1 // SPDX-License-Identifier: GPL-2.0+ 2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 3 * 4 * Copyright (C) 2004 Sun Microsystems Inc. 5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 6 * 7 * This driver uses the sungem driver (c) David Miller 8 * (davem@redhat.com) as its basis. 9 * 10 * The cassini chip has a number of features that distinguish it from 11 * the gem chip: 12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 13 * load balancing (non-VLAN mode) 14 * batching of multiple packets 15 * multiple CPU dispatching 16 * page-based RX descriptor engine with separate completion rings 17 * Gigabit support (GMII and PCS interface) 18 * MIF link up/down detection works 19 * 20 * RX is handled by page sized buffers that are attached as fragments to 21 * the skb. here's what's done: 22 * -- driver allocates pages at a time and keeps reference counts 23 * on them. 24 * -- the upper protocol layers assume that the header is in the skb 25 * itself. as a result, cassini will copy a small amount (64 bytes) 26 * to make them happy. 27 * -- driver appends the rest of the data pages as frags to skbuffs 28 * and increments the reference count 29 * -- on page reclamation, the driver swaps the page with a spare page. 30 * if that page is still in use, it frees its reference to that page, 31 * and allocates a new page for use. otherwise, it just recycles the 32 * the page. 33 * 34 * NOTE: cassini can parse the header. however, it's not worth it 35 * as long as the network stack requires a header copy. 36 * 37 * TX has 4 queues. currently these queues are used in a round-robin 38 * fashion for load balancing. They can also be used for QoS. for that 39 * to work, however, QoS information needs to be exposed down to the driver 40 * level so that subqueues get targeted to particular transmit rings. 41 * alternatively, the queues can be configured via use of the all-purpose 42 * ioctl. 43 * 44 * RX DATA: the rx completion ring has all the info, but the rx desc 45 * ring has all of the data. RX can conceivably come in under multiple 46 * interrupts, but the INT# assignment needs to be set up properly by 47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 48 * that. also, the two descriptor rings are designed to distinguish between 49 * encrypted and non-encrypted packets, but we use them for buffering 50 * instead. 51 * 52 * by default, the selective clear mask is set up to process rx packets. 53 */ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/kernel.h> 59 #include <linux/types.h> 60 #include <linux/compiler.h> 61 #include <linux/slab.h> 62 #include <linux/delay.h> 63 #include <linux/init.h> 64 #include <linux/interrupt.h> 65 #include <linux/vmalloc.h> 66 #include <linux/ioport.h> 67 #include <linux/pci.h> 68 #include <linux/mm.h> 69 #include <linux/highmem.h> 70 #include <linux/list.h> 71 #include <linux/dma-mapping.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/ethtool.h> 77 #include <linux/crc32.h> 78 #include <linux/random.h> 79 #include <linux/mii.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/mutex.h> 83 #include <linux/firmware.h> 84 85 #include <net/checksum.h> 86 87 #include <linux/atomic.h> 88 #include <asm/io.h> 89 #include <asm/byteorder.h> 90 #include <linux/uaccess.h> 91 92 #define cas_page_map(x) kmap_atomic((x)) 93 #define cas_page_unmap(x) kunmap_atomic((x)) 94 #define CAS_NCPUS num_online_cpus() 95 96 #define cas_skb_release(x) netif_rx(x) 97 98 /* select which firmware to use */ 99 #define USE_HP_WORKAROUND 100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 101 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 102 103 #include "cassini.h" 104 105 #define USE_TX_COMPWB /* use completion writeback registers */ 106 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 107 #define USE_RX_BLANK /* hw interrupt mitigation */ 108 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 109 110 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 111 * also, we need to make cp->lock finer-grained. 112 */ 113 #undef USE_PCI_INTB 114 #undef USE_PCI_INTC 115 #undef USE_PCI_INTD 116 #undef USE_QOS 117 118 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 119 120 /* rx processing options */ 121 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 122 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 123 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 124 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 125 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 126 127 #define DRV_MODULE_NAME "cassini" 128 #define DRV_MODULE_VERSION "1.6" 129 #define DRV_MODULE_RELDATE "21 May 2008" 130 131 #define CAS_DEF_MSG_ENABLE \ 132 (NETIF_MSG_DRV | \ 133 NETIF_MSG_PROBE | \ 134 NETIF_MSG_LINK | \ 135 NETIF_MSG_TIMER | \ 136 NETIF_MSG_IFDOWN | \ 137 NETIF_MSG_IFUP | \ 138 NETIF_MSG_RX_ERR | \ 139 NETIF_MSG_TX_ERR) 140 141 /* length of time before we decide the hardware is borked, 142 * and dev->tx_timeout() should be called to fix the problem 143 */ 144 #define CAS_TX_TIMEOUT (HZ) 145 #define CAS_LINK_TIMEOUT (22*HZ/10) 146 #define CAS_LINK_FAST_TIMEOUT (1) 147 148 /* timeout values for state changing. these specify the number 149 * of 10us delays to be used before giving up. 150 */ 151 #define STOP_TRIES_PHY 1000 152 #define STOP_TRIES 5000 153 154 /* specify a minimum frame size to deal with some fifo issues 155 * max mtu == 2 * page size - ethernet header - 64 - swivel = 156 * 2 * page_size - 0x50 157 */ 158 #define CAS_MIN_FRAME 97 159 #define CAS_1000MB_MIN_FRAME 255 160 #define CAS_MIN_MTU 60 161 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 162 163 #if 1 164 /* 165 * Eliminate these and use separate atomic counters for each, to 166 * avoid a race condition. 167 */ 168 #else 169 #define CAS_RESET_MTU 1 170 #define CAS_RESET_ALL 2 171 #define CAS_RESET_SPARE 3 172 #endif 173 174 static char version[] = 175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 176 177 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 178 static int link_mode; 179 180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 182 MODULE_LICENSE("GPL"); 183 MODULE_FIRMWARE("sun/cassini.bin"); 184 module_param(cassini_debug, int, 0); 185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 186 module_param(link_mode, int, 0); 187 MODULE_PARM_DESC(link_mode, "default link mode"); 188 189 /* 190 * Work around for a PCS bug in which the link goes down due to the chip 191 * being confused and never showing a link status of "up." 192 */ 193 #define DEFAULT_LINKDOWN_TIMEOUT 5 194 /* 195 * Value in seconds, for user input. 196 */ 197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 198 module_param(linkdown_timeout, int, 0); 199 MODULE_PARM_DESC(linkdown_timeout, 200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 201 202 /* 203 * value in 'ticks' (units used by jiffies). Set when we init the 204 * module because 'HZ' in actually a function call on some flavors of 205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 206 */ 207 static int link_transition_timeout; 208 209 210 211 static u16 link_modes[] = { 212 BMCR_ANENABLE, /* 0 : autoneg */ 213 0, /* 1 : 10bt half duplex */ 214 BMCR_SPEED100, /* 2 : 100bt half duplex */ 215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 218 }; 219 220 static const struct pci_device_id cas_pci_tbl[] = { 221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 225 { 0, } 226 }; 227 228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 229 230 static void cas_set_link_modes(struct cas *cp); 231 232 static inline void cas_lock_tx(struct cas *cp) 233 { 234 int i; 235 236 for (i = 0; i < N_TX_RINGS; i++) 237 spin_lock_nested(&cp->tx_lock[i], i); 238 } 239 240 static inline void cas_lock_all(struct cas *cp) 241 { 242 spin_lock_irq(&cp->lock); 243 cas_lock_tx(cp); 244 } 245 246 /* WTZ: QA was finding deadlock problems with the previous 247 * versions after long test runs with multiple cards per machine. 248 * See if replacing cas_lock_all with safer versions helps. The 249 * symptoms QA is reporting match those we'd expect if interrupts 250 * aren't being properly restored, and we fixed a previous deadlock 251 * with similar symptoms by using save/restore versions in other 252 * places. 253 */ 254 #define cas_lock_all_save(cp, flags) \ 255 do { \ 256 struct cas *xxxcp = (cp); \ 257 spin_lock_irqsave(&xxxcp->lock, flags); \ 258 cas_lock_tx(xxxcp); \ 259 } while (0) 260 261 static inline void cas_unlock_tx(struct cas *cp) 262 { 263 int i; 264 265 for (i = N_TX_RINGS; i > 0; i--) 266 spin_unlock(&cp->tx_lock[i - 1]); 267 } 268 269 static inline void cas_unlock_all(struct cas *cp) 270 { 271 cas_unlock_tx(cp); 272 spin_unlock_irq(&cp->lock); 273 } 274 275 #define cas_unlock_all_restore(cp, flags) \ 276 do { \ 277 struct cas *xxxcp = (cp); \ 278 cas_unlock_tx(xxxcp); \ 279 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 280 } while (0) 281 282 static void cas_disable_irq(struct cas *cp, const int ring) 283 { 284 /* Make sure we won't get any more interrupts */ 285 if (ring == 0) { 286 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 287 return; 288 } 289 290 /* disable completion interrupts and selectively mask */ 291 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 292 switch (ring) { 293 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 294 #ifdef USE_PCI_INTB 295 case 1: 296 #endif 297 #ifdef USE_PCI_INTC 298 case 2: 299 #endif 300 #ifdef USE_PCI_INTD 301 case 3: 302 #endif 303 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 304 cp->regs + REG_PLUS_INTRN_MASK(ring)); 305 break; 306 #endif 307 default: 308 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 309 REG_PLUS_INTRN_MASK(ring)); 310 break; 311 } 312 } 313 } 314 315 static inline void cas_mask_intr(struct cas *cp) 316 { 317 int i; 318 319 for (i = 0; i < N_RX_COMP_RINGS; i++) 320 cas_disable_irq(cp, i); 321 } 322 323 static void cas_enable_irq(struct cas *cp, const int ring) 324 { 325 if (ring == 0) { /* all but TX_DONE */ 326 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 327 return; 328 } 329 330 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 331 switch (ring) { 332 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 333 #ifdef USE_PCI_INTB 334 case 1: 335 #endif 336 #ifdef USE_PCI_INTC 337 case 2: 338 #endif 339 #ifdef USE_PCI_INTD 340 case 3: 341 #endif 342 writel(INTRN_MASK_RX_EN, cp->regs + 343 REG_PLUS_INTRN_MASK(ring)); 344 break; 345 #endif 346 default: 347 break; 348 } 349 } 350 } 351 352 static inline void cas_unmask_intr(struct cas *cp) 353 { 354 int i; 355 356 for (i = 0; i < N_RX_COMP_RINGS; i++) 357 cas_enable_irq(cp, i); 358 } 359 360 static inline void cas_entropy_gather(struct cas *cp) 361 { 362 #ifdef USE_ENTROPY_DEV 363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 364 return; 365 366 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 367 readl(cp->regs + REG_ENTROPY_IV), 368 sizeof(uint64_t)*8); 369 #endif 370 } 371 372 static inline void cas_entropy_reset(struct cas *cp) 373 { 374 #ifdef USE_ENTROPY_DEV 375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 376 return; 377 378 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 379 cp->regs + REG_BIM_LOCAL_DEV_EN); 380 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 381 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 382 383 /* if we read back 0x0, we don't have an entropy device */ 384 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 385 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 386 #endif 387 } 388 389 /* access to the phy. the following assumes that we've initialized the MIF to 390 * be in frame rather than bit-bang mode 391 */ 392 static u16 cas_phy_read(struct cas *cp, int reg) 393 { 394 u32 cmd; 395 int limit = STOP_TRIES_PHY; 396 397 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 398 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 399 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 400 cmd |= MIF_FRAME_TURN_AROUND_MSB; 401 writel(cmd, cp->regs + REG_MIF_FRAME); 402 403 /* poll for completion */ 404 while (limit-- > 0) { 405 udelay(10); 406 cmd = readl(cp->regs + REG_MIF_FRAME); 407 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 408 return cmd & MIF_FRAME_DATA_MASK; 409 } 410 return 0xFFFF; /* -1 */ 411 } 412 413 static int cas_phy_write(struct cas *cp, int reg, u16 val) 414 { 415 int limit = STOP_TRIES_PHY; 416 u32 cmd; 417 418 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 419 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 420 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 421 cmd |= MIF_FRAME_TURN_AROUND_MSB; 422 cmd |= val & MIF_FRAME_DATA_MASK; 423 writel(cmd, cp->regs + REG_MIF_FRAME); 424 425 /* poll for completion */ 426 while (limit-- > 0) { 427 udelay(10); 428 cmd = readl(cp->regs + REG_MIF_FRAME); 429 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 430 return 0; 431 } 432 return -1; 433 } 434 435 static void cas_phy_powerup(struct cas *cp) 436 { 437 u16 ctl = cas_phy_read(cp, MII_BMCR); 438 439 if ((ctl & BMCR_PDOWN) == 0) 440 return; 441 ctl &= ~BMCR_PDOWN; 442 cas_phy_write(cp, MII_BMCR, ctl); 443 } 444 445 static void cas_phy_powerdown(struct cas *cp) 446 { 447 u16 ctl = cas_phy_read(cp, MII_BMCR); 448 449 if (ctl & BMCR_PDOWN) 450 return; 451 ctl |= BMCR_PDOWN; 452 cas_phy_write(cp, MII_BMCR, ctl); 453 } 454 455 /* cp->lock held. note: the last put_page will free the buffer */ 456 static int cas_page_free(struct cas *cp, cas_page_t *page) 457 { 458 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 459 PCI_DMA_FROMDEVICE); 460 __free_pages(page->buffer, cp->page_order); 461 kfree(page); 462 return 0; 463 } 464 465 #ifdef RX_COUNT_BUFFERS 466 #define RX_USED_ADD(x, y) ((x)->used += (y)) 467 #define RX_USED_SET(x, y) ((x)->used = (y)) 468 #else 469 #define RX_USED_ADD(x, y) 470 #define RX_USED_SET(x, y) 471 #endif 472 473 /* local page allocation routines for the receive buffers. jumbo pages 474 * require at least 8K contiguous and 8K aligned buffers. 475 */ 476 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 477 { 478 cas_page_t *page; 479 480 page = kmalloc(sizeof(cas_page_t), flags); 481 if (!page) 482 return NULL; 483 484 INIT_LIST_HEAD(&page->list); 485 RX_USED_SET(page, 0); 486 page->buffer = alloc_pages(flags, cp->page_order); 487 if (!page->buffer) 488 goto page_err; 489 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 490 cp->page_size, PCI_DMA_FROMDEVICE); 491 return page; 492 493 page_err: 494 kfree(page); 495 return NULL; 496 } 497 498 /* initialize spare pool of rx buffers, but allocate during the open */ 499 static void cas_spare_init(struct cas *cp) 500 { 501 spin_lock(&cp->rx_inuse_lock); 502 INIT_LIST_HEAD(&cp->rx_inuse_list); 503 spin_unlock(&cp->rx_inuse_lock); 504 505 spin_lock(&cp->rx_spare_lock); 506 INIT_LIST_HEAD(&cp->rx_spare_list); 507 cp->rx_spares_needed = RX_SPARE_COUNT; 508 spin_unlock(&cp->rx_spare_lock); 509 } 510 511 /* used on close. free all the spare buffers. */ 512 static void cas_spare_free(struct cas *cp) 513 { 514 struct list_head list, *elem, *tmp; 515 516 /* free spare buffers */ 517 INIT_LIST_HEAD(&list); 518 spin_lock(&cp->rx_spare_lock); 519 list_splice_init(&cp->rx_spare_list, &list); 520 spin_unlock(&cp->rx_spare_lock); 521 list_for_each_safe(elem, tmp, &list) { 522 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 523 } 524 525 INIT_LIST_HEAD(&list); 526 #if 1 527 /* 528 * Looks like Adrian had protected this with a different 529 * lock than used everywhere else to manipulate this list. 530 */ 531 spin_lock(&cp->rx_inuse_lock); 532 list_splice_init(&cp->rx_inuse_list, &list); 533 spin_unlock(&cp->rx_inuse_lock); 534 #else 535 spin_lock(&cp->rx_spare_lock); 536 list_splice_init(&cp->rx_inuse_list, &list); 537 spin_unlock(&cp->rx_spare_lock); 538 #endif 539 list_for_each_safe(elem, tmp, &list) { 540 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 541 } 542 } 543 544 /* replenish spares if needed */ 545 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 546 { 547 struct list_head list, *elem, *tmp; 548 int needed, i; 549 550 /* check inuse list. if we don't need any more free buffers, 551 * just free it 552 */ 553 554 /* make a local copy of the list */ 555 INIT_LIST_HEAD(&list); 556 spin_lock(&cp->rx_inuse_lock); 557 list_splice_init(&cp->rx_inuse_list, &list); 558 spin_unlock(&cp->rx_inuse_lock); 559 560 list_for_each_safe(elem, tmp, &list) { 561 cas_page_t *page = list_entry(elem, cas_page_t, list); 562 563 /* 564 * With the lockless pagecache, cassini buffering scheme gets 565 * slightly less accurate: we might find that a page has an 566 * elevated reference count here, due to a speculative ref, 567 * and skip it as in-use. Ideally we would be able to reclaim 568 * it. However this would be such a rare case, it doesn't 569 * matter too much as we should pick it up the next time round. 570 * 571 * Importantly, if we find that the page has a refcount of 1 572 * here (our refcount), then we know it is definitely not inuse 573 * so we can reuse it. 574 */ 575 if (page_count(page->buffer) > 1) 576 continue; 577 578 list_del(elem); 579 spin_lock(&cp->rx_spare_lock); 580 if (cp->rx_spares_needed > 0) { 581 list_add(elem, &cp->rx_spare_list); 582 cp->rx_spares_needed--; 583 spin_unlock(&cp->rx_spare_lock); 584 } else { 585 spin_unlock(&cp->rx_spare_lock); 586 cas_page_free(cp, page); 587 } 588 } 589 590 /* put any inuse buffers back on the list */ 591 if (!list_empty(&list)) { 592 spin_lock(&cp->rx_inuse_lock); 593 list_splice(&list, &cp->rx_inuse_list); 594 spin_unlock(&cp->rx_inuse_lock); 595 } 596 597 spin_lock(&cp->rx_spare_lock); 598 needed = cp->rx_spares_needed; 599 spin_unlock(&cp->rx_spare_lock); 600 if (!needed) 601 return; 602 603 /* we still need spares, so try to allocate some */ 604 INIT_LIST_HEAD(&list); 605 i = 0; 606 while (i < needed) { 607 cas_page_t *spare = cas_page_alloc(cp, flags); 608 if (!spare) 609 break; 610 list_add(&spare->list, &list); 611 i++; 612 } 613 614 spin_lock(&cp->rx_spare_lock); 615 list_splice(&list, &cp->rx_spare_list); 616 cp->rx_spares_needed -= i; 617 spin_unlock(&cp->rx_spare_lock); 618 } 619 620 /* pull a page from the list. */ 621 static cas_page_t *cas_page_dequeue(struct cas *cp) 622 { 623 struct list_head *entry; 624 int recover; 625 626 spin_lock(&cp->rx_spare_lock); 627 if (list_empty(&cp->rx_spare_list)) { 628 /* try to do a quick recovery */ 629 spin_unlock(&cp->rx_spare_lock); 630 cas_spare_recover(cp, GFP_ATOMIC); 631 spin_lock(&cp->rx_spare_lock); 632 if (list_empty(&cp->rx_spare_list)) { 633 netif_err(cp, rx_err, cp->dev, 634 "no spare buffers available\n"); 635 spin_unlock(&cp->rx_spare_lock); 636 return NULL; 637 } 638 } 639 640 entry = cp->rx_spare_list.next; 641 list_del(entry); 642 recover = ++cp->rx_spares_needed; 643 spin_unlock(&cp->rx_spare_lock); 644 645 /* trigger the timer to do the recovery */ 646 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 647 #if 1 648 atomic_inc(&cp->reset_task_pending); 649 atomic_inc(&cp->reset_task_pending_spare); 650 schedule_work(&cp->reset_task); 651 #else 652 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 653 schedule_work(&cp->reset_task); 654 #endif 655 } 656 return list_entry(entry, cas_page_t, list); 657 } 658 659 660 static void cas_mif_poll(struct cas *cp, const int enable) 661 { 662 u32 cfg; 663 664 cfg = readl(cp->regs + REG_MIF_CFG); 665 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 666 667 if (cp->phy_type & CAS_PHY_MII_MDIO1) 668 cfg |= MIF_CFG_PHY_SELECT; 669 670 /* poll and interrupt on link status change. */ 671 if (enable) { 672 cfg |= MIF_CFG_POLL_EN; 673 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 674 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 675 } 676 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 677 cp->regs + REG_MIF_MASK); 678 writel(cfg, cp->regs + REG_MIF_CFG); 679 } 680 681 /* Must be invoked under cp->lock */ 682 static void cas_begin_auto_negotiation(struct cas *cp, 683 const struct ethtool_link_ksettings *ep) 684 { 685 u16 ctl; 686 #if 1 687 int lcntl; 688 int changed = 0; 689 int oldstate = cp->lstate; 690 int link_was_not_down = !