xref: /openbmc/linux/drivers/net/ethernet/sun/cassini.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * This driver uses the sungem driver (c) David Miller
20  * (davem@redhat.com) as its basis.
21  *
22  * The cassini chip has a number of features that distinguish it from
23  * the gem chip:
24  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
25  *      load balancing (non-VLAN mode)
26  *  batching of multiple packets
27  *  multiple CPU dispatching
28  *  page-based RX descriptor engine with separate completion rings
29  *  Gigabit support (GMII and PCS interface)
30  *  MIF link up/down detection works
31  *
32  * RX is handled by page sized buffers that are attached as fragments to
33  * the skb. here's what's done:
34  *  -- driver allocates pages at a time and keeps reference counts
35  *     on them.
36  *  -- the upper protocol layers assume that the header is in the skb
37  *     itself. as a result, cassini will copy a small amount (64 bytes)
38  *     to make them happy.
39  *  -- driver appends the rest of the data pages as frags to skbuffs
40  *     and increments the reference count
41  *  -- on page reclamation, the driver swaps the page with a spare page.
42  *     if that page is still in use, it frees its reference to that page,
43  *     and allocates a new page for use. otherwise, it just recycles the
44  *     the page.
45  *
46  * NOTE: cassini can parse the header. however, it's not worth it
47  *       as long as the network stack requires a header copy.
48  *
49  * TX has 4 queues. currently these queues are used in a round-robin
50  * fashion for load balancing. They can also be used for QoS. for that
51  * to work, however, QoS information needs to be exposed down to the driver
52  * level so that subqueues get targeted to particular transmit rings.
53  * alternatively, the queues can be configured via use of the all-purpose
54  * ioctl.
55  *
56  * RX DATA: the rx completion ring has all the info, but the rx desc
57  * ring has all of the data. RX can conceivably come in under multiple
58  * interrupts, but the INT# assignment needs to be set up properly by
59  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60  * that. also, the two descriptor rings are designed to distinguish between
61  * encrypted and non-encrypted packets, but we use them for buffering
62  * instead.
63  *
64  * by default, the selective clear mask is set up to process rx packets.
65  */
66 
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68 
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84 
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96 
97 #include <net/checksum.h>
98 
99 #include <linux/atomic.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <linux/uaccess.h>
103 
104 #define cas_page_map(x)      kmap_atomic((x))
105 #define cas_page_unmap(x)    kunmap_atomic((x))
106 #define CAS_NCPUS            num_online_cpus()
107 
108 #define cas_skb_release(x)  netif_rx(x)
109 
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
114 
115 #include "cassini.h"
116 
117 #define USE_TX_COMPWB      /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
119 #define USE_RX_BLANK       /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
121 
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123  * also, we need to make cp->lock finer-grained.
124  */
125 #undef  USE_PCI_INTB
126 #undef  USE_PCI_INTC
127 #undef  USE_PCI_INTD
128 #undef  USE_QOS
129 
130 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
131 
132 /* rx processing options */
133 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
136 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
137 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
138 
139 #define DRV_MODULE_NAME		"cassini"
140 #define DRV_MODULE_VERSION	"1.6"
141 #define DRV_MODULE_RELDATE	"21 May 2008"
142 
143 #define CAS_DEF_MSG_ENABLE	  \
144 	(NETIF_MSG_DRV		| \
145 	 NETIF_MSG_PROBE	| \
146 	 NETIF_MSG_LINK		| \
147 	 NETIF_MSG_TIMER	| \
148 	 NETIF_MSG_IFDOWN	| \
149 	 NETIF_MSG_IFUP		| \
150 	 NETIF_MSG_RX_ERR	| \
151 	 NETIF_MSG_TX_ERR)
152 
153 /* length of time before we decide the hardware is borked,
154  * and dev->tx_timeout() should be called to fix the problem
155  */
156 #define CAS_TX_TIMEOUT			(HZ)
157 #define CAS_LINK_TIMEOUT                (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT           (1)
159 
160 /* timeout values for state changing. these specify the number
161  * of 10us delays to be used before giving up.
162  */
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES     5000
165 
166 /* specify a minimum frame size to deal with some fifo issues
167  * max mtu == 2 * page size - ethernet header - 64 - swivel =
168  *            2 * page_size - 0x50
169  */
170 #define CAS_MIN_FRAME			97
171 #define CAS_1000MB_MIN_FRAME            255
172 #define CAS_MIN_MTU                     60
173 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
174 
175 #if 1
176 /*
177  * Eliminate these and use separate atomic counters for each, to
178  * avoid a race condition.
179  */
180 #else
181 #define CAS_RESET_MTU                   1
182 #define CAS_RESET_ALL                   2
183 #define CAS_RESET_SPARE                 3
184 #endif
185 
186 static char version[] =
187 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188 
189 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode;
191 
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug, int, 0);
197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode, int, 0);
199 MODULE_PARM_DESC(link_mode, "default link mode");
200 
201 /*
202  * Work around for a PCS bug in which the link goes down due to the chip
203  * being confused and never showing a link status of "up."
204  */
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
206 /*
207  * Value in seconds, for user input.
208  */
209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210 module_param(linkdown_timeout, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213 
214 /*
215  * value in 'ticks' (units used by jiffies). Set when we init the
216  * module because 'HZ' in actually a function call on some flavors of
217  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218  */
219 static int link_transition_timeout;
220 
221 
222 
223 static u16 link_modes[] = {
224 	BMCR_ANENABLE,			 /* 0 : autoneg */
225 	0,				 /* 1 : 10bt half duplex */
226 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
227 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
228 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
229 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230 };
231 
232 static const struct pci_device_id cas_pci_tbl[] = {
233 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 	{ 0, }
238 };
239 
240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241 
242 static void cas_set_link_modes(struct cas *cp);
243 
244 static inline void cas_lock_tx(struct cas *cp)
245 {
246 	int i;
247 
248 	for (i = 0; i < N_TX_RINGS; i++)
249 		spin_lock_nested(&cp->tx_lock[i], i);
250 }
251 
252 static inline void cas_lock_all(struct cas *cp)
253 {
254 	spin_lock_irq(&cp->lock);
255 	cas_lock_tx(cp);
256 }
257 
258 /* WTZ: QA was finding deadlock problems with the previous
259  * versions after long test runs with multiple cards per machine.
260  * See if replacing cas_lock_all with safer versions helps. The
261  * symptoms QA is reporting match those we'd expect if interrupts
262  * aren't being properly restored, and we fixed a previous deadlock
263  * with similar symptoms by using save/restore versions in other
264  * places.
265  */
266 #define cas_lock_all_save(cp, flags) \
267 do { \
268 	struct cas *xxxcp = (cp); \
269 	spin_lock_irqsave(&xxxcp->lock, flags); \
270 	cas_lock_tx(xxxcp); \
271 } while (0)
272 
273 static inline void cas_unlock_tx(struct cas *cp)
274 {
275 	int i;
276 
277 	for (i = N_TX_RINGS; i > 0; i--)
278 		spin_unlock(&cp->tx_lock[i - 1]);
279 }
280 
281 static inline void cas_unlock_all(struct cas *cp)
282 {
283 	cas_unlock_tx(cp);
284 	spin_unlock_irq(&cp->lock);
285 }
286 
287 #define cas_unlock_all_restore(cp, flags) \
288 do { \
289 	struct cas *xxxcp = (cp); \
290 	cas_unlock_tx(xxxcp); \
291 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
292 } while (0)
293 
294 static void cas_disable_irq(struct cas *cp, const int ring)
295 {
296 	/* Make sure we won't get any more interrupts */
297 	if (ring == 0) {
298 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299 		return;
300 	}
301 
302 	/* disable completion interrupts and selectively mask */
303 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304 		switch (ring) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306 #ifdef USE_PCI_INTB
307 		case 1:
308 #endif
309 #ifdef USE_PCI_INTC
310 		case 2:
311 #endif
312 #ifdef USE_PCI_INTD
313 		case 3:
314 #endif
315 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
317 			break;
318 #endif
319 		default:
320 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321 			       REG_PLUS_INTRN_MASK(ring));
322 			break;
323 		}
324 	}
325 }
326 
327 static inline void cas_mask_intr(struct cas *cp)
328 {
329 	int i;
330 
331 	for (i = 0; i < N_RX_COMP_RINGS; i++)
332 		cas_disable_irq(cp, i);
333 }
334 
335 static void cas_enable_irq(struct cas *cp, const int ring)
336 {
337 	if (ring == 0) { /* all but TX_DONE */
338 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339 		return;
340 	}
341 
342 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343 		switch (ring) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345 #ifdef USE_PCI_INTB
346 		case 1:
347 #endif
348 #ifdef USE_PCI_INTC
349 		case 2:
350 #endif
351 #ifdef USE_PCI_INTD
352 		case 3:
353 #endif
354 			writel(INTRN_MASK_RX_EN, cp->regs +
355 			       REG_PLUS_INTRN_MASK(ring));
356 			break;
357 #endif
358 		default:
359 			break;
360 		}
361 	}
362 }
363 
364 static inline void cas_unmask_intr(struct cas *cp)
365 {
366 	int i;
367 
368 	for (i = 0; i < N_RX_COMP_RINGS; i++)
369 		cas_enable_irq(cp, i);
370 }
371 
372 static inline void cas_entropy_gather(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376 		return;
377 
378 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379 			    readl(cp->regs + REG_ENTROPY_IV),
380 			    sizeof(uint64_t)*8);
381 #endif
382 }
383 
384 static inline void cas_entropy_reset(struct cas *cp)
385 {
386 #ifdef USE_ENTROPY_DEV
387 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388 		return;
389 
390 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
392 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394 
395 	/* if we read back 0x0, we don't have an entropy device */
396 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398 #endif
399 }
400 
401 /* access to the phy. the following assumes that we've initialized the MIF to
402  * be in frame rather than bit-bang mode
403  */
404 static u16 cas_phy_read(struct cas *cp, int reg)
405 {
406 	u32 cmd;
407 	int limit = STOP_TRIES_PHY;
408 
409 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
413 	writel(cmd, cp->regs + REG_MIF_FRAME);
414 
415 	/* poll for completion */
416 	while (limit-- > 0) {
417 		udelay(10);
418 		cmd = readl(cp->regs + REG_MIF_FRAME);
419 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420 			return cmd & MIF_FRAME_DATA_MASK;
421 	}
422 	return 0xFFFF; /* -1 */
423 }
424 
425 static int cas_phy_write(struct cas *cp, int reg, u16 val)
426 {
427 	int limit = STOP_TRIES_PHY;
428 	u32 cmd;
429 
430 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
434 	cmd |= val & MIF_FRAME_DATA_MASK;
435 	writel(cmd, cp->regs + REG_MIF_FRAME);
436 
437 	/* poll for completion */
438 	while (limit-- > 0) {
439 		udelay(10);
440 		cmd = readl(cp->regs + REG_MIF_FRAME);
441 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442 			return 0;
443 	}
444 	return -1;
445 }
446 
447 static void cas_phy_powerup(struct cas *cp)
448 {
449 	u16 ctl = cas_phy_read(cp, MII_BMCR);
450 
451 	if ((ctl & BMCR_PDOWN) == 0)
452 		return;
453 	ctl &= ~BMCR_PDOWN;
454 	cas_phy_write(cp, MII_BMCR, ctl);
455 }
456 
457 static void cas_phy_powerdown(struct cas *cp)
458 {
459 	u16 ctl = cas_phy_read(cp, MII_BMCR);
460 
461 	if (ctl & BMCR_PDOWN)
462 		return;
463 	ctl |= BMCR_PDOWN;
464 	cas_phy_write(cp, MII_BMCR, ctl);
465 }
466 
467 /* cp->lock held. note: the last put_page will free the buffer */
468 static int cas_page_free(struct cas *cp, cas_page_t *page)
469 {
470 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471 		       PCI_DMA_FROMDEVICE);
472 	__free_pages(page->buffer, cp->page_order);
473 	kfree(page);
474 	return 0;
475 }
476 
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y)       ((x)->used += (y))
479 #define RX_USED_SET(x, y)       ((x)->used  = (y))
480 #else
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
483 #endif
484 
485 /* local page allocation routines for the receive buffers. jumbo pages
486  * require at least 8K contiguous and 8K aligned buffers.
487  */
488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489 {
490 	cas_page_t *page;
491 
492 	page = kmalloc(sizeof(cas_page_t), flags);
493 	if (!page)
494 		return NULL;
495 
496 	INIT_LIST_HEAD(&page->list);
497 	RX_USED_SET(page, 0);
498 	page->buffer = alloc_pages(flags, cp->page_order);
499 	if (!page->buffer)
500 		goto page_err;
501 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502 				      cp->page_size, PCI_DMA_FROMDEVICE);
503 	return page;
504 
505 page_err:
506 	kfree(page);
507 	return NULL;
508 }
509 
510 /* initialize spare pool of rx buffers, but allocate during the open */
511 static void cas_spare_init(struct cas *cp)
512 {
513   	spin_lock(&cp->rx_inuse_lock);
514 	INIT_LIST_HEAD(&cp->rx_inuse_list);
515 	spin_unlock(&cp->rx_inuse_lock);
516 
517 	spin_lock(&cp->rx_spare_lock);
518 	INIT_LIST_HEAD(&cp->rx_spare_list);
519 	cp->rx_spares_needed = RX_SPARE_COUNT;
520 	spin_unlock(&cp->rx_spare_lock);
521 }
522 
523 /* used on close. free all the spare buffers. */
524 static void cas_spare_free(struct cas *cp)
525 {
526 	struct list_head list, *elem, *tmp;
527 
528 	/* free spare buffers */
529 	INIT_LIST_HEAD(&list);
530 	spin_lock(&cp->rx_spare_lock);
531 	list_splice_init(&cp->rx_spare_list, &list);
532 	spin_unlock(&cp->rx_spare_lock);
533 	list_for_each_safe(elem, tmp, &list) {
534 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
535 	}
536 
537 	INIT_LIST_HEAD(&list);
538 #if 1
539 	/*
540 	 * Looks like Adrian had protected this with a different
541 	 * lock than used everywhere else to manipulate this list.
542 	 */
543 	spin_lock(&cp->rx_inuse_lock);
544 	list_splice_init(&cp->rx_inuse_list, &list);
545 	spin_unlock(&cp->rx_inuse_lock);
546 #else
547 	spin_lock(&cp->rx_spare_lock);
548 	list_splice_init(&cp->rx_inuse_list, &list);
549 	spin_unlock(&cp->rx_spare_lock);
550 #endif
551 	list_for_each_safe(elem, tmp, &list) {
552 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
553 	}
554 }
555 
556 /* replenish spares if needed */
557 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558 {
559 	struct list_head list, *elem, *tmp;
560 	int needed, i;
561 
562 	/* check inuse list. if we don't need any more free buffers,
563 	 * just free it
564 	 */
565 
566 	/* make a local copy of the list */
567 	INIT_LIST_HEAD(&list);
568 	spin_lock(&cp->rx_inuse_lock);
569 	list_splice_init(&cp->rx_inuse_list, &list);
570 	spin_unlock(&cp->rx_inuse_lock);
571 
572 	list_for_each_safe(elem, tmp, &list) {
573 		cas_page_t *page = list_entry(elem, cas_page_t, list);
574 
575 		/*
576 		 * With the lockless pagecache, cassini buffering scheme gets
577 		 * slightly less accurate: we might find that a page has an
578 		 * elevated reference count here, due to a speculative ref,
579 		 * and skip it as in-use. Ideally we would be able to reclaim
580 		 * it. However this would be such a rare case, it doesn't
581 		 * matter too much as we should pick it up the next time round.
582 		 *
583 		 * Importantly, if we find that the page has a refcount of 1
584 		 * here (our refcount), then we know it is definitely not inuse
585 		 * so we can reuse it.
586 		 */
587 		if (page_count(page->buffer) > 1)
588 			continue;
589 
590 		list_del(elem);
591 		spin_lock(&cp->rx_spare_lock);
592 		if (cp->rx_spares_needed > 0) {
593 			list_add(elem, &cp->rx_spare_list);
594 			cp->rx_spares_needed--;
595 			spin_unlock(&cp->rx_spare_lock);
596 		} else {
597 			spin_unlock(&cp->rx_spare_lock);
598 			cas_page_free(cp, page);
599 		}
600 	}
601 
602 	/* put any inuse buffers back on the list */
603 	if (!list_empty(&list)) {
604 		spin_lock(&cp->rx_inuse_lock);
605 		list_splice(&list, &cp->rx_inuse_list);
606 		spin_unlock(&cp->rx_inuse_lock);
607 	}
608 
609 	spin_lock(&cp->rx_spare_lock);
610 	needed = cp->rx_spares_needed;
611 	spin_unlock(&cp->rx_spare_lock);
612 	if (!needed)
613 		return;
614 
615 	/* we still need spares, so try to allocate some */
616 	INIT_LIST_HEAD(&list);
617 	i = 0;
618 	while (i < needed) {
619 		cas_page_t *spare = cas_page_alloc(cp, flags);
620 		if (!spare)
621 			break;
622 		list_add(&spare->list, &list);
623 		i++;
624 	}
625 
626 	spin_lock(&cp->rx_spare_lock);
627 	list_splice(&list, &cp->rx_spare_list);
628 	cp->rx_spares_needed -= i;
629 	spin_unlock(&cp->rx_spare_lock);
630 }
631 
632 /* pull a page from the list. */
633 static cas_page_t *cas_page_dequeue(struct cas *cp)
634 {
635 	struct list_head *entry;
636 	int recover;
637 
638 	spin_lock(&cp->rx_spare_lock);
639 	if (list_empty(&cp->rx_spare_list)) {
640 		/* try to do a quick recovery */
641 		spin_unlock(&cp->rx_spare_lock);
642 		cas_spare_recover(cp, GFP_ATOMIC);
643 		spin_lock(&cp->rx_spare_lock);
644 		if (list_empty(&cp->rx_spare_list)) {
645 			netif_err(cp, rx_err, cp->dev,
646 				  "no spare buffers available\n");
647 			spin_unlock(&cp->rx_spare_lock);
648 			return NULL;
649 		}
650 	}
651 
652 	entry = cp->rx_spare_list.next;
653 	list_del(entry);
654 	recover = ++cp->rx_spares_needed;
655 	spin_unlock(&cp->rx_spare_lock);
656 
657 	/* trigger the timer to do the recovery */
658 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659 #if 1
660 		atomic_inc(&cp->reset_task_pending);
661 		atomic_inc(&cp->reset_task_pending_spare);
662 		schedule_work(&cp->reset_task);
663 #else
664 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665 		schedule_work(&cp->reset_task);
666 #endif
667 	}
668 	return list_entry(entry, cas_page_t, list);
669 }
670 
671 
672 static void cas_mif_poll(struct cas *cp, const int enable)
673 {
674 	u32 cfg;
675 
676 	cfg  = readl(cp->regs + REG_MIF_CFG);
677 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678 
679 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
680 		cfg |= MIF_CFG_PHY_SELECT;
681 
682 	/* poll and interrupt on link status change. */
683 	if (enable) {
684 		cfg |= MIF_CFG_POLL_EN;
685 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687 	}
688 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689 	       cp->regs + REG_MIF_MASK);
690 	writel(cfg, cp->regs + REG_MIF_CFG);
691 }
692 
693 /* Must be invoked under cp->lock */
694 static void cas_begin_auto_negotiation(struct cas *cp,
695 				       const struct ethtool_link_ksettings *ep)
696 {
697 	u16 ctl;
698 #if 1
699 	int lcntl;
700 	int changed = 0;
701 	int oldstate = cp->lstate;
702 	int link_was_not_down = !(oldstate == link_down);
703 #endif
704 	/* Setup link parameters */
705 	if (!ep)
706 		goto start_aneg;
707 	lcntl = cp->link_cntl;
708 	if (ep->base.autoneg == AUTONEG_ENABLE) {
709 		cp->link_cntl = BMCR_ANENABLE;
710 	} else {
711 		u32 speed = ep->base.speed;
712 		cp->link_cntl = 0;
713 		if (speed == SPEED_100)
714 			cp->link_cntl |= BMCR_SPEED100;
715 		else if (speed == SPEED_1000)
716 			cp->link_cntl |= CAS_BMCR_SPEED1000;
717 		if (ep->base.duplex == DUPLEX_FULL)
718 			cp->link_cntl |= BMCR_FULLDPLX;
719 	}
720 #if 1
721 	changed = (lcntl != cp->link_cntl);
722 #endif
723 start_aneg:
724 	if (cp->lstate == link_up) {
725 		netdev_info(cp->dev, "PCS link down\n");
726 	} else {
727 		if (changed) {
728 			netdev_info(cp->dev, "link configuration changed\n");
729 		}
730 	}
731 	cp->lstate = link_down;
732 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
733 	if (!cp->hw_running)
734 		return;
735 #if 1
736 	/*
737 	 * WTZ: If the old state was link_up, we turn off the carrier
738 	 * to replicate everything we do elsewhere on a link-down
739 	 * event when we were already in a link-up state..
