1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 *
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 *
7 * This driver uses the sungem driver (c) David Miller
8 * (davem@redhat.com) as its basis.
9 *
10 * The cassini chip has a number of features that distinguish it from
11 * the gem chip:
12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
13 * load balancing (non-VLAN mode)
14 * batching of multiple packets
15 * multiple CPU dispatching
16 * page-based RX descriptor engine with separate completion rings
17 * Gigabit support (GMII and PCS interface)
18 * MIF link up/down detection works
19 *
20 * RX is handled by page sized buffers that are attached as fragments to
21 * the skb. here's what's done:
22 * -- driver allocates pages at a time and keeps reference counts
23 * on them.
24 * -- the upper protocol layers assume that the header is in the skb
25 * itself. as a result, cassini will copy a small amount (64 bytes)
26 * to make them happy.
27 * -- driver appends the rest of the data pages as frags to skbuffs
28 * and increments the reference count
29 * -- on page reclamation, the driver swaps the page with a spare page.
30 * if that page is still in use, it frees its reference to that page,
31 * and allocates a new page for use. otherwise, it just recycles the
32 * page.
33 *
34 * NOTE: cassini can parse the header. however, it's not worth it
35 * as long as the network stack requires a header copy.
36 *
37 * TX has 4 queues. currently these queues are used in a round-robin
38 * fashion for load balancing. They can also be used for QoS. for that
39 * to work, however, QoS information needs to be exposed down to the driver
40 * level so that subqueues get targeted to particular transmit rings.
41 * alternatively, the queues can be configured via use of the all-purpose
42 * ioctl.
43 *
44 * RX DATA: the rx completion ring has all the info, but the rx desc
45 * ring has all of the data. RX can conceivably come in under multiple
46 * interrupts, but the INT# assignment needs to be set up properly by
47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48 * that. also, the two descriptor rings are designed to distinguish between
49 * encrypted and non-encrypted packets, but we use them for buffering
50 * instead.
51 *
52 * by default, the selective clear mask is set up to process rx packets.
53 */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 #include <linux/jiffies.h>
92
93 #define CAS_NCPUS num_online_cpus()
94
95 #define cas_skb_release(x) netif_rx(x)
96
97 /* select which firmware to use */
98 #define USE_HP_WORKAROUND
99 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
100 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
101
102 #include "cassini.h"
103
104 #define USE_TX_COMPWB /* use completion writeback registers */
105 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
106 #define USE_RX_BLANK /* hw interrupt mitigation */
107 #undef USE_ENTROPY_DEV /* don't test for entropy device */
108
109 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
110 * also, we need to make cp->lock finer-grained.
111 */
112 #undef USE_PCI_INTB
113 #undef USE_PCI_INTC
114 #undef USE_PCI_INTD
115 #undef USE_QOS
116
117 #undef USE_VPD_DEBUG /* debug vpd information if defined */
118
119 /* rx processing options */
120 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
121 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
122 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
123 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
124 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
125
126 #define DRV_MODULE_NAME "cassini"
127 #define DRV_MODULE_VERSION "1.6"
128 #define DRV_MODULE_RELDATE "21 May 2008"
129
130 #define CAS_DEF_MSG_ENABLE \
131 (NETIF_MSG_DRV | \
132 NETIF_MSG_PROBE | \
133 NETIF_MSG_LINK | \
134 NETIF_MSG_TIMER | \
135 NETIF_MSG_IFDOWN | \
136 NETIF_MSG_IFUP | \
137 NETIF_MSG_RX_ERR | \
138 NETIF_MSG_TX_ERR)
139
140 /* length of time before we decide the hardware is borked,
141 * and dev->tx_timeout() should be called to fix the problem
142 */
143 #define CAS_TX_TIMEOUT (HZ)
144 #define CAS_LINK_TIMEOUT (22*HZ/10)
145 #define CAS_LINK_FAST_TIMEOUT (1)
146
147 /* timeout values for state changing. these specify the number
148 * of 10us delays to be used before giving up.
149 */
150 #define STOP_TRIES_PHY 1000
151 #define STOP_TRIES 5000
152
153 /* specify a minimum frame size to deal with some fifo issues
154 * max mtu == 2 * page size - ethernet header - 64 - swivel =
155 * 2 * page_size - 0x50
156 */
157 #define CAS_MIN_FRAME 97
158 #define CAS_1000MB_MIN_FRAME 255
159 #define CAS_MIN_MTU 60
160 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
161
162 #if 1
163 /*
164 * Eliminate these and use separate atomic counters for each, to
165 * avoid a race condition.
166 */
167 #else
168 #define CAS_RESET_MTU 1
169 #define CAS_RESET_ALL 2
170 #define CAS_RESET_SPARE 3
171 #endif
172
173 static char version[] =
174 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
175
176 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
177 static int link_mode;
178
179 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
180 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
181 MODULE_LICENSE("GPL");
182 MODULE_FIRMWARE("sun/cassini.bin");
183 module_param(cassini_debug, int, 0);
184 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
185 module_param(link_mode, int, 0);
186 MODULE_PARM_DESC(link_mode, "default link mode");
187
188 /*
189 * Work around for a PCS bug in which the link goes down due to the chip
190 * being confused and never showing a link status of "up."
191 */
192 #define DEFAULT_LINKDOWN_TIMEOUT 5
193 /*
194 * Value in seconds, for user input.
195 */
196 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
197 module_param(linkdown_timeout, int, 0);
198 MODULE_PARM_DESC(linkdown_timeout,
199 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
200
201 /*
202 * value in 'ticks' (units used by jiffies). Set when we init the
203 * module because 'HZ' in actually a function call on some flavors of
204 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
205 */
206 static int link_transition_timeout;
207
208
209
210 static u16 link_modes[] = {
211 BMCR_ANENABLE, /* 0 : autoneg */
212 0, /* 1 : 10bt half duplex */
213 BMCR_SPEED100, /* 2 : 100bt half duplex */
214 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
215 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
216 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
217 };
218
219 static const struct pci_device_id cas_pci_tbl[] = {
220 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
222 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
224 { 0, }
225 };
226
227 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
228
229 static void cas_set_link_modes(struct cas *cp);
230
cas_lock_tx(struct cas * cp)231 static inline void cas_lock_tx(struct cas *cp)
232 {
233 int i;
234
235 for (i = 0; i < N_TX_RINGS; i++)
236 spin_lock_nested(&cp->tx_lock[i], i);
237 }
238
239 /* WTZ: QA was finding deadlock problems with the previous
240 * versions after long test runs with multiple cards per machine.
241 * See if replacing cas_lock_all with safer versions helps. The
242 * symptoms QA is reporting match those we'd expect if interrupts
243 * aren't being properly restored, and we fixed a previous deadlock
244 * with similar symptoms by using save/restore versions in other
245 * places.
246 */
247 #define cas_lock_all_save(cp, flags) \
248 do { \
249 struct cas *xxxcp = (cp); \
250 spin_lock_irqsave(&xxxcp->lock, flags); \
251 cas_lock_tx(xxxcp); \
252 } while (0)
253
cas_unlock_tx(struct cas * cp)254 static inline void cas_unlock_tx(struct cas *cp)
255 {
256 int i;
257
258 for (i = N_TX_RINGS; i > 0; i--)
259 spin_unlock(&cp->tx_lock[i - 1]);
260 }
261
262 #define cas_unlock_all_restore(cp, flags) \
263 do { \
264 struct cas *xxxcp = (cp); \
265 cas_unlock_tx(xxxcp); \
266 spin_unlock_irqrestore(&xxxcp->lock, flags); \
267 } while (0)
268
cas_disable_irq(struct cas * cp,const int ring)269 static void cas_disable_irq(struct cas *cp, const int ring)
270 {
271 /* Make sure we won't get any more interrupts */
272 if (ring == 0) {
273 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
274 return;
275 }
276
277 /* disable completion interrupts and selectively mask */
278 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
279 switch (ring) {
280 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
281 #ifdef USE_PCI_INTB
282 case 1:
283 #endif
284 #ifdef USE_PCI_INTC
285 case 2:
286 #endif
287 #ifdef USE_PCI_INTD
288 case 3:
289 #endif
290 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
291 cp->regs + REG_PLUS_INTRN_MASK(ring));
292 break;
293 #endif
294 default:
295 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
296 REG_PLUS_INTRN_MASK(ring));
297 break;
298 }
299 }
300 }
301
cas_mask_intr(struct cas * cp)302 static inline void cas_mask_intr(struct cas *cp)
303 {
304 int i;
305
306 for (i = 0; i < N_RX_COMP_RINGS; i++)
307 cas_disable_irq(cp, i);
308 }
309
cas_enable_irq(struct cas * cp,const int ring)310 static void cas_enable_irq(struct cas *cp, const int ring)
311 {
312 if (ring == 0) { /* all but TX_DONE */
313 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
314 return;
315 }
316
317 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
318 switch (ring) {
319 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
320 #ifdef USE_PCI_INTB
321 case 1:
322 #endif
323 #ifdef USE_PCI_INTC
324 case 2:
325 #endif
326 #ifdef USE_PCI_INTD
327 case 3:
328 #endif
329 writel(INTRN_MASK_RX_EN, cp->regs +
330 REG_PLUS_INTRN_MASK(ring));
331 break;
332 #endif
333 default:
334 break;
335 }
336 }
337 }
338
cas_unmask_intr(struct cas * cp)339 static inline void cas_unmask_intr(struct cas *cp)
340 {
341 int i;
342
343 for (i = 0; i < N_RX_COMP_RINGS; i++)
344 cas_enable_irq(cp, i);
345 }
346
cas_entropy_gather(struct cas * cp)347 static inline void cas_entropy_gather(struct cas *cp)
348 {
349 #ifdef USE_ENTROPY_DEV
350 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
351 return;
352
353 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
354 readl(cp->regs + REG_ENTROPY_IV),
355 sizeof(uint64_t)*8);
356 #endif
357 }
358
cas_entropy_reset(struct cas * cp)359 static inline void cas_entropy_reset(struct cas *cp)
360 {
361 #ifdef USE_ENTROPY_DEV
362 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
363 return;
364
365 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
366 cp->regs + REG_BIM_LOCAL_DEV_EN);
367 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
368 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
369
370 /* if we read back 0x0, we don't have an entropy device */
371 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
372 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
373 #endif
374 }
375
376 /* access to the phy. the following assumes that we've initialized the MIF to
377 * be in frame rather than bit-bang mode
378 */
cas_phy_read(struct cas * cp,int reg)379 static u16 cas_phy_read(struct cas *cp, int reg)
380 {
381 u32 cmd;
382 int limit = STOP_TRIES_PHY;
383
384 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
385 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
386 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
387 cmd |= MIF_FRAME_TURN_AROUND_MSB;
388 writel(cmd, cp->regs + REG_MIF_FRAME);
389
390 /* poll for completion */
391 while (limit-- > 0) {
392 udelay(10);
393 cmd = readl(cp->regs + REG_MIF_FRAME);
394 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
395 return cmd & MIF_FRAME_DATA_MASK;
396 }
397 return 0xFFFF; /* -1 */
398 }
399
cas_phy_write(struct cas * cp,int reg,u16 val)400 static int cas_phy_write(struct cas *cp, int reg, u16 val)
401 {
402 int limit = STOP_TRIES_PHY;
403 u32 cmd;
404
405 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
406 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
407 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
408 cmd |= MIF_FRAME_TURN_AROUND_MSB;
409 cmd |= val & MIF_FRAME_DATA_MASK;
410 writel(cmd, cp->regs + REG_MIF_FRAME);
411
412 /* poll for completion */
413 while (limit-- > 0) {
414 udelay(10);
415 cmd = readl(cp->regs + REG_MIF_FRAME);
416 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
417 return 0;
418 }
419 return -1;
420 }
421
cas_phy_powerup(struct cas * cp)422 static void cas_phy_powerup(struct cas *cp)
423 {
424 u16 ctl = cas_phy_read(cp, MII_BMCR);
425
426 if ((ctl & BMCR_PDOWN) == 0)
427 return;
428 ctl &= ~BMCR_PDOWN;
429 cas_phy_write(cp, MII_BMCR, ctl);
430 }
431
cas_phy_powerdown(struct cas * cp)432 static void cas_phy_powerdown(struct cas *cp)
433 {
434 u16 ctl = cas_phy_read(cp, MII_BMCR);
435
436 if (ctl & BMCR_PDOWN)
437 return;
438 ctl |= BMCR_PDOWN;
439 cas_phy_write(cp, MII_BMCR, ctl);
440 }
441
442 /* cp->lock held. note: the last put_page will free the buffer */
cas_page_free(struct cas * cp,cas_page_t * page)443 static int cas_page_free(struct cas *cp, cas_page_t *page)
444 {
445 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
446 DMA_FROM_DEVICE);
447 __free_pages(page->buffer, cp->page_order);
448 kfree(page);
449 return 0;
450 }
451
452 #ifdef RX_COUNT_BUFFERS
453 #define RX_USED_ADD(x, y) ((x)->used += (y))
454 #define RX_USED_SET(x, y) ((x)->used = (y))
455 #else
456 #define RX_USED_ADD(x, y) do { } while(0)
457 #define RX_USED_SET(x, y) do { } while(0)
458 #endif
459
460 /* local page allocation routines for the receive buffers. jumbo pages
461 * require at least 8K contiguous and 8K aligned buffers.