(oldstate == link_down); 691 #endif 692 /* Setup link parameters */ 693 if (!ep) 694 goto start_aneg; 695 lcntl = cp->link_cntl; 696 if (ep->base.autoneg == AUTONEG_ENABLE) { 697 cp->link_cntl = BMCR_ANENABLE; 698 } else { 699 u32 speed = ep->base.speed; 700 cp->link_cntl = 0; 701 if (speed == SPEED_100) 702 cp->link_cntl |= BMCR_SPEED100; 703 else if (speed == SPEED_1000) 704 cp->link_cntl |= CAS_BMCR_SPEED1000; 705 if (ep->base.duplex == DUPLEX_FULL) 706 cp->link_cntl |= BMCR_FULLDPLX; 707 } 708 #if 1 709 changed = (lcntl != cp->link_cntl); 710 #endif 711 start_aneg: 712 if (cp->lstate == link_up) { 713 netdev_info(cp->dev, "PCS link down\n"); 714 } else { 715 if (changed) { 716 netdev_info(cp->dev, "link configuration changed\n"); 717 } 718 } 719 cp->lstate = link_down; 720 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 721 if (!cp->hw_running) 722 return; 723 #if 1 724 /* 725 * WTZ: If the old state was link_up, we turn off the carrier 726 * to replicate everything we do elsewhere on a link-down 727 * event when we were already in a link-up state.. 728 */ 729 if (oldstate == link_up) 730 netif_carrier_off(cp->dev); 731 if (changed && link_was_not_down) { 732 /* 733 * WTZ: This branch will simply schedule a full reset after 734 * we explicitly changed link modes in an ioctl. See if this 735 * fixes the link-problems we were having for forced mode. 736 */ 737 atomic_inc(&cp->reset_task_pending); 738 atomic_inc(&cp->reset_task_pending_all); 739 schedule_work(&cp->reset_task); 740 cp->timer_ticks = 0; 741 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 742 return; 743 } 744 #endif 745 if (cp->phy_type & CAS_PHY_SERDES) { 746 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 747 748 if (cp->link_cntl & BMCR_ANENABLE) { 749 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 750 cp->lstate = link_aneg; 751 } else { 752 if (cp->link_cntl & BMCR_FULLDPLX) 753 val |= PCS_MII_CTRL_DUPLEX; 754 val &= ~PCS_MII_AUTONEG_EN; 755 cp->lstate = link_force_ok; 756 } 757 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 758 writel(val, cp->regs + REG_PCS_MII_CTRL); 759 760 } else { 761 cas_mif_poll(cp, 0); 762 ctl = cas_phy_read(cp, MII_BMCR); 763 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 764 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 765 ctl |= cp->link_cntl; 766 if (ctl & BMCR_ANENABLE) { 767 ctl |= BMCR_ANRESTART; 768 cp->lstate = link_aneg; 769 } else { 770 cp->lstate = link_force_ok; 771 } 772 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 773 cas_phy_write(cp, MII_BMCR, ctl); 774 cas_mif_poll(cp, 1); 775 } 776 777 cp->timer_ticks = 0; 778 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 779 } 780 781 /* Must be invoked under cp->lock. */ 782 static int cas_reset_mii_phy(struct cas *cp) 783 { 784 int limit = STOP_TRIES_PHY; 785 u16 val; 786 787 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 788 udelay(100); 789 while (--limit) { 790 val = cas_phy_read(cp, MII_BMCR); 791 if ((val & BMCR_RESET) == 0) 792 break; 793 udelay(10); 794 } 795 return limit <= 0; 796 } 797 798 static void cas_saturn_firmware_init(struct cas *cp) 799 { 800 const struct firmware *fw; 801 const char fw_name[] = "sun/cassini.bin"; 802 int err; 803 804 if (PHY_NS_DP83065 != cp->phy_id) 805 return; 806 807 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 808 if (err) { 809 pr_err("Failed to load firmware \"%s\"\n", 810 fw_name); 811 return; 812 } 813 if (fw->size < 2) { 814 pr_err("bogus length %zu in \"%s\"\n", 815 fw->size, fw_name); 816 goto out; 817 } 818 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 819 cp->fw_size = fw->size - 2; 820 cp->fw_data = vmalloc(cp->fw_size); 821 if (!cp->fw_data) 822 goto out; 823 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 824 out: 825 release_firmware(fw); 826 } 827 828 static void cas_saturn_firmware_load(struct cas *cp) 829 { 830 int i; 831 832 if (!cp->fw_data) 833 return; 834 835 cas_phy_powerdown(cp); 836 837 /* expanded memory access mode */ 838 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 839 840 /* pointer configuration for new firmware */ 841 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 842 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 844 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 846 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 848 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 849 850 /* download new firmware */ 851 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 852 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 853 for (i = 0; i < cp->fw_size; i++) 854 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 855 856 /* enable firmware */ 857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 858 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 859 } 860 861 862 /* phy initialization */ 863 static void cas_phy_init(struct cas *cp) 864 { 865 u16 val; 866 867 /* if we're in MII/GMII mode, set up phy */ 868 if (CAS_PHY_MII(cp->phy_type)) { 869 writel(PCS_DATAPATH_MODE_MII, 870 cp->regs + REG_PCS_DATAPATH_MODE); 871 872 cas_mif_poll(cp, 0); 873 cas_reset_mii_phy(cp); /* take out of isolate mode */ 874 875 if (PHY_LUCENT_B0 == cp->phy_id) { 876 /* workaround link up/down issue with lucent */ 877 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 878 cas_phy_write(cp, MII_BMCR, 0x00f1); 879 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 880 881 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 882 /* workarounds for broadcom phy */ 883 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 884 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 885 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 886 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 887 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 894 895 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 896 val = cas_phy_read(cp, BROADCOM_MII_REG4); 897 val = cas_phy_read(cp, BROADCOM_MII_REG4); 898 if (val & 0x0080) { 899 /* link workaround */ 900 cas_phy_write(cp, BROADCOM_MII_REG4, 901 val & ~0x0080); 902 } 903 904 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 905 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 906 SATURN_PCFG_FSI : 0x0, 907 cp->regs + REG_SATURN_PCFG); 908 909 /* load firmware to address 10Mbps auto-negotiation 910 * issue. NOTE: this will need to be changed if the 911 * default firmware gets fixed. 912 */ 913 if (PHY_NS_DP83065 == cp->phy_id) { 914 cas_saturn_firmware_load(cp); 915 } 916 cas_phy_powerup(cp); 917 } 918 919 /* advertise capabilities */ 920 val = cas_phy_read(cp, MII_BMCR); 921 val &= ~BMCR_ANENABLE; 922 cas_phy_write(cp, MII_BMCR, val); 923 udelay(10); 924 925 cas_phy_write(cp, MII_ADVERTISE, 926 cas_phy_read(cp, MII_ADVERTISE) | 927 (ADVERTISE_10HALF | ADVERTISE_10FULL | 928 ADVERTISE_100HALF | ADVERTISE_100FULL | 929 CAS_ADVERTISE_PAUSE | 930 CAS_ADVERTISE_ASYM_PAUSE)); 931 932 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 933 /* make sure that we don't advertise half 934 * duplex to avoid a chip issue 935 */ 936 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 937 val &= ~CAS_ADVERTISE_1000HALF; 938 val |= CAS_ADVERTISE_1000FULL; 939 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 940 } 941 942 } else { 943 /* reset pcs for serdes */ 944 u32 val; 945 int limit; 946 947 writel(PCS_DATAPATH_MODE_SERDES, 948 cp->regs + REG_PCS_DATAPATH_MODE); 949 950 /* enable serdes pins on saturn */ 951 if (cp->cas_flags & CAS_FLAG_SATURN) 952 writel(0, cp->regs + REG_SATURN_PCFG); 953 954 /* Reset PCS unit. */ 955 val = readl(cp->regs + REG_PCS_MII_CTRL); 956 val |= PCS_MII_RESET; 957 writel(val, cp->regs + REG_PCS_MII_CTRL); 958 959 limit = STOP_TRIES; 960 while (--limit > 0) { 961 udelay(10); 962 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 963 PCS_MII_RESET) == 0) 964 break; 965 } 966 if (limit <= 0) 967 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 968 readl(cp->regs + REG_PCS_STATE_MACHINE)); 969 970 /* Make sure PCS is disabled while changing advertisement 971 * configuration. 972 */ 973 writel(0x0, cp->regs + REG_PCS_CFG); 974 975 /* Advertise all capabilities except half-duplex. */ 976 val = readl(cp->regs + REG_PCS_MII_ADVERT); 977 val &= ~PCS_MII_ADVERT_HD; 978 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 979 PCS_MII_ADVERT_ASYM_PAUSE); 980 writel(val, cp->regs + REG_PCS_MII_ADVERT); 981 982 /* enable PCS */ 983 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 984 985 /* pcs workaround: enable sync detect */ 986 writel(PCS_SERDES_CTRL_SYNCD_EN, 987 cp->regs + REG_PCS_SERDES_CTRL); 988 } 989 } 990 991 992 static int cas_pcs_link_check(struct cas *cp) 993 { 994 u32 stat, state_machine; 995 int retval = 0; 996 997 /* The link status bit latches on zero, so you must 998 * read it twice in such a case to see a transition 999 * to the link being up. 1000 */ 1001 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1002 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1003 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1004 1005 /* The remote-fault indication is only valid 1006 * when autoneg has completed. 1007 */ 1008 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1009 PCS_MII_STATUS_REMOTE_FAULT)) == 1010 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1011 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1012 1013 /* work around link detection issue by querying the PCS state 1014 * machine directly. 1015 */ 1016 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1017 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1018 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1019 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1020 stat |= PCS_MII_STATUS_LINK_STATUS; 1021 } 1022 1023 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1024 if (cp->lstate != link_up) { 1025 if (cp->opened) { 1026 cp->lstate = link_up; 1027 cp->link_transition = LINK_TRANSITION_LINK_UP; 1028 1029 cas_set_link_modes(cp); 1030 netif_carrier_on(cp->dev); 1031 } 1032 } 1033 } else if (cp->lstate == link_up) { 1034 cp->lstate = link_down; 1035 if (link_transition_timeout != 0 && 1036 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1037 !cp->link_transition_jiffies_valid) { 1038 /* 1039 * force a reset, as a workaround for the 1040 * link-failure problem. May want to move this to a 1041 * point a bit earlier in the sequence. If we had 1042 * generated a reset a short time ago, we'll wait for 1043 * the link timer to check the status until a 1044 * timer expires (link_transistion_jiffies_valid is 1045 * true when the timer is running.) Instead of using 1046 * a system timer, we just do a check whenever the 1047 * link timer is running - this clears the flag after 1048 * a suitable delay. 1049 */ 1050 retval = 1; 1051 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1052 cp->link_transition_jiffies = jiffies; 1053 cp->link_transition_jiffies_valid = 1; 1054 } else { 1055 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1056 } 1057 netif_carrier_off(cp->dev); 1058 if (cp->opened) 1059 netif_info(cp, link, cp->dev, "PCS link down\n"); 1060 1061 /* Cassini only: if you force a mode, there can be 1062 * sync problems on link down. to fix that, the following 1063 * things need to be checked: 1064 * 1) read serialink state register 1065 * 2) read pcs status register to verify link down. 1066 * 3) if link down and serial link == 0x03, then you need 1067 * to global reset the chip. 1068 */ 1069 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1070 /* should check to see if we're in a forced mode */ 1071 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1072 if (stat == 0x03) 1073 return 1; 1074 } 1075 } else if (cp->lstate == link_down) { 1076 if (link_transition_timeout != 0 && 1077 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1078 !cp->link_transition_jiffies_valid) { 1079 /* force a reset, as a workaround for the 1080 * link-failure problem. May want to move 1081 * this to a point a bit earlier in the 1082 * sequence. 1083 */ 1084 retval = 1; 1085 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1086 cp->link_transition_jiffies = jiffies; 1087 cp->link_transition_jiffies_valid = 1; 1088 } else { 1089 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1090 } 1091 } 1092 1093 return retval; 1094 } 1095 1096 static int cas_pcs_interrupt(struct net_device *dev, 1097 struct cas *cp, u32 status) 1098 { 1099 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1100 1101 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1102 return 0; 1103 return cas_pcs_link_check(cp); 1104 } 1105 1106 static int cas_txmac_interrupt(struct net_device *dev, 1107 struct cas *cp, u32 status) 1108 { 1109 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1110 1111 if (!txmac_stat) 1112 return 0; 1113 1114 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1115 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1116 1117 /* Defer timer expiration is quite normal, 1118 * don't even log the event. 1119 */ 1120 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1121 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1122 return 0; 1123 1124 spin_lock(&cp->stat_lock[0]); 1125 if (txmac_stat & MAC_TX_UNDERRUN) { 1126 netdev_err(dev, "TX MAC xmit underrun\n"); 1127 cp->net_stats[0].tx_fifo_errors++; 1128 } 1129 1130 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1131 netdev_err(dev, "TX MAC max packet size error\n"); 1132 cp->net_stats[0].tx_errors++; 1133 } 1134 1135 /* The rest are all cases of one of the 16-bit TX 1136 * counters expiring. 1137 */ 1138 if (txmac_stat & MAC_TX_COLL_NORMAL) 1139 cp->net_stats[0].collisions += 0x10000; 1140 1141 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1142 cp->net_stats[0].tx_aborted_errors += 0x10000; 1143 cp->net_stats[0].collisions += 0x10000; 1144 } 1145 1146 if (txmac_stat & MAC_TX_COLL_LATE) { 1147 cp->net_stats[0].tx_aborted_errors += 0x10000; 1148 cp->net_stats[0].collisions += 0x10000; 1149 } 1150 spin_unlock(&cp->stat_lock[0]); 1151 1152 /* We do not keep track of MAC_TX_COLL_FIRST and 1153 * MAC_TX_PEAK_ATTEMPTS events. 1154 */ 1155 return 0; 1156 } 1157 1158 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1159 { 1160 cas_hp_inst_t *inst; 1161 u32 val; 1162 int i; 1163 1164 i = 0; 1165 while ((inst = firmware) && inst->note) { 1166 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1167 1168 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1169 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1170 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1171 1172 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1173 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1174 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1175 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1176 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1177 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1178 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1179 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1180 1181 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1182 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1183 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1184 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1185 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1186 ++firmware; 1187 ++i; 1188 } 1189 } 1190 1191 static void cas_init_rx_dma(struct cas *cp) 1192 { 1193 u64 desc_dma = cp->block_dvma; 1194 u32 val; 1195 int i, size; 1196 1197 /* rx free descriptors */ 1198 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1199 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1200 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1201 if ((N_RX_DESC_RINGS > 1) && 1202 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1203 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1204 writel(val, cp->regs + REG_RX_CFG); 1205 1206 val = (unsigned long) cp->init_rxds[0] - 1207 (unsigned long) cp->init_block; 1208 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1209 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1210 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1211 1212 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1213 /* rx desc 2 is for IPSEC packets. however, 1214 * we don't it that for that purpose. 1215 */ 1216 val = (unsigned long) cp->init_rxds[1] - 1217 (unsigned long) cp->init_block; 1218 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1219 writel((desc_dma + val) & 0xffffffff, cp->regs + 1220 REG_PLUS_RX_DB1_LOW); 1221 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1222 REG_PLUS_RX_KICK1); 1223 } 1224 1225 /* rx completion registers */ 1226 val = (unsigned long) cp->init_rxcs[0] - 1227 (unsigned long) cp->init_block; 1228 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1229 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1230 1231 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1232 /* rx comp 2-4 */ 1233 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1234 val = (unsigned long) cp->init_rxcs[i] - 1235 (unsigned long) cp->init_block; 1236 writel((desc_dma + val) >> 32, cp->regs + 1237 REG_PLUS_RX_CBN_HI(i)); 1238 writel((desc_dma + val) & 0xffffffff, cp->regs + 1239 REG_PLUS_RX_CBN_LOW(i)); 1240 } 1241 } 1242 1243 /* read selective clear regs to prevent spurious interrupts 1244 * on reset because complete == kick. 1245 * selective clear set up to prevent interrupts on resets 1246 */ 1247 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1248 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1249 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1250 for (i = 1; i < N_RX_COMP_RINGS; i++) 1251 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1252 1253 /* 2 is different from 3 and 4 */ 1254 if (N_RX_COMP_RINGS > 1) 1255 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1256 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1257 1258 for (i = 2; i < N_RX_COMP_RINGS; i++) 1259 writel(INTR_RX_DONE_ALT, 1260 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1261 } 1262 1263 /* set up pause thresholds */ 1264 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1265 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1266 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1267 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1268 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1269 1270 /* zero out dma reassembly buffers */ 1271 for (i = 0; i < 64; i++) { 1272 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1273 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1274 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1275 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1276 } 1277 1278 /* make sure address register is 0 for normal operation */ 1279 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1280 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1281 1282 /* interrupt mitigation */ 1283 #ifdef USE_RX_BLANK 1284 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1285 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1286 writel(val, cp->regs + REG_RX_BLANK); 1287 #else 1288 writel(0x0, cp->regs + REG_RX_BLANK); 1289 #endif 1290 1291 /* interrupt generation as a function of low water marks for 1292 * free desc and completion entries. these are used to trigger 1293 * housekeeping for rx descs. we don't use the free interrupt 1294 * as it's not very useful 1295 */ 1296 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1297 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1298 writel(val, cp->regs + REG_RX_AE_THRESH); 1299 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1300 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1301 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1302 } 1303 1304 /* Random early detect registers. useful for congestion avoidance. 