740 	 */
741 	if (oldstate == link_up)
742 		netif_carrier_off(cp->dev);
743 	if (changed  && link_was_not_down) {
744 		/*
745 		 * WTZ: This branch will simply schedule a full reset after
746 		 * we explicitly changed link modes in an ioctl. See if this
747 		 * fixes the link-problems we were having for forced mode.
748 		 */
749 		atomic_inc(&cp->reset_task_pending);
750 		atomic_inc(&cp->reset_task_pending_all);
751 		schedule_work(&cp->reset_task);
752 		cp->timer_ticks = 0;
753 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
754 		return;
755 	}
756 #endif
757 	if (cp->phy_type & CAS_PHY_SERDES) {
758 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
759 
760 		if (cp->link_cntl & BMCR_ANENABLE) {
761 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
762 			cp->lstate = link_aneg;
763 		} else {
764 			if (cp->link_cntl & BMCR_FULLDPLX)
765 				val |= PCS_MII_CTRL_DUPLEX;
766 			val &= ~PCS_MII_AUTONEG_EN;
767 			cp->lstate = link_force_ok;
768 		}
769 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
770 		writel(val, cp->regs + REG_PCS_MII_CTRL);
771 
772 	} else {
773 		cas_mif_poll(cp, 0);
774 		ctl = cas_phy_read(cp, MII_BMCR);
775 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
776 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
777 		ctl |= cp->link_cntl;
778 		if (ctl & BMCR_ANENABLE) {
779 			ctl |= BMCR_ANRESTART;
780 			cp->lstate = link_aneg;
781 		} else {
782 			cp->lstate = link_force_ok;
783 		}
784 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
785 		cas_phy_write(cp, MII_BMCR, ctl);
786 		cas_mif_poll(cp, 1);
787 	}
788 
789 	cp->timer_ticks = 0;
790 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
791 }
792 
793 /* Must be invoked under cp->lock. */
794 static int cas_reset_mii_phy(struct cas *cp)
795 {
796 	int limit = STOP_TRIES_PHY;
797 	u16 val;
798 
799 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
800 	udelay(100);
801 	while (--limit) {
802 		val = cas_phy_read(cp, MII_BMCR);
803 		if ((val & BMCR_RESET) == 0)
804 			break;
805 		udelay(10);
806 	}
807 	return limit <= 0;
808 }
809 
810 static void cas_saturn_firmware_init(struct cas *cp)
811 {
812 	const struct firmware *fw;
813 	const char fw_name[] = "sun/cassini.bin";
814 	int err;
815 
816 	if (PHY_NS_DP83065 != cp->phy_id)
817 		return;
818 
819 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
820 	if (err) {
821 		pr_err("Failed to load firmware \"%s\"\n",
822 		       fw_name);
823 		return;
824 	}
825 	if (fw->size < 2) {
826 		pr_err("bogus length %zu in \"%s\"\n",
827 		       fw->size, fw_name);
828 		goto out;
829 	}
830 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
831 	cp->fw_size = fw->size - 2;
832 	cp->fw_data = vmalloc(cp->fw_size);
833 	if (!cp->fw_data)
834 		goto out;
835 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
836 out:
837 	release_firmware(fw);
838 }
839 
840 static void cas_saturn_firmware_load(struct cas *cp)
841 {
842 	int i;
843 
844 	if (!cp->fw_data)
845 		return;
846 
847 	cas_phy_powerdown(cp);
848 
849 	/* expanded memory access mode */
850 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
851 
852 	/* pointer configuration for new firmware */
853 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
854 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
855 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
856 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
857 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
858 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
859 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
860 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
861 
862 	/* download new firmware */
863 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
864 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
865 	for (i = 0; i < cp->fw_size; i++)
866 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
867 
868 	/* enable firmware */
869 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
870 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
871 }
872 
873 
874 /* phy initialization */
875 static void cas_phy_init(struct cas *cp)
876 {
877 	u16 val;
878 
879 	/* if we're in MII/GMII mode, set up phy */
880 	if (CAS_PHY_MII(cp->phy_type)) {
881 		writel(PCS_DATAPATH_MODE_MII,
882 		       cp->regs + REG_PCS_DATAPATH_MODE);
883 
884 		cas_mif_poll(cp, 0);
885 		cas_reset_mii_phy(cp); /* take out of isolate mode */
886 
887 		if (PHY_LUCENT_B0 == cp->phy_id) {
888 			/* workaround link up/down issue with lucent */
889 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
890 			cas_phy_write(cp, MII_BMCR, 0x00f1);
891 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
892 
893 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
894 			/* workarounds for broadcom phy */
895 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
896 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
897 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
898 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
899 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
900 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
901 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
902 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
904 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
905 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
906 
907 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
908 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
909 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 			if (val & 0x0080) {
911 				/* link workaround */
912 				cas_phy_write(cp, BROADCOM_MII_REG4,
913 					      val & ~0x0080);
914 			}
915 
916 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
917 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
918 			       SATURN_PCFG_FSI : 0x0,
919 			       cp->regs + REG_SATURN_PCFG);
920 
921 			/* load firmware to address 10Mbps auto-negotiation
922 			 * issue. NOTE: this will need to be changed if the
923 			 * default firmware gets fixed.
924 			 */
925 			if (PHY_NS_DP83065 == cp->phy_id) {
926 				cas_saturn_firmware_load(cp);
927 			}
928 			cas_phy_powerup(cp);
929 		}
930 
931 		/* advertise capabilities */
932 		val = cas_phy_read(cp, MII_BMCR);
933 		val &= ~BMCR_ANENABLE;
934 		cas_phy_write(cp, MII_BMCR, val);
935 		udelay(10);
936 
937 		cas_phy_write(cp, MII_ADVERTISE,
938 			      cas_phy_read(cp, MII_ADVERTISE) |
939 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
940 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
941 			       CAS_ADVERTISE_PAUSE |
942 			       CAS_ADVERTISE_ASYM_PAUSE));
943 
944 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
945 			/* make sure that we don't advertise half
946 			 * duplex to avoid a chip issue
947 			 */
948 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
949 			val &= ~CAS_ADVERTISE_1000HALF;
950 			val |= CAS_ADVERTISE_1000FULL;
951 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
952 		}
953 
954 	} else {
955 		/* reset pcs for serdes */
956 		u32 val;
957 		int limit;
958 
959 		writel(PCS_DATAPATH_MODE_SERDES,
960 		       cp->regs + REG_PCS_DATAPATH_MODE);
961 
962 		/* enable serdes pins on saturn */
963 		if (cp->cas_flags & CAS_FLAG_SATURN)
964 			writel(0, cp->regs + REG_SATURN_PCFG);
965 
966 		/* Reset PCS unit. */
967 		val = readl(cp->regs + REG_PCS_MII_CTRL);
968 		val |= PCS_MII_RESET;
969 		writel(val, cp->regs + REG_PCS_MII_CTRL);
970 
971 		limit = STOP_TRIES;
972 		while (--limit > 0) {
973 			udelay(10);
974 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
975 			     PCS_MII_RESET) == 0)
976 				break;
977 		}
978 		if (limit <= 0)
979 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
980 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
981 
982 		/* Make sure PCS is disabled while changing advertisement
983 		 * configuration.
984 		 */
985 		writel(0x0, cp->regs + REG_PCS_CFG);
986 
987 		/* Advertise all capabilities except half-duplex. */
988 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
989 		val &= ~PCS_MII_ADVERT_HD;
990 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
991 			PCS_MII_ADVERT_ASYM_PAUSE);
992 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
993 
994 		/* enable PCS */
995 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
996 
997 		/* pcs workaround: enable sync detect */
998 		writel(PCS_SERDES_CTRL_SYNCD_EN,
999 		       cp->regs + REG_PCS_SERDES_CTRL);
1000 	}
1001 }
1002 
1003 
1004 static int cas_pcs_link_check(struct cas *cp)
1005 {
1006 	u32 stat, state_machine;
1007 	int retval = 0;
1008 
1009 	/* The link status bit latches on zero, so you must
1010 	 * read it twice in such a case to see a transition
1011 	 * to the link being up.
1012 	 */
1013 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1014 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1015 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016 
1017 	/* The remote-fault indication is only valid
1018 	 * when autoneg has completed.
1019 	 */
1020 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1021 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1022 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1023 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1024 
1025 	/* work around link detection issue by querying the PCS state
1026 	 * machine directly.
1027 	 */
1028 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1029 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1030 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1031 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1032 		stat |= PCS_MII_STATUS_LINK_STATUS;
1033 	}
1034 
1035 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1036 		if (cp->lstate != link_up) {
1037 			if (cp->opened) {
1038 				cp->lstate = link_up;
1039 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1040 
1041 				cas_set_link_modes(cp);
1042 				netif_carrier_on(cp->dev);
1043 			}
1044 		}
1045 	} else if (cp->lstate == link_up) {
1046 		cp->lstate = link_down;
1047 		if (link_transition_timeout != 0 &&
1048 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1049 		    !cp->link_transition_jiffies_valid) {
1050 			/*
1051 			 * force a reset, as a workaround for the
1052 			 * link-failure problem. May want to move this to a
1053 			 * point a bit earlier in the sequence. If we had
1054 			 * generated a reset a short time ago, we'll wait for
1055 			 * the link timer to check the status until a
1056 			 * timer expires (link_transistion_jiffies_valid is
1057 			 * true when the timer is running.)  Instead of using
1058 			 * a system timer, we just do a check whenever the
1059 			 * link timer is running - this clears the flag after
1060 			 * a suitable delay.
1061 			 */
1062 			retval = 1;
1063 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1064 			cp->link_transition_jiffies = jiffies;
1065 			cp->link_transition_jiffies_valid = 1;
1066 		} else {
1067 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1068 		}
1069 		netif_carrier_off(cp->dev);
1070 		if (cp->opened)
1071 			netif_info(cp, link, cp->dev, "PCS link down\n");
1072 
1073 		/* Cassini only: if you force a mode, there can be
1074 		 * sync problems on link down. to fix that, the following
1075 		 * things need to be checked:
1076 		 * 1) read serialink state register
1077 		 * 2) read pcs status register to verify link down.
1078 		 * 3) if link down and serial link == 0x03, then you need
1079 		 *    to global reset the chip.
1080 		 */
1081 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1082 			/* should check to see if we're in a forced mode */
1083 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1084 			if (stat == 0x03)
1085 				return 1;
1086 		}
1087 	} else if (cp->lstate == link_down) {
1088 		if (link_transition_timeout != 0 &&
1089 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1090 		    !cp->link_transition_jiffies_valid) {
1091 			/* force a reset, as a workaround for the
1092 			 * link-failure problem.  May want to move
1093 			 * this to a point a bit earlier in the
1094 			 * sequence.
1095 			 */
1096 			retval = 1;
1097 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1098 			cp->link_transition_jiffies = jiffies;
1099 			cp->link_transition_jiffies_valid = 1;
1100 		} else {
1101 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1102 		}
1103 	}
1104 
1105 	return retval;
1106 }
1107 
1108 static int cas_pcs_interrupt(struct net_device *dev,
1109 			     struct cas *cp, u32 status)
1110 {
1111 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1112 
1113 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1114 		return 0;
1115 	return cas_pcs_link_check(cp);
1116 }
1117 
1118 static int cas_txmac_interrupt(struct net_device *dev,
1119 			       struct cas *cp, u32 status)
1120 {
1121 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1122 
1123 	if (!txmac_stat)
1124 		return 0;
1125 
1126 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1127 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1128 
1129 	/* Defer timer expiration is quite normal,
1130 	 * don't even log the event.
1131 	 */
1132 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1133 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1134 		return 0;
1135 
1136 	spin_lock(&cp->stat_lock[0]);
1137 	if (txmac_stat & MAC_TX_UNDERRUN) {
1138 		netdev_err(dev, "TX MAC xmit underrun\n");
1139 		cp->net_stats[0].tx_fifo_errors++;
1140 	}
1141 
1142 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 		netdev_err(dev, "TX MAC max packet size error\n");
1144 		cp->net_stats[0].tx_errors++;
1145 	}
1146 
1147 	/* The rest are all cases of one of the 16-bit TX
1148 	 * counters expiring.
1149 	 */
1150 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1151 		cp->net_stats[0].collisions += 0x10000;
1152 
1153 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1154 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1155 		cp->net_stats[0].collisions += 0x10000;
1156 	}
1157 
1158 	if (txmac_stat & MAC_TX_COLL_LATE) {
1159 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1160 		cp->net_stats[0].collisions += 0x10000;
1161 	}
1162 	spin_unlock(&cp->stat_lock[0]);
1163 
1164 	/* We do not keep track of MAC_TX_COLL_FIRST and
1165 	 * MAC_TX_PEAK_ATTEMPTS events.
1166 	 */
1167 	return 0;
1168 }
1169 
1170 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1171 {
1172 	cas_hp_inst_t *inst;
1173 	u32 val;
1174 	int i;
1175 
1176 	i = 0;
1177 	while ((inst = firmware) && inst->note) {
1178 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1179 
1180 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1181 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1182 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1183 
1184 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1185 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1186 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1187 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1188 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1190 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1191 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1192 
1193 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1194 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1195 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1196 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1197 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1198 		++firmware;
1199 		++i;
1200 	}
1201 }
1202 
1203 static void cas_init_rx_dma(struct cas *cp)
1204 {
1205 	u64 desc_dma = cp->block_dvma;
1206 	u32 val;
1207 	int i, size;
1208 
1209 	/* rx free descriptors */
1210 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1211 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1212 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1213 	if ((N_RX_DESC_RINGS > 1) &&
1214 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1215 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1216 	writel(val, cp->regs + REG_RX_CFG);
1217 
1218 	val = (unsigned long) cp->init_rxds[0] -
1219 		(unsigned long) cp->init_block;
1220 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1221 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1222 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1223 
1224 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1225 		/* rx desc 2 is for IPSEC packets. however,
1226 		 * we don't it that for that purpose.
1227 		 */
1228 		val = (unsigned long) cp->init_rxds[1] -
1229 			(unsigned long) cp->init_block;
1230 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1231 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1232 		       REG_PLUS_RX_DB1_LOW);
1233 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1234 		       REG_PLUS_RX_KICK1);
1235 	}
1236 
1237 	/* rx completion registers */
1238 	val = (unsigned long) cp->init_rxcs[0] -
1239 		(unsigned long) cp->init_block;
1240 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1241 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1242 
1243 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1244 		/* rx comp 2-4 */
1245 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1246 			val = (unsigned long) cp->init_rxcs[i] -
1247 				(unsigned long) cp->init_block;
1248 			writel((desc_dma + val) >> 32, cp->regs +
1249 			       REG_PLUS_RX_CBN_HI(i));
1250 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1251 			       REG_PLUS_RX_CBN_LOW(i));
1252 		}
1253 	}
1254 
1255 	/* read selective clear regs to prevent spurious interrupts
1256 	 * on reset because complete == kick.
1257 	 * selective clear set up to prevent interrupts on resets
1258 	 */
1259 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1260 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1261 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1262 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1263 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1264 
1265 		/* 2 is different from 3 and 4 */
1266 		if (N_RX_COMP_RINGS > 1)
1267 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1268 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1269 
1270 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1271 			writel(INTR_RX_DONE_ALT,
1272 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1273 	}
1274 
1275 	/* set up pause thresholds */
1276 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1277 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1278 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1279 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1280 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1281 
1282 	/* zero out dma reassembly buffers */
1283 	for (i = 0; i < 64; i++) {
1284 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1285 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1286 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1287 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1288 	}
1289 
1290 	/* make sure address register is 0 for normal operation */
1291 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1292 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1293 
1294 	/* interrupt mitigation */
1295 #ifdef USE_RX_BLANK
1296 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1297 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1298 	writel(val, cp->regs + REG_RX_BLANK);
1299 #else
1300 	writel(0x0, cp->regs + REG_RX_BLANK);
1301 #endif
1302 
1303 	/* interrupt generation as a function of low water marks for
1304 	 * free desc and completion entries. these are used to trigger
1305 	 * housekeeping for rx descs. we don't use the free interrupt
1306 	 * as it's not very useful
1307 	 */
1308 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1309 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1310 	writel(val, cp->regs + REG_RX_AE_THRESH);
1311 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1312 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1313 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1314 	}
1315 
1316 	/* Random early detect registers. useful for congestion avoidance.
1317 	 * this should be tunable.
1318 	 */
1319 	writel(0x0, cp->regs + REG_RX_RED);
1320 
1321 	/* receive page sizes. default == 2K (0x800) */
1322 	val = 0;
1323 	if (cp->page_size == 0x1000)
1324 		val = 0x1;
1325 	else if (cp->page_size == 0x2000)
1326 		val = 0x2;
1327 	else if (cp->page_size == 0x4000)
1328 		val = 0x3;
1329 
1330 	/* round mtu + offset. constrain to page size. */
1331 	size = cp->dev->mtu + 64;
1332 	if (size > cp->page_size)
1333 		size = cp->page_size;
1334 
1335 	if (size <= 0x400)
1336 		i = 0x0;
1337 	else if (size <= 0x800)
1338 		i = 0x1;
1339 	else if (size <= 0x1000)
1340 		i = 0x2;
1341 	else
1342 		i = 0x3;
1343 
1344 	cp->mtu_stride = 1 << (i + 10);
1345 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1346 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1347 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1348 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1349 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1350 
1351 	/* enable the header parser if desired */
1352 	if (CAS_HP_FIRMWARE == cas_prog_null)
1353 		return;
1354 
1355 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1356 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1357 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1358 	writel(val, cp->regs + REG_HP_CFG);
1359 }
1360 
1361 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1362 {
1363 	memset(rxc, 0, sizeof(*rxc));
1364 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1365 }
1366 
1367 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1368  * flipping is protected by the fact that the chip will not
1369  * hand back the same page index while it's being processed.
1370  */
1371 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1372 {
1373 	cas_page_t *page = cp->rx_pages[1][index];
1374 	cas_page_t *new;
1375 
1376 	if (page_count(page->buffer) == 1)
1377 		return page;
1378 
1379 	new = cas_page_dequeue(cp);
1380 	if (new) {
1381 		spin_lock(&cp->rx_inuse_lock);
1382 		list_add(&page->list, &cp->rx_inuse_list);
1383 		spin_unlock(&cp->rx_inuse_lock);
1384 	}
1385 	return new;
1386 }
1387 
1388 /* this needs to be changed if we actually use the ENC RX DESC ring */
1389 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1390 				 const int index)
1391 {
1392 	cas_page_t **page0 = cp->rx_pages[0];
1393 	cas_page_t **page1 = cp->rx_pages[1];
1394 
1395 	/* swap if buffer is in use */
1396 	if (page_count(page0[index]->buffer) > 1) {
1397 		cas_page_t *new = cas_page_spare(cp, index);
1398 		if (new) {
1399 			page1[index] = page0[index];
1400 			page0[index] = new;
1401 		}
1402 	}
1403 	RX_USED_SET(page0[index], 0);
1404 	return page0[index];
1405 }
1406 
1407 static void cas_clean_rxds(struct cas *cp)
1408 {
1409 	/* only clean ring 0 as ring 1 is used for spare buffers */
1410         struct cas_rx_desc *rxd = cp->init_rxds[0];
1411 	int i, size;
1412 
1413 	/* release all rx flows */
1414 	for (i = 0; i < N_RX_FLOWS; i++) {
1415 		struct sk_buff *skb;
1416 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1417 			cas_skb_release(skb);
1418 		}
1419 	}
1420 
1421 	/* initialize descriptors */
1422 	size = RX_DESC_RINGN_SIZE(0);
1423 	for (i = 0; i < size; i++) {
1424 		cas_page_t *page = cas_page_swap(cp, 0, i);
1425 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1426 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1427 					    CAS_BASE(RX_INDEX_RING, 0));
1428 	}
1429 
1430 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1431 	cp->rx_last[0] = 0;
1432 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1433 }
1434 
1435 static void cas_clean_rxcs(struct cas *cp)
1436 {
1437 	int i, j;
1438 
1439 	/* take ownership of rx comp descriptors */
1440 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1441 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1442 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1443 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1444 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1445 			cas_rxc_init(rxc + j);
1446 		}
1447 	}
1448 }
1449 
1450 #if 0
1451 /* When we get a RX fifo overflow, the RX unit is probably hung
1452  * so we do the following.