462 */
cas_page_alloc(struct cas * cp,const gfp_t flags)463 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
464 {
465 cas_page_t *page;
466
467 page = kmalloc(sizeof(cas_page_t), flags);
468 if (!page)
469 return NULL;
470
471 INIT_LIST_HEAD(&page->list);
472 RX_USED_SET(page, 0);
473 page->buffer = alloc_pages(flags, cp->page_order);
474 if (!page->buffer)
475 goto page_err;
476 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
477 cp->page_size, DMA_FROM_DEVICE);
478 return page;
479
480 page_err:
481 kfree(page);
482 return NULL;
483 }
484
485 /* initialize spare pool of rx buffers, but allocate during the open */
cas_spare_init(struct cas * cp)486 static void cas_spare_init(struct cas *cp)
487 {
488 spin_lock(&cp->rx_inuse_lock);
489 INIT_LIST_HEAD(&cp->rx_inuse_list);
490 spin_unlock(&cp->rx_inuse_lock);
491
492 spin_lock(&cp->rx_spare_lock);
493 INIT_LIST_HEAD(&cp->rx_spare_list);
494 cp->rx_spares_needed = RX_SPARE_COUNT;
495 spin_unlock(&cp->rx_spare_lock);
496 }
497
498 /* used on close. free all the spare buffers. */
cas_spare_free(struct cas * cp)499 static void cas_spare_free(struct cas *cp)
500 {
501 struct list_head list, *elem, *tmp;
502
503 /* free spare buffers */
504 INIT_LIST_HEAD(&list);
505 spin_lock(&cp->rx_spare_lock);
506 list_splice_init(&cp->rx_spare_list, &list);
507 spin_unlock(&cp->rx_spare_lock);
508 list_for_each_safe(elem, tmp, &list) {
509 cas_page_free(cp, list_entry(elem, cas_page_t, list));
510 }
511
512 INIT_LIST_HEAD(&list);
513 #if 1
514 /*
515 * Looks like Adrian had protected this with a different
516 * lock than used everywhere else to manipulate this list.
517 */
518 spin_lock(&cp->rx_inuse_lock);
519 list_splice_init(&cp->rx_inuse_list, &list);
520 spin_unlock(&cp->rx_inuse_lock);
521 #else
522 spin_lock(&cp->rx_spare_lock);
523 list_splice_init(&cp->rx_inuse_list, &list);
524 spin_unlock(&cp->rx_spare_lock);
525 #endif
526 list_for_each_safe(elem, tmp, &list) {
527 cas_page_free(cp, list_entry(elem, cas_page_t, list));
528 }
529 }
530
531 /* replenish spares if needed */
cas_spare_recover(struct cas * cp,const gfp_t flags)532 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
533 {
534 struct list_head list, *elem, *tmp;
535 int needed, i;
536
537 /* check inuse list. if we don't need any more free buffers,
538 * just free it
539 */
540
541 /* make a local copy of the list */
542 INIT_LIST_HEAD(&list);
543 spin_lock(&cp->rx_inuse_lock);
544 list_splice_init(&cp->rx_inuse_list, &list);
545 spin_unlock(&cp->rx_inuse_lock);
546
547 list_for_each_safe(elem, tmp, &list) {
548 cas_page_t *page = list_entry(elem, cas_page_t, list);
549
550 /*
551 * With the lockless pagecache, cassini buffering scheme gets
552 * slightly less accurate: we might find that a page has an
553 * elevated reference count here, due to a speculative ref,
554 * and skip it as in-use. Ideally we would be able to reclaim
555 * it. However this would be such a rare case, it doesn't
556 * matter too much as we should pick it up the next time round.
557 *
558 * Importantly, if we find that the page has a refcount of 1
559 * here (our refcount), then we know it is definitely not inuse
560 * so we can reuse it.
561 */
562 if (page_count(page->buffer) > 1)
563 continue;
564
565 list_del(elem);
566 spin_lock(&cp->rx_spare_lock);
567 if (cp->rx_spares_needed > 0) {
568 list_add(elem, &cp->rx_spare_list);
569 cp->rx_spares_needed--;
570 spin_unlock(&cp->rx_spare_lock);
571 } else {
572 spin_unlock(&cp->rx_spare_lock);
573 cas_page_free(cp, page);
574 }
575 }
576
577 /* put any inuse buffers back on the list */
578 if (!list_empty(&list)) {
579 spin_lock(&cp->rx_inuse_lock);
580 list_splice(&list, &cp->rx_inuse_list);
581 spin_unlock(&cp->rx_inuse_lock);
582 }
583
584 spin_lock(&cp->rx_spare_lock);
585 needed = cp->rx_spares_needed;
586 spin_unlock(&cp->rx_spare_lock);
587 if (!needed)
588 return;
589
590 /* we still need spares, so try to allocate some */
591 INIT_LIST_HEAD(&list);
592 i = 0;
593 while (i < needed) {
594 cas_page_t *spare = cas_page_alloc(cp, flags);
595 if (!spare)
596 break;
597 list_add(&spare->list, &list);
598 i++;
599 }
600
601 spin_lock(&cp->rx_spare_lock);
602 list_splice(&list, &cp->rx_spare_list);
603 cp->rx_spares_needed -= i;
604 spin_unlock(&cp->rx_spare_lock);
605 }
606
607 /* pull a page from the list. */
cas_page_dequeue(struct cas * cp)608 static cas_page_t *cas_page_dequeue(struct cas *cp)
609 {
610 struct list_head *entry;
611 int recover;
612
613 spin_lock(&cp->rx_spare_lock);
614 if (list_empty(&cp->rx_spare_list)) {
615 /* try to do a quick recovery */
616 spin_unlock(&cp->rx_spare_lock);
617 cas_spare_recover(cp, GFP_ATOMIC);
618 spin_lock(&cp->rx_spare_lock);
619 if (list_empty(&cp->rx_spare_list)) {
620 netif_err(cp, rx_err, cp->dev,
621 "no spare buffers available\n");
622 spin_unlock(&cp->rx_spare_lock);
623 return NULL;
624 }
625 }
626
627 entry = cp->rx_spare_list.next;
628 list_del(entry);
629 recover = ++cp->rx_spares_needed;
630 spin_unlock(&cp->rx_spare_lock);
631
632 /* trigger the timer to do the recovery */
633 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
634 #if 1
635 atomic_inc(&cp->reset_task_pending);
636 atomic_inc(&cp->reset_task_pending_spare);
637 schedule_work(&cp->reset_task);
638 #else
639 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
640 schedule_work(&cp->reset_task);
641 #endif
642 }
643 return list_entry(entry, cas_page_t, list);
644 }
645
646
cas_mif_poll(struct cas * cp,const int enable)647 static void cas_mif_poll(struct cas *cp, const int enable)
648 {
649 u32 cfg;
650
651 cfg = readl(cp->regs + REG_MIF_CFG);
652 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
653
654 if (cp->phy_type & CAS_PHY_MII_MDIO1)
655 cfg |= MIF_CFG_PHY_SELECT;
656
657 /* poll and interrupt on link status change. */
658 if (enable) {
659 cfg |= MIF_CFG_POLL_EN;
660 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
661 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
662 }
663 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
664 cp->regs + REG_MIF_MASK);
665 writel(cfg, cp->regs + REG_MIF_CFG);
666 }
667
668 /* Must be invoked under cp->lock */
cas_begin_auto_negotiation(struct cas * cp,const struct ethtool_link_ksettings * ep)669 static void cas_begin_auto_negotiation(struct cas *cp,
670 const struct ethtool_link_ksettings *ep)
671 {
672 u16 ctl;
673 #if 1
674 int lcntl;
675 int changed = 0;
676 int oldstate = cp->lstate;
677 int link_was_not_down = !(oldstate == link_down);
678 #endif
679 /* Setup link parameters */
680 if (!ep)
681 goto start_aneg;
682 lcntl = cp->link_cntl;
683 if (ep->base.autoneg == AUTONEG_ENABLE) {
684 cp->link_cntl = BMCR_ANENABLE;
685 } else {
686 u32 speed = ep->base.speed;
687 cp->link_cntl = 0;
688 if (speed == SPEED_100)
689 cp->link_cntl |= BMCR_SPEED100;
690 else if (speed == SPEED_1000)
691 cp->link_cntl |= CAS_BMCR_SPEED1000;
692 if (ep->base.duplex == DUPLEX_FULL)
693 cp->link_cntl |= BMCR_FULLDPLX;
694 }
695 #if 1
696 changed = (lcntl != cp->link_cntl);
697 #endif
698 start_aneg:
699 if (cp->lstate == link_up) {
700 netdev_info(cp->dev, "PCS link down\n");
701 } else {
702 if (changed) {
703 netdev_info(cp->dev, "link configuration changed\n");
704 }
705 }
706 cp->lstate = link_down;
707 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
708 if (!cp->hw_running)
709 return;
710 #if 1
711 /*
712 * WTZ: If the old state was link_up, we turn off the carrier
713 * to replicate everything we do elsewhere on a link-down
714 * event when we were already in a link-up state..
715 */
716 if (oldstate == link_up)
717 netif_carrier_off(cp->dev);
718 if (changed && link_was_not_down) {
719 /*
720 * WTZ: This branch will simply schedule a full reset after
721 * we explicitly changed link modes in an ioctl. See if this
722 * fixes the link-problems we were having for forced mode.
723 */
724 atomic_inc(&cp->reset_task_pending);
725 atomic_inc(&cp->reset_task_pending_all);
726 schedule_work(&cp->reset_task);
727 cp->timer_ticks = 0;
728 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
729 return;
730 }
731 #endif
732 if (cp->phy_type & CAS_PHY_SERDES) {
733 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
734
735 if (cp->link_cntl & BMCR_ANENABLE) {
736 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
737 cp->lstate = link_aneg;
738 } else {
739 if (cp->link_cntl & BMCR_FULLDPLX)
740 val |= PCS_MII_CTRL_DUPLEX;
741 val &= ~PCS_MII_AUTONEG_EN;
742 cp->lstate = link_force_ok;
743 }
744 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
745 writel(val, cp->regs + REG_PCS_MII_CTRL);
746
747 } else {
748 cas_mif_poll(cp, 0);
749 ctl = cas_phy_read(cp, MII_BMCR);
750 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
751 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
752 ctl |= cp->link_cntl;
753 if (ctl & BMCR_ANENABLE) {
754 ctl |= BMCR_ANRESTART;
755 cp->lstate = link_aneg;
756 } else {
757 cp->lstate = link_force_ok;
758 }
759 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
760 cas_phy_write(cp, MII_BMCR, ctl);
761 cas_mif_poll(cp, 1);
762 }
763
764 cp->timer_ticks = 0;
765 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
766 }
767
768 /* Must be invoked under cp->lock. */
cas_reset_mii_phy(struct cas * cp)769 static int cas_reset_mii_phy(struct cas *cp)
770 {
771 int limit = STOP_TRIES_PHY;
772 u16 val;
773
774 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
775 udelay(100);
776 while (--limit) {
777 val = cas_phy_read(cp, MII_BMCR);
778 if ((val & BMCR_RESET) == 0)
779 break;
780 udelay(10);
781 }
782 return limit <= 0;
783 }
784
cas_saturn_firmware_init(struct cas * cp)785 static void cas_saturn_firmware_init(struct cas *cp)
786 {
787 const struct firmware *fw;
788 const char fw_name[] = "sun/cassini.bin";
789 int err;
790
791 if (PHY_NS_DP83065 != cp->phy_id)
792 return;
793
794 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
795 if (err) {
796 pr_err("Failed to load firmware \"%s\"\n",
797 fw_name);
798 return;
799 }
800 if (fw->size < 2) {
801 pr_err("bogus length %zu in \"%s\"\n",
802 fw->size, fw_name);
803 goto out;
804 }
805 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
806 cp->fw_size = fw->size - 2;
807 cp->fw_data = vmalloc(cp->fw_size);
808 if (!cp->fw_data)
809 goto out;
810 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
811 out:
812 release_firmware(fw);
813 }
814
cas_saturn_firmware_load(struct cas * cp)815 static void cas_saturn_firmware_load(struct cas *cp)
816 {
817 int i;
818
819 if (!cp->fw_data)
820 return;
821
822 cas_phy_powerdown(cp);
823
824 /* expanded memory access mode */
825 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
826
827 /* pointer configuration for new firmware */
828 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
829 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
830 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
831 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
832 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
833 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
834 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
835 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
836
837 /* download new firmware */
838 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
839 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
840 for (i = 0; i < cp->fw_size; i++)
841 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
842
843 /* enable firmware */
844 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
845 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
846 }
847
848
849 /* phy initialization */
cas_phy_init(struct cas * cp)850 static void cas_phy_init(struct cas *cp)
851 {
852 u16 val;
853
854 /* if we're in MII/GMII mode, set up phy */
855 if (CAS_PHY_MII(cp->phy_type)) {
856 writel(PCS_DATAPATH_MODE_MII,
857 cp->regs + REG_PCS_DATAPATH_MODE);
858
859 cas_mif_poll(cp, 0);
860 cas_reset_mii_phy(cp); /* take out of isolate mode */
861
862 if (PHY_LUCENT_B0 == cp->phy_id) {
863 /* workaround link up/down issue with lucent */
864 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
865 cas_phy_write(cp, MII_BMCR, 0x00f1);
866 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
867
868 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
869 /* workarounds for broadcom phy */
870 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
871 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
872 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
873 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
874 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
875 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
876 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
877 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
878 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
879 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
880 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
881
882 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
883 val = cas_phy_read(cp, BROADCOM_MII_REG4);
884 val = cas_phy_read(cp, BROADCOM_MII_REG4);
885 if (val & 0x0080) {
886 /* link workaround */
887 cas_phy_write(cp, BROADCOM_MII_REG4,
888 val & ~0x0080);
889 }
890
891 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
892 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
893 SATURN_PCFG_FSI : 0x0,
894 cp->regs + REG_SATURN_PCFG);
895
896 /* load firmware to address 10Mbps auto-negotiation
897 * issue. NOTE: this will need to be changed if the
898 * default firmware gets fixed.