1305 * this should be tunable. 1306 */ 1307 writel(0x0, cp->regs + REG_RX_RED); 1308 1309 /* receive page sizes. default == 2K (0x800) */ 1310 val = 0; 1311 if (cp->page_size == 0x1000) 1312 val = 0x1; 1313 else if (cp->page_size == 0x2000) 1314 val = 0x2; 1315 else if (cp->page_size == 0x4000) 1316 val = 0x3; 1317 1318 /* round mtu + offset. constrain to page size. */ 1319 size = cp->dev->mtu + 64; 1320 if (size > cp->page_size) 1321 size = cp->page_size; 1322 1323 if (size <= 0x400) 1324 i = 0x0; 1325 else if (size <= 0x800) 1326 i = 0x1; 1327 else if (size <= 0x1000) 1328 i = 0x2; 1329 else 1330 i = 0x3; 1331 1332 cp->mtu_stride = 1 << (i + 10); 1333 val = CAS_BASE(RX_PAGE_SIZE, val); 1334 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1335 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1336 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1337 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1338 1339 /* enable the header parser if desired */ 1340 if (CAS_HP_FIRMWARE == cas_prog_null) 1341 return; 1342 1343 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1344 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1345 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1346 writel(val, cp->regs + REG_HP_CFG); 1347 } 1348 1349 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1350 { 1351 memset(rxc, 0, sizeof(*rxc)); 1352 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1353 } 1354 1355 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1356 * flipping is protected by the fact that the chip will not 1357 * hand back the same page index while it's being processed. 1358 */ 1359 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1360 { 1361 cas_page_t *page = cp->rx_pages[1][index]; 1362 cas_page_t *new; 1363 1364 if (page_count(page->buffer) == 1) 1365 return page; 1366 1367 new = cas_page_dequeue(cp); 1368 if (new) { 1369 spin_lock(&cp->rx_inuse_lock); 1370 list_add(&page->list, &cp->rx_inuse_list); 1371 spin_unlock(&cp->rx_inuse_lock); 1372 } 1373 return new; 1374 } 1375 1376 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1377 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1378 const int index) 1379 { 1380 cas_page_t **page0 = cp->rx_pages[0]; 1381 cas_page_t **page1 = cp->rx_pages[1]; 1382 1383 /* swap if buffer is in use */ 1384 if (page_count(page0[index]->buffer) > 1) { 1385 cas_page_t *new = cas_page_spare(cp, index); 1386 if (new) { 1387 page1[index] = page0[index]; 1388 page0[index] = new; 1389 } 1390 } 1391 RX_USED_SET(page0[index], 0); 1392 return page0[index]; 1393 } 1394 1395 static void cas_clean_rxds(struct cas *cp) 1396 { 1397 /* only clean ring 0 as ring 1 is used for spare buffers */ 1398 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1399 int i, size; 1400 1401 /* release all rx flows */ 1402 for (i = 0; i < N_RX_FLOWS; i++) { 1403 struct sk_buff *skb; 1404 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1405 cas_skb_release(skb); 1406 } 1407 } 1408 1409 /* initialize descriptors */ 1410 size = RX_DESC_RINGN_SIZE(0); 1411 for (i = 0; i < size; i++) { 1412 cas_page_t *page = cas_page_swap(cp, 0, i); 1413 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1414 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1415 CAS_BASE(RX_INDEX_RING, 0)); 1416 } 1417 1418 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1419 cp->rx_last[0] = 0; 1420 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1421 } 1422 1423 static void cas_clean_rxcs(struct cas *cp) 1424 { 1425 int i, j; 1426 1427 /* take ownership of rx comp descriptors */ 1428 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1429 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1430 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1431 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1432 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1433 cas_rxc_init(rxc + j); 1434 } 1435 } 1436 } 1437 1438 #if 0 1439 /* When we get a RX fifo overflow, the RX unit is probably hung 1440 * so we do the following. 1441 * 1442 * If any part of the reset goes wrong, we return 1 and that causes the 1443 * whole chip to be reset. 1444 */ 1445 static int cas_rxmac_reset(struct cas *cp) 1446 { 1447 struct net_device *dev = cp->dev; 1448 int limit; 1449 u32 val; 1450 1451 /* First, reset MAC RX. */ 1452 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1453 for (limit = 0; limit < STOP_TRIES; limit++) { 1454 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1455 break; 1456 udelay(10); 1457 } 1458 if (limit == STOP_TRIES) { 1459 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1460 return 1; 1461 } 1462 1463 /* Second, disable RX DMA. */ 1464 writel(0, cp->regs + REG_RX_CFG); 1465 for (limit = 0; limit < STOP_TRIES; limit++) { 1466 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1467 break; 1468 udelay(10); 1469 } 1470 if (limit == STOP_TRIES) { 1471 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1472 return 1; 1473 } 1474 1475 mdelay(5); 1476 1477 /* Execute RX reset command. */ 1478 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1479 for (limit = 0; limit < STOP_TRIES; limit++) { 1480 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1481 break; 1482 udelay(10); 1483 } 1484 if (limit == STOP_TRIES) { 1485 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1486 return 1; 1487 } 1488 1489 /* reset driver rx state */ 1490 cas_clean_rxds(cp); 1491 cas_clean_rxcs(cp); 1492 1493 /* Now, reprogram the rest of RX unit. */ 1494 cas_init_rx_dma(cp); 1495 1496 /* re-enable */ 1497 val = readl(cp->regs + REG_RX_CFG); 1498 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1499 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1500 val = readl(cp->regs + REG_MAC_RX_CFG); 1501 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1502 return 0; 1503 } 1504 #endif 1505 1506 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1507 u32 status) 1508 { 1509 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1510 1511 if (!stat) 1512 return 0; 1513 1514 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1515 1516 /* these are all rollovers */ 1517 spin_lock(&cp->stat_lock[0]); 1518 if (stat & MAC_RX_ALIGN_ERR) 1519 cp->net_stats[0].rx_frame_errors += 0x10000; 1520 1521 if (stat & MAC_RX_CRC_ERR) 1522 cp->net_stats[0].rx_crc_errors += 0x10000; 1523 1524 if (stat & MAC_RX_LEN_ERR) 1525 cp->net_stats[0].rx_length_errors += 0x10000; 1526 1527 if (stat & MAC_RX_OVERFLOW) { 1528 cp->net_stats[0].rx_over_errors++; 1529 cp->net_stats[0].rx_fifo_errors++; 1530 } 1531 1532 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1533 * events. 1534 */ 1535 spin_unlock(&cp->stat_lock[0]); 1536 return 0; 1537 } 1538 1539 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1540 u32 status) 1541 { 1542 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1543 1544 if (!stat) 1545 return 0; 1546 1547 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1548 "mac interrupt, stat: 0x%x\n", stat); 1549 1550 /* This interrupt is just for pause frame and pause 1551 * tracking. It is useful for diagnostics and debug 1552 * but probably by default we will mask these events. 1553 */ 1554 if (stat & MAC_CTRL_PAUSE_STATE) 1555 cp->pause_entered++; 1556 1557 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1558 cp->pause_last_time_recvd = (stat >> 16); 1559 1560 return 0; 1561 } 1562 1563 1564 /* Must be invoked under cp->lock. */ 1565 static inline int cas_mdio_link_not_up(struct cas *cp) 1566 { 1567 u16 val; 1568 1569 switch (cp->lstate) { 1570 case link_force_ret: 1571 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1572 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1573 cp->timer_ticks = 5; 1574 cp->lstate = link_force_ok; 1575 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1576 break; 1577 1578 case link_aneg: 1579 val = cas_phy_read(cp, MII_BMCR); 1580 1581 /* Try forced modes. we try things in the following order: 1582 * 1000 full -> 100 full/half -> 10 half 1583 */ 1584 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1585 val |= BMCR_FULLDPLX; 1586 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1587 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1588 cas_phy_write(cp, MII_BMCR, val); 1589 cp->timer_ticks = 5; 1590 cp->lstate = link_force_try; 1591 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1592 break; 1593 1594 case link_force_try: 1595 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1596 val = cas_phy_read(cp, MII_BMCR); 1597 cp->timer_ticks = 5; 1598 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1599 val &= ~CAS_BMCR_SPEED1000; 1600 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1601 cas_phy_write(cp, MII_BMCR, val); 1602 break; 1603 } 1604 1605 if (val & BMCR_SPEED100) { 1606 if (val & BMCR_FULLDPLX) /* fd failed */ 1607 val &= ~BMCR_FULLDPLX; 1608 else { /* 100Mbps failed */ 1609 val &= ~BMCR_SPEED100; 1610 } 1611 cas_phy_write(cp, MII_BMCR, val); 1612 break; 1613 } 1614 default: 1615 break; 1616 } 1617 return 0; 1618 } 1619 1620 1621 /* must be invoked with cp->lock held */ 1622 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1623 { 1624 int restart; 1625 1626 if (bmsr & BMSR_LSTATUS) { 1627 /* Ok, here we got a link. If we had it due to a forced 1628 * fallback, and we were configured for autoneg, we 1629 * retry a short autoneg pass. If you know your hub is 1630 * broken, use ethtool ;) 1631 */ 1632 if ((cp->lstate == link_force_try) && 1633 (cp->link_cntl & BMCR_ANENABLE)) { 1634 cp->lstate = link_force_ret; 1635 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1636 cas_mif_poll(cp, 0); 1637 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1638 cp->timer_ticks = 5; 1639 if (cp->opened) 1640 netif_info(cp, link, cp->dev, 1641 "Got link after fallback, retrying autoneg once...\n"); 1642 cas_phy_write(cp, MII_BMCR, 1643 cp->link_fcntl | BMCR_ANENABLE | 1644 BMCR_ANRESTART); 1645 cas_mif_poll(cp, 1); 1646 1647 } else if (cp->lstate != link_up) { 1648 cp->lstate = link_up; 1649 cp->link_transition = LINK_TRANSITION_LINK_UP; 1650 1651 if (cp->opened) { 1652 cas_set_link_modes(cp); 1653 netif_carrier_on(cp->dev); 1654 } 1655 } 1656 return 0; 1657 } 1658 1659 /* link not up. if the link was previously up, we restart the 1660 * whole process 1661 */ 1662 restart = 0; 1663 if (cp->lstate == link_up) { 1664 cp->lstate = link_down; 1665 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1666 1667 netif_carrier_off(cp->dev); 1668 if (cp->opened) 1669 netif_info(cp, link, cp->dev, "Link down\n"); 1670 restart = 1; 1671 1672 } else if (++cp->timer_ticks > 10) 1673 cas_mdio_link_not_up(cp); 1674 1675 return restart; 1676 } 1677 1678 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1679 u32 status) 1680 { 1681 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1682 u16 bmsr; 1683 1684 /* check for a link change */ 1685 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1686 return 0; 1687 1688 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1689 return cas_mii_link_check(cp, bmsr); 1690 } 1691 1692 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1693 u32 status) 1694 { 1695 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1696 1697 if (!stat) 1698 return 0; 1699 1700 netdev_err(dev, "PCI error [%04x:%04x]", 1701 stat, readl(cp->regs + REG_BIM_DIAG)); 1702 1703 /* cassini+ has this reserved */ 1704 if ((stat & PCI_ERR_BADACK) && 1705 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1706 pr_cont(" <No ACK64# during ABS64 cycle>"); 1707 1708 if (stat & PCI_ERR_DTRTO) 1709 pr_cont(" <Delayed transaction timeout>"); 1710 if (stat & PCI_ERR_OTHER) 1711 pr_cont(" <other>"); 1712 if (stat & PCI_ERR_BIM_DMA_WRITE) 1713 pr_cont(" <BIM DMA 0 write req>"); 1714 if (stat & PCI_ERR_BIM_DMA_READ) 1715 pr_cont(" <BIM DMA 0 read req>"); 1716 pr_cont("\n"); 1717 1718 if (stat & PCI_ERR_OTHER) { 1719 int pci_errs; 1720 1721 /* Interrogate PCI config space for the 1722 * true cause. 1723 */ 1724 pci_errs = pci_status_get_and_clear_errors(cp->pdev); 1725 1726 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 1727 if (pci_errs & PCI_STATUS_PARITY) 1728 netdev_err(dev, "PCI parity error detected\n"); 1729 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 1730 netdev_err(dev, "PCI target abort\n"); 1731 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 1732 netdev_err(dev, "PCI master acks target abort\n"); 1733 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 1734 netdev_err(dev, "PCI master abort\n"); 1735 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 1736 netdev_err(dev, "PCI system error SERR#\n"); 1737 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 1738 netdev_err(dev, "PCI parity error\n"); 1739 } 1740 1741 /* For all PCI errors, we should reset the chip. */ 1742 return 1; 1743 } 1744 1745 /* All non-normal interrupt conditions get serviced here. 1746 * Returns non-zero if we should just exit the interrupt 1747 * handler right now (ie. if we reset the card which invalidates 1748 * all of the other original irq status bits). 1749 */ 1750 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1751 u32 status) 1752 { 1753 if (status & INTR_RX_TAG_ERROR) { 1754 /* corrupt RX tag framing */ 1755 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1756 "corrupt rx tag framing\n"); 1757 spin_lock(&cp->stat_lock[0]); 1758 cp->net_stats[0].rx_errors++; 1759 spin_unlock(&cp->stat_lock[0]); 1760 goto do_reset; 1761 } 1762 1763 if (status & INTR_RX_LEN_MISMATCH) { 1764 /* length mismatch. */ 1765 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1766 "length mismatch for rx frame\n"); 1767 spin_lock(&cp->stat_lock[0]); 1768 cp->net_stats[0].rx_errors++; 1769 spin_unlock(&cp->stat_lock[0]); 1770 goto do_reset; 1771 } 1772 1773 if (status & INTR_PCS_STATUS) { 1774 if (cas_pcs_interrupt(dev, cp, status)) 1775 goto do_reset; 1776 } 1777 1778 if (status & INTR_TX_MAC_STATUS) { 1779 if (cas_txmac_interrupt(dev, cp, status)) 1780 goto do_reset; 1781 } 1782 1783 if (status & INTR_RX_MAC_STATUS) { 1784 if (cas_rxmac_interrupt(dev, cp, status)) 1785 goto do_reset; 1786 } 1787 1788 if (status & INTR_MAC_CTRL_STATUS) { 1789 if (cas_mac_interrupt(dev, cp, status)) 1790 goto do_reset; 1791 } 1792 1793 if (status & INTR_MIF_STATUS) { 1794 if (cas_mif_interrupt(dev, cp, status)) 1795 goto do_reset; 1796 } 1797 1798 if (status & INTR_PCI_ERROR_STATUS) { 1799 if (cas_pci_interrupt(dev, cp, status)) 1800 goto do_reset; 1801 } 1802 return 0; 1803 1804 do_reset: 1805 #if 1 1806 atomic_inc(&cp->reset_task_pending); 1807 atomic_inc(&cp->reset_task_pending_all); 1808 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1809 schedule_work(&cp->reset_task); 1810 #else 1811 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1812 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1813 schedule_work(&cp->reset_task); 1814 #endif 1815 return 1; 1816 } 1817 1818 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1819 * determining whether to do a netif_stop/wakeup 1820 */ 1821 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1822 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1823 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1824 const int len) 1825 { 1826 unsigned long off = addr + len; 1827 1828 if (CAS_TABORT(cp) == 1) 1829 return 0; 1830 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1831 return 0; 1832 return TX_TARGET_ABORT_LEN; 1833 } 1834 1835 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1836 { 1837 struct cas_tx_desc *txds; 1838 struct sk_buff **skbs; 1839 struct net_device *dev = cp->dev; 1840 int entry, count; 1841 1842 spin_lock(&cp->tx_lock[ring]); 1843 txds = cp->init_txds[ring]; 1844 skbs = cp->tx_skbs[ring]; 1845 entry = cp->tx_old[ring]; 1846 1847 count = TX_BUFF_COUNT(ring, entry, limit); 1848 while (entry != limit) { 1849 struct sk_buff *skb = skbs[entry]; 1850 dma_addr_t daddr; 1851 u32 dlen; 1852 int frag; 1853 1854 if (!skb) { 1855 /* this should never occur */ 1856 entry = TX_DESC_NEXT(ring, entry); 1857 continue; 1858 } 1859 1860 /* however, we might get only a partial skb release. */ 1861 count -= skb_shinfo(skb)->nr_frags + 1862 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1863 if (count < 0) 1864 break; 1865 1866 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1867 "tx[%d] done, slot %d\n", ring, entry); 1868 1869 skbs[entry] = NULL; 1870 cp->tx_tiny_use[ring][entry].nbufs = 0; 1871 1872 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1873 struct cas_tx_desc *txd = txds + entry; 1874 1875 daddr = le64_to_cpu(txd->buffer); 1876 dlen = CAS_VAL(TX_DESC_BUFLEN, 1877 le64_to_cpu(txd->control)); 1878 pci_unmap_page(cp->pdev, daddr, dlen, 1879 PCI_DMA_TODEVICE); 1880 entry = TX_DESC_NEXT(ring, entry); 1881 1882 /* tiny buffer may follow */ 1883 if (cp->tx_tiny_use[ring][entry].used) { 1884 cp->tx_tiny_use[ring][entry].used = 0; 1885 entry = TX_DESC_NEXT(ring, entry); 1886 } 1887 } 1888 1889 spin_lock(&cp->stat_lock[ring]); 1890 cp->net_stats[ring].tx_packets++; 1891 cp->net_stats[ring].tx_bytes += skb->len; 1892 spin_unlock(&cp->stat_lock[ring]); 1893 dev_consume_skb_irq(skb); 1894 } 1895 cp->tx_old[ring] = entry; 1896 1897 /* this is wrong for multiple tx rings. the net device needs 1898 * multiple queues for this to do the right thing. we wait 1899 * for 2*packets to be available when using tiny buffers 1900 */ 1901 if (netif_queue_stopped(dev) && 1902 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1903 netif_wake_queue(dev); 1904 spin_unlock(&cp->tx_lock[ring]); 1905 } 1906 1907 static void cas_tx(struct net_device *dev, struct cas *cp, 1908 u32 status) 1909 { 1910 int limit, ring; 1911 #ifdef USE_TX_COMPWB 1912 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1913 #endif 1914 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1915 "tx interrupt, status: 0x%x, %llx\n", 1916 status, (unsigned long long)compwb); 1917 /* process all the rings */ 1918 for (ring = 0; ring < N_TX_RINGS; ring++) { 1919 #ifdef USE_TX_COMPWB 1920 /* use the completion writeback registers */ 1921 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1922 CAS_VAL(TX_COMPWB_LSB, compwb); 1923 compwb = TX_COMPWB_NEXT(compwb); 1924 #else 1925 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1926 #endif 1927 if (cp->tx_old[ring] != limit) 1928 cas_tx_ringN(cp, ring, limit); 1929 } 1930 } 1931 1932 1933 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1934 int entry, const u64 *words, 1935 struct sk_buff **skbref) 1936 { 1937 int dlen, hlen, len, i, alloclen; 1938 int off, swivel = RX_SWIVEL_OFF_VAL; 1939 struct cas_page *page; 1940 struct sk_buff *skb; 1941 void *addr, *crcaddr; 1942 __sum16 csum; 1943 char *p; 1944 1945 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1946 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1947 len = hlen + dlen; 1948 1949 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1950 alloclen = len; 1951 else 1952 alloclen = max(hlen, RX_COPY_MIN); 1953 1954 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1955 if (skb == NULL) 1956 return -1; 1957 1958 *skbref = skb; 1959 skb_reserve(skb, swivel); 