that
4148 		 * may be due to the PCS case and the use of a
4149 		 * common implementation. Read it twice here to be
4150 		 * safe.
4151 		 */
4152 		bmsr = cas_phy_read(cp, MII_BMSR);
4153 		cas_mif_poll(cp, 1);
4154 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4155 		reset = cas_mii_link_check(cp, bmsr);
4156 	} else {
4157 		reset = cas_pcs_link_check(cp);
4158 	}
4159 
4160 	if (reset)
4161 		goto done;
4162 
4163 	/* check for tx state machine confusion */
4164 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4165 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4166 		u32 wptr, rptr;
4167 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4168 
4169 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4170 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4171 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4172 				     "tx err: MAC_STATE[%08x]\n", val);
4173 			reset = 1;
4174 			goto done;
4175 		}
4176 
4177 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4178 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4179 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4180 		if ((val == 0) && (wptr != rptr)) {
4181 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4182 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4183 				     val, wptr, rptr);
4184 			reset = 1;
4185 		}
4186 
4187 		if (reset)
4188 			cas_hard_reset(cp);
4189 	}
4190 
4191 done:
4192 	if (reset) {
4193 #if 1
4194 		atomic_inc(&cp->reset_task_pending);
4195 		atomic_inc(&cp->reset_task_pending_all);
4196 		schedule_work(&cp->reset_task);
4197 #else
4198 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4199 		pr_err("reset called in cas_link_timer\n");
4200 		schedule_work(&cp->reset_task);
4201 #endif
4202 	}
4203 
4204 	if (!pending)
4205 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4206 	cas_unlock_tx(cp);
4207 	spin_unlock_irqrestore(&cp->lock, flags);
4208 }
4209 
4210 /* tiny buffers are used to avoid target abort issues with
4211  * older cassini's
4212  */
4213 static void cas_tx_tiny_free(struct cas *cp)
4214 {
4215 	struct pci_dev *pdev = cp->pdev;
4216 	int i;
4217 
4218 	for (i = 0; i < N_TX_RINGS; i++) {
4219 		if (!cp->tx_tiny_bufs[i])
4220 			continue;
4221 
4222 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4223 				    cp->tx_tiny_bufs[i],
4224 				    cp->tx_tiny_dvma[i]);
4225 		cp->tx_tiny_bufs[i] = NULL;
4226 	}
4227 }
4228 
4229 static int cas_tx_tiny_alloc(struct cas *cp)
4230 {
4231 	struct pci_dev *pdev = cp->pdev;
4232 	int i;
4233 
4234 	for (i = 0; i < N_TX_RINGS; i++) {
4235 		cp->tx_tiny_bufs[i] =
4236 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4237 					     &cp->tx_tiny_dvma[i]);
4238 		if (!cp->tx_tiny_bufs[i]) {
4239 			cas_tx_tiny_free(cp);
4240 			return -1;
4241 		}
4242 	}
4243 	return 0;
4244 }
4245 
4246 
4247 static int cas_open(struct net_device *dev)
4248 {
4249 	struct cas *cp = netdev_priv(dev);
4250 	int hw_was_up, err;
4251 	unsigned long flags;
4252 
4253 	mutex_lock(&cp->pm_mutex);
4254 
4255 	hw_was_up = cp->hw_running;
4256 
4257 	/* The power-management mutex protects the hw_running
4258 	 * etc. state so it is safe to do this bit without cp->lock
4259 	 */
4260 	if (!cp->hw_running) {
4261 		/* Reset the chip */
4262 		cas_lock_all_save(cp, flags);
4263 		/* We set the second arg to cas_reset to zero
4264 		 * because cas_init_hw below will have its second
4265 		 * argument set to non-zero, which will force
4266 		 * autonegotiation to start.