1453  *
1454  * If any part of the reset goes wrong, we return 1 and that causes the
1455  * whole chip to be reset.
1456  */
1457 static int cas_rxmac_reset(struct cas *cp)
1458 {
1459 	struct net_device *dev = cp->dev;
1460 	int limit;
1461 	u32 val;
1462 
1463 	/* First, reset MAC RX. */
1464 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1465 	for (limit = 0; limit < STOP_TRIES; limit++) {
1466 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1467 			break;
1468 		udelay(10);
1469 	}
1470 	if (limit == STOP_TRIES) {
1471 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1472 		return 1;
1473 	}
1474 
1475 	/* Second, disable RX DMA. */
1476 	writel(0, cp->regs + REG_RX_CFG);
1477 	for (limit = 0; limit < STOP_TRIES; limit++) {
1478 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1479 			break;
1480 		udelay(10);
1481 	}
1482 	if (limit == STOP_TRIES) {
1483 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1484 		return 1;
1485 	}
1486 
1487 	mdelay(5);
1488 
1489 	/* Execute RX reset command. */
1490 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1491 	for (limit = 0; limit < STOP_TRIES; limit++) {
1492 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1493 			break;
1494 		udelay(10);
1495 	}
1496 	if (limit == STOP_TRIES) {
1497 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1498 		return 1;
1499 	}
1500 
1501 	/* reset driver rx state */
1502 	cas_clean_rxds(cp);
1503 	cas_clean_rxcs(cp);
1504 
1505 	/* Now, reprogram the rest of RX unit. */
1506 	cas_init_rx_dma(cp);
1507 
1508 	/* re-enable */
1509 	val = readl(cp->regs + REG_RX_CFG);
1510 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1511 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1512 	val = readl(cp->regs + REG_MAC_RX_CFG);
1513 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1514 	return 0;
1515 }
1516 #endif
1517 
1518 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1519 			       u32 status)
1520 {
1521 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1522 
1523 	if (!stat)
1524 		return 0;
1525 
1526 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1527 
1528 	/* these are all rollovers */
1529 	spin_lock(&cp->stat_lock[0]);
1530 	if (stat & MAC_RX_ALIGN_ERR)
1531 		cp->net_stats[0].rx_frame_errors += 0x10000;
1532 
1533 	if (stat & MAC_RX_CRC_ERR)
1534 		cp->net_stats[0].rx_crc_errors += 0x10000;
1535 
1536 	if (stat & MAC_RX_LEN_ERR)
1537 		cp->net_stats[0].rx_length_errors += 0x10000;
1538 
1539 	if (stat & MAC_RX_OVERFLOW) {
1540 		cp->net_stats[0].rx_over_errors++;
1541 		cp->net_stats[0].rx_fifo_errors++;
1542 	}
1543 
1544 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1545 	 * events.
1546 	 */
1547 	spin_unlock(&cp->stat_lock[0]);
1548 	return 0;
1549 }
1550 
1551 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1552 			     u32 status)
1553 {
1554 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1555 
1556 	if (!stat)
1557 		return 0;
1558 
1559 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1560 		     "mac interrupt, stat: 0x%x\n", stat);
1561 
1562 	/* This interrupt is just for pause frame and pause
1563 	 * tracking.  It is useful for diagnostics and debug
1564 	 * but probably by default we will mask these events.
1565 	 */
1566 	if (stat & MAC_CTRL_PAUSE_STATE)
1567 		cp->pause_entered++;
1568 
1569 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1570 		cp->pause_last_time_recvd = (stat >> 16);
1571 
1572 	return 0;
1573 }
1574 
1575 
1576 /* Must be invoked under cp->lock. */
1577 static inline int cas_mdio_link_not_up(struct cas *cp)
1578 {
1579 	u16 val;
1580 
1581 	switch (cp->lstate) {
1582 	case link_force_ret:
1583 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1584 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1585 		cp->timer_ticks = 5;
1586 		cp->lstate = link_force_ok;
1587 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1588 		break;
1589 
1590 	case link_aneg:
1591 		val = cas_phy_read(cp, MII_BMCR);
1592 
1593 		/* Try forced modes. we try things in the following order:
1594 		 * 1000 full -> 100 full/half -> 10 half
1595 		 */
1596 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1597 		val |= BMCR_FULLDPLX;
1598 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1599 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1600 		cas_phy_write(cp, MII_BMCR, val);
1601 		cp->timer_ticks = 5;
1602 		cp->lstate = link_force_try;
1603 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1604 		break;
1605 
1606 	case link_force_try:
1607 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1608 		val = cas_phy_read(cp, MII_BMCR);
1609 		cp->timer_ticks = 5;
1610 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1611 			val &= ~CAS_BMCR_SPEED1000;
1612 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1613 			cas_phy_write(cp, MII_BMCR, val);
1614 			break;
1615 		}
1616 
1617 		if (val & BMCR_SPEED100) {
1618 			if (val & BMCR_FULLDPLX) /* fd failed */
1619 				val &= ~BMCR_FULLDPLX;
1620 			else { /* 100Mbps failed */
1621 				val &= ~BMCR_SPEED100;
1622 			}
1623 			cas_phy_write(cp, MII_BMCR, val);
1624 			break;
1625 		}
1626 	default:
1627 		break;
1628 	}
1629 	return 0;
1630 }
1631 
1632 
1633 /* must be invoked with cp->lock held */
1634 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1635 {
1636 	int restart;
1637 
1638 	if (bmsr & BMSR_LSTATUS) {
1639 		/* Ok, here we got a link. If we had it due to a forced
1640 		 * fallback, and we were configured for autoneg, we
1641 		 * retry a short autoneg pass. If you know your hub is
1642 		 * broken, use ethtool ;)
1643 		 */
1644 		if ((cp->lstate == link_force_try) &&
1645 		    (cp->link_cntl & BMCR_ANENABLE)) {
1646 			cp->lstate = link_force_ret;
1647 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1648 			cas_mif_poll(cp, 0);
1649 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1650 			cp->timer_ticks = 5;
1651 			if (cp->opened)
1652 				netif_info(cp, link, cp->dev,
1653 					   "Got link after fallback, retrying autoneg once...\n");
1654 			cas_phy_write(cp, MII_BMCR,
1655 				      cp->link_fcntl | BMCR_ANENABLE |
1656 				      BMCR_ANRESTART);
1657 			cas_mif_poll(cp, 1);
1658 
1659 		} else if (cp->lstate != link_up) {
1660 			cp->lstate = link_up;
1661 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1662 
1663 			if (cp->opened) {
1664 				cas_set_link_modes(cp);
1665 				netif_carrier_on(cp->dev);
1666 			}
1667 		}
1668 		return 0;
1669 	}
1670 
1671 	/* link not up. if the link was previously up, we restart the
1672 	 * whole process
1673 	 */
1674 	restart = 0;
1675 	if (cp->lstate == link_up) {
1676 		cp->lstate = link_down;
1677 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1678 
1679 		netif_carrier_off(cp->dev);
1680 		if (cp->opened)
1681 			netif_info(cp, link, cp->dev, "Link down\n");
1682 		restart = 1;
1683 
1684 	} else if (++cp->timer_ticks > 10)
1685 		cas_mdio_link_not_up(cp);
1686 
1687 	return restart;
1688 }
1689 
1690 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1691 			     u32 status)
1692 {
1693 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1694 	u16 bmsr;
1695 
1696 	/* check for a link change */
1697 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1698 		return 0;
1699 
1700 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1701 	return cas_mii_link_check(cp, bmsr);
1702 }
1703 
1704 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1705 			     u32 status)
1706 {
1707 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1708 
1709 	if (!stat)
1710 		return 0;
1711 
1712 	netdev_err(dev, "PCI error [%04x:%04x]",
1713 		   stat, readl(cp->regs + REG_BIM_DIAG));
1714 
1715 	/* cassini+ has this reserved */
1716 	if ((stat & PCI_ERR_BADACK) &&
1717 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1718 		pr_cont(" <No ACK64# during ABS64 cycle>");
1719 
1720 	if (stat & PCI_ERR_DTRTO)
1721 		pr_cont(" <Delayed transaction timeout>");
1722 	if (stat & PCI_ERR_OTHER)
1723 		pr_cont(" <other>");
1724 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1725 		pr_cont(" <BIM DMA 0 write req>");
1726 	if (stat & PCI_ERR_BIM_DMA_READ)
1727 		pr_cont(" <BIM DMA 0 read req>");
1728 	pr_cont("\n");
1729 
1730 	if (stat & PCI_ERR_OTHER) {
1731 		u16 cfg;
1732 
1733 		/* Interrogate PCI config space for the
1734 		 * true cause.
1735 		 */
1736 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1737 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1738 		if (cfg & PCI_STATUS_PARITY)
1739 			netdev_err(dev, "PCI parity error detected\n");
1740 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1741 			netdev_err(dev, "PCI target abort\n");
1742 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1743 			netdev_err(dev, "PCI master acks target abort\n");
1744 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1745 			netdev_err(dev, "PCI master abort\n");
1746 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1747 			netdev_err(dev, "PCI system error SERR#\n");
1748 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1749 			netdev_err(dev, "PCI parity error\n");
1750 
1751 		/* Write the error bits back to clear them. */
1752 		cfg &= (PCI_STATUS_PARITY |
1753 			PCI_STATUS_SIG_TARGET_ABORT |
1754 			PCI_STATUS_REC_TARGET_ABORT |
1755 			PCI_STATUS_REC_MASTER_ABORT |
1756 			PCI_STATUS_SIG_SYSTEM_ERROR |
1757 			PCI_STATUS_DETECTED_PARITY);
1758 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1759 	}
1760 
1761 	/* For all PCI errors, we should reset the chip. */
1762 	return 1;
1763 }
1764 
1765 /* All non-normal interrupt conditions get serviced here.
1766  * Returns non-zero if we should just exit the interrupt
1767  * handler right now (ie. if we reset the card which invalidates
1768  * all of the other original irq status bits).
1769  */
1770 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1771 			    u32 status)
1772 {
1773 	if (status & INTR_RX_TAG_ERROR) {
1774 		/* corrupt RX tag framing */
1775 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1776 			     "corrupt rx tag framing\n");
1777 		spin_lock(&cp->stat_lock[0]);
1778 		cp->net_stats[0].rx_errors++;
1779 		spin_unlock(&cp->stat_lock[0]);
1780 		goto do_reset;
1781 	}
1782 
1783 	if (status & INTR_RX_LEN_MISMATCH) {
1784 		/* length mismatch. */
1785 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1786 			     "length mismatch for rx frame\n");
1787 		spin_lock(&cp->stat_lock[0]);
1788 		cp->net_stats[0].rx_errors++;
1789 		spin_unlock(&cp->stat_lock[0]);
1790 		goto do_reset;
1791 	}
1792 
1793 	if (status & INTR_PCS_STATUS) {
1794 		if (cas_pcs_interrupt(dev, cp, status))
1795 			goto do_reset;
1796 	}
1797 
1798 	if (status & INTR_TX_MAC_STATUS) {
1799 		if (cas_txmac_interrupt(dev, cp, status))
1800 			goto do_reset;
1801 	}
1802 
1803 	if (status & INTR_RX_MAC_STATUS) {
1804 		if (cas_rxmac_interrupt(dev, cp, status))
1805 			goto do_reset;
1806 	}
1807 
1808 	if (status & INTR_MAC_CTRL_STATUS) {
1809 		if (cas_mac_interrupt(dev, cp, status))
1810 			goto do_reset;
1811 	}
1812 
1813 	if (status & INTR_MIF_STATUS) {
1814 		if (cas_mif_interrupt(dev, cp, status))
1815 			goto do_reset;
1816 	}
1817 
1818 	if (status & INTR_PCI_ERROR_STATUS) {
1819 		if (cas_pci_interrupt(dev, cp, status))
1820 			goto do_reset;
1821 	}
1822 	return 0;
1823 
1824 do_reset:
1825 #if 1
1826 	atomic_inc(&cp->reset_task_pending);
1827 	atomic_inc(&cp->reset_task_pending_all);
1828 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1829 	schedule_work(&cp->reset_task);
1830 #else
1831 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1832 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1833 	schedule_work(&cp->reset_task);
1834 #endif
1835 	return 1;
1836 }
1837 
1838 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1839  *       determining whether to do a netif_stop/wakeup
1840  */
1841 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1842 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1843 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1844 				  const int len)
1845 {
1846 	unsigned long off = addr + len;
1847 
1848 	if (CAS_TABORT(cp) == 1)
1849 		return 0;
1850 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1851 		return 0;
1852 	return TX_TARGET_ABORT_LEN;
1853 }
1854 
1855 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1856 {
1857 	struct cas_tx_desc *txds;
1858 	struct sk_buff **skbs;
1859 	struct net_device *dev = cp->dev;
1860 	int entry, count;
1861 
1862 	spin_lock(&cp->tx_lock[ring]);
1863 	txds = cp->init_txds[ring];
1864 	skbs = cp->tx_skbs[ring];
1865 	entry = cp->tx_old[ring];
1866 
1867 	count = TX_BUFF_COUNT(ring, entry, limit);
1868 	while (entry != limit) {
1869 		struct sk_buff *skb = skbs[entry];
1870 		dma_addr_t daddr;
1871 		u32 dlen;
1872 		int frag;
1873 
1874 		if (!skb) {
1875 			/* this should never occur */
1876 			entry = TX_DESC_NEXT(ring, entry);
1877 			continue;
1878 		}
1879 
1880 		/* however, we might get only a partial skb release. */
1881 		count -= skb_shinfo(skb)->nr_frags +
1882 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1883 		if (count < 0)
1884 			break;
1885 
1886 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1887 			     "tx[%d] done, slot %d\n", ring, entry);
1888 
1889 		skbs[entry] = NULL;
1890 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1891 
1892 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1893 			struct cas_tx_desc *txd = txds + entry;
1894 
1895 			daddr = le64_to_cpu(txd->buffer);
1896 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1897 				       le64_to_cpu(txd->control));
1898 			pci_unmap_page(cp->pdev, daddr, dlen,
1899 				       PCI_DMA_TODEVICE);
1900 			entry = TX_DESC_NEXT(ring, entry);
1901 
1902 			/* tiny buffer may follow */
1903 			if (cp->tx_tiny_use[ring][entry].used) {
1904 				cp->tx_tiny_use[ring][entry].used = 0;
1905 				entry = TX_DESC_NEXT(ring, entry);
1906 			}
1907 		}
1908 
1909 		spin_lock(&cp->stat_lock[ring]);
1910 		cp->net_stats[ring].tx_packets++;
1911 		cp->net_stats[ring].tx_bytes += skb->len;
1912 		spin_unlock(&cp->stat_lock[ring]);
1913 		dev_kfree_skb_irq(skb);
1914 	}
1915 	cp->tx_old[ring] = entry;
1916 
1917 	/* this is wrong for multiple tx rings. the net device needs
1918 	 * multiple queues for this to do the right thing.  we wait
1919 	 * for 2*packets to be available when using tiny buffers
1920 	 */
1921 	if (netif_queue_stopped(dev) &&
1922 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1923 		netif_wake_queue(dev);
1924 	spin_unlock(&cp->tx_lock[ring]);
1925 }
1926 
1927 static void cas_tx(struct net_device *dev, struct cas *cp,
1928 		   u32 status)
1929 {
1930         int limit, ring;
1931 #ifdef USE_TX_COMPWB
1932 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1933 #endif
1934 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1935 		     "tx interrupt, status: 0x%x, %llx\n",
1936 		     status, (unsigned long long)compwb);
1937 	/* process all the rings */
1938 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1939 #ifdef USE_TX_COMPWB
1940 		/* use the completion writeback registers */
1941 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1942 			CAS_VAL(TX_COMPWB_LSB, compwb);
1943 		compwb = TX_COMPWB_NEXT(compwb);
1944 #else
1945 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1946 #endif
1947 		if (cp->tx_old[ring] != limit)
1948 			cas_tx_ringN(cp, ring, limit);
1949 	}
1950 }
1951 
1952 
1953 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1954 			      int entry, const u64 *words,
1955 			      struct sk_buff **skbref)
1956 {
1957 	int dlen, hlen, len, i, alloclen;
1958 	int off, swivel = RX_SWIVEL_OFF_VAL;
1959 	struct cas_page *page;
1960 	struct sk_buff *skb;
1961 	void *addr, *crcaddr;
1962 	__sum16 csum;
1963 	char *p;
1964 
1965 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1966 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1967 	len  = hlen + dlen;
1968 
1969 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1970 		alloclen = len;
1971 	else
1972 		alloclen = max(hlen, RX_COPY_MIN);
1973 
1974 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1975 	if (skb == NULL)
1976 		return -1;
1977 
1978 	*skbref = skb;
1979 	skb_reserve(skb, swivel);
1980 
1981 	p = skb->data;
1982 	addr = crcaddr = NULL;
1983 	if (hlen) { /* always copy header pages */
1984 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1985 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1986 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1987 			swivel;
1988 
1989 		i = hlen;
1990 		if (!dlen) /* attach FCS */
1991 			i += cp->crc_size;
1992 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1993 				    PCI_DMA_FROMDEVICE);
1994 		addr = cas_page_map(page->buffer);
1995 		memcpy(p, addr + off, i);
1996 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1997 				    PCI_DMA_FROMDEVICE);
1998 		cas_page_unmap(addr);
1999 		RX_USED_ADD(page, 0x100);
2000 		p += hlen;
2001 		swivel = 0;
2002 	}
2003 
2004 
2005 	if (alloclen < (hlen + dlen)) {
2006 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2007 
2008 		/* normal or jumbo packets. we use frags */
2009 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2010 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2011 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2012 
2013 		hlen = min(cp->page_size - off, dlen);
2014 		if (hlen < 0) {
2015 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2016 				     "rx page overflow: %d\n", hlen);
2017 			dev_kfree_skb_irq(skb);
2018 			return -1;
2019 		}
2020 		i = hlen;
2021 		if (i == dlen)  /* attach FCS */
2022 			i += cp->crc_size;
2023 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2024 				    PCI_DMA_FROMDEVICE);
2025 
2026 		/* make sure we always copy a header */
2027 		swivel = 0;
2028 		if (p == (char *) skb->data) { /* not split */
2029 			addr = cas_page_map(page->buffer);
2030 			memcpy(p, addr + off, RX_COPY_MIN);
2031 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2032 					PCI_DMA_FROMDEVICE);
2033 			cas_page_unmap(addr);
2034 			off += RX_COPY_MIN;
2035 			swivel = RX_COPY_MIN;
2036 			RX_USED_ADD(page, cp->mtu_stride);
2037 		} else {
2038 			RX_USED_ADD(page, hlen);
2039 		}
2040 		skb_put(skb, alloclen);
2041 
2042 		skb_shinfo(skb)->nr_frags++;
2043 		skb->data_len += hlen - swivel;
2044 		skb->truesize += hlen - swivel;
2045 		skb->len      += hlen - swivel;
2046 
2047 		__skb_frag_set_page(frag, page->buffer);
2048 		__skb_frag_ref(frag);
2049 		frag->page_offset = off;
2050 		skb_frag_size_set(frag, hlen - swivel);
2051 
2052 		/* any more data? */
2053 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2054 			hlen = dlen;
2055 			off = 0;
2056 
2057 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2058 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2059 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2060 					    hlen + cp->crc_size,
2061 					    PCI_DMA_FROMDEVICE);
2062 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2063 					    hlen + cp->crc_size,
2064 					    PCI_DMA_FROMDEVICE);
2065 
2066 			skb_shinfo(skb)->nr_frags++;
2067 			skb->data_len += hlen;
2068 			skb->len      += hlen;
2069 			frag++;
2070 
2071 			__skb_frag_set_page(frag, page->buffer);
2072 			__skb_frag_ref(frag);
2073 			frag->page_offset = 0;
2074 			skb_frag_size_set(frag, hlen);
2075 			RX_USED_ADD(page, hlen + cp->crc_size);
2076 		}
2077 
2078 		if (cp->crc_size) {
2079 			addr = cas_page_map(page->buffer);
2080 			crcaddr  = addr + off + hlen;
2081 		}
2082 
2083 	} else {
2084 		/* copying packet */
2085 		if (!dlen)
2086 			goto end_copy_pkt;
2087 
2088 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2089 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2090 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2091 		hlen = min(cp->page_size - off, dlen);
2092 		if (hlen < 0) {
2093 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2094 				     "rx page overflow: %d\n", hlen);
2095 			dev_kfree_skb_irq(skb);
2096 			return -1;
2097 		}
2098 		i = hlen;
2099 		if (i == dlen) /* attach FCS */
2100 			i += cp->crc_size;
2101 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2102 				    PCI_DMA_FROMDEVICE);
2103 		addr = cas_page_map(page->buffer);
2104 		memcpy(p, addr + off, i);
2105 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2106 				    PCI_DMA_FROMDEVICE);
2107 		cas_page_unmap(addr);
2108 		if (p == (char *) skb->data) /* not split */
2109 			RX_USED_ADD(page, cp->mtu_stride);
2110 		else
2111 			RX_USED_ADD(page, i);
2112 
2113 		/* any more data? */
2114 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2115 			p += hlen;
2116 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2117 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2118 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2119 					    dlen + cp->crc_size,
2120 					    PCI_DMA_FROMDEVICE);
2121 			addr = cas_page_map(page->buffer);
2122 			memcpy(p, addr, dlen + cp->crc_size);
2123 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2124 					    dlen + cp->crc_size,
2125 					    PCI_DMA_FROMDEVICE);
2126 			cas_page_unmap(addr);
2127 			RX_USED_ADD(page, dlen + cp->crc_size);
2128 		}
2129 end_copy_pkt:
2130 		if (cp->crc_size) {
2131 			addr    = NULL;
2132 			crcaddr = skb->data + alloclen;
2133 		}
2134 		skb_put(skb, alloclen);
2135 	}
2136 
2137 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2138 	if (cp->crc_size) {
2139 		/* checksum includes FCS. strip it out. */
2140 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2141 					      csum_unfold(csum)));
2142 		if (addr)
2143 			cas_page_unmap(addr);
2144 	}
2145 	skb->protocol = eth_type_trans(skb, cp->dev);
2146 	if (skb->protocol == htons(ETH_P_IP)) {
2147 		skb->csum = csum_unfold(~csum);
2148 		skb->ip_summed = CHECKSUM_COMPLETE;
2149 	} else
2150 		skb_checksum_none_assert(skb);
2151 	return len;
2152 }
2153 
2154 
2155 /* we can handle up to 64 rx flows at a time. we do the same thing
2156  * as nonreassm except that we batch up the buffers.
