1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 2 * 3 * Copyright (C) 2004 Sun Microsystems Inc. 4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 19 * 02111-1307, USA. 20 * 21 * This driver uses the sungem driver (c) David Miller 22 * (davem@redhat.com) as its basis. 23 * 24 * The cassini chip has a number of features that distinguish it from 25 * the gem chip: 26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 27 * load balancing (non-VLAN mode) 28 * batching of multiple packets 29 * multiple CPU dispatching 30 * page-based RX descriptor engine with separate completion rings 31 * Gigabit support (GMII and PCS interface) 32 * MIF link up/down detection works 33 * 34 * RX is handled by page sized buffers that are attached as fragments to 35 * the skb. here's what's done: 36 * -- driver allocates pages at a time and keeps reference counts 37 * on them. 38 * -- the upper protocol layers assume that the header is in the skb 39 * itself. as a result, cassini will copy a small amount (64 bytes) 40 * to make them happy. 41 * -- driver appends the rest of the data pages as frags to skbuffs 42 * and increments the reference count 43 * -- on page reclamation, the driver swaps the page with a spare page. 44 * if that page is still in use, it frees its reference to that page, 45 * and allocates a new page for use. otherwise, it just recycles the 46 * the page. 47 * 48 * NOTE: cassini can parse the header. however, it's not worth it 49 * as long as the network stack requires a header copy. 50 * 51 * TX has 4 queues. currently these queues are used in a round-robin 52 * fashion for load balancing. They can also be used for QoS. for that 53 * to work, however, QoS information needs to be exposed down to the driver 54 * level so that subqueues get targeted to particular transmit rings. 55 * alternatively, the queues can be configured via use of the all-purpose 56 * ioctl. 57 * 58 * RX DATA: the rx completion ring has all the info, but the rx desc 59 * ring has all of the data. RX can conceivably come in under multiple 60 * interrupts, but the INT# assignment needs to be set up properly by 61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 62 * that. also, the two descriptor rings are designed to distinguish between 63 * encrypted and non-encrypted packets, but we use them for buffering 64 * instead. 65 * 66 * by default, the selective clear mask is set up to process rx packets. 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/module.h> 72 #include <linux/kernel.h> 73 #include <linux/types.h> 74 #include <linux/compiler.h> 75 #include <linux/slab.h> 76 #include <linux/delay.h> 77 #include <linux/init.h> 78 #include <linux/interrupt.h> 79 #include <linux/vmalloc.h> 80 #include <linux/ioport.h> 81 #include <linux/pci.h> 82 #include <linux/mm.h> 83 #include <linux/highmem.h> 84 #include <linux/list.h> 85 #include <linux/dma-mapping.h> 86 87 #include <linux/netdevice.h> 88 #include <linux/etherdevice.h> 89 #include <linux/skbuff.h> 90 #include <linux/ethtool.h> 91 #include <linux/crc32.h> 92 #include <linux/random.h> 93 #include <linux/mii.h> 94 #include <linux/ip.h> 95 #include <linux/tcp.h> 96 #include <linux/mutex.h> 97 #include <linux/firmware.h> 98 99 #include <net/checksum.h> 100 101 #include <linux/atomic.h> 102 #include <asm/io.h> 103 #include <asm/byteorder.h> 104 #include <asm/uaccess.h> 105 106 #define cas_page_map(x) kmap_atomic((x)) 107 #define cas_page_unmap(x) kunmap_atomic((x)) 108 #define CAS_NCPUS num_online_cpus() 109 110 #define cas_skb_release(x) netif_rx(x) 111 112 /* select which firmware to use */ 113 #define USE_HP_WORKAROUND 114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 116 117 #include "cassini.h" 118 119 #define USE_TX_COMPWB /* use completion writeback registers */ 120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 121 #define USE_RX_BLANK /* hw interrupt mitigation */ 122 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 123 124 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 125 * also, we need to make cp->lock finer-grained. 126 */ 127 #undef USE_PCI_INTB 128 #undef USE_PCI_INTC 129 #undef USE_PCI_INTD 130 #undef USE_QOS 131 132 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 133 134 /* rx processing options */ 135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 140 141 #define DRV_MODULE_NAME "cassini" 142 #define DRV_MODULE_VERSION "1.6" 143 #define DRV_MODULE_RELDATE "21 May 2008" 144 145 #define CAS_DEF_MSG_ENABLE \ 146 (NETIF_MSG_DRV | \ 147 NETIF_MSG_PROBE | \ 148 NETIF_MSG_LINK | \ 149 NETIF_MSG_TIMER | \ 150 NETIF_MSG_IFDOWN | \ 151 NETIF_MSG_IFUP | \ 152 NETIF_MSG_RX_ERR | \ 153 NETIF_MSG_TX_ERR) 154 155 /* length of time before we decide the hardware is borked, 156 * and dev->tx_timeout() should be called to fix the problem 157 */ 158 #define CAS_TX_TIMEOUT (HZ) 159 #define CAS_LINK_TIMEOUT (22*HZ/10) 160 #define CAS_LINK_FAST_TIMEOUT (1) 161 162 /* timeout values for state changing. these specify the number 163 * of 10us delays to be used before giving up. 164 */ 165 #define STOP_TRIES_PHY 1000 166 #define STOP_TRIES 5000 167 168 /* specify a minimum frame size to deal with some fifo issues 169 * max mtu == 2 * page size - ethernet header - 64 - swivel = 170 * 2 * page_size - 0x50 171 */ 172 #define CAS_MIN_FRAME 97 173 #define CAS_1000MB_MIN_FRAME 255 174 #define CAS_MIN_MTU 60 175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 176 177 #if 1 178 /* 179 * Eliminate these and use separate atomic counters for each, to 180 * avoid a race condition. 181 */ 182 #else 183 #define CAS_RESET_MTU 1 184 #define CAS_RESET_ALL 2 185 #define CAS_RESET_SPARE 3 186 #endif 187 188 static char version[] __devinitdata = 189 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 190 191 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 192 static int link_mode; 193 194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 196 MODULE_LICENSE("GPL"); 197 MODULE_FIRMWARE("sun/cassini.bin"); 198 module_param(cassini_debug, int, 0); 199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 200 module_param(link_mode, int, 0); 201 MODULE_PARM_DESC(link_mode, "default link mode"); 202 203 /* 204 * Work around for a PCS bug in which the link goes down due to the chip 205 * being confused and never showing a link status of "up." 206 */ 207 #define DEFAULT_LINKDOWN_TIMEOUT 5 208 /* 209 * Value in seconds, for user input. 210 */ 211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 212 module_param(linkdown_timeout, int, 0); 213 MODULE_PARM_DESC(linkdown_timeout, 214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 215 216 /* 217 * value in 'ticks' (units used by jiffies). Set when we init the 218 * module because 'HZ' in actually a function call on some flavors of 219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 220 */ 221 static int link_transition_timeout; 222 223 224 225 static u16 link_modes[] __devinitdata = { 226 BMCR_ANENABLE, /* 0 : autoneg */ 227 0, /* 1 : 10bt half duplex */ 228 BMCR_SPEED100, /* 2 : 100bt half duplex */ 229 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 230 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 231 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 232 }; 233 234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = { 235 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 237 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 239 { 0, } 240 }; 241 242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 243 244 static void cas_set_link_modes(struct cas *cp); 245 246 static inline void cas_lock_tx(struct cas *cp) 247 { 248 int i; 249 250 for (i = 0; i < N_TX_RINGS; i++) 251 spin_lock(&cp->tx_lock[i]); 252 } 253 254 static inline void cas_lock_all(struct cas *cp) 255 { 256 spin_lock_irq(&cp->lock); 257 cas_lock_tx(cp); 258 } 259 260 /* WTZ: QA was finding deadlock problems with the previous 261 * versions after long test runs with multiple cards per machine. 262 * See if replacing cas_lock_all with safer versions helps. The 263 * symptoms QA is reporting match those we'd expect if interrupts 264 * aren't being properly restored, and we fixed a previous deadlock 265 * with similar symptoms by using save/restore versions in other 266 * places. 267 */ 268 #define cas_lock_all_save(cp, flags) \ 269 do { \ 270 struct cas *xxxcp = (cp); \ 271 spin_lock_irqsave(&xxxcp->lock, flags); \ 272 cas_lock_tx(xxxcp); \ 273 } while (0) 274 275 static inline void cas_unlock_tx(struct cas *cp) 276 { 277 int i; 278 279 for (i = N_TX_RINGS; i > 0; i--) 280 spin_unlock(&cp->tx_lock[i - 1]); 281 } 282 283 static inline void cas_unlock_all(struct cas *cp) 284 { 285 cas_unlock_tx(cp); 286 spin_unlock_irq(&cp->lock); 287 } 288 289 #define cas_unlock_all_restore(cp, flags) \ 290 do { \ 291 struct cas *xxxcp = (cp); \ 292 cas_unlock_tx(xxxcp); \ 293 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 294 } while (0) 295 296 static void cas_disable_irq(struct cas *cp, const int ring) 297 { 298 /* Make sure we won't get any more interrupts */ 299 if (ring == 0) { 300 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 301 return; 302 } 303 304 /* disable completion interrupts and selectively mask */ 305 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 306 switch (ring) { 307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 308 #ifdef USE_PCI_INTB 309 case 1: 310 #endif 311 #ifdef USE_PCI_INTC 312 case 2: 313 #endif 314 #ifdef USE_PCI_INTD 315 case 3: 316 #endif 317 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 318 cp->regs + REG_PLUS_INTRN_MASK(ring)); 319 break; 320 #endif 321 default: 322 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 323 REG_PLUS_INTRN_MASK(ring)); 324 break; 325 } 326 } 327 } 328 329 static inline void cas_mask_intr(struct cas *cp) 330 { 331 int i; 332 333 for (i = 0; i < N_RX_COMP_RINGS; i++) 334 cas_disable_irq(cp, i); 335 } 336 337 static void cas_enable_irq(struct cas *cp, const int ring) 338 { 339 if (ring == 0) { /* all but TX_DONE */ 340 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 341 return; 342 } 343 344 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 345 switch (ring) { 346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 347 #ifdef USE_PCI_INTB 348 case 1: 349 #endif 350 #ifdef USE_PCI_INTC 351 case 2: 352 #endif 353 #ifdef USE_PCI_INTD 354 case 3: 355 #endif 356 writel(INTRN_MASK_RX_EN, cp->regs + 357 REG_PLUS_INTRN_MASK(ring)); 358 break; 359 #endif 360 default: 361 break; 362 } 363 } 364 } 365 366 static inline void cas_unmask_intr(struct cas *cp) 367 { 368 int i; 369 370 for (i = 0; i < N_RX_COMP_RINGS; i++) 371 cas_enable_irq(cp, i); 372 } 373 374 static inline void cas_entropy_gather(struct cas *cp) 375 { 376 #ifdef USE_ENTROPY_DEV 377 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 378 return; 379 380 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 381 readl(cp->regs + REG_ENTROPY_IV), 382 sizeof(uint64_t)*8); 383 #endif 384 } 385 386 static inline void cas_entropy_reset(struct cas *cp) 387 { 388 #ifdef USE_ENTROPY_DEV 389 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 390 return; 391 392 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 393 cp->regs + REG_BIM_LOCAL_DEV_EN); 394 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 395 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 396 397 /* if we read back 0x0, we don't have an entropy device */ 398 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 399 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 400 #endif 401 } 402 403 /* access to the phy. the following assumes that we've initialized the MIF to 404 * be in frame rather than bit-bang mode 405 */ 406 static u16 cas_phy_read(struct cas *cp, int reg) 407 { 408 u32 cmd; 409 int limit = STOP_TRIES_PHY; 410 411 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 412 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 413 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 414 cmd |= MIF_FRAME_TURN_AROUND_MSB; 415 writel(cmd, cp->regs + REG_MIF_FRAME); 416 417 /* poll for completion */ 418 while (limit-- > 0) { 419 udelay(10); 420 cmd = readl(cp->regs + REG_MIF_FRAME); 421 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 422 return cmd & MIF_FRAME_DATA_MASK; 423 } 424 return 0xFFFF; /* -1 */ 425 } 426 427 static int cas_phy_write(struct cas *cp, int reg, u16 val) 428 { 429 int limit = STOP_TRIES_PHY; 430 u32 cmd; 431 432 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 433 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 434 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 435 cmd |= MIF_FRAME_TURN_AROUND_MSB; 436 cmd |= val & MIF_FRAME_DATA_MASK; 437 writel(cmd, cp->regs + REG_MIF_FRAME); 438 439 /* poll for completion */ 440 while (limit-- > 0) { 441 udelay(10); 442 cmd = readl(cp->regs + REG_MIF_FRAME); 443 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 444 return 0; 445 } 446 return -1; 447 } 448 449 static void cas_phy_powerup(struct cas *cp) 450 { 451 u16 ctl = cas_phy_read(cp, MII_BMCR); 452 453 if ((ctl & BMCR_PDOWN) == 0) 454 return; 455 ctl &= ~BMCR_PDOWN; 456 cas_phy_write(cp, MII_BMCR, ctl); 457 } 458 459 static void cas_phy_powerdown(struct cas *cp) 460 { 461 u16 ctl = cas_phy_read(cp, MII_BMCR); 462 463 if (ctl & BMCR_PDOWN) 464 return; 465 ctl |= BMCR_PDOWN; 466 cas_phy_write(cp, MII_BMCR, ctl); 467 } 468 469 /* cp->lock held. note: the last put_page will free the buffer */ 470 static int cas_page_free(struct cas *cp, cas_page_t *page) 471 { 472 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 473 PCI_DMA_FROMDEVICE); 474 __free_pages(page->buffer, cp->page_order); 475 kfree(page); 476 return 0; 477 } 478 479 #ifdef RX_COUNT_BUFFERS 480 #define RX_USED_ADD(x, y) ((x)->used += (y)) 481 #define RX_USED_SET(x, y) ((x)->used = (y)) 482 #else 483 #define RX_USED_ADD(x, y) 484 #define RX_USED_SET(x, y) 485 #endif 486 487 /* local page allocation routines for the receive buffers. jumbo pages 488 * require at least 8K contiguous and 8K aligned buffers. 489 */ 490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 491 { 492 cas_page_t *page; 493 494 page = kmalloc(sizeof(cas_page_t), flags); 495 if (!page) 496 return NULL; 497 498 INIT_LIST_HEAD(&page->list); 499 RX_USED_SET(page, 0); 500 page->buffer = alloc_pages(flags, cp->page_order); 501 if (!page->buffer) 502 goto page_err; 503 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 504 cp->page_size, PCI_DMA_FROMDEVICE); 505 return page; 506 507 page_err: 508 kfree(page); 509 return NULL; 510 } 511 512 /* initialize spare pool of rx buffers, but allocate during the open */ 513 static void cas_spare_init(struct cas *cp) 514 { 515 spin_lock(&cp->rx_inuse_lock); 516 INIT_LIST_HEAD(&cp->rx_inuse_list); 517 spin_unlock(&cp->rx_inuse_lock); 518 519 spin_lock(&cp->rx_spare_lock); 520 INIT_LIST_HEAD(&cp->rx_spare_list); 521 cp->rx_spares_needed = RX_SPARE_COUNT; 522 spin_unlock(&cp->rx_spare_lock); 523 } 524 525 /* used on close. free all the spare buffers. */ 526 static void cas_spare_free(struct cas *cp) 527 { 528 struct list_head list, *elem, *tmp; 529 530 /* free spare buffers */ 531 INIT_LIST_HEAD(&list); 532 spin_lock(&cp->rx_spare_lock); 533 list_splice_init(&cp->rx_spare_list, &list); 534 spin_unlock(&cp->rx_spare_lock); 535 list_for_each_safe(elem, tmp, &list) { 536 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 537 } 538 539 INIT_LIST_HEAD(&list); 540 #if 1 541 /* 542 * Looks like Adrian had protected this with a different 543 * lock than used everywhere else to manipulate this list. 544 */ 545 spin_lock(&cp->rx_inuse_lock); 546 list_splice_init(&cp->rx_inuse_list, &list); 547 spin_unlock(&cp->rx_inuse_lock); 548 #else 549 spin_lock(&cp->rx_spare_lock); 550 list_splice_init(&cp->rx_inuse_list, &list); 551 spin_unlock(&cp->rx_spare_lock); 552 #endif 553 list_for_each_safe(elem, tmp, &list) { 554 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 555 } 556 } 557 558 /* replenish spares if needed */ 559 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 560 { 561 struct list_head list, *elem, *tmp; 562 int needed, i; 563 564 /* check inuse list. if we don't need any more free buffers, 565 * just free it 566 */ 567 568 /* make a local copy of the list */ 569 INIT_LIST_HEAD(&list); 570 spin_lock(&cp->rx_inuse_lock); 571 list_splice_init(&cp->rx_inuse_list, &list); 572 spin_unlock(&cp->rx_inuse_lock); 573 574 list_for_each_safe(elem, tmp, &list) { 575 cas_page_t *page = list_entry(elem, cas_page_t, list); 576 577 /* 578 * With the lockless pagecache, cassini buffering scheme gets 579 * slightly less accurate: we might find that a page has an 580 * elevated reference count here, due to a speculative ref, 581 * and skip it as in-use. Ideally we would be able to reclaim 582 * it. However this would be such a rare case, it doesn't 583 * matter too much as we should pick it up the next time round. 584 * 585 * Importantly, if we find that the page has a refcount of 1 586 * here (our refcount), then we know it is definitely not inuse 587 * so we can reuse it. 588 */ 589 if (page_count(page->buffer) > 1) 590 continue; 591 592 list_del(elem); 593 spin_lock(&cp->rx_spare_lock); 594 if (cp->rx_spares_needed > 0) { 595 list_add(elem, &cp->rx_spare_list); 596 cp->rx_spares_needed--; 597 spin_unlock(&cp->rx_spare_lock); 598 } else { 599 spin_unlock(&cp->rx_spare_lock); 600 cas_page_free(cp, page); 601 } 602 } 603 604 /* put any inuse buffers back on the list */ 605 if (!list_empty(&list)) { 606 spin_lock(&cp->rx_inuse_lock); 607 list_splice(&list, &cp->rx_inuse_list); 608 spin_unlock(&cp->rx_inuse_lock); 609 } 610 611 spin_lock(&cp->rx_spare_lock); 612 needed = cp->rx_spares_needed; 613 spin_unlock(&cp->rx_spare_lock); 614 if (!needed) 615 return; 616 617 /* we still need spares, so try to allocate some */ 618 INIT_LIST_HEAD(&list); 619 i = 0; 620 while (i < needed) { 621 cas_page_t *spare = cas_page_alloc(cp, flags); 622 if (!spare) 623 break; 624 list_add(&spare->list, &list); 625 i++; 626 } 627 628 spin_lock(&cp->rx_spare_lock); 629 list_splice(&list, &cp->rx_spare_list); 630 cp->rx_spares_needed -= i; 631 spin_unlock(&cp->rx_spare_lock); 632 } 633 634 /* pull a page from the list. */ 635 static cas_page_t *cas_page_dequeue(struct cas *cp) 636 { 637 struct list_head *entry; 638 int recover; 639 640 spin_lock(&cp->rx_spare_lock); 641 if (list_empty(&cp->rx_spare_list)) { 642 /* try to do a quick recovery */ 643 spin_unlock(&cp->rx_spare_lock); 644 cas_spare_recover(cp, GFP_ATOMIC); 645 spin_lock(&cp->rx_spare_lock); 646 if (list_empty(&cp->rx_spare_list)) { 647 netif_err(cp, rx_err, cp->dev, 648 "no spare buffers available\n"); 649 spin_unlock(&cp->rx_spare_lock); 650 return NULL; 651 } 652 } 653 654 entry = cp->rx_spare_list.next; 655 list_del(entry); 656 recover = ++cp->rx_spares_needed; 657 spin_unlock(&cp->rx_spare_lock); 658 659 /* trigger the timer to do the recovery */ 660 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 661 #if 1 662 atomic_inc(&cp->reset_task_pending); 663 atomic_inc(&cp->reset_task_pending_spare); 664 schedule_work(&cp->reset_task); 665 #else 666 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 667 schedule_work(&cp->reset_task); 668 #endif 669 } 670 return list_entry(entry, cas_page_t, list); 671 } 672 673 674 static void cas_mif_poll(struct cas *cp, const int enable) 675 { 676 u32 cfg; 677 678 cfg = readl(cp->regs + REG_MIF_CFG); 679 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 680 681 if (cp->phy_type & CAS_PHY_MII_MDIO1) 682 cfg |= MIF_CFG_PHY_SELECT; 683 684 /* poll and interrupt on link status change. */ 685 if (enable) { 686 cfg |= MIF_CFG_POLL_EN; 687 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 688 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 689 } 690 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 691 cp->regs + REG_MIF_MASK); 692 writel(cfg, cp->regs + REG_MIF_CFG); 693 } 694 695 /* Must be invoked under cp->lock */ 696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) 697 { 698 u16 ctl; 699 #if 1 700 int lcntl; 701 int changed = 0; 702 int oldstate = cp->lstate; 703 int link_was_not_down = !