1960 1961 p = skb->data; 1962 addr = crcaddr = NULL; 1963 if (hlen) { /* always copy header pages */ 1964 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1965 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1966 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1967 swivel; 1968 1969 i = hlen; 1970 if (!dlen) /* attach FCS */ 1971 i += cp->crc_size; 1972 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1973 PCI_DMA_FROMDEVICE); 1974 addr = cas_page_map(page->buffer); 1975 memcpy(p, addr + off, i); 1976 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1977 PCI_DMA_FROMDEVICE); 1978 cas_page_unmap(addr); 1979 RX_USED_ADD(page, 0x100); 1980 p += hlen; 1981 swivel = 0; 1982 } 1983 1984 1985 if (alloclen < (hlen + dlen)) { 1986 skb_frag_t *frag = skb_shinfo(skb)->frags; 1987 1988 /* normal or jumbo packets. we use frags */ 1989 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 1990 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1991 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 1992 1993 hlen = min(cp->page_size - off, dlen); 1994 if (hlen < 0) { 1995 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1996 "rx page overflow: %d\n", hlen); 1997 dev_kfree_skb_irq(skb); 1998 return -1; 1999 } 2000 i = hlen; 2001 if (i == dlen) /* attach FCS */ 2002 i += cp->crc_size; 2003 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2004 PCI_DMA_FROMDEVICE); 2005 2006 /* make sure we always copy a header */ 2007 swivel = 0; 2008 if (p == (char *) skb->data) { /* not split */ 2009 addr = cas_page_map(page->buffer); 2010 memcpy(p, addr + off, RX_COPY_MIN); 2011 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2012 PCI_DMA_FROMDEVICE); 2013 cas_page_unmap(addr); 2014 off += RX_COPY_MIN; 2015 swivel = RX_COPY_MIN; 2016 RX_USED_ADD(page, cp->mtu_stride); 2017 } else { 2018 RX_USED_ADD(page, hlen); 2019 } 2020 skb_put(skb, alloclen); 2021 2022 skb_shinfo(skb)->nr_frags++; 2023 skb->data_len += hlen - swivel; 2024 skb->truesize += hlen - swivel; 2025 skb->len += hlen - swivel; 2026 2027 __skb_frag_set_page(frag, page->buffer); 2028 __skb_frag_ref(frag); 2029 skb_frag_off_set(frag, off); 2030 skb_frag_size_set(frag, hlen - swivel); 2031 2032 /* any more data? */ 2033 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2034 hlen = dlen; 2035 off = 0; 2036 2037 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2038 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2039 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2040 hlen + cp->crc_size, 2041 PCI_DMA_FROMDEVICE); 2042 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2043 hlen + cp->crc_size, 2044 PCI_DMA_FROMDEVICE); 2045 2046 skb_shinfo(skb)->nr_frags++; 2047 skb->data_len += hlen; 2048 skb->len += hlen; 2049 frag++; 2050 2051 __skb_frag_set_page(frag, page->buffer); 2052 __skb_frag_ref(frag); 2053 skb_frag_off_set(frag, 0); 2054 skb_frag_size_set(frag, hlen); 2055 RX_USED_ADD(page, hlen + cp->crc_size); 2056 } 2057 2058 if (cp->crc_size) { 2059 addr = cas_page_map(page->buffer); 2060 crcaddr = addr + off + hlen; 2061 } 2062 2063 } else { 2064 /* copying packet */ 2065 if (!dlen) 2066 goto end_copy_pkt; 2067 2068 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2069 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2070 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2071 hlen = min(cp->page_size - off, dlen); 2072 if (hlen < 0) { 2073 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2074 "rx page overflow: %d\n", hlen); 2075 dev_kfree_skb_irq(skb); 2076 return -1; 2077 } 2078 i = hlen; 2079 if (i == dlen) /* attach FCS */ 2080 i += cp->crc_size; 2081 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2082 PCI_DMA_FROMDEVICE); 2083 addr = cas_page_map(page->buffer); 2084 memcpy(p, addr + off, i); 2085 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2086 PCI_DMA_FROMDEVICE); 2087 cas_page_unmap(addr); 2088 if (p == (char *) skb->data) /* not split */ 2089 RX_USED_ADD(page, cp->mtu_stride); 2090 else 2091 RX_USED_ADD(page, i); 2092 2093 /* any more data? */ 2094 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2095 p += hlen; 2096 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2097 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2098 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2099 dlen + cp->crc_size, 2100 PCI_DMA_FROMDEVICE); 2101 addr = cas_page_map(page->buffer); 2102 memcpy(p, addr, dlen + cp->crc_size); 2103 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2104 dlen + cp->crc_size, 2105 PCI_DMA_FROMDEVICE); 2106 cas_page_unmap(addr); 2107 RX_USED_ADD(page, dlen + cp->crc_size); 2108 } 2109 end_copy_pkt: 2110 if (cp->crc_size) { 2111 addr = NULL; 2112 crcaddr = skb->data + alloclen; 2113 } 2114 skb_put(skb, alloclen); 2115 } 2116 2117 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2118 if (cp->crc_size) { 2119 /* checksum includes FCS. strip it out. */ 2120 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2121 csum_unfold(csum))); 2122 if (addr) 2123 cas_page_unmap(addr); 2124 } 2125 skb->protocol = eth_type_trans(skb, cp->dev); 2126 if (skb->protocol == htons(ETH_P_IP)) { 2127 skb->csum = csum_unfold(~csum); 2128 skb->ip_summed = CHECKSUM_COMPLETE; 2129 } else 2130 skb_checksum_none_assert(skb); 2131 return len; 2132 } 2133 2134 2135 /* we can handle up to 64 rx flows at a time. we do the same thing 2136 * as nonreassm except that we batch up the buffers. 2137 * NOTE: we currently just treat each flow as a bunch of packets that 2138 * we pass up. a better way would be to coalesce the packets 2139 * into a jumbo packet. to do that, we need to do the following: 2140 * 1) the first packet will have a clean split between header and 2141 * data. save both. 2142 * 2) each time the next flow packet comes in, extend the 2143 * data length and merge the checksums. 2144 * 3) on flow release, fix up the header. 2145 * 4) make sure the higher layer doesn't care. 2146 * because packets get coalesced, we shouldn't run into fragment count 2147 * issues. 2148 */ 2149 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2150 struct sk_buff *skb) 2151 { 2152 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2153 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2154 2155 /* this is protected at a higher layer, so no need to 2156 * do any additional locking here. stick the buffer 2157 * at the end. 2158 */ 2159 __skb_queue_tail(flow, skb); 2160 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2161 while ((skb = __skb_dequeue(flow))) { 2162 cas_skb_release(skb); 2163 } 2164 } 2165 } 2166 2167 /* put rx descriptor back on ring. if a buffer is in use by a higher 2168 * layer, this will need to put in a replacement. 2169 */ 2170 static void cas_post_page(struct cas *cp, const int ring, const int index) 2171 { 2172 cas_page_t *new; 2173 int entry; 2174 2175 entry = cp->rx_old[ring]; 2176 2177 new = cas_page_swap(cp, ring, index); 2178 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2179 cp->init_rxds[ring][entry].index = 2180 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2181 CAS_BASE(RX_INDEX_RING, ring)); 2182 2183 entry = RX_DESC_ENTRY(ring, entry + 1); 2184 cp->rx_old[ring] = entry; 2185 2186 if (entry % 4) 2187 return; 2188 2189 if (ring == 0) 2190 writel(entry, cp->regs + REG_RX_KICK); 2191 else if ((N_RX_DESC_RINGS > 1) && 2192 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2193 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2194 } 2195 2196 2197 /* only when things are bad */ 2198 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2199 { 2200 unsigned int entry, last, count, released; 2201 int cluster; 2202 cas_page_t **page = cp->rx_pages[ring]; 2203 2204 entry = cp->rx_old[ring]; 2205 2206 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2207 "rxd[%d] interrupt, done: %d\n", ring, entry); 2208 2209 cluster = -1; 2210 count = entry & 0x3; 2211 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2212 released = 0; 2213 while (entry != last) { 2214 /* make a new buffer if it's still in use */ 2215 if (page_count(page[entry]->buffer) > 1) { 2216 cas_page_t *new = cas_page_dequeue(cp); 2217 if (!new) { 2218 /* let the timer know that we need to 2219 * do this again 2220 */ 2221 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2222 if (!timer_pending(&cp->link_timer)) 2223 mod_timer(&cp->link_timer, jiffies + 2224 CAS_LINK_FAST_TIMEOUT); 2225 cp->rx_old[ring] = entry; 2226 cp->rx_last[ring] = num ? num - released : 0; 2227 return -ENOMEM; 2228 } 2229 spin_lock(&cp->rx_inuse_lock); 2230 list_add(&page[entry]->list, &cp->rx_inuse_list); 2231 spin_unlock(&cp->rx_inuse_lock); 2232 cp->init_rxds[ring][entry].buffer = 2233 cpu_to_le64(new->dma_addr); 2234 page[entry] = new; 2235 2236 } 2237 2238 if (++count == 4) { 2239 cluster = entry; 2240 count = 0; 2241 } 2242 released++; 2243 entry = RX_DESC_ENTRY(ring, entry + 1); 2244 } 2245 cp->rx_old[ring] = entry; 2246 2247 if (cluster < 0) 2248 return 0; 2249 2250 if (ring == 0) 2251 writel(cluster, cp->regs + REG_RX_KICK); 2252 else if ((N_RX_DESC_RINGS > 1) && 2253 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2254 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2255 return 0; 2256 } 2257 2258 2259 /* process a completion ring. packets are set up in three basic ways: 2260 * small packets: should be copied header + data in single buffer. 2261 * large packets: header and data in a single buffer. 2262 * split packets: header in a separate buffer from data. 2263 * data may be in multiple pages. data may be > 256 2264 * bytes but in a single page. 2265 * 2266 * NOTE: RX page posting is done in this routine as well. while there's 2267 * the capability of using multiple RX completion rings, it isn't 2268 * really worthwhile due to the fact that the page posting will 2269 * force serialization on the single descriptor ring. 2270 */ 2271 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2272 { 2273 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2274 int entry, drops; 2275 int npackets = 0; 2276 2277 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2278 "rx[%d] interrupt, done: %d/%d\n", 2279 ring, 2280 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2281 2282 entry = cp->rx_new[ring]; 2283 drops = 0; 2284 while (1) { 2285 struct cas_rx_comp *rxc = rxcs + entry; 2286 struct sk_buff *uninitialized_var(skb); 2287 int type, len; 2288 u64 words[4]; 2289 int i, dring; 2290 2291 words[0] = le64_to_cpu(rxc->word1); 2292 words[1] = le64_to_cpu(rxc->word2); 2293 words[2] = le64_to_cpu(rxc->word3); 2294 words[3] = le64_to_cpu(rxc->word4); 2295 2296 /* don't touch if still owned by hw */ 2297 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2298 if (type == 0) 2299 break; 2300 2301 /* hw hasn't cleared the zero bit yet */ 2302 if (words[3] & RX_COMP4_ZERO) { 2303 break; 2304 } 2305 2306 /* get info on the packet */ 2307 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2308 spin_lock(&cp->stat_lock[ring]); 2309 cp->net_stats[ring].rx_errors++; 2310 if (words[3] & RX_COMP4_LEN_MISMATCH) 2311 cp->net_stats[ring].rx_length_errors++; 2312 if (words[3] & RX_COMP4_BAD) 2313 cp->net_stats[ring].rx_crc_errors++; 2314 spin_unlock(&cp->stat_lock[ring]); 2315 2316 /* We'll just return it to Cassini. */ 2317 drop_it: 2318 spin_lock(&cp->stat_lock[ring]); 2319 ++cp->net_stats[ring].rx_dropped; 2320 spin_unlock(&cp->stat_lock[ring]); 2321 goto next; 2322 } 2323 2324 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2325 if (len < 0) { 2326 ++drops; 2327 goto drop_it; 2328 } 2329 2330 /* see if it's a flow re-assembly or not. the driver 2331 * itself handles release back up. 2332 */ 2333 if (RX_DONT_BATCH || (type == 0x2)) { 2334 /* non-reassm: these always get released */ 2335 cas_skb_release(skb); 2336 } else { 2337 cas_rx_flow_pkt(cp, words, skb); 2338 } 2339 2340 spin_lock(&cp->stat_lock[ring]); 2341 cp->net_stats[ring].rx_packets++; 2342 cp->net_stats[ring].rx_bytes += len; 2343 spin_unlock(&cp->stat_lock[ring]); 2344 2345 next: 2346 npackets++; 2347 2348 /* should it be released? */ 2349 if (words[0] & RX_COMP1_RELEASE_HDR) { 2350 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2351 dring = CAS_VAL(RX_INDEX_RING, i); 2352 i = CAS_VAL(RX_INDEX_NUM, i); 2353 cas_post_page(cp, dring, i); 2354 } 2355 2356 if (words[0] & RX_COMP1_RELEASE_DATA) { 2357 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2358 dring = CAS_VAL(RX_INDEX_RING, i); 2359 i = CAS_VAL(RX_INDEX_NUM, i); 2360 cas_post_page(cp, dring, i); 2361 } 2362 2363 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2364 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2365 dring = CAS_VAL(RX_INDEX_RING, i); 2366 i = CAS_VAL(RX_INDEX_NUM, i); 2367 cas_post_page(cp, dring, i); 2368 } 2369 2370 /* skip to the next entry */ 2371 entry = RX_COMP_ENTRY(ring, entry + 1 + 2372 CAS_VAL(RX_COMP1_SKIP, words[0])); 2373 #ifdef USE_NAPI 2374 if (budget && (npackets >= budget)) 2375 break; 2376 #endif 2377 } 2378 cp->rx_new[ring] = entry; 2379 2380 if (drops) 2381 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2382 return npackets; 2383 } 2384 2385 2386 /* put completion entries back on the ring */ 2387 static void cas_post_rxcs_ringN(struct net_device *dev, 2388 struct cas *cp, int ring) 2389 { 2390 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2391 int last, entry; 2392 2393 last = cp->rx_cur[ring]; 2394 entry = cp->rx_new[ring]; 2395 netif_printk(cp, intr, KERN_DEBUG, dev, 2396 "rxc[%d] interrupt, done: %d/%d\n", 2397 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2398 2399 /* zero and re-mark descriptors */ 2400 while (last != entry) { 2401 cas_rxc_init(rxc + last); 2402 last = RX_COMP_ENTRY(ring, last + 1); 2403 } 2404 cp->rx_cur[ring] = last; 2405 2406 if (ring == 0) 2407 writel(last, cp->regs + REG_RX_COMP_TAIL); 2408 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2409 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2410 } 2411 2412 2413 2414 /* cassini can use all four PCI interrupts for the completion ring. 2415 * rings 3 and 4 are identical 2416 */ 2417 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2418 static inline void cas_handle_irqN(struct net_device *dev, 2419 struct cas *cp, const u32 status, 2420 const int ring) 2421 { 2422 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2423 cas_post_rxcs_ringN(dev, cp, ring); 2424 } 2425 2426 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2427 { 2428 struct net_device *dev = dev_id; 2429 struct cas *cp = netdev_priv(dev); 2430 unsigned long flags; 2431 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2432 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2433 2434 /* check for shared irq */ 2435 if (status == 0) 2436 return IRQ_NONE; 2437 2438 spin_lock_irqsave(&cp->lock, flags); 2439 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2440 #ifdef USE_NAPI 2441 cas_mask_intr(cp); 2442 napi_schedule(&cp->napi); 2443 #else 2444 cas_rx_ringN(cp, ring, 0); 2445 #endif 2446 status &= ~INTR_RX_DONE_ALT; 2447 } 2448 2449 if (status) 2450 cas_handle_irqN(dev, cp, status, ring); 2451 spin_unlock_irqrestore(&cp->lock, flags); 2452 return IRQ_HANDLED; 2453 } 2454 #endif 2455 2456 #ifdef USE_PCI_INTB 2457 /* everything but rx packets */ 2458 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2459 { 2460 if (status & INTR_RX_BUF_UNAVAIL_1) { 2461 /* Frame arrived, no free RX buffers available. 2462 * NOTE: we can get this on a link transition. */ 2463 cas_post_rxds_ringN(cp, 1, 0); 2464 spin_lock(&cp->stat_lock[1]); 2465 cp->net_stats[1].rx_dropped++; 2466 spin_unlock(&cp->stat_lock[1]); 2467 } 2468 2469 if (status & INTR_RX_BUF_AE_1) 2470 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2471 RX_AE_FREEN_VAL(1)); 2472 2473 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2474 cas_post_rxcs_ringN(cp, 1); 2475 } 2476 2477 /* ring 2 handles a few more events than 3 and 4 */ 2478 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2479 { 2480 struct net_device *dev = dev_id; 2481 struct cas *cp = netdev_priv(dev); 2482 unsigned long flags; 2483 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2484 2485 /* check for shared interrupt */ 2486 if (status == 0) 2487 return IRQ_NONE; 2488 2489 spin_lock_irqsave(&cp->lock, flags); 2490 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2491 #ifdef USE_NAPI 2492 cas_mask_intr(cp); 2493 napi_schedule(&cp->napi); 2494 #else 2495 cas_rx_ringN(cp, 1, 0); 2496 #endif 2497 status &= ~INTR_RX_DONE_ALT; 2498 } 2499 if (status) 2500 cas_handle_irq1(cp, status); 2501 spin_unlock_irqrestore(&cp->lock, flags); 2502 return IRQ_HANDLED; 2503 } 2504 #endif 2505 2506 static inline void cas_handle_irq(struct net_device *dev, 2507 struct cas *cp, const u32 status) 2508 { 2509 /* housekeeping interrupts */ 2510 if (status & INTR_ERROR_MASK) 2511 cas_abnormal_irq(dev, cp, status); 2512 2513 if (status & INTR_RX_BUF_UNAVAIL) { 2514 /* Frame arrived, no free RX buffers available. 2515 * NOTE: we can get this on a link transition. 2516 */ 2517 cas_post_rxds_ringN(cp, 0, 0); 2518 spin_lock(&cp->stat_lock[0]); 2519 cp->net_stats[0].rx_dropped++; 2520 spin_unlock(&cp->stat_lock[0]); 2521 } else if (status & INTR_RX_BUF_AE) { 2522 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2523 RX_AE_FREEN_VAL(0)); 2524 } 2525 2526 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2527 cas_post_rxcs_ringN(dev, cp, 0); 2528 } 2529 2530 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2531 { 2532 struct net_device *dev = dev_id; 2533 struct cas *cp = netdev_priv(dev); 2534 unsigned long flags; 2535 u32 status = readl(cp->regs + REG_INTR_STATUS); 2536 2537 if (status == 0) 2538 return IRQ_NONE; 2539 2540 spin_lock_irqsave(&cp->lock, flags); 2541 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2542 cas_tx(dev, cp, status); 2543 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2544 } 2545 2546 if (status & INTR_RX_DONE) { 2547 #ifdef USE_NAPI 2548 cas_mask_intr(cp); 2549 napi_schedule(&cp->napi); 2550 #else 2551 cas_rx_ringN(cp, 0, 0); 2552 #endif 2553 status &= ~INTR_RX_DONE; 2554 } 2555 2556 if (status) 2557 cas_handle_irq(dev, cp, status); 2558 spin_unlock_irqrestore(&cp->lock, flags); 2559 return IRQ_HANDLED; 2560 } 2561 2562 2563 #ifdef USE_NAPI 2564 static int cas_poll(struct napi_struct *napi, int budget) 2565 { 2566 struct cas *cp = container_of(napi, struct cas, napi); 2567 struct net_device *dev = cp->dev; 2568 int i, enable_intr, credits; 2569 u32 status = readl(cp->regs + REG_INTR_STATUS); 2570 unsigned long flags; 2571 2572 spin_lock_irqsave(&cp->lock, flags); 2573 cas_tx(dev, cp, status); 2574 spin_unlock_irqrestore(&cp->lock, flags); 2575 2576 /* NAPI rx packets. we spread the credits across all of the 2577 * rxc rings 2578 * 2579 * to make sure we're fair with the work we loop through each 2580 * ring N_RX_COMP_RING times with a request of 2581 * budget / N_RX_COMP_RINGS 2582 */ 2583 enable_intr = 1; 2584 credits = 0; 2585 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2586 int j; 2587 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2588 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2589 if (credits >= budget) { 2590 enable_intr = 0; 2591 goto rx_comp; 2592 } 2593 } 2594 } 2595 2596 rx_comp: 2597 /* final rx completion */ 2598 spin_lock_irqsave(&cp->lock, flags); 2599 if (status) 2600 cas_handle_irq(dev, cp, status); 2601 2602 #ifdef USE_PCI_INTB 2603 if (N_RX_COMP_RINGS > 1) { 2604 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2605 if (status) 2606 cas_handle_irq1(dev, cp, status); 2607 } 2608 #endif 2609 2610 #ifdef USE_PCI_INTC 2611 if (N_RX_COMP_RINGS > 2) { 2612 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2613 if (status) 2614 cas_handle_irqN(dev, cp, status, 2); 2615 } 2616 #endif 2617 2618 #ifdef USE_PCI_INTD 2619 if (N_RX_COMP_RINGS > 3) { 2620 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2621 if (status) 2622 cas_handle_irqN(dev, cp, status, 3); 2623 } 2624 #endif 2625 spin_unlock_irqrestore(&cp->lock, flags); 2626 if (enable_intr) { 2627 napi_complete(napi); 2628 cas_unmask_intr(cp); 2629 } 2630 return credits; 2631 } 2632 #endif 2633 2634 #ifdef CONFIG_NET_POLL_CONTROLLER 2635 static void cas_netpoll(struct net_device *dev) 2636 { 2637 struct cas *cp = netdev_priv(dev); 2638 2639 cas_disable_irq(cp, 0); 2640 cas_interrupt(cp->pdev->irq, dev); 2641 cas_enable_irq(cp, 0); 2642 2643 #ifdef USE_PCI_INTB 2644 if (N_RX_COMP_RINGS > 1) { 2645 /* cas_interrupt1(); */ 2646 } 2647 #endif 2648 #ifdef USE_PCI_INTC 2649 if (N_RX_COMP_RINGS > 2) { 2650 /* cas_interruptN(); */ 2651 } 2652 #endif 2653 #ifdef USE_PCI_INTD 2654 if (N_RX_COMP_RINGS > 3) { 2655 /* cas_interruptN(); */ 2656 } 2657 #endif 2658 } 2659 #endif 2660 2661 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue) 2662 { 2663 struct cas *cp = netdev_priv(dev); 2664 2665 netdev_err(dev, "transmit timed out, resetting\n"); 2666 if (!cp->hw_running) { 2667 netdev_err(dev, "hrm.. hw not running!