4267 		 */
4268 		cas_reset(cp, 0);
4269 		cp->hw_running = 1;
4270 		cas_unlock_all_restore(cp, flags);
4271 	}
4272 
4273 	err = -ENOMEM;
4274 	if (cas_tx_tiny_alloc(cp) < 0)
4275 		goto err_unlock;
4276 
4277 	/* alloc rx descriptors */
4278 	if (cas_alloc_rxds(cp) < 0)
4279 		goto err_tx_tiny;
4280 
4281 	/* allocate spares */
4282 	cas_spare_init(cp);
4283 	cas_spare_recover(cp, GFP_KERNEL);
4284 
4285 	/* We can now request the interrupt as we know it's masked
4286 	 * on the controller. cassini+ has up to 4 interrupts
4287 	 * that can be used, but you need to do explicit pci interrupt
4288 	 * mapping to expose them
4289 	 */
4290 	if (request_irq(cp->pdev->irq, cas_interrupt,
4291 			IRQF_SHARED, dev->name, (void *) dev)) {
4292 		netdev_err(cp->dev, "failed to request irq !\n");
4293 		err = -EAGAIN;
4294 		goto err_spare;
4295 	}
4296 
4297 #ifdef USE_NAPI
4298 	napi_enable(&cp->napi);
4299 #endif
4300 	/* init hw */
4301 	cas_lock_all_save(cp, flags);
4302 	cas_clean_rings(cp);
4303 	cas_init_hw(cp, !hw_was_up);
4304 	cp->opened = 1;
4305 	cas_unlock_all_restore(cp, flags);
4306 
4307 	netif_start_queue(dev);
4308 	mutex_unlock(&cp->pm_mutex);
4309 	return 0;
4310 
4311 err_spare:
4312 	cas_spare_free(cp);
4313 	cas_free_rxds(cp);
4314 err_tx_tiny:
4315 	cas_tx_tiny_free(cp);
4316 err_unlock:
4317 	mutex_unlock(&cp->pm_mutex);
4318 	return err;
4319 }
4320 
4321 static int cas_close(struct net_device *dev)
4322 {
4323 	unsigned long flags;
4324 	struct cas *cp = netdev_priv(dev);
4325 
4326 #ifdef USE_NAPI
4327 	napi_disable(&cp->napi);
4328 #endif
4329 	/* Make sure we don't get distracted by suspend/resume */
4330 	mutex_lock(&cp->pm_mutex);
4331 
4332 	netif_stop_queue(dev);
4333 
4334 	/* Stop traffic, mark us closed */
4335 	cas_lock_all_save(cp, flags);
4336 	cp->opened = 0;
4337 	cas_reset(cp, 0);
4338 	cas_phy_init(cp);
4339 	cas_begin_auto_negotiation(cp, NULL);
4340 	cas_clean_rings(cp);
4341 	cas_unlock_all_restore(cp, flags);
4342 
4343 	free_irq(cp->pdev->irq, (void *) dev);
4344 	cas_spare_free(cp);
4345 	cas_free_rxds(cp);
4346 	cas_tx_tiny_free(cp);
4347 	mutex_unlock(&cp->pm_mutex);
4348 	return 0;
4349 }
4350 
4351 static struct {
4352 	const char name[ETH_GSTRING_LEN];
4353 } ethtool_cassini_statnames[] = {
4354 	{"collisions"},
4355 	{"rx_bytes"},
4356 	{"rx_crc_errors"},
4357 	{"rx_dropped"},
4358 	{"rx_errors"},
4359 	{"rx_fifo_errors"},
4360 	{"rx_frame_errors"},
4361 	{"rx_length_errors"},
4362 	{"rx_over_errors"},
4363 	{"rx_packets"},
4364 	{"tx_aborted_errors"},
4365 	{"tx_bytes"},
4366 	{"tx_dropped"},
4367 	{"tx_errors"},
4368 	{"tx_fifo_errors"},
4369 	{"tx_packets"}
4370 };
4371 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4372 
4373 static struct {
4374 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4375 } ethtool_register_table[] = {
4376 	{-MII_BMSR},
4377 	{-MII_BMCR},
4378 	{REG_CAWR},
4379 	{REG_INF_BURST},
4380 	{REG_BIM_CFG},
4381 	{REG_RX_CFG},
4382 	{REG_HP_CFG},
4383 	{REG_MAC_TX_CFG},
4384 	{REG_MAC_RX_CFG},
4385 	{REG_MAC_CTRL_CFG},
4386 	{REG_MAC_XIF_CFG},
4387 	{REG_MIF_CFG},
4388 	{REG_PCS_CFG},
4389 	{REG_SATURN_PCFG},
4390 	{REG_PCS_MII_STATUS},
4391 	{REG_PCS_STATE_MACHINE},
4392 	{REG_MAC_COLL_EXCESS},
4393 	{REG_MAC_COLL_LATE}
4394 };
4395 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4396 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4397 
4398 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4399 {
4400 	u8 *p;
4401 	int i;
4402 	unsigned long flags;
4403 
4404 	spin_lock_irqsave(&cp->lock, flags);
4405 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4406 		u16 hval;
4407 		u32 val;
4408 		if (ethtool_register_table[i].offsets < 0) {
4409 			hval = cas_phy_read(cp,
4410 				    -ethtool_register_table[i].offsets);
4411 			val = hval;
4412 		} else {
4413 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4414 		}
4415 		memcpy(p, (u8 *)&val, sizeof(u32));
4416 	}
4417 	spin_unlock_irqrestore(&cp->lock, flags);
4418 }
4419 
4420 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4421 {
4422 	struct cas *cp = netdev_priv(dev);
4423 	struct net_device_stats *stats = cp->net_stats;
4424 	unsigned long flags;
4425 	int i;
4426 	unsigned long tmp;
4427 
4428 	/* we collate all of the stats into net_stats[N_TX_RING] */
4429 	if (!cp->hw_running)
4430 		return stats + N_TX_RINGS;
4431 
4432 	/* collect outstanding stats */
4433 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4434 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4435 	 * in case the chip somehow puts any garbage in the other bits.
4436 	 * Also, counter usage didn't seem to mach what Adrian did
4437 	 * in the parts of the code that set these quantities. Made
4438 	 * that consistent.