899 */
900 if (PHY_NS_DP83065 == cp->phy_id) {
901 cas_saturn_firmware_load(cp);
902 }
903 cas_phy_powerup(cp);
904 }
905
906 /* advertise capabilities */
907 val = cas_phy_read(cp, MII_BMCR);
908 val &= ~BMCR_ANENABLE;
909 cas_phy_write(cp, MII_BMCR, val);
910 udelay(10);
911
912 cas_phy_write(cp, MII_ADVERTISE,
913 cas_phy_read(cp, MII_ADVERTISE) |
914 (ADVERTISE_10HALF | ADVERTISE_10FULL |
915 ADVERTISE_100HALF | ADVERTISE_100FULL |
916 CAS_ADVERTISE_PAUSE |
917 CAS_ADVERTISE_ASYM_PAUSE));
918
919 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
920 /* make sure that we don't advertise half
921 * duplex to avoid a chip issue
922 */
923 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
924 val &= ~CAS_ADVERTISE_1000HALF;
925 val |= CAS_ADVERTISE_1000FULL;
926 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
927 }
928
929 } else {
930 /* reset pcs for serdes */
931 u32 val;
932 int limit;
933
934 writel(PCS_DATAPATH_MODE_SERDES,
935 cp->regs + REG_PCS_DATAPATH_MODE);
936
937 /* enable serdes pins on saturn */
938 if (cp->cas_flags & CAS_FLAG_SATURN)
939 writel(0, cp->regs + REG_SATURN_PCFG);
940
941 /* Reset PCS unit. */
942 val = readl(cp->regs + REG_PCS_MII_CTRL);
943 val |= PCS_MII_RESET;
944 writel(val, cp->regs + REG_PCS_MII_CTRL);
945
946 limit = STOP_TRIES;
947 while (--limit > 0) {
948 udelay(10);
949 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
950 PCS_MII_RESET) == 0)
951 break;
952 }
953 if (limit <= 0)
954 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
955 readl(cp->regs + REG_PCS_STATE_MACHINE));
956
957 /* Make sure PCS is disabled while changing advertisement
958 * configuration.
959 */
960 writel(0x0, cp->regs + REG_PCS_CFG);
961
962 /* Advertise all capabilities except half-duplex. */
963 val = readl(cp->regs + REG_PCS_MII_ADVERT);
964 val &= ~PCS_MII_ADVERT_HD;
965 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
966 PCS_MII_ADVERT_ASYM_PAUSE);
967 writel(val, cp->regs + REG_PCS_MII_ADVERT);
968
969 /* enable PCS */
970 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
971
972 /* pcs workaround: enable sync detect */
973 writel(PCS_SERDES_CTRL_SYNCD_EN,
974 cp->regs + REG_PCS_SERDES_CTRL);
975 }
976 }
977
978
cas_pcs_link_check(struct cas * cp)979 static int cas_pcs_link_check(struct cas *cp)
980 {
981 u32 stat, state_machine;
982 int retval = 0;
983
984 /* The link status bit latches on zero, so you must
985 * read it twice in such a case to see a transition
986 * to the link being up.
987 */
988 stat = readl(cp->regs + REG_PCS_MII_STATUS);
989 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
990 stat = readl(cp->regs + REG_PCS_MII_STATUS);
991
992 /* The remote-fault indication is only valid
993 * when autoneg has completed.
994 */
995 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
996 PCS_MII_STATUS_REMOTE_FAULT)) ==
997 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
998 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
999
1000 /* work around link detection issue by querying the PCS state
1001 * machine directly.
1002 */
1003 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1004 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1005 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1006 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1007 stat |= PCS_MII_STATUS_LINK_STATUS;
1008 }
1009
1010 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1011 if (cp->lstate != link_up) {
1012 if (cp->opened) {
1013 cp->lstate = link_up;
1014 cp->link_transition = LINK_TRANSITION_LINK_UP;
1015
1016 cas_set_link_modes(cp);
1017 netif_carrier_on(cp->dev);
1018 }
1019 }
1020 } else if (cp->lstate == link_up) {
1021 cp->lstate = link_down;
1022 if (link_transition_timeout != 0 &&
1023 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1024 !cp->link_transition_jiffies_valid) {
1025 /*
1026 * force a reset, as a workaround for the
1027 * link-failure problem. May want to move this to a
1028 * point a bit earlier in the sequence. If we had
1029 * generated a reset a short time ago, we'll wait for
1030 * the link timer to check the status until a
1031 * timer expires (link_transistion_jiffies_valid is
1032 * true when the timer is running.) Instead of using
1033 * a system timer, we just do a check whenever the
1034 * link timer is running - this clears the flag after
1035 * a suitable delay.
1036 */
1037 retval = 1;
1038 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1039 cp->link_transition_jiffies = jiffies;
1040 cp->link_transition_jiffies_valid = 1;
1041 } else {
1042 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1043 }
1044 netif_carrier_off(cp->dev);
1045 if (cp->opened)
1046 netif_info(cp, link, cp->dev, "PCS link down\n");
1047
1048 /* Cassini only: if you force a mode, there can be
1049 * sync problems on link down. to fix that, the following
1050 * things need to be checked:
1051 * 1) read serialink state register
1052 * 2) read pcs status register to verify link down.
1053 * 3) if link down and serial link == 0x03, then you need
1054 * to global reset the chip.
1055 */
1056 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1057 /* should check to see if we're in a forced mode */
1058 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1059 if (stat == 0x03)
1060 return 1;
1061 }
1062 } else if (cp->lstate == link_down) {
1063 if (link_transition_timeout != 0 &&
1064 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1065 !cp->link_transition_jiffies_valid) {
1066 /* force a reset, as a workaround for the
1067 * link-failure problem. May want to move
1068 * this to a point a bit earlier in the
1069 * sequence.
1070 */
1071 retval = 1;
1072 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1073 cp->link_transition_jiffies = jiffies;
1074 cp->link_transition_jiffies_valid = 1;
1075 } else {
1076 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1077 }
1078 }
1079
1080 return retval;
1081 }
1082
cas_pcs_interrupt(struct net_device * dev,struct cas * cp,u32 status)1083 static int cas_pcs_interrupt(struct net_device *dev,
1084 struct cas *cp, u32 status)
1085 {
1086 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1087
1088 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1089 return 0;
1090 return cas_pcs_link_check(cp);
1091 }
1092
cas_txmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1093 static int cas_txmac_interrupt(struct net_device *dev,
1094 struct cas *cp, u32 status)
1095 {
1096 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1097
1098 if (!txmac_stat)
1099 return 0;
1100
1101 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1102 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1103
1104 /* Defer timer expiration is quite normal,
1105 * don't even log the event.
1106 */
1107 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1108 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1109 return 0;
1110
1111 spin_lock(&cp->stat_lock[0]);
1112 if (txmac_stat & MAC_TX_UNDERRUN) {
1113 netdev_err(dev, "TX MAC xmit underrun\n");
1114 cp->net_stats[0].tx_fifo_errors++;
1115 }
1116
1117 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1118 netdev_err(dev, "TX MAC max packet size error\n");
1119 cp->net_stats[0].tx_errors++;
1120 }
1121
1122 /* The rest are all cases of one of the 16-bit TX
1123 * counters expiring.
1124 */
1125 if (txmac_stat & MAC_TX_COLL_NORMAL)
1126 cp->net_stats[0].collisions += 0x10000;
1127
1128 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129 cp->net_stats[0].tx_aborted_errors += 0x10000;
1130 cp->net_stats[0].collisions += 0x10000;
1131 }
1132
1133 if (txmac_stat & MAC_TX_COLL_LATE) {
1134 cp->net_stats[0].tx_aborted_errors += 0x10000;
1135 cp->net_stats[0].collisions += 0x10000;
1136 }
1137 spin_unlock(&cp->stat_lock[0]);
1138
1139 /* We do not keep track of MAC_TX_COLL_FIRST and
1140 * MAC_TX_PEAK_ATTEMPTS events.
1141 */
1142 return 0;
1143 }
1144
cas_load_firmware(struct cas * cp,cas_hp_inst_t * firmware)1145 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146 {
1147 cas_hp_inst_t *inst;
1148 u32 val;
1149 int i;
1150
1151 i = 0;
1152 while ((inst = firmware) && inst->note) {
1153 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
1155 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
1159 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
1168 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173 ++firmware;
1174 ++i;
1175 }
1176 }
1177
cas_init_rx_dma(struct cas * cp)1178 static void cas_init_rx_dma(struct cas *cp)
1179 {
1180 u64 desc_dma = cp->block_dvma;
1181 u32 val;
1182 int i, size;
1183
1184 /* rx free descriptors */
1185 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188 if ((N_RX_DESC_RINGS > 1) &&
1189 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1190 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191 writel(val, cp->regs + REG_RX_CFG);
1192
1193 val = (unsigned long) cp->init_rxds[0] -
1194 (unsigned long) cp->init_block;
1195 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
1199 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200 /* rx desc 2 is for IPSEC packets. however,
1201 * we don't it that for that purpose.
1202 */
1203 val = (unsigned long) cp->init_rxds[1] -
1204 (unsigned long) cp->init_block;
1205 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206 writel((desc_dma + val) & 0xffffffff, cp->regs +
1207 REG_PLUS_RX_DB1_LOW);
1208 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209 REG_PLUS_RX_KICK1);
1210 }
1211
1212 /* rx completion registers */
1213 val = (unsigned long) cp->init_rxcs[0] -
1214 (unsigned long) cp->init_block;
1215 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
1218 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219 /* rx comp 2-4 */
1220 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221 val = (unsigned long) cp->init_rxcs[i] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs +
1224 REG_PLUS_RX_CBN_HI(i));
1225 writel((desc_dma + val) & 0xffffffff, cp->regs +
1226 REG_PLUS_RX_CBN_LOW(i));
1227 }
1228 }
1229
1230 /* read selective clear regs to prevent spurious interrupts
1231 * on reset because complete == kick.
1232 * selective clear set up to prevent interrupts on resets
1233 */
1234 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236
1237 /* set up pause thresholds */
1238 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1239 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1240 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1241 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1242 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1243
1244 /* zero out dma reassembly buffers */
1245 for (i = 0; i < 64; i++) {
1246 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1247 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1248 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1249 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1250 }
1251
1252 /* make sure address register is 0 for normal operation */
1253 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1254 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1255
1256 /* interrupt mitigation */
1257 #ifdef USE_RX_BLANK
1258 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1259 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1260 writel(val, cp->regs + REG_RX_BLANK);
1261 #else
1262 writel(0x0, cp->regs + REG_RX_BLANK);
1263 #endif
1264
1265 /* interrupt generation as a function of low water marks for
1266 * free desc and completion entries. these are used to trigger
1267 * housekeeping for rx descs. we don't use the free interrupt
1268 * as it's not very useful
1269 */
1270 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1271 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1272 writel(val, cp->regs + REG_RX_AE_THRESH);
1273 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1274 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1275 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1276 }
1277
1278 /* Random early detect registers. useful for congestion avoidance.
1279 * this should be tunable.
1280 */
1281 writel(0x0, cp->regs + REG_RX_RED);
1282
1283 /* receive page sizes. default == 2K (0x800) */
1284 val = 0;
1285 if (cp->page_size == 0x1000)
1286 val = 0x1;
1287 else if (cp->page_size == 0x2000)
1288 val = 0x2;
1289 else if (cp->page_size == 0x4000)
1290 val = 0x3;
1291
1292 /* round mtu + offset. constrain to page size. */
1293 size = cp->dev->mtu + 64;
1294 if (size > cp->page_size)
1295 size = cp->page_size;
1296
1297 if (size <= 0x400)
1298 i = 0x0;
1299 else if (size <= 0x800)
1300 i = 0x1;
1301 else if (size <= 0x1000)
1302 i = 0x2;
1303 else
1304 i = 0x3;
1305
1306 cp->mtu_stride = 1 << (i + 10);
1307 val = CAS_BASE(RX_PAGE_SIZE, val);
1308 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1309 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1310 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1311 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1312
1313 /* enable the header parser if desired */
1314 if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1315 return;
1316
1317 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1318 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1319 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1320 writel(val, cp->regs + REG_HP_CFG);
1321 }
1322
cas_rxc_init(struct cas_rx_comp * rxc)1323 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1324 {
1325 memset(rxc, 0, sizeof(*rxc));
1326 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1327 }
1328
1329 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1330 * flipping is protected by the fact that the chip will not
1331 * hand back the same page index while it's being processed.
1332 */
cas_page_spare(struct cas * cp,const int index)1333 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1334 {
1335 cas_page_t *page = cp->rx_pages[1][index];
1336 cas_page_t *new;
1337
1338 if (page_count(page->buffer) == 1)
1339 return page;
1340
1341 new = cas_page_dequeue(cp);
1342 if (new) {
1343 spin_lock(&cp->rx_inuse_lock);
1344 list_add(&page->list, &cp->rx_inuse_list);
1345 spin_unlock(&cp->rx_inuse_lock);
1346 }
1347 return new;
1348 }
1349
1350 /* this needs to be changed if we actually use the ENC RX DESC ring */
cas_page_swap(struct cas * cp,const int ring,const int index)1351 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1352 const int index)
1353 {
1354 cas_page_t **page0 = cp->rx_pages[0];
1355 cas_page_t **page1 = cp->rx_pages[1];
1356
1357 /* swap if buffer is in use */
1358 if (page_count(page0[index]->buffer) > 1) {
1359 cas_page_t *new = cas_page_spare(cp, index);
1360 if (new) {
1361 page1[index] = page0[index];
1362 page0[index] = new;
1363 }
1364 }
1365 RX_USED_SET(page0[index], 0);
1366 return page0[index];
1367 }
1368
cas_clean_rxds(struct cas * cp)1369 static void cas_clean_rxds(struct cas *cp)
1370 {
1371 /* only clean ring 0 as ring 1 is used for spare buffers */
1372 struct cas_rx_desc *rxd = cp->init_rxds[0];
1373 int i, size;
1374
1375 /* release all rx flows */
1376 for (i = 0; i < N_RX_FLOWS; i++) {
1377 struct sk_buff *skb;
1378 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1379 cas_skb_release(skb);
1380 }
1381 }
1382
1383 /* initialize descriptors */
1384 size = RX_DESC_RINGN_SIZE(0);
1385 for (i = 0; i < size; i++) {
1386 cas_page_t *page = cas_page_swap(cp, 0, i);
1387 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1388 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1389 CAS_BASE(RX_INDEX_RING, 0));
1390 }
1391
1392 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1393 cp->rx_last[0] = 0;
1394 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1395 }
1396
cas_clean_rxcs(struct cas * cp)1397 static void cas_clean_rxcs(struct cas *cp)
1398 {
1399 int i, j;
1400
1401 /* take ownership of rx comp descriptors */
1402 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1403 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1404 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1405 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1406 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1407 cas_rxc_init(rxc + j);
1408 }
1409 }
1410 }
1411
1412 #if 0
1413 /* When we get a RX fifo overflow, the RX unit is probably hung
1414 * so we do the following.