\n"); 2668 return; 2669 } 2670 2671 netdev_err(dev, "MIF_STATE[%08x]\n", 2672 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2673 2674 netdev_err(dev, "MAC_STATE[%08x]\n", 2675 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2676 2677 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2678 readl(cp->regs + REG_TX_CFG), 2679 readl(cp->regs + REG_MAC_TX_STATUS), 2680 readl(cp->regs + REG_MAC_TX_CFG), 2681 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2682 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2683 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2684 readl(cp->regs + REG_TX_SM_1), 2685 readl(cp->regs + REG_TX_SM_2)); 2686 2687 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2688 readl(cp->regs + REG_RX_CFG), 2689 readl(cp->regs + REG_MAC_RX_STATUS), 2690 readl(cp->regs + REG_MAC_RX_CFG)); 2691 2692 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2693 readl(cp->regs + REG_HP_STATE_MACHINE), 2694 readl(cp->regs + REG_HP_STATUS0), 2695 readl(cp->regs + REG_HP_STATUS1), 2696 readl(cp->regs + REG_HP_STATUS2)); 2697 2698 #if 1 2699 atomic_inc(&cp->reset_task_pending); 2700 atomic_inc(&cp->reset_task_pending_all); 2701 schedule_work(&cp->reset_task); 2702 #else 2703 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2704 schedule_work(&cp->reset_task); 2705 #endif 2706 } 2707 2708 static inline int cas_intme(int ring, int entry) 2709 { 2710 /* Algorithm: IRQ every 1/2 of descriptors. */ 2711 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2712 return 1; 2713 return 0; 2714 } 2715 2716 2717 static void cas_write_txd(struct cas *cp, int ring, int entry, 2718 dma_addr_t mapping, int len, u64 ctrl, int last) 2719 { 2720 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2721 2722 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2723 if (cas_intme(ring, entry)) 2724 ctrl |= TX_DESC_INTME; 2725 if (last) 2726 ctrl |= TX_DESC_EOF; 2727 txd->control = cpu_to_le64(ctrl); 2728 txd->buffer = cpu_to_le64(mapping); 2729 } 2730 2731 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2732 const int entry) 2733 { 2734 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2735 } 2736 2737 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2738 const int entry, const int tentry) 2739 { 2740 cp->tx_tiny_use[ring][tentry].nbufs++; 2741 cp->tx_tiny_use[ring][entry].used = 1; 2742 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2743 } 2744 2745 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2746 struct sk_buff *skb) 2747 { 2748 struct net_device *dev = cp->dev; 2749 int entry, nr_frags, frag, tabort, tentry; 2750 dma_addr_t mapping; 2751 unsigned long flags; 2752 u64 ctrl; 2753 u32 len; 2754 2755 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2756 2757 /* This is a hard error, log it. */ 2758 if (TX_BUFFS_AVAIL(cp, ring) <= 2759 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2760 netif_stop_queue(dev); 2761 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2762 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2763 return 1; 2764 } 2765 2766 ctrl = 0; 2767 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2768 const u64 csum_start_off = skb_checksum_start_offset(skb); 2769 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2770 2771 ctrl = TX_DESC_CSUM_EN | 2772 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2773 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2774 } 2775 2776 entry = cp->tx_new[ring]; 2777 cp->tx_skbs[ring][entry] = skb; 2778 2779 nr_frags = skb_shinfo(skb)->nr_frags; 2780 len = skb_headlen(skb); 2781 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2782 offset_in_page(skb->data), len, 2783 PCI_DMA_TODEVICE); 2784 2785 tentry = entry; 2786 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2787 if (unlikely(tabort)) { 2788 /* NOTE: len is always > tabort */ 2789 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2790 ctrl | TX_DESC_SOF, 0); 2791 entry = TX_DESC_NEXT(ring, entry); 2792 2793 skb_copy_from_linear_data_offset(skb, len - tabort, 2794 tx_tiny_buf(cp, ring, entry), tabort); 2795 mapping = tx_tiny_map(cp, ring, entry, tentry); 2796 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2797 (nr_frags == 0)); 2798 } else { 2799 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2800 TX_DESC_SOF, (nr_frags == 0)); 2801 } 2802 entry = TX_DESC_NEXT(ring, entry); 2803 2804 for (frag = 0; frag < nr_frags; frag++) { 2805 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2806 2807 len = skb_frag_size(fragp); 2808 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2809 DMA_TO_DEVICE); 2810 2811 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len); 2812 if (unlikely(tabort)) { 2813 void *addr; 2814 2815 /* NOTE: len is always > tabort */ 2816 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2817 ctrl, 0); 2818 entry = TX_DESC_NEXT(ring, entry); 2819 2820 addr = cas_page_map(skb_frag_page(fragp)); 2821 memcpy(tx_tiny_buf(cp, ring, entry), 2822 addr + skb_frag_off(fragp) + len - tabort, 2823 tabort); 2824 cas_page_unmap(addr); 2825 mapping = tx_tiny_map(cp, ring, entry, tentry); 2826 len = tabort; 2827 } 2828 2829 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2830 (frag + 1 == nr_frags)); 2831 entry = TX_DESC_NEXT(ring, entry); 2832 } 2833 2834 cp->tx_new[ring] = entry; 2835 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2836 netif_stop_queue(dev); 2837 2838 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2839 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2840 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2841 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2842 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2843 return 0; 2844 } 2845 2846 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2847 { 2848 struct cas *cp = netdev_priv(dev); 2849 2850 /* this is only used as a load-balancing hint, so it doesn't 2851 * need to be SMP safe 2852 */ 2853 static int ring; 2854 2855 if (skb_padto(skb, cp->min_frame_size)) 2856 return NETDEV_TX_OK; 2857 2858 /* XXX: we need some higher-level QoS hooks to steer packets to 2859 * individual queues. 2860 */ 2861 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2862 return NETDEV_TX_BUSY; 2863 return NETDEV_TX_OK; 2864 } 2865 2866 static void cas_init_tx_dma(struct cas *cp) 2867 { 2868 u64 desc_dma = cp->block_dvma; 2869 unsigned long off; 2870 u32 val; 2871 int i; 2872 2873 /* set up tx completion writeback registers. must be 8-byte aligned */ 2874 #ifdef USE_TX_COMPWB 2875 off = offsetof(struct cas_init_block, tx_compwb); 2876 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2877 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2878 #endif 2879 2880 /* enable completion writebacks, enable paced mode, 2881 * disable read pipe, and disable pre-interrupt compwbs 2882 */ 2883 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2884 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2885 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2886 TX_CFG_INTR_COMPWB_DIS; 2887 2888 /* write out tx ring info and tx desc bases */ 2889 for (i = 0; i < MAX_TX_RINGS; i++) { 2890 off = (unsigned long) cp->init_txds[i] - 2891 (unsigned long) cp->init_block; 2892 2893 val |= CAS_TX_RINGN_BASE(i); 2894 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2895 writel((desc_dma + off) & 0xffffffff, cp->regs + 2896 REG_TX_DBN_LOW(i)); 2897 /* don't zero out the kick register here as the system 2898 * will wedge 2899 */ 2900 } 2901 writel(val, cp->regs + REG_TX_CFG); 2902 2903 /* program max burst sizes. these numbers should be different 2904 * if doing QoS. 2905 */ 2906 #ifdef USE_QOS 2907 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2908 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2909 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2910 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2911 #else 2912 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2913 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2914 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2915 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2916 #endif 2917 } 2918 2919 /* Must be invoked under cp->lock. */ 2920 static inline void cas_init_dma(struct cas *cp) 2921 { 2922 cas_init_tx_dma(cp); 2923 cas_init_rx_dma(cp); 2924 } 2925 2926 static void cas_process_mc_list(struct cas *cp) 2927 { 2928 u16 hash_table[16]; 2929 u32 crc; 2930 struct netdev_hw_addr *ha; 2931 int i = 1; 2932 2933 memset(hash_table, 0, sizeof(hash_table)); 2934 netdev_for_each_mc_addr(ha, cp->dev) { 2935 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2936 /* use the alternate mac address registers for the 2937 * first 15 multicast addresses 2938 */ 2939 writel((ha->addr[4] << 8) | ha->addr[5], 2940 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2941 writel((ha->addr[2] << 8) | ha->addr[3], 2942 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2943 writel((ha->addr[0] << 8) | ha->addr[1], 2944 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2945 i++; 2946 } 2947 else { 2948 /* use hw hash table for the next series of 2949 * multicast addresses 2950 */ 2951 crc = ether_crc_le(ETH_ALEN, ha->addr); 2952 crc >>= 24; 2953 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2954 } 2955 } 2956 for (i = 0; i < 16; i++) 2957 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2958 } 2959 2960 /* Must be invoked under cp->lock. */ 2961 static u32 cas_setup_multicast(struct cas *cp) 2962 { 2963 u32 rxcfg = 0; 2964 int i; 2965 2966 if (cp->dev->flags & IFF_PROMISC) { 2967 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2968 2969 } else if (cp->dev->flags & IFF_ALLMULTI) { 2970 for (i=0; i < 16; i++) 2971 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2972 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2973 2974 } else { 2975 cas_process_mc_list(cp); 2976 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2977 } 2978 2979 return rxcfg; 2980 } 2981 2982 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 2983 static void cas_clear_mac_err(struct cas *cp) 2984 { 2985 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 2986 writel(0, cp->regs + REG_MAC_COLL_FIRST); 2987 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 2988 writel(0, cp->regs + REG_MAC_COLL_LATE); 2989 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 2990 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 2991 writel(0, cp->regs + REG_MAC_RECV_FRAME); 2992 writel(0, cp->regs + REG_MAC_LEN_ERR); 2993 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 2994 writel(0, cp->regs + REG_MAC_FCS_ERR); 2995 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 2996 } 2997 2998 2999 static void cas_mac_reset(struct cas *cp) 3000 { 3001 int i; 3002 3003 /* do both TX and RX reset */ 3004 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3005 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3006 3007 /* wait for TX */ 3008 i = STOP_TRIES; 3009 while (i-- > 0) { 3010 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3011 break; 3012 udelay(10); 3013 } 3014 3015 /* wait for RX */ 3016 i = STOP_TRIES; 3017 while (i-- > 0) { 3018 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3019 break; 3020 udelay(10); 3021 } 3022 3023 if (readl(cp->regs + REG_MAC_TX_RESET) | 3024 readl(cp->regs + REG_MAC_RX_RESET)) 3025 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3026 readl(cp->regs + REG_MAC_TX_RESET), 3027 readl(cp->regs + REG_MAC_RX_RESET), 3028 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3029 } 3030 3031 3032 /* Must be invoked under cp->lock. */ 3033 static void cas_init_mac(struct cas *cp) 3034 { 3035 unsigned char *e = &cp->dev->dev_addr[0]; 3036 int i; 3037 cas_mac_reset(cp); 3038 3039 /* setup core arbitration weight register */ 3040 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3041 3042 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3043 /* set the infinite burst register for chips that don't have 3044 * pci issues. 3045 */ 3046 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3047 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3048 #endif 3049 3050 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3051 3052 writel(0x00, cp->regs + REG_MAC_IPG0); 3053 writel(0x08, cp->regs + REG_MAC_IPG1); 3054 writel(0x04, cp->regs + REG_MAC_IPG2); 3055 3056 /* change later for 802.3z */ 3057 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3058 3059 /* min frame + FCS */ 3060 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3061 3062 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3063 * specify the maximum frame size to prevent RX tag errors on 3064 * oversized frames. 3065 */ 3066 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3067 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3068 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3069 cp->regs + REG_MAC_FRAMESIZE_MAX); 3070 3071 /* NOTE: crc_size is used as a surrogate for half-duplex. 3072 * workaround saturn half-duplex issue by increasing preamble 3073 * size to 65 bytes. 3074 */ 3075 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3076 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3077 else 3078 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3079 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3080 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3081 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3082 3083 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3084 3085 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3086 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3087 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3088 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3089 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3090 3091 /* setup mac address in perfect filter array */ 3092 for (i = 0; i < 45; i++) 3093 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3094 3095 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3096 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3097 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3098 3099 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3100 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3101 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3102 3103 cp->mac_rx_cfg = cas_setup_multicast(cp); 3104 3105 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3106 cas_clear_mac_err(cp); 3107 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3108 3109 /* Setup MAC interrupts. We want to get all of the interesting 3110 * counter expiration events, but we do not want to hear about 3111 * normal rx/tx as the DMA engine tells us that. 3112 */ 3113 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3114 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3115 3116 /* Don't enable even the PAUSE interrupts for now, we 3117 * make no use of those events other than to record them. 3118 */ 3119 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3120 } 3121 3122 /* Must be invoked under cp->lock. */ 3123 static void cas_init_pause_thresholds(struct cas *cp) 3124 { 3125 /* Calculate pause thresholds. Setting the OFF threshold to the 3126 * full RX fifo size effectively disables PAUSE generation 3127 */ 3128 if (cp->rx_fifo_size <= (2 * 1024)) { 3129 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3130 } else { 3131 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3132 if (max_frame * 3 > cp->rx_fifo_size) { 3133 cp->rx_pause_off = 7104; 3134 cp->rx_pause_on = 960; 3135 } else { 3136 int off = (cp->rx_fifo_size - (max_frame * 2)); 3137 int on = off - max_frame; 3138 cp->rx_pause_off = off; 3139 cp->rx_pause_on = on; 3140 } 3141 } 3142 } 3143 3144 static int cas_vpd_match(const void __iomem *p, const char *str) 3145 { 3146 int len = strlen(str) + 1; 3147 int i; 3148 3149 for (i = 0; i < len; i++) { 3150 if (readb(p + i) != str[i]) 3151 return 0; 3152 } 3153 return 1; 3154 } 3155 3156 3157 /* get the mac address by reading the vpd information in the rom. 3158 * also get the phy type and determine if there's an entropy generator. 3159 * NOTE: this is a bit convoluted for the following reasons: 3160 * 1) vpd info has order-dependent mac addresses for multinic cards 3161 * 2) the only way to determine the nic order is to use the slot 3162 * number. 3163 * 3) fiber cards don't have bridges, so their slot numbers don't 3164 * mean anything. 3165 * 4) we don't actually know we have a fiber card until after 3166 * the mac addresses are parsed. 