(oldstate == link_down); 704 #endif 705 /* Setup link parameters */ 706 if (!ep) 707 goto start_aneg; 708 lcntl = cp->link_cntl; 709 if (ep->autoneg == AUTONEG_ENABLE) 710 cp->link_cntl = BMCR_ANENABLE; 711 else { 712 u32 speed = ethtool_cmd_speed(ep); 713 cp->link_cntl = 0; 714 if (speed == SPEED_100) 715 cp->link_cntl |= BMCR_SPEED100; 716 else if (speed == SPEED_1000) 717 cp->link_cntl |= CAS_BMCR_SPEED1000; 718 if (ep->duplex == DUPLEX_FULL) 719 cp->link_cntl |= BMCR_FULLDPLX; 720 } 721 #if 1 722 changed = (lcntl != cp->link_cntl); 723 #endif 724 start_aneg: 725 if (cp->lstate == link_up) { 726 netdev_info(cp->dev, "PCS link down\n"); 727 } else { 728 if (changed) { 729 netdev_info(cp->dev, "link configuration changed\n"); 730 } 731 } 732 cp->lstate = link_down; 733 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 734 if (!cp->hw_running) 735 return; 736 #if 1 737 /* 738 * WTZ: If the old state was link_up, we turn off the carrier 739 * to replicate everything we do elsewhere on a link-down 740 * event when we were already in a link-up state.. 741 */ 742 if (oldstate == link_up) 743 netif_carrier_off(cp->dev); 744 if (changed && link_was_not_down) { 745 /* 746 * WTZ: This branch will simply schedule a full reset after 747 * we explicitly changed link modes in an ioctl. See if this 748 * fixes the link-problems we were having for forced mode. 749 */ 750 atomic_inc(&cp->reset_task_pending); 751 atomic_inc(&cp->reset_task_pending_all); 752 schedule_work(&cp->reset_task); 753 cp->timer_ticks = 0; 754 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 755 return; 756 } 757 #endif 758 if (cp->phy_type & CAS_PHY_SERDES) { 759 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 760 761 if (cp->link_cntl & BMCR_ANENABLE) { 762 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 763 cp->lstate = link_aneg; 764 } else { 765 if (cp->link_cntl & BMCR_FULLDPLX) 766 val |= PCS_MII_CTRL_DUPLEX; 767 val &= ~PCS_MII_AUTONEG_EN; 768 cp->lstate = link_force_ok; 769 } 770 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 771 writel(val, cp->regs + REG_PCS_MII_CTRL); 772 773 } else { 774 cas_mif_poll(cp, 0); 775 ctl = cas_phy_read(cp, MII_BMCR); 776 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 777 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 778 ctl |= cp->link_cntl; 779 if (ctl & BMCR_ANENABLE) { 780 ctl |= BMCR_ANRESTART; 781 cp->lstate = link_aneg; 782 } else { 783 cp->lstate = link_force_ok; 784 } 785 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 786 cas_phy_write(cp, MII_BMCR, ctl); 787 cas_mif_poll(cp, 1); 788 } 789 790 cp->timer_ticks = 0; 791 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 792 } 793 794 /* Must be invoked under cp->lock. */ 795 static int cas_reset_mii_phy(struct cas *cp) 796 { 797 int limit = STOP_TRIES_PHY; 798 u16 val; 799 800 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 801 udelay(100); 802 while (--limit) { 803 val = cas_phy_read(cp, MII_BMCR); 804 if ((val & BMCR_RESET) == 0) 805 break; 806 udelay(10); 807 } 808 return limit <= 0; 809 } 810 811 static int cas_saturn_firmware_init(struct cas *cp) 812 { 813 const struct firmware *fw; 814 const char fw_name[] = "sun/cassini.bin"; 815 int err; 816 817 if (PHY_NS_DP83065 != cp->phy_id) 818 return 0; 819 820 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 821 if (err) { 822 pr_err("Failed to load firmware \"%s\"\n", 823 fw_name); 824 return err; 825 } 826 if (fw->size < 2) { 827 pr_err("bogus length %zu in \"%s\"\n", 828 fw->size, fw_name); 829 err = -EINVAL; 830 goto out; 831 } 832 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 833 cp->fw_size = fw->size - 2; 834 cp->fw_data = vmalloc(cp->fw_size); 835 if (!cp->fw_data) { 836 err = -ENOMEM; 837 goto out; 838 } 839 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 840 out: 841 release_firmware(fw); 842 return err; 843 } 844 845 static void cas_saturn_firmware_load(struct cas *cp) 846 { 847 int i; 848 849 cas_phy_powerdown(cp); 850 851 /* expanded memory access mode */ 852 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 853 854 /* pointer configuration for new firmware */ 855 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 856 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 858 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 859 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 860 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 862 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 863 864 /* download new firmware */ 865 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 866 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 867 for (i = 0; i < cp->fw_size; i++) 868 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 869 870 /* enable firmware */ 871 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 872 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 873 } 874 875 876 /* phy initialization */ 877 static void cas_phy_init(struct cas *cp) 878 { 879 u16 val; 880 881 /* if we're in MII/GMII mode, set up phy */ 882 if (CAS_PHY_MII(cp->phy_type)) { 883 writel(PCS_DATAPATH_MODE_MII, 884 cp->regs + REG_PCS_DATAPATH_MODE); 885 886 cas_mif_poll(cp, 0); 887 cas_reset_mii_phy(cp); /* take out of isolate mode */ 888 889 if (PHY_LUCENT_B0 == cp->phy_id) { 890 /* workaround link up/down issue with lucent */ 891 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 892 cas_phy_write(cp, MII_BMCR, 0x00f1); 893 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 894 895 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 896 /* workarounds for broadcom phy */ 897 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 898 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 899 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 900 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 901 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 902 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 903 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 904 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 905 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 906 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 907 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 908 909 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 910 val = cas_phy_read(cp, BROADCOM_MII_REG4); 911 val = cas_phy_read(cp, BROADCOM_MII_REG4); 912 if (val & 0x0080) { 913 /* link workaround */ 914 cas_phy_write(cp, BROADCOM_MII_REG4, 915 val & ~0x0080); 916 } 917 918 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 919 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 920 SATURN_PCFG_FSI : 0x0, 921 cp->regs + REG_SATURN_PCFG); 922 923 /* load firmware to address 10Mbps auto-negotiation 924 * issue. NOTE: this will need to be changed if the 925 * default firmware gets fixed. 926 */ 927 if (PHY_NS_DP83065 == cp->phy_id) { 928 cas_saturn_firmware_load(cp); 929 } 930 cas_phy_powerup(cp); 931 } 932 933 /* advertise capabilities */ 934 val = cas_phy_read(cp, MII_BMCR); 935 val &= ~BMCR_ANENABLE; 936 cas_phy_write(cp, MII_BMCR, val); 937 udelay(10); 938 939 cas_phy_write(cp, MII_ADVERTISE, 940 cas_phy_read(cp, MII_ADVERTISE) | 941 (ADVERTISE_10HALF | ADVERTISE_10FULL | 942 ADVERTISE_100HALF | ADVERTISE_100FULL | 943 CAS_ADVERTISE_PAUSE | 944 CAS_ADVERTISE_ASYM_PAUSE)); 945 946 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 947 /* make sure that we don't advertise half 948 * duplex to avoid a chip issue 949 */ 950 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 951 val &= ~CAS_ADVERTISE_1000HALF; 952 val |= CAS_ADVERTISE_1000FULL; 953 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 954 } 955 956 } else { 957 /* reset pcs for serdes */ 958 u32 val; 959 int limit; 960 961 writel(PCS_DATAPATH_MODE_SERDES, 962 cp->regs + REG_PCS_DATAPATH_MODE); 963 964 /* enable serdes pins on saturn */ 965 if (cp->cas_flags & CAS_FLAG_SATURN) 966 writel(0, cp->regs + REG_SATURN_PCFG); 967 968 /* Reset PCS unit. */ 969 val = readl(cp->regs + REG_PCS_MII_CTRL); 970 val |= PCS_MII_RESET; 971 writel(val, cp->regs + REG_PCS_MII_CTRL); 972 973 limit = STOP_TRIES; 974 while (--limit > 0) { 975 udelay(10); 976 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 977 PCS_MII_RESET) == 0) 978 break; 979 } 980 if (limit <= 0) 981 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 982 readl(cp->regs + REG_PCS_STATE_MACHINE)); 983 984 /* Make sure PCS is disabled while changing advertisement 985 * configuration. 986 */ 987 writel(0x0, cp->regs + REG_PCS_CFG); 988 989 /* Advertise all capabilities except half-duplex. */ 990 val = readl(cp->regs + REG_PCS_MII_ADVERT); 991 val &= ~PCS_MII_ADVERT_HD; 992 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 993 PCS_MII_ADVERT_ASYM_PAUSE); 994 writel(val, cp->regs + REG_PCS_MII_ADVERT); 995 996 /* enable PCS */ 997 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 998 999 /* pcs workaround: enable sync detect */ 1000 writel(PCS_SERDES_CTRL_SYNCD_EN, 1001 cp->regs + REG_PCS_SERDES_CTRL); 1002 } 1003 } 1004 1005 1006 static int cas_pcs_link_check(struct cas *cp) 1007 { 1008 u32 stat, state_machine; 1009 int retval = 0; 1010 1011 /* The link status bit latches on zero, so you must 1012 * read it twice in such a case to see a transition 1013 * to the link being up. 1014 */ 1015 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1016 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1017 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1018 1019 /* The remote-fault indication is only valid 1020 * when autoneg has completed. 1021 */ 1022 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1023 PCS_MII_STATUS_REMOTE_FAULT)) == 1024 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1025 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1026 1027 /* work around link detection issue by querying the PCS state 1028 * machine directly. 1029 */ 1030 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1031 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1032 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1033 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1034 stat |= PCS_MII_STATUS_LINK_STATUS; 1035 } 1036 1037 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1038 if (cp->lstate != link_up) { 1039 if (cp->opened) { 1040 cp->lstate = link_up; 1041 cp->link_transition = LINK_TRANSITION_LINK_UP; 1042 1043 cas_set_link_modes(cp); 1044 netif_carrier_on(cp->dev); 1045 } 1046 } 1047 } else if (cp->lstate == link_up) { 1048 cp->lstate = link_down; 1049 if (link_transition_timeout != 0 && 1050 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1051 !cp->link_transition_jiffies_valid) { 1052 /* 1053 * force a reset, as a workaround for the 1054 * link-failure problem. May want to move this to a 1055 * point a bit earlier in the sequence. If we had 1056 * generated a reset a short time ago, we'll wait for 1057 * the link timer to check the status until a 1058 * timer expires (link_transistion_jiffies_valid is 1059 * true when the timer is running.) Instead of using 1060 * a system timer, we just do a check whenever the 1061 * link timer is running - this clears the flag after 1062 * a suitable delay. 1063 */ 1064 retval = 1; 1065 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1066 cp->link_transition_jiffies = jiffies; 1067 cp->link_transition_jiffies_valid = 1; 1068 } else { 1069 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1070 } 1071 netif_carrier_off(cp->dev); 1072 if (cp->opened) 1073 netif_info(cp, link, cp->dev, "PCS link down\n"); 1074 1075 /* Cassini only: if you force a mode, there can be 1076 * sync problems on link down. to fix that, the following 1077 * things need to be checked: 1078 * 1) read serialink state register 1079 * 2) read pcs status register to verify link down. 1080 * 3) if link down and serial link == 0x03, then you need 1081 * to global reset the chip. 1082 */ 1083 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1084 /* should check to see if we're in a forced mode */ 1085 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1086 if (stat == 0x03) 1087 return 1; 1088 } 1089 } else if (cp->lstate == link_down) { 1090 if (link_transition_timeout != 0 && 1091 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1092 !cp->link_transition_jiffies_valid) { 1093 /* force a reset, as a workaround for the 1094 * link-failure problem. May want to move 1095 * this to a point a bit earlier in the 1096 * sequence. 1097 */ 1098 retval = 1; 1099 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1100 cp->link_transition_jiffies = jiffies; 1101 cp->link_transition_jiffies_valid = 1; 1102 } else { 1103 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1104 } 1105 } 1106 1107 return retval; 1108 } 1109 1110 static int cas_pcs_interrupt(struct net_device *dev, 1111 struct cas *cp, u32 status) 1112 { 1113 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1114 1115 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1116 return 0; 1117 return cas_pcs_link_check(cp); 1118 } 1119 1120 static int cas_txmac_interrupt(struct net_device *dev, 1121 struct cas *cp, u32 status) 1122 { 1123 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1124 1125 if (!txmac_stat) 1126 return 0; 1127 1128 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1129 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1130 1131 /* Defer timer expiration is quite normal, 1132 * don't even log the event. 1133 */ 1134 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1135 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1136 return 0; 1137 1138 spin_lock(&cp->stat_lock[0]); 1139 if (txmac_stat & MAC_TX_UNDERRUN) { 1140 netdev_err(dev, "TX MAC xmit underrun\n"); 1141 cp->net_stats[0].tx_fifo_errors++; 1142 } 1143 1144 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1145 netdev_err(dev, "TX MAC max packet size error\n"); 1146 cp->net_stats[0].tx_errors++; 1147 } 1148 1149 /* The rest are all cases of one of the 16-bit TX 1150 * counters expiring. 1151 */ 1152 if (txmac_stat & MAC_TX_COLL_NORMAL) 1153 cp->net_stats[0].collisions += 0x10000; 1154 1155 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1156 cp->net_stats[0].tx_aborted_errors += 0x10000; 1157 cp->net_stats[0].collisions += 0x10000; 1158 } 1159 1160 if (txmac_stat & MAC_TX_COLL_LATE) { 1161 cp->net_stats[0].tx_aborted_errors += 0x10000; 1162 cp->net_stats[0].collisions += 0x10000; 1163 } 1164 spin_unlock(&cp->stat_lock[0]); 1165 1166 /* We do not keep track of MAC_TX_COLL_FIRST and 1167 * MAC_TX_PEAK_ATTEMPTS events. 1168 */ 1169 return 0; 1170 } 1171 1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1173 { 1174 cas_hp_inst_t *inst; 1175 u32 val; 1176 int i; 1177 1178 i = 0; 1179 while ((inst = firmware) && inst->note) { 1180 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1181 1182 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1183 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1184 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1185 1186 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1187 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1189 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1191 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1192 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1193 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1194 1195 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1199 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1200 ++firmware; 1201 ++i; 1202 } 1203 } 1204 1205 static void cas_init_rx_dma(struct cas *cp) 1206 { 1207 u64 desc_dma = cp->block_dvma; 1208 u32 val; 1209 int i, size; 1210 1211 /* rx free descriptors */ 1212 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1213 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1214 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1215 if ((N_RX_DESC_RINGS > 1) && 1216 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1217 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1218 writel(val, cp->regs + REG_RX_CFG); 1219 1220 val = (unsigned long) cp->init_rxds[0] - 1221 (unsigned long) cp->init_block; 1222 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1223 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1224 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1225 1226 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1227 /* rx desc 2 is for IPSEC packets. however, 1228 * we don't it that for that purpose. 1229 */ 1230 val = (unsigned long) cp->init_rxds[1] - 1231 (unsigned long) cp->init_block; 1232 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1233 writel((desc_dma + val) & 0xffffffff, cp->regs + 1234 REG_PLUS_RX_DB1_LOW); 1235 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1236 REG_PLUS_RX_KICK1); 1237 } 1238 1239 /* rx completion registers */ 1240 val = (unsigned long) cp->init_rxcs[0] - 1241 (unsigned long) cp->init_block; 1242 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1243 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1244 1245 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1246 /* rx comp 2-4 */ 1247 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1248 val = (unsigned long) cp->init_rxcs[i] - 1249 (unsigned long) cp->init_block; 1250 writel((desc_dma + val) >> 32, cp->regs + 1251 REG_PLUS_RX_CBN_HI(i)); 1252 writel((desc_dma + val) & 0xffffffff, cp->regs + 1253 REG_PLUS_RX_CBN_LOW(i)); 1254 } 1255 } 1256 1257 /* read selective clear regs to prevent spurious interrupts 1258 * on reset because complete == kick. 1259 * selective clear set up to prevent interrupts on resets 1260 */ 1261 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1262 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1263 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1264 for (i = 1; i < N_RX_COMP_RINGS; i++) 1265 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1266 1267 /* 2 is different from 3 and 4 */ 1268 if (N_RX_COMP_RINGS > 1) 1269 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1270 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1271 1272 for (i = 2; i < N_RX_COMP_RINGS; i++) 1273 writel(INTR_RX_DONE_ALT, 1274 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1275 } 1276 1277 /* set up pause thresholds */ 1278 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1279 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1280 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1281 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1282 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1283 1284 /* zero out dma reassembly buffers */ 1285 for (i = 0; i < 64; i++) { 1286 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1290 } 1291 1292 /* make sure address register is 0 for normal operation */ 1293 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1294 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1295 1296 /* interrupt mitigation */ 1297 #ifdef USE_RX_BLANK 1298 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1299 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1300 writel(val, cp->regs + REG_RX_BLANK); 1301 #else 1302 writel(0x0, cp->regs + REG_RX_BLANK); 1303 #endif 1304 1305 /* interrupt generation as a function of low water marks for 1306 * free desc and completion entries. these are used to trigger 1307 * housekeeping for rx descs. we don't use the free interrupt 1308 * as it's not very useful 1309 */ 1310 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1311 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1312 writel(val, cp->regs + REG_RX_AE_THRESH); 1313 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1314 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1315 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1316 } 1317 1318 /* Random early detect registers. useful for congestion avoidance. 