2157  * NOTE: we currently just treat each flow as a bunch of packets that
2158  *       we pass up. a better way would be to coalesce the packets
2159  *       into a jumbo packet. to do that, we need to do the following:
2160  *       1) the first packet will have a clean split between header and
2161  *          data. save both.
2162  *       2) each time the next flow packet comes in, extend the
2163  *          data length and merge the checksums.
2164  *       3) on flow release, fix up the header.
2165  *       4) make sure the higher layer doesn't care.
2166  * because packets get coalesced, we shouldn't run into fragment count
2167  * issues.
2168  */
2169 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2170 				   struct sk_buff *skb)
2171 {
2172 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2173 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2174 
2175 	/* this is protected at a higher layer, so no need to
2176 	 * do any additional locking here. stick the buffer
2177 	 * at the end.
2178 	 */
2179 	__skb_queue_tail(flow, skb);
2180 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2181 		while ((skb = __skb_dequeue(flow))) {
2182 			cas_skb_release(skb);
2183 		}
2184 	}
2185 }
2186 
2187 /* put rx descriptor back on ring. if a buffer is in use by a higher
2188  * layer, this will need to put in a replacement.
2189  */
2190 static void cas_post_page(struct cas *cp, const int ring, const int index)
2191 {
2192 	cas_page_t *new;
2193 	int entry;
2194 
2195 	entry = cp->rx_old[ring];
2196 
2197 	new = cas_page_swap(cp, ring, index);
2198 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2199 	cp->init_rxds[ring][entry].index  =
2200 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2201 			    CAS_BASE(RX_INDEX_RING, ring));
2202 
2203 	entry = RX_DESC_ENTRY(ring, entry + 1);
2204 	cp->rx_old[ring] = entry;
2205 
2206 	if (entry % 4)
2207 		return;
2208 
2209 	if (ring == 0)
2210 		writel(entry, cp->regs + REG_RX_KICK);
2211 	else if ((N_RX_DESC_RINGS > 1) &&
2212 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2213 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2214 }
2215 
2216 
2217 /* only when things are bad */
2218 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2219 {
2220 	unsigned int entry, last, count, released;
2221 	int cluster;
2222 	cas_page_t **page = cp->rx_pages[ring];
2223 
2224 	entry = cp->rx_old[ring];
2225 
2226 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2227 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2228 
2229 	cluster = -1;
2230 	count = entry & 0x3;
2231 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2232 	released = 0;
2233 	while (entry != last) {
2234 		/* make a new buffer if it's still in use */
2235 		if (page_count(page[entry]->buffer) > 1) {
2236 			cas_page_t *new = cas_page_dequeue(cp);
2237 			if (!new) {
2238 				/* let the timer know that we need to
2239 				 * do this again
2240 				 */
2241 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2242 				if (!timer_pending(&cp->link_timer))
2243 					mod_timer(&cp->link_timer, jiffies +
2244 						  CAS_LINK_FAST_TIMEOUT);
2245 				cp->rx_old[ring]  = entry;
2246 				cp->rx_last[ring] = num ? num - released : 0;
2247 				return -ENOMEM;
2248 			}
2249 			spin_lock(&cp->rx_inuse_lock);
2250 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2251 			spin_unlock(&cp->rx_inuse_lock);
2252 			cp->init_rxds[ring][entry].buffer =
2253 				cpu_to_le64(new->dma_addr);
2254 			page[entry] = new;
2255 
2256 		}
2257 
2258 		if (++count == 4) {
2259 			cluster = entry;
2260 			count = 0;
2261 		}
2262 		released++;
2263 		entry = RX_DESC_ENTRY(ring, entry + 1);
2264 	}
2265 	cp->rx_old[ring] = entry;
2266 
2267 	if (cluster < 0)
2268 		return 0;
2269 
2270 	if (ring == 0)
2271 		writel(cluster, cp->regs + REG_RX_KICK);
2272 	else if ((N_RX_DESC_RINGS > 1) &&
2273 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2274 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2275 	return 0;
2276 }
2277 
2278 
2279 /* process a completion ring. packets are set up in three basic ways:
2280  * small packets: should be copied header + data in single buffer.
2281  * large packets: header and data in a single buffer.
2282  * split packets: header in a separate buffer from data.
2283  *                data may be in multiple pages. data may be > 256
2284  *                bytes but in a single page.
2285  *
2286  * NOTE: RX page posting is done in this routine as well. while there's
2287  *       the capability of using multiple RX completion rings, it isn't
2288  *       really worthwhile due to the fact that the page posting will
2289  *       force serialization on the single descriptor ring.
2290  */
2291 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2292 {
2293 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2294 	int entry, drops;
2295 	int npackets = 0;
2296 
2297 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2298 		     "rx[%d] interrupt, done: %d/%d\n",
2299 		     ring,
2300 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2301 
2302 	entry = cp->rx_new[ring];
2303 	drops = 0;
2304 	while (1) {
2305 		struct cas_rx_comp *rxc = rxcs + entry;
2306 		struct sk_buff *uninitialized_var(skb);
2307 		int type, len;
2308 		u64 words[4];
2309 		int i, dring;
2310 
2311 		words[0] = le64_to_cpu(rxc->word1);
2312 		words[1] = le64_to_cpu(rxc->word2);
2313 		words[2] = le64_to_cpu(rxc->word3);
2314 		words[3] = le64_to_cpu(rxc->word4);
2315 
2316 		/* don't touch if still owned by hw */
2317 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2318 		if (type == 0)
2319 			break;
2320 
2321 		/* hw hasn't cleared the zero bit yet */
2322 		if (words[3] & RX_COMP4_ZERO) {
2323 			break;
2324 		}
2325 
2326 		/* get info on the packet */
2327 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2328 			spin_lock(&cp->stat_lock[ring]);
2329 			cp->net_stats[ring].rx_errors++;
2330 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2331 				cp->net_stats[ring].rx_length_errors++;
2332 			if (words[3] & RX_COMP4_BAD)
2333 				cp->net_stats[ring].rx_crc_errors++;
2334 			spin_unlock(&cp->stat_lock[ring]);
2335 
2336 			/* We'll just return it to Cassini. */
2337 		drop_it:
2338 			spin_lock(&cp->stat_lock[ring]);
2339 			++cp->net_stats[ring].rx_dropped;
2340 			spin_unlock(&cp->stat_lock[ring]);
2341 			goto next;
2342 		}
2343 
2344 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2345 		if (len < 0) {
2346 			++drops;
2347 			goto drop_it;
2348 		}
2349 
2350 		/* see if it's a flow re-assembly or not. the driver
2351 		 * itself handles release back up.
2352 		 */
2353 		if (RX_DONT_BATCH || (type == 0x2)) {
2354 			/* non-reassm: these always get released */
2355 			cas_skb_release(skb);
2356 		} else {
2357 			cas_rx_flow_pkt(cp, words, skb);
2358 		}
2359 
2360 		spin_lock(&cp->stat_lock[ring]);
2361 		cp->net_stats[ring].rx_packets++;
2362 		cp->net_stats[ring].rx_bytes += len;
2363 		spin_unlock(&cp->stat_lock[ring]);
2364 
2365 	next:
2366 		npackets++;
2367 
2368 		/* should it be released? */
2369 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2370 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2371 			dring = CAS_VAL(RX_INDEX_RING, i);
2372 			i = CAS_VAL(RX_INDEX_NUM, i);
2373 			cas_post_page(cp, dring, i);
2374 		}
2375 
2376 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2377 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2378 			dring = CAS_VAL(RX_INDEX_RING, i);
2379 			i = CAS_VAL(RX_INDEX_NUM, i);
2380 			cas_post_page(cp, dring, i);
2381 		}
2382 
2383 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2384 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2385 			dring = CAS_VAL(RX_INDEX_RING, i);
2386 			i = CAS_VAL(RX_INDEX_NUM, i);
2387 			cas_post_page(cp, dring, i);
2388 		}
2389 
2390 		/* skip to the next entry */
2391 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2392 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2393 #ifdef USE_NAPI
2394 		if (budget && (npackets >= budget))
2395 			break;
2396 #endif
2397 	}
2398 	cp->rx_new[ring] = entry;
2399 
2400 	if (drops)
2401 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2402 	return npackets;
2403 }
2404 
2405 
2406 /* put completion entries back on the ring */
2407 static void cas_post_rxcs_ringN(struct net_device *dev,
2408 				struct cas *cp, int ring)
2409 {
2410 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2411 	int last, entry;
2412 
2413 	last = cp->rx_cur[ring];
2414 	entry = cp->rx_new[ring];
2415 	netif_printk(cp, intr, KERN_DEBUG, dev,
2416 		     "rxc[%d] interrupt, done: %d/%d\n",
2417 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2418 
2419 	/* zero and re-mark descriptors */
2420 	while (last != entry) {
2421 		cas_rxc_init(rxc + last);
2422 		last = RX_COMP_ENTRY(ring, last + 1);
2423 	}
2424 	cp->rx_cur[ring] = last;
2425 
2426 	if (ring == 0)
2427 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2428 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2429 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2430 }
2431 
2432 
2433 
2434 /* cassini can use all four PCI interrupts for the completion ring.
2435  * rings 3 and 4 are identical
2436  */
2437 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2438 static inline void cas_handle_irqN(struct net_device *dev,
2439 				   struct cas *cp, const u32 status,
2440 				   const int ring)
2441 {
2442 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2443 		cas_post_rxcs_ringN(dev, cp, ring);
2444 }
2445 
2446 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2447 {
2448 	struct net_device *dev = dev_id;
2449 	struct cas *cp = netdev_priv(dev);
2450 	unsigned long flags;
2451 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2452 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2453 
2454 	/* check for shared irq */
2455 	if (status == 0)
2456 		return IRQ_NONE;
2457 
2458 	spin_lock_irqsave(&cp->lock, flags);
2459 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2460 #ifdef USE_NAPI
2461 		cas_mask_intr(cp);
2462 		napi_schedule(&cp->napi);
2463 #else
2464 		cas_rx_ringN(cp, ring, 0);
2465 #endif
2466 		status &= ~INTR_RX_DONE_ALT;
2467 	}
2468 
2469 	if (status)
2470 		cas_handle_irqN(dev, cp, status, ring);
2471 	spin_unlock_irqrestore(&cp->lock, flags);
2472 	return IRQ_HANDLED;
2473 }
2474 #endif
2475 
2476 #ifdef USE_PCI_INTB
2477 /* everything but rx packets */
2478 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2479 {
2480 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2481 		/* Frame arrived, no free RX buffers available.
2482 		 * NOTE: we can get this on a link transition. */
2483 		cas_post_rxds_ringN(cp, 1, 0);
2484 		spin_lock(&cp->stat_lock[1]);
2485 		cp->net_stats[1].rx_dropped++;
2486 		spin_unlock(&cp->stat_lock[1]);
2487 	}
2488 
2489 	if (status & INTR_RX_BUF_AE_1)
2490 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2491 				    RX_AE_FREEN_VAL(1));
2492 
2493 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2494 		cas_post_rxcs_ringN(cp, 1);
2495 }
2496 
2497 /* ring 2 handles a few more events than 3 and 4 */
2498 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2499 {
2500 	struct net_device *dev = dev_id;
2501 	struct cas *cp = netdev_priv(dev);
2502 	unsigned long flags;
2503 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2504 
2505 	/* check for shared interrupt */
2506 	if (status == 0)
2507 		return IRQ_NONE;
2508 
2509 	spin_lock_irqsave(&cp->lock, flags);
2510 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2511 #ifdef USE_NAPI
2512 		cas_mask_intr(cp);
2513 		napi_schedule(&cp->napi);
2514 #else
2515 		cas_rx_ringN(cp, 1, 0);
2516 #endif
2517 		status &= ~INTR_RX_DONE_ALT;
2518 	}
2519 	if (status)
2520 		cas_handle_irq1(cp, status);
2521 	spin_unlock_irqrestore(&cp->lock, flags);
2522 	return IRQ_HANDLED;
2523 }
2524 #endif
2525 
2526 static inline void cas_handle_irq(struct net_device *dev,
2527 				  struct cas *cp, const u32 status)
2528 {
2529 	/* housekeeping interrupts */
2530 	if (status & INTR_ERROR_MASK)
2531 		cas_abnormal_irq(dev, cp, status);
2532 
2533 	if (status & INTR_RX_BUF_UNAVAIL) {
2534 		/* Frame arrived, no free RX buffers available.
2535 		 * NOTE: we can get this on a link transition.
2536 		 */
2537 		cas_post_rxds_ringN(cp, 0, 0);
2538 		spin_lock(&cp->stat_lock[0]);
2539 		cp->net_stats[0].rx_dropped++;
2540 		spin_unlock(&cp->stat_lock[0]);
2541 	} else if (status & INTR_RX_BUF_AE) {
2542 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2543 				    RX_AE_FREEN_VAL(0));
2544 	}
2545 
2546 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2547 		cas_post_rxcs_ringN(dev, cp, 0);
2548 }
2549 
2550 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2551 {
2552 	struct net_device *dev = dev_id;
2553 	struct cas *cp = netdev_priv(dev);
2554 	unsigned long flags;
2555 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2556 
2557 	if (status == 0)
2558 		return IRQ_NONE;
2559 
2560 	spin_lock_irqsave(&cp->lock, flags);
2561 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2562 		cas_tx(dev, cp, status);
2563 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2564 	}
2565 
2566 	if (status & INTR_RX_DONE) {
2567 #ifdef USE_NAPI
2568 		cas_mask_intr(cp);
2569 		napi_schedule(&cp->napi);
2570 #else
2571 		cas_rx_ringN(cp, 0, 0);
2572 #endif
2573 		status &= ~INTR_RX_DONE;
2574 	}
2575 
2576 	if (status)
2577 		cas_handle_irq(dev, cp, status);
2578 	spin_unlock_irqrestore(&cp->lock, flags);
2579 	return IRQ_HANDLED;
2580 }
2581 
2582 
2583 #ifdef USE_NAPI
2584 static int cas_poll(struct napi_struct *napi, int budget)
2585 {
2586 	struct cas *cp = container_of(napi, struct cas, napi);
2587 	struct net_device *dev = cp->dev;
2588 	int i, enable_intr, credits;
2589 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2590 	unsigned long flags;
2591 
2592 	spin_lock_irqsave(&cp->lock, flags);
2593 	cas_tx(dev, cp, status);
2594 	spin_unlock_irqrestore(&cp->lock, flags);
2595 
2596 	/* NAPI rx packets. we spread the credits across all of the
2597 	 * rxc rings
2598 	 *
2599 	 * to make sure we're fair with the work we loop through each
2600 	 * ring N_RX_COMP_RING times with a request of
2601 	 * budget / N_RX_COMP_RINGS
2602 	 */
2603 	enable_intr = 1;
2604 	credits = 0;
2605 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2606 		int j;
2607 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2608 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2609 			if (credits >= budget) {
2610 				enable_intr = 0;
2611 				goto rx_comp;
2612 			}
2613 		}
2614 	}
2615 
2616 rx_comp:
2617 	/* final rx completion */
2618 	spin_lock_irqsave(&cp->lock, flags);
2619 	if (status)
2620 		cas_handle_irq(dev, cp, status);
2621 
2622 #ifdef USE_PCI_INTB
2623 	if (N_RX_COMP_RINGS > 1) {
2624 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2625 		if (status)
2626 			cas_handle_irq1(dev, cp, status);
2627 	}
2628 #endif
2629 
2630 #ifdef USE_PCI_INTC
2631 	if (N_RX_COMP_RINGS > 2) {
2632 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2633 		if (status)
2634 			cas_handle_irqN(dev, cp, status, 2);
2635 	}
2636 #endif
2637 
2638 #ifdef USE_PCI_INTD
2639 	if (N_RX_COMP_RINGS > 3) {
2640 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2641 		if (status)
2642 			cas_handle_irqN(dev, cp, status, 3);
2643 	}
2644 #endif
2645 	spin_unlock_irqrestore(&cp->lock, flags);
2646 	if (enable_intr) {
2647 		napi_complete(napi);
2648 		cas_unmask_intr(cp);
2649 	}
2650 	return credits;
2651 }
2652 #endif
2653 
2654 #ifdef CONFIG_NET_POLL_CONTROLLER
2655 static void cas_netpoll(struct net_device *dev)
2656 {
2657 	struct cas *cp = netdev_priv(dev);
2658 
2659 	cas_disable_irq(cp, 0);
2660 	cas_interrupt(cp->pdev->irq, dev);
2661 	cas_enable_irq(cp, 0);
2662 
2663 #ifdef USE_PCI_INTB
2664 	if (N_RX_COMP_RINGS > 1) {
2665 		/* cas_interrupt1(); */
2666 	}
2667 #endif
2668 #ifdef USE_PCI_INTC
2669 	if (N_RX_COMP_RINGS > 2) {
2670 		/* cas_interruptN(); */
2671 	}
2672 #endif
2673 #ifdef USE_PCI_INTD
2674 	if (N_RX_COMP_RINGS > 3) {
2675 		/* cas_interruptN(); */
2676 	}
2677 #endif
2678 }
2679 #endif
2680 
2681 static void cas_tx_timeout(struct net_device *dev)
2682 {
2683 	struct cas *cp = netdev_priv(dev);
2684 
2685 	netdev_err(dev, "transmit timed out, resetting\n");
2686 	if (!cp->hw_running) {
2687 		netdev_err(dev, "hrm.. hw not running!\n");
2688 		return;
2689 	}
2690 
2691 	netdev_err(dev, "MIF_STATE[%08x]\n",
2692 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2693 
2694 	netdev_err(dev, "MAC_STATE[%08x]\n",
2695 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2696 
2697 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2698 		   readl(cp->regs + REG_TX_CFG),
2699 		   readl(cp->regs + REG_MAC_TX_STATUS),
2700 		   readl(cp->regs + REG_MAC_TX_CFG),
2701 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2702 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2703 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2704 		   readl(cp->regs + REG_TX_SM_1),
2705 		   readl(cp->regs + REG_TX_SM_2));
2706 
2707 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2708 		   readl(cp->regs + REG_RX_CFG),
2709 		   readl(cp->regs + REG_MAC_RX_STATUS),
2710 		   readl(cp->regs + REG_MAC_RX_CFG));
2711 
2712 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2713 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2714 		   readl(cp->regs + REG_HP_STATUS0),
2715 		   readl(cp->regs + REG_HP_STATUS1),
2716 		   readl(cp->regs + REG_HP_STATUS2));
2717 
2718 #if 1
2719 	atomic_inc(&cp->reset_task_pending);
2720 	atomic_inc(&cp->reset_task_pending_all);
2721 	schedule_work(&cp->reset_task);
2722 #else
2723 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2724 	schedule_work(&cp->reset_task);
2725 #endif
2726 }
2727 
2728 static inline int cas_intme(int ring, int entry)
2729 {
2730 	/* Algorithm: IRQ every 1/2 of descriptors. */
2731 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2732 		return 1;
2733 	return 0;
2734 }
2735 
2736 
2737 static void cas_write_txd(struct cas *cp, int ring, int entry,
2738 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2739 {
2740 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2741 
2742 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2743 	if (cas_intme(ring, entry))
2744 		ctrl |= TX_DESC_INTME;
2745 	if (last)
2746 		ctrl |= TX_DESC_EOF;
2747 	txd->control = cpu_to_le64(ctrl);
2748 	txd->buffer = cpu_to_le64(mapping);
2749 }
2750 
2751 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2752 				const int entry)
2753 {
2754 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2755 }
2756 
2757 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2758 				     const int entry, const int tentry)
2759 {
2760 	cp->tx_tiny_use[ring][tentry].nbufs++;
2761 	cp->tx_tiny_use[ring][entry].used = 1;
2762 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2763 }
2764 
2765 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2766 				    struct sk_buff *skb)
2767 {
2768 	struct net_device *dev = cp->dev;
2769 	int entry, nr_frags, frag, tabort, tentry;
2770 	dma_addr_t mapping;
2771 	unsigned long flags;
2772 	u64 ctrl;
2773 	u32 len;
2774 
2775 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2776 
2777 	/* This is a hard error, log it. */
2778 	if (TX_BUFFS_AVAIL(cp, ring) <=
2779 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2780 		netif_stop_queue(dev);
2781 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2782 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2783 		return 1;
2784 	}
2785 
2786 	ctrl = 0;
2787 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2789 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2790 
2791 		ctrl =  TX_DESC_CSUM_EN |
2792 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2793 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2794 	}
2795 
2796 	entry = cp->tx_new[ring];
2797 	cp->tx_skbs[ring][entry] = skb;
2798 
2799 	nr_frags = skb_shinfo(skb)->nr_frags;
2800 	len = skb_headlen(skb);
2801 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2802 			       offset_in_page(skb->data), len,
2803 			       PCI_DMA_TODEVICE);
2804 
2805 	tentry = entry;
2806 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2807 	if (unlikely(tabort)) {
2808 		/* NOTE: len is always >  tabort */
2809 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2810 			      ctrl | TX_DESC_SOF, 0);
2811 		entry = TX_DESC_NEXT(ring, entry);
2812 
2813 		skb_copy_from_linear_data_offset(skb, len - tabort,
2814 			      tx_tiny_buf(cp, ring, entry), tabort);
2815 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2816 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2817 			      (nr_frags == 0));
2818 	} else {
2819 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2820 			      TX_DESC_SOF, (nr_frags == 0));
2821 	}
2822 	entry = TX_DESC_NEXT(ring, entry);
2823 
2824 	for (frag = 0; frag < nr_frags; frag++) {
2825 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2826 
2827 		len = skb_frag_size(fragp);
2828 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2829 					   DMA_TO_DEVICE);
2830 
2831 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2832 		if (unlikely(tabort)) {
2833 			void *addr;
2834 
2835 			/* NOTE: len is always > tabort */
2836 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2837 				      ctrl, 0);
2838 			entry = TX_DESC_NEXT(ring, entry);
2839 
2840 			addr = cas_page_map(skb_frag_page(fragp));
2841 			memcpy(tx_tiny_buf(cp, ring, entry),
2842 			       addr + fragp->page_offset + len - tabort,
2843 			       tabort);
2844 			cas_page_unmap(addr);
2845 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2846 			len     = tabort;
2847 		}
2848 
2849 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2850 			      (frag + 1 == nr_frags));
2851 		entry = TX_DESC_NEXT(ring, entry);
2852 	}
2853 
2854 	cp->tx_new[ring] = entry;
2855 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2856 		netif_stop_queue(dev);
2857 
2858 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2859 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2860 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2861 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2862 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2863 	return 0;
2864 }
2865 
2866 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2867 {
2868 	struct cas *cp = netdev_priv(dev);
2869 
2870 	/* this is only used as a load-balancing hint, so it doesn't
2871 	 * need to be SMP safe
2872 	 */
2873 	static int ring;
2874 
2875 	if (skb_padto(skb, cp->min_frame_size))
2876 		return NETDEV_TX_OK;
2877 
2878 	/* XXX: we need some higher-level QoS hooks to steer packets to
2879 	 *      individual queues.