4439 	 */
4440 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4441 	stats[N_TX_RINGS].rx_crc_errors +=
4442 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4443 	stats[N_TX_RINGS].rx_frame_errors +=
4444 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4445 	stats[N_TX_RINGS].rx_length_errors +=
4446 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4447 #if 1
4448 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4449 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4450 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4451 	stats[N_TX_RINGS].collisions +=
4452 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4453 #else
4454 	stats[N_TX_RINGS].tx_aborted_errors +=
4455 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4456 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4457 		readl(cp->regs + REG_MAC_COLL_LATE);
4458 #endif
4459 	cas_clear_mac_err(cp);
4460 
4461 	/* saved bits that are unique to ring 0 */
4462 	spin_lock(&cp->stat_lock[0]);
4463 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4464 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4465 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4466 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4467 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4468 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4469 	spin_unlock(&cp->stat_lock[0]);
4470 
4471 	for (i = 0; i < N_TX_RINGS; i++) {
4472 		spin_lock(&cp->stat_lock[i]);
4473 		stats[N_TX_RINGS].rx_length_errors +=
4474 			stats[i].rx_length_errors;
4475 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4476 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4477 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4478 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4479 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4480 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4481 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4482 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4483 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4484 		memset(stats + i, 0, sizeof(struct net_device_stats));
4485 		spin_unlock(&cp->stat_lock[i]);
4486 	}
4487 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4488 	return stats + N_TX_RINGS;
4489 }
4490 
4491 
4492 static void cas_set_multicast(struct net_device *dev)
4493 {
4494 	struct cas *cp = netdev_priv(dev);
4495 	u32 rxcfg, rxcfg_new;
4496 	unsigned long flags;
4497 	int limit = STOP_TRIES;
4498 
4499 	if (!cp->hw_running)
4500 		return;
4501 
4502 	spin_lock_irqsave(&cp->lock, flags);
4503 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4504 
4505 	/* disable RX MAC and wait for completion */
4506 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4507 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4508 		if (!limit--)
4509 			break;
4510 		udelay(10);
4511 	}
4512 
4513 	/* disable hash filter and wait for completion */
4514 	limit = STOP_TRIES;
4515 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4516 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4517 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4518 		if (!limit--)
4519 			break;
4520 		udelay(10);
4521 	}
4522 
4523 	/* program hash filters */
4524 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4525 	rxcfg |= rxcfg_new;
4526 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4527 	spin_unlock_irqrestore(&cp->lock, flags);
4528 }
4529 
4530 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4531 {
4532 	struct cas *cp = netdev_priv(dev);
4533 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4534 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4535 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4536 	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4537 		cp->casreg_len : CAS_MAX_REGS;
4538 	info->n_stats = CAS_NUM_STAT_KEYS;
4539 }
4540 
4541 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4542 {
4543 	struct cas *cp = netdev_priv(dev);
4544 	u16 bmcr;
4545 	int full_duplex, speed, pause;
4546 	unsigned long flags;
4547 	enum link_state linkstate = link_up;
4548 
4549 	cmd->advertising = 0;
4550 	cmd->supported = SUPPORTED_Autoneg;
4551 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4552 		cmd->supported |= SUPPORTED_1000baseT_Full;
4553 		cmd->advertising |= ADVERTISED_1000baseT_Full;
4554 	}
4555 
4556 	/* Record PHY settings if HW is on. */
4557 	spin_lock_irqsave(&cp->lock, flags);
4558 	bmcr = 0;
4559 	linkstate = cp->lstate;
4560 	if (CAS_PHY_MII(cp->phy_type)) {
4561 		cmd->port = PORT_MII;
4562 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4563 			XCVR_INTERNAL : XCVR_EXTERNAL;
4564 		cmd->phy_address = cp->phy_addr;
4565 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4566 			ADVERTISED_10baseT_Half |
4567 			ADVERTISED_10baseT_Full |
4568 			ADVERTISED_100baseT_Half |
4569 			ADVERTISED_100baseT_Full;
4570 
4571 		cmd->supported |=
4572 			(SUPPORTED_10baseT_Half |
4573 			 SUPPORTED_10baseT_Full |
4574 			 SUPPORTED_100baseT_Half |
4575 			 SUPPORTED_100baseT_Full |
4576 			 SUPPORTED_TP | SUPPORTED_MII);
4577 
4578 		if (cp->hw_running) {
4579 			cas_mif_poll(cp, 0);
4580 			bmcr = cas_phy_read(cp, MII_BMCR);
4581 			cas_read_mii_link_mode(cp, &full_duplex,
4582 					       &speed, &pause);
4583 			cas_mif_poll(cp, 1);
4584 		}
4585 
4586 	} else {
4587 		cmd->port = PORT_FIBRE;
4588 		cmd->transceiver = XCVR_INTERNAL;
4589 		cmd->phy_address = 0;
4590 		cmd->supported   |= SUPPORTED_FIBRE;
4591 		cmd->advertising |= ADVERTISED_FIBRE;
4592 
4593 		if (cp->hw_running) {
4594 			/* pcs uses the same bits as mii */
4595 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4596 			cas_read_pcs_link_mode(cp, &full_duplex,
4597 					       &speed, &pause);
4598 		}
4599 	}
4600 	spin_unlock_irqrestore(&cp->lock, flags);
4601 
4602 	if (bmcr & BMCR_ANENABLE) {
4603 		cmd->advertising |= ADVERTISED_Autoneg;
4604 		cmd->autoneg = AUTONEG_ENABLE;
4605 		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4606 					    SPEED_10 :
4607 					    ((speed == 1000) ?