3167 */ 3168 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3169 const int offset) 3170 { 3171 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3172 void __iomem *base, *kstart; 3173 int i, len; 3174 int found = 0; 3175 #define VPD_FOUND_MAC 0x01 3176 #define VPD_FOUND_PHY 0x02 3177 3178 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3179 int mac_off = 0; 3180 3181 #if defined(CONFIG_SPARC) 3182 const unsigned char *addr; 3183 #endif 3184 3185 /* give us access to the PROM */ 3186 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3187 cp->regs + REG_BIM_LOCAL_DEV_EN); 3188 3189 /* check for an expansion rom */ 3190 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3191 goto use_random_mac_addr; 3192 3193 /* search for beginning of vpd */ 3194 base = NULL; 3195 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3196 /* check for PCIR */ 3197 if ((readb(p + i + 0) == 0x50) && 3198 (readb(p + i + 1) == 0x43) && 3199 (readb(p + i + 2) == 0x49) && 3200 (readb(p + i + 3) == 0x52)) { 3201 base = p + (readb(p + i + 8) | 3202 (readb(p + i + 9) << 8)); 3203 break; 3204 } 3205 } 3206 3207 if (!base || (readb(base) != 0x82)) 3208 goto use_random_mac_addr; 3209 3210 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3211 while (i < EXPANSION_ROM_SIZE) { 3212 if (readb(base + i) != 0x90) /* no vpd found */ 3213 goto use_random_mac_addr; 3214 3215 /* found a vpd field */ 3216 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3217 3218 /* extract keywords */ 3219 kstart = base + i + 3; 3220 p = kstart; 3221 while ((p - kstart) < len) { 3222 int klen = readb(p + 2); 3223 int j; 3224 char type; 3225 3226 p += 3; 3227 3228 /* look for the following things: 3229 * -- correct length == 29 3230 * 3 (type) + 2 (size) + 3231 * 18 (strlen("local-mac-address") + 1) + 3232 * 6 (mac addr) 3233 * -- VPD Instance 'I' 3234 * -- VPD Type Bytes 'B' 3235 * -- VPD data length == 6 3236 * -- property string == local-mac-address 3237 * 3238 * -- correct length == 24 3239 * 3 (type) + 2 (size) + 3240 * 12 (strlen("entropy-dev") + 1) + 3241 * 7 (strlen("vms110") + 1) 3242 * -- VPD Instance 'I' 3243 * -- VPD Type String 'B' 3244 * -- VPD data length == 7 3245 * -- property string == entropy-dev 3246 * 3247 * -- correct length == 18 3248 * 3 (type) + 2 (size) + 3249 * 9 (strlen("phy-type") + 1) + 3250 * 4 (strlen("pcs") + 1) 3251 * -- VPD Instance 'I' 3252 * -- VPD Type String 'S' 3253 * -- VPD data length == 4 3254 * -- property string == phy-type 3255 * 3256 * -- correct length == 23 3257 * 3 (type) + 2 (size) + 3258 * 14 (strlen("phy-interface") + 1) + 3259 * 4 (strlen("pcs") + 1) 3260 * -- VPD Instance 'I' 3261 * -- VPD Type String 'S' 3262 * -- VPD data length == 4 3263 * -- property string == phy-interface 3264 */ 3265 if (readb(p) != 'I') 3266 goto next; 3267 3268 /* finally, check string and length */ 3269 type = readb(p + 3); 3270 if (type == 'B') { 3271 if ((klen == 29) && readb(p + 4) == 6 && 3272 cas_vpd_match(p + 5, 3273 "local-mac-address")) { 3274 if (mac_off++ > offset) 3275 goto next; 3276 3277 /* set mac address */ 3278 for (j = 0; j < 6; j++) 3279 dev_addr[j] = 3280 readb(p + 23 + j); 3281 goto found_mac; 3282 } 3283 } 3284 3285 if (type != 'S') 3286 goto next; 3287 3288 #ifdef USE_ENTROPY_DEV 3289 if ((klen == 24) && 3290 cas_vpd_match(p + 5, "entropy-dev") && 3291 cas_vpd_match(p + 17, "vms110")) { 3292 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3293 goto next; 3294 } 3295 #endif 3296 3297 if (found & VPD_FOUND_PHY) 3298 goto next; 3299 3300 if ((klen == 18) && readb(p + 4) == 4 && 3301 cas_vpd_match(p + 5, "phy-type")) { 3302 if (cas_vpd_match(p + 14, "pcs")) { 3303 phy_type = CAS_PHY_SERDES; 3304 goto found_phy; 3305 } 3306 } 3307 3308 if ((klen == 23) && readb(p + 4) == 4 && 3309 cas_vpd_match(p + 5, "phy-interface")) { 3310 if (cas_vpd_match(p + 19, "pcs")) { 3311 phy_type = CAS_PHY_SERDES; 3312 goto found_phy; 3313 } 3314 } 3315 found_mac: 3316 found |= VPD_FOUND_MAC; 3317 goto next; 3318 3319 found_phy: 3320 found |= VPD_FOUND_PHY; 3321 3322 next: 3323 p += klen; 3324 } 3325 i += len + 3; 3326 } 3327 3328 use_random_mac_addr: 3329 if (found & VPD_FOUND_MAC) 3330 goto done; 3331 3332 #if defined(CONFIG_SPARC) 3333 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3334 if (addr != NULL) { 3335 memcpy(dev_addr, addr, ETH_ALEN); 3336 goto done; 3337 } 3338 #endif 3339 3340 /* Sun MAC prefix then 3 random bytes. */ 3341 pr_info("MAC address not found in ROM VPD\n"); 3342 dev_addr[0] = 0x08; 3343 dev_addr[1] = 0x00; 3344 dev_addr[2] = 0x20; 3345 get_random_bytes(dev_addr + 3, 3); 3346 3347 done: 3348 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3349 return phy_type; 3350 } 3351 3352 /* check pci invariants */ 3353 static void cas_check_pci_invariants(struct cas *cp) 3354 { 3355 struct pci_dev *pdev = cp->pdev; 3356 3357 cp->cas_flags = 0; 3358 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3359 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3360 if (pdev->revision >= CAS_ID_REVPLUS) 3361 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3362 if (pdev->revision < CAS_ID_REVPLUS02u) 3363 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3364 3365 /* Original Cassini supports HW CSUM, but it's not 3366 * enabled by default as it can trigger TX hangs. 3367 */ 3368 if (pdev->revision < CAS_ID_REV2) 3369 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3370 } else { 3371 /* Only sun has original cassini chips. */ 3372 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3373 3374 /* We use a flag because the same phy might be externally 3375 * connected. 3376 */ 3377 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3378 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3379 cp->cas_flags |= CAS_FLAG_SATURN; 3380 } 3381 } 3382 3383 3384 static int cas_check_invariants(struct cas *cp) 3385 { 3386 struct pci_dev *pdev = cp->pdev; 3387 u32 cfg; 3388 int i; 3389 3390 /* get page size for rx buffers. */ 3391 cp->page_order = 0; 3392 #ifdef USE_PAGE_ORDER 3393 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3394 /* see if we can allocate larger pages */ 3395 struct page *page = alloc_pages(GFP_ATOMIC, 3396 CAS_JUMBO_PAGE_SHIFT - 3397 PAGE_SHIFT); 3398 if (page) { 3399 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3400 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3401 } else { 3402 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3403 } 3404 } 3405 #endif 3406 cp->page_size = (PAGE_SIZE << cp->page_order); 3407 3408 /* Fetch the FIFO configurations. */ 3409 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3410 cp->rx_fifo_size = RX_FIFO_SIZE; 3411 3412 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3413 * they're both connected. 3414 */ 3415 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3416 PCI_SLOT(pdev->devfn)); 3417 if (cp->phy_type & CAS_PHY_SERDES) { 3418 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3419 return 0; /* no more checking needed */ 3420 } 3421 3422 /* MII */ 3423 cfg = readl(cp->regs + REG_MIF_CFG); 3424 if (cfg & MIF_CFG_MDIO_1) { 3425 cp->phy_type = CAS_PHY_MII_MDIO1; 3426 } else if (cfg & MIF_CFG_MDIO_0) { 3427 cp->phy_type = CAS_PHY_MII_MDIO0; 3428 } 3429 3430 cas_mif_poll(cp, 0); 3431 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3432 3433 for (i = 0; i < 32; i++) { 3434 u32 phy_id; 3435 int j; 3436 3437 for (j = 0; j < 3; j++) { 3438 cp->phy_addr = i; 3439 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3440 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3441 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3442 cp->phy_id = phy_id; 3443 goto done; 3444 } 3445 } 3446 } 3447 pr_err("MII phy did not respond [%08x]\n", 3448 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3449 return -1; 3450 3451 done: 3452 /* see if we can do gigabit */ 3453 cfg = cas_phy_read(cp, MII_BMSR); 3454 if ((cfg & CAS_BMSR_1000_EXTEND) && 3455 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3456 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3457 return 0; 3458 } 3459 3460 /* Must be invoked under cp->lock. */ 3461 static inline void cas_start_dma(struct cas *cp) 3462 { 3463 int i; 3464 u32 val; 3465 int txfailed = 0; 3466 3467 /* enable dma */ 3468 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3469 writel(val, cp->regs + REG_TX_CFG); 3470 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3471 writel(val, cp->regs + REG_RX_CFG); 3472 3473 /* enable the mac */ 3474 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3475 writel(val, cp->regs + REG_MAC_TX_CFG); 3476 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3477 writel(val, cp->regs + REG_MAC_RX_CFG); 3478 3479 i = STOP_TRIES; 3480 while (i-- > 0) { 3481 val = readl(cp->regs + REG_MAC_TX_CFG); 3482 if ((val & MAC_TX_CFG_EN)) 3483 break; 3484 udelay(10); 3485 } 3486 if (i < 0) txfailed = 1; 3487 i = STOP_TRIES; 3488 while (i-- > 0) { 3489 val = readl(cp->regs + REG_MAC_RX_CFG); 3490 if ((val & MAC_RX_CFG_EN)) { 3491 if (txfailed) { 3492 netdev_err(cp->dev, 3493 "enabling mac failed [tx:%08x:%08x]\n", 3494 readl(cp->regs + REG_MIF_STATE_MACHINE), 3495 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3496 } 3497 goto enable_rx_done; 3498 } 3499 udelay(10); 3500 } 3501 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3502 (txfailed ? "tx,rx" : "rx"), 3503 readl(cp->regs + REG_MIF_STATE_MACHINE), 3504 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3505 3506 enable_rx_done: 3507 cas_unmask_intr(cp); /* enable interrupts */ 3508 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3509 writel(0, cp->regs + REG_RX_COMP_TAIL); 3510 3511 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3512 if (N_RX_DESC_RINGS > 1) 3513 writel(RX_DESC_RINGN_SIZE(1) - 4, 3514 cp->regs + REG_PLUS_RX_KICK1); 3515 3516 for (i = 1; i < N_RX_COMP_RINGS; i++) 3517 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3518 } 3519 } 3520 3521 /* Must be invoked under cp->lock. */ 3522 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3523 int *pause) 3524 { 3525 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3526 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3527 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3528 if (val & PCS_MII_LPA_ASYM_PAUSE) 3529 *pause |= 0x10; 3530 *spd = 1000; 3531 } 3532 3533 /* Must be invoked under cp->lock. */ 3534 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3535 int *pause) 3536 { 3537 u32 val; 3538 3539 *fd = 0; 3540 *spd = 10; 3541 *pause = 0; 3542 3543 /* use GMII registers */ 3544 val = cas_phy_read(cp, MII_LPA); 3545 if (val & CAS_LPA_PAUSE) 3546 *pause = 0x01; 3547 3548 if (val & CAS_LPA_ASYM_PAUSE) 3549 *pause |= 0x10; 3550 3551 if (val & LPA_DUPLEX) 3552 *fd = 1; 3553 if (val & LPA_100) 3554 *spd = 100; 3555 3556 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3557 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3558 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3559 *spd = 1000; 3560 if (val & CAS_LPA_1000FULL) 3561 *fd = 1; 3562 } 3563 } 3564 3565 /* A link-up condition has occurred, initialize and enable the 3566 * rest of the chip. 3567 * 3568 * Must be invoked under cp->lock. 3569 */ 3570 static void cas_set_link_modes(struct cas *cp) 3571 { 3572 u32 val; 3573 int full_duplex, speed, pause; 3574 3575 full_duplex = 0; 3576 speed = 10; 3577 pause = 0; 3578 3579 if (CAS_PHY_MII(cp->phy_type)) { 3580 cas_mif_poll(cp, 0); 3581 val = cas_phy_read(cp, MII_BMCR); 3582 if (val & BMCR_ANENABLE) { 3583 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3584 &pause); 3585 } else { 3586 if (val & BMCR_FULLDPLX) 3587 full_duplex = 1; 3588 3589 if (val & BMCR_SPEED100) 3590 speed = 100; 3591 else if (val & CAS_BMCR_SPEED1000) 3592 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3593 1000 : 100; 3594 } 3595 cas_mif_poll(cp, 1); 3596 3597 } else { 3598 val = readl(cp->regs + REG_PCS_MII_CTRL); 3599 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3600 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3601 if (val & PCS_MII_CTRL_DUPLEX) 3602 full_duplex = 1; 3603 } 3604 } 3605 3606 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3607 speed, full_duplex ? "full" : "half"); 3608 3609 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3610 if (CAS_PHY_MII(cp->phy_type)) { 3611 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3612 if (!full_duplex) 3613 val |= MAC_XIF_DISABLE_ECHO; 3614 } 3615 if (full_duplex) 3616 val |= MAC_XIF_FDPLX_LED; 3617 if (speed == 1000) 3618 val |= MAC_XIF_GMII_MODE; 3619 writel(val, cp->regs + REG_MAC_XIF_CFG); 3620 3621 /* deal with carrier and collision detect. */ 3622 val = MAC_TX_CFG_IPG_EN; 3623 if (full_duplex) { 3624 val |= MAC_TX_CFG_IGNORE_CARRIER; 3625 val |= MAC_TX_CFG_IGNORE_COLL; 3626 } else { 3627 #ifndef USE_CSMA_CD_PROTO 3628 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3629 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3630 #endif 3631 } 3632 /* val now set up for REG_MAC_TX_CFG */ 3633 3634 /* If gigabit and half-duplex, enable carrier extension 3635 * mode. increase slot time to 512 bytes as well. 3636 * else, disable it and make sure slot time is 64 bytes. 3637 * also activate checksum bug workaround 3638 */ 3639 if ((speed == 1000) && !full_duplex) { 3640 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3641 cp->regs + REG_MAC_TX_CFG); 3642 3643 val = readl(cp->regs + REG_MAC_RX_CFG); 3644 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3645 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3646 cp->regs + REG_MAC_RX_CFG); 3647 3648 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3649 3650 cp->crc_size = 4; 3651 /* minimum size gigabit frame at half duplex */ 3652 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3653 3654 } else { 3655 writel(val, cp->regs + REG_MAC_TX_CFG); 3656 3657 /* checksum bug workaround. don't strip FCS when in 3658 * half-duplex mode 3659 */ 3660 val = readl(cp->regs + REG_MAC_RX_CFG); 3661 if (full_duplex) { 3662 val |= MAC_RX_CFG_STRIP_FCS; 3663 cp->crc_size = 0; 3664 cp->min_frame_size = CAS_MIN_MTU; 3665 } else { 3666 val &= ~MAC_RX_CFG_STRIP_FCS; 3667 cp->crc_size = 4; 3668 cp->min_frame_size = CAS_MIN_FRAME; 3669 } 3670 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3671 cp->regs + REG_MAC_RX_CFG); 3672 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3673 } 3674 3675 if (netif_msg_link(cp)) { 3676 if (pause & 0x01) { 3677 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3678 cp->rx_fifo_size, 3679 cp->rx_pause_off, 3680 cp->rx_pause_on); 3681 } else if (pause & 0x10) { 3682 netdev_info(cp->dev, "TX pause enabled\n"); 3683 } else { 3684 netdev_info(cp->dev, "Pause is disabled\n"); 3685 } 3686 } 3687 3688 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3689 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3690 if (pause) { /* symmetric or asymmetric pause */ 3691 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3692 if (pause & 0x01) { /* symmetric pause */ 3693 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3694 } 3695 } 3696 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3697 cas_start_dma(cp); 3698 } 3699 3700 /* Must be invoked under cp->lock. */ 3701 static void cas_init_hw(struct cas *cp, int restart_link) 3702 { 3703 if (restart_link) 3704 cas_phy_init(cp); 3705 3706 cas_init_pause_thresholds(cp); 3707 cas_init_mac(cp); 3708 cas_init_dma(cp); 3709 3710 if (restart_link) { 3711 /* Default aneg parameters */ 3712 cp->timer_ticks = 0; 3713 cas_begin_auto_negotiation(cp, NULL); 3714 } else if (cp->lstate == link_up) { 3715 cas_set_link_modes(cp); 3716 netif_carrier_on(cp->dev); 3717 } 3718 } 3719 3720 /* Must be invoked under cp->lock. on earlier cassini boards, 3721 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3722 * let it settle out, and then restore pci state. 3723 */ 3724 static void cas_hard_reset(struct cas *cp) 3725 { 3726 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3727 udelay(20); 3728 pci_restore_state(cp->pdev); 3729 } 3730 3731 3732 static void cas_global_reset(struct cas *cp, int blkflag) 3733 { 3734 int limit; 3735 3736 /* issue a global reset. don't use RSTOUT. */ 3737 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3738 /* For PCS, when the blkflag is set, we should set the 3739 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3740 * the last autonegotiation from being cleared. We'll 3741 * need some special handling if the chip is set into a 3742 * loopback mode. 3743 */ 3744 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3745 cp->regs + REG_SW_RESET); 3746 } else { 3747 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3748 } 3749 3750 /* need to wait at least 3ms before polling register */ 3751 mdelay(3); 3752 3753 limit = STOP_TRIES; 3754 while (limit-- > 0) { 3755 u32 val = readl(cp->regs + REG_SW_RESET); 3756 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3757 goto done; 3758 udelay(10); 3759 } 3760 netdev_err(cp->dev, "sw reset failed\n"); 3761 3762 done: 3763 /* enable various BIM interrupts */ 3764 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3765 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3766 3767 /* clear out pci error status mask for handled errors. 3768 * we don't deal with DMA counter overflows as they happen 3769 * all the time. 3770 */ 3771 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3772 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3773 PCI_ERR_BIM_DMA_READ), cp->regs + 3774 REG_PCI_ERR_STATUS_MASK); 3775 3776 /* set up for MII by default to address mac rx reset timeout 3777 * issue 3778 */ 3779 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3780 } 3781 3782 static void cas_reset(struct cas *cp, int blkflag) 3783 { 3784 u32 val; 3785 3786 cas_mask_intr(cp); 3787 cas_global_reset(cp, blkflag); 3788 cas_mac_reset(cp); 3789 cas_entropy_reset(cp); 3790 3791 /* disable dma engines. */ 3792 val = readl(cp->regs + REG_TX_CFG); 3793 val &= ~TX_CFG_DMA_EN; 3794 writel(val, cp->regs + REG_TX_CFG); 3795 3796 val = readl(cp->regs + REG_RX_CFG); 3797 val &= ~RX_CFG_DMA_EN; 3798 writel(val, cp->regs + REG_RX_CFG); 3799 3800 /* program header parser */ 3801 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3802 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3803 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3804 } else { 3805 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3806 } 3807 3808 /* clear out error registers */ 3809 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3810 cas_clear_mac_err(cp); 3811 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3812 } 3813 3814 /* Shut down the chip, must be called with pm_mutex held. */ 3815 static void cas_shutdown(struct cas *cp) 3816 { 3817 unsigned long flags; 3818 3819 /* Make us not-running to avoid timers respawning */ 3820 cp->hw_running = 0; 3821 3822 del_timer_sync(&cp->link_timer); 3823 3824 /* Stop the reset task */ 3825 #if 0 3826 while (atomic_read(&cp->reset_task_pending_mtu) || 3827 atomic_read(&cp->reset_task_pending_spare) || 3828 atomic_read(&cp->reset_task_pending_all)) 3829 schedule(); 3830 3831 #else 3832 while (atomic_read(&cp->reset_task_pending)) 3833 schedule(); 3834 #endif 3835 /* Actually stop the chip */ 3836 cas_lock_all_save(cp, flags); 3837 cas_reset(cp, 0); 3838 if (cp->cas_flags & CAS_FLAG_SATURN) 3839 cas_phy_powerdown(cp); 3840 cas_unlock_all_restore(cp, flags); 3841 } 3842 3843 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3844 { 3845 struct cas *cp = netdev_priv(dev); 3846 3847 dev->mtu = new_mtu; 3848 if (!netif_running(dev) || !netif_device_present(dev)) 3849 return 0; 3850 3851 /* let the reset task handle it */ 3852 #if 1 3853 atomic_inc(&cp->reset_task_pending); 3854 if ((cp->phy_type & CAS_PHY_SERDES)) { 3855 atomic_inc(&cp->reset_task_pending_all); 3856 } else { 3857 atomic_inc(&cp->reset_task_pending_mtu); 3858 } 3859 schedule_work(&cp->reset_task); 3860 #else 3861 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3862 CAS_RESET_ALL : CAS_RESET_MTU); 3863 pr_err("reset called in cas_change_mtu\n"); 3864 schedule_work(&cp->reset_task); 3865 #endif 3866 3867 flush_work(&cp->reset_task); 3868 return 0; 3869 } 3870 3871 static void cas_clean_txd(struct cas *cp, int ring) 3872 { 3873 struct cas_tx_desc *txd = cp->init_txds[ring]; 3874 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3875 u64 daddr, dlen; 3876 int i, size; 3877 3878 size = TX_DESC_RINGN_SIZE(ring); 3879 for (i = 0; i < size; i++) { 3880 int frag; 3881 3882 if (skbs[i] == NULL) 3883 continue; 3884 3885 skb = skbs[i]; 3886 skbs[i] = NULL; 3887 3888 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3889 int ent = i & (size - 1); 3890 3891 /* first buffer is never a tiny buffer and so 3892 * needs to be unmapped. 3893 */ 3894 daddr = le64_to_cpu(txd[ent].buffer); 3895 dlen = CAS_VAL(TX_DESC_BUFLEN, 3896 le64_to_cpu(txd[ent].control)); 3897 pci_unmap_page(cp->pdev, daddr, dlen, 3898 PCI_DMA_TODEVICE); 3899 3900 if (frag != skb_shinfo(skb)->nr_frags) { 3901 i++; 3902 3903 /* next buffer might by a tiny buffer. 