1319 * this should be tunable. 1320 */ 1321 writel(0x0, cp->regs + REG_RX_RED); 1322 1323 /* receive page sizes. default == 2K (0x800) */ 1324 val = 0; 1325 if (cp->page_size == 0x1000) 1326 val = 0x1; 1327 else if (cp->page_size == 0x2000) 1328 val = 0x2; 1329 else if (cp->page_size == 0x4000) 1330 val = 0x3; 1331 1332 /* round mtu + offset. constrain to page size. */ 1333 size = cp->dev->mtu + 64; 1334 if (size > cp->page_size) 1335 size = cp->page_size; 1336 1337 if (size <= 0x400) 1338 i = 0x0; 1339 else if (size <= 0x800) 1340 i = 0x1; 1341 else if (size <= 0x1000) 1342 i = 0x2; 1343 else 1344 i = 0x3; 1345 1346 cp->mtu_stride = 1 << (i + 10); 1347 val = CAS_BASE(RX_PAGE_SIZE, val); 1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1351 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1352 1353 /* enable the header parser if desired */ 1354 if (CAS_HP_FIRMWARE == cas_prog_null) 1355 return; 1356 1357 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1358 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1359 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1360 writel(val, cp->regs + REG_HP_CFG); 1361 } 1362 1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1364 { 1365 memset(rxc, 0, sizeof(*rxc)); 1366 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1367 } 1368 1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1370 * flipping is protected by the fact that the chip will not 1371 * hand back the same page index while it's being processed. 1372 */ 1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1374 { 1375 cas_page_t *page = cp->rx_pages[1][index]; 1376 cas_page_t *new; 1377 1378 if (page_count(page->buffer) == 1) 1379 return page; 1380 1381 new = cas_page_dequeue(cp); 1382 if (new) { 1383 spin_lock(&cp->rx_inuse_lock); 1384 list_add(&page->list, &cp->rx_inuse_list); 1385 spin_unlock(&cp->rx_inuse_lock); 1386 } 1387 return new; 1388 } 1389 1390 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1392 const int index) 1393 { 1394 cas_page_t **page0 = cp->rx_pages[0]; 1395 cas_page_t **page1 = cp->rx_pages[1]; 1396 1397 /* swap if buffer is in use */ 1398 if (page_count(page0[index]->buffer) > 1) { 1399 cas_page_t *new = cas_page_spare(cp, index); 1400 if (new) { 1401 page1[index] = page0[index]; 1402 page0[index] = new; 1403 } 1404 } 1405 RX_USED_SET(page0[index], 0); 1406 return page0[index]; 1407 } 1408 1409 static void cas_clean_rxds(struct cas *cp) 1410 { 1411 /* only clean ring 0 as ring 1 is used for spare buffers */ 1412 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1413 int i, size; 1414 1415 /* release all rx flows */ 1416 for (i = 0; i < N_RX_FLOWS; i++) { 1417 struct sk_buff *skb; 1418 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1419 cas_skb_release(skb); 1420 } 1421 } 1422 1423 /* initialize descriptors */ 1424 size = RX_DESC_RINGN_SIZE(0); 1425 for (i = 0; i < size; i++) { 1426 cas_page_t *page = cas_page_swap(cp, 0, i); 1427 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1428 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1429 CAS_BASE(RX_INDEX_RING, 0)); 1430 } 1431 1432 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1433 cp->rx_last[0] = 0; 1434 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1435 } 1436 1437 static void cas_clean_rxcs(struct cas *cp) 1438 { 1439 int i, j; 1440 1441 /* take ownership of rx comp descriptors */ 1442 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1443 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1444 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1445 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1446 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1447 cas_rxc_init(rxc + j); 1448 } 1449 } 1450 } 1451 1452 #if 0 1453 /* When we get a RX fifo overflow, the RX unit is probably hung 1454 * so we do the following. 1455 * 1456 * If any part of the reset goes wrong, we return 1 and that causes the 1457 * whole chip to be reset. 1458 */ 1459 static int cas_rxmac_reset(struct cas *cp) 1460 { 1461 struct net_device *dev = cp->dev; 1462 int limit; 1463 u32 val; 1464 1465 /* First, reset MAC RX. */ 1466 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1467 for (limit = 0; limit < STOP_TRIES; limit++) { 1468 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1469 break; 1470 udelay(10); 1471 } 1472 if (limit == STOP_TRIES) { 1473 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1474 return 1; 1475 } 1476 1477 /* Second, disable RX DMA. */ 1478 writel(0, cp->regs + REG_RX_CFG); 1479 for (limit = 0; limit < STOP_TRIES; limit++) { 1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1481 break; 1482 udelay(10); 1483 } 1484 if (limit == STOP_TRIES) { 1485 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1486 return 1; 1487 } 1488 1489 mdelay(5); 1490 1491 /* Execute RX reset command. */ 1492 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1493 for (limit = 0; limit < STOP_TRIES; limit++) { 1494 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1495 break; 1496 udelay(10); 1497 } 1498 if (limit == STOP_TRIES) { 1499 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1500 return 1; 1501 } 1502 1503 /* reset driver rx state */ 1504 cas_clean_rxds(cp); 1505 cas_clean_rxcs(cp); 1506 1507 /* Now, reprogram the rest of RX unit. */ 1508 cas_init_rx_dma(cp); 1509 1510 /* re-enable */ 1511 val = readl(cp->regs + REG_RX_CFG); 1512 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1513 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1514 val = readl(cp->regs + REG_MAC_RX_CFG); 1515 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1516 return 0; 1517 } 1518 #endif 1519 1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1521 u32 status) 1522 { 1523 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1524 1525 if (!stat) 1526 return 0; 1527 1528 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1529 1530 /* these are all rollovers */ 1531 spin_lock(&cp->stat_lock[0]); 1532 if (stat & MAC_RX_ALIGN_ERR) 1533 cp->net_stats[0].rx_frame_errors += 0x10000; 1534 1535 if (stat & MAC_RX_CRC_ERR) 1536 cp->net_stats[0].rx_crc_errors += 0x10000; 1537 1538 if (stat & MAC_RX_LEN_ERR) 1539 cp->net_stats[0].rx_length_errors += 0x10000; 1540 1541 if (stat & MAC_RX_OVERFLOW) { 1542 cp->net_stats[0].rx_over_errors++; 1543 cp->net_stats[0].rx_fifo_errors++; 1544 } 1545 1546 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1547 * events. 1548 */ 1549 spin_unlock(&cp->stat_lock[0]); 1550 return 0; 1551 } 1552 1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1554 u32 status) 1555 { 1556 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1557 1558 if (!stat) 1559 return 0; 1560 1561 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1562 "mac interrupt, stat: 0x%x\n", stat); 1563 1564 /* This interrupt is just for pause frame and pause 1565 * tracking. It is useful for diagnostics and debug 1566 * but probably by default we will mask these events. 1567 */ 1568 if (stat & MAC_CTRL_PAUSE_STATE) 1569 cp->pause_entered++; 1570 1571 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1572 cp->pause_last_time_recvd = (stat >> 16); 1573 1574 return 0; 1575 } 1576 1577 1578 /* Must be invoked under cp->lock. */ 1579 static inline int cas_mdio_link_not_up(struct cas *cp) 1580 { 1581 u16 val; 1582 1583 switch (cp->lstate) { 1584 case link_force_ret: 1585 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1586 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1587 cp->timer_ticks = 5; 1588 cp->lstate = link_force_ok; 1589 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1590 break; 1591 1592 case link_aneg: 1593 val = cas_phy_read(cp, MII_BMCR); 1594 1595 /* Try forced modes. we try things in the following order: 1596 * 1000 full -> 100 full/half -> 10 half 1597 */ 1598 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1599 val |= BMCR_FULLDPLX; 1600 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1601 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1602 cas_phy_write(cp, MII_BMCR, val); 1603 cp->timer_ticks = 5; 1604 cp->lstate = link_force_try; 1605 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1606 break; 1607 1608 case link_force_try: 1609 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1610 val = cas_phy_read(cp, MII_BMCR); 1611 cp->timer_ticks = 5; 1612 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1613 val &= ~CAS_BMCR_SPEED1000; 1614 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1615 cas_phy_write(cp, MII_BMCR, val); 1616 break; 1617 } 1618 1619 if (val & BMCR_SPEED100) { 1620 if (val & BMCR_FULLDPLX) /* fd failed */ 1621 val &= ~BMCR_FULLDPLX; 1622 else { /* 100Mbps failed */ 1623 val &= ~BMCR_SPEED100; 1624 } 1625 cas_phy_write(cp, MII_BMCR, val); 1626 break; 1627 } 1628 default: 1629 break; 1630 } 1631 return 0; 1632 } 1633 1634 1635 /* must be invoked with cp->lock held */ 1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1637 { 1638 int restart; 1639 1640 if (bmsr & BMSR_LSTATUS) { 1641 /* Ok, here we got a link. If we had it due to a forced 1642 * fallback, and we were configured for autoneg, we 1643 * retry a short autoneg pass. If you know your hub is 1644 * broken, use ethtool ;) 1645 */ 1646 if ((cp->lstate == link_force_try) && 1647 (cp->link_cntl & BMCR_ANENABLE)) { 1648 cp->lstate = link_force_ret; 1649 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1650 cas_mif_poll(cp, 0); 1651 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1652 cp->timer_ticks = 5; 1653 if (cp->opened) 1654 netif_info(cp, link, cp->dev, 1655 "Got link after fallback, retrying autoneg once...\n"); 1656 cas_phy_write(cp, MII_BMCR, 1657 cp->link_fcntl | BMCR_ANENABLE | 1658 BMCR_ANRESTART); 1659 cas_mif_poll(cp, 1); 1660 1661 } else if (cp->lstate != link_up) { 1662 cp->lstate = link_up; 1663 cp->link_transition = LINK_TRANSITION_LINK_UP; 1664 1665 if (cp->opened) { 1666 cas_set_link_modes(cp); 1667 netif_carrier_on(cp->dev); 1668 } 1669 } 1670 return 0; 1671 } 1672 1673 /* link not up. if the link was previously up, we restart the 1674 * whole process 1675 */ 1676 restart = 0; 1677 if (cp->lstate == link_up) { 1678 cp->lstate = link_down; 1679 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1680 1681 netif_carrier_off(cp->dev); 1682 if (cp->opened) 1683 netif_info(cp, link, cp->dev, "Link down\n"); 1684 restart = 1; 1685 1686 } else if (++cp->timer_ticks > 10) 1687 cas_mdio_link_not_up(cp); 1688 1689 return restart; 1690 } 1691 1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1693 u32 status) 1694 { 1695 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1696 u16 bmsr; 1697 1698 /* check for a link change */ 1699 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1700 return 0; 1701 1702 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1703 return cas_mii_link_check(cp, bmsr); 1704 } 1705 1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1707 u32 status) 1708 { 1709 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1710 1711 if (!stat) 1712 return 0; 1713 1714 netdev_err(dev, "PCI error [%04x:%04x]", 1715 stat, readl(cp->regs + REG_BIM_DIAG)); 1716 1717 /* cassini+ has this reserved */ 1718 if ((stat & PCI_ERR_BADACK) && 1719 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1720 pr_cont(" <No ACK64# during ABS64 cycle>"); 1721 1722 if (stat & PCI_ERR_DTRTO) 1723 pr_cont(" <Delayed transaction timeout>"); 1724 if (stat & PCI_ERR_OTHER) 1725 pr_cont(" <other>"); 1726 if (stat & PCI_ERR_BIM_DMA_WRITE) 1727 pr_cont(" <BIM DMA 0 write req>"); 1728 if (stat & PCI_ERR_BIM_DMA_READ) 1729 pr_cont(" <BIM DMA 0 read req>"); 1730 pr_cont("\n"); 1731 1732 if (stat & PCI_ERR_OTHER) { 1733 u16 cfg; 1734 1735 /* Interrogate PCI config space for the 1736 * true cause. 1737 */ 1738 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); 1739 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); 1740 if (cfg & PCI_STATUS_PARITY) 1741 netdev_err(dev, "PCI parity error detected\n"); 1742 if (cfg & PCI_STATUS_SIG_TARGET_ABORT) 1743 netdev_err(dev, "PCI target abort\n"); 1744 if (cfg & PCI_STATUS_REC_TARGET_ABORT) 1745 netdev_err(dev, "PCI master acks target abort\n"); 1746 if (cfg & PCI_STATUS_REC_MASTER_ABORT) 1747 netdev_err(dev, "PCI master abort\n"); 1748 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) 1749 netdev_err(dev, "PCI system error SERR#\n"); 1750 if (cfg & PCI_STATUS_DETECTED_PARITY) 1751 netdev_err(dev, "PCI parity error\n"); 1752 1753 /* Write the error bits back to clear them. */ 1754 cfg &= (PCI_STATUS_PARITY | 1755 PCI_STATUS_SIG_TARGET_ABORT | 1756 PCI_STATUS_REC_TARGET_ABORT | 1757 PCI_STATUS_REC_MASTER_ABORT | 1758 PCI_STATUS_SIG_SYSTEM_ERROR | 1759 PCI_STATUS_DETECTED_PARITY); 1760 pci_write_config_word(cp->pdev, PCI_STATUS, cfg); 1761 } 1762 1763 /* For all PCI errors, we should reset the chip. */ 1764 return 1; 1765 } 1766 1767 /* All non-normal interrupt conditions get serviced here. 1768 * Returns non-zero if we should just exit the interrupt 1769 * handler right now (ie. if we reset the card which invalidates 1770 * all of the other original irq status bits). 1771 */ 1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1773 u32 status) 1774 { 1775 if (status & INTR_RX_TAG_ERROR) { 1776 /* corrupt RX tag framing */ 1777 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1778 "corrupt rx tag framing\n"); 1779 spin_lock(&cp->stat_lock[0]); 1780 cp->net_stats[0].rx_errors++; 1781 spin_unlock(&cp->stat_lock[0]); 1782 goto do_reset; 1783 } 1784 1785 if (status & INTR_RX_LEN_MISMATCH) { 1786 /* length mismatch. */ 1787 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1788 "length mismatch for rx frame\n"); 1789 spin_lock(&cp->stat_lock[0]); 1790 cp->net_stats[0].rx_errors++; 1791 spin_unlock(&cp->stat_lock[0]); 1792 goto do_reset; 1793 } 1794 1795 if (status & INTR_PCS_STATUS) { 1796 if (cas_pcs_interrupt(dev, cp, status)) 1797 goto do_reset; 1798 } 1799 1800 if (status & INTR_TX_MAC_STATUS) { 1801 if (cas_txmac_interrupt(dev, cp, status)) 1802 goto do_reset; 1803 } 1804 1805 if (status & INTR_RX_MAC_STATUS) { 1806 if (cas_rxmac_interrupt(dev, cp, status)) 1807 goto do_reset; 1808 } 1809 1810 if (status & INTR_MAC_CTRL_STATUS) { 1811 if (cas_mac_interrupt(dev, cp, status)) 1812 goto do_reset; 1813 } 1814 1815 if (status & INTR_MIF_STATUS) { 1816 if (cas_mif_interrupt(dev, cp, status)) 1817 goto do_reset; 1818 } 1819 1820 if (status & INTR_PCI_ERROR_STATUS) { 1821 if (cas_pci_interrupt(dev, cp, status)) 1822 goto do_reset; 1823 } 1824 return 0; 1825 1826 do_reset: 1827 #if 1 1828 atomic_inc(&cp->reset_task_pending); 1829 atomic_inc(&cp->reset_task_pending_all); 1830 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1831 schedule_work(&cp->reset_task); 1832 #else 1833 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1834 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1835 schedule_work(&cp->reset_task); 1836 #endif 1837 return 1; 1838 } 1839 1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1841 * determining whether to do a netif_stop/wakeup 1842 */ 1843 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1844 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1846 const int len) 1847 { 1848 unsigned long off = addr + len; 1849 1850 if (CAS_TABORT(cp) == 1) 1851 return 0; 1852 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1853 return 0; 1854 return TX_TARGET_ABORT_LEN; 1855 } 1856 1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1858 { 1859 struct cas_tx_desc *txds; 1860 struct sk_buff **skbs; 1861 struct net_device *dev = cp->dev; 1862 int entry, count; 1863 1864 spin_lock(&cp->tx_lock[ring]); 1865 txds = cp->init_txds[ring]; 1866 skbs = cp->tx_skbs[ring]; 1867 entry = cp->tx_old[ring]; 1868 1869 count = TX_BUFF_COUNT(ring, entry, limit); 1870 while (entry != limit) { 1871 struct sk_buff *skb = skbs[entry]; 1872 dma_addr_t daddr; 1873 u32 dlen; 1874 int frag; 1875 1876 if (!skb) { 1877 /* this should never occur */ 1878 entry = TX_DESC_NEXT(ring, entry); 1879 continue; 1880 } 1881 1882 /* however, we might get only a partial skb release. */ 1883 count -= skb_shinfo(skb)->nr_frags + 1884 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1885 if (count < 0) 1886 break; 1887 1888 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1889 "tx[%d] done, slot %d\n", ring, entry); 1890 1891 skbs[entry] = NULL; 1892 cp->tx_tiny_use[ring][entry].nbufs = 0; 1893 1894 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1895 struct cas_tx_desc *txd = txds + entry; 1896 1897 daddr = le64_to_cpu(txd->buffer); 1898 dlen = CAS_VAL(TX_DESC_BUFLEN, 1899 le64_to_cpu(txd->control)); 1900 pci_unmap_page(cp->pdev, daddr, dlen, 1901 PCI_DMA_TODEVICE); 1902 entry = TX_DESC_NEXT(ring, entry); 1903 1904 /* tiny buffer may follow */ 1905 if (cp->tx_tiny_use[ring][entry].used) { 1906 cp->tx_tiny_use[ring][entry].used = 0; 1907 entry = TX_DESC_NEXT(ring, entry); 1908 } 1909 } 1910 1911 spin_lock(&cp->stat_lock[ring]); 1912 cp->net_stats[ring].tx_packets++; 1913 cp->net_stats[ring].tx_bytes += skb->len; 1914 spin_unlock(&cp->stat_lock[ring]); 1915 dev_kfree_skb_irq(skb); 1916 } 1917 cp->tx_old[ring] = entry; 1918 1919 /* this is wrong for multiple tx rings. the net device needs 1920 * multiple queues for this to do the right thing. we wait 1921 * for 2*packets to be available when using tiny buffers 1922 */ 1923 if (netif_queue_stopped(dev) && 1924 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1925 netif_wake_queue(dev); 1926 spin_unlock(&cp->tx_lock[ring]); 1927 } 1928 1929 static void cas_tx(struct net_device *dev, struct cas *cp, 1930 u32 status) 1931 { 1932 int limit, ring; 1933 #ifdef USE_TX_COMPWB 1934 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1935 #endif 1936 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1937 "tx interrupt, status: 0x%x, %llx\n", 1938 status, (unsigned long long)compwb); 1939 /* process all the rings */ 1940 for (ring = 0; ring < N_TX_RINGS; ring++) { 1941 #ifdef USE_TX_COMPWB 1942 /* use the completion writeback registers */ 1943 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1944 CAS_VAL(TX_COMPWB_LSB, compwb); 1945 compwb = TX_COMPWB_NEXT(compwb); 1946 #else 1947 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1948 #endif 1949 if (cp->tx_old[ring] != limit) 1950 cas_tx_ringN(cp, ring, limit); 1951 } 1952 } 1953 1954 1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1956 int entry, const u64 *words, 1957 struct sk_buff **skbref) 1958 { 1959 int dlen, hlen, len, i, alloclen; 1960 int off, swivel = RX_SWIVEL_OFF_VAL; 1961 struct cas_page *page; 1962 struct sk_buff *skb; 1963 void *addr, *crcaddr; 1964 __sum16 csum; 1965 char *p; 1966 1967 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1968 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1969 len = hlen + dlen; 1970 1971 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1972 alloclen = len; 1973 else 1974 alloclen = max(hlen, RX_COPY_MIN); 1975 1976 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1977 if (skb == NULL) 1978 return -1; 1979 1980 *skbref = skb; 1981 skb_reserve(skb, swivel); 1982 1983 p = skb->data; 1984 addr = crcaddr = NULL; 1985 if (hlen) { /* always