4608 					     SPEED_1000 : SPEED_100)));
4609 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4610 	} else {
4611 		cmd->autoneg = AUTONEG_DISABLE;
4612 		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4613 					    SPEED_1000 :
4614 					    ((bmcr & BMCR_SPEED100) ?
4615 					     SPEED_100 : SPEED_10)));
4616 		cmd->duplex =
4617 			(bmcr & BMCR_FULLDPLX) ?
4618 			DUPLEX_FULL : DUPLEX_HALF;
4619 	}
4620 	if (linkstate != link_up) {
4621 		/* Force these to "unknown" if the link is not up and
4622 		 * autonogotiation in enabled. We can set the link
4623 		 * speed to 0, but not cmd->duplex,
4624 		 * because its legal values are 0 and 1.  Ethtool will
4625 		 * print the value reported in parentheses after the
4626 		 * word "Unknown" for unrecognized values.
4627 		 *
4628 		 * If in forced mode, we report the speed and duplex
4629 		 * settings that we configured.
4630 		 */
4631 		if (cp->link_cntl & BMCR_ANENABLE) {
4632 			ethtool_cmd_speed_set(cmd, 0);
4633 			cmd->duplex = 0xff;
4634 		} else {
4635 			ethtool_cmd_speed_set(cmd, SPEED_10);
4636 			if (cp->link_cntl & BMCR_SPEED100) {
4637 				ethtool_cmd_speed_set(cmd, SPEED_100);
4638 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4639 				ethtool_cmd_speed_set(cmd, SPEED_1000);
4640 			}
4641 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4642 				DUPLEX_FULL : DUPLEX_HALF;
4643 		}
4644 	}
4645 	return 0;
4646 }
4647 
4648 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4649 {
4650 	struct cas *cp = netdev_priv(dev);
4651 	unsigned long flags;
4652 	u32 speed = ethtool_cmd_speed(cmd);
4653 
4654 	/* Verify the settings we care about. */
4655 	if (cmd->autoneg != AUTONEG_ENABLE &&
4656 	    cmd->autoneg != AUTONEG_DISABLE)
4657 		return -EINVAL;
4658 
4659 	if (cmd->autoneg == AUTONEG_DISABLE &&
4660 	    ((speed != SPEED_1000 &&
4661 	      speed != SPEED_100 &&
4662 	      speed != SPEED_10) ||
4663 	     (cmd->duplex != DUPLEX_HALF &&
4664 	      cmd->duplex != DUPLEX_FULL)))
4665 		return -EINVAL;
4666 
4667 	/* Apply settings and restart link process. */
4668 	spin_lock_irqsave(&cp->lock, flags);
4669 	cas_begin_auto_negotiation(cp, cmd);
4670 	spin_unlock_irqrestore(&cp->lock, flags);
4671 	return 0;
4672 }
4673 
4674 static int cas_nway_reset(struct net_device *dev)
4675 {
4676 	struct cas *cp = netdev_priv(dev);
4677 	unsigned long flags;
4678 
4679 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4680 		return -EINVAL;
4681 
4682 	/* Restart link process. */
4683 	spin_lock_irqsave(&cp->lock, flags);
4684 	cas_begin_auto_negotiation(cp, NULL);
4685 	spin_unlock_irqrestore(&cp->lock, flags);
4686 
4687 	return 0;
4688 }
4689 
4690 static u32 cas_get_link(struct net_device *dev)
4691 {
4692 	struct cas *cp = netdev_priv(dev);
4693 	return cp->lstate == link_up;
4694 }
4695 
4696 static u32 cas_get_msglevel(struct net_device *dev)
4697 {
4698 	struct cas *cp = netdev_priv(dev);
4699 	return cp->msg_enable;
4700 }
4701 
4702 static void cas_set_msglevel(struct net_device *dev, u32 value)
4703 {
4704 	struct cas *cp = netdev_priv(dev);
4705 	cp->msg_enable = value;
4706 }
4707 
4708 static int cas_get_regs_len(struct net_device *dev)
4709 {
4710 	struct cas *cp = netdev_priv(dev);
4711 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4712 }
4713 
4714 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4715 			     void *p)
4716 {
4717 	struct cas *cp = netdev_priv(dev);
4718 	regs->version = 0;
4719 	/* cas_read_regs handles locks (cp->lock).  */
4720 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4721 }
4722 
4723 static int cas_get_sset_count(struct net_device *dev, int sset)
4724 {
4725 	switch (sset) {
4726 	case ETH_SS_STATS:
4727 		return CAS_NUM_STAT_KEYS;
4728 	default:
4729 		return -EOPNOTSUPP;
4730 	}
4731 }
4732 
4733 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4734 {
4735 	 memcpy(data, &ethtool_cassini_statnames,
4736 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4737 }
4738 
4739 static void cas_get_ethtool_stats(struct net_device *dev,