3904 * skip past it. 3905 */ 3906 ent = i & (size - 1); 3907 if (cp->tx_tiny_use[ring][ent].used) 3908 i++; 3909 } 3910 } 3911 dev_kfree_skb_any(skb); 3912 } 3913 3914 /* zero out tiny buf usage */ 3915 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3916 } 3917 3918 /* freed on close */ 3919 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3920 { 3921 cas_page_t **page = cp->rx_pages[ring]; 3922 int i, size; 3923 3924 size = RX_DESC_RINGN_SIZE(ring); 3925 for (i = 0; i < size; i++) { 3926 if (page[i]) { 3927 cas_page_free(cp, page[i]); 3928 page[i] = NULL; 3929 } 3930 } 3931 } 3932 3933 static void cas_free_rxds(struct cas *cp) 3934 { 3935 int i; 3936 3937 for (i = 0; i < N_RX_DESC_RINGS; i++) 3938 cas_free_rx_desc(cp, i); 3939 } 3940 3941 /* Must be invoked under cp->lock. */ 3942 static void cas_clean_rings(struct cas *cp) 3943 { 3944 int i; 3945 3946 /* need to clean all tx rings */ 3947 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3948 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3949 for (i = 0; i < N_TX_RINGS; i++) 3950 cas_clean_txd(cp, i); 3951 3952 /* zero out init block */ 3953 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3954 cas_clean_rxds(cp); 3955 cas_clean_rxcs(cp); 3956 } 3957 3958 /* allocated on open */ 3959 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3960 { 3961 cas_page_t **page = cp->rx_pages[ring]; 3962 int size, i = 0; 3963 3964 size = RX_DESC_RINGN_SIZE(ring); 3965 for (i = 0; i < size; i++) { 3966 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3967 return -1; 3968 } 3969 return 0; 3970 } 3971 3972 static int cas_alloc_rxds(struct cas *cp) 3973 { 3974 int i; 3975 3976 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3977 if (cas_alloc_rx_desc(cp, i) < 0) { 3978 cas_free_rxds(cp); 3979 return -1; 3980 } 3981 } 3982 return 0; 3983 } 3984 3985 static void cas_reset_task(struct work_struct *work) 3986 { 3987 struct cas *cp = container_of(work, struct cas, reset_task); 3988 #if 0 3989 int pending = atomic_read(&cp->reset_task_pending); 3990 #else 3991 int pending_all = atomic_read(&cp->reset_task_pending_all); 3992 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 3993 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 3994 3995 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 3996 /* We can have more tasks scheduled than actually 3997 * needed. 3998 */ 3999 atomic_dec(&cp->reset_task_pending); 4000 return; 4001 } 4002 #endif 4003 /* The link went down, we reset the ring, but keep 4004 * DMA stopped. Use this function for reset 4005 * on error as well. 4006 */ 4007 if (cp->hw_running) { 4008 unsigned long flags; 4009 4010 /* Make sure we don't get interrupts or tx packets */ 4011 netif_device_detach(cp->dev); 4012 cas_lock_all_save(cp, flags); 4013 4014 if (cp->opened) { 4015 /* We call cas_spare_recover when we call cas_open. 4016 * but we do not initialize the lists cas_spare_recover 4017 * uses until cas_open is called. 4018 */ 4019 cas_spare_recover(cp, GFP_ATOMIC); 4020 } 4021 #if 1 4022 /* test => only pending_spare set */ 4023 if (!pending_all && !pending_mtu) 4024 goto done; 4025 #else 4026 if (pending == CAS_RESET_SPARE) 4027 goto done; 4028 #endif 4029 /* when pending == CAS_RESET_ALL, the following 4030 * call to cas_init_hw will restart auto negotiation. 4031 * Setting the second argument of cas_reset to 4032 * !(pending == CAS_RESET_ALL) will set this argument 4033 * to 1 (avoiding reinitializing the PHY for the normal 4034 * PCS case) when auto negotiation is not restarted. 4035 */ 4036 #if 1 4037 cas_reset(cp, !(pending_all > 0)); 4038 if (cp->opened) 4039 cas_clean_rings(cp); 4040 cas_init_hw(cp, (pending_all > 0)); 4041 #else 4042 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4043 if (cp->opened) 4044 cas_clean_rings(cp); 4045 cas_init_hw(cp, pending == CAS_RESET_ALL); 4046 #endif 4047 4048 done: 4049 cas_unlock_all_restore(cp, flags); 4050 netif_device_attach(cp->dev); 4051 } 4052 #if 1 4053 atomic_sub(pending_all, &cp->reset_task_pending_all); 4054 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4055 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4056 atomic_dec(&cp->reset_task_pending); 4057 #else 4058 atomic_set(&cp->reset_task_pending, 0); 4059 #endif 4060 } 4061 4062 static void cas_link_timer(struct timer_list *t) 4063 { 4064 struct cas *cp = from_timer(cp, t, link_timer); 4065 int mask, pending = 0, reset = 0; 4066 unsigned long flags; 4067 4068 if (link_transition_timeout != 0 && 4069 cp->link_transition_jiffies_valid && 4070 ((jiffies - cp->link_transition_jiffies) > 4071 (link_transition_timeout))) { 4072 /* One-second counter so link-down workaround doesn't 4073 * cause resets to occur so fast as to fool the switch 4074 * into thinking the link is down. 4075 */ 4076 cp->link_transition_jiffies_valid = 0; 4077 } 4078 4079 if (!cp->hw_running) 4080 return; 4081 4082 spin_lock_irqsave(&cp->lock, flags); 4083 cas_lock_tx(cp); 4084 cas_entropy_gather(cp); 4085 4086 /* If the link task is still pending, we just 4087 * reschedule the link timer 4088 */ 4089 #if 1 4090 if (atomic_read(&cp->reset_task_pending_all) || 4091 atomic_read(&cp->reset_task_pending_spare) || 4092 atomic_read(&cp->reset_task_pending_mtu)) 4093 goto done; 4094 #else 4095 if (atomic_read(&cp->reset_task_pending)) 4096 goto done; 4097 #endif 4098 4099 /* check for rx cleaning */ 4100 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4101 int i, rmask; 4102 4103 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4104 rmask = CAS_FLAG_RXD_POST(i); 4105 if ((mask & rmask) == 0) 4106 continue; 4107 4108 /* post_rxds will do a mod_timer */ 4109 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4110 pending = 1; 4111 continue; 4112 } 4113 cp->cas_flags &= ~rmask; 4114 } 4115 } 4116 4117 if (CAS_PHY_MII(cp->phy_type)) { 4118 u16 bmsr; 4119 cas_mif_poll(cp, 0); 4120 bmsr = cas_phy_read(cp, MII_BMSR); 4121 /* WTZ: Solaris driver reads this twice, but that 4122 * may be due to the PCS case and the use of a 4123 * common implementation. Read it twice here to be 4124 * safe. 4125 */ 4126 bmsr = cas_phy_read(cp, MII_BMSR); 4127 cas_mif_poll(cp, 1); 4128 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4129 reset = cas_mii_link_check(cp, bmsr); 4130 } else { 4131 reset = cas_pcs_link_check(cp); 4132 } 4133 4134 if (reset) 4135 goto done; 4136 4137 /* check for tx state machine confusion */ 4138 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4139 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4140 u32 wptr, rptr; 4141 int tlm = CAS_VAL(MAC_SM_TLM, val); 4142 4143 if (((tlm == 0x5) || (tlm == 0x3)) && 4144 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4145 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4146 "tx err: MAC_STATE[%08x]\n", val); 4147 reset = 1; 4148 goto done; 4149 } 4150 4151 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4152 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4153 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4154 if ((val == 0) && (wptr != rptr)) { 4155 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4156 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4157 val, wptr, rptr); 4158 reset = 1; 4159 } 4160 4161 if (reset) 4162 cas_hard_reset(cp); 4163 } 4164 4165 done: 4166 if (reset) { 4167 #if 1 4168 atomic_inc(&cp->reset_task_pending); 4169 atomic_inc(&cp->reset_task_pending_all); 4170 schedule_work(&cp->reset_task); 4171 #else 4172 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4173 pr_err("reset called in cas_link_timer\n"); 4174 schedule_work(&cp->reset_task); 4175 #endif 4176 } 4177 4178 if (!pending) 4179 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4180 cas_unlock_tx(cp); 4181 spin_unlock_irqrestore(&cp->lock, flags); 4182 } 4183 4184 /* tiny buffers are used to avoid target abort issues with 4185 * older cassini's 4186 */ 4187 static void cas_tx_tiny_free(struct cas *cp) 4188 { 4189 struct pci_dev *pdev = cp->pdev; 4190 int i; 4191 4192 for (i = 0; i < N_TX_RINGS; i++) { 4193 if (!cp->tx_tiny_bufs[i]) 4194 continue; 4195 4196 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4197 cp->tx_tiny_bufs[i], 4198 cp->tx_tiny_dvma[i]); 4199 cp->tx_tiny_bufs[i] = NULL; 4200 } 4201 } 4202 4203 static int cas_tx_tiny_alloc(struct cas *cp) 4204 { 4205 struct pci_dev *pdev = cp->pdev; 4206 int i; 4207 4208 for (i = 0; i < N_TX_RINGS; i++) { 4209 cp->tx_tiny_bufs[i] = 4210 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4211 &cp->tx_tiny_dvma[i]); 4212 if (!cp->tx_tiny_bufs[i]) { 4213 cas_tx_tiny_free(cp); 4214 return -1; 4215 } 4216 } 4217 return 0; 4218 } 4219 4220 4221 static int cas_open(struct net_device *dev) 4222 { 4223 struct cas *cp = netdev_priv(dev); 4224 int hw_was_up, err; 4225 unsigned long flags; 4226 4227 mutex_lock(&cp->pm_mutex); 4228 4229 hw_was_up = cp->hw_running; 4230 4231 /* The power-management mutex protects the hw_running 4232 * etc. state so it is safe to do this bit without cp->lock 4233 */ 4234 if (!cp->hw_running) { 4235 /* Reset the chip */ 4236 cas_lock_all_save(cp, flags); 4237 /* We set the second arg to cas_reset to zero 4238 * because cas_init_hw below will have its second 4239 * argument set to non-zero, which will force 4240 * autonegotiation to start. 4241 */ 4242 cas_reset(cp, 0); 4243 cp->hw_running = 1; 4244 cas_unlock_all_restore(cp, flags); 4245 } 4246 4247 err = -ENOMEM; 4248 if (cas_tx_tiny_alloc(cp) < 0) 4249 goto err_unlock; 4250 4251 /* alloc rx descriptors */ 4252 if (cas_alloc_rxds(cp) < 0) 4253 goto err_tx_tiny; 4254 4255 /* allocate spares */ 4256 cas_spare_init(cp); 4257 cas_spare_recover(cp, GFP_KERNEL); 4258 4259 /* We can now request the interrupt as we know it's masked 4260 * on the controller. cassini+ has up to 4 interrupts 4261 * that can be used, but you need to do explicit pci interrupt 4262 * mapping to expose them 4263 */ 4264 if (request_irq(cp->pdev->irq, cas_interrupt, 4265 IRQF_SHARED, dev->name, (void *) dev)) { 4266 netdev_err(cp->dev, "failed to request irq !\n"); 4267 err = -EAGAIN; 4268 goto err_spare; 4269 } 4270 4271 #ifdef USE_NAPI 4272 napi_enable(&cp->napi); 4273 #endif 4274 /* init hw */ 4275 cas_lock_all_save(cp, flags); 4276 cas_clean_rings(cp); 4277 cas_init_hw(cp, !hw_was_up); 4278 cp->opened = 1; 4279 cas_unlock_all_restore(cp, flags); 4280 4281 netif_start_queue(dev); 4282 mutex_unlock(&cp->pm_mutex); 4283 return 0; 4284 4285 err_spare: 4286 cas_spare_free(cp); 4287 cas_free_rxds(cp); 4288 err_tx_tiny: 4289 cas_tx_tiny_free(cp); 4290 err_unlock: 4291 mutex_unlock(&cp->pm_mutex); 4292 return err; 4293 } 4294 4295 static int cas_close(struct net_device *dev) 4296 { 4297 unsigned long flags; 4298 struct cas *cp = netdev_priv(dev); 4299 4300 #ifdef USE_NAPI 4301 napi_disable(&cp->napi); 4302 #endif 4303 /* Make sure we don't get distracted by suspend/resume */ 4304 mutex_lock(&cp->pm_mutex); 4305 4306 netif_stop_queue(dev); 4307 4308 /* Stop traffic, mark us closed */ 4309 cas_lock_all_save(cp, flags); 4310 cp->opened = 0; 4311 cas_reset(cp, 0); 4312 cas_phy_init(cp); 4313 cas_begin_auto_negotiation(cp, NULL); 4314 cas_clean_rings(cp); 4315 cas_unlock_all_restore(cp, flags); 4316 4317 free_irq(cp->pdev->irq, (void *) dev); 4318 cas_spare_free(cp); 4319 cas_free_rxds(cp); 4320 cas_tx_tiny_free(cp); 4321 mutex_unlock(&cp->pm_mutex); 4322 return 0; 4323 } 4324 4325 static struct { 4326 const char name[ETH_GSTRING_LEN]; 4327 } ethtool_cassini_statnames[] = { 4328 {"collisions"}, 4329 {"rx_bytes"}, 4330 {"rx_crc_errors"}, 4331 {"rx_dropped"}, 4332 {"rx_errors"}, 4333 {"rx_fifo_errors"}, 4334 {"rx_frame_errors"}, 4335 {"rx_length_errors"}, 4336 {"rx_over_errors"}, 4337 {"rx_packets"}, 4338 {"tx_aborted_errors"}, 4339 {"tx_bytes"}, 4340 {"tx_dropped"}, 4341 {"tx_errors"}, 4342 {"tx_fifo_errors"}, 4343 {"tx_packets"} 4344 }; 4345 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4346 4347 static struct { 4348 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4349 } ethtool_register_table[] = { 4350 {-MII_BMSR}, 4351 {-MII_BMCR}, 4352 {REG_CAWR}, 4353 {REG_INF_BURST}, 4354 {REG_BIM_CFG}, 4355 {REG_RX_CFG}, 4356 {REG_HP_CFG}, 4357 {REG_MAC_TX_CFG}, 4358 {REG_MAC_RX_CFG}, 4359 {REG_MAC_CTRL_CFG}, 4360 {REG_MAC_XIF_CFG}, 4361 {REG_MIF_CFG}, 4362 {REG_PCS_CFG}, 4363 {REG_SATURN_PCFG}, 4364 {REG_PCS_MII_STATUS}, 4365 {REG_PCS_STATE_MACHINE}, 4366 {REG_MAC_COLL_EXCESS}, 4367 {REG_MAC_COLL_LATE} 4368 }; 4369 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4370 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4371 4372 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4373 { 4374 u8 *p; 4375 int i; 4376 unsigned long flags; 4377 4378 spin_lock_irqsave(&cp->lock, flags); 4379 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4380 u16 hval; 4381 u32 val; 4382 if (ethtool_register_table[i].offsets < 0) { 4383 hval = cas_phy_read(cp, 4384 -ethtool_register_table[i].offsets); 4385 val = hval; 4386 } else { 4387 val= readl(cp->regs+ethtool_register_table[i].offsets); 4388 } 4389 memcpy(p, (u8 *)&val, sizeof(u32)); 4390 } 4391 spin_unlock_irqrestore(&cp->lock, flags); 4392 } 4393 4394 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4395 { 4396 struct cas *cp = netdev_priv(dev); 4397 struct net_device_stats *stats = cp->net_stats; 4398 unsigned long flags; 4399 int i; 4400 unsigned long tmp; 4401 4402 /* we collate all of the stats into net_stats[N_TX_RING] */ 4403 if (!cp->hw_running) 4404 return stats + N_TX_RINGS; 4405 4406 /* collect outstanding stats */ 4407 /* WTZ: the Cassini spec gives these as 16 bit counters but 4408 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4409 * in case the chip somehow puts any garbage in the other bits. 4410 * Also, counter usage didn't seem to mach what Adrian did 4411 * in the parts of the code that set these quantities. Made 4412 * that consistent. 4413 */ 4414 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4415 stats[N_TX_RINGS].rx_crc_errors += 4416 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4417 stats[N_TX_RINGS].rx_frame_errors += 4418 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4419 stats[N_TX_RINGS].rx_length_errors += 4420 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4421 #if 1 4422 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4423 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4424 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4425 stats[N_TX_RINGS].collisions += 4426 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4427 #else 4428 stats[N_TX_RINGS].tx_aborted_errors += 4429 readl(cp->regs + REG_MAC_COLL_EXCESS); 4430 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4431 readl(cp->regs + REG_MAC_COLL_LATE); 4432 #endif 4433 cas_clear_mac_err(cp); 4434 4435 /* saved bits that are unique to ring 0 */ 4436 spin_lock(&cp->stat_lock[0]); 4437 stats[N_TX_RINGS].collisions += stats[0].collisions; 4438 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4439 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4440 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4441 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4442 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4443 spin_unlock(&cp->stat_lock[0]); 4444 4445 for (i = 0; i < N_TX_RINGS; i++) { 4446 spin_lock(&cp->stat_lock[i]); 4447 stats[N_TX_RINGS].rx_length_errors += 4448 stats[i].rx_length_errors; 4449 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4450 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4451 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4452 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4453 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4454 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4455 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4456 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4457 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4458 memset(stats + i, 0, sizeof(struct net_device_stats)); 4459 spin_unlock(&cp->stat_lock[i]); 4460 } 4461 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4462 return stats + N_TX_RINGS; 4463 } 4464 4465 4466 static void cas_set_multicast(struct net_device *dev) 4467 { 4468 struct cas *cp = netdev_priv(dev); 4469 u32 rxcfg, rxcfg_new; 4470 unsigned long flags; 4471 int limit = STOP_TRIES; 4472 4473 if (!cp->hw_running) 4474 return; 4475 4476 spin_lock_irqsave(&cp->lock, flags); 4477 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4478 4479 /* disable RX MAC and wait for completion */ 4480 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4481 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4482 if (!limit--) 4483 break; 4484 udelay(10); 4485 } 4486 4487 /* disable hash filter and wait for completion */ 4488 limit = STOP_TRIES; 4489 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4490 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4491 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4492 if (!limit--) 4493 break; 4494 udelay(10); 4495 } 4496 4497 /* program hash filters */ 4498 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4499 rxcfg |= rxcfg_new; 4500 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4501 spin_unlock_irqrestore(&cp->lock, flags); 4502 } 4503 4504 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4505 { 4506 struct cas *cp = netdev_priv(dev); 4507 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4508 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4509 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4510 } 4511 4512 static int cas_get_link_ksettings(struct net_device *dev, 4513 struct ethtool_link_ksettings *cmd) 4514 { 4515 struct cas *cp = netdev_priv(dev); 4516 u16 bmcr; 4517 int full_duplex, speed, pause; 4518 unsigned long flags; 4519 enum link_state linkstate = link_up; 4520 u32 supported, advertising; 4521 4522 advertising = 0; 4523 supported = SUPPORTED_Autoneg; 4524 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4525 supported |= SUPPORTED_1000baseT_Full; 4526 advertising |= ADVERTISED_1000baseT_Full; 4527 } 4528 4529 /* Record PHY settings if HW is on. */ 4530 spin_lock_irqsave(&cp->lock, flags); 4531 bmcr = 0; 4532 linkstate = cp->lstate; 4533 if (CAS_PHY_MII(cp->phy_type)) { 4534 cmd->base.port = PORT_MII; 4535 cmd->base.phy_address = cp->phy_addr; 4536 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4537 ADVERTISED_10baseT_Half | 4538 ADVERTISED_10baseT_Full | 4539 ADVERTISED_100baseT_Half | 4540 ADVERTISED_100baseT_Full; 4541 4542 supported |= 4543 (SUPPORTED_10baseT_Half | 4544 SUPPORTED_10baseT_Full | 4545 SUPPORTED_100baseT_Half | 4546 SUPPORTED_100baseT_Full | 4547 SUPPORTED_TP | SUPPORTED_MII); 4548 4549 if (cp->hw_running) { 4550 cas_mif_poll(cp, 0); 4551 bmcr = cas_phy_read(cp, MII_BMCR); 4552 cas_read_mii_link_mode(cp, &full_duplex, 4553 &speed, &pause); 4554 cas_mif_poll(cp, 1); 4555 } 4556 4557 } else { 4558 cmd->base.port = PORT_FIBRE; 4559 cmd->base.phy_address = 0; 4560 supported |= SUPPORTED_FIBRE; 4561 advertising |= ADVERTISED_FIBRE; 4562 4563 if (cp->hw_running) { 4564 /* pcs uses the same bits as mii */ 4565 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4566 cas_read_pcs_link_mode(cp, &full_duplex, 4567 &speed, &pause); 4568 } 4569 } 4570 spin_unlock_irqrestore(&cp->lock, flags); 4571 4572 if (bmcr & BMCR_ANENABLE) { 4573 advertising |= ADVERTISED_Autoneg; 4574 cmd->base.autoneg = AUTONEG_ENABLE; 4575 cmd->base.speed = ((speed == 10) ? 4576 SPEED_10 : 4577 ((speed == 1000) ? 4578 SPEED_1000 : SPEED_100)); 4579 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4580 } else { 4581 cmd->base.autoneg = AUTONEG_DISABLE; 4582 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4583 SPEED_1000 : 4584 ((bmcr & BMCR_SPEED100) ? 4585 SPEED_100 : SPEED_10)); 4586 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4587 DUPLEX_FULL : DUPLEX_HALF; 4588 } 4589 if (linkstate != link_up) { 4590 /* Force these to "unknown" if the link is not up and 4591 * autonogotiation in enabled. We can set the link 4592 * speed to 0, but not cmd->duplex, 4593 * because its legal values are 0 and 1. Ethtool will 4594 * print the value reported in parentheses after the 4595 * word "Unknown" for unrecognized values. 4596 * 4597 * If in forced mode, we report the speed and duplex 4598 * settings that we configured. 