copy header pages */ 1986 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1987 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1988 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1989 swivel; 1990 1991 i = hlen; 1992 if (!dlen) /* attach FCS */ 1993 i += cp->crc_size; 1994 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1995 PCI_DMA_FROMDEVICE); 1996 addr = cas_page_map(page->buffer); 1997 memcpy(p, addr + off, i); 1998 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1999 PCI_DMA_FROMDEVICE); 2000 cas_page_unmap(addr); 2001 RX_USED_ADD(page, 0x100); 2002 p += hlen; 2003 swivel = 0; 2004 } 2005 2006 2007 if (alloclen < (hlen + dlen)) { 2008 skb_frag_t *frag = skb_shinfo(skb)->frags; 2009 2010 /* normal or jumbo packets. we use frags */ 2011 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2012 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2013 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2014 2015 hlen = min(cp->page_size - off, dlen); 2016 if (hlen < 0) { 2017 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2018 "rx page overflow: %d\n", hlen); 2019 dev_kfree_skb_irq(skb); 2020 return -1; 2021 } 2022 i = hlen; 2023 if (i == dlen) /* attach FCS */ 2024 i += cp->crc_size; 2025 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2026 PCI_DMA_FROMDEVICE); 2027 2028 /* make sure we always copy a header */ 2029 swivel = 0; 2030 if (p == (char *) skb->data) { /* not split */ 2031 addr = cas_page_map(page->buffer); 2032 memcpy(p, addr + off, RX_COPY_MIN); 2033 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2034 PCI_DMA_FROMDEVICE); 2035 cas_page_unmap(addr); 2036 off += RX_COPY_MIN; 2037 swivel = RX_COPY_MIN; 2038 RX_USED_ADD(page, cp->mtu_stride); 2039 } else { 2040 RX_USED_ADD(page, hlen); 2041 } 2042 skb_put(skb, alloclen); 2043 2044 skb_shinfo(skb)->nr_frags++; 2045 skb->data_len += hlen - swivel; 2046 skb->truesize += hlen - swivel; 2047 skb->len += hlen - swivel; 2048 2049 __skb_frag_set_page(frag, page->buffer); 2050 __skb_frag_ref(frag); 2051 frag->page_offset = off; 2052 skb_frag_size_set(frag, hlen - swivel); 2053 2054 /* any more data? */ 2055 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2056 hlen = dlen; 2057 off = 0; 2058 2059 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2060 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2061 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2062 hlen + cp->crc_size, 2063 PCI_DMA_FROMDEVICE); 2064 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2065 hlen + cp->crc_size, 2066 PCI_DMA_FROMDEVICE); 2067 2068 skb_shinfo(skb)->nr_frags++; 2069 skb->data_len += hlen; 2070 skb->len += hlen; 2071 frag++; 2072 2073 __skb_frag_set_page(frag, page->buffer); 2074 __skb_frag_ref(frag); 2075 frag->page_offset = 0; 2076 skb_frag_size_set(frag, hlen); 2077 RX_USED_ADD(page, hlen + cp->crc_size); 2078 } 2079 2080 if (cp->crc_size) { 2081 addr = cas_page_map(page->buffer); 2082 crcaddr = addr + off + hlen; 2083 } 2084 2085 } else { 2086 /* copying packet */ 2087 if (!dlen) 2088 goto end_copy_pkt; 2089 2090 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2091 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2092 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2093 hlen = min(cp->page_size - off, dlen); 2094 if (hlen < 0) { 2095 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2096 "rx page overflow: %d\n", hlen); 2097 dev_kfree_skb_irq(skb); 2098 return -1; 2099 } 2100 i = hlen; 2101 if (i == dlen) /* attach FCS */ 2102 i += cp->crc_size; 2103 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2104 PCI_DMA_FROMDEVICE); 2105 addr = cas_page_map(page->buffer); 2106 memcpy(p, addr + off, i); 2107 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2108 PCI_DMA_FROMDEVICE); 2109 cas_page_unmap(addr); 2110 if (p == (char *) skb->data) /* not split */ 2111 RX_USED_ADD(page, cp->mtu_stride); 2112 else 2113 RX_USED_ADD(page, i); 2114 2115 /* any more data? */ 2116 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2117 p += hlen; 2118 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2119 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2120 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2121 dlen + cp->crc_size, 2122 PCI_DMA_FROMDEVICE); 2123 addr = cas_page_map(page->buffer); 2124 memcpy(p, addr, dlen + cp->crc_size); 2125 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2126 dlen + cp->crc_size, 2127 PCI_DMA_FROMDEVICE); 2128 cas_page_unmap(addr); 2129 RX_USED_ADD(page, dlen + cp->crc_size); 2130 } 2131 end_copy_pkt: 2132 if (cp->crc_size) { 2133 addr = NULL; 2134 crcaddr = skb->data + alloclen; 2135 } 2136 skb_put(skb, alloclen); 2137 } 2138 2139 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2140 if (cp->crc_size) { 2141 /* checksum includes FCS. strip it out. */ 2142 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2143 csum_unfold(csum))); 2144 if (addr) 2145 cas_page_unmap(addr); 2146 } 2147 skb->protocol = eth_type_trans(skb, cp->dev); 2148 if (skb->protocol == htons(ETH_P_IP)) { 2149 skb->csum = csum_unfold(~csum); 2150 skb->ip_summed = CHECKSUM_COMPLETE; 2151 } else 2152 skb_checksum_none_assert(skb); 2153 return len; 2154 } 2155 2156 2157 /* we can handle up to 64 rx flows at a time. we do the same thing 2158 * as nonreassm except that we batch up the buffers. 2159 * NOTE: we currently just treat each flow as a bunch of packets that 2160 * we pass up. a better way would be to coalesce the packets 2161 * into a jumbo packet. to do that, we need to do the following: 2162 * 1) the first packet will have a clean split between header and 2163 * data. save both. 2164 * 2) each time the next flow packet comes in, extend the 2165 * data length and merge the checksums. 2166 * 3) on flow release, fix up the header. 2167 * 4) make sure the higher layer doesn't care. 2168 * because packets get coalesced, we shouldn't run into fragment count 2169 * issues. 2170 */ 2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2172 struct sk_buff *skb) 2173 { 2174 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2175 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2176 2177 /* this is protected at a higher layer, so no need to 2178 * do any additional locking here. stick the buffer 2179 * at the end. 2180 */ 2181 __skb_queue_tail(flow, skb); 2182 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2183 while ((skb = __skb_dequeue(flow))) { 2184 cas_skb_release(skb); 2185 } 2186 } 2187 } 2188 2189 /* put rx descriptor back on ring. if a buffer is in use by a higher 2190 * layer, this will need to put in a replacement. 2191 */ 2192 static void cas_post_page(struct cas *cp, const int ring, const int index) 2193 { 2194 cas_page_t *new; 2195 int entry; 2196 2197 entry = cp->rx_old[ring]; 2198 2199 new = cas_page_swap(cp, ring, index); 2200 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2201 cp->init_rxds[ring][entry].index = 2202 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2203 CAS_BASE(RX_INDEX_RING, ring)); 2204 2205 entry = RX_DESC_ENTRY(ring, entry + 1); 2206 cp->rx_old[ring] = entry; 2207 2208 if (entry % 4) 2209 return; 2210 2211 if (ring == 0) 2212 writel(entry, cp->regs + REG_RX_KICK); 2213 else if ((N_RX_DESC_RINGS > 1) && 2214 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2215 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2216 } 2217 2218 2219 /* only when things are bad */ 2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2221 { 2222 unsigned int entry, last, count, released; 2223 int cluster; 2224 cas_page_t **page = cp->rx_pages[ring]; 2225 2226 entry = cp->rx_old[ring]; 2227 2228 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2229 "rxd[%d] interrupt, done: %d\n", ring, entry); 2230 2231 cluster = -1; 2232 count = entry & 0x3; 2233 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2234 released = 0; 2235 while (entry != last) { 2236 /* make a new buffer if it's still in use */ 2237 if (page_count(page[entry]->buffer) > 1) { 2238 cas_page_t *new = cas_page_dequeue(cp); 2239 if (!new) { 2240 /* let the timer know that we need to 2241 * do this again 2242 */ 2243 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2244 if (!timer_pending(&cp->link_timer)) 2245 mod_timer(&cp->link_timer, jiffies + 2246 CAS_LINK_FAST_TIMEOUT); 2247 cp->rx_old[ring] = entry; 2248 cp->rx_last[ring] = num ? num - released : 0; 2249 return -ENOMEM; 2250 } 2251 spin_lock(&cp->rx_inuse_lock); 2252 list_add(&page[entry]->list, &cp->rx_inuse_list); 2253 spin_unlock(&cp->rx_inuse_lock); 2254 cp->init_rxds[ring][entry].buffer = 2255 cpu_to_le64(new->dma_addr); 2256 page[entry] = new; 2257 2258 } 2259 2260 if (++count == 4) { 2261 cluster = entry; 2262 count = 0; 2263 } 2264 released++; 2265 entry = RX_DESC_ENTRY(ring, entry + 1); 2266 } 2267 cp->rx_old[ring] = entry; 2268 2269 if (cluster < 0) 2270 return 0; 2271 2272 if (ring == 0) 2273 writel(cluster, cp->regs + REG_RX_KICK); 2274 else if ((N_RX_DESC_RINGS > 1) && 2275 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2276 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2277 return 0; 2278 } 2279 2280 2281 /* process a completion ring. packets are set up in three basic ways: 2282 * small packets: should be copied header + data in single buffer. 2283 * large packets: header and data in a single buffer. 2284 * split packets: header in a separate buffer from data. 2285 * data may be in multiple pages. data may be > 256 2286 * bytes but in a single page. 2287 * 2288 * NOTE: RX page posting is done in this routine as well. while there's 2289 * the capability of using multiple RX completion rings, it isn't 2290 * really worthwhile due to the fact that the page posting will 2291 * force serialization on the single descriptor ring. 2292 */ 2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2294 { 2295 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2296 int entry, drops; 2297 int npackets = 0; 2298 2299 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2300 "rx[%d] interrupt, done: %d/%d\n", 2301 ring, 2302 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2303 2304 entry = cp->rx_new[ring]; 2305 drops = 0; 2306 while (1) { 2307 struct cas_rx_comp *rxc = rxcs + entry; 2308 struct sk_buff *uninitialized_var(skb); 2309 int type, len; 2310 u64 words[4]; 2311 int i, dring; 2312 2313 words[0] = le64_to_cpu(rxc->word1); 2314 words[1] = le64_to_cpu(rxc->word2); 2315 words[2] = le64_to_cpu(rxc->word3); 2316 words[3] = le64_to_cpu(rxc->word4); 2317 2318 /* don't touch if still owned by hw */ 2319 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2320 if (type == 0) 2321 break; 2322 2323 /* hw hasn't cleared the zero bit yet */ 2324 if (words[3] & RX_COMP4_ZERO) { 2325 break; 2326 } 2327 2328 /* get info on the packet */ 2329 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2330 spin_lock(&cp->stat_lock[ring]); 2331 cp->net_stats[ring].rx_errors++; 2332 if (words[3] & RX_COMP4_LEN_MISMATCH) 2333 cp->net_stats[ring].rx_length_errors++; 2334 if (words[3] & RX_COMP4_BAD) 2335 cp->net_stats[ring].rx_crc_errors++; 2336 spin_unlock(&cp->stat_lock[ring]); 2337 2338 /* We'll just return it to Cassini. */ 2339 drop_it: 2340 spin_lock(&cp->stat_lock[ring]); 2341 ++cp->net_stats[ring].rx_dropped; 2342 spin_unlock(&cp->stat_lock[ring]); 2343 goto next; 2344 } 2345 2346 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2347 if (len < 0) { 2348 ++drops; 2349 goto drop_it; 2350 } 2351 2352 /* see if it's a flow re-assembly or not. the driver 2353 * itself handles release back up. 2354 */ 2355 if (RX_DONT_BATCH || (type == 0x2)) { 2356 /* non-reassm: these always get released */ 2357 cas_skb_release(skb); 2358 } else { 2359 cas_rx_flow_pkt(cp, words, skb); 2360 } 2361 2362 spin_lock(&cp->stat_lock[ring]); 2363 cp->net_stats[ring].rx_packets++; 2364 cp->net_stats[ring].rx_bytes += len; 2365 spin_unlock(&cp->stat_lock[ring]); 2366 2367 next: 2368 npackets++; 2369 2370 /* should it be released? */ 2371 if (words[0] & RX_COMP1_RELEASE_HDR) { 2372 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2373 dring = CAS_VAL(RX_INDEX_RING, i); 2374 i = CAS_VAL(RX_INDEX_NUM, i); 2375 cas_post_page(cp, dring, i); 2376 } 2377 2378 if (words[0] & RX_COMP1_RELEASE_DATA) { 2379 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2380 dring = CAS_VAL(RX_INDEX_RING, i); 2381 i = CAS_VAL(RX_INDEX_NUM, i); 2382 cas_post_page(cp, dring, i); 2383 } 2384 2385 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2386 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2387 dring = CAS_VAL(RX_INDEX_RING, i); 2388 i = CAS_VAL(RX_INDEX_NUM, i); 2389 cas_post_page(cp, dring, i); 2390 } 2391 2392 /* skip to the next entry */ 2393 entry = RX_COMP_ENTRY(ring, entry + 1 + 2394 CAS_VAL(RX_COMP1_SKIP, words[0])); 2395 #ifdef USE_NAPI 2396 if (budget && (npackets >= budget)) 2397 break; 2398 #endif 2399 } 2400 cp->rx_new[ring] = entry; 2401 2402 if (drops) 2403 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2404 return npackets; 2405 } 2406 2407 2408 /* put completion entries back on the ring */ 2409 static void cas_post_rxcs_ringN(struct net_device *dev, 2410 struct cas *cp, int ring) 2411 { 2412 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2413 int last, entry; 2414 2415 last = cp->rx_cur[ring]; 2416 entry = cp->rx_new[ring]; 2417 netif_printk(cp, intr, KERN_DEBUG, dev, 2418 "rxc[%d] interrupt, done: %d/%d\n", 2419 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2420 2421 /* zero and re-mark descriptors */ 2422 while (last != entry) { 2423 cas_rxc_init(rxc + last); 2424 last = RX_COMP_ENTRY(ring, last + 1); 2425 } 2426 cp->rx_cur[ring] = last; 2427 2428 if (ring == 0) 2429 writel(last, cp->regs + REG_RX_COMP_TAIL); 2430 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2431 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2432 } 2433 2434 2435 2436 /* cassini can use all four PCI interrupts for the completion ring. 2437 * rings 3 and 4 are identical 2438 */ 2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2440 static inline void cas_handle_irqN(struct net_device *dev, 2441 struct cas *cp, const u32 status, 2442 const int ring) 2443 { 2444 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2445 cas_post_rxcs_ringN(dev, cp, ring); 2446 } 2447 2448 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2449 { 2450 struct net_device *dev = dev_id; 2451 struct cas *cp = netdev_priv(dev); 2452 unsigned long flags; 2453 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2454 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2455 2456 /* check for shared irq */ 2457 if (status == 0) 2458 return IRQ_NONE; 2459 2460 spin_lock_irqsave(&cp->lock, flags); 2461 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2462 #ifdef USE_NAPI 2463 cas_mask_intr(cp); 2464 napi_schedule(&cp->napi); 2465 #else 2466 cas_rx_ringN(cp, ring, 0); 2467 #endif 2468 status &= ~INTR_RX_DONE_ALT; 2469 } 2470 2471 if (status) 2472 cas_handle_irqN(dev, cp, status, ring); 2473 spin_unlock_irqrestore(&cp->lock, flags); 2474 return IRQ_HANDLED; 2475 } 2476 #endif 2477 2478 #ifdef USE_PCI_INTB 2479 /* everything but rx packets */ 2480 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2481 { 2482 if (status & INTR_RX_BUF_UNAVAIL_1) { 2483 /* Frame arrived, no free RX buffers available. 2484 * NOTE: we can get this on a link transition. */ 2485 cas_post_rxds_ringN(cp, 1, 0); 2486 spin_lock(&cp->stat_lock[1]); 2487 cp->net_stats[1].rx_dropped++; 2488 spin_unlock(&cp->stat_lock[1]); 2489 } 2490 2491 if (status & INTR_RX_BUF_AE_1) 2492 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2493 RX_AE_FREEN_VAL(1)); 2494 2495 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2496 cas_post_rxcs_ringN(cp, 1); 2497 } 2498 2499 /* ring 2 handles a few more events than 3 and 4 */ 2500 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2501 { 2502 struct net_device *dev = dev_id; 2503 struct cas *cp = netdev_priv(dev); 2504 unsigned long flags; 2505 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2506 2507 /* check for shared interrupt */ 2508 if (status == 0) 2509 return IRQ_NONE; 2510 2511 spin_lock_irqsave(&cp->lock, flags); 2512 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2513 #ifdef USE_NAPI 2514 cas_mask_intr(cp); 2515 napi_schedule(&cp->napi); 2516 #else 2517 cas_rx_ringN(cp, 1, 0); 2518 #endif 2519 status &= ~INTR_RX_DONE_ALT; 2520 } 2521 if (status) 2522 cas_handle_irq1(cp, status); 2523 spin_unlock_irqrestore(&cp->lock, flags); 2524 return IRQ_HANDLED; 2525 } 2526 #endif 2527 2528 static inline void cas_handle_irq(struct net_device *dev, 2529 struct cas *cp, const u32 status) 2530 { 2531 /* housekeeping interrupts */ 2532 if (status & INTR_ERROR_MASK) 2533 cas_abnormal_irq(dev, cp, status); 2534 2535 if (status & INTR_RX_BUF_UNAVAIL) { 2536 /* Frame arrived, no free RX buffers available. 2537 * NOTE: we can get this on a link transition. 2538 */ 2539 cas_post_rxds_ringN(cp, 0, 0); 2540 spin_lock(&cp->stat_lock[0]); 2541 cp->net_stats[0].rx_dropped++; 2542 spin_unlock(&cp->stat_lock[0]); 2543 } else if (status & INTR_RX_BUF_AE) { 2544 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2545 RX_AE_FREEN_VAL(0)); 2546 } 2547 2548 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2549 cas_post_rxcs_ringN(dev, cp, 0); 2550 } 2551 2552 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2553 { 2554 struct net_device *dev = dev_id; 2555 struct cas *cp = netdev_priv(dev); 2556 unsigned long flags; 2557 u32 status = readl(cp->regs + REG_INTR_STATUS); 2558 2559 if (status == 0) 2560 return IRQ_NONE; 2561 2562 spin_lock_irqsave(&cp->lock, flags); 2563 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2564 cas_tx(dev, cp, status); 2565 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2566 } 2567 2568 if (status & INTR_RX_DONE) { 2569 #ifdef USE_NAPI 2570 cas_mask_intr(cp); 2571 napi_schedule(&cp->napi); 2572 #else 2573 cas_rx_ringN(cp, 0, 0); 2574 #endif 2575 status &= ~INTR_RX_DONE; 2576 } 2577 2578 if (status) 2579 cas_handle_irq(dev, cp, status); 2580 spin_unlock_irqrestore(&cp->lock, flags); 2581 return IRQ_HANDLED; 2582 } 2583 2584 2585 #ifdef USE_NAPI 2586 static int cas_poll(struct napi_struct *napi, int budget) 2587 { 2588 struct cas *cp = container_of(napi, struct cas, napi); 2589 struct net_device *dev = cp->dev; 2590 int i, enable_intr, credits; 2591 u32 status = readl(cp->regs + REG_INTR_STATUS); 2592 unsigned long flags; 2593 2594 spin_lock_irqsave(&cp->lock, flags); 2595 cas_tx(dev, cp, status); 2596 spin_unlock_irqrestore(&cp->lock, flags); 2597 2598 /* NAPI rx packets. we spread the credits across all of the 2599 * rxc rings 2600 * 2601 * to make sure we're fair with the work we loop through each 2602 * ring N_RX_COMP_RING times with a request of 2603 * budget / N_RX_COMP_RINGS 2604 */ 2605 enable_intr = 1; 2606 credits = 0; 2607 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2608 int j; 2609 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2610 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2611 if (credits >= budget) { 2612 enable_intr = 0; 2613 goto rx_comp; 2614 } 2615 } 2616 } 2617 2618 rx_comp: 2619 /* final rx completion */ 2620 spin_lock_irqsave(&cp->lock, flags); 2621 if (status) 2622 cas_handle_irq(dev, cp, status); 2623 2624 #ifdef USE_PCI_INTB 2625 if (N_RX_COMP_RINGS > 1) { 2626 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2627 if (status) 2628 cas_handle_irq1(dev, cp, status); 2629 } 2630 #endif 2631 2632 #ifdef USE_PCI_INTC 2633 if (N_RX_COMP_RINGS > 2) { 2634 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2635 if (status) 2636 cas_handle_irqN(dev, cp, status, 2); 2637 } 2638 #endif 2639 2640 #ifdef USE_PCI_INTD 2641 if (N_RX_COMP_RINGS > 3) { 2642 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2643 if (status) 2644 cas_handle_irqN(dev, cp, status, 3); 2645 } 2646 #endif 2647 spin_unlock_irqrestore(&cp->lock, flags); 2648 if (enable_intr) { 2649 napi_complete(napi); 2650 cas_unmask_intr(cp); 2651 } 2652 return credits; 2653 } 2654 #endif 2655 2656 #ifdef CONFIG_NET_POLL_CONTROLLER 2657 static void cas_netpoll(struct net_device *dev) 2658 { 2659 struct cas *cp = netdev_priv(dev); 2660 2661 cas_disable_irq(cp, 0); 2662 cas_interrupt(cp->pdev->irq, dev); 2663 cas_enable_irq(cp, 0); 2664 2665 #ifdef USE_PCI_INTB 2666 if (N_RX_COMP_RINGS > 1) { 2667 /* cas_interrupt1(); */ 2668 } 2669 #endif 2670 #ifdef USE_PCI_INTC 2671 if (N_RX_COMP_RINGS > 2) { 2672 /* cas_interruptN(); */ 2673 } 2674 #endif 2675 #ifdef USE_PCI_INTD 2676 if (N_RX_COMP_RINGS > 3) { 2677 /* cas_interruptN(); */ 2678 } 2679 #endif 2680 } 2681 #endif 2682 2683 static void cas_tx_timeout(struct net_device *dev) 2684 { 2685 struct cas *cp = netdev_priv(dev); 2686 2687 netdev_err(dev, "transmit timed out, resetting\n"); 2688 if (!cp->hw_running) { 2689 netdev_err(dev, "hrm.. hw not running!