1415 *
1416 * If any part of the reset goes wrong, we return 1 and that causes the
1417 * whole chip to be reset.
1418 */
1419 static int cas_rxmac_reset(struct cas *cp)
1420 {
1421 struct net_device *dev = cp->dev;
1422 int limit;
1423 u32 val;
1424
1425 /* First, reset MAC RX. */
1426 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1427 for (limit = 0; limit < STOP_TRIES; limit++) {
1428 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1429 break;
1430 udelay(10);
1431 }
1432 if (limit == STOP_TRIES) {
1433 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1434 return 1;
1435 }
1436
1437 /* Second, disable RX DMA. */
1438 writel(0, cp->regs + REG_RX_CFG);
1439 for (limit = 0; limit < STOP_TRIES; limit++) {
1440 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1441 break;
1442 udelay(10);
1443 }
1444 if (limit == STOP_TRIES) {
1445 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1446 return 1;
1447 }
1448
1449 mdelay(5);
1450
1451 /* Execute RX reset command. */
1452 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1453 for (limit = 0; limit < STOP_TRIES; limit++) {
1454 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1455 break;
1456 udelay(10);
1457 }
1458 if (limit == STOP_TRIES) {
1459 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1460 return 1;
1461 }
1462
1463 /* reset driver rx state */
1464 cas_clean_rxds(cp);
1465 cas_clean_rxcs(cp);
1466
1467 /* Now, reprogram the rest of RX unit. */
1468 cas_init_rx_dma(cp);
1469
1470 /* re-enable */
1471 val = readl(cp->regs + REG_RX_CFG);
1472 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1473 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1474 val = readl(cp->regs + REG_MAC_RX_CFG);
1475 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1476 return 0;
1477 }
1478 #endif
1479
cas_rxmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1480 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1481 u32 status)
1482 {
1483 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1484
1485 if (!stat)
1486 return 0;
1487
1488 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1489
1490 /* these are all rollovers */
1491 spin_lock(&cp->stat_lock[0]);
1492 if (stat & MAC_RX_ALIGN_ERR)
1493 cp->net_stats[0].rx_frame_errors += 0x10000;
1494
1495 if (stat & MAC_RX_CRC_ERR)
1496 cp->net_stats[0].rx_crc_errors += 0x10000;
1497
1498 if (stat & MAC_RX_LEN_ERR)
1499 cp->net_stats[0].rx_length_errors += 0x10000;
1500
1501 if (stat & MAC_RX_OVERFLOW) {
1502 cp->net_stats[0].rx_over_errors++;
1503 cp->net_stats[0].rx_fifo_errors++;
1504 }
1505
1506 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1507 * events.
1508 */
1509 spin_unlock(&cp->stat_lock[0]);
1510 return 0;
1511 }
1512
cas_mac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1513 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1514 u32 status)
1515 {
1516 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1517
1518 if (!stat)
1519 return 0;
1520
1521 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1522 "mac interrupt, stat: 0x%x\n", stat);
1523
1524 /* This interrupt is just for pause frame and pause
1525 * tracking. It is useful for diagnostics and debug
1526 * but probably by default we will mask these events.
1527 */
1528 if (stat & MAC_CTRL_PAUSE_STATE)
1529 cp->pause_entered++;
1530
1531 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1532 cp->pause_last_time_recvd = (stat >> 16);
1533
1534 return 0;
1535 }
1536
1537
1538 /* Must be invoked under cp->lock. */
cas_mdio_link_not_up(struct cas * cp)1539 static inline int cas_mdio_link_not_up(struct cas *cp)
1540 {
1541 u16 val;
1542
1543 switch (cp->lstate) {
1544 case link_force_ret:
1545 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1546 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1547 cp->timer_ticks = 5;
1548 cp->lstate = link_force_ok;
1549 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1550 break;
1551
1552 case link_aneg:
1553 val = cas_phy_read(cp, MII_BMCR);
1554
1555 /* Try forced modes. we try things in the following order:
1556 * 1000 full -> 100 full/half -> 10 half
1557 */
1558 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1559 val |= BMCR_FULLDPLX;
1560 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1561 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1562 cas_phy_write(cp, MII_BMCR, val);
1563 cp->timer_ticks = 5;
1564 cp->lstate = link_force_try;
1565 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1566 break;
1567
1568 case link_force_try:
1569 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1570 val = cas_phy_read(cp, MII_BMCR);
1571 cp->timer_ticks = 5;
1572 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1573 val &= ~CAS_BMCR_SPEED1000;
1574 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1575 cas_phy_write(cp, MII_BMCR, val);
1576 break;
1577 }
1578
1579 if (val & BMCR_SPEED100) {
1580 if (val & BMCR_FULLDPLX) /* fd failed */
1581 val &= ~BMCR_FULLDPLX;
1582 else { /* 100Mbps failed */
1583 val &= ~BMCR_SPEED100;
1584 }
1585 cas_phy_write(cp, MII_BMCR, val);
1586 break;
1587 }
1588 break;
1589 default:
1590 break;
1591 }
1592 return 0;
1593 }
1594
1595
1596 /* must be invoked with cp->lock held */
cas_mii_link_check(struct cas * cp,const u16 bmsr)1597 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1598 {
1599 int restart;
1600
1601 if (bmsr & BMSR_LSTATUS) {
1602 /* Ok, here we got a link. If we had it due to a forced
1603 * fallback, and we were configured for autoneg, we
1604 * retry a short autoneg pass. If you know your hub is
1605 * broken, use ethtool ;)
1606 */
1607 if ((cp->lstate == link_force_try) &&
1608 (cp->link_cntl & BMCR_ANENABLE)) {
1609 cp->lstate = link_force_ret;
1610 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611 cas_mif_poll(cp, 0);
1612 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1613 cp->timer_ticks = 5;
1614 if (cp->opened)
1615 netif_info(cp, link, cp->dev,
1616 "Got link after fallback, retrying autoneg once...\n");
1617 cas_phy_write(cp, MII_BMCR,
1618 cp->link_fcntl | BMCR_ANENABLE |
1619 BMCR_ANRESTART);
1620 cas_mif_poll(cp, 1);
1621
1622 } else if (cp->lstate != link_up) {
1623 cp->lstate = link_up;
1624 cp->link_transition = LINK_TRANSITION_LINK_UP;
1625
1626 if (cp->opened) {
1627 cas_set_link_modes(cp);
1628 netif_carrier_on(cp->dev);
1629 }
1630 }
1631 return 0;
1632 }
1633
1634 /* link not up. if the link was previously up, we restart the
1635 * whole process
1636 */
1637 restart = 0;
1638 if (cp->lstate == link_up) {
1639 cp->lstate = link_down;
1640 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1641
1642 netif_carrier_off(cp->dev);
1643 if (cp->opened)
1644 netif_info(cp, link, cp->dev, "Link down\n");
1645 restart = 1;
1646
1647 } else if (++cp->timer_ticks > 10)
1648 cas_mdio_link_not_up(cp);
1649
1650 return restart;
1651 }
1652
cas_mif_interrupt(struct net_device * dev,struct cas * cp,u32 status)1653 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1654 u32 status)
1655 {
1656 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1657 u16 bmsr;
1658
1659 /* check for a link change */
1660 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1661 return 0;
1662
1663 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1664 return cas_mii_link_check(cp, bmsr);
1665 }
1666
cas_pci_interrupt(struct net_device * dev,struct cas * cp,u32 status)1667 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1668 u32 status)
1669 {
1670 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1671
1672 if (!stat)
1673 return 0;
1674
1675 netdev_err(dev, "PCI error [%04x:%04x]",
1676 stat, readl(cp->regs + REG_BIM_DIAG));
1677
1678 /* cassini+ has this reserved */
1679 if ((stat & PCI_ERR_BADACK) &&
1680 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1681 pr_cont(" <No ACK64# during ABS64 cycle>");
1682
1683 if (stat & PCI_ERR_DTRTO)
1684 pr_cont(" <Delayed transaction timeout>");
1685 if (stat & PCI_ERR_OTHER)
1686 pr_cont(" <other>");
1687 if (stat & PCI_ERR_BIM_DMA_WRITE)
1688 pr_cont(" <BIM DMA 0 write req>");
1689 if (stat & PCI_ERR_BIM_DMA_READ)
1690 pr_cont(" <BIM DMA 0 read req>");
1691 pr_cont("\n");
1692
1693 if (stat & PCI_ERR_OTHER) {
1694 int pci_errs;
1695
1696 /* Interrogate PCI config space for the
1697 * true cause.
1698 */
1699 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1700
1701 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1702 if (pci_errs & PCI_STATUS_PARITY)
1703 netdev_err(dev, "PCI parity error detected\n");
1704 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1705 netdev_err(dev, "PCI target abort\n");
1706 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1707 netdev_err(dev, "PCI master acks target abort\n");
1708 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1709 netdev_err(dev, "PCI master abort\n");
1710 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1711 netdev_err(dev, "PCI system error SERR#\n");
1712 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1713 netdev_err(dev, "PCI parity error\n");
1714 }
1715
1716 /* For all PCI errors, we should reset the chip. */
1717 return 1;
1718 }
1719
1720 /* All non-normal interrupt conditions get serviced here.
1721 * Returns non-zero if we should just exit the interrupt
1722 * handler right now (ie. if we reset the card which invalidates
1723 * all of the other original irq status bits).