2880 	 */
2881 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2882 		return NETDEV_TX_BUSY;
2883 	return NETDEV_TX_OK;
2884 }
2885 
2886 static void cas_init_tx_dma(struct cas *cp)
2887 {
2888 	u64 desc_dma = cp->block_dvma;
2889 	unsigned long off;
2890 	u32 val;
2891 	int i;
2892 
2893 	/* set up tx completion writeback registers. must be 8-byte aligned */
2894 #ifdef USE_TX_COMPWB
2895 	off = offsetof(struct cas_init_block, tx_compwb);
2896 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2897 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2898 #endif
2899 
2900 	/* enable completion writebacks, enable paced mode,
2901 	 * disable read pipe, and disable pre-interrupt compwbs
2902 	 */
2903 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2904 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2905 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2906 		TX_CFG_INTR_COMPWB_DIS;
2907 
2908 	/* write out tx ring info and tx desc bases */
2909 	for (i = 0; i < MAX_TX_RINGS; i++) {
2910 		off = (unsigned long) cp->init_txds[i] -
2911 			(unsigned long) cp->init_block;
2912 
2913 		val |= CAS_TX_RINGN_BASE(i);
2914 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2915 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2916 		       REG_TX_DBN_LOW(i));
2917 		/* don't zero out the kick register here as the system
2918 		 * will wedge
2919 		 */
2920 	}
2921 	writel(val, cp->regs + REG_TX_CFG);
2922 
2923 	/* program max burst sizes. these numbers should be different
2924 	 * if doing QoS.
2925 	 */
2926 #ifdef USE_QOS
2927 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2928 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2929 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2930 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2931 #else
2932 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2933 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2934 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2935 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2936 #endif
2937 }
2938 
2939 /* Must be invoked under cp->lock. */
2940 static inline void cas_init_dma(struct cas *cp)
2941 {
2942 	cas_init_tx_dma(cp);
2943 	cas_init_rx_dma(cp);
2944 }
2945 
2946 static void cas_process_mc_list(struct cas *cp)
2947 {
2948 	u16 hash_table[16];
2949 	u32 crc;
2950 	struct netdev_hw_addr *ha;
2951 	int i = 1;
2952 
2953 	memset(hash_table, 0, sizeof(hash_table));
2954 	netdev_for_each_mc_addr(ha, cp->dev) {
2955 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2956 			/* use the alternate mac address registers for the
2957 			 * first 15 multicast addresses
2958 			 */
2959 			writel((ha->addr[4] << 8) | ha->addr[5],
2960 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2961 			writel((ha->addr[2] << 8) | ha->addr[3],
2962 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2963 			writel((ha->addr[0] << 8) | ha->addr[1],
2964 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2965 			i++;
2966 		}
2967 		else {
2968 			/* use hw hash table for the next series of
2969 			 * multicast addresses
2970 			 */
2971 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2972 			crc >>= 24;
2973 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2974 		}
2975 	}
2976 	for (i = 0; i < 16; i++)
2977 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2978 }
2979 
2980 /* Must be invoked under cp->lock. */
2981 static u32 cas_setup_multicast(struct cas *cp)
2982 {
2983 	u32 rxcfg = 0;
2984 	int i;
2985 
2986 	if (cp->dev->flags & IFF_PROMISC) {
2987 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2988 
2989 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2990 	    	for (i=0; i < 16; i++)
2991 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2992 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2993 
2994 	} else {
2995 		cas_process_mc_list(cp);
2996 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2997 	}
2998 
2999 	return rxcfg;
3000 }
3001 
3002 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3003 static void cas_clear_mac_err(struct cas *cp)
3004 {
3005 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3006 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3007 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3008 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3009 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3010 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3011 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3012 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3013 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3014 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3015 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3016 }
3017 
3018 
3019 static void cas_mac_reset(struct cas *cp)
3020 {
3021 	int i;
3022 
3023 	/* do both TX and RX reset */
3024 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3025 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3026 
3027 	/* wait for TX */
3028 	i = STOP_TRIES;
3029 	while (i-- > 0) {
3030 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3031 			break;
3032 		udelay(10);
3033 	}
3034 
3035 	/* wait for RX */
3036 	i = STOP_TRIES;
3037 	while (i-- > 0) {
3038 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3039 			break;
3040 		udelay(10);
3041 	}
3042 
3043 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3044 	    readl(cp->regs + REG_MAC_RX_RESET))
3045 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3046 			   readl(cp->regs + REG_MAC_TX_RESET),
3047 			   readl(cp->regs + REG_MAC_RX_RESET),
3048 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3049 }
3050 
3051 
3052 /* Must be invoked under cp->lock. */
3053 static void cas_init_mac(struct cas *cp)
3054 {
3055 	unsigned char *e = &cp->dev->dev_addr[0];
3056 	int i;
3057 	cas_mac_reset(cp);
3058 
3059 	/* setup core arbitration weight register */
3060 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3061 
3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063 	/* set the infinite burst register for chips that don't have
3064 	 * pci issues.
3065 	 */
3066 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3067 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3068 #endif
3069 
3070 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3071 
3072 	writel(0x00, cp->regs + REG_MAC_IPG0);
3073 	writel(0x08, cp->regs + REG_MAC_IPG1);
3074 	writel(0x04, cp->regs + REG_MAC_IPG2);
3075 
3076 	/* change later for 802.3z */
3077 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3078 
3079 	/* min frame + FCS */
3080 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3081 
3082 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083 	 * specify the maximum frame size to prevent RX tag errors on
3084 	 * oversized frames.
3085 	 */
3086 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3087 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3088 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3089 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3090 
3091 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3092 	 * workaround saturn half-duplex issue by increasing preamble
3093 	 * size to 65 bytes.
3094 	 */
3095 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3096 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3097 	else
3098 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3099 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3100 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3101 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3102 
3103 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3104 
3105 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3106 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3107 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3108 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3109 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3110 
3111 	/* setup mac address in perfect filter array */
3112 	for (i = 0; i < 45; i++)
3113 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3114 
3115 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3116 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3117 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3118 
3119 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3120 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3121 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3122 
3123 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3124 
3125 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3126 	cas_clear_mac_err(cp);
3127 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3128 
3129 	/* Setup MAC interrupts.  We want to get all of the interesting
3130 	 * counter expiration events, but we do not want to hear about
3131 	 * normal rx/tx as the DMA engine tells us that.
3132 	 */
3133 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3134 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3135 
3136 	/* Don't enable even the PAUSE interrupts for now, we
3137 	 * make no use of those events other than to record them.
3138 	 */
3139 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3140 }
3141 
3142 /* Must be invoked under cp->lock. */
3143 static void cas_init_pause_thresholds(struct cas *cp)
3144 {
3145 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3146 	 * full RX fifo size effectively disables PAUSE generation
3147 	 */
3148 	if (cp->rx_fifo_size <= (2 * 1024)) {
3149 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3150 	} else {
3151 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3152 		if (max_frame * 3 > cp->rx_fifo_size) {
3153 			cp->rx_pause_off = 7104;
3154 			cp->rx_pause_on  = 960;
3155 		} else {
3156 			int off = (cp->rx_fifo_size - (max_frame * 2));
3157 			int on = off - max_frame;
3158 			cp->rx_pause_off = off;
3159 			cp->rx_pause_on = on;
3160 		}
3161 	}
3162 }
3163 
3164 static int cas_vpd_match(const void __iomem *p, const char *str)
3165 {
3166 	int len = strlen(str) + 1;
3167 	int i;
3168 
3169 	for (i = 0; i < len; i++) {
3170 		if (readb(p + i) != str[i])
3171 			return 0;
3172 	}
3173 	return 1;
3174 }
3175 
3176 
3177 /* get the mac address by reading the vpd information in the rom.
3178  * also get the phy type and determine if there's an entropy generator.
3179  * NOTE: this is a bit convoluted for the following reasons:
3180  *  1) vpd info has order-dependent mac addresses for multinic cards
3181  *  2) the only way to determine the nic order is to use the slot
3182  *     number.
3183  *  3) fiber cards don't have bridges, so their slot numbers don't
3184  *     mean anything.
3185  *  4) we don't actually know we have a fiber card until after
3186  *     the mac addresses are parsed.
3187  */
3188 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3189 			    const int offset)
3190 {
3191 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3192 	void __iomem *base, *kstart;
3193 	int i, len;
3194 	int found = 0;
3195 #define VPD_FOUND_MAC        0x01
3196 #define VPD_FOUND_PHY        0x02
3197 
3198 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3199 	int mac_off  = 0;
3200 
3201 #if defined(CONFIG_SPARC)
3202 	const unsigned char *addr;
3203 #endif
3204 
3205 	/* give us access to the PROM */
3206 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3207 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3208 
3209 	/* check for an expansion rom */
3210 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3211 		goto use_random_mac_addr;
3212 
3213 	/* search for beginning of vpd */
3214 	base = NULL;
3215 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3216 		/* check for PCIR */
3217 		if ((readb(p + i + 0) == 0x50) &&
3218 		    (readb(p + i + 1) == 0x43) &&
3219 		    (readb(p + i + 2) == 0x49) &&
3220 		    (readb(p + i + 3) == 0x52)) {
3221 			base = p + (readb(p + i + 8) |
3222 				    (readb(p + i + 9) << 8));
3223 			break;
3224 		}
3225 	}
3226 
3227 	if (!base || (readb(base) != 0x82))
3228 		goto use_random_mac_addr;
3229 
3230 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3231 	while (i < EXPANSION_ROM_SIZE) {
3232 		if (readb(base + i) != 0x90) /* no vpd found */
3233 			goto use_random_mac_addr;
3234 
3235 		/* found a vpd field */
3236 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3237 
3238 		/* extract keywords */
3239 		kstart = base + i + 3;
3240 		p = kstart;
3241 		while ((p - kstart) < len) {
3242 			int klen = readb(p + 2);
3243 			int j;
3244 			char type;
3245 
3246 			p += 3;
3247 
3248 			/* look for the following things:
3249 			 * -- correct length == 29
3250 			 * 3 (type) + 2 (size) +
3251 			 * 18 (strlen("local-mac-address") + 1) +
3252 			 * 6 (mac addr)
3253 			 * -- VPD Instance 'I'
3254 			 * -- VPD Type Bytes 'B'
3255 			 * -- VPD data length == 6
3256 			 * -- property string == local-mac-address
3257 			 *
3258 			 * -- correct length == 24
3259 			 * 3 (type) + 2 (size) +
3260 			 * 12 (strlen("entropy-dev") + 1) +
3261 			 * 7 (strlen("vms110") + 1)
3262 			 * -- VPD Instance 'I'
3263 			 * -- VPD Type String 'B'
3264 			 * -- VPD data length == 7
3265 			 * -- property string == entropy-dev
3266 			 *
3267 			 * -- correct length == 18
3268 			 * 3 (type) + 2 (size) +
3269 			 * 9 (strlen("phy-type") + 1) +
3270 			 * 4 (strlen("pcs") + 1)
3271 			 * -- VPD Instance 'I'
3272 			 * -- VPD Type String 'S'
3273 			 * -- VPD data length == 4
3274 			 * -- property string == phy-type
3275 			 *
3276 			 * -- correct length == 23
3277 			 * 3 (type) + 2 (size) +
3278 			 * 14 (strlen("phy-interface") + 1) +
3279 			 * 4 (strlen("pcs") + 1)
3280 			 * -- VPD Instance 'I'
3281 			 * -- VPD Type String 'S'
3282 			 * -- VPD data length == 4
3283 			 * -- property string == phy-interface
3284 			 */
3285 			if (readb(p) != 'I')
3286 				goto next;
3287 
3288 			/* finally, check string and length */
3289 			type = readb(p + 3);
3290 			if (type == 'B') {
3291 				if ((klen == 29) && readb(p + 4) == 6 &&
3292 				    cas_vpd_match(p + 5,
3293 						  "local-mac-address")) {
3294 					if (mac_off++ > offset)
3295 						goto next;
3296 
3297 					/* set mac address */
3298 					for (j = 0; j < 6; j++)
3299 						dev_addr[j] =
3300 							readb(p + 23 + j);
3301 					goto found_mac;
3302 				}
3303 			}
3304 
3305 			if (type != 'S')
3306 				goto next;
3307 
3308 #ifdef USE_ENTROPY_DEV
3309 			if ((klen == 24) &&
3310 			    cas_vpd_match(p + 5, "entropy-dev") &&
3311 			    cas_vpd_match(p + 17, "vms110")) {
3312 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3313 				goto next;
3314 			}
3315 #endif
3316 
3317 			if (found & VPD_FOUND_PHY)
3318 				goto next;
3319 
3320 			if ((klen == 18) && readb(p + 4) == 4 &&
3321 			    cas_vpd_match(p + 5, "phy-type")) {
3322 				if (cas_vpd_match(p + 14, "pcs")) {
3323 					phy_type = CAS_PHY_SERDES;
3324 					goto found_phy;
3325 				}
3326 			}
3327 
3328 			if ((klen == 23) && readb(p + 4) == 4 &&
3329 			    cas_vpd_match(p + 5, "phy-interface")) {
3330 				if (cas_vpd_match(p + 19, "pcs")) {
3331 					phy_type = CAS_PHY_SERDES;
3332 					goto found_phy;
3333 				}
3334 			}
3335 found_mac:
3336 			found |= VPD_FOUND_MAC;
3337 			goto next;
3338 
3339 found_phy:
3340 			found |= VPD_FOUND_PHY;
3341 
3342 next:
3343 			p += klen;
3344 		}
3345 		i += len + 3;
3346 	}
3347 
3348 use_random_mac_addr:
3349 	if (found & VPD_FOUND_MAC)
3350 		goto done;
3351 
3352 #if defined(CONFIG_SPARC)
3353 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3354 	if (addr != NULL) {
3355 		memcpy(dev_addr, addr, ETH_ALEN);
3356 		goto done;
3357 	}
3358 #endif
3359 
3360 	/* Sun MAC prefix then 3 random bytes. */
3361 	pr_info("MAC address not found in ROM VPD\n");
3362 	dev_addr[0] = 0x08;
3363 	dev_addr[1] = 0x00;
3364 	dev_addr[2] = 0x20;
3365 	get_random_bytes(dev_addr + 3, 3);
3366 
3367 done:
3368 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3369 	return phy_type;
3370 }
3371 
3372 /* check pci invariants */
3373 static void cas_check_pci_invariants(struct cas *cp)
3374 {
3375 	struct pci_dev *pdev = cp->pdev;
3376 
3377 	cp->cas_flags = 0;
3378 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3379 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3380 		if (pdev->revision >= CAS_ID_REVPLUS)
3381 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3382 		if (pdev->revision < CAS_ID_REVPLUS02u)
3383 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3384 
3385 		/* Original Cassini supports HW CSUM, but it's not
3386 		 * enabled by default as it can trigger TX hangs.
3387 		 */
3388 		if (pdev->revision < CAS_ID_REV2)
3389 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3390 	} else {
3391 		/* Only sun has original cassini chips.  */
3392 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3393 
3394 		/* We use a flag because the same phy might be externally
3395 		 * connected.