\n"); 2690 return; 2691 } 2692 2693 netdev_err(dev, "MIF_STATE[%08x]\n", 2694 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2695 2696 netdev_err(dev, "MAC_STATE[%08x]\n", 2697 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2698 2699 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2700 readl(cp->regs + REG_TX_CFG), 2701 readl(cp->regs + REG_MAC_TX_STATUS), 2702 readl(cp->regs + REG_MAC_TX_CFG), 2703 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2704 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2705 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2706 readl(cp->regs + REG_TX_SM_1), 2707 readl(cp->regs + REG_TX_SM_2)); 2708 2709 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2710 readl(cp->regs + REG_RX_CFG), 2711 readl(cp->regs + REG_MAC_RX_STATUS), 2712 readl(cp->regs + REG_MAC_RX_CFG)); 2713 2714 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2715 readl(cp->regs + REG_HP_STATE_MACHINE), 2716 readl(cp->regs + REG_HP_STATUS0), 2717 readl(cp->regs + REG_HP_STATUS1), 2718 readl(cp->regs + REG_HP_STATUS2)); 2719 2720 #if 1 2721 atomic_inc(&cp->reset_task_pending); 2722 atomic_inc(&cp->reset_task_pending_all); 2723 schedule_work(&cp->reset_task); 2724 #else 2725 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2726 schedule_work(&cp->reset_task); 2727 #endif 2728 } 2729 2730 static inline int cas_intme(int ring, int entry) 2731 { 2732 /* Algorithm: IRQ every 1/2 of descriptors. */ 2733 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2734 return 1; 2735 return 0; 2736 } 2737 2738 2739 static void cas_write_txd(struct cas *cp, int ring, int entry, 2740 dma_addr_t mapping, int len, u64 ctrl, int last) 2741 { 2742 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2743 2744 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2745 if (cas_intme(ring, entry)) 2746 ctrl |= TX_DESC_INTME; 2747 if (last) 2748 ctrl |= TX_DESC_EOF; 2749 txd->control = cpu_to_le64(ctrl); 2750 txd->buffer = cpu_to_le64(mapping); 2751 } 2752 2753 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2754 const int entry) 2755 { 2756 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2757 } 2758 2759 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2760 const int entry, const int tentry) 2761 { 2762 cp->tx_tiny_use[ring][tentry].nbufs++; 2763 cp->tx_tiny_use[ring][entry].used = 1; 2764 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2765 } 2766 2767 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2768 struct sk_buff *skb) 2769 { 2770 struct net_device *dev = cp->dev; 2771 int entry, nr_frags, frag, tabort, tentry; 2772 dma_addr_t mapping; 2773 unsigned long flags; 2774 u64 ctrl; 2775 u32 len; 2776 2777 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2778 2779 /* This is a hard error, log it. */ 2780 if (TX_BUFFS_AVAIL(cp, ring) <= 2781 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2782 netif_stop_queue(dev); 2783 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2784 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2785 return 1; 2786 } 2787 2788 ctrl = 0; 2789 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2790 const u64 csum_start_off = skb_checksum_start_offset(skb); 2791 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2792 2793 ctrl = TX_DESC_CSUM_EN | 2794 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2795 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2796 } 2797 2798 entry = cp->tx_new[ring]; 2799 cp->tx_skbs[ring][entry] = skb; 2800 2801 nr_frags = skb_shinfo(skb)->nr_frags; 2802 len = skb_headlen(skb); 2803 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2804 offset_in_page(skb->data), len, 2805 PCI_DMA_TODEVICE); 2806 2807 tentry = entry; 2808 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2809 if (unlikely(tabort)) { 2810 /* NOTE: len is always > tabort */ 2811 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2812 ctrl | TX_DESC_SOF, 0); 2813 entry = TX_DESC_NEXT(ring, entry); 2814 2815 skb_copy_from_linear_data_offset(skb, len - tabort, 2816 tx_tiny_buf(cp, ring, entry), tabort); 2817 mapping = tx_tiny_map(cp, ring, entry, tentry); 2818 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2819 (nr_frags == 0)); 2820 } else { 2821 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2822 TX_DESC_SOF, (nr_frags == 0)); 2823 } 2824 entry = TX_DESC_NEXT(ring, entry); 2825 2826 for (frag = 0; frag < nr_frags; frag++) { 2827 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2828 2829 len = skb_frag_size(fragp); 2830 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2831 DMA_TO_DEVICE); 2832 2833 tabort = cas_calc_tabort(cp, fragp->page_offset, len); 2834 if (unlikely(tabort)) { 2835 void *addr; 2836 2837 /* NOTE: len is always > tabort */ 2838 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2839 ctrl, 0); 2840 entry = TX_DESC_NEXT(ring, entry); 2841 2842 addr = cas_page_map(skb_frag_page(fragp)); 2843 memcpy(tx_tiny_buf(cp, ring, entry), 2844 addr + fragp->page_offset + len - tabort, 2845 tabort); 2846 cas_page_unmap(addr); 2847 mapping = tx_tiny_map(cp, ring, entry, tentry); 2848 len = tabort; 2849 } 2850 2851 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2852 (frag + 1 == nr_frags)); 2853 entry = TX_DESC_NEXT(ring, entry); 2854 } 2855 2856 cp->tx_new[ring] = entry; 2857 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2858 netif_stop_queue(dev); 2859 2860 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2861 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2862 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2863 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2864 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2865 return 0; 2866 } 2867 2868 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2869 { 2870 struct cas *cp = netdev_priv(dev); 2871 2872 /* this is only used as a load-balancing hint, so it doesn't 2873 * need to be SMP safe 2874 */ 2875 static int ring; 2876 2877 if (skb_padto(skb, cp->min_frame_size)) 2878 return NETDEV_TX_OK; 2879 2880 /* XXX: we need some higher-level QoS hooks to steer packets to 2881 * individual queues. 2882 */ 2883 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2884 return NETDEV_TX_BUSY; 2885 return NETDEV_TX_OK; 2886 } 2887 2888 static void cas_init_tx_dma(struct cas *cp) 2889 { 2890 u64 desc_dma = cp->block_dvma; 2891 unsigned long off; 2892 u32 val; 2893 int i; 2894 2895 /* set up tx completion writeback registers. must be 8-byte aligned */ 2896 #ifdef USE_TX_COMPWB 2897 off = offsetof(struct cas_init_block, tx_compwb); 2898 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2899 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2900 #endif 2901 2902 /* enable completion writebacks, enable paced mode, 2903 * disable read pipe, and disable pre-interrupt compwbs 2904 */ 2905 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2906 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2907 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2908 TX_CFG_INTR_COMPWB_DIS; 2909 2910 /* write out tx ring info and tx desc bases */ 2911 for (i = 0; i < MAX_TX_RINGS; i++) { 2912 off = (unsigned long) cp->init_txds[i] - 2913 (unsigned long) cp->init_block; 2914 2915 val |= CAS_TX_RINGN_BASE(i); 2916 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2917 writel((desc_dma + off) & 0xffffffff, cp->regs + 2918 REG_TX_DBN_LOW(i)); 2919 /* don't zero out the kick register here as the system 2920 * will wedge 2921 */ 2922 } 2923 writel(val, cp->regs + REG_TX_CFG); 2924 2925 /* program max burst sizes. these numbers should be different 2926 * if doing QoS. 2927 */ 2928 #ifdef USE_QOS 2929 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2930 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2931 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2932 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2933 #else 2934 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2935 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2936 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2937 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2938 #endif 2939 } 2940 2941 /* Must be invoked under cp->lock. */ 2942 static inline void cas_init_dma(struct cas *cp) 2943 { 2944 cas_init_tx_dma(cp); 2945 cas_init_rx_dma(cp); 2946 } 2947 2948 static void cas_process_mc_list(struct cas *cp) 2949 { 2950 u16 hash_table[16]; 2951 u32 crc; 2952 struct netdev_hw_addr *ha; 2953 int i = 1; 2954 2955 memset(hash_table, 0, sizeof(hash_table)); 2956 netdev_for_each_mc_addr(ha, cp->dev) { 2957 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2958 /* use the alternate mac address registers for the 2959 * first 15 multicast addresses 2960 */ 2961 writel((ha->addr[4] << 8) | ha->addr[5], 2962 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2963 writel((ha->addr[2] << 8) | ha->addr[3], 2964 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2965 writel((ha->addr[0] << 8) | ha->addr[1], 2966 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2967 i++; 2968 } 2969 else { 2970 /* use hw hash table for the next series of 2971 * multicast addresses 2972 */ 2973 crc = ether_crc_le(ETH_ALEN, ha->addr); 2974 crc >>= 24; 2975 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2976 } 2977 } 2978 for (i = 0; i < 16; i++) 2979 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2980 } 2981 2982 /* Must be invoked under cp->lock. */ 2983 static u32 cas_setup_multicast(struct cas *cp) 2984 { 2985 u32 rxcfg = 0; 2986 int i; 2987 2988 if (cp->dev->flags & IFF_PROMISC) { 2989 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2990 2991 } else if (cp->dev->flags & IFF_ALLMULTI) { 2992 for (i=0; i < 16; i++) 2993 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2994 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2995 2996 } else { 2997 cas_process_mc_list(cp); 2998 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2999 } 3000 3001 return rxcfg; 3002 } 3003 3004 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 3005 static void cas_clear_mac_err(struct cas *cp) 3006 { 3007 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 3008 writel(0, cp->regs + REG_MAC_COLL_FIRST); 3009 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 3010 writel(0, cp->regs + REG_MAC_COLL_LATE); 3011 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 3012 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 3013 writel(0, cp->regs + REG_MAC_RECV_FRAME); 3014 writel(0, cp->regs + REG_MAC_LEN_ERR); 3015 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 3016 writel(0, cp->regs + REG_MAC_FCS_ERR); 3017 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 3018 } 3019 3020 3021 static void cas_mac_reset(struct cas *cp) 3022 { 3023 int i; 3024 3025 /* do both TX and RX reset */ 3026 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3027 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3028 3029 /* wait for TX */ 3030 i = STOP_TRIES; 3031 while (i-- > 0) { 3032 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3033 break; 3034 udelay(10); 3035 } 3036 3037 /* wait for RX */ 3038 i = STOP_TRIES; 3039 while (i-- > 0) { 3040 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3041 break; 3042 udelay(10); 3043 } 3044 3045 if (readl(cp->regs + REG_MAC_TX_RESET) | 3046 readl(cp->regs + REG_MAC_RX_RESET)) 3047 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3048 readl(cp->regs + REG_MAC_TX_RESET), 3049 readl(cp->regs + REG_MAC_RX_RESET), 3050 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3051 } 3052 3053 3054 /* Must be invoked under cp->lock. */ 3055 static void cas_init_mac(struct cas *cp) 3056 { 3057 unsigned char *e = &cp->dev->dev_addr[0]; 3058 int i; 3059 cas_mac_reset(cp); 3060 3061 /* setup core arbitration weight register */ 3062 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3063 3064 /* XXX Use pci_dma_burst_advice() */ 3065 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3066 /* set the infinite burst register for chips that don't have 3067 * pci issues. 3068 */ 3069 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3070 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3071 #endif 3072 3073 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3074 3075 writel(0x00, cp->regs + REG_MAC_IPG0); 3076 writel(0x08, cp->regs + REG_MAC_IPG1); 3077 writel(0x04, cp->regs + REG_MAC_IPG2); 3078 3079 /* change later for 802.3z */ 3080 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3081 3082 /* min frame + FCS */ 3083 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3084 3085 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3086 * specify the maximum frame size to prevent RX tag errors on 3087 * oversized frames. 3088 */ 3089 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3090 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3091 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3092 cp->regs + REG_MAC_FRAMESIZE_MAX); 3093 3094 /* NOTE: crc_size is used as a surrogate for half-duplex. 3095 * workaround saturn half-duplex issue by increasing preamble 3096 * size to 65 bytes. 3097 */ 3098 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3099 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3100 else 3101 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3102 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3103 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3104 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3105 3106 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3107 3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3112 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3113 3114 /* setup mac address in perfect filter array */ 3115 for (i = 0; i < 45; i++) 3116 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3117 3118 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3119 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3120 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3121 3122 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3123 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3124 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3125 3126 cp->mac_rx_cfg = cas_setup_multicast(cp); 3127 3128 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3129 cas_clear_mac_err(cp); 3130 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3131 3132 /* Setup MAC interrupts. We want to get all of the interesting 3133 * counter expiration events, but we do not want to hear about 3134 * normal rx/tx as the DMA engine tells us that. 3135 */ 3136 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3137 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3138 3139 /* Don't enable even the PAUSE interrupts for now, we 3140 * make no use of those events other than to record them. 3141 */ 3142 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3143 } 3144 3145 /* Must be invoked under cp->lock. */ 3146 static void cas_init_pause_thresholds(struct cas *cp) 3147 { 3148 /* Calculate pause thresholds. Setting the OFF threshold to the 3149 * full RX fifo size effectively disables PAUSE generation 3150 */ 3151 if (cp->rx_fifo_size <= (2 * 1024)) { 3152 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3153 } else { 3154 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3155 if (max_frame * 3 > cp->rx_fifo_size) { 3156 cp->rx_pause_off = 7104; 3157 cp->rx_pause_on = 960; 3158 } else { 3159 int off = (cp->rx_fifo_size - (max_frame * 2)); 3160 int on = off - max_frame; 3161 cp->rx_pause_off = off; 3162 cp->rx_pause_on = on; 3163 } 3164 } 3165 } 3166 3167 static int cas_vpd_match(const void __iomem *p, const char *str) 3168 { 3169 int len = strlen(str) + 1; 3170 int i; 3171 3172 for (i = 0; i < len; i++) { 3173 if (readb(p + i) != str[i]) 3174 return 0; 3175 } 3176 return 1; 3177 } 3178 3179 3180 /* get the mac address by reading the vpd information in the rom. 3181 * also get the phy type and determine if there's an entropy generator. 3182 * NOTE: this is a bit convoluted for the following reasons: 3183 * 1) vpd info has order-dependent mac addresses for multinic cards 3184 * 2) the only way to determine the nic order is to use the slot 3185 * number. 3186 * 3) fiber cards don't have bridges, so their slot numbers don't 3187 * mean anything. 3188 * 4) we don't actually know we have a fiber card until after 3189 * the mac addresses are parsed. 