1724 */
cas_abnormal_irq(struct net_device * dev,struct cas * cp,u32 status)1725 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1726 u32 status)
1727 {
1728 if (status & INTR_RX_TAG_ERROR) {
1729 /* corrupt RX tag framing */
1730 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1731 "corrupt rx tag framing\n");
1732 spin_lock(&cp->stat_lock[0]);
1733 cp->net_stats[0].rx_errors++;
1734 spin_unlock(&cp->stat_lock[0]);
1735 goto do_reset;
1736 }
1737
1738 if (status & INTR_RX_LEN_MISMATCH) {
1739 /* length mismatch. */
1740 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1741 "length mismatch for rx frame\n");
1742 spin_lock(&cp->stat_lock[0]);
1743 cp->net_stats[0].rx_errors++;
1744 spin_unlock(&cp->stat_lock[0]);
1745 goto do_reset;
1746 }
1747
1748 if (status & INTR_PCS_STATUS) {
1749 if (cas_pcs_interrupt(dev, cp, status))
1750 goto do_reset;
1751 }
1752
1753 if (status & INTR_TX_MAC_STATUS) {
1754 if (cas_txmac_interrupt(dev, cp, status))
1755 goto do_reset;
1756 }
1757
1758 if (status & INTR_RX_MAC_STATUS) {
1759 if (cas_rxmac_interrupt(dev, cp, status))
1760 goto do_reset;
1761 }
1762
1763 if (status & INTR_MAC_CTRL_STATUS) {
1764 if (cas_mac_interrupt(dev, cp, status))
1765 goto do_reset;
1766 }
1767
1768 if (status & INTR_MIF_STATUS) {
1769 if (cas_mif_interrupt(dev, cp, status))
1770 goto do_reset;
1771 }
1772
1773 if (status & INTR_PCI_ERROR_STATUS) {
1774 if (cas_pci_interrupt(dev, cp, status))
1775 goto do_reset;
1776 }
1777 return 0;
1778
1779 do_reset:
1780 #if 1
1781 atomic_inc(&cp->reset_task_pending);
1782 atomic_inc(&cp->reset_task_pending_all);
1783 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1784 schedule_work(&cp->reset_task);
1785 #else
1786 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1787 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1788 schedule_work(&cp->reset_task);
1789 #endif
1790 return 1;
1791 }
1792
1793 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1794 * determining whether to do a netif_stop/wakeup
1795 */
1796 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1797 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
cas_calc_tabort(struct cas * cp,const unsigned long addr,const int len)1798 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1799 const int len)
1800 {
1801 unsigned long off = addr + len;
1802
1803 if (CAS_TABORT(cp) == 1)
1804 return 0;
1805 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1806 return 0;
1807 return TX_TARGET_ABORT_LEN;
1808 }
1809
cas_tx_ringN(struct cas * cp,int ring,int limit)1810 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1811 {
1812 struct cas_tx_desc *txds;
1813 struct sk_buff **skbs;
1814 struct net_device *dev = cp->dev;
1815 int entry, count;
1816
1817 spin_lock(&cp->tx_lock[ring]);
1818 txds = cp->init_txds[ring];
1819 skbs = cp->tx_skbs[ring];
1820 entry = cp->tx_old[ring];
1821
1822 count = TX_BUFF_COUNT(ring, entry, limit);
1823 while (entry != limit) {
1824 struct sk_buff *skb = skbs[entry];
1825 dma_addr_t daddr;
1826 u32 dlen;
1827 int frag;
1828
1829 if (!skb) {
1830 /* this should never occur */
1831 entry = TX_DESC_NEXT(ring, entry);
1832 continue;
1833 }
1834
1835 /* however, we might get only a partial skb release. */
1836 count -= skb_shinfo(skb)->nr_frags +
1837 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1838 if (count < 0)
1839 break;
1840
1841 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1842 "tx[%d] done, slot %d\n", ring, entry);
1843
1844 skbs[entry] = NULL;
1845 cp->tx_tiny_use[ring][entry].nbufs = 0;
1846
1847 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1848 struct cas_tx_desc *txd = txds + entry;
1849
1850 daddr = le64_to_cpu(txd->buffer);
1851 dlen = CAS_VAL(TX_DESC_BUFLEN,
1852 le64_to_cpu(txd->control));
1853 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1854 DMA_TO_DEVICE);
1855 entry = TX_DESC_NEXT(ring, entry);
1856
1857 /* tiny buffer may follow */
1858 if (cp->tx_tiny_use[ring][entry].used) {
1859 cp->tx_tiny_use[ring][entry].used = 0;
1860 entry = TX_DESC_NEXT(ring, entry);
1861 }
1862 }
1863
1864 spin_lock(&cp->stat_lock[ring]);
1865 cp->net_stats[ring].tx_packets++;
1866 cp->net_stats[ring].tx_bytes += skb->len;
1867 spin_unlock(&cp->stat_lock[ring]);
1868 dev_consume_skb_irq(skb);
1869 }
1870 cp->tx_old[ring] = entry;
1871
1872 /* this is wrong for multiple tx rings. the net device needs
1873 * multiple queues for this to do the right thing. we wait
1874 * for 2*packets to be available when using tiny buffers
1875 */
1876 if (netif_queue_stopped(dev) &&
1877 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1878 netif_wake_queue(dev);
1879 spin_unlock(&cp->tx_lock[ring]);
1880 }
1881
cas_tx(struct net_device * dev,struct cas * cp,u32 status)1882 static void cas_tx(struct net_device *dev, struct cas *cp,
1883 u32 status)
1884 {
1885 int limit, ring;
1886 #ifdef USE_TX_COMPWB
1887 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1888 #endif
1889 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1890 "tx interrupt, status: 0x%x, %llx\n",
1891 status, (unsigned long long)compwb);
1892 /* process all the rings */
1893 for (ring = 0; ring < N_TX_RINGS; ring++) {
1894 #ifdef USE_TX_COMPWB
1895 /* use the completion writeback registers */
1896 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1897 CAS_VAL(TX_COMPWB_LSB, compwb);
1898 compwb = TX_COMPWB_NEXT(compwb);
1899 #else
1900 limit = readl(cp->regs + REG_TX_COMPN(ring));
1901 #endif
1902 if (cp->tx_old[ring] != limit)
1903 cas_tx_ringN(cp, ring, limit);
1904 }
1905 }
1906
1907
cas_rx_process_pkt(struct cas * cp,struct cas_rx_comp * rxc,int entry,const u64 * words,struct sk_buff ** skbref)1908 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1909 int entry, const u64 *words,
1910 struct sk_buff **skbref)
1911 {
1912 int dlen, hlen, len, i, alloclen;
1913 int off, swivel = RX_SWIVEL_OFF_VAL;
1914 struct cas_page *page;
1915 struct sk_buff *skb;
1916 void *crcaddr;
1917 __sum16 csum;
1918 char *p;
1919
1920 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1921 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1922 len = hlen + dlen;
1923
1924 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1925 alloclen = len;
1926 else
1927 alloclen = max(hlen, RX_COPY_MIN);
1928
1929 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1930 if (skb == NULL)
1931 return -1;
1932
1933 *skbref = skb;
1934 skb_reserve(skb, swivel);
1935
1936 p = skb->data;
1937 crcaddr = NULL;
1938 if (hlen) { /* always copy header pages */
1939 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1940 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1941 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1942 swivel;
1943
1944 i = hlen;
1945 if (!dlen) /* attach FCS */
1946 i += cp->crc_size;
1947 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1948 i, DMA_FROM_DEVICE);
1949 memcpy(p, page_address(page->buffer) + off, i);
1950 dma_sync_single_for_device(&cp->pdev->dev,
1951 page->dma_addr + off, i,
1952 DMA_FROM_DEVICE);
1953 RX_USED_ADD(page, 0x100);
1954 p += hlen;
1955 swivel = 0;
1956 }
1957
1958
1959 if (alloclen < (hlen + dlen)) {
1960 skb_frag_t *frag = skb_shinfo(skb)->frags;
1961
1962 /* normal or jumbo packets. we use frags */
1963 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1964 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1965 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1966
1967 hlen = min(cp->page_size - off, dlen);
1968 if (hlen < 0) {
1969 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1970 "rx page overflow: %d\n", hlen);
1971 dev_kfree_skb_irq(skb);
1972 return -1;
1973 }
1974 i = hlen;
1975 if (i == dlen) /* attach FCS */
1976 i += cp->crc_size;
1977 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1978 i, DMA_FROM_DEVICE);
1979
1980 /* make sure we always copy a header */
1981 swivel = 0;
1982 if (p == (char *) skb->data) { /* not split */
1983 memcpy(p, page_address(page->buffer) + off,
1984 RX_COPY_MIN);
1985 dma_sync_single_for_device(&cp->pdev->dev,
1986 page->dma_addr + off, i,
1987 DMA_FROM_DEVICE);
1988 off += RX_COPY_MIN;
1989 swivel = RX_COPY_MIN;
1990 RX_USED_ADD(page, cp->mtu_stride);
1991 } else {
1992 RX_USED_ADD(page, hlen);
1993 }
1994 skb_put(skb, alloclen);
1995
1996 skb_shinfo(skb)->nr_frags++;
1997 skb->data_len += hlen - swivel;
1998 skb->truesize += hlen - swivel;
1999 skb->len += hlen - swivel;
2000
2001 skb_frag_fill_page_desc(frag, page->buffer, off, hlen - swivel);
2002 __skb_frag_ref(frag);
2003
2004 /* any more data? */
2005 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2006 hlen = dlen;
2007 off = 0;
2008
2009 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2010 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2011 dma_sync_single_for_cpu(&cp->pdev->dev,
2012 page->dma_addr,
2013 hlen + cp->crc_size,
2014 DMA_FROM_DEVICE);
2015 dma_sync_single_for_device(&cp->pdev->dev,
2016 page->dma_addr,
2017 hlen + cp->crc_size,
2018 DMA_FROM_DEVICE);
2019
2020 skb_shinfo(skb)->nr_frags++;
2021 skb->data_len += hlen;
2022 skb->len += hlen;
2023 frag++;
2024
2025 skb_frag_fill_page_desc(frag, page->buffer, 0, hlen);
2026 __skb_frag_ref(frag);
2027 RX_USED_ADD(page, hlen + cp->crc_size);
2028 }
2029
2030 if (cp->crc_size)
2031 crcaddr = page_address(page->buffer) + off + hlen;
2032
2033 } else {
2034 /* copying packet */
2035 if (!dlen)
2036 goto end_copy_pkt;
2037
2038 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2039 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2040 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2041 hlen = min(cp->page_size - off, dlen);
2042 if (hlen < 0) {
2043 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2044 "rx page overflow: %d\n", hlen);
2045 dev_kfree_skb_irq(skb);
2046 return -1;
2047 }
2048 i = hlen;
2049 if (i == dlen) /* attach FCS */
2050 i += cp->crc_size;
2051 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2052 i, DMA_FROM_DEVICE);
2053 memcpy(p, page_address(page->buffer) + off, i);
2054 dma_sync_single_for_device(&cp->pdev->dev,
2055 page->dma_addr + off, i,
2056 DMA_FROM_DEVICE);
2057 if (p == (char *) skb->data) /* not split */
2058 RX_USED_ADD(page, cp->mtu_stride);
2059 else
2060 RX_USED_ADD(page, i);
2061
2062 /* any more data? */
2063 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2064 p += hlen;
2065 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2066 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2067 dma_sync_single_for_cpu(&cp->pdev->dev,
2068 page->dma_addr,
2069 dlen + cp->crc_size,
2070 DMA_FROM_DEVICE);
2071 memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2072 dma_sync_single_for_device(&cp->pdev->dev,
2073 page->dma_addr,
2074 dlen + cp->crc_size,
2075 DMA_FROM_DEVICE);
2076 RX_USED_ADD(page, dlen + cp->crc_size);
2077 }
2078 end_copy_pkt:
2079 if (cp->crc_size)
2080 crcaddr = skb->data + alloclen;
2081
2082 skb_put(skb, alloclen);
2083 }
2084
2085 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2086 if (cp->crc_size) {
2087 /* checksum includes FCS. strip it out. */
2088 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2089 csum_unfold(csum)));
2090 }
2091 skb->protocol = eth_type_trans(skb, cp->dev);
2092 if (skb->protocol == htons(ETH_P_IP)) {
2093 skb->csum = csum_unfold(~csum);
2094 skb->ip_summed = CHECKSUM_COMPLETE;
2095 } else
2096 skb_checksum_none_assert(skb);
2097 return len;
2098 }
2099
2100
2101 /* we can handle up to 64 rx flows at a time. we do the same thing
2102 * as nonreassm except that we batch up the buffers.
2103 * NOTE: we currently just treat each flow as a bunch of packets that
2104 * we pass up. a better way would be to coalesce the packets
2105 * into a jumbo packet. to do that, we need to do the following:
2106 * 1) the first packet will have a clean split between header and
2107 * data. save both.
2108 * 2) each time the next flow packet comes in, extend the
2109 * data length and merge the checksums.
2110 * 3) on flow release, fix up the header.
2111 * 4) make sure the higher layer doesn't care.
2112 * because packets get coalesced, we shouldn't run into fragment count
2113 * issues.
2114 */
cas_rx_flow_pkt(struct cas * cp,const u64 * words,struct sk_buff * skb)2115 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2116 struct sk_buff *skb)
2117 {
2118 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2119 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2120
2121 /* this is protected at a higher layer, so no need to
2122 * do any additional locking here. stick the buffer
2123 * at the end.
2124 */
2125 __skb_queue_tail(flow, skb);
2126 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2127 while ((skb = __skb_dequeue(flow))) {
2128 cas_skb_release(skb);
2129 }
2130 }
2131 }
2132
2133 /* put rx descriptor back on ring. if a buffer is in use by a higher
2134 * layer, this will need to put in a replacement.
2135 */
cas_post_page(struct cas * cp,const int ring,const int index)2136 static void cas_post_page(struct cas *cp, const int ring, const int index)
2137 {
2138 cas_page_t *new;
2139 int entry;
2140
2141 entry = cp->rx_old[ring];
2142
2143 new = cas_page_swap(cp, ring, index);
2144 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2145 cp->init_rxds[ring][entry].index =
2146 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2147 CAS_BASE(RX_INDEX_RING, ring));
2148
2149 entry = RX_DESC_ENTRY(ring, entry + 1);
2150 cp->rx_old[ring] = entry;
2151
2152 if (entry % 4)
2153 return;
2154
2155 if (ring == 0)
2156 writel(entry, cp->regs + REG_RX_KICK);
2157 else if ((N_RX_DESC_RINGS > 1) &&
2158 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2159 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2160 }
2161
2162
2163 /* only when things are bad */
cas_post_rxds_ringN(struct cas * cp,int ring,int num)2164 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2165 {
2166 unsigned int entry, last, count, released;
2167 int cluster;
2168 cas_page_t **page = cp->rx_pages[ring];
2169
2170 entry = cp->rx_old[ring];
2171
2172 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2173 "rxd[%d] interrupt, done: %d\n", ring, entry);
2174
2175 cluster = -1;
2176 count = entry & 0x3;
2177 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2178 released = 0;
2179 while (entry != last) {
2180 /* make a new buffer if it's still in use */
2181 if (page_count(page[entry]->buffer) > 1) {
2182 cas_page_t *new = cas_page_dequeue(cp);
2183 if (!new) {
2184 /* let the timer know that we need to
2185 * do this again
2186 */
2187 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2188 if (!timer_pending(&cp->link_timer))
2189 mod_timer(&cp->link_timer, jiffies +
2190 CAS_LINK_FAST_TIMEOUT);
2191 cp->rx_old[ring] = entry;
2192 cp->rx_last[ring] = num ? num - released : 0;
2193 return -ENOMEM;
2194 }
2195 spin_lock(&cp->rx_inuse_lock);
2196 list_add(&page[entry]->list, &cp->rx_inuse_list);
2197 spin_unlock(&cp->rx_inuse_lock);
2198 cp->init_rxds[ring][entry].buffer =
2199 cpu_to_le64(new->dma_addr);
2200 page[entry] = new;
2201
2202 }
2203
2204 if (++count == 4) {
2205 cluster = entry;
2206 count = 0;
2207 }
2208 released++;
2209 entry = RX_DESC_ENTRY(ring, entry + 1);
2210 }
2211 cp->rx_old[ring] = entry;
2212
2213 if (cluster < 0)
2214 return 0;
2215
2216 if (ring == 0)
2217 writel(cluster, cp->regs + REG_RX_KICK);
2218 else if ((N_RX_DESC_RINGS > 1) &&
2219 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2220 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2221 return 0;
2222 }
2223
2224
2225 /* process a completion ring. packets are set up in three basic ways:
2226 * small packets: should be copied header + data in single buffer.
2227 * large packets: header and data in a single buffer.
2228 * split packets: header in a separate buffer from data.
2229 * data may be in multiple pages. data may be > 256
2230 * bytes but in a single page.
2231 *
2232 * NOTE: RX page posting is done in this routine as well. while there's
2233 * the capability of using multiple RX completion rings, it isn't
2234 * really worthwhile due to the fact that the page posting will
2235 * force serialization on the single descriptor ring.