4740 				      struct ethtool_stats *estats, u64 *data)
4741 {
4742 	struct cas *cp = netdev_priv(dev);
4743 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4744 	int i = 0;
4745 	data[i++] = stats->collisions;
4746 	data[i++] = stats->rx_bytes;
4747 	data[i++] = stats->rx_crc_errors;
4748 	data[i++] = stats->rx_dropped;
4749 	data[i++] = stats->rx_errors;
4750 	data[i++] = stats->rx_fifo_errors;
4751 	data[i++] = stats->rx_frame_errors;
4752 	data[i++] = stats->rx_length_errors;
4753 	data[i++] = stats->rx_over_errors;
4754 	data[i++] = stats->rx_packets;
4755 	data[i++] = stats->tx_aborted_errors;
4756 	data[i++] = stats->tx_bytes;
4757 	data[i++] = stats->tx_dropped;
4758 	data[i++] = stats->tx_errors;
4759 	data[i++] = stats->tx_fifo_errors;
4760 	data[i++] = stats->tx_packets;
4761 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4762 }
4763 
4764 static const struct ethtool_ops cas_ethtool_ops = {
4765 	.get_drvinfo		= cas_get_drvinfo,
4766 	.get_settings		= cas_get_settings,
4767 	.set_settings		= cas_set_settings,
4768 	.nway_reset		= cas_nway_reset,
4769 	.get_link		= cas_get_link,
4770 	.get_msglevel		= cas_get_msglevel,
4771 	.set_msglevel		= cas_set_msglevel,
4772 	.get_regs_len		= cas_get_regs_len,
4773 	.get_regs		= cas_get_regs,
4774 	.get_sset_count		= cas_get_sset_count,
4775 	.get_strings		= cas_get_strings,
4776 	.get_ethtool_stats	= cas_get_ethtool_stats,
4777 };
4778 
4779 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4780 {
4781 	struct cas *cp = netdev_priv(dev);
4782 	struct mii_ioctl_data *data = if_mii(ifr);
4783 	unsigned long flags;
4784 	int rc = -EOPNOTSUPP;
4785 
4786 	/* Hold the PM mutex while doing ioctl's or we may collide
4787 	 * with open/close and power management and oops.
4788 	 */
4789 	mutex_lock(&cp->pm_mutex);
4790 	switch (cmd) {
4791 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4792 		data->phy_id = cp->phy_addr;
4793 		/* Fallthrough... */
4794 
4795 	case SIOCGMIIREG:		/* Read MII PHY register. */
4796 		spin_lock_irqsave(&cp->lock, flags);
4797 		cas_mif_poll(cp, 0);
4798 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4799 		cas_mif_poll(cp, 1);
4800 		spin_unlock_irqrestore(&cp->lock, flags);
4801 		rc = 0;
4802 		break;
4803 
4804 	case SIOCSMIIREG:		/* Write MII PHY register. */
4805 		spin_lock_irqsave(&cp->lock, flags);
4806 		cas_mif_poll(cp, 0);
4807 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4808 		cas_mif_poll(cp, 1);
4809 		spin_unlock_irqrestore(&cp->lock, flags);
4810 		break;
4811 	default:
4812 		break;
4813 	}
4814 
4815 	mutex_unlock(&cp->pm_mutex);
4816 	return rc;
4817 }
4818 
4819 /* When this chip sits underneath an Intel 31154 bridge, it is the
4820  * only subordinate device and we can tweak the bridge settings to
4821  * reflect that fact.
4822  */
4823 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4824 {
4825 	struct pci_dev *pdev = cas_pdev->bus->self;
4826 	u32 val;
4827 
4828 	if (!pdev)
4829 		return;
4830 
4831 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4832 		return;
4833 
4834 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4835 	 * Arbiter Control/Status Register which lives at offset
4836 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4837 	 * is much simpler so that's how we do this.
4838 	 */
4839 	pci_read_config_dword(pdev, 0x40, &val);
4840 	val &= ~0x00040000;
4841 	pci_write_config_dword(pdev, 0x40, val);
4842 
4843 	/* Max out the Multi-Transaction Timer settings since
4844 	 * Cassini is the only device present.
4845 	 *
4846 	 * The register is 16-bit and lives at 0x50.  When the
4847 	 * settings are enabled, it extends the GRANT# signal
4848 	 * for a requestor after a transaction is complete.  This
4849 	 * allows the next request to run without first needing
4850 	 * to negotiate the GRANT# signal back.
4851 	 *
4852 	 * Bits 12:10 define the grant duration:
4853 	 *
4854 	 *	1	--	16 clocks
4855 	 *	2	--	32 clocks
4856 	 *	3	--	64 clocks
4857 	 *	4	--	128 clocks
4858 	 *	5	--	256 clocks
4859 	 *
4860 	 * All other values are illegal.