3190 */ 3191 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3192 const int offset) 3193 { 3194 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3195 void __iomem *base, *kstart; 3196 int i, len; 3197 int found = 0; 3198 #define VPD_FOUND_MAC 0x01 3199 #define VPD_FOUND_PHY 0x02 3200 3201 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3202 int mac_off = 0; 3203 3204 #if defined(CONFIG_SPARC) 3205 const unsigned char *addr; 3206 #endif 3207 3208 /* give us access to the PROM */ 3209 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3210 cp->regs + REG_BIM_LOCAL_DEV_EN); 3211 3212 /* check for an expansion rom */ 3213 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3214 goto use_random_mac_addr; 3215 3216 /* search for beginning of vpd */ 3217 base = NULL; 3218 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3219 /* check for PCIR */ 3220 if ((readb(p + i + 0) == 0x50) && 3221 (readb(p + i + 1) == 0x43) && 3222 (readb(p + i + 2) == 0x49) && 3223 (readb(p + i + 3) == 0x52)) { 3224 base = p + (readb(p + i + 8) | 3225 (readb(p + i + 9) << 8)); 3226 break; 3227 } 3228 } 3229 3230 if (!base || (readb(base) != 0x82)) 3231 goto use_random_mac_addr; 3232 3233 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3234 while (i < EXPANSION_ROM_SIZE) { 3235 if (readb(base + i) != 0x90) /* no vpd found */ 3236 goto use_random_mac_addr; 3237 3238 /* found a vpd field */ 3239 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3240 3241 /* extract keywords */ 3242 kstart = base + i + 3; 3243 p = kstart; 3244 while ((p - kstart) < len) { 3245 int klen = readb(p + 2); 3246 int j; 3247 char type; 3248 3249 p += 3; 3250 3251 /* look for the following things: 3252 * -- correct length == 29 3253 * 3 (type) + 2 (size) + 3254 * 18 (strlen("local-mac-address") + 1) + 3255 * 6 (mac addr) 3256 * -- VPD Instance 'I' 3257 * -- VPD Type Bytes 'B' 3258 * -- VPD data length == 6 3259 * -- property string == local-mac-address 3260 * 3261 * -- correct length == 24 3262 * 3 (type) + 2 (size) + 3263 * 12 (strlen("entropy-dev") + 1) + 3264 * 7 (strlen("vms110") + 1) 3265 * -- VPD Instance 'I' 3266 * -- VPD Type String 'B' 3267 * -- VPD data length == 7 3268 * -- property string == entropy-dev 3269 * 3270 * -- correct length == 18 3271 * 3 (type) + 2 (size) + 3272 * 9 (strlen("phy-type") + 1) + 3273 * 4 (strlen("pcs") + 1) 3274 * -- VPD Instance 'I' 3275 * -- VPD Type String 'S' 3276 * -- VPD data length == 4 3277 * -- property string == phy-type 3278 * 3279 * -- correct length == 23 3280 * 3 (type) + 2 (size) + 3281 * 14 (strlen("phy-interface") + 1) + 3282 * 4 (strlen("pcs") + 1) 3283 * -- VPD Instance 'I' 3284 * -- VPD Type String 'S' 3285 * -- VPD data length == 4 3286 * -- property string == phy-interface 3287 */ 3288 if (readb(p) != 'I') 3289 goto next; 3290 3291 /* finally, check string and length */ 3292 type = readb(p + 3); 3293 if (type == 'B') { 3294 if ((klen == 29) && readb(p + 4) == 6 && 3295 cas_vpd_match(p + 5, 3296 "local-mac-address")) { 3297 if (mac_off++ > offset) 3298 goto next; 3299 3300 /* set mac address */ 3301 for (j = 0; j < 6; j++) 3302 dev_addr[j] = 3303 readb(p + 23 + j); 3304 goto found_mac; 3305 } 3306 } 3307 3308 if (type != 'S') 3309 goto next; 3310 3311 #ifdef USE_ENTROPY_DEV 3312 if ((klen == 24) && 3313 cas_vpd_match(p + 5, "entropy-dev") && 3314 cas_vpd_match(p + 17, "vms110")) { 3315 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3316 goto next; 3317 } 3318 #endif 3319 3320 if (found & VPD_FOUND_PHY) 3321 goto next; 3322 3323 if ((klen == 18) && readb(p + 4) == 4 && 3324 cas_vpd_match(p + 5, "phy-type")) { 3325 if (cas_vpd_match(p + 14, "pcs")) { 3326 phy_type = CAS_PHY_SERDES; 3327 goto found_phy; 3328 } 3329 } 3330 3331 if ((klen == 23) && readb(p + 4) == 4 && 3332 cas_vpd_match(p + 5, "phy-interface")) { 3333 if (cas_vpd_match(p + 19, "pcs")) { 3334 phy_type = CAS_PHY_SERDES; 3335 goto found_phy; 3336 } 3337 } 3338 found_mac: 3339 found |= VPD_FOUND_MAC; 3340 goto next; 3341 3342 found_phy: 3343 found |= VPD_FOUND_PHY; 3344 3345 next: 3346 p += klen; 3347 } 3348 i += len + 3; 3349 } 3350 3351 use_random_mac_addr: 3352 if (found & VPD_FOUND_MAC) 3353 goto done; 3354 3355 #if defined(CONFIG_SPARC) 3356 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3357 if (addr != NULL) { 3358 memcpy(dev_addr, addr, 6); 3359 goto done; 3360 } 3361 #endif 3362 3363 /* Sun MAC prefix then 3 random bytes. */ 3364 pr_info("MAC address not found in ROM VPD\n"); 3365 dev_addr[0] = 0x08; 3366 dev_addr[1] = 0x00; 3367 dev_addr[2] = 0x20; 3368 get_random_bytes(dev_addr + 3, 3); 3369 3370 done: 3371 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3372 return phy_type; 3373 } 3374 3375 /* check pci invariants */ 3376 static void cas_check_pci_invariants(struct cas *cp) 3377 { 3378 struct pci_dev *pdev = cp->pdev; 3379 3380 cp->cas_flags = 0; 3381 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3382 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3383 if (pdev->revision >= CAS_ID_REVPLUS) 3384 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3385 if (pdev->revision < CAS_ID_REVPLUS02u) 3386 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3387 3388 /* Original Cassini supports HW CSUM, but it's not 3389 * enabled by default as it can trigger TX hangs. 3390 */ 3391 if (pdev->revision < CAS_ID_REV2) 3392 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3393 } else { 3394 /* Only sun has original cassini chips. */ 3395 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3396 3397 /* We use a flag because the same phy might be externally 3398 * connected. 3399 */ 3400 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3401 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3402 cp->cas_flags |= CAS_FLAG_SATURN; 3403 } 3404 } 3405 3406 3407 static int cas_check_invariants(struct cas *cp) 3408 { 3409 struct pci_dev *pdev = cp->pdev; 3410 u32 cfg; 3411 int i; 3412 3413 /* get page size for rx buffers. */ 3414 cp->page_order = 0; 3415 #ifdef USE_PAGE_ORDER 3416 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3417 /* see if we can allocate larger pages */ 3418 struct page *page = alloc_pages(GFP_ATOMIC, 3419 CAS_JUMBO_PAGE_SHIFT - 3420 PAGE_SHIFT); 3421 if (page) { 3422 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3423 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3424 } else { 3425 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3426 } 3427 } 3428 #endif 3429 cp->page_size = (PAGE_SIZE << cp->page_order); 3430 3431 /* Fetch the FIFO configurations. */ 3432 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3433 cp->rx_fifo_size = RX_FIFO_SIZE; 3434 3435 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3436 * they're both connected. 3437 */ 3438 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3439 PCI_SLOT(pdev->devfn)); 3440 if (cp->phy_type & CAS_PHY_SERDES) { 3441 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3442 return 0; /* no more checking needed */ 3443 } 3444 3445 /* MII */ 3446 cfg = readl(cp->regs + REG_MIF_CFG); 3447 if (cfg & MIF_CFG_MDIO_1) { 3448 cp->phy_type = CAS_PHY_MII_MDIO1; 3449 } else if (cfg & MIF_CFG_MDIO_0) { 3450 cp->phy_type = CAS_PHY_MII_MDIO0; 3451 } 3452 3453 cas_mif_poll(cp, 0); 3454 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3455 3456 for (i = 0; i < 32; i++) { 3457 u32 phy_id; 3458 int j; 3459 3460 for (j = 0; j < 3; j++) { 3461 cp->phy_addr = i; 3462 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3463 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3464 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3465 cp->phy_id = phy_id; 3466 goto done; 3467 } 3468 } 3469 } 3470 pr_err("MII phy did not respond [%08x]\n", 3471 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3472 return -1; 3473 3474 done: 3475 /* see if we can do gigabit */ 3476 cfg = cas_phy_read(cp, MII_BMSR); 3477 if ((cfg & CAS_BMSR_1000_EXTEND) && 3478 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3479 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3480 return 0; 3481 } 3482 3483 /* Must be invoked under cp->lock. */ 3484 static inline void cas_start_dma(struct cas *cp) 3485 { 3486 int i; 3487 u32 val; 3488 int txfailed = 0; 3489 3490 /* enable dma */ 3491 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3492 writel(val, cp->regs + REG_TX_CFG); 3493 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3494 writel(val, cp->regs + REG_RX_CFG); 3495 3496 /* enable the mac */ 3497 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3498 writel(val, cp->regs + REG_MAC_TX_CFG); 3499 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3500 writel(val, cp->regs + REG_MAC_RX_CFG); 3501 3502 i = STOP_TRIES; 3503 while (i-- > 0) { 3504 val = readl(cp->regs + REG_MAC_TX_CFG); 3505 if ((val & MAC_TX_CFG_EN)) 3506 break; 3507 udelay(10); 3508 } 3509 if (i < 0) txfailed = 1; 3510 i = STOP_TRIES; 3511 while (i-- > 0) { 3512 val = readl(cp->regs + REG_MAC_RX_CFG); 3513 if ((val & MAC_RX_CFG_EN)) { 3514 if (txfailed) { 3515 netdev_err(cp->dev, 3516 "enabling mac failed [tx:%08x:%08x]\n", 3517 readl(cp->regs + REG_MIF_STATE_MACHINE), 3518 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3519 } 3520 goto enable_rx_done; 3521 } 3522 udelay(10); 3523 } 3524 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3525 (txfailed ? "tx,rx" : "rx"), 3526 readl(cp->regs + REG_MIF_STATE_MACHINE), 3527 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3528 3529 enable_rx_done: 3530 cas_unmask_intr(cp); /* enable interrupts */ 3531 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3532 writel(0, cp->regs + REG_RX_COMP_TAIL); 3533 3534 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3535 if (N_RX_DESC_RINGS > 1) 3536 writel(RX_DESC_RINGN_SIZE(1) - 4, 3537 cp->regs + REG_PLUS_RX_KICK1); 3538 3539 for (i = 1; i < N_RX_COMP_RINGS; i++) 3540 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3541 } 3542 } 3543 3544 /* Must be invoked under cp->lock. */ 3545 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3546 int *pause) 3547 { 3548 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3549 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3550 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3551 if (val & PCS_MII_LPA_ASYM_PAUSE) 3552 *pause |= 0x10; 3553 *spd = 1000; 3554 } 3555 3556 /* Must be invoked under cp->lock. */ 3557 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3558 int *pause) 3559 { 3560 u32 val; 3561 3562 *fd = 0; 3563 *spd = 10; 3564 *pause = 0; 3565 3566 /* use GMII registers */ 3567 val = cas_phy_read(cp, MII_LPA); 3568 if (val & CAS_LPA_PAUSE) 3569 *pause = 0x01; 3570 3571 if (val & CAS_LPA_ASYM_PAUSE) 3572 *pause |= 0x10; 3573 3574 if (val & LPA_DUPLEX) 3575 *fd = 1; 3576 if (val & LPA_100) 3577 *spd = 100; 3578 3579 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3580 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3581 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3582 *spd = 1000; 3583 if (val & CAS_LPA_1000FULL) 3584 *fd = 1; 3585 } 3586 } 3587 3588 /* A link-up condition has occurred, initialize and enable the 3589 * rest of the chip. 3590 * 3591 * Must be invoked under cp->lock. 3592 */ 3593 static void cas_set_link_modes(struct cas *cp) 3594 { 3595 u32 val; 3596 int full_duplex, speed, pause; 3597 3598 full_duplex = 0; 3599 speed = 10; 3600 pause = 0; 3601 3602 if (CAS_PHY_MII(cp->phy_type)) { 3603 cas_mif_poll(cp, 0); 3604 val = cas_phy_read(cp, MII_BMCR); 3605 if (val & BMCR_ANENABLE) { 3606 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3607 &pause); 3608 } else { 3609 if (val & BMCR_FULLDPLX) 3610 full_duplex = 1; 3611 3612 if (val & BMCR_SPEED100) 3613 speed = 100; 3614 else if (val & CAS_BMCR_SPEED1000) 3615 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3616 1000 : 100; 3617 } 3618 cas_mif_poll(cp, 1); 3619 3620 } else { 3621 val = readl(cp->regs + REG_PCS_MII_CTRL); 3622 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3623 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3624 if (val & PCS_MII_CTRL_DUPLEX) 3625 full_duplex = 1; 3626 } 3627 } 3628 3629 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3630 speed, full_duplex ? "full" : "half"); 3631 3632 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3633 if (CAS_PHY_MII(cp->phy_type)) { 3634 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3635 if (!full_duplex) 3636 val |= MAC_XIF_DISABLE_ECHO; 3637 } 3638 if (full_duplex) 3639 val |= MAC_XIF_FDPLX_LED; 3640 if (speed == 1000) 3641 val |= MAC_XIF_GMII_MODE; 3642 writel(val, cp->regs + REG_MAC_XIF_CFG); 3643 3644 /* deal with carrier and collision detect. */ 3645 val = MAC_TX_CFG_IPG_EN; 3646 if (full_duplex) { 3647 val |= MAC_TX_CFG_IGNORE_CARRIER; 3648 val |= MAC_TX_CFG_IGNORE_COLL; 3649 } else { 3650 #ifndef USE_CSMA_CD_PROTO 3651 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3652 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3653 #endif 3654 } 3655 /* val now set up for REG_MAC_TX_CFG */ 3656 3657 /* If gigabit and half-duplex, enable carrier extension 3658 * mode. increase slot time to 512 bytes as well. 3659 * else, disable it and make sure slot time is 64 bytes. 3660 * also activate checksum bug workaround 3661 */ 3662 if ((speed == 1000) && !full_duplex) { 3663 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3664 cp->regs + REG_MAC_TX_CFG); 3665 3666 val = readl(cp->regs + REG_MAC_RX_CFG); 3667 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3668 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3669 cp->regs + REG_MAC_RX_CFG); 3670 3671 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3672 3673 cp->crc_size = 4; 3674 /* minimum size gigabit frame at half duplex */ 3675 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3676 3677 } else { 3678 writel(val, cp->regs + REG_MAC_TX_CFG); 3679 3680 /* checksum bug workaround. don't strip FCS when in 3681 * half-duplex mode 3682 */ 3683 val = readl(cp->regs + REG_MAC_RX_CFG); 3684 if (full_duplex) { 3685 val |= MAC_RX_CFG_STRIP_FCS; 3686 cp->crc_size = 0; 3687 cp->min_frame_size = CAS_MIN_MTU; 3688 } else { 3689 val &= ~MAC_RX_CFG_STRIP_FCS; 3690 cp->crc_size = 4; 3691 cp->min_frame_size = CAS_MIN_FRAME; 3692 } 3693 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3694 cp->regs + REG_MAC_RX_CFG); 3695 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3696 } 3697 3698 if (netif_msg_link(cp)) { 3699 if (pause & 0x01) { 3700 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3701 cp->rx_fifo_size, 3702 cp->rx_pause_off, 3703 cp->rx_pause_on); 3704 } else if (pause & 0x10) { 3705 netdev_info(cp->dev, "TX pause enabled\n"); 3706 } else { 3707 netdev_info(cp->dev, "Pause is disabled\n"); 3708 } 3709 } 3710 3711 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3712 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3713 if (pause) { /* symmetric or asymmetric pause */ 3714 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3715 if (pause & 0x01) { /* symmetric pause */ 3716 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3717 } 3718 } 3719 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3720 cas_start_dma(cp); 3721 } 3722 3723 /* Must be invoked under cp->lock. */ 3724 static void cas_init_hw(struct cas *cp, int restart_link) 3725 { 3726 if (restart_link) 3727 cas_phy_init(cp); 3728 3729 cas_init_pause_thresholds(cp); 3730 cas_init_mac(cp); 3731 cas_init_dma(cp); 3732 3733 if (restart_link) { 3734 /* Default aneg parameters */ 3735 cp->timer_ticks = 0; 3736 cas_begin_auto_negotiation(cp, NULL); 3737 } else if (cp->lstate == link_up) { 3738 cas_set_link_modes(cp); 3739 netif_carrier_on(cp->dev); 3740 } 3741 } 3742 3743 /* Must be invoked under cp->lock. on earlier cassini boards, 3744 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3745 * let it settle out, and then restore pci state. 3746 */ 3747 static void cas_hard_reset(struct cas *cp) 3748 { 3749 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3750 udelay(20); 3751 pci_restore_state(cp->pdev); 3752 } 3753 3754 3755 static void cas_global_reset(struct cas *cp, int blkflag) 3756 { 3757 int limit; 3758 3759 /* issue a global reset. don't use RSTOUT. */ 3760 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3761 /* For PCS, when the blkflag is set, we should set the 3762 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3763 * the last autonegotiation from being cleared. We'll 3764 * need some special handling if the chip is set into a 3765 * loopback mode. 3766 */ 3767 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3768 cp->regs + REG_SW_RESET); 3769 } else { 3770 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3771 } 3772 3773 /* need to wait at least 3ms before polling register */ 3774 mdelay(3); 3775 3776 limit = STOP_TRIES; 3777 while (limit-- > 0) { 3778 u32 val = readl(cp->regs + REG_SW_RESET); 3779 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3780 goto done; 3781 udelay(10); 3782 } 3783 netdev_err(cp->dev, "sw reset failed\n"); 3784 3785 done: 3786 /* enable various BIM interrupts */ 3787 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3788 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3789 3790 /* clear out pci error status mask for handled errors. 3791 * we don't deal with DMA counter overflows as they happen 3792 * all the time. 3793 */ 3794 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3795 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3796 PCI_ERR_BIM_DMA_READ), cp->regs + 3797 REG_PCI_ERR_STATUS_MASK); 3798 3799 /* set up for MII by default to address mac rx reset timeout 3800 * issue 3801 */ 3802 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3803 } 3804 3805 static void cas_reset(struct cas *cp, int blkflag) 3806 { 3807 u32 val; 3808 3809 cas_mask_intr(cp); 3810 cas_global_reset(cp, blkflag); 3811 cas_mac_reset(cp); 3812 cas_entropy_reset(cp); 3813 3814 /* disable dma engines. */ 3815 val = readl(cp->regs + REG_TX_CFG); 3816 val &= ~TX_CFG_DMA_EN; 3817 writel(val, cp->regs + REG_TX_CFG); 3818 3819 val = readl(cp->regs + REG_RX_CFG); 3820 val &= ~RX_CFG_DMA_EN; 3821 writel(val, cp->regs + REG_RX_CFG); 3822 3823 /* program header parser */ 3824 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3825 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3826 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3827 } else { 3828 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3829 } 3830 3831 /* clear out error registers */ 3832 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3833 cas_clear_mac_err(cp); 3834 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3835 } 3836 3837 /* Shut down the chip, must be called with pm_mutex held. */ 3838 static void cas_shutdown(struct cas *cp) 3839 { 3840 unsigned long flags; 3841 3842 /* Make us not-running to avoid timers respawning */ 3843 cp->hw_running = 0; 3844 3845 del_timer_sync(&cp->link_timer); 3846 3847 /* Stop the reset task */ 3848 #if 0 3849 while (atomic_read(&cp->reset_task_pending_mtu) || 3850 atomic_read(&cp->reset_task_pending_spare) || 3851 atomic_read(&cp->reset_task_pending_all)) 3852 schedule(); 3853 3854 #else 3855 while (atomic_read(&cp->reset_task_pending)) 3856 schedule(); 3857 #endif 3858 /* Actually stop the chip */ 3859 cas_lock_all_save(cp, flags); 3860 cas_reset(cp, 0); 3861 if (cp->cas_flags & CAS_FLAG_SATURN) 3862 cas_phy_powerdown(cp); 3863 cas_unlock_all_restore(cp, flags); 3864 } 3865 3866 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3867 { 3868 struct cas *cp = netdev_priv(dev); 3869 3870 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) 3871 return -EINVAL; 3872 3873 dev->mtu = new_mtu; 3874 if (!netif_running(dev) || !netif_device_present(dev)) 3875 return 0; 3876 3877 /* let the reset task handle it */ 3878 #if 1 3879 atomic_inc(&cp->reset_task_pending); 3880 if ((cp->phy_type & CAS_PHY_SERDES)) { 3881 atomic_inc(&cp->reset_task_pending_all); 3882 } else { 3883 atomic_inc(&cp->reset_task_pending_mtu); 3884 } 3885 schedule_work(&cp->reset_task); 3886 #else 3887 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3888 CAS_RESET_ALL : CAS_RESET_MTU); 3889 pr_err("reset called in cas_change_mtu\n"); 3890 schedule_work(&cp->reset_task); 3891 #endif 3892 3893 flush_work_sync(&cp->reset_task); 3894 return 0; 3895 } 3896 3897 static void cas_clean_txd(struct cas *cp, int ring) 3898 { 3899 struct cas_tx_desc *txd = cp->init_txds[ring]; 3900 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3901 u64 daddr, dlen; 3902 int i, size; 3903 3904 size = TX_DESC_RINGN_SIZE(ring); 3905 for (i = 0; i < size; i++) { 3906 int frag; 3907 3908 if (skbs[i] == NULL) 3909 continue; 3910 3911 skb = skbs[i]; 3912 skbs[i] = NULL; 3913 3914 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3915 int ent = i & (size - 1); 3916 3917 /* first buffer is never a tiny buffer and so 3918 * needs to be unmapped. 3919 */ 3920 daddr = le64_to_cpu(txd[ent].buffer); 3921 dlen = CAS_VAL(TX_DESC_BUFLEN, 3922 le64_to_cpu(txd[ent].control)); 3923 pci_unmap_page(cp->pdev, daddr, dlen, 3924 PCI_DMA_TODEVICE); 3925 3926 if (frag != skb_shinfo(skb)->nr_frags) { 3927 i++; 3928 3929 /* next buffer might by a tiny buffer. 