2236 */
cas_rx_ringN(struct cas * cp,int ring,int budget)2237 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2238 {
2239 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2240 int entry, drops;
2241 int npackets = 0;
2242
2243 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2244 "rx[%d] interrupt, done: %d/%d\n",
2245 ring,
2246 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2247
2248 entry = cp->rx_new[ring];
2249 drops = 0;
2250 while (1) {
2251 struct cas_rx_comp *rxc = rxcs + entry;
2252 struct sk_buff *skb;
2253 int type, len;
2254 u64 words[4];
2255 int i, dring;
2256
2257 words[0] = le64_to_cpu(rxc->word1);
2258 words[1] = le64_to_cpu(rxc->word2);
2259 words[2] = le64_to_cpu(rxc->word3);
2260 words[3] = le64_to_cpu(rxc->word4);
2261
2262 /* don't touch if still owned by hw */
2263 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2264 if (type == 0)
2265 break;
2266
2267 /* hw hasn't cleared the zero bit yet */
2268 if (words[3] & RX_COMP4_ZERO) {
2269 break;
2270 }
2271
2272 /* get info on the packet */
2273 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2274 spin_lock(&cp->stat_lock[ring]);
2275 cp->net_stats[ring].rx_errors++;
2276 if (words[3] & RX_COMP4_LEN_MISMATCH)
2277 cp->net_stats[ring].rx_length_errors++;
2278 if (words[3] & RX_COMP4_BAD)
2279 cp->net_stats[ring].rx_crc_errors++;
2280 spin_unlock(&cp->stat_lock[ring]);
2281
2282 /* We'll just return it to Cassini. */
2283 drop_it:
2284 spin_lock(&cp->stat_lock[ring]);
2285 ++cp->net_stats[ring].rx_dropped;
2286 spin_unlock(&cp->stat_lock[ring]);
2287 goto next;
2288 }
2289
2290 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2291 if (len < 0) {
2292 ++drops;
2293 goto drop_it;
2294 }
2295
2296 /* see if it's a flow re-assembly or not. the driver
2297 * itself handles release back up.
2298 */
2299 if (RX_DONT_BATCH || (type == 0x2)) {
2300 /* non-reassm: these always get released */
2301 cas_skb_release(skb);
2302 } else {
2303 cas_rx_flow_pkt(cp, words, skb);
2304 }
2305
2306 spin_lock(&cp->stat_lock[ring]);
2307 cp->net_stats[ring].rx_packets++;
2308 cp->net_stats[ring].rx_bytes += len;
2309 spin_unlock(&cp->stat_lock[ring]);
2310
2311 next:
2312 npackets++;
2313
2314 /* should it be released? */
2315 if (words[0] & RX_COMP1_RELEASE_HDR) {
2316 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2317 dring = CAS_VAL(RX_INDEX_RING, i);
2318 i = CAS_VAL(RX_INDEX_NUM, i);
2319 cas_post_page(cp, dring, i);
2320 }
2321
2322 if (words[0] & RX_COMP1_RELEASE_DATA) {
2323 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2324 dring = CAS_VAL(RX_INDEX_RING, i);
2325 i = CAS_VAL(RX_INDEX_NUM, i);
2326 cas_post_page(cp, dring, i);
2327 }
2328
2329 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2330 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2331 dring = CAS_VAL(RX_INDEX_RING, i);
2332 i = CAS_VAL(RX_INDEX_NUM, i);
2333 cas_post_page(cp, dring, i);
2334 }
2335
2336 /* skip to the next entry */
2337 entry = RX_COMP_ENTRY(ring, entry + 1 +
2338 CAS_VAL(RX_COMP1_SKIP, words[0]));
2339 #ifdef USE_NAPI
2340 if (budget && (npackets >= budget))
2341 break;
2342 #endif
2343 }
2344 cp->rx_new[ring] = entry;
2345
2346 if (drops)
2347 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2348 return npackets;
2349 }
2350
2351
2352 /* put completion entries back on the ring */
cas_post_rxcs_ringN(struct net_device * dev,struct cas * cp,int ring)2353 static void cas_post_rxcs_ringN(struct net_device *dev,
2354 struct cas *cp, int ring)
2355 {
2356 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2357 int last, entry;
2358
2359 last = cp->rx_cur[ring];
2360 entry = cp->rx_new[ring];
2361 netif_printk(cp, intr, KERN_DEBUG, dev,
2362 "rxc[%d] interrupt, done: %d/%d\n",
2363 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2364
2365 /* zero and re-mark descriptors */
2366 while (last != entry) {
2367 cas_rxc_init(rxc + last);
2368 last = RX_COMP_ENTRY(ring, last + 1);
2369 }
2370 cp->rx_cur[ring] = last;
2371
2372 if (ring == 0)
2373 writel(last, cp->regs + REG_RX_COMP_TAIL);
2374 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2375 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2376 }
2377
2378
2379
2380 /* cassini can use all four PCI interrupts for the completion ring.
2381 * rings 3 and 4 are identical
2382 */
2383 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
cas_handle_irqN(struct net_device * dev,struct cas * cp,const u32 status,const int ring)2384 static inline void cas_handle_irqN(struct net_device *dev,
2385 struct cas *cp, const u32 status,
2386 const int ring)
2387 {
2388 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2389 cas_post_rxcs_ringN(dev, cp, ring);
2390 }
2391
cas_interruptN(int irq,void * dev_id)2392 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2393 {
2394 struct net_device *dev = dev_id;
2395 struct cas *cp = netdev_priv(dev);
2396 unsigned long flags;
2397 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2398 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2399
2400 /* check for shared irq */
2401 if (status == 0)
2402 return IRQ_NONE;
2403
2404 spin_lock_irqsave(&cp->lock, flags);
2405 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2406 #ifdef USE_NAPI
2407 cas_mask_intr(cp);
2408 napi_schedule(&cp->napi);
2409 #else
2410 cas_rx_ringN(cp, ring, 0);
2411 #endif
2412 status &= ~INTR_RX_DONE_ALT;
2413 }
2414
2415 if (status)
2416 cas_handle_irqN(dev, cp, status, ring);
2417 spin_unlock_irqrestore(&cp->lock, flags);
2418 return IRQ_HANDLED;
2419 }
2420 #endif
2421
2422 #ifdef USE_PCI_INTB
2423 /* everything but rx packets */
cas_handle_irq1(struct cas * cp,const u32 status)2424 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2425 {
2426 if (status & INTR_RX_BUF_UNAVAIL_1) {
2427 /* Frame arrived, no free RX buffers available.
2428 * NOTE: we can get this on a link transition. */
2429 cas_post_rxds_ringN(cp, 1, 0);
2430 spin_lock(&cp->stat_lock[1]);
2431 cp->net_stats[1].rx_dropped++;
2432 spin_unlock(&cp->stat_lock[1]);
2433 }
2434
2435 if (status & INTR_RX_BUF_AE_1)
2436 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2437 RX_AE_FREEN_VAL(1));
2438
2439 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2440 cas_post_rxcs_ringN(cp, 1);
2441 }
2442
2443 /* ring 2 handles a few more events than 3 and 4 */
cas_interrupt1(int irq,void * dev_id)2444 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2445 {
2446 struct net_device *dev = dev_id;
2447 struct cas *cp = netdev_priv(dev);
2448 unsigned long flags;
2449 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2450
2451 /* check for shared interrupt */
2452 if (status == 0)
2453 return IRQ_NONE;
2454
2455 spin_lock_irqsave(&cp->lock, flags);
2456 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2457 #ifdef USE_NAPI
2458 cas_mask_intr(cp);
2459 napi_schedule(&cp->napi);
2460 #else
2461 cas_rx_ringN(cp, 1, 0);
2462 #endif
2463 status &= ~INTR_RX_DONE_ALT;
2464 }
2465 if (status)
2466 cas_handle_irq1(cp, status);
2467 spin_unlock_irqrestore(&cp->lock, flags);
2468 return IRQ_HANDLED;
2469 }
2470 #endif
2471
cas_handle_irq(struct net_device * dev,struct cas * cp,const u32 status)2472 static inline void cas_handle_irq(struct net_device *dev,
2473 struct cas *cp, const u32 status)
2474 {
2475 /* housekeeping interrupts */
2476 if (status & INTR_ERROR_MASK)
2477 cas_abnormal_irq(dev, cp, status);
2478
2479 if (status & INTR_RX_BUF_UNAVAIL) {
2480 /* Frame arrived, no free RX buffers available.
2481 * NOTE: we can get this on a link transition.
2482 */
2483 cas_post_rxds_ringN(cp, 0, 0);
2484 spin_lock(&cp->stat_lock[0]);
2485 cp->net_stats[0].rx_dropped++;
2486 spin_unlock(&cp->stat_lock[0]);
2487 } else if (status & INTR_RX_BUF_AE) {
2488 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2489 RX_AE_FREEN_VAL(0));
2490 }
2491
2492 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493 cas_post_rxcs_ringN(dev, cp, 0);
2494 }
2495
cas_interrupt(int irq,void * dev_id)2496 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2497 {
2498 struct net_device *dev = dev_id;
2499 struct cas *cp = netdev_priv(dev);
2500 unsigned long flags;
2501 u32 status = readl(cp->regs + REG_INTR_STATUS);
2502
2503 if (status == 0)
2504 return IRQ_NONE;
2505
2506 spin_lock_irqsave(&cp->lock, flags);
2507 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2508 cas_tx(dev, cp, status);
2509 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2510 }
2511
2512 if (status & INTR_RX_DONE) {
2513 #ifdef USE_NAPI
2514 cas_mask_intr(cp);
2515 napi_schedule(&cp->napi);
2516 #else
2517 cas_rx_ringN(cp, 0, 0);
2518 #endif
2519 status &= ~INTR_RX_DONE;
2520 }
2521
2522 if (status)
2523 cas_handle_irq(dev, cp, status);
2524 spin_unlock_irqrestore(&cp->lock, flags);
2525 return IRQ_HANDLED;
2526 }
2527
2528
2529 #ifdef USE_NAPI
cas_poll(struct napi_struct * napi,int budget)2530 static int cas_poll(struct napi_struct *napi, int budget)
2531 {
2532 struct cas *cp = container_of(napi, struct cas, napi);
2533 struct net_device *dev = cp->dev;
2534 int i, enable_intr, credits;
2535 u32 status = readl(cp->regs + REG_INTR_STATUS);
2536 unsigned long flags;
2537
2538 spin_lock_irqsave(&cp->lock, flags);
2539 cas_tx(dev, cp, status);
2540 spin_unlock_irqrestore(&cp->lock, flags);
2541
2542 /* NAPI rx packets. we spread the credits across all of the
2543 * rxc rings
2544 *
2545 * to make sure we're fair with the work we loop through each
2546 * ring N_RX_COMP_RING times with a request of
2547 * budget / N_RX_COMP_RINGS
2548 */
2549 enable_intr = 1;
2550 credits = 0;
2551 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2552 int j;
2553 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2554 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2555 if (credits >= budget) {
2556 enable_intr = 0;
2557 goto rx_comp;
2558 }
2559 }
2560 }
2561
2562 rx_comp:
2563 /* final rx completion */
2564 spin_lock_irqsave(&cp->lock, flags);
2565 if (status)
2566 cas_handle_irq(dev, cp, status);
2567
2568 #ifdef USE_PCI_INTB
2569 if (N_RX_COMP_RINGS > 1) {
2570 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2571 if (status)
2572 cas_handle_irq1(dev, cp, status);
2573 }
2574 #endif
2575
2576 #ifdef USE_PCI_INTC
2577 if (N_RX_COMP_RINGS > 2) {
2578 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2579 if (status)
2580 cas_handle_irqN(dev, cp, status, 2);
2581 }
2582 #endif
2583
2584 #ifdef USE_PCI_INTD
2585 if (N_RX_COMP_RINGS > 3) {
2586 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2587 if (status)
2588 cas_handle_irqN(dev, cp, status, 3);
2589 }
2590 #endif
2591 spin_unlock_irqrestore(&cp->lock, flags);
2592 if (enable_intr) {
2593 napi_complete(napi);
2594 cas_unmask_intr(cp);
2595 }
2596 return credits;
2597 }
2598 #endif
2599
2600 #ifdef CONFIG_NET_POLL_CONTROLLER
cas_netpoll(struct net_device * dev)2601 static void cas_netpoll(struct net_device *dev)
2602 {
2603 struct cas *cp = netdev_priv(dev);
2604
2605 cas_disable_irq(cp, 0);
2606 cas_interrupt(cp->pdev->irq, dev);
2607 cas_enable_irq(cp, 0);
2608
2609 #ifdef USE_PCI_INTB
2610 if (N_RX_COMP_RINGS > 1) {
2611 /* cas_interrupt1(); */
2612 }
2613 #endif
2614 #ifdef USE_PCI_INTC
2615 if (N_RX_COMP_RINGS > 2) {
2616 /* cas_interruptN(); */
2617 }
2618 #endif
2619 #ifdef USE_PCI_INTD
2620 if (N_RX_COMP_RINGS > 3) {
2621 /* cas_interruptN(); */
2622 }
2623 #endif
2624 }
2625 #endif
2626
cas_tx_timeout(struct net_device * dev,unsigned int txqueue)2627 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2628 {
2629 struct cas *cp = netdev_priv(dev);
2630
2631 netdev_err(dev, "transmit timed out, resetting\n");
2632 if (!cp->hw_running) {
2633 netdev_err(dev, "hrm.. hw not running!\n");
2634 return;
2635 }
2636
2637 netdev_err(dev, "MIF_STATE[%08x]\n",
2638 readl(cp->regs + REG_MIF_STATE_MACHINE));
2639
2640 netdev_err(dev, "MAC_STATE[%08x]\n",
2641 readl(cp->regs + REG_MAC_STATE_MACHINE));
2642
2643 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2644 readl(cp->regs + REG_TX_CFG),
2645 readl(cp->regs + REG_MAC_TX_STATUS),
2646 readl(cp->regs + REG_MAC_TX_CFG),
2647 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2648 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2649 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2650 readl(cp->regs + REG_TX_SM_1),
2651 readl(cp->regs + REG_TX_SM_2));
2652
2653 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2654 readl(cp->regs + REG_RX_CFG),
2655 readl(cp->regs + REG_MAC_RX_STATUS),
2656 readl(cp->regs + REG_MAC_RX_CFG));
2657
2658 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2659 readl(cp->regs + REG_HP_STATE_MACHINE),
2660 readl(cp->regs + REG_HP_STATUS0),
2661 readl(cp->regs + REG_HP_STATUS1),
2662 readl(cp->regs + REG_HP_STATUS2));
2663
2664 #if 1
2665 atomic_inc(&cp->reset_task_pending);
2666 atomic_inc(&cp->reset_task_pending_all);
2667 schedule_work(&cp->reset_task);
2668 #else
2669 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2670 schedule_work(&cp->reset_task);
2671 #endif
2672 }
2673
cas_intme(int ring,int entry)2674 static inline int cas_intme(int ring, int entry)
2675 {
2676 /* Algorithm: IRQ every 1/2 of descriptors. */
2677 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2678 return 1;
2679 return 0;
2680 }
2681
2682
cas_write_txd(struct cas * cp,int ring,int entry,dma_addr_t mapping,int len,u64 ctrl,int last)2683 static void cas_write_txd(struct cas *cp, int ring, int entry,
2684 dma_addr_t mapping, int len, u64 ctrl, int last)
2685 {
2686 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2687
2688 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2689 if (cas_intme(ring, entry))
2690 ctrl |= TX_DESC_INTME;
2691 if (last)
2692 ctrl |= TX_DESC_EOF;
2693 txd->control = cpu_to_le64(ctrl);
2694 txd->buffer = cpu_to_le64(mapping);
2695 }
2696
tx_tiny_buf(struct cas * cp,const int ring,const int entry)2697 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2698 const int entry)
2699 {
2700 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2701 }
2702
tx_tiny_map(struct cas * cp,const int ring,const int entry,const int tentry)2703 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2704 const int entry, const int tentry)