4861 	 *
4862 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4863 	 * GRANT# signal treatment.  We set them all.
4864 	 */
4865 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4866 
4867 	/* The Read Prefecth Policy register is 16-bit and sits at
4868 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4869 	 * enable it and max out all of the settings since only one
4870 	 * device is sitting underneath and thus bandwidth sharing is
4871 	 * not an issue.
4872 	 *
4873 	 * The register has several 3 bit fields, which indicates a
4874 	 * multiplier applied to the base amount of prefetching the
4875 	 * chip would do.  These fields are at:
4876 	 *
4877 	 *	15:13	---	ReRead Primary Bus
4878 	 *	12:10	---	FirstRead Primary Bus
4879 	 *	09:07	---	ReRead Secondary Bus
4880 	 *	06:04	---	FirstRead Secondary Bus
4881 	 *
4882 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4883 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4884 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4885 	 * the individual REQ/GNT pairs [2:0].
4886 	 */
4887 	pci_write_config_word(pdev, 0x52,
4888 			      (0x7 << 13) |
4889 			      (0x7 << 10) |
4890 			      (0x7 <<  7) |
4891 			      (0x7 <<  4) |
4892 			      (0xf <<  0));
4893 
4894 	/* Force cacheline size to 0x8 */
4895 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4896 
4897 	/* Force latency timer to maximum setting so Cassini can
4898 	 * sit on the bus as long as it likes.
4899 	 */
4900 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4901 }
4902 
4903 static const struct net_device_ops cas_netdev_ops = {
4904 	.ndo_open		= cas_open,
4905 	.ndo_stop		= cas_close,
4906 	.ndo_start_xmit		= cas_start_xmit,
4907 	.ndo_get_stats 		= cas_get_stats,
4908 	.ndo_set_rx_mode	= cas_set_multicast,
4909 	.ndo_do_ioctl		= cas_ioctl,
4910 	.ndo_tx_timeout		= cas_tx_timeout,
4911 	.ndo_change_mtu		= cas_change_mtu,
4912 	.ndo_set_mac_address	= eth_mac_addr,
4913 	.ndo_validate_addr	= eth_validate_addr,
4914 #ifdef CONFIG_NET_POLL_CONTROLLER
4915 	.ndo_poll_controller	= cas_netpoll,
4916 #endif
4917 };
4918 
4919 static int __devinit cas_init_one(struct pci_dev *pdev,
4920 				  const struct pci_device_id *ent)
4921 {
4922 	static int cas_version_printed = 0;
4923 	unsigned long casreg_len;
4924 	struct net_device *dev;
4925 	struct cas *cp;
4926 	int i, err, pci_using_dac;
4927 	u16 pci_cmd;
4928 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4929 
4930 	if (cas_version_printed++ == 0)
4931 		pr_info("%s", version);
4932 
4933 	err = pci_enable_device(pdev);
4934 	if (err) {
4935 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4936 		return err;
4937 	}
4938 
4939 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4940 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4941 		       "base address, aborting\n");
4942 		err = -ENODEV;
4943 		goto err_out_disable_pdev;
4944 	}
4945 
4946 	dev = alloc_etherdev(sizeof(*cp));
4947 	if (!dev) {
4948 		err = -ENOMEM;
4949 		goto err_out_disable_pdev;
4950 	}
4951 	SET_NETDEV_DEV(dev, &pdev->dev);
4952 
4953 	err = pci_request_regions(pdev, dev->name);
4954 	if (err) {
4955 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4956 		goto err_out_free_netdev;
4957 	}
4958 	pci_set_master(pdev);
4959 
4960 	/* we must always turn on parity response or else parity
4961 	 * doesn't get generated properly. disable SERR/PERR as well.
4962 	 * in addition, we want to turn MWI on.
4963 	 */
4964 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4965 	pci_cmd &= ~PCI_COMMAND_SERR;
4966 	pci_cmd |= PCI_COMMAND_PARITY;
4967 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4968 	if (pci_try_set_mwi(pdev))
4969 		pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4970 
4971 	cas_program_bridge(pdev);
4972 
4973 	/*
4974 	 * On some architectures, the default cache line size set
4975 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4976 	 * it for this case.  To start, we'll print some configuration
4977 	 * data.