4599 */ 4600 if (cp->link_cntl & BMCR_ANENABLE) { 4601 cmd->base.speed = 0; 4602 cmd->base.duplex = 0xff; 4603 } else { 4604 cmd->base.speed = SPEED_10; 4605 if (cp->link_cntl & BMCR_SPEED100) { 4606 cmd->base.speed = SPEED_100; 4607 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4608 cmd->base.speed = SPEED_1000; 4609 } 4610 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4611 DUPLEX_FULL : DUPLEX_HALF; 4612 } 4613 } 4614 4615 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4616 supported); 4617 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4618 advertising); 4619 4620 return 0; 4621 } 4622 4623 static int cas_set_link_ksettings(struct net_device *dev, 4624 const struct ethtool_link_ksettings *cmd) 4625 { 4626 struct cas *cp = netdev_priv(dev); 4627 unsigned long flags; 4628 u32 speed = cmd->base.speed; 4629 4630 /* Verify the settings we care about. */ 4631 if (cmd->base.autoneg != AUTONEG_ENABLE && 4632 cmd->base.autoneg != AUTONEG_DISABLE) 4633 return -EINVAL; 4634 4635 if (cmd->base.autoneg == AUTONEG_DISABLE && 4636 ((speed != SPEED_1000 && 4637 speed != SPEED_100 && 4638 speed != SPEED_10) || 4639 (cmd->base.duplex != DUPLEX_HALF && 4640 cmd->base.duplex != DUPLEX_FULL))) 4641 return -EINVAL; 4642 4643 /* Apply settings and restart link process. */ 4644 spin_lock_irqsave(&cp->lock, flags); 4645 cas_begin_auto_negotiation(cp, cmd); 4646 spin_unlock_irqrestore(&cp->lock, flags); 4647 return 0; 4648 } 4649 4650 static int cas_nway_reset(struct net_device *dev) 4651 { 4652 struct cas *cp = netdev_priv(dev); 4653 unsigned long flags; 4654 4655 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4656 return -EINVAL; 4657 4658 /* Restart link process. */ 4659 spin_lock_irqsave(&cp->lock, flags); 4660 cas_begin_auto_negotiation(cp, NULL); 4661 spin_unlock_irqrestore(&cp->lock, flags); 4662 4663 return 0; 4664 } 4665 4666 static u32 cas_get_link(struct net_device *dev) 4667 { 4668 struct cas *cp = netdev_priv(dev); 4669 return cp->lstate == link_up; 4670 } 4671 4672 static u32 cas_get_msglevel(struct net_device *dev) 4673 { 4674 struct cas *cp = netdev_priv(dev); 4675 return cp->msg_enable; 4676 } 4677 4678 static void cas_set_msglevel(struct net_device *dev, u32 value) 4679 { 4680 struct cas *cp = netdev_priv(dev); 4681 cp->msg_enable = value; 4682 } 4683 4684 static int cas_get_regs_len(struct net_device *dev) 4685 { 4686 struct cas *cp = netdev_priv(dev); 4687 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4688 } 4689 4690 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4691 void *p) 4692 { 4693 struct cas *cp = netdev_priv(dev); 4694 regs->version = 0; 4695 /* cas_read_regs handles locks (cp->lock). */ 4696 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4697 } 4698 4699 static int cas_get_sset_count(struct net_device *dev, int sset) 4700 { 4701 switch (sset) { 4702 case ETH_SS_STATS: 4703 return CAS_NUM_STAT_KEYS; 4704 default: 4705 return -EOPNOTSUPP; 4706 } 4707 } 4708 4709 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4710 { 4711 memcpy(data, ðtool_cassini_statnames, 4712 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4713 } 4714 4715 static void cas_get_ethtool_stats(struct net_device *dev, 4716 struct ethtool_stats *estats, u64 *data) 4717 { 4718 struct cas *cp = netdev_priv(dev); 4719 struct net_device_stats *stats = cas_get_stats(cp->dev); 4720 int i = 0; 4721 data[i++] = stats->collisions; 4722 data[i++] = stats->rx_bytes; 4723 data[i++] = stats->rx_crc_errors; 4724 data[i++] = stats->rx_dropped; 4725 data[i++] = stats->rx_errors; 4726 data[i++] = stats->rx_fifo_errors; 4727 data[i++] = stats->rx_frame_errors; 4728 data[i++] = stats->rx_length_errors; 4729 data[i++] = stats->rx_over_errors; 4730 data[i++] = stats->rx_packets; 4731 data[i++] = stats->tx_aborted_errors; 4732 data[i++] = stats->tx_bytes; 4733 data[i++] = stats->tx_dropped; 4734 data[i++] = stats->tx_errors; 4735 data[i++] = stats->tx_fifo_errors; 4736 data[i++] = stats->tx_packets; 4737 BUG_ON(i != CAS_NUM_STAT_KEYS); 4738 } 4739 4740 static const struct ethtool_ops cas_ethtool_ops = { 4741 .get_drvinfo = cas_get_drvinfo, 4742 .nway_reset = cas_nway_reset, 4743 .get_link = cas_get_link, 4744 .get_msglevel = cas_get_msglevel, 4745 .set_msglevel = cas_set_msglevel, 4746 .get_regs_len = cas_get_regs_len, 4747 .get_regs = cas_get_regs, 4748 .get_sset_count = cas_get_sset_count, 4749 .get_strings = cas_get_strings, 4750 .get_ethtool_stats = cas_get_ethtool_stats, 4751 .get_link_ksettings = cas_get_link_ksettings, 4752 .set_link_ksettings = cas_set_link_ksettings, 4753 }; 4754 4755 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4756 { 4757 struct cas *cp = netdev_priv(dev); 4758 struct mii_ioctl_data *data = if_mii(ifr); 4759 unsigned long flags; 4760 int rc = -EOPNOTSUPP; 4761 4762 /* Hold the PM mutex while doing ioctl's or we may collide 4763 * with open/close and power management and oops. 4764 */ 4765 mutex_lock(&cp->pm_mutex); 4766 switch (cmd) { 4767 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4768 data->phy_id = cp->phy_addr; 4769 /* Fallthrough... */ 4770 4771 case SIOCGMIIREG: /* Read MII PHY register. */ 4772 spin_lock_irqsave(&cp->lock, flags); 4773 cas_mif_poll(cp, 0); 4774 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4775 cas_mif_poll(cp, 1); 4776 spin_unlock_irqrestore(&cp->lock, flags); 4777 rc = 0; 4778 break; 4779 4780 case SIOCSMIIREG: /* Write MII PHY register. */ 4781 spin_lock_irqsave(&cp->lock, flags); 4782 cas_mif_poll(cp, 0); 4783 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4784 cas_mif_poll(cp, 1); 4785 spin_unlock_irqrestore(&cp->lock, flags); 4786 break; 4787 default: 4788 break; 4789 } 4790 4791 mutex_unlock(&cp->pm_mutex); 4792 return rc; 4793 } 4794 4795 /* When this chip sits underneath an Intel 31154 bridge, it is the 4796 * only subordinate device and we can tweak the bridge settings to 4797 * reflect that fact. 4798 */ 4799 static void cas_program_bridge(struct pci_dev *cas_pdev) 4800 { 4801 struct pci_dev *pdev = cas_pdev->bus->self; 4802 u32 val; 4803 4804 if (!pdev) 4805 return; 4806 4807 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4808 return; 4809 4810 /* Clear bit 10 (Bus Parking Control) in the Secondary 4811 * Arbiter Control/Status Register which lives at offset 4812 * 0x41. Using a 32-bit word read/modify/write at 0x40 4813 * is much simpler so that's how we do this. 4814 */ 4815 pci_read_config_dword(pdev, 0x40, &val); 4816 val &= ~0x00040000; 4817 pci_write_config_dword(pdev, 0x40, val); 4818 4819 /* Max out the Multi-Transaction Timer settings since 4820 * Cassini is the only device present. 4821 * 4822 * The register is 16-bit and lives at 0x50. When the 4823 * settings are enabled, it extends the GRANT# signal 4824 * for a requestor after a transaction is complete. This 4825 * allows the next request to run without first needing 4826 * to negotiate the GRANT# signal back. 4827 * 4828 * Bits 12:10 define the grant duration: 4829 * 4830 * 1 -- 16 clocks 4831 * 2 -- 32 clocks 4832 * 3 -- 64 clocks 4833 * 4 -- 128 clocks 4834 * 5 -- 256 clocks 4835 * 4836 * All other values are illegal. 4837 * 4838 * Bits 09:00 define which REQ/GNT signal pairs get the 4839 * GRANT# signal treatment. We set them all. 4840 */ 4841 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4842 4843 /* The Read Prefecth Policy register is 16-bit and sits at 4844 * offset 0x52. It enables a "smart" pre-fetch policy. We 4845 * enable it and max out all of the settings since only one 4846 * device is sitting underneath and thus bandwidth sharing is 4847 * not an issue. 4848 * 4849 * The register has several 3 bit fields, which indicates a 4850 * multiplier applied to the base amount of prefetching the 4851 * chip would do. These fields are at: 4852 * 4853 * 15:13 --- ReRead Primary Bus 4854 * 12:10 --- FirstRead Primary Bus 4855 * 09:07 --- ReRead Secondary Bus 4856 * 06:04 --- FirstRead Secondary Bus 4857 * 4858 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4859 * get enabled on. Bit 3 is a grouped enabler which controls 4860 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4861 * the individual REQ/GNT pairs [2:0]. 4862 */ 4863 pci_write_config_word(pdev, 0x52, 4864 (0x7 << 13) | 4865 (0x7 << 10) | 4866 (0x7 << 7) | 4867 (0x7 << 4) | 4868 (0xf << 0)); 4869 4870 /* Force cacheline size to 0x8 */ 4871 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4872 4873 /* Force latency timer to maximum setting so Cassini can 4874 * sit on the bus as long as it likes. 4875 */ 4876 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4877 } 4878 4879 static const struct net_device_ops cas_netdev_ops = { 4880 .ndo_open = cas_open, 4881 .ndo_stop = cas_close, 4882 .ndo_start_xmit = cas_start_xmit, 4883 .ndo_get_stats = cas_get_stats, 4884 .ndo_set_rx_mode = cas_set_multicast, 4885 .ndo_do_ioctl = cas_ioctl, 4886 .ndo_tx_timeout = cas_tx_timeout, 4887 .ndo_change_mtu = cas_change_mtu, 4888 .ndo_set_mac_address = eth_mac_addr, 4889 .ndo_validate_addr = eth_validate_addr, 4890 #ifdef CONFIG_NET_POLL_CONTROLLER 4891 .ndo_poll_controller = cas_netpoll, 4892 #endif 4893 }; 4894 4895 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4896 { 4897 static int cas_version_printed = 0; 4898 unsigned long casreg_len; 4899 struct net_device *dev; 4900 struct cas *cp; 4901 int i, err, pci_using_dac; 4902 u16 pci_cmd; 4903 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4904 4905 if (cas_version_printed++ == 0) 4906 pr_info("%s", version); 4907 4908 err = pci_enable_device(pdev); 4909 if (err) { 4910 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4911 return err; 4912 } 4913 4914 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4915 dev_err(&pdev->dev, "Cannot find proper PCI device " 4916 "base address, aborting\n"); 4917 err = -ENODEV; 4918 goto err_out_disable_pdev; 4919 } 4920 4921 dev = alloc_etherdev(sizeof(*cp)); 4922 if (!dev) { 4923 err = -ENOMEM; 4924 goto err_out_disable_pdev; 4925 } 4926 SET_NETDEV_DEV(dev, &pdev->dev); 4927 4928 err = pci_request_regions(pdev, dev->name); 4929 if (err) { 4930 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4931 goto err_out_free_netdev; 4932 } 4933 pci_set_master(pdev); 4934 4935 /* we must always turn on parity response or else parity 4936 * doesn't get generated properly. disable SERR/PERR as well. 4937 * in addition, we want to turn MWI on. 4938 */ 4939 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4940 pci_cmd &= ~PCI_COMMAND_SERR; 4941 pci_cmd |= PCI_COMMAND_PARITY; 4942 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4943 if (pci_try_set_mwi(pdev)) 4944 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4945 4946 cas_program_bridge(pdev); 4947 4948 /* 4949 * On some architectures, the default cache line size set 4950 * by pci_try_set_mwi reduces perforamnce. We have to increase 4951 * it for this case. To start, we'll print some configuration 4952 * data. 4953 */ 4954 #if 1 4955 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4956 &orig_cacheline_size); 4957 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4958 cas_cacheline_size = 4959 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4960 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4961 if (pci_write_config_byte(pdev, 4962 PCI_CACHE_LINE_SIZE, 4963 cas_cacheline_size)) { 4964 dev_err(&pdev->dev, "Could not set PCI cache " 4965 "line size\n"); 4966 goto err_write_cacheline; 4967 } 4968 } 4969 #endif 4970 4971 4972 /* Configure DMA attributes. */ 4973 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4974 pci_using_dac = 1; 4975 err = pci_set_consistent_dma_mask(pdev, 4976 DMA_BIT_MASK(64)); 4977 if (err < 0) { 4978 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4979 "for consistent allocations\n"); 4980 goto err_out_free_res; 4981 } 4982 4983 } else { 4984 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4985 if (err) { 4986 dev_err(&pdev->dev, "No usable DMA configuration, " 4987 "aborting\n"); 4988 goto err_out_free_res; 4989 } 4990 pci_using_dac = 0; 4991 } 4992 4993 casreg_len = pci_resource_len(pdev, 0); 4994 4995 cp = netdev_priv(dev); 4996 cp->pdev = pdev; 4997 #if 1 4998 /* A value of 0 indicates we never explicitly set it */ 4999 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5000 #endif 5001 cp->dev = dev; 5002 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5003 cassini_debug; 5004 5005 #if defined(CONFIG_SPARC) 5006 cp->of_node = pci_device_to_OF_node(pdev); 5007 #endif 5008 5009 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5010 cp->link_transition_jiffies_valid = 0; 5011 5012 spin_lock_init(&cp->lock); 5013 spin_lock_init(&cp->rx_inuse_lock); 5014 spin_lock_init(&cp->rx_spare_lock); 5015 for (i = 0; i < N_TX_RINGS; i++) { 5016 spin_lock_init(&cp->stat_lock[i]); 5017 spin_lock_init(&cp->tx_lock[i]); 5018 } 5019 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5020 mutex_init(&cp->pm_mutex); 5021 5022 timer_setup(&cp->link_timer, cas_link_timer, 0); 5023 5024 #if 1 5025 /* Just in case the implementation of atomic operations 5026 * change so that an explicit initialization is necessary. 5027 */ 5028 atomic_set(&cp->reset_task_pending, 0); 5029 atomic_set(&cp->reset_task_pending_all, 0); 5030 atomic_set(&cp->reset_task_pending_spare, 0); 5031 atomic_set(&cp->reset_task_pending_mtu, 0); 5032 #endif 5033 INIT_WORK(&cp->reset_task, cas_reset_task); 5034 5035 /* Default link parameters */ 5036 if (link_mode >= 0 && link_mode < 6) 5037 cp->link_cntl = link_modes[link_mode]; 5038 else 5039 cp->link_cntl = BMCR_ANENABLE; 5040 cp->lstate = link_down; 5041 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5042 netif_carrier_off(cp->dev); 5043 cp->timer_ticks = 0; 5044 5045 /* give us access to cassini registers */ 5046 cp->regs = pci_iomap(pdev, 0, casreg_len); 5047 if (!cp->regs) { 5048 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5049 goto err_out_free_res; 5050 } 5051 cp->casreg_len = casreg_len; 5052 5053 pci_save_state(pdev); 5054 cas_check_pci_invariants(cp); 5055 cas_hard_reset(cp); 5056 cas_reset(cp, 0); 5057 if (cas_check_invariants(cp)) 5058 goto err_out_iounmap; 5059 if (cp->cas_flags & CAS_FLAG_SATURN) 5060 cas_saturn_firmware_init(cp); 5061 5062 cp->init_block = (struct cas_init_block *) 5063 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5064 &cp->block_dvma); 5065 if (!cp->init_block) { 5066 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5067 goto err_out_iounmap; 5068 } 5069 5070 for (i = 0; i < N_TX_RINGS; i++) 5071 cp->init_txds[i] = cp->init_block->txds[i]; 5072 5073 for (i = 0; i < N_RX_DESC_RINGS; i++) 5074 cp->init_rxds[i] = cp->init_block->rxds[i]; 5075 5076 for (i = 0; i < N_RX_COMP_RINGS; i++) 5077 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5078 5079 for (i = 0; i < N_RX_FLOWS; i++) 5080 skb_queue_head_init(&cp->rx_flows[i]); 5081 5082 dev->netdev_ops = &cas_netdev_ops; 5083 dev->ethtool_ops = &cas_ethtool_ops; 5084 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5085 5086 #ifdef USE_NAPI 5087 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5088 #endif 5089 dev->irq = pdev->irq; 5090 dev->dma = 0; 5091 5092 /* Cassini features. */ 5093 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5094 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5095 5096 if (pci_using_dac) 5097 dev->features |= NETIF_F_HIGHDMA; 5098 5099 /* MTU range: 60 - varies or 9000 */ 5100 dev->min_mtu = CAS_MIN_MTU; 5101 dev->max_mtu = CAS_MAX_MTU; 5102 5103 if (register_netdev(dev)) { 5104 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5105 goto err_out_free_consistent; 5106 } 5107 5108 i = readl(cp->regs + REG_BIM_CFG); 5109 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5110 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5111 (i & BIM_CFG_32BIT) ? "32" : "64", 5112 (i & BIM_CFG_66MHZ) ? "66" : "33", 5113 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5114 dev->dev_addr); 5115 5116 pci_set_drvdata(pdev, dev); 5117 cp->hw_running = 1; 5118 cas_entropy_reset(cp); 5119 cas_phy_init(cp); 5120 cas_begin_auto_negotiation(cp, NULL); 5121 return 0; 5122 5123 err_out_free_consistent: 5124 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5125 cp->init_block, cp->block_dvma); 5126 5127 err_out_iounmap: 5128 mutex_lock(&cp->pm_mutex); 5129 if (cp->hw_running) 5130 cas_shutdown(cp); 5131 mutex_unlock(&cp->pm_mutex); 5132 5133 pci_iounmap(pdev, cp->regs); 5134 5135 5136 err_out_free_res: 5137 pci_release_regions(pdev); 5138 5139 err_write_cacheline: 5140 /* Try to restore it in case the error occurred after we 5141 * set it. 5142 */ 5143 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5144 5145 err_out_free_netdev: 5146 free_netdev(dev); 5147 5148 err_out_disable_pdev: 5149 pci_disable_device(pdev); 5150 return -ENODEV; 5151 } 5152 5153 static void cas_remove_one(struct pci_dev *pdev) 5154 { 5155 struct net_device *dev = pci_get_drvdata(pdev); 5156 struct cas *cp; 5157 if (!dev) 5158 return; 5159 5160 cp = netdev_priv(dev); 5161 unregister_netdev(dev); 5162 5163 vfree(cp->fw_data); 5164 5165 mutex_lock(&cp->pm_mutex); 5166 cancel_work_sync(&cp->reset_task); 5167 if (cp->hw_running) 5168 cas_shutdown(cp); 5169 mutex_unlock(&cp->pm_mutex); 5170 5171 #if 1 5172 if (cp->orig_cacheline_size) { 5173 /* Restore the cache line size if we had modified 5174 * it. 5175 */ 5176 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5177 cp->orig_cacheline_size); 5178 } 5179 #endif 5180 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5181 cp->init_block, cp->block_dvma); 5182 pci_iounmap(pdev, cp->regs); 5183 free_netdev(dev); 5184 pci_release_regions(pdev); 5185 pci_disable_device(pdev); 5186 } 5187 5188 #ifdef CONFIG_PM 5189 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5190 { 5191 struct net_device *dev = pci_get_drvdata(pdev); 5192 struct cas *cp = netdev_priv(dev); 5193 unsigned long flags; 5194 5195 mutex_lock(&cp->pm_mutex); 5196 5197 /* If the driver is opened, we stop the DMA */ 5198 if (cp->opened) { 5199 netif_device_detach(dev); 5200 5201 cas_lock_all_save(cp, flags); 5202 5203 /* We can set the second arg of cas_reset to 0 5204 * because on resume, we'll call cas_init_hw with 5205 * its second arg set so that autonegotiation is 5206 * restarted. 5207 */ 5208 cas_reset(cp, 0); 5209 cas_clean_rings(cp); 5210 cas_unlock_all_restore(cp, flags); 5211 } 5212 5213 if (cp->hw_running) 5214 cas_shutdown(cp); 5215 mutex_unlock(&cp->pm_mutex); 5216 5217 return 0; 5218 } 5219 5220 static int cas_resume(struct pci_dev *pdev) 5221 { 5222 struct net_device *dev = pci_get_drvdata(pdev); 5223 struct cas *cp = netdev_priv(dev); 5224 5225 netdev_info(dev, "resuming\n"); 5226 5227 mutex_lock(&cp->pm_mutex); 5228 cas_hard_reset(cp); 5229 if (cp->opened) { 5230 unsigned long flags; 5231 cas_lock_all_save(cp, flags); 5232 cas_reset(cp, 0); 5233 cp->hw_running = 1; 5234 cas_clean_rings(cp); 5235 cas_init_hw(cp, 1); 5236 cas_unlock_all_restore(cp, flags); 5237 5238 netif_device_attach(dev); 5239 } 5240 mutex_unlock(&cp->pm_mutex); 5241 return 0; 5242 } 5243 #endif /* CONFIG_PM */ 5244 5245 static struct pci_driver cas_driver = { 5246 .name = DRV_MODULE_NAME, 5247 .id_table = cas_pci_tbl, 5248 .probe = cas_init_one, 5249 .remove = cas_remove_one, 5250 #ifdef CONFIG_PM 5251 .suspend = cas_suspend, 5252 .resume = cas_resume 5253 #endif 5254 }; 5255 5256 static int __init cas_init(void) 5257 { 5258 if (linkdown_timeout > 0) 5259 link_transition_timeout = linkdown_timeout * HZ; 5260 else 5261 link_transition_timeout = 0; 5262 5263 return pci_register_driver(&cas_driver); 5264 } 5265 5266 static void __exit cas_cleanup(void) 5267 { 5268 pci_unregister_driver(&cas_driver); 5269 } 5270 5271 module_init(cas_init); 5272 module_exit(cas_cleanup); 5273