3930 * skip past it. 3931 */ 3932 ent = i & (size - 1); 3933 if (cp->tx_tiny_use[ring][ent].used) 3934 i++; 3935 } 3936 } 3937 dev_kfree_skb_any(skb); 3938 } 3939 3940 /* zero out tiny buf usage */ 3941 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3942 } 3943 3944 /* freed on close */ 3945 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3946 { 3947 cas_page_t **page = cp->rx_pages[ring]; 3948 int i, size; 3949 3950 size = RX_DESC_RINGN_SIZE(ring); 3951 for (i = 0; i < size; i++) { 3952 if (page[i]) { 3953 cas_page_free(cp, page[i]); 3954 page[i] = NULL; 3955 } 3956 } 3957 } 3958 3959 static void cas_free_rxds(struct cas *cp) 3960 { 3961 int i; 3962 3963 for (i = 0; i < N_RX_DESC_RINGS; i++) 3964 cas_free_rx_desc(cp, i); 3965 } 3966 3967 /* Must be invoked under cp->lock. */ 3968 static void cas_clean_rings(struct cas *cp) 3969 { 3970 int i; 3971 3972 /* need to clean all tx rings */ 3973 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3974 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3975 for (i = 0; i < N_TX_RINGS; i++) 3976 cas_clean_txd(cp, i); 3977 3978 /* zero out init block */ 3979 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3980 cas_clean_rxds(cp); 3981 cas_clean_rxcs(cp); 3982 } 3983 3984 /* allocated on open */ 3985 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3986 { 3987 cas_page_t **page = cp->rx_pages[ring]; 3988 int size, i = 0; 3989 3990 size = RX_DESC_RINGN_SIZE(ring); 3991 for (i = 0; i < size; i++) { 3992 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3993 return -1; 3994 } 3995 return 0; 3996 } 3997 3998 static int cas_alloc_rxds(struct cas *cp) 3999 { 4000 int i; 4001 4002 for (i = 0; i < N_RX_DESC_RINGS; i++) { 4003 if (cas_alloc_rx_desc(cp, i) < 0) { 4004 cas_free_rxds(cp); 4005 return -1; 4006 } 4007 } 4008 return 0; 4009 } 4010 4011 static void cas_reset_task(struct work_struct *work) 4012 { 4013 struct cas *cp = container_of(work, struct cas, reset_task); 4014 #if 0 4015 int pending = atomic_read(&cp->reset_task_pending); 4016 #else 4017 int pending_all = atomic_read(&cp->reset_task_pending_all); 4018 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 4019 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 4020 4021 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 4022 /* We can have more tasks scheduled than actually 4023 * needed. 4024 */ 4025 atomic_dec(&cp->reset_task_pending); 4026 return; 4027 } 4028 #endif 4029 /* The link went down, we reset the ring, but keep 4030 * DMA stopped. Use this function for reset 4031 * on error as well. 4032 */ 4033 if (cp->hw_running) { 4034 unsigned long flags; 4035 4036 /* Make sure we don't get interrupts or tx packets */ 4037 netif_device_detach(cp->dev); 4038 cas_lock_all_save(cp, flags); 4039 4040 if (cp->opened) { 4041 /* We call cas_spare_recover when we call cas_open. 4042 * but we do not initialize the lists cas_spare_recover 4043 * uses until cas_open is called. 4044 */ 4045 cas_spare_recover(cp, GFP_ATOMIC); 4046 } 4047 #if 1 4048 /* test => only pending_spare set */ 4049 if (!pending_all && !pending_mtu) 4050 goto done; 4051 #else 4052 if (pending == CAS_RESET_SPARE) 4053 goto done; 4054 #endif 4055 /* when pending == CAS_RESET_ALL, the following 4056 * call to cas_init_hw will restart auto negotiation. 4057 * Setting the second argument of cas_reset to 4058 * !(pending == CAS_RESET_ALL) will set this argument 4059 * to 1 (avoiding reinitializing the PHY for the normal 4060 * PCS case) when auto negotiation is not restarted. 4061 */ 4062 #if 1 4063 cas_reset(cp, !(pending_all > 0)); 4064 if (cp->opened) 4065 cas_clean_rings(cp); 4066 cas_init_hw(cp, (pending_all > 0)); 4067 #else 4068 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4069 if (cp->opened) 4070 cas_clean_rings(cp); 4071 cas_init_hw(cp, pending == CAS_RESET_ALL); 4072 #endif 4073 4074 done: 4075 cas_unlock_all_restore(cp, flags); 4076 netif_device_attach(cp->dev); 4077 } 4078 #if 1 4079 atomic_sub(pending_all, &cp->reset_task_pending_all); 4080 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4081 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4082 atomic_dec(&cp->reset_task_pending); 4083 #else 4084 atomic_set(&cp->reset_task_pending, 0); 4085 #endif 4086 } 4087 4088 static void cas_link_timer(unsigned long data) 4089 { 4090 struct cas *cp = (struct cas *) data; 4091 int mask, pending = 0, reset = 0; 4092 unsigned long flags; 4093 4094 if (link_transition_timeout != 0 && 4095 cp->link_transition_jiffies_valid && 4096 ((jiffies - cp->link_transition_jiffies) > 4097 (link_transition_timeout))) { 4098 /* One-second counter so link-down workaround doesn't 4099 * cause resets to occur so fast as to fool the switch 4100 * into thinking the link is down. 4101 */ 4102 cp->link_transition_jiffies_valid = 0; 4103 } 4104 4105 if (!cp->hw_running) 4106 return; 4107 4108 spin_lock_irqsave(&cp->lock, flags); 4109 cas_lock_tx(cp); 4110 cas_entropy_gather(cp); 4111 4112 /* If the link task is still pending, we just 4113 * reschedule the link timer 4114 */ 4115 #if 1 4116 if (atomic_read(&cp->reset_task_pending_all) || 4117 atomic_read(&cp->reset_task_pending_spare) || 4118 atomic_read(&cp->reset_task_pending_mtu)) 4119 goto done; 4120 #else 4121 if (atomic_read(&cp->reset_task_pending)) 4122 goto done; 4123 #endif 4124 4125 /* check for rx cleaning */ 4126 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4127 int i, rmask; 4128 4129 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4130 rmask = CAS_FLAG_RXD_POST(i); 4131 if ((mask & rmask) == 0) 4132 continue; 4133 4134 /* post_rxds will do a mod_timer */ 4135 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4136 pending = 1; 4137 continue; 4138 } 4139 cp->cas_flags &= ~rmask; 4140 } 4141 } 4142 4143 if (CAS_PHY_MII(cp->phy_type)) { 4144 u16 bmsr; 4145 cas_mif_poll(cp, 0); 4146 bmsr = cas_phy_read(cp, MII_BMSR); 4147 /* WTZ: Solaris driver reads this twice, but that 4148 * may be due to the PCS case and the use of a 4149 * common implementation. Read it twice here to be 4150 * safe. 4151 */ 4152 bmsr = cas_phy_read(cp, MII_BMSR); 4153 cas_mif_poll(cp, 1); 4154 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4155 reset = cas_mii_link_check(cp, bmsr); 4156 } else { 4157 reset = cas_pcs_link_check(cp); 4158 } 4159 4160 if (reset) 4161 goto done; 4162 4163 /* check for tx state machine confusion */ 4164 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4165 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4166 u32 wptr, rptr; 4167 int tlm = CAS_VAL(MAC_SM_TLM, val); 4168 4169 if (((tlm == 0x5) || (tlm == 0x3)) && 4170 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4171 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4172 "tx err: MAC_STATE[%08x]\n", val); 4173 reset = 1; 4174 goto done; 4175 } 4176 4177 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4178 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4179 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4180 if ((val == 0) && (wptr != rptr)) { 4181 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4182 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4183 val, wptr, rptr); 4184 reset = 1; 4185 } 4186 4187 if (reset) 4188 cas_hard_reset(cp); 4189 } 4190 4191 done: 4192 if (reset) { 4193 #if 1 4194 atomic_inc(&cp->reset_task_pending); 4195 atomic_inc(&cp->reset_task_pending_all); 4196 schedule_work(&cp->reset_task); 4197 #else 4198 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4199 pr_err("reset called in cas_link_timer\n"); 4200 schedule_work(&cp->reset_task); 4201 #endif 4202 } 4203 4204 if (!pending) 4205 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4206 cas_unlock_tx(cp); 4207 spin_unlock_irqrestore(&cp->lock, flags); 4208 } 4209 4210 /* tiny buffers are used to avoid target abort issues with 4211 * older cassini's 4212 */ 4213 static void cas_tx_tiny_free(struct cas *cp) 4214 { 4215 struct pci_dev *pdev = cp->pdev; 4216 int i; 4217 4218 for (i = 0; i < N_TX_RINGS; i++) { 4219 if (!cp->tx_tiny_bufs[i]) 4220 continue; 4221 4222 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4223 cp->tx_tiny_bufs[i], 4224 cp->tx_tiny_dvma[i]); 4225 cp->tx_tiny_bufs[i] = NULL; 4226 } 4227 } 4228 4229 static int cas_tx_tiny_alloc(struct cas *cp) 4230 { 4231 struct pci_dev *pdev = cp->pdev; 4232 int i; 4233 4234 for (i = 0; i < N_TX_RINGS; i++) { 4235 cp->tx_tiny_bufs[i] = 4236 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4237 &cp->tx_tiny_dvma[i]); 4238 if (!cp->tx_tiny_bufs[i]) { 4239 cas_tx_tiny_free(cp); 4240 return -1; 4241 } 4242 } 4243 return 0; 4244 } 4245 4246 4247 static int cas_open(struct net_device *dev) 4248 { 4249 struct cas *cp = netdev_priv(dev); 4250 int hw_was_up, err; 4251 unsigned long flags; 4252 4253 mutex_lock(&cp->pm_mutex); 4254 4255 hw_was_up = cp->hw_running; 4256 4257 /* The power-management mutex protects the hw_running 4258 * etc. state so it is safe to do this bit without cp->lock 4259 */ 4260 if (!cp->hw_running) { 4261 /* Reset the chip */ 4262 cas_lock_all_save(cp, flags); 4263 /* We set the second arg to cas_reset to zero 4264 * because cas_init_hw below will have its second 4265 * argument set to non-zero, which will force 4266 * autonegotiation to start. 4267 */ 4268 cas_reset(cp, 0); 4269 cp->hw_running = 1; 4270 cas_unlock_all_restore(cp, flags); 4271 } 4272 4273 err = -ENOMEM; 4274 if (cas_tx_tiny_alloc(cp) < 0) 4275 goto err_unlock; 4276 4277 /* alloc rx descriptors */ 4278 if (cas_alloc_rxds(cp) < 0) 4279 goto err_tx_tiny; 4280 4281 /* allocate spares */ 4282 cas_spare_init(cp); 4283 cas_spare_recover(cp, GFP_KERNEL); 4284 4285 /* We can now request the interrupt as we know it's masked 4286 * on the controller. cassini+ has up to 4 interrupts 4287 * that can be used, but you need to do explicit pci interrupt 4288 * mapping to expose them 4289 */ 4290 if (request_irq(cp->pdev->irq, cas_interrupt, 4291 IRQF_SHARED, dev->name, (void *) dev)) { 4292 netdev_err(cp->dev, "failed to request irq !\n"); 4293 err = -EAGAIN; 4294 goto err_spare; 4295 } 4296 4297 #ifdef USE_NAPI 4298 napi_enable(&cp->napi); 4299 #endif 4300 /* init hw */ 4301 cas_lock_all_save(cp, flags); 4302 cas_clean_rings(cp); 4303 cas_init_hw(cp, !hw_was_up); 4304 cp->opened = 1; 4305 cas_unlock_all_restore(cp, flags); 4306 4307 netif_start_queue(dev); 4308 mutex_unlock(&cp->pm_mutex); 4309 return 0; 4310 4311 err_spare: 4312 cas_spare_free(cp); 4313 cas_free_rxds(cp); 4314 err_tx_tiny: 4315 cas_tx_tiny_free(cp); 4316 err_unlock: 4317 mutex_unlock(&cp->pm_mutex); 4318 return err; 4319 } 4320 4321 static int cas_close(struct net_device *dev) 4322 { 4323 unsigned long flags; 4324 struct cas *cp = netdev_priv(dev); 4325 4326 #ifdef USE_NAPI 4327 napi_disable(&cp->napi); 4328 #endif 4329 /* Make sure we don't get distracted by suspend/resume */ 4330 mutex_lock(&cp->pm_mutex); 4331 4332 netif_stop_queue(dev); 4333 4334 /* Stop traffic, mark us closed */ 4335 cas_lock_all_save(cp, flags); 4336 cp->opened = 0; 4337 cas_reset(cp, 0); 4338 cas_phy_init(cp); 4339 cas_begin_auto_negotiation(cp, NULL); 4340 cas_clean_rings(cp); 4341 cas_unlock_all_restore(cp, flags); 4342 4343 free_irq(cp->pdev->irq, (void *) dev); 4344 cas_spare_free(cp); 4345 cas_free_rxds(cp); 4346 cas_tx_tiny_free(cp); 4347 mutex_unlock(&cp->pm_mutex); 4348 return 0; 4349 } 4350 4351 static struct { 4352 const char name[ETH_GSTRING_LEN]; 4353 } ethtool_cassini_statnames[] = { 4354 {"collisions"}, 4355 {"rx_bytes"}, 4356 {"rx_crc_errors"}, 4357 {"rx_dropped"}, 4358 {"rx_errors"}, 4359 {"rx_fifo_errors"}, 4360 {"rx_frame_errors"}, 4361 {"rx_length_errors"}, 4362 {"rx_over_errors"}, 4363 {"rx_packets"}, 4364 {"tx_aborted_errors"}, 4365 {"tx_bytes"}, 4366 {"tx_dropped"}, 4367 {"tx_errors"}, 4368 {"tx_fifo_errors"}, 4369 {"tx_packets"} 4370 }; 4371 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4372 4373 static struct { 4374 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4375 } ethtool_register_table[] = { 4376 {-MII_BMSR}, 4377 {-MII_BMCR}, 4378 {REG_CAWR}, 4379 {REG_INF_BURST}, 4380 {REG_BIM_CFG}, 4381 {REG_RX_CFG}, 4382 {REG_HP_CFG}, 4383 {REG_MAC_TX_CFG}, 4384 {REG_MAC_RX_CFG}, 4385 {REG_MAC_CTRL_CFG}, 4386 {REG_MAC_XIF_CFG}, 4387 {REG_MIF_CFG}, 4388 {REG_PCS_CFG}, 4389 {REG_SATURN_PCFG}, 4390 {REG_PCS_MII_STATUS}, 4391 {REG_PCS_STATE_MACHINE}, 4392 {REG_MAC_COLL_EXCESS}, 4393 {REG_MAC_COLL_LATE} 4394 }; 4395 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4396 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4397 4398 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4399 { 4400 u8 *p; 4401 int i; 4402 unsigned long flags; 4403 4404 spin_lock_irqsave(&cp->lock, flags); 4405 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4406 u16 hval; 4407 u32 val; 4408 if (ethtool_register_table[i].offsets < 0) { 4409 hval = cas_phy_read(cp, 4410 -ethtool_register_table[i].offsets); 4411 val = hval; 4412 } else { 4413 val= readl(cp->regs+ethtool_register_table[i].offsets); 4414 } 4415 memcpy(p, (u8 *)&val, sizeof(u32)); 4416 } 4417 spin_unlock_irqrestore(&cp->lock, flags); 4418 } 4419 4420 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4421 { 4422 struct cas *cp = netdev_priv(dev); 4423 struct net_device_stats *stats = cp->net_stats; 4424 unsigned long flags; 4425 int i; 4426 unsigned long tmp; 4427 4428 /* we collate all of the stats into net_stats[N_TX_RING] */ 4429 if (!cp->hw_running) 4430 return stats + N_TX_RINGS; 4431 4432 /* collect outstanding stats */ 4433 /* WTZ: the Cassini spec gives these as 16 bit counters but 4434 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4435 * in case the chip somehow puts any garbage in the other bits. 4436 * Also, counter usage didn't seem to mach what Adrian did 4437 * in the parts of the code that set these quantities. Made 4438 * that consistent. 4439 */ 4440 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4441 stats[N_TX_RINGS].rx_crc_errors += 4442 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4443 stats[N_TX_RINGS].rx_frame_errors += 4444 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4445 stats[N_TX_RINGS].rx_length_errors += 4446 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4447 #if 1 4448 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4449 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4450 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4451 stats[N_TX_RINGS].collisions += 4452 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4453 #else 4454 stats[N_TX_RINGS].tx_aborted_errors += 4455 readl(cp->regs + REG_MAC_COLL_EXCESS); 4456 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4457 readl(cp->regs + REG_MAC_COLL_LATE); 4458 #endif 4459 cas_clear_mac_err(cp); 4460 4461 /* saved bits that are unique to ring 0 */ 4462 spin_lock(&cp->stat_lock[0]); 4463 stats[N_TX_RINGS].collisions += stats[0].collisions; 4464 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4465 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4466 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4467 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4468 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4469 spin_unlock(&cp->stat_lock[0]); 4470 4471 for (i = 0; i < N_TX_RINGS; i++) { 4472 spin_lock(&cp->stat_lock[i]); 4473 stats[N_TX_RINGS].rx_length_errors += 4474 stats[i].rx_length_errors; 4475 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4476 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4477 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4478 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4479 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4480 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4481 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4482 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4483 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4484 memset(stats + i, 0, sizeof(struct net_device_stats)); 4485 spin_unlock(&cp->stat_lock[i]); 4486 } 4487 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4488 return stats + N_TX_RINGS; 4489 } 4490 4491 4492 static void cas_set_multicast(struct net_device *dev) 4493 { 4494 struct cas *cp = netdev_priv(dev); 4495 u32 rxcfg, rxcfg_new; 4496 unsigned long flags; 4497 int limit = STOP_TRIES; 4498 4499 if (!cp->hw_running) 4500 return; 4501 4502 spin_lock_irqsave(&cp->lock, flags); 4503 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4504 4505 /* disable RX MAC and wait for completion */ 4506 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4507 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4508 if (!limit--) 4509 break; 4510 udelay(10); 4511 } 4512 4513 /* disable hash filter and wait for completion */ 4514 limit = STOP_TRIES; 4515 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4516 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4517 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4518 if (!limit--) 4519 break; 4520 udelay(10); 4521 } 4522 4523 /* program hash filters */ 4524 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4525 rxcfg |= rxcfg_new; 4526 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4527 spin_unlock_irqrestore(&cp->lock, flags); 4528 } 4529 4530 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4531 { 4532 struct cas *cp = netdev_priv(dev); 4533 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4534 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4535 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4536 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? 4537 cp->casreg_len : CAS_MAX_REGS; 4538 info->n_stats = CAS_NUM_STAT_KEYS; 4539 } 4540 4541 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4542 { 4543 struct cas *cp = netdev_priv(dev); 4544 u16 bmcr; 4545 int full_duplex, speed, pause; 4546 unsigned long flags; 4547 enum link_state linkstate = link_up; 4548 4549 cmd->advertising = 0; 4550 cmd->supported = SUPPORTED_Autoneg; 4551 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4552 cmd->supported |= SUPPORTED_1000baseT_Full; 4553 cmd->advertising |= ADVERTISED_1000baseT_Full; 4554 } 4555 4556 /* Record PHY settings if HW is on. */ 4557 spin_lock_irqsave(&cp->lock, flags); 4558 bmcr = 0; 4559 linkstate = cp->lstate; 4560 if (CAS_PHY_MII(cp->phy_type)) { 4561 cmd->port = PORT_MII; 4562 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? 4563 XCVR_INTERNAL : XCVR_EXTERNAL; 4564 cmd->phy_address = cp->phy_addr; 4565 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | 4566 ADVERTISED_10baseT_Half | 4567 ADVERTISED_10baseT_Full | 4568 ADVERTISED_100baseT_Half | 4569 ADVERTISED_100baseT_Full; 4570 4571 cmd->supported |= 4572 (SUPPORTED_10baseT_Half | 4573 SUPPORTED_10baseT_Full | 4574 SUPPORTED_100baseT_Half | 4575 SUPPORTED_100baseT_Full | 4576 SUPPORTED_TP | SUPPORTED_MII); 4577 4578 if (cp->hw_running) { 4579 cas_mif_poll(cp, 0); 4580 bmcr = cas_phy_read(cp, MII_BMCR); 4581 cas_read_mii_link_mode(cp, &full_duplex, 4582 &speed, &pause); 4583 cas_mif_poll(cp, 1); 4584 } 4585 4586 } else { 4587 cmd->port = PORT_FIBRE; 4588 cmd->transceiver = XCVR_INTERNAL; 4589 cmd->phy_address = 0; 4590 cmd->supported |= SUPPORTED_FIBRE; 4591 cmd->advertising |= ADVERTISED_FIBRE; 4592 4593 if (cp->hw_running) { 4594 /* pcs uses the same bits as mii */ 4595 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4596 cas_read_pcs_link_mode(cp, &full_duplex, 4597 &speed, &pause); 4598 } 4599 } 4600 spin_unlock_irqrestore(&cp->lock, flags); 4601 4602 if (bmcr & BMCR_ANENABLE) { 4603 cmd->advertising |= ADVERTISED_Autoneg; 4604 cmd->autoneg = AUTONEG_ENABLE; 4605 ethtool_cmd_speed_set(cmd, ((speed == 10) ? 4606 SPEED_10 : 4607 ((speed == 1000) ? 4608 SPEED_1000 : SPEED_100))); 4609 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4610 } else { 4611 cmd->autoneg = AUTONEG_DISABLE; 4612 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ? 4613 SPEED_1000 : 4614 ((bmcr & BMCR_SPEED100) ? 4615 SPEED_100 : SPEED_10))); 4616 cmd->duplex = 4617 (bmcr & BMCR_FULLDPLX) ? 4618 DUPLEX_FULL : DUPLEX_HALF; 4619 } 4620 if (linkstate != link_up) { 4621 /* Force these to "unknown" if the link is not up and 4622 * autonogotiation in enabled. We can set the link 4623 * speed to 0, but not cmd->duplex, 4624 * because its legal values are 0 and 1. Ethtool will 4625 * print the value reported in parentheses after the 4626 * word "Unknown" for unrecognized values. 4627 * 4628 * If in forced mode, we report the speed and duplex 4629 * settings that we configured. 