3396 		 */
3397 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3398 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3399 			cp->cas_flags |= CAS_FLAG_SATURN;
3400 	}
3401 }
3402 
3403 
3404 static int cas_check_invariants(struct cas *cp)
3405 {
3406 	struct pci_dev *pdev = cp->pdev;
3407 	u32 cfg;
3408 	int i;
3409 
3410 	/* get page size for rx buffers. */
3411 	cp->page_order = 0;
3412 #ifdef USE_PAGE_ORDER
3413 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3414 		/* see if we can allocate larger pages */
3415 		struct page *page = alloc_pages(GFP_ATOMIC,
3416 						CAS_JUMBO_PAGE_SHIFT -
3417 						PAGE_SHIFT);
3418 		if (page) {
3419 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3420 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3421 		} else {
3422 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3423 		}
3424 	}
3425 #endif
3426 	cp->page_size = (PAGE_SIZE << cp->page_order);
3427 
3428 	/* Fetch the FIFO configurations. */
3429 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3430 	cp->rx_fifo_size = RX_FIFO_SIZE;
3431 
3432 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433 	 * they're both connected.
3434 	 */
3435 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3436 					PCI_SLOT(pdev->devfn));
3437 	if (cp->phy_type & CAS_PHY_SERDES) {
3438 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3439 		return 0; /* no more checking needed */
3440 	}
3441 
3442 	/* MII */
3443 	cfg = readl(cp->regs + REG_MIF_CFG);
3444 	if (cfg & MIF_CFG_MDIO_1) {
3445 		cp->phy_type = CAS_PHY_MII_MDIO1;
3446 	} else if (cfg & MIF_CFG_MDIO_0) {
3447 		cp->phy_type = CAS_PHY_MII_MDIO0;
3448 	}
3449 
3450 	cas_mif_poll(cp, 0);
3451 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3452 
3453 	for (i = 0; i < 32; i++) {
3454 		u32 phy_id;
3455 		int j;
3456 
3457 		for (j = 0; j < 3; j++) {
3458 			cp->phy_addr = i;
3459 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3460 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3461 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3462 				cp->phy_id = phy_id;
3463 				goto done;
3464 			}
3465 		}
3466 	}
3467 	pr_err("MII phy did not respond [%08x]\n",
3468 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3469 	return -1;
3470 
3471 done:
3472 	/* see if we can do gigabit */
3473 	cfg = cas_phy_read(cp, MII_BMSR);
3474 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3475 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3476 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3477 	return 0;
3478 }
3479 
3480 /* Must be invoked under cp->lock. */
3481 static inline void cas_start_dma(struct cas *cp)
3482 {
3483 	int i;
3484 	u32 val;
3485 	int txfailed = 0;
3486 
3487 	/* enable dma */
3488 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3489 	writel(val, cp->regs + REG_TX_CFG);
3490 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3491 	writel(val, cp->regs + REG_RX_CFG);
3492 
3493 	/* enable the mac */
3494 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3495 	writel(val, cp->regs + REG_MAC_TX_CFG);
3496 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3497 	writel(val, cp->regs + REG_MAC_RX_CFG);
3498 
3499 	i = STOP_TRIES;
3500 	while (i-- > 0) {
3501 		val = readl(cp->regs + REG_MAC_TX_CFG);
3502 		if ((val & MAC_TX_CFG_EN))
3503 			break;
3504 		udelay(10);
3505 	}
3506 	if (i < 0) txfailed = 1;
3507 	i = STOP_TRIES;
3508 	while (i-- > 0) {
3509 		val = readl(cp->regs + REG_MAC_RX_CFG);
3510 		if ((val & MAC_RX_CFG_EN)) {
3511 			if (txfailed) {
3512 				netdev_err(cp->dev,
3513 					   "enabling mac failed [tx:%08x:%08x]\n",
3514 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3515 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3516 			}
3517 			goto enable_rx_done;
3518 		}
3519 		udelay(10);
3520 	}
3521 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3522 		   (txfailed ? "tx,rx" : "rx"),
3523 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3524 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3525 
3526 enable_rx_done:
3527 	cas_unmask_intr(cp); /* enable interrupts */
3528 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3529 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3530 
3531 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3532 		if (N_RX_DESC_RINGS > 1)
3533 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3534 			       cp->regs + REG_PLUS_RX_KICK1);
3535 
3536 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3537 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3538 	}
3539 }
3540 
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3543 				   int *pause)
3544 {
3545 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3546 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3547 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3548 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3549 		*pause |= 0x10;
3550 	*spd = 1000;
3551 }
3552 
3553 /* Must be invoked under cp->lock. */
3554 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3555 				   int *pause)
3556 {
3557 	u32 val;
3558 
3559 	*fd = 0;
3560 	*spd = 10;
3561 	*pause = 0;
3562 
3563 	/* use GMII registers */
3564 	val = cas_phy_read(cp, MII_LPA);
3565 	if (val & CAS_LPA_PAUSE)
3566 		*pause = 0x01;
3567 
3568 	if (val & CAS_LPA_ASYM_PAUSE)
3569 		*pause |= 0x10;
3570 
3571 	if (val & LPA_DUPLEX)
3572 		*fd = 1;
3573 	if (val & LPA_100)
3574 		*spd = 100;
3575 
3576 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3577 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3578 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3579 			*spd = 1000;
3580 		if (val & CAS_LPA_1000FULL)
3581 			*fd = 1;
3582 	}
3583 }
3584 
3585 /* A link-up condition has occurred, initialize and enable the
3586  * rest of the chip.
3587  *
3588  * Must be invoked under cp->lock.
3589  */
3590 static void cas_set_link_modes(struct cas *cp)
3591 {
3592 	u32 val;
3593 	int full_duplex, speed, pause;
3594 
3595 	full_duplex = 0;
3596 	speed = 10;
3597 	pause = 0;
3598 
3599 	if (CAS_PHY_MII(cp->phy_type)) {
3600 		cas_mif_poll(cp, 0);
3601 		val = cas_phy_read(cp, MII_BMCR);
3602 		if (val & BMCR_ANENABLE) {
3603 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3604 					       &pause);
3605 		} else {
3606 			if (val & BMCR_FULLDPLX)
3607 				full_duplex = 1;
3608 
3609 			if (val & BMCR_SPEED100)
3610 				speed = 100;
3611 			else if (val & CAS_BMCR_SPEED1000)
3612 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3613 					1000 : 100;
3614 		}
3615 		cas_mif_poll(cp, 1);
3616 
3617 	} else {
3618 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3619 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3620 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3621 			if (val & PCS_MII_CTRL_DUPLEX)
3622 				full_duplex = 1;
3623 		}
3624 	}
3625 
3626 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3627 		   speed, full_duplex ? "full" : "half");
3628 
3629 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3630 	if (CAS_PHY_MII(cp->phy_type)) {
3631 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3632 		if (!full_duplex)
3633 			val |= MAC_XIF_DISABLE_ECHO;
3634 	}
3635 	if (full_duplex)
3636 		val |= MAC_XIF_FDPLX_LED;
3637 	if (speed == 1000)
3638 		val |= MAC_XIF_GMII_MODE;
3639 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3640 
3641 	/* deal with carrier and collision detect. */
3642 	val = MAC_TX_CFG_IPG_EN;
3643 	if (full_duplex) {
3644 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3645 		val |= MAC_TX_CFG_IGNORE_COLL;
3646 	} else {
3647 #ifndef USE_CSMA_CD_PROTO
3648 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3649 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3650 #endif
3651 	}
3652 	/* val now set up for REG_MAC_TX_CFG */
3653 
3654 	/* If gigabit and half-duplex, enable carrier extension
3655 	 * mode.  increase slot time to 512 bytes as well.
3656 	 * else, disable it and make sure slot time is 64 bytes.
3657 	 * also activate checksum bug workaround
3658 	 */
3659 	if ((speed == 1000) && !full_duplex) {
3660 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3661 		       cp->regs + REG_MAC_TX_CFG);
3662 
3663 		val = readl(cp->regs + REG_MAC_RX_CFG);
3664 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3665 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3666 		       cp->regs + REG_MAC_RX_CFG);
3667 
3668 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3669 
3670 		cp->crc_size = 4;
3671 		/* minimum size gigabit frame at half duplex */
3672 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3673 
3674 	} else {
3675 		writel(val, cp->regs + REG_MAC_TX_CFG);
3676 
3677 		/* checksum bug workaround. don't strip FCS when in
3678 		 * half-duplex mode
3679 		 */
3680 		val = readl(cp->regs + REG_MAC_RX_CFG);
3681 		if (full_duplex) {
3682 			val |= MAC_RX_CFG_STRIP_FCS;
3683 			cp->crc_size = 0;
3684 			cp->min_frame_size = CAS_MIN_MTU;
3685 		} else {
3686 			val &= ~MAC_RX_CFG_STRIP_FCS;
3687 			cp->crc_size = 4;
3688 			cp->min_frame_size = CAS_MIN_FRAME;
3689 		}
3690 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3691 		       cp->regs + REG_MAC_RX_CFG);
3692 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3693 	}
3694 
3695 	if (netif_msg_link(cp)) {
3696 		if (pause & 0x01) {
3697 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3698 				    cp->rx_fifo_size,
3699 				    cp->rx_pause_off,
3700 				    cp->rx_pause_on);
3701 		} else if (pause & 0x10) {
3702 			netdev_info(cp->dev, "TX pause enabled\n");
3703 		} else {
3704 			netdev_info(cp->dev, "Pause is disabled\n");
3705 		}
3706 	}
3707 
3708 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3709 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3710 	if (pause) { /* symmetric or asymmetric pause */
3711 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3712 		if (pause & 0x01) { /* symmetric pause */
3713 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3714 		}
3715 	}
3716 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3717 	cas_start_dma(cp);
3718 }
3719 
3720 /* Must be invoked under cp->lock. */
3721 static void cas_init_hw(struct cas *cp, int restart_link)
3722 {
3723 	if (restart_link)
3724 		cas_phy_init(cp);
3725 
3726 	cas_init_pause_thresholds(cp);
3727 	cas_init_mac(cp);
3728 	cas_init_dma(cp);
3729 
3730 	if (restart_link) {
3731 		/* Default aneg parameters */
3732 		cp->timer_ticks = 0;
3733 		cas_begin_auto_negotiation(cp, NULL);
3734 	} else if (cp->lstate == link_up) {
3735 		cas_set_link_modes(cp);
3736 		netif_carrier_on(cp->dev);
3737 	}
3738 }
3739 
3740 /* Must be invoked under cp->lock. on earlier cassini boards,
3741  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742  * let it settle out, and then restore pci state.
3743  */
3744 static void cas_hard_reset(struct cas *cp)
3745 {
3746 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3747 	udelay(20);
3748 	pci_restore_state(cp->pdev);
3749 }
3750 
3751 
3752 static void cas_global_reset(struct cas *cp, int blkflag)
3753 {
3754 	int limit;
3755 
3756 	/* issue a global reset. don't use RSTOUT. */
3757 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3758 		/* For PCS, when the blkflag is set, we should set the
3759 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760 		 * the last autonegotiation from being cleared.  We'll
3761 		 * need some special handling if the chip is set into a
3762 		 * loopback mode.
3763 		 */
3764 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3765 		       cp->regs + REG_SW_RESET);
3766 	} else {
3767 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3768 	}
3769 
3770 	/* need to wait at least 3ms before polling register */
3771 	mdelay(3);
3772 
3773 	limit = STOP_TRIES;
3774 	while (limit-- > 0) {
3775 		u32 val = readl(cp->regs + REG_SW_RESET);
3776 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3777 			goto done;
3778 		udelay(10);
3779 	}
3780 	netdev_err(cp->dev, "sw reset failed\n");
3781 
3782 done:
3783 	/* enable various BIM interrupts */
3784 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3785 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3786 
3787 	/* clear out pci error status mask for handled errors.
3788 	 * we don't deal with DMA counter overflows as they happen
3789 	 * all the time.
3790 	 */
3791 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3792 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3793 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3794 	       REG_PCI_ERR_STATUS_MASK);
3795 
3796 	/* set up for MII by default to address mac rx reset timeout
3797 	 * issue
3798 	 */
3799 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3800 }
3801 
3802 static void cas_reset(struct cas *cp, int blkflag)
3803 {
3804 	u32 val;
3805 
3806 	cas_mask_intr(cp);
3807 	cas_global_reset(cp, blkflag);
3808 	cas_mac_reset(cp);
3809 	cas_entropy_reset(cp);
3810 
3811 	/* disable dma engines. */
3812 	val = readl(cp->regs + REG_TX_CFG);
3813 	val &= ~TX_CFG_DMA_EN;
3814 	writel(val, cp->regs + REG_TX_CFG);
3815 
3816 	val = readl(cp->regs + REG_RX_CFG);
3817 	val &= ~RX_CFG_DMA_EN;
3818 	writel(val, cp->regs + REG_RX_CFG);
3819 
3820 	/* program header parser */
3821 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3822 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3823 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3824 	} else {
3825 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3826 	}
3827 
3828 	/* clear out error registers */
3829 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3830 	cas_clear_mac_err(cp);
3831 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3832 }
3833 
3834 /* Shut down the chip, must be called with pm_mutex held.  */
3835 static void cas_shutdown(struct cas *cp)
3836 {
3837 	unsigned long flags;
3838 
3839 	/* Make us not-running to avoid timers respawning */
3840 	cp->hw_running = 0;
3841 
3842 	del_timer_sync(&cp->link_timer);
3843 
3844 	/* Stop the reset task */
3845 #if 0
3846 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3847 	       atomic_read(&cp->reset_task_pending_spare) ||
3848 	       atomic_read(&cp->reset_task_pending_all))
3849 		schedule();
3850 
3851 #else
3852 	while (atomic_read(&cp->reset_task_pending))
3853 		schedule();
3854 #endif
3855 	/* Actually stop the chip */
3856 	cas_lock_all_save(cp, flags);
3857 	cas_reset(cp, 0);
3858 	if (cp->cas_flags & CAS_FLAG_SATURN)
3859 		cas_phy_powerdown(cp);
3860 	cas_unlock_all_restore(cp, flags);
3861 }
3862 
3863 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3864 {
3865 	struct cas *cp = netdev_priv(dev);
3866 
3867 	dev->mtu = new_mtu;
3868 	if (!netif_running(dev) || !netif_device_present(dev))
3869 		return 0;
3870 
3871 	/* let the reset task handle it */
3872 #if 1
3873 	atomic_inc(&cp->reset_task_pending);
3874 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3875 		atomic_inc(&cp->reset_task_pending_all);
3876 	} else {
3877 		atomic_inc(&cp->reset_task_pending_mtu);
3878 	}
3879 	schedule_work(&cp->reset_task);
3880 #else
3881 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3882 		   CAS_RESET_ALL : CAS_RESET_MTU);
3883 	pr_err("reset called in cas_change_mtu\n");
3884 	schedule_work(&cp->reset_task);
3885 #endif
3886 
3887 	flush_work(&cp->reset_task);
3888 	return 0;
3889 }
3890 
3891 static void cas_clean_txd(struct cas *cp, int ring)
3892 {
3893 	struct cas_tx_desc *txd = cp->init_txds[ring];
3894 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3895 	u64 daddr, dlen;
3896 	int i, size;
3897 
3898 	size = TX_DESC_RINGN_SIZE(ring);
3899 	for (i = 0; i < size; i++) {
3900 		int frag;
3901 
3902 		if (skbs[i] == NULL)
3903 			continue;
3904 
3905 		skb = skbs[i];
3906 		skbs[i] = NULL;
3907 
3908 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3909 			int ent = i & (size - 1);
3910 
3911 			/* first buffer is never a tiny buffer and so
3912 			 * needs to be unmapped.
3913 			 */
3914 			daddr = le64_to_cpu(txd[ent].buffer);
3915 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3916 					 le64_to_cpu(txd[ent].control));
3917 			pci_unmap_page(cp->pdev, daddr, dlen,
3918 				       PCI_DMA_TODEVICE);
3919 
3920 			if (frag != skb_shinfo(skb)->nr_frags) {
3921 				i++;
3922 
3923 				/* next buffer might by a tiny buffer.
3924 				 * skip past it.
3925 				 */
3926 				ent = i & (size - 1);
3927 				if (cp->tx_tiny_use[ring][ent].used)
3928 					i++;
3929 			}
3930 		}
3931 		dev_kfree_skb_any(skb);
3932 	}
3933 
3934 	/* zero out tiny buf usage */
3935 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3936 }
3937 
3938 /* freed on close */
3939 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3940 {
3941 	cas_page_t **page = cp->rx_pages[ring];
3942 	int i, size;
3943 
3944 	size = RX_DESC_RINGN_SIZE(ring);
3945 	for (i = 0; i < size; i++) {
3946 		if (page[i]) {
3947 			cas_page_free(cp, page[i]);
3948 			page[i] = NULL;
3949 		}
3950 	}
3951 }
3952 
3953 static void cas_free_rxds(struct cas *cp)
3954 {
3955 	int i;
3956 
3957 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3958 		cas_free_rx_desc(cp, i);
3959 }
3960 
3961 /* Must be invoked under cp->lock. */
3962 static void cas_clean_rings(struct cas *cp)
3963 {
3964 	int i;
3965 
3966 	/* need to clean all tx rings */
3967 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3968 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3969 	for (i = 0; i < N_TX_RINGS; i++)
3970 		cas_clean_txd(cp, i);
3971 
3972 	/* zero out init block */
3973 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3974 	cas_clean_rxds(cp);
3975 	cas_clean_rxcs(cp);
3976 }
3977 
3978 /* allocated on open */
3979 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3980 {
3981 	cas_page_t **page = cp->rx_pages[ring];
3982 	int size, i = 0;
3983 
3984 	size = RX_DESC_RINGN_SIZE(ring);
3985 	for (i = 0; i < size; i++) {
3986 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3987 			return -1;
3988 	}
3989 	return 0;
3990 }
3991 
3992 static int cas_alloc_rxds(struct cas *cp)
3993 {
3994 	int i;
3995 
3996 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3997 		if (cas_alloc_rx_desc(cp, i) < 0) {
3998 			cas_free_rxds(cp);
3999 			return -1;
4000 		}
4001 	}
4002 	return 0;
4003 }
4004 
4005 static void cas_reset_task(struct work_struct *work)
4006 {
4007 	struct cas *cp = container_of(work, struct cas, reset_task);
4008 #if 0
4009 	int pending = atomic_read(&cp->reset_task_pending);
4010 #else
4011 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4012 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4013 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4014 
4015 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4016 		/* We can have more tasks scheduled than actually
4017 		 * needed.
4018 		 */
4019 		atomic_dec(&cp->reset_task_pending);
4020 		return;
4021 	}
4022 #endif
4023 	/* The link went down, we reset the ring, but keep
4024 	 * DMA stopped. Use this function for reset
4025 	 * on error as well.
4026 	 */
4027 	if (cp->hw_running) {
4028 		unsigned long flags;
4029 
4030 		/* Make sure we don't get interrupts or tx packets */
4031 		netif_device_detach(cp->dev);
4032 		cas_lock_all_save(cp, flags);
4033 
4034 		if (cp->opened) {
4035 			/* We call cas_spare_recover when we call cas_open.
4036 			 * but we do not initialize the lists cas_spare_recover
4037 			 * uses until cas_open is called.
4038 			 */
4039 			cas_spare_recover(cp, GFP_ATOMIC);
4040 		}
4041 #if 1
4042 		/* test => only pending_spare set */
4043 		if (!pending_all && !pending_mtu)
4044 			goto done;
4045 #else
4046 		if (pending == CAS_RESET_SPARE)
4047 			goto done;
4048 #endif
4049 		/* when pending == CAS_RESET_ALL, the following
4050 		 * call to cas_init_hw will restart auto negotiation.
4051 		 * Setting the second argument of cas_reset to
4052 		 * !(pending == CAS_RESET_ALL) will set this argument
4053 		 * to 1 (avoiding reinitializing the PHY for the normal
4054 		 * PCS case) when auto negotiation is not restarted.
4055 		 */
4056 #if 1
4057 		cas_reset(cp, !(pending_all > 0));
4058 		if (cp->opened)
4059 			cas_clean_rings(cp);
4060 		cas_init_hw(cp, (pending_all > 0));
4061 #else
4062 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4063 		if (cp->opened)
4064 			cas_clean_rings(cp);
4065 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4066 #endif
4067 
4068 done:
4069 		cas_unlock_all_restore(cp, flags);
4070 		netif_device_attach(cp->dev);
4071 	}
4072 #if 1
4073 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4074 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4075 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4076 	atomic_dec(&cp->reset_task_pending);
4077 #else
4078 	atomic_set(&cp->reset_task_pending, 0);
4079 #endif
4080 }
4081 
4082 static void cas_link_timer(unsigned long data)
4083 {
4084 	struct cas *cp = (struct cas *) data;
4085 	int mask, pending = 0, reset = 0;
4086 	unsigned long flags;
4087 
4088 	if (link_transition_timeout != 0 &&
4089 	    cp->link_transition_jiffies_valid &&
4090 	    ((jiffies - cp->link_transition_jiffies) >
4091 	      (link_transition_timeout))) {
4092 		/* One-second counter so link-down workaround doesn't
4093 		 * cause resets to occur so fast as to fool the switch
4094 		 * into thinking the link is down.