2705 {
2706 cp->tx_tiny_use[ring][tentry].nbufs++;
2707 cp->tx_tiny_use[ring][entry].used = 1;
2708 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2709 }
2710
cas_xmit_tx_ringN(struct cas * cp,int ring,struct sk_buff * skb)2711 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2712 struct sk_buff *skb)
2713 {
2714 struct net_device *dev = cp->dev;
2715 int entry, nr_frags, frag, tabort, tentry;
2716 dma_addr_t mapping;
2717 unsigned long flags;
2718 u64 ctrl;
2719 u32 len;
2720
2721 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2722
2723 /* This is a hard error, log it. */
2724 if (TX_BUFFS_AVAIL(cp, ring) <=
2725 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2726 netif_stop_queue(dev);
2727 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2728 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2729 return 1;
2730 }
2731
2732 ctrl = 0;
2733 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2734 const u64 csum_start_off = skb_checksum_start_offset(skb);
2735 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2736
2737 ctrl = TX_DESC_CSUM_EN |
2738 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2739 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2740 }
2741
2742 entry = cp->tx_new[ring];
2743 cp->tx_skbs[ring][entry] = skb;
2744
2745 nr_frags = skb_shinfo(skb)->nr_frags;
2746 len = skb_headlen(skb);
2747 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2748 offset_in_page(skb->data), len, DMA_TO_DEVICE);
2749
2750 tentry = entry;
2751 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2752 if (unlikely(tabort)) {
2753 /* NOTE: len is always > tabort */
2754 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2755 ctrl | TX_DESC_SOF, 0);
2756 entry = TX_DESC_NEXT(ring, entry);
2757
2758 skb_copy_from_linear_data_offset(skb, len - tabort,
2759 tx_tiny_buf(cp, ring, entry), tabort);
2760 mapping = tx_tiny_map(cp, ring, entry, tentry);
2761 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2762 (nr_frags == 0));
2763 } else {
2764 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2765 TX_DESC_SOF, (nr_frags == 0));
2766 }
2767 entry = TX_DESC_NEXT(ring, entry);
2768
2769 for (frag = 0; frag < nr_frags; frag++) {
2770 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2771
2772 len = skb_frag_size(fragp);
2773 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2774 DMA_TO_DEVICE);
2775
2776 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2777 if (unlikely(tabort)) {
2778 /* NOTE: len is always > tabort */
2779 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2780 ctrl, 0);
2781 entry = TX_DESC_NEXT(ring, entry);
2782 memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2783 skb_frag_page(fragp),
2784 skb_frag_off(fragp) + len - tabort,
2785 tabort);
2786 mapping = tx_tiny_map(cp, ring, entry, tentry);
2787 len = tabort;
2788 }
2789
2790 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2791 (frag + 1 == nr_frags));
2792 entry = TX_DESC_NEXT(ring, entry);
2793 }
2794
2795 cp->tx_new[ring] = entry;
2796 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2797 netif_stop_queue(dev);
2798
2799 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2800 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2801 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2802 writel(entry, cp->regs + REG_TX_KICKN(ring));
2803 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2804 return 0;
2805 }
2806
cas_start_xmit(struct sk_buff * skb,struct net_device * dev)2807 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2808 {
2809 struct cas *cp = netdev_priv(dev);
2810
2811 /* this is only used as a load-balancing hint, so it doesn't
2812 * need to be SMP safe
2813 */
2814 static int ring;
2815
2816 if (skb_padto(skb, cp->min_frame_size))
2817 return NETDEV_TX_OK;
2818
2819 /* XXX: we need some higher-level QoS hooks to steer packets to
2820 * individual queues.
2821 */
2822 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2823 return NETDEV_TX_BUSY;
2824 return NETDEV_TX_OK;
2825 }
2826
cas_init_tx_dma(struct cas * cp)2827 static void cas_init_tx_dma(struct cas *cp)
2828 {
2829 u64 desc_dma = cp->block_dvma;
2830 unsigned long off;
2831 u32 val;
2832 int i;
2833
2834 /* set up tx completion writeback registers. must be 8-byte aligned */
2835 #ifdef USE_TX_COMPWB
2836 off = offsetof(struct cas_init_block, tx_compwb);
2837 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2838 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2839 #endif
2840
2841 /* enable completion writebacks, enable paced mode,
2842 * disable read pipe, and disable pre-interrupt compwbs
2843 */
2844 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2845 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2846 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2847 TX_CFG_INTR_COMPWB_DIS;
2848
2849 /* write out tx ring info and tx desc bases */
2850 for (i = 0; i < MAX_TX_RINGS; i++) {
2851 off = (unsigned long) cp->init_txds[i] -
2852 (unsigned long) cp->init_block;
2853
2854 val |= CAS_TX_RINGN_BASE(i);
2855 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2856 writel((desc_dma + off) & 0xffffffff, cp->regs +
2857 REG_TX_DBN_LOW(i));
2858 /* don't zero out the kick register here as the system
2859 * will wedge
2860 */
2861 }
2862 writel(val, cp->regs + REG_TX_CFG);
2863
2864 /* program max burst sizes. these numbers should be different
2865 * if doing QoS.
2866 */
2867 #ifdef USE_QOS
2868 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2869 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2870 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2871 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2872 #else
2873 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2874 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2875 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2876 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2877 #endif
2878 }
2879
2880 /* Must be invoked under cp->lock. */
cas_init_dma(struct cas * cp)2881 static inline void cas_init_dma(struct cas *cp)
2882 {
2883 cas_init_tx_dma(cp);
2884 cas_init_rx_dma(cp);
2885 }
2886
cas_process_mc_list(struct cas * cp)2887 static void cas_process_mc_list(struct cas *cp)
2888 {
2889 u16 hash_table[16];
2890 u32 crc;
2891 struct netdev_hw_addr *ha;
2892 int i = 1;
2893
2894 memset(hash_table, 0, sizeof(hash_table));
2895 netdev_for_each_mc_addr(ha, cp->dev) {
2896 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2897 /* use the alternate mac address registers for the
2898 * first 15 multicast addresses
2899 */
2900 writel((ha->addr[4] << 8) | ha->addr[5],
2901 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2902 writel((ha->addr[2] << 8) | ha->addr[3],
2903 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2904 writel((ha->addr[0] << 8) | ha->addr[1],
2905 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2906 i++;
2907 }
2908 else {
2909 /* use hw hash table for the next series of
2910 * multicast addresses
2911 */
2912 crc = ether_crc_le(ETH_ALEN, ha->addr);
2913 crc >>= 24;
2914 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2915 }
2916 }
2917 for (i = 0; i < 16; i++)
2918 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2919 }
2920
2921 /* Must be invoked under cp->lock. */
cas_setup_multicast(struct cas * cp)2922 static u32 cas_setup_multicast(struct cas *cp)
2923 {
2924 u32 rxcfg = 0;
2925 int i;
2926
2927 if (cp->dev->flags & IFF_PROMISC) {
2928 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2929
2930 } else if (cp->dev->flags & IFF_ALLMULTI) {
2931 for (i=0; i < 16; i++)
2932 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2933 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2934
2935 } else {
2936 cas_process_mc_list(cp);
2937 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2938 }
2939
2940 return rxcfg;
2941 }
2942
2943 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
cas_clear_mac_err(struct cas * cp)2944 static void cas_clear_mac_err(struct cas *cp)
2945 {
2946 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2947 writel(0, cp->regs + REG_MAC_COLL_FIRST);
2948 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2949 writel(0, cp->regs + REG_MAC_COLL_LATE);
2950 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2951 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2952 writel(0, cp->regs + REG_MAC_RECV_FRAME);
2953 writel(0, cp->regs + REG_MAC_LEN_ERR);
2954 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2955 writel(0, cp->regs + REG_MAC_FCS_ERR);
2956 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2957 }
2958
2959
cas_mac_reset(struct cas * cp)2960 static void cas_mac_reset(struct cas *cp)
2961 {
2962 int i;
2963
2964 /* do both TX and RX reset */
2965 writel(0x1, cp->regs + REG_MAC_TX_RESET);
2966 writel(0x1, cp->regs + REG_MAC_RX_RESET);
2967
2968 /* wait for TX */
2969 i = STOP_TRIES;
2970 while (i-- > 0) {
2971 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2972 break;
2973 udelay(10);
2974 }
2975
2976 /* wait for RX */
2977 i = STOP_TRIES;
2978 while (i-- > 0) {
2979 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2980 break;
2981 udelay(10);
2982 }
2983
2984 if (readl(cp->regs + REG_MAC_TX_RESET) |
2985 readl(cp->regs + REG_MAC_RX_RESET))
2986 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2987 readl(cp->regs + REG_MAC_TX_RESET),
2988 readl(cp->regs + REG_MAC_RX_RESET),
2989 readl(cp->regs + REG_MAC_STATE_MACHINE));
2990 }
2991
2992
2993 /* Must be invoked under cp->lock. */
cas_init_mac(struct cas * cp)2994 static void cas_init_mac(struct cas *cp)
2995 {
2996 const unsigned char *e = &cp->dev->dev_addr[0];
2997 int i;
2998 cas_mac_reset(cp);
2999
3000 /* setup core arbitration weight register */
3001 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3002
3003 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3004 /* set the infinite burst register for chips that don't have
3005 * pci issues.
3006 */
3007 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3008 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3009 #endif
3010
3011 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3012
3013 writel(0x00, cp->regs + REG_MAC_IPG0);
3014 writel(0x08, cp->regs + REG_MAC_IPG1);
3015 writel(0x04, cp->regs + REG_MAC_IPG2);
3016
3017 /* change later for 802.3z */
3018 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3019
3020 /* min frame + FCS */
3021 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3022
3023 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3024 * specify the maximum frame size to prevent RX tag errors on
3025 * oversized frames.
3026 */
3027 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3028 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3029 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3030 cp->regs + REG_MAC_FRAMESIZE_MAX);
3031
3032 /* NOTE: crc_size is used as a surrogate for half-duplex.
3033 * workaround saturn half-duplex issue by increasing preamble
3034 * size to 65 bytes.
3035 */
3036 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3037 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3038 else
3039 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3040 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3041 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3042 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3043
3044 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3045
3046 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3047 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3048 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3049 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3050 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3051
3052 /* setup mac address in perfect filter array */
3053 for (i = 0; i < 45; i++)
3054 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3055
3056 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3057 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3058 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3059
3060 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3061 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3062 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3063
3064 cp->mac_rx_cfg = cas_setup_multicast(cp);
3065
3066 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3067 cas_clear_mac_err(cp);
3068 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3069
3070 /* Setup MAC interrupts. We want to get all of the interesting
3071 * counter expiration events, but we do not want to hear about
3072 * normal rx/tx as the DMA engine tells us that.
3073 */
3074 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3075 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3076
3077 /* Don't enable even the PAUSE interrupts for now, we
3078 * make no use of those events other than to record them.
3079 */
3080 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3081 }
3082
3083 /* Must be invoked under cp->lock. */
cas_init_pause_thresholds(struct cas * cp)3084 static void cas_init_pause_thresholds(struct cas *cp)
3085 {
3086 /* Calculate pause thresholds. Setting the OFF threshold to the
3087 * full RX fifo size effectively disables PAUSE generation
3088 */
3089 if (cp->rx_fifo_size <= (2 * 1024)) {
3090 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3091 } else {
3092 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3093 if (max_frame * 3 > cp->rx_fifo_size) {
3094 cp->rx_pause_off = 7104;
3095 cp->rx_pause_on = 960;
3096 } else {
3097 int off = (cp->rx_fifo_size - (max_frame * 2));
3098 int on = off - max_frame;
3099 cp->rx_pause_off = off;
3100 cp->rx_pause_on = on;
3101 }
3102 }
3103 }
3104
cas_vpd_match(const void __iomem * p,const char * str)3105 static int cas_vpd_match(const void __iomem *p, const char *str)
3106 {
3107 int len = strlen(str) + 1;
3108 int i;
3109
3110 for (i = 0; i < len; i++) {
3111 if (readb(p + i) != str[i])
3112 return 0;
3113 }
3114 return 1;
3115 }
3116
3117
3118 /* get the mac address by reading the vpd information in the rom.