4630 */ 4631 if (cp->link_cntl & BMCR_ANENABLE) { 4632 ethtool_cmd_speed_set(cmd, 0); 4633 cmd->duplex = 0xff; 4634 } else { 4635 ethtool_cmd_speed_set(cmd, SPEED_10); 4636 if (cp->link_cntl & BMCR_SPEED100) { 4637 ethtool_cmd_speed_set(cmd, SPEED_100); 4638 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4639 ethtool_cmd_speed_set(cmd, SPEED_1000); 4640 } 4641 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? 4642 DUPLEX_FULL : DUPLEX_HALF; 4643 } 4644 } 4645 return 0; 4646 } 4647 4648 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4649 { 4650 struct cas *cp = netdev_priv(dev); 4651 unsigned long flags; 4652 u32 speed = ethtool_cmd_speed(cmd); 4653 4654 /* Verify the settings we care about. */ 4655 if (cmd->autoneg != AUTONEG_ENABLE && 4656 cmd->autoneg != AUTONEG_DISABLE) 4657 return -EINVAL; 4658 4659 if (cmd->autoneg == AUTONEG_DISABLE && 4660 ((speed != SPEED_1000 && 4661 speed != SPEED_100 && 4662 speed != SPEED_10) || 4663 (cmd->duplex != DUPLEX_HALF && 4664 cmd->duplex != DUPLEX_FULL))) 4665 return -EINVAL; 4666 4667 /* Apply settings and restart link process. */ 4668 spin_lock_irqsave(&cp->lock, flags); 4669 cas_begin_auto_negotiation(cp, cmd); 4670 spin_unlock_irqrestore(&cp->lock, flags); 4671 return 0; 4672 } 4673 4674 static int cas_nway_reset(struct net_device *dev) 4675 { 4676 struct cas *cp = netdev_priv(dev); 4677 unsigned long flags; 4678 4679 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4680 return -EINVAL; 4681 4682 /* Restart link process. */ 4683 spin_lock_irqsave(&cp->lock, flags); 4684 cas_begin_auto_negotiation(cp, NULL); 4685 spin_unlock_irqrestore(&cp->lock, flags); 4686 4687 return 0; 4688 } 4689 4690 static u32 cas_get_link(struct net_device *dev) 4691 { 4692 struct cas *cp = netdev_priv(dev); 4693 return cp->lstate == link_up; 4694 } 4695 4696 static u32 cas_get_msglevel(struct net_device *dev) 4697 { 4698 struct cas *cp = netdev_priv(dev); 4699 return cp->msg_enable; 4700 } 4701 4702 static void cas_set_msglevel(struct net_device *dev, u32 value) 4703 { 4704 struct cas *cp = netdev_priv(dev); 4705 cp->msg_enable = value; 4706 } 4707 4708 static int cas_get_regs_len(struct net_device *dev) 4709 { 4710 struct cas *cp = netdev_priv(dev); 4711 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4712 } 4713 4714 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4715 void *p) 4716 { 4717 struct cas *cp = netdev_priv(dev); 4718 regs->version = 0; 4719 /* cas_read_regs handles locks (cp->lock). */ 4720 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4721 } 4722 4723 static int cas_get_sset_count(struct net_device *dev, int sset) 4724 { 4725 switch (sset) { 4726 case ETH_SS_STATS: 4727 return CAS_NUM_STAT_KEYS; 4728 default: 4729 return -EOPNOTSUPP; 4730 } 4731 } 4732 4733 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4734 { 4735 memcpy(data, ðtool_cassini_statnames, 4736 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4737 } 4738 4739 static void cas_get_ethtool_stats(struct net_device *dev, 4740 struct ethtool_stats *estats, u64 *data) 4741 { 4742 struct cas *cp = netdev_priv(dev); 4743 struct net_device_stats *stats = cas_get_stats(cp->dev); 4744 int i = 0; 4745 data[i++] = stats->collisions; 4746 data[i++] = stats->rx_bytes; 4747 data[i++] = stats->rx_crc_errors; 4748 data[i++] = stats->rx_dropped; 4749 data[i++] = stats->rx_errors; 4750 data[i++] = stats->rx_fifo_errors; 4751 data[i++] = stats->rx_frame_errors; 4752 data[i++] = stats->rx_length_errors; 4753 data[i++] = stats->rx_over_errors; 4754 data[i++] = stats->rx_packets; 4755 data[i++] = stats->tx_aborted_errors; 4756 data[i++] = stats->tx_bytes; 4757 data[i++] = stats->tx_dropped; 4758 data[i++] = stats->tx_errors; 4759 data[i++] = stats->tx_fifo_errors; 4760 data[i++] = stats->tx_packets; 4761 BUG_ON(i != CAS_NUM_STAT_KEYS); 4762 } 4763 4764 static const struct ethtool_ops cas_ethtool_ops = { 4765 .get_drvinfo = cas_get_drvinfo, 4766 .get_settings = cas_get_settings, 4767 .set_settings = cas_set_settings, 4768 .nway_reset = cas_nway_reset, 4769 .get_link = cas_get_link, 4770 .get_msglevel = cas_get_msglevel, 4771 .set_msglevel = cas_set_msglevel, 4772 .get_regs_len = cas_get_regs_len, 4773 .get_regs = cas_get_regs, 4774 .get_sset_count = cas_get_sset_count, 4775 .get_strings = cas_get_strings, 4776 .get_ethtool_stats = cas_get_ethtool_stats, 4777 }; 4778 4779 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4780 { 4781 struct cas *cp = netdev_priv(dev); 4782 struct mii_ioctl_data *data = if_mii(ifr); 4783 unsigned long flags; 4784 int rc = -EOPNOTSUPP; 4785 4786 /* Hold the PM mutex while doing ioctl's or we may collide 4787 * with open/close and power management and oops. 4788 */ 4789 mutex_lock(&cp->pm_mutex); 4790 switch (cmd) { 4791 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4792 data->phy_id = cp->phy_addr; 4793 /* Fallthrough... */ 4794 4795 case SIOCGMIIREG: /* Read MII PHY register. */ 4796 spin_lock_irqsave(&cp->lock, flags); 4797 cas_mif_poll(cp, 0); 4798 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4799 cas_mif_poll(cp, 1); 4800 spin_unlock_irqrestore(&cp->lock, flags); 4801 rc = 0; 4802 break; 4803 4804 case SIOCSMIIREG: /* Write MII PHY register. */ 4805 spin_lock_irqsave(&cp->lock, flags); 4806 cas_mif_poll(cp, 0); 4807 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4808 cas_mif_poll(cp, 1); 4809 spin_unlock_irqrestore(&cp->lock, flags); 4810 break; 4811 default: 4812 break; 4813 } 4814 4815 mutex_unlock(&cp->pm_mutex); 4816 return rc; 4817 } 4818 4819 /* When this chip sits underneath an Intel 31154 bridge, it is the 4820 * only subordinate device and we can tweak the bridge settings to 4821 * reflect that fact. 4822 */ 4823 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev) 4824 { 4825 struct pci_dev *pdev = cas_pdev->bus->self; 4826 u32 val; 4827 4828 if (!pdev) 4829 return; 4830 4831 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4832 return; 4833 4834 /* Clear bit 10 (Bus Parking Control) in the Secondary 4835 * Arbiter Control/Status Register which lives at offset 4836 * 0x41. Using a 32-bit word read/modify/write at 0x40 4837 * is much simpler so that's how we do this. 4838 */ 4839 pci_read_config_dword(pdev, 0x40, &val); 4840 val &= ~0x00040000; 4841 pci_write_config_dword(pdev, 0x40, val); 4842 4843 /* Max out the Multi-Transaction Timer settings since 4844 * Cassini is the only device present. 4845 * 4846 * The register is 16-bit and lives at 0x50. When the 4847 * settings are enabled, it extends the GRANT# signal 4848 * for a requestor after a transaction is complete. This 4849 * allows the next request to run without first needing 4850 * to negotiate the GRANT# signal back. 4851 * 4852 * Bits 12:10 define the grant duration: 4853 * 4854 * 1 -- 16 clocks 4855 * 2 -- 32 clocks 4856 * 3 -- 64 clocks 4857 * 4 -- 128 clocks 4858 * 5 -- 256 clocks 4859 * 4860 * All other values are illegal. 4861 * 4862 * Bits 09:00 define which REQ/GNT signal pairs get the 4863 * GRANT# signal treatment. We set them all. 4864 */ 4865 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4866 4867 /* The Read Prefecth Policy register is 16-bit and sits at 4868 * offset 0x52. It enables a "smart" pre-fetch policy. We 4869 * enable it and max out all of the settings since only one 4870 * device is sitting underneath and thus bandwidth sharing is 4871 * not an issue. 4872 * 4873 * The register has several 3 bit fields, which indicates a 4874 * multiplier applied to the base amount of prefetching the 4875 * chip would do. These fields are at: 4876 * 4877 * 15:13 --- ReRead Primary Bus 4878 * 12:10 --- FirstRead Primary Bus 4879 * 09:07 --- ReRead Secondary Bus 4880 * 06:04 --- FirstRead Secondary Bus 4881 * 4882 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4883 * get enabled on. Bit 3 is a grouped enabler which controls 4884 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4885 * the individual REQ/GNT pairs [2:0]. 4886 */ 4887 pci_write_config_word(pdev, 0x52, 4888 (0x7 << 13) | 4889 (0x7 << 10) | 4890 (0x7 << 7) | 4891 (0x7 << 4) | 4892 (0xf << 0)); 4893 4894 /* Force cacheline size to 0x8 */ 4895 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4896 4897 /* Force latency timer to maximum setting so Cassini can 4898 * sit on the bus as long as it likes. 4899 */ 4900 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4901 } 4902 4903 static const struct net_device_ops cas_netdev_ops = { 4904 .ndo_open = cas_open, 4905 .ndo_stop = cas_close, 4906 .ndo_start_xmit = cas_start_xmit, 4907 .ndo_get_stats = cas_get_stats, 4908 .ndo_set_rx_mode = cas_set_multicast, 4909 .ndo_do_ioctl = cas_ioctl, 4910 .ndo_tx_timeout = cas_tx_timeout, 4911 .ndo_change_mtu = cas_change_mtu, 4912 .ndo_set_mac_address = eth_mac_addr, 4913 .ndo_validate_addr = eth_validate_addr, 4914 #ifdef CONFIG_NET_POLL_CONTROLLER 4915 .ndo_poll_controller = cas_netpoll, 4916 #endif 4917 }; 4918 4919 static int __devinit cas_init_one(struct pci_dev *pdev, 4920 const struct pci_device_id *ent) 4921 { 4922 static int cas_version_printed = 0; 4923 unsigned long casreg_len; 4924 struct net_device *dev; 4925 struct cas *cp; 4926 int i, err, pci_using_dac; 4927 u16 pci_cmd; 4928 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4929 4930 if (cas_version_printed++ == 0) 4931 pr_info("%s", version); 4932 4933 err = pci_enable_device(pdev); 4934 if (err) { 4935 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4936 return err; 4937 } 4938 4939 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4940 dev_err(&pdev->dev, "Cannot find proper PCI device " 4941 "base address, aborting\n"); 4942 err = -ENODEV; 4943 goto err_out_disable_pdev; 4944 } 4945 4946 dev = alloc_etherdev(sizeof(*cp)); 4947 if (!dev) { 4948 err = -ENOMEM; 4949 goto err_out_disable_pdev; 4950 } 4951 SET_NETDEV_DEV(dev, &pdev->dev); 4952 4953 err = pci_request_regions(pdev, dev->name); 4954 if (err) { 4955 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4956 goto err_out_free_netdev; 4957 } 4958 pci_set_master(pdev); 4959 4960 /* we must always turn on parity response or else parity 4961 * doesn't get generated properly. disable SERR/PERR as well. 4962 * in addition, we want to turn MWI on. 4963 */ 4964 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4965 pci_cmd &= ~PCI_COMMAND_SERR; 4966 pci_cmd |= PCI_COMMAND_PARITY; 4967 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4968 if (pci_try_set_mwi(pdev)) 4969 pr_warning("Could not enable MWI for %s\n", pci_name(pdev)); 4970 4971 cas_program_bridge(pdev); 4972 4973 /* 4974 * On some architectures, the default cache line size set 4975 * by pci_try_set_mwi reduces perforamnce. We have to increase 4976 * it for this case. To start, we'll print some configuration 4977 * data. 4978 */ 4979 #if 1 4980 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4981 &orig_cacheline_size); 4982 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4983 cas_cacheline_size = 4984 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4985 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4986 if (pci_write_config_byte(pdev, 4987 PCI_CACHE_LINE_SIZE, 4988 cas_cacheline_size)) { 4989 dev_err(&pdev->dev, "Could not set PCI cache " 4990 "line size\n"); 4991 goto err_write_cacheline; 4992 } 4993 } 4994 #endif 4995 4996 4997 /* Configure DMA attributes. */ 4998 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4999 pci_using_dac = 1; 5000 err = pci_set_consistent_dma_mask(pdev, 5001 DMA_BIT_MASK(64)); 5002 if (err < 0) { 5003 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 5004 "for consistent allocations\n"); 5005 goto err_out_free_res; 5006 } 5007 5008 } else { 5009 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5010 if (err) { 5011 dev_err(&pdev->dev, "No usable DMA configuration, " 5012 "aborting\n"); 5013 goto err_out_free_res; 5014 } 5015 pci_using_dac = 0; 5016 } 5017 5018 casreg_len = pci_resource_len(pdev, 0); 5019 5020 cp = netdev_priv(dev); 5021 cp->pdev = pdev; 5022 #if 1 5023 /* A value of 0 indicates we never explicitly set it */ 5024 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5025 #endif 5026 cp->dev = dev; 5027 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5028 cassini_debug; 5029 5030 #if defined(CONFIG_SPARC) 5031 cp->of_node = pci_device_to_OF_node(pdev); 5032 #endif 5033 5034 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5035 cp->link_transition_jiffies_valid = 0; 5036 5037 spin_lock_init(&cp->lock); 5038 spin_lock_init(&cp->rx_inuse_lock); 5039 spin_lock_init(&cp->rx_spare_lock); 5040 for (i = 0; i < N_TX_RINGS; i++) { 5041 spin_lock_init(&cp->stat_lock[i]); 5042 spin_lock_init(&cp->tx_lock[i]); 5043 } 5044 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5045 mutex_init(&cp->pm_mutex); 5046 5047 init_timer(&cp->link_timer); 5048 cp->link_timer.function = cas_link_timer; 5049 cp->link_timer.data = (unsigned long) cp; 5050 5051 #if 1 5052 /* Just in case the implementation of atomic operations 5053 * change so that an explicit initialization is necessary. 5054 */ 5055 atomic_set(&cp->reset_task_pending, 0); 5056 atomic_set(&cp->reset_task_pending_all, 0); 5057 atomic_set(&cp->reset_task_pending_spare, 0); 5058 atomic_set(&cp->reset_task_pending_mtu, 0); 5059 #endif 5060 INIT_WORK(&cp->reset_task, cas_reset_task); 5061 5062 /* Default link parameters */ 5063 if (link_mode >= 0 && link_mode < 6) 5064 cp->link_cntl = link_modes[link_mode]; 5065 else 5066 cp->link_cntl = BMCR_ANENABLE; 5067 cp->lstate = link_down; 5068 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5069 netif_carrier_off(cp->dev); 5070 cp->timer_ticks = 0; 5071 5072 /* give us access to cassini registers */ 5073 cp->regs = pci_iomap(pdev, 0, casreg_len); 5074 if (!cp->regs) { 5075 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5076 goto err_out_free_res; 5077 } 5078 cp->casreg_len = casreg_len; 5079 5080 pci_save_state(pdev); 5081 cas_check_pci_invariants(cp); 5082 cas_hard_reset(cp); 5083 cas_reset(cp, 0); 5084 if (cas_check_invariants(cp)) 5085 goto err_out_iounmap; 5086 if (cp->cas_flags & CAS_FLAG_SATURN) 5087 if (cas_saturn_firmware_init(cp)) 5088 goto err_out_iounmap; 5089 5090 cp->init_block = (struct cas_init_block *) 5091 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5092 &cp->block_dvma); 5093 if (!cp->init_block) { 5094 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5095 goto err_out_iounmap; 5096 } 5097 5098 for (i = 0; i < N_TX_RINGS; i++) 5099 cp->init_txds[i] = cp->init_block->txds[i]; 5100 5101 for (i = 0; i < N_RX_DESC_RINGS; i++) 5102 cp->init_rxds[i] = cp->init_block->rxds[i]; 5103 5104 for (i = 0; i < N_RX_COMP_RINGS; i++) 5105 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5106 5107 for (i = 0; i < N_RX_FLOWS; i++) 5108 skb_queue_head_init(&cp->rx_flows[i]); 5109 5110 dev->netdev_ops = &cas_netdev_ops; 5111 dev->ethtool_ops = &cas_ethtool_ops; 5112 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5113 5114 #ifdef USE_NAPI 5115 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5116 #endif 5117 dev->irq = pdev->irq; 5118 dev->dma = 0; 5119 5120 /* Cassini features. */ 5121 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5122 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5123 5124 if (pci_using_dac) 5125 dev->features |= NETIF_F_HIGHDMA; 5126 5127 if (register_netdev(dev)) { 5128 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5129 goto err_out_free_consistent; 5130 } 5131 5132 i = readl(cp->regs + REG_BIM_CFG); 5133 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5134 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5135 (i & BIM_CFG_32BIT) ? "32" : "64", 5136 (i & BIM_CFG_66MHZ) ? "66" : "33", 5137 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5138 dev->dev_addr); 5139 5140 pci_set_drvdata(pdev, dev); 5141 cp->hw_running = 1; 5142 cas_entropy_reset(cp); 5143 cas_phy_init(cp); 5144 cas_begin_auto_negotiation(cp, NULL); 5145 return 0; 5146 5147 err_out_free_consistent: 5148 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5149 cp->init_block, cp->block_dvma); 5150 5151 err_out_iounmap: 5152 mutex_lock(&cp->pm_mutex); 5153 if (cp->hw_running) 5154 cas_shutdown(cp); 5155 mutex_unlock(&cp->pm_mutex); 5156 5157 pci_iounmap(pdev, cp->regs); 5158 5159 5160 err_out_free_res: 5161 pci_release_regions(pdev); 5162 5163 err_write_cacheline: 5164 /* Try to restore it in case the error occurred after we 5165 * set it. 5166 */ 5167 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5168 5169 err_out_free_netdev: 5170 free_netdev(dev); 5171 5172 err_out_disable_pdev: 5173 pci_disable_device(pdev); 5174 pci_set_drvdata(pdev, NULL); 5175 return -ENODEV; 5176 } 5177 5178 static void __devexit cas_remove_one(struct pci_dev *pdev) 5179 { 5180 struct net_device *dev = pci_get_drvdata(pdev); 5181 struct cas *cp; 5182 if (!dev) 5183 return; 5184 5185 cp = netdev_priv(dev); 5186 unregister_netdev(dev); 5187 5188 if (cp->fw_data) 5189 vfree(cp->fw_data); 5190 5191 mutex_lock(&cp->pm_mutex); 5192 cancel_work_sync(&cp->reset_task); 5193 if (cp->hw_running) 5194 cas_shutdown(cp); 5195 mutex_unlock(&cp->pm_mutex); 5196 5197 #if 1 5198 if (cp->orig_cacheline_size) { 5199 /* Restore the cache line size if we had modified 5200 * it. 5201 */ 5202 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5203 cp->orig_cacheline_size); 5204 } 5205 #endif 5206 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5207 cp->init_block, cp->block_dvma); 5208 pci_iounmap(pdev, cp->regs); 5209 free_netdev(dev); 5210 pci_release_regions(pdev); 5211 pci_disable_device(pdev); 5212 pci_set_drvdata(pdev, NULL); 5213 } 5214 5215 #ifdef CONFIG_PM 5216 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5217 { 5218 struct net_device *dev = pci_get_drvdata(pdev); 5219 struct cas *cp = netdev_priv(dev); 5220 unsigned long flags; 5221 5222 mutex_lock(&cp->pm_mutex); 5223 5224 /* If the driver is opened, we stop the DMA */ 5225 if (cp->opened) { 5226 netif_device_detach(dev); 5227 5228 cas_lock_all_save(cp, flags); 5229 5230 /* We can set the second arg of cas_reset to 0 5231 * because on resume, we'll call cas_init_hw with 5232 * its second arg set so that autonegotiation is 5233 * restarted. 5234 */ 5235 cas_reset(cp, 0); 5236 cas_clean_rings(cp); 5237 cas_unlock_all_restore(cp, flags); 5238 } 5239 5240 if (cp->hw_running) 5241 cas_shutdown(cp); 5242 mutex_unlock(&cp->pm_mutex); 5243 5244 return 0; 5245 } 5246 5247 static int cas_resume(struct pci_dev *pdev) 5248 { 5249 struct net_device *dev = pci_get_drvdata(pdev); 5250 struct cas *cp = netdev_priv(dev); 5251 5252 netdev_info(dev, "resuming\n"); 5253 5254 mutex_lock(&cp->pm_mutex); 5255 cas_hard_reset(cp); 5256 if (cp->opened) { 5257 unsigned long flags; 5258 cas_lock_all_save(cp, flags); 5259 cas_reset(cp, 0); 5260 cp->hw_running = 1; 5261 cas_clean_rings(cp); 5262 cas_init_hw(cp, 1); 5263 cas_unlock_all_restore(cp, flags); 5264 5265 netif_device_attach(dev); 5266 } 5267 mutex_unlock(&cp->pm_mutex); 5268 return 0; 5269 } 5270 #endif /* CONFIG_PM */ 5271 5272 static struct pci_driver cas_driver = { 5273 .name = DRV_MODULE_NAME, 5274 .id_table = cas_pci_tbl, 5275 .probe = cas_init_one, 5276 .remove = __devexit_p(cas_remove_one), 5277 #ifdef CONFIG_PM 5278 .suspend = cas_suspend, 5279 .resume = cas_resume 5280 #endif 5281 }; 5282 5283 static int __init cas_init(void) 5284 { 5285 if (linkdown_timeout > 0) 5286 link_transition_timeout = linkdown_timeout * HZ; 5287 else 5288 link_transition_timeout = 0; 5289 5290 return pci_register_driver(&cas_driver); 5291 } 5292 5293 static void __exit cas_cleanup(void) 5294 { 5295 pci_unregister_driver(&cas_driver); 5296 } 5297 5298 module_init(cas_init); 5299 module_exit(cas_cleanup); 5300