4978 	 */
4979 #if 1
4980 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4981 			     &orig_cacheline_size);
4982 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4983 		cas_cacheline_size =
4984 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4985 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4986 		if (pci_write_config_byte(pdev,
4987 					  PCI_CACHE_LINE_SIZE,
4988 					  cas_cacheline_size)) {
4989 			dev_err(&pdev->dev, "Could not set PCI cache "
4990 			       "line size\n");
4991 			goto err_write_cacheline;
4992 		}
4993 	}
4994 #endif
4995 
4996 
4997 	/* Configure DMA attributes. */
4998 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4999 		pci_using_dac = 1;
5000 		err = pci_set_consistent_dma_mask(pdev,
5001 						  DMA_BIT_MASK(64));
5002 		if (err < 0) {
5003 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5004 			       "for consistent allocations\n");
5005 			goto err_out_free_res;
5006 		}
5007 
5008 	} else {
5009 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5010 		if (err) {
5011 			dev_err(&pdev->dev, "No usable DMA configuration, "
5012 			       "aborting\n");
5013 			goto err_out_free_res;
5014 		}
5015 		pci_using_dac = 0;
5016 	}
5017 
5018 	casreg_len = pci_resource_len(pdev, 0);
5019 
5020 	cp = netdev_priv(dev);
5021 	cp->pdev = pdev;
5022 #if 1
5023 	/* A value of 0 indicates we never explicitly set it */
5024 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5025 #endif
5026 	cp->dev = dev;
5027 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5028 	  cassini_debug;
5029 
5030 #if defined(CONFIG_SPARC)
5031 	cp->of_node = pci_device_to_OF_node(pdev);
5032 #endif
5033 
5034 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5035 	cp->link_transition_jiffies_valid = 0;
5036 
5037 	spin_lock_init(&cp->lock);
5038 	spin_lock_init(&cp->rx_inuse_lock);
5039 	spin_lock_init(&cp->rx_spare_lock);
5040 	for (i = 0; i < N_TX_RINGS; i++) {
5041 		spin_lock_init(&cp->stat_lock[i]);
5042 		spin_lock_init(&cp->tx_lock[i]);
5043 	}
5044 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5045 	mutex_init(&cp->pm_mutex);
5046 
5047 	init_timer(&cp->link_timer);
5048 	cp->link_timer.function = cas_link_timer;
5049 	cp->link_timer.data = (unsigned long) cp;
5050 
5051 #if 1
5052 	/* Just in case the implementation of atomic operations
5053 	 * change so that an explicit initialization is necessary.
5054 	 */
5055 	atomic_set(&cp->reset_task_pending, 0);
5056 	atomic_set(&cp->reset_task_pending_all, 0);
5057 	atomic_set(&cp->reset_task_pending_spare, 0);
5058 	atomic_set(&cp->reset_task_pending_mtu, 0);
5059 #endif
5060 	INIT_WORK(&cp->reset_task, cas_reset_task);
5061 
5062 	/* Default link parameters */
5063 	if (link_mode >= 0 && link_mode < 6)
5064 		cp->link_cntl = link_modes[link_mode];
5065 	else
5066 		cp->link_cntl = BMCR_ANENABLE;
5067 	cp->lstate = link_down;
5068 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5069 	netif_carrier_off(cp->dev);
5070 	cp->timer_ticks = 0;
5071 
5072 	/* give us access to cassini registers */
5073 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5074 	if (!cp->regs) {
5075 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5076 		goto err_out_free_res;
5077 	}
5078 	cp->casreg_len = casreg_len;
5079 
5080 	pci_save_state(pdev);
5081 	cas_check_pci_invariants(cp);
5082 	cas_hard_reset(cp);
5083 	cas_reset(cp, 0);
5084 	if (cas_check_invariants(cp))
5085 		goto err_out_iounmap;
5086 	if (cp->cas_flags & CAS_FLAG_SATURN)
5087 		if (cas_saturn_firmware_init(cp))
5088 			goto err_out_iounmap;
5089 
5090 	cp->init_block = (struct cas_init_block *)
5091 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5092 				     &cp->block_dvma);
5093 	if (!cp->init_block) {
5094 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5095 		goto err_out_iounmap;
5096 	}
5097 
5098 	for (i = 0; i < N_TX_RINGS; i++)
5099 		cp->init_txds[i] = cp->init_block->txds[i];
5100 
5101 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5102 		cp->init_rxds[i] = cp->init_block->rxds[i];
5103 
5104 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5105 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5106 
5107 	for (i = 0; i < N_RX_FLOWS; i++)
5108 		skb_queue_head_init(&cp->rx_flows[i]);
5109 
5110 	dev->netdev_ops = &cas_netdev_ops;
5111 	dev->ethtool_ops = &cas_ethtool_ops;
5112 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5113 
5114 #ifdef USE_NAPI
5115 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5116 #endif
5117 	dev->irq = pdev->irq;
5118 	dev->dma = 0;
5119 
5120 	/* Cassini features. */
5121 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5122 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5123 
5124 	if (pci_using_dac)
5125 		dev->features |= NETIF_F_HIGHDMA;
5126 
5127 	if (register_netdev(dev)) {
5128 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5129 		goto err_out_free_consistent;
5130 	}
5131 
5132 	i = readl(cp->regs + REG_BIM_CFG);
5133 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5134 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5135 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5136 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5137 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5138 		    dev->dev_addr);
5139 
5140 	pci_set_drvdata(pdev, dev);
5141 	cp->hw_running = 1;
5142 	cas_entropy_reset(cp);
5143 	cas_phy_init(cp);
5144 	cas_begin_auto_negotiation(cp, NULL);
5145 	return 0;
5146 
5147 err_out_free_consistent:
5148 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5149 			    cp->init_block, cp->block_dvma);
5150 
5151 err_out_iounmap:
5152 	mutex_lock(&cp->pm_mutex);
5153 	if (cp->hw_running)
5154 		cas_shutdown(cp);
5155 	mutex_unlock(&cp->pm_mutex);
5156 
5157 	pci_iounmap(pdev, cp->regs);
5158 
5159 
5160 err_out_free_res:
5161 	pci_release_regions(pdev);
5162 
5163 err_write_cacheline:
5164 	/* Try to restore it in case the error occurred after we
5165 	 * set it.