4095 		 */
4096 		cp->link_transition_jiffies_valid = 0;
4097 	}
4098 
4099 	if (!cp->hw_running)
4100 		return;
4101 
4102 	spin_lock_irqsave(&cp->lock, flags);
4103 	cas_lock_tx(cp);
4104 	cas_entropy_gather(cp);
4105 
4106 	/* If the link task is still pending, we just
4107 	 * reschedule the link timer
4108 	 */
4109 #if 1
4110 	if (atomic_read(&cp->reset_task_pending_all) ||
4111 	    atomic_read(&cp->reset_task_pending_spare) ||
4112 	    atomic_read(&cp->reset_task_pending_mtu))
4113 		goto done;
4114 #else
4115 	if (atomic_read(&cp->reset_task_pending))
4116 		goto done;
4117 #endif
4118 
4119 	/* check for rx cleaning */
4120 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4121 		int i, rmask;
4122 
4123 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4124 			rmask = CAS_FLAG_RXD_POST(i);
4125 			if ((mask & rmask) == 0)
4126 				continue;
4127 
4128 			/* post_rxds will do a mod_timer */
4129 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4130 				pending = 1;
4131 				continue;
4132 			}
4133 			cp->cas_flags &= ~rmask;
4134 		}
4135 	}
4136 
4137 	if (CAS_PHY_MII(cp->phy_type)) {
4138 		u16 bmsr;
4139 		cas_mif_poll(cp, 0);
4140 		bmsr = cas_phy_read(cp, MII_BMSR);
4141 		/* WTZ: Solaris driver reads this twice, but that
4142 		 * may be due to the PCS case and the use of a
4143 		 * common implementation. Read it twice here to be
4144 		 * safe.
4145 		 */
4146 		bmsr = cas_phy_read(cp, MII_BMSR);
4147 		cas_mif_poll(cp, 1);
4148 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4149 		reset = cas_mii_link_check(cp, bmsr);
4150 	} else {
4151 		reset = cas_pcs_link_check(cp);
4152 	}
4153 
4154 	if (reset)
4155 		goto done;
4156 
4157 	/* check for tx state machine confusion */
4158 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4159 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4160 		u32 wptr, rptr;
4161 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4162 
4163 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4164 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4165 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4166 				     "tx err: MAC_STATE[%08x]\n", val);
4167 			reset = 1;
4168 			goto done;
4169 		}
4170 
4171 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4172 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4173 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4174 		if ((val == 0) && (wptr != rptr)) {
4175 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4176 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4177 				     val, wptr, rptr);
4178 			reset = 1;
4179 		}
4180 
4181 		if (reset)
4182 			cas_hard_reset(cp);
4183 	}
4184 
4185 done:
4186 	if (reset) {
4187 #if 1
4188 		atomic_inc(&cp->reset_task_pending);
4189 		atomic_inc(&cp->reset_task_pending_all);
4190 		schedule_work(&cp->reset_task);
4191 #else
4192 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4193 		pr_err("reset called in cas_link_timer\n");
4194 		schedule_work(&cp->reset_task);
4195 #endif
4196 	}
4197 
4198 	if (!pending)
4199 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4200 	cas_unlock_tx(cp);
4201 	spin_unlock_irqrestore(&cp->lock, flags);
4202 }
4203 
4204 /* tiny buffers are used to avoid target abort issues with
4205  * older cassini's
4206  */
4207 static void cas_tx_tiny_free(struct cas *cp)
4208 {
4209 	struct pci_dev *pdev = cp->pdev;
4210 	int i;
4211 
4212 	for (i = 0; i < N_TX_RINGS; i++) {
4213 		if (!cp->tx_tiny_bufs[i])
4214 			continue;
4215 
4216 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4217 				    cp->tx_tiny_bufs[i],
4218 				    cp->tx_tiny_dvma[i]);
4219 		cp->tx_tiny_bufs[i] = NULL;
4220 	}
4221 }
4222 
4223 static int cas_tx_tiny_alloc(struct cas *cp)
4224 {
4225 	struct pci_dev *pdev = cp->pdev;
4226 	int i;
4227 
4228 	for (i = 0; i < N_TX_RINGS; i++) {
4229 		cp->tx_tiny_bufs[i] =
4230 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4231 					     &cp->tx_tiny_dvma[i]);
4232 		if (!cp->tx_tiny_bufs[i]) {
4233 			cas_tx_tiny_free(cp);
4234 			return -1;
4235 		}
4236 	}
4237 	return 0;
4238 }
4239 
4240 
4241 static int cas_open(struct net_device *dev)
4242 {
4243 	struct cas *cp = netdev_priv(dev);
4244 	int hw_was_up, err;
4245 	unsigned long flags;
4246 
4247 	mutex_lock(&cp->pm_mutex);
4248 
4249 	hw_was_up = cp->hw_running;
4250 
4251 	/* The power-management mutex protects the hw_running
4252 	 * etc. state so it is safe to do this bit without cp->lock
4253 	 */
4254 	if (!cp->hw_running) {
4255 		/* Reset the chip */
4256 		cas_lock_all_save(cp, flags);
4257 		/* We set the second arg to cas_reset to zero
4258 		 * because cas_init_hw below will have its second
4259 		 * argument set to non-zero, which will force
4260 		 * autonegotiation to start.
4261 		 */
4262 		cas_reset(cp, 0);
4263 		cp->hw_running = 1;
4264 		cas_unlock_all_restore(cp, flags);
4265 	}
4266 
4267 	err = -ENOMEM;
4268 	if (cas_tx_tiny_alloc(cp) < 0)
4269 		goto err_unlock;
4270 
4271 	/* alloc rx descriptors */
4272 	if (cas_alloc_rxds(cp) < 0)
4273 		goto err_tx_tiny;
4274 
4275 	/* allocate spares */
4276 	cas_spare_init(cp);
4277 	cas_spare_recover(cp, GFP_KERNEL);
4278 
4279 	/* We can now request the interrupt as we know it's masked
4280 	 * on the controller. cassini+ has up to 4 interrupts
4281 	 * that can be used, but you need to do explicit pci interrupt
4282 	 * mapping to expose them
4283 	 */
4284 	if (request_irq(cp->pdev->irq, cas_interrupt,
4285 			IRQF_SHARED, dev->name, (void *) dev)) {
4286 		netdev_err(cp->dev, "failed to request irq !\n");
4287 		err = -EAGAIN;
4288 		goto err_spare;
4289 	}
4290 
4291 #ifdef USE_NAPI
4292 	napi_enable(&cp->napi);
4293 #endif
4294 	/* init hw */
4295 	cas_lock_all_save(cp, flags);
4296 	cas_clean_rings(cp);
4297 	cas_init_hw(cp, !hw_was_up);
4298 	cp->opened = 1;
4299 	cas_unlock_all_restore(cp, flags);
4300 
4301 	netif_start_queue(dev);
4302 	mutex_unlock(&cp->pm_mutex);
4303 	return 0;
4304 
4305 err_spare:
4306 	cas_spare_free(cp);
4307 	cas_free_rxds(cp);
4308 err_tx_tiny:
4309 	cas_tx_tiny_free(cp);
4310 err_unlock:
4311 	mutex_unlock(&cp->pm_mutex);
4312 	return err;
4313 }
4314 
4315 static int cas_close(struct net_device *dev)
4316 {
4317 	unsigned long flags;
4318 	struct cas *cp = netdev_priv(dev);
4319 
4320 #ifdef USE_NAPI
4321 	napi_disable(&cp->napi);
4322 #endif
4323 	/* Make sure we don't get distracted by suspend/resume */
4324 	mutex_lock(&cp->pm_mutex);
4325 
4326 	netif_stop_queue(dev);
4327 
4328 	/* Stop traffic, mark us closed */
4329 	cas_lock_all_save(cp, flags);
4330 	cp->opened = 0;
4331 	cas_reset(cp, 0);
4332 	cas_phy_init(cp);
4333 	cas_begin_auto_negotiation(cp, NULL);
4334 	cas_clean_rings(cp);
4335 	cas_unlock_all_restore(cp, flags);
4336 
4337 	free_irq(cp->pdev->irq, (void *) dev);
4338 	cas_spare_free(cp);
4339 	cas_free_rxds(cp);
4340 	cas_tx_tiny_free(cp);
4341 	mutex_unlock(&cp->pm_mutex);
4342 	return 0;
4343 }
4344 
4345 static struct {
4346 	const char name[ETH_GSTRING_LEN];
4347 } ethtool_cassini_statnames[] = {
4348 	{"collisions"},
4349 	{"rx_bytes"},
4350 	{"rx_crc_errors"},
4351 	{"rx_dropped"},
4352 	{"rx_errors"},
4353 	{"rx_fifo_errors"},
4354 	{"rx_frame_errors"},
4355 	{"rx_length_errors"},
4356 	{"rx_over_errors"},
4357 	{"rx_packets"},
4358 	{"tx_aborted_errors"},
4359 	{"tx_bytes"},
4360 	{"tx_dropped"},
4361 	{"tx_errors"},
4362 	{"tx_fifo_errors"},
4363 	{"tx_packets"}
4364 };
4365 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4366 
4367 static struct {
4368 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4369 } ethtool_register_table[] = {
4370 	{-MII_BMSR},
4371 	{-MII_BMCR},
4372 	{REG_CAWR},
4373 	{REG_INF_BURST},
4374 	{REG_BIM_CFG},
4375 	{REG_RX_CFG},
4376 	{REG_HP_CFG},
4377 	{REG_MAC_TX_CFG},
4378 	{REG_MAC_RX_CFG},
4379 	{REG_MAC_CTRL_CFG},
4380 	{REG_MAC_XIF_CFG},
4381 	{REG_MIF_CFG},
4382 	{REG_PCS_CFG},
4383 	{REG_SATURN_PCFG},
4384 	{REG_PCS_MII_STATUS},
4385 	{REG_PCS_STATE_MACHINE},
4386 	{REG_MAC_COLL_EXCESS},
4387 	{REG_MAC_COLL_LATE}
4388 };
4389 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4390 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4391 
4392 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4393 {
4394 	u8 *p;
4395 	int i;
4396 	unsigned long flags;
4397 
4398 	spin_lock_irqsave(&cp->lock, flags);
4399 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4400 		u16 hval;
4401 		u32 val;
4402 		if (ethtool_register_table[i].offsets < 0) {
4403 			hval = cas_phy_read(cp,
4404 				    -ethtool_register_table[i].offsets);
4405 			val = hval;
4406 		} else {
4407 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4408 		}
4409 		memcpy(p, (u8 *)&val, sizeof(u32));
4410 	}
4411 	spin_unlock_irqrestore(&cp->lock, flags);
4412 }
4413 
4414 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4415 {
4416 	struct cas *cp = netdev_priv(dev);
4417 	struct net_device_stats *stats = cp->net_stats;
4418 	unsigned long flags;
4419 	int i;
4420 	unsigned long tmp;
4421 
4422 	/* we collate all of the stats into net_stats[N_TX_RING] */
4423 	if (!cp->hw_running)
4424 		return stats + N_TX_RINGS;
4425 
4426 	/* collect outstanding stats */
4427 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4428 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4429 	 * in case the chip somehow puts any garbage in the other bits.
4430 	 * Also, counter usage didn't seem to mach what Adrian did
4431 	 * in the parts of the code that set these quantities. Made
4432 	 * that consistent.
4433 	 */
4434 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4435 	stats[N_TX_RINGS].rx_crc_errors +=
4436 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4437 	stats[N_TX_RINGS].rx_frame_errors +=
4438 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4439 	stats[N_TX_RINGS].rx_length_errors +=
4440 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4441 #if 1
4442 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4443 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4444 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4445 	stats[N_TX_RINGS].collisions +=
4446 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4447 #else
4448 	stats[N_TX_RINGS].tx_aborted_errors +=
4449 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4450 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4451 		readl(cp->regs + REG_MAC_COLL_LATE);
4452 #endif
4453 	cas_clear_mac_err(cp);
4454 
4455 	/* saved bits that are unique to ring 0 */
4456 	spin_lock(&cp->stat_lock[0]);
4457 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4458 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4459 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4460 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4461 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4462 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4463 	spin_unlock(&cp->stat_lock[0]);
4464 
4465 	for (i = 0; i < N_TX_RINGS; i++) {
4466 		spin_lock(&cp->stat_lock[i]);
4467 		stats[N_TX_RINGS].rx_length_errors +=
4468 			stats[i].rx_length_errors;
4469 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4470 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4471 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4472 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4473 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4474 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4475 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4476 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4477 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4478 		memset(stats + i, 0, sizeof(struct net_device_stats));
4479 		spin_unlock(&cp->stat_lock[i]);
4480 	}
4481 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4482 	return stats + N_TX_RINGS;
4483 }
4484 
4485 
4486 static void cas_set_multicast(struct net_device *dev)
4487 {
4488 	struct cas *cp = netdev_priv(dev);
4489 	u32 rxcfg, rxcfg_new;
4490 	unsigned long flags;
4491 	int limit = STOP_TRIES;
4492 
4493 	if (!cp->hw_running)
4494 		return;
4495 
4496 	spin_lock_irqsave(&cp->lock, flags);
4497 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4498 
4499 	/* disable RX MAC and wait for completion */
4500 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4501 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4502 		if (!limit--)
4503 			break;
4504 		udelay(10);
4505 	}
4506 
4507 	/* disable hash filter and wait for completion */
4508 	limit = STOP_TRIES;
4509 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4510 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4511 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4512 		if (!limit--)
4513 			break;
4514 		udelay(10);
4515 	}
4516 
4517 	/* program hash filters */
4518 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4519 	rxcfg |= rxcfg_new;
4520 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4521 	spin_unlock_irqrestore(&cp->lock, flags);
4522 }
4523 
4524 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4525 {
4526 	struct cas *cp = netdev_priv(dev);
4527 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4528 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4529 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4530 }
4531 
4532 static int cas_get_link_ksettings(struct net_device *dev,
4533 				  struct ethtool_link_ksettings *cmd)
4534 {
4535 	struct cas *cp = netdev_priv(dev);
4536 	u16 bmcr;
4537 	int full_duplex, speed, pause;
4538 	unsigned long flags;
4539 	enum link_state linkstate = link_up;
4540 	u32 supported, advertising;
4541 
4542 	advertising = 0;
4543 	supported = SUPPORTED_Autoneg;
4544 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4545 		supported |= SUPPORTED_1000baseT_Full;
4546 		advertising |= ADVERTISED_1000baseT_Full;
4547 	}
4548 
4549 	/* Record PHY settings if HW is on. */
4550 	spin_lock_irqsave(&cp->lock, flags);
4551 	bmcr = 0;
4552 	linkstate = cp->lstate;
4553 	if (CAS_PHY_MII(cp->phy_type)) {
4554 		cmd->base.port = PORT_MII;
4555 		cmd->base.phy_address = cp->phy_addr;
4556 		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4557 			ADVERTISED_10baseT_Half |
4558 			ADVERTISED_10baseT_Full |
4559 			ADVERTISED_100baseT_Half |
4560 			ADVERTISED_100baseT_Full;
4561 
4562 		supported |=
4563 			(SUPPORTED_10baseT_Half |
4564 			 SUPPORTED_10baseT_Full |
4565 			 SUPPORTED_100baseT_Half |
4566 			 SUPPORTED_100baseT_Full |
4567 			 SUPPORTED_TP | SUPPORTED_MII);
4568 
4569 		if (cp->hw_running) {
4570 			cas_mif_poll(cp, 0);
4571 			bmcr = cas_phy_read(cp, MII_BMCR);
4572 			cas_read_mii_link_mode(cp, &full_duplex,
4573 					       &speed, &pause);
4574 			cas_mif_poll(cp, 1);
4575 		}
4576 
4577 	} else {
4578 		cmd->base.port = PORT_FIBRE;
4579 		cmd->base.phy_address = 0;
4580 		supported   |= SUPPORTED_FIBRE;
4581 		advertising |= ADVERTISED_FIBRE;
4582 
4583 		if (cp->hw_running) {
4584 			/* pcs uses the same bits as mii */
4585 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4586 			cas_read_pcs_link_mode(cp, &full_duplex,
4587 					       &speed, &pause);
4588 		}
4589 	}
4590 	spin_unlock_irqrestore(&cp->lock, flags);
4591 
4592 	if (bmcr & BMCR_ANENABLE) {
4593 		advertising |= ADVERTISED_Autoneg;
4594 		cmd->base.autoneg = AUTONEG_ENABLE;
4595 		cmd->base.speed =  ((speed == 10) ?
4596 					    SPEED_10 :
4597 					    ((speed == 1000) ?
4598 					     SPEED_1000 : SPEED_100));
4599 		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4600 	} else {
4601 		cmd->base.autoneg = AUTONEG_DISABLE;
4602 		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4603 					    SPEED_1000 :
4604 					    ((bmcr & BMCR_SPEED100) ?
4605 					     SPEED_100 : SPEED_10));
4606 		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4607 			DUPLEX_FULL : DUPLEX_HALF;
4608 	}
4609 	if (linkstate != link_up) {
4610 		/* Force these to "unknown" if the link is not up and
4611 		 * autonogotiation in enabled. We can set the link
4612 		 * speed to 0, but not cmd->duplex,
4613 		 * because its legal values are 0 and 1.  Ethtool will
4614 		 * print the value reported in parentheses after the
4615 		 * word "Unknown" for unrecognized values.
4616 		 *
4617 		 * If in forced mode, we report the speed and duplex
4618 		 * settings that we configured.
4619 		 */
4620 		if (cp->link_cntl & BMCR_ANENABLE) {
4621 			cmd->base.speed = 0;
4622 			cmd->base.duplex = 0xff;
4623 		} else {
4624 			cmd->base.speed = SPEED_10;
4625 			if (cp->link_cntl & BMCR_SPEED100) {
4626 				cmd->base.speed = SPEED_100;
4627 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4628 				cmd->base.speed = SPEED_1000;
4629 			}
4630 			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4631 				DUPLEX_FULL : DUPLEX_HALF;
4632 		}
4633 	}
4634 
4635 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4636 						supported);
4637 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4638 						advertising);
4639 
4640 	return 0;
4641 }
4642 
4643 static int cas_set_link_ksettings(struct net_device *dev,
4644 				  const struct ethtool_link_ksettings *cmd)
4645 {
4646 	struct cas *cp = netdev_priv(dev);
4647 	unsigned long flags;
4648 	u32 speed = cmd->base.speed;
4649 
4650 	/* Verify the settings we care about. */
4651 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4652 	    cmd->base.autoneg != AUTONEG_DISABLE)
4653 		return -EINVAL;
4654 
4655 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4656 	    ((speed != SPEED_1000 &&
4657 	      speed != SPEED_100 &&
4658 	      speed != SPEED_10) ||
4659 	     (cmd->base.duplex != DUPLEX_HALF &&
4660 	      cmd->base.duplex != DUPLEX_FULL)))
4661 		return -EINVAL;
4662 
4663 	/* Apply settings and restart link process. */
4664 	spin_lock_irqsave(&cp->lock, flags);
4665 	cas_begin_auto_negotiation(cp, cmd);
4666 	spin_unlock_irqrestore(&cp->lock, flags);
4667 	return 0;
4668 }
4669 
4670 static int cas_nway_reset(struct net_device *dev)
4671 {
4672 	struct cas *cp = netdev_priv(dev);
4673 	unsigned long flags;
4674 
4675 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4676 		return -EINVAL;
4677 
4678 	/* Restart link process. */
4679 	spin_lock_irqsave(&cp->lock, flags);
4680 	cas_begin_auto_negotiation(cp, NULL);
4681 	spin_unlock_irqrestore(&cp->lock, flags);
4682 
4683 	return 0;
4684 }
4685 
4686 static u32 cas_get_link(struct net_device *dev)
4687 {
4688 	struct cas *cp = netdev_priv(dev);
4689 	return cp->lstate == link_up;
4690 }
4691 
4692 static u32 cas_get_msglevel(struct net_device *dev)
4693 {
4694 	struct cas *cp = netdev_priv(dev);
4695 	return cp->msg_enable;
4696 }
4697 
4698 static void cas_set_msglevel(struct net_device *dev, u32 value)
4699 {
4700 	struct cas *cp = netdev_priv(dev);
4701 	cp->msg_enable = value;
4702 }
4703 
4704 static int cas_get_regs_len(struct net_device *dev)
4705 {
4706 	struct cas *cp = netdev_priv(dev);
4707 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4708 }
4709 
4710 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4711 			     void *p)
4712 {
4713 	struct cas *cp = netdev_priv(dev);
4714 	regs->version = 0;
4715 	/* cas_read_regs handles locks (cp->lock).  */
4716 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4717 }
4718 
4719 static int cas_get_sset_count(struct net_device *dev, int sset)
4720 {
4721 	switch (sset) {
4722 	case ETH_SS_STATS:
4723 		return CAS_NUM_STAT_KEYS;
4724 	default:
4725 		return -EOPNOTSUPP;
4726 	}
4727 }
4728 
4729 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4730 {
4731 	 memcpy(data, &ethtool_cassini_statnames,
4732 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4733 }
4734 
4735 static void cas_get_ethtool_stats(struct net_device *dev,
4736 				      struct ethtool_stats *estats, u64 *data)
4737 {
4738 	struct cas *cp = netdev_priv(dev);
4739 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4740 	int i = 0;
4741 	data[i++] = stats->collisions;
4742 	data[i++] = stats->rx_bytes;
4743 	data[i++] = stats->rx_crc_errors;
4744 	data[i++] = stats->rx_dropped;
4745 	data[i++] = stats->rx_errors;
4746 	data[i++] = stats->rx_fifo_errors;
4747 	data[i++] = stats->rx_frame_errors;
4748 	data[i++] = stats->rx_length_errors;
4749 	data[i++] = stats->rx_over_errors;
4750 	data[i++] = stats->rx_packets;
4751 	data[i++] = stats->tx_aborted_errors;
4752 	data[i++] = stats->tx_bytes;
4753 	data[i++] = stats->tx_dropped;
4754 	data[i++] = stats->tx_errors;
4755 	data[i++] = stats->tx_fifo_errors;
4756 	data[i++] = stats->tx_packets;
4757 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4758 }
4759 
4760 static const struct ethtool_ops cas_ethtool_ops = {
4761 	.get_drvinfo		= cas_get_drvinfo,
4762 	.nway_reset		= cas_nway_reset,
4763 	.get_link		= cas_get_link,
4764 	.get_msglevel		= cas_get_msglevel,
4765 	.set_msglevel		= cas_set_msglevel,
4766 	.get_regs_len		= cas_get_regs_len,
4767 	.get_regs		= cas_get_regs,
4768 	.get_sset_count		= cas_get_sset_count,
4769 	.get_strings		= cas_get_strings,
4770 	.get_ethtool_stats	= cas_get_ethtool_stats,
4771 	.get_link_ksettings	= cas_get_link_ksettings,
4772 	.set_link_ksettings	= cas_set_link_ksettings,
4773 };
4774 
4775 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4776 {
4777 	struct cas *cp = netdev_priv(dev);
4778 	struct mii_ioctl_data *data = if_mii(ifr);
4779 	unsigned long flags;
4780 	int rc = -EOPNOTSUPP;
4781 
4782 	/* Hold the PM mutex while doing ioctl's or we may collide
4783 	 * with open/close and power management and oops.
4784 	 */
4785 	mutex_lock(&cp->pm_mutex);
4786 	switch (cmd) {
4787 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4788 		data->phy_id = cp->phy_addr;
4789 		/* Fallthrough... */
4790 
4791 	case SIOCGMIIREG:		/* Read MII PHY register. */
4792 		spin_lock_irqsave(&cp->lock, flags);
4793 		cas_mif_poll(cp, 0);
4794 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4795 		cas_mif_poll(cp, 1);
4796 		spin_unlock_irqrestore(&cp->lock, flags);
4797 		rc = 0;
4798 		break;
4799 
4800 	case SIOCSMIIREG:		/* Write MII PHY register. */
4801 		spin_lock_irqsave(&cp->lock, flags);
4802 		cas_mif_poll(cp, 0);
4803 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4804 		cas_mif_poll(cp, 1);
4805 		spin_unlock_irqrestore(&cp->lock, flags);
4806 		break;
4807 	default:
4808 		break;
4809 	}
4810 
4811 	mutex_unlock(&cp->pm_mutex);
4812 	return rc;
4813 }
4814 
4815 /* When this chip sits underneath an Intel 31154 bridge, it is the
4816  * only subordinate device and we can tweak the bridge settings to
4817  * reflect that fact.
4818  */
4819 static void cas_program_bridge(struct pci_dev *cas_pdev)
4820 {
4821 	struct pci_dev *pdev = cas_pdev->bus->self;
4822 	u32 val;
4823 
4824 	if (!pdev)
4825 		return;
4826 
4827 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4828 		return;
4829 
4830 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4831 	 * Arbiter Control/Status Register which lives at offset
4832 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4833 	 * is much simpler so that's how we do this.
4834 	 */
4835 	pci_read_config_dword(pdev, 0x40, &val);
4836 	val &= ~0x00040000;
4837 	pci_write_config_dword(pdev, 0x40, val);
4838 
4839 	/* Max out the Multi-Transaction Timer settings since
4840 	 * Cassini is the only device present.
4841 	 *
4842 	 * The register is 16-bit and lives at 0x50.  When the
4843 	 * settings are enabled, it extends the GRANT# signal
4844 	 * for a requestor after a transaction is complete.  This
4845 	 * allows the next request to run without first needing
4846 	 * to negotiate the GRANT# signal back.
4847 	 *
4848 	 * Bits 12:10 define the grant duration:
4849 	 *
4850 	 *	1	--	16 clocks
4851 	 *	2	--	32 clocks
4852 	 *	3	--	64 clocks
4853 	 *	4	--	128 clocks
4854 	 *	5	--	256 clocks
4855 	 *
4856 	 * All other values are illegal.
4857 	 *
4858 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4859 	 * GRANT# signal treatment.  We set them all.
4860 	 */
4861 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4862 
4863 	/* The Read Prefecth Policy register is 16-bit and sits at
4864 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4865 	 * enable it and max out all of the settings since only one
4866 	 * device is sitting underneath and thus bandwidth sharing is
4867 	 * not an issue.
4868 	 *
4869 	 * The register has several 3 bit fields, which indicates a
4870 	 * multiplier applied to the base amount of prefetching the
4871 	 * chip would do.  These fields are at:
4872 	 *
4873 	 *	15:13	---	ReRead Primary Bus
4874 	 *	12:10	---	FirstRead Primary Bus
4875 	 *	09:07	---	ReRead Secondary Bus
4876 	 *	06:04	---	FirstRead Secondary Bus
4877 	 *
4878 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4879 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4880 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4881 	 * the individual REQ/GNT pairs [2:0].
4882 	 */
4883 	pci_write_config_word(pdev, 0x52,
4884 			      (0x7 << 13) |
4885 			      (0x7 << 10) |
4886 			      (0x7 <<  7) |
4887 			      (0x7 <<  4) |
4888 			      (0xf <<  0));
4889 
4890 	/* Force cacheline size to 0x8 */
4891 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4892 
4893 	/* Force latency timer to maximum setting so Cassini can
4894 	 * sit on the bus as long as it likes.
4895 	 */
4896 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4897 }
4898 
4899 static const struct net_device_ops cas_netdev_ops = {
4900 	.ndo_open		= cas_open,
4901 	.ndo_stop		= cas_close,
4902 	.ndo_start_xmit		= cas_start_xmit,
4903 	.ndo_get_stats 		= cas_get_stats,
4904 	.ndo_set_rx_mode	= cas_set_multicast,
4905 	.ndo_do_ioctl		= cas_ioctl,
4906 	.ndo_tx_timeout		= cas_tx_timeout,
4907 	.ndo_change_mtu		= cas_change_mtu,
4908 	.ndo_set_mac_address	= eth_mac_addr,
4909 	.ndo_validate_addr	= eth_validate_addr,
4910 #ifdef CONFIG_NET_POLL_CONTROLLER
4911 	.ndo_poll_controller	= cas_netpoll,
4912 #endif
4913 };
4914 
4915 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4916 {
4917 	static int cas_version_printed = 0;
4918 	unsigned long casreg_len;
4919 	struct net_device *dev;
4920 	struct cas *cp;
4921 	int i, err, pci_using_dac;
4922 	u16 pci_cmd;
4923 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4924 
4925 	if (cas_version_printed++ == 0)
4926 		pr_info("%s", version);
4927 
4928 	err = pci_enable_device(pdev);
4929 	if (err) {
4930 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4931 		return err;
4932 	}
4933 
4934 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4935 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4936 		       "base address, aborting\n");
4937 		err = -ENODEV;
4938 		goto err_out_disable_pdev;
4939 	}
4940 
4941 	dev = alloc_etherdev(sizeof(*cp));
4942 	if (!dev) {
4943 		err = -ENOMEM;
4944 		goto err_out_disable_pdev;
4945 	}
4946 	SET_NETDEV_DEV(dev, &pdev->dev);
4947 
4948 	err = pci_request_regions(pdev, dev->name);
4949 	if (err) {
4950 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4951 		goto err_out_free_netdev;
4952 	}
4953 	pci_set_master(pdev);
4954 
4955 	/* we must always turn on parity response or else parity
4956 	 * doesn't get generated properly. disable SERR/PERR as well.
4957 	 * in addition, we want to turn MWI on.
4958 	 */
4959 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4960 	pci_cmd &= ~PCI_COMMAND_SERR;
4961 	pci_cmd |= PCI_COMMAND_PARITY;
4962 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4963 	if (pci_try_set_mwi(pdev))
4964 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4965 
4966 	cas_program_bridge(pdev);
4967 
4968 	/*
4969 	 * On some architectures, the default cache line size set
4970 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4971 	 * it for this case.  To start, we'll print some configuration
4972 	 * data.
4973 	 */
4974 #if 1
4975 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4976 			     &orig_cacheline_size);
4977 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4978 		cas_cacheline_size =
4979 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4980 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4981 		if (pci_write_config_byte(pdev,
4982 					  PCI_CACHE_LINE_SIZE,
4983 					  cas_cacheline_size)) {
4984 			dev_err(&pdev->dev, "Could not set PCI cache "
4985 			       "line size\n");
4986 			goto err_write_cacheline;
4987 		}
4988 	}
4989 #endif
4990 
4991 
4992 	/* Configure DMA attributes. */
4993 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4994 		pci_using_dac = 1;
4995 		err = pci_set_consistent_dma_mask(pdev,
4996 						  DMA_BIT_MASK(64));
4997 		if (err < 0) {
4998 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4999 			       "for consistent allocations\n");
5000 			goto err_out_free_res;
5001 		}
5002 
5003 	} else {
5004 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5005 		if (err) {
5006 			dev_err(&pdev->dev, "No usable DMA configuration, "
5007 			       "aborting\n");
5008 			goto err_out_free_res;
5009 		}
5010 		pci_using_dac = 0;
5011 	}
5012 
5013 	casreg_len = pci_resource_len(pdev, 0);
5014 
5015 	cp = netdev_priv(dev);
5016 	cp->pdev = pdev;
5017 #if 1
5018 	/* A value of 0 indicates we never explicitly set it */
5019 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5020 #endif
5021 	cp->dev = dev;
5022 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5023 	  cassini_debug;
5024 
5025 #if defined(CONFIG_SPARC)
5026 	cp->of_node = pci_device_to_OF_node(pdev);
5027 #endif
5028 
5029 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5030 	cp->link_transition_jiffies_valid = 0;
5031 
5032 	spin_lock_init(&cp->lock);
5033 	spin_lock_init(&cp->rx_inuse_lock);
5034 	spin_lock_init(&cp->rx_spare_lock);
5035 	for (i = 0; i < N_TX_RINGS; i++) {
5036 		spin_lock_init(&cp->stat_lock[i]);
5037 		spin_lock_init(&cp->tx_lock[i]);
5038 	}
5039 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5040 	mutex_init(&cp->pm_mutex);
5041 
5042 	init_timer(&cp->link_timer);
5043 	cp->link_timer.function = cas_link_timer;
5044 	cp->link_timer.data = (unsigned long) cp;
5045 
5046 #if 1
5047 	/* Just in case the implementation of atomic operations
5048 	 * change so that an explicit initialization is necessary.
5049 	 */
5050 	atomic_set(&cp->reset_task_pending, 0);
5051 	atomic_set(&cp->reset_task_pending_all, 0);
5052 	atomic_set(&cp->reset_task_pending_spare, 0);
5053 	atomic_set(&cp->reset_task_pending_mtu, 0);
5054 #endif
5055 	INIT_WORK(&cp->reset_task, cas_reset_task);
5056 
5057 	/* Default link parameters */
5058 	if (link_mode >= 0 && link_mode < 6)
5059 		cp->link_cntl = link_modes[link_mode];
5060 	else
5061 		cp->link_cntl = BMCR_ANENABLE;
5062 	cp->lstate = link_down;
5063 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5064 	netif_carrier_off(cp->dev);
5065 	cp->timer_ticks = 0;
5066 
5067 	/* give us access to cassini registers */
5068 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5069 	if (!cp->regs) {
5070 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5071 		goto err_out_free_res;
5072 	}
5073 	cp->casreg_len = casreg_len;
5074 
5075 	pci_save_state(pdev);
5076 	cas_check_pci_invariants(cp);
5077 	cas_hard_reset(cp);
5078 	cas_reset(cp, 0);
5079 	if (cas_check_invariants(cp))
5080 		goto err_out_iounmap;
5081 	if (cp->cas_flags & CAS_FLAG_SATURN)
5082 		cas_saturn_firmware_init(cp);
5083 
5084 	cp->init_block = (struct cas_init_block *)
5085 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5086 				     &cp->block_dvma);
5087 	if (!cp->init_block) {
5088 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5089 		goto err_out_iounmap;
5090 	}
5091 
5092 	for (i = 0; i < N_TX_RINGS; i++)
5093 		cp->init_txds[i] = cp->init_block->txds[i];
5094 
5095 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5096 		cp->init_rxds[i] = cp->init_block->rxds[i];
5097 
5098 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5099 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5100 
5101 	for (i = 0; i < N_RX_FLOWS; i++)
5102 		skb_queue_head_init(&cp->rx_flows[i]);
5103 
5104 	dev->netdev_ops = &cas_netdev_ops;
5105 	dev->ethtool_ops = &cas_ethtool_ops;
5106 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5107 
5108 #ifdef USE_NAPI
5109 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5110 #endif
5111 	dev->irq = pdev->irq;
5112 	dev->dma = 0;
5113 
5114 	/* Cassini features. */
5115 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5116 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5117 
5118 	if (pci_using_dac)
5119 		dev->features |= NETIF_F_HIGHDMA;
5120 
5121 	/* MTU range: 60 - varies or 9000 */
5122 	dev->min_mtu = CAS_MIN_MTU;
5123 	dev->max_mtu = CAS_MAX_MTU;
5124 
5125 	if (register_netdev(dev)) {
5126 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5127 		goto err_out_free_consistent;
5128 	}
5129 
5130 	i = readl(cp->regs + REG_BIM_CFG);
5131 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5132 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5133 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5134 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5135 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5136 		    dev->dev_addr);
5137 
5138 	pci_set_drvdata(pdev, dev);
5139 	cp->hw_running = 1;
5140 	cas_entropy_reset(cp);
5141 	cas_phy_init(cp);
5142 	cas_begin_auto_negotiation(cp, NULL);
5143 	return 0;
5144 
5145 err_out_free_consistent:
5146 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5147 			    cp->init_block, cp->block_dvma);
5148 
5149 err_out_iounmap:
5150 	mutex_lock(&cp->pm_mutex);
5151 	if (cp->hw_running)
5152 		cas_shutdown(cp);
5153 	mutex_unlock(&cp->pm_mutex);
5154 
5155 	pci_iounmap(pdev, cp->regs);
5156 
5157 
5158 err_out_free_res:
5159 	pci_release_regions(pdev);
5160 
5161 err_write_cacheline:
5162 	/* Try to restore it in case the error occurred after we
5163 	 * set it.
5164 	 */
5165 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5166 
5167 err_out_free_netdev:
5168 	free_netdev(dev);
5169 
5170 err_out_disable_pdev:
5171 	pci_disable_device(pdev);
5172 	return -ENODEV;
5173 }
5174 
5175 static void cas_remove_one(struct pci_dev *pdev)
5176 {
5177 	struct net_device *dev = pci_get_drvdata(pdev);
5178 	struct cas *cp;
5179 	if (!dev)
5180 		return;
5181 
5182 	cp = netdev_priv(dev);
5183 	unregister_netdev(dev);
5184 
5185 	vfree(cp->fw_data);
5186 
5187 	mutex_lock(&cp->pm_mutex);
5188 	cancel_work_sync(&cp->reset_task);
5189 	if (cp->hw_running)
5190 		cas_shutdown(cp);
5191 	mutex_unlock(&cp->pm_mutex);
5192 
5193 #if 1
5194 	if (cp->orig_cacheline_size) {
5195 		/* Restore the cache line size if we had modified
5196 		 * it.
5197 		 */
5198 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5199 				      cp->orig_cacheline_size);
5200 	}
5201 #endif
5202 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5203 			    cp->init_block, cp->block_dvma);
5204 	pci_iounmap(pdev, cp->regs);
5205 	free_netdev(dev);
5206 	pci_release_regions(pdev);
5207 	pci_disable_device(pdev);
5208 }
5209 
5210 #ifdef CONFIG_PM
5211 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5212 {
5213 	struct net_device *dev = pci_get_drvdata(pdev);
5214 	struct cas *cp = netdev_priv(dev);
5215 	unsigned long flags;
5216 
5217 	mutex_lock(&cp->pm_mutex);
5218 
5219 	/* If the driver is opened, we stop the DMA */
5220 	if (cp->opened) {
5221 		netif_device_detach(dev);
5222 
5223 		cas_lock_all_save(cp, flags);
5224 
5225 		/* We can set the second arg of cas_reset to 0
5226 		 * because on resume, we'll call cas_init_hw with
5227 		 * its second arg set so that autonegotiation is
5228 		 * restarted.
5229 		 */
5230 		cas_reset(cp, 0);
5231 		cas_clean_rings(cp);
5232 		cas_unlock_all_restore(cp, flags);
5233 	}
5234 
5235 	if (cp->hw_running)
5236 		cas_shutdown(cp);
5237 	mutex_unlock(&cp->pm_mutex);
5238 
5239 	return 0;
5240 }
5241 
5242 static int cas_resume(struct pci_dev *pdev)
5243 {
5244 	struct net_device *dev = pci_get_drvdata(pdev);
5245 	struct cas *cp = netdev_priv(dev);
5246 
5247 	netdev_info(dev, "resuming\n");
5248 
5249 	mutex_lock(&cp->pm_mutex);
5250 	cas_hard_reset(cp);
5251 	if (cp->opened) {
5252 		unsigned long flags;
5253 		cas_lock_all_save(cp, flags);
5254 		cas_reset(cp, 0);
5255 		cp->hw_running = 1;
5256 		cas_clean_rings(cp);
5257 		cas_init_hw(cp, 1);
5258 		cas_unlock_all_restore(cp, flags);
5259 
5260 		netif_device_attach(dev);
5261 	}
5262 	mutex_unlock(&cp->pm_mutex);
5263 	return 0;
5264 }
5265 #endif /* CONFIG_PM */
5266 
5267 static struct pci_driver cas_driver = {
5268 	.name		= DRV_MODULE_NAME,
5269 	.id_table	= cas_pci_tbl,
5270 	.probe		= cas_init_one,
5271 	.remove		= cas_remove_one,
5272 #ifdef CONFIG_PM
5273 	.suspend	= cas_suspend,
5274 	.resume		= cas_resume
5275 #endif
5276 };
5277 
5278 static int __init cas_init(void)
5279 {
5280 	if (linkdown_timeout > 0)
5281 		link_transition_timeout = linkdown_timeout * HZ;
5282 	else
5283 		link_transition_timeout = 0;
5284 
5285 	return pci_register_driver(&cas_driver);
5286 }
5287 
5288 static void __exit cas_cleanup(void)
5289 {
5290 	pci_unregister_driver(&cas_driver);
5291 }
5292 
5293 module_init(cas_init);
5294 module_exit(cas_cleanup);
5295