5166 	 */
5167 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5168 
5169 err_out_free_netdev:
5170 	free_netdev(dev);
5171 
5172 err_out_disable_pdev:
5173 	pci_disable_device(pdev);
5174 	pci_set_drvdata(pdev, NULL);
5175 	return -ENODEV;
5176 }
5177 
5178 static void __devexit cas_remove_one(struct pci_dev *pdev)
5179 {
5180 	struct net_device *dev = pci_get_drvdata(pdev);
5181 	struct cas *cp;
5182 	if (!dev)
5183 		return;
5184 
5185 	cp = netdev_priv(dev);
5186 	unregister_netdev(dev);
5187 
5188 	if (cp->fw_data)
5189 		vfree(cp->fw_data);
5190 
5191 	mutex_lock(&cp->pm_mutex);
5192 	cancel_work_sync(&cp->reset_task);
5193 	if (cp->hw_running)
5194 		cas_shutdown(cp);
5195 	mutex_unlock(&cp->pm_mutex);
5196 
5197 #if 1
5198 	if (cp->orig_cacheline_size) {
5199 		/* Restore the cache line size if we had modified
5200 		 * it.
5201 		 */
5202 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5203 				      cp->orig_cacheline_size);
5204 	}
5205 #endif
5206 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5207 			    cp->init_block, cp->block_dvma);
5208 	pci_iounmap(pdev, cp->regs);
5209 	free_netdev(dev);
5210 	pci_release_regions(pdev);
5211 	pci_disable_device(pdev);
5212 	pci_set_drvdata(pdev, NULL);
5213 }
5214 
5215 #ifdef CONFIG_PM
5216 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5217 {
5218 	struct net_device *dev = pci_get_drvdata(pdev);
5219 	struct cas *cp = netdev_priv(dev);
5220 	unsigned long flags;
5221 
5222 	mutex_lock(&cp->pm_mutex);
5223 
5224 	/* If the driver is opened, we stop the DMA */
5225 	if (cp->opened) {
5226 		netif_device_detach(dev);
5227 
5228 		cas_lock_all_save(cp, flags);
5229 
5230 		/* We can set the second arg of cas_reset to 0
5231 		 * because on resume, we'll call cas_init_hw with
5232 		 * its second arg set so that autonegotiation is
5233 		 * restarted.
5234 		 */
5235 		cas_reset(cp, 0);
5236 		cas_clean_rings(cp);
5237 		cas_unlock_all_restore(cp, flags);
5238 	}
5239 
5240 	if (cp->hw_running)
5241 		cas_shutdown(cp);
5242 	mutex_unlock(&cp->pm_mutex);
5243 
5244 	return 0;
5245 }
5246 
5247 static int cas_resume(struct pci_dev *pdev)
5248 {
5249 	struct net_device *dev = pci_get_drvdata(pdev);
5250 	struct cas *cp = netdev_priv(dev);
5251 
5252 	netdev_info(dev, "resuming\n");
5253 
5254 	mutex_lock(&cp->pm_mutex);
5255 	cas_hard_reset(cp);
5256 	if (cp->opened) {
5257 		unsigned long flags;
5258 		cas_lock_all_save(cp, flags);
5259 		cas_reset(cp, 0);
5260 		cp->hw_running = 1;
5261 		cas_clean_rings(cp);
5262 		cas_init_hw(cp, 1);
5263 		cas_unlock_all_restore(cp, flags);
5264 
5265 		netif_device_attach(dev);
5266 	}
5267 	mutex_unlock(&cp->pm_mutex);
5268 	return 0;
5269 }
5270 #endif /* CONFIG_PM */
5271 
5272 static struct pci_driver cas_driver = {
5273 	.name		= DRV_MODULE_NAME,
5274 	.id_table	= cas_pci_tbl,
5275 	.probe		= cas_init_one,
5276 	.remove		= __devexit_p(cas_remove_one),
5277 #ifdef CONFIG_PM
5278 	.suspend	= cas_suspend,
5279 	.resume		= cas_resume
5280 #endif
5281 };
5282 
5283 static int __init cas_init(void)
5284 {
5285 	if (linkdown_timeout > 0)
5286 		link_transition_timeout = linkdown_timeout * HZ;
5287 	else
5288 		link_transition_timeout = 0;
5289 
5290 	return pci_register_driver(&cas_driver);
5291 }
5292 
5293 static void __exit cas_cleanup(void)
5294 {
5295 	pci_unregister_driver(&cas_driver);
5296 }
5297 
5298 module_init(cas_init);
5299 module_exit(cas_cleanup);
5300