3119 * also get the phy type and determine if there's an entropy generator.
3120 * NOTE: this is a bit convoluted for the following reasons:
3121 * 1) vpd info has order-dependent mac addresses for multinic cards
3122 * 2) the only way to determine the nic order is to use the slot
3123 * number.
3124 * 3) fiber cards don't have bridges, so their slot numbers don't
3125 * mean anything.
3126 * 4) we don't actually know we have a fiber card until after
3127 * the mac addresses are parsed.
3128 */
cas_get_vpd_info(struct cas * cp,unsigned char * dev_addr,const int offset)3129 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3130 const int offset)
3131 {
3132 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3133 void __iomem *base, *kstart;
3134 int i, len;
3135 int found = 0;
3136 #define VPD_FOUND_MAC 0x01
3137 #define VPD_FOUND_PHY 0x02
3138
3139 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3140 int mac_off = 0;
3141
3142 #if defined(CONFIG_SPARC)
3143 const unsigned char *addr;
3144 #endif
3145
3146 /* give us access to the PROM */
3147 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3148 cp->regs + REG_BIM_LOCAL_DEV_EN);
3149
3150 /* check for an expansion rom */
3151 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3152 goto use_random_mac_addr;
3153
3154 /* search for beginning of vpd */
3155 base = NULL;
3156 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3157 /* check for PCIR */
3158 if ((readb(p + i + 0) == 0x50) &&
3159 (readb(p + i + 1) == 0x43) &&
3160 (readb(p + i + 2) == 0x49) &&
3161 (readb(p + i + 3) == 0x52)) {
3162 base = p + (readb(p + i + 8) |
3163 (readb(p + i + 9) << 8));
3164 break;
3165 }
3166 }
3167
3168 if (!base || (readb(base) != 0x82))
3169 goto use_random_mac_addr;
3170
3171 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3172 while (i < EXPANSION_ROM_SIZE) {
3173 if (readb(base + i) != 0x90) /* no vpd found */
3174 goto use_random_mac_addr;
3175
3176 /* found a vpd field */
3177 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3178
3179 /* extract keywords */
3180 kstart = base + i + 3;
3181 p = kstart;
3182 while ((p - kstart) < len) {
3183 int klen = readb(p + 2);
3184 int j;
3185 char type;
3186
3187 p += 3;
3188
3189 /* look for the following things:
3190 * -- correct length == 29
3191 * 3 (type) + 2 (size) +
3192 * 18 (strlen("local-mac-address") + 1) +
3193 * 6 (mac addr)
3194 * -- VPD Instance 'I'
3195 * -- VPD Type Bytes 'B'
3196 * -- VPD data length == 6
3197 * -- property string == local-mac-address
3198 *
3199 * -- correct length == 24
3200 * 3 (type) + 2 (size) +
3201 * 12 (strlen("entropy-dev") + 1) +
3202 * 7 (strlen("vms110") + 1)
3203 * -- VPD Instance 'I'
3204 * -- VPD Type String 'B'
3205 * -- VPD data length == 7
3206 * -- property string == entropy-dev
3207 *
3208 * -- correct length == 18
3209 * 3 (type) + 2 (size) +
3210 * 9 (strlen("phy-type") + 1) +
3211 * 4 (strlen("pcs") + 1)
3212 * -- VPD Instance 'I'
3213 * -- VPD Type String 'S'
3214 * -- VPD data length == 4
3215 * -- property string == phy-type
3216 *
3217 * -- correct length == 23
3218 * 3 (type) + 2 (size) +
3219 * 14 (strlen("phy-interface") + 1) +
3220 * 4 (strlen("pcs") + 1)
3221 * -- VPD Instance 'I'
3222 * -- VPD Type String 'S'
3223 * -- VPD data length == 4
3224 * -- property string == phy-interface
3225 */
3226 if (readb(p) != 'I')
3227 goto next;
3228
3229 /* finally, check string and length */
3230 type = readb(p + 3);
3231 if (type == 'B') {
3232 if ((klen == 29) && readb(p + 4) == 6 &&
3233 cas_vpd_match(p + 5,
3234 "local-mac-address")) {
3235 if (mac_off++ > offset)
3236 goto next;
3237
3238 /* set mac address */
3239 for (j = 0; j < 6; j++)
3240 dev_addr[j] =
3241 readb(p + 23 + j);
3242 goto found_mac;
3243 }
3244 }
3245
3246 if (type != 'S')
3247 goto next;
3248
3249 #ifdef USE_ENTROPY_DEV
3250 if ((klen == 24) &&
3251 cas_vpd_match(p + 5, "entropy-dev") &&
3252 cas_vpd_match(p + 17, "vms110")) {
3253 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3254 goto next;
3255 }
3256 #endif
3257
3258 if (found & VPD_FOUND_PHY)
3259 goto next;
3260
3261 if ((klen == 18) && readb(p + 4) == 4 &&
3262 cas_vpd_match(p + 5, "phy-type")) {
3263 if (cas_vpd_match(p + 14, "pcs")) {
3264 phy_type = CAS_PHY_SERDES;
3265 goto found_phy;
3266 }
3267 }
3268
3269 if ((klen == 23) && readb(p + 4) == 4 &&
3270 cas_vpd_match(p + 5, "phy-interface")) {
3271 if (cas_vpd_match(p + 19, "pcs")) {
3272 phy_type = CAS_PHY_SERDES;
3273 goto found_phy;
3274 }
3275 }
3276 found_mac:
3277 found |= VPD_FOUND_MAC;
3278 goto next;
3279
3280 found_phy:
3281 found |= VPD_FOUND_PHY;
3282
3283 next:
3284 p += klen;
3285 }
3286 i += len + 3;
3287 }
3288
3289 use_random_mac_addr:
3290 if (found & VPD_FOUND_MAC)
3291 goto done;
3292
3293 #if defined(CONFIG_SPARC)
3294 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3295 if (addr != NULL) {
3296 memcpy(dev_addr, addr, ETH_ALEN);
3297 goto done;
3298 }
3299 #endif
3300
3301 /* Sun MAC prefix then 3 random bytes. */
3302 pr_info("MAC address not found in ROM VPD\n");
3303 dev_addr[0] = 0x08;
3304 dev_addr[1] = 0x00;
3305 dev_addr[2] = 0x20;
3306 get_random_bytes(dev_addr + 3, 3);
3307
3308 done:
3309 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3310 return phy_type;
3311 }
3312
3313 /* check pci invariants */
cas_check_pci_invariants(struct cas * cp)3314 static void cas_check_pci_invariants(struct cas *cp)
3315 {
3316 struct pci_dev *pdev = cp->pdev;
3317
3318 cp->cas_flags = 0;
3319 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3320 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3321 if (pdev->revision >= CAS_ID_REVPLUS)
3322 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3323 if (pdev->revision < CAS_ID_REVPLUS02u)
3324 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3325
3326 /* Original Cassini supports HW CSUM, but it's not
3327 * enabled by default as it can trigger TX hangs.
3328 */
3329 if (pdev->revision < CAS_ID_REV2)
3330 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3331 } else {
3332 /* Only sun has original cassini chips. */
3333 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3334
3335 /* We use a flag because the same phy might be externally
3336 * connected.
3337 */
3338 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3339 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3340 cp->cas_flags |= CAS_FLAG_SATURN;
3341 }
3342 }
3343
3344
cas_check_invariants(struct cas * cp)3345 static int cas_check_invariants(struct cas *cp)
3346 {
3347 struct pci_dev *pdev = cp->pdev;
3348 u8 addr[ETH_ALEN];
3349 u32 cfg;
3350 int i;
3351
3352 /* get page size for rx buffers. */
3353 cp->page_order = 0;
3354 #ifdef USE_PAGE_ORDER
3355 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3356 /* see if we can allocate larger pages */
3357 struct page *page = alloc_pages(GFP_ATOMIC,
3358 CAS_JUMBO_PAGE_SHIFT -
3359 PAGE_SHIFT);
3360 if (page) {
3361 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3362 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3363 } else {
3364 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3365 }
3366 }
3367 #endif
3368 cp->page_size = (PAGE_SIZE << cp->page_order);
3369
3370 /* Fetch the FIFO configurations. */
3371 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3372 cp->rx_fifo_size = RX_FIFO_SIZE;
3373
3374 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3375 * they're both connected.
3376 */
3377 cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3378 eth_hw_addr_set(cp->dev, addr);
3379 if (cp->phy_type & CAS_PHY_SERDES) {
3380 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3381 return 0; /* no more checking needed */
3382 }
3383
3384 /* MII */
3385 cfg = readl(cp->regs + REG_MIF_CFG);
3386 if (cfg & MIF_CFG_MDIO_1) {
3387 cp->phy_type = CAS_PHY_MII_MDIO1;
3388 } else if (cfg & MIF_CFG_MDIO_0) {
3389 cp->phy_type = CAS_PHY_MII_MDIO0;
3390 }
3391
3392 cas_mif_poll(cp, 0);
3393 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3394
3395 for (i = 0; i < 32; i++) {
3396 u32 phy_id;
3397 int j;
3398
3399 for (j = 0; j < 3; j++) {
3400 cp->phy_addr = i;
3401 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3402 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3403 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3404 cp->phy_id = phy_id;
3405 goto done;
3406 }
3407 }
3408 }
3409 pr_err("MII phy did not respond [%08x]\n",
3410 readl(cp->regs + REG_MIF_STATE_MACHINE));
3411 return -1;
3412
3413 done:
3414 /* see if we can do gigabit */
3415 cfg = cas_phy_read(cp, MII_BMSR);
3416 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3417 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3418 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3419 return 0;
3420 }
3421
3422 /* Must be invoked under cp->lock. */
cas_start_dma(struct cas * cp)3423 static inline void cas_start_dma(struct cas *cp)
3424 {
3425 int i;
3426 u32 val;
3427 int txfailed = 0;
3428
3429 /* enable dma */
3430 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3431 writel(val, cp->regs + REG_TX_CFG);
3432 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3433 writel(val, cp->regs + REG_RX_CFG);
3434
3435 /* enable the mac */
3436 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3437 writel(val, cp->regs + REG_MAC_TX_CFG);
3438 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3439 writel(val, cp->regs + REG_MAC_RX_CFG);
3440
3441 i = STOP_TRIES;
3442 while (i-- > 0) {
3443 val = readl(cp->regs + REG_MAC_TX_CFG);
3444 if ((val & MAC_TX_CFG_EN))
3445 break;
3446 udelay(10);
3447 }
3448 if (i < 0) txfailed = 1;
3449 i = STOP_TRIES;
3450 while (i-- > 0) {
3451 val = readl(cp->regs + REG_MAC_RX_CFG);
3452 if ((val & MAC_RX_CFG_EN)) {
3453 if (txfailed) {
3454 netdev_err(cp->dev,
3455 "enabling mac failed [tx:%08x:%08x]\n",
3456 readl(cp->regs + REG_MIF_STATE_MACHINE),
3457 readl(cp->regs + REG_MAC_STATE_MACHINE));
3458 }
3459 goto enable_rx_done;
3460 }
3461 udelay(10);
3462 }
3463 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3464 (txfailed ? "tx,rx" : "rx"),
3465 readl(cp->regs + REG_MIF_STATE_MACHINE),
3466 readl(cp->regs + REG_MAC_STATE_MACHINE));
3467
3468 enable_rx_done:
3469 cas_unmask_intr(cp); /* enable interrupts */
3470 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3471 writel(0, cp->regs + REG_RX_COMP_TAIL);
3472
3473 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3474 if (N_RX_DESC_RINGS > 1)
3475 writel(RX_DESC_RINGN_SIZE(1) - 4,
3476 cp->regs + REG_PLUS_RX_KICK1);
3477 }
3478 }
3479
3480 /* Must be invoked under cp->lock. */
cas_read_pcs_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3481 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3482 int *pause)
3483 {
3484 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3485 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3486 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3487 if (val & PCS_MII_LPA_ASYM_PAUSE)
3488 *pause |= 0x10;
3489 *spd = 1000;
3490 }
3491
3492 /* Must be invoked under cp->lock. */
cas_read_mii_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3493 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3494 int *pause)
3495 {
3496 u32 val;
3497
3498 *fd = 0;
3499 *spd = 10;
3500 *pause = 0;
3501
3502 /* use GMII registers */
3503 val = cas_phy_read(cp, MII_LPA);
3504 if (val & CAS_LPA_PAUSE)
3505 *pause = 0x01;
3506
3507 if (val & CAS_LPA_ASYM_PAUSE)
3508 *pause |= 0x10;
3509
3510 if (val & LPA_DUPLEX)
3511 *fd = 1;
3512 if (val & LPA_100)
3513 *spd = 100;
3514
3515 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3516 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3517 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3518 *spd = 1000;
3519 if (val & CAS_LPA_1000FULL)
3520 *fd = 1;
3521 }
3522 }
3523
3524 /* A link-up condition has occurred, initialize and enable the
3525 * rest of the chip.
3526 *
3527 * Must be invoked under cp->lock.
3528 */
cas_set_link_modes(struct cas * cp)3529 static void cas_set_link_modes(struct cas *cp)
3530 {
3531 u32 val;
3532 int full_duplex, speed, pause;
3533
3534 full_duplex = 0;
3535 speed = 10;
3536 pause = 0;
3537
3538 if (CAS_PHY_MII(cp->phy_type)) {
3539 cas_mif_poll(cp, 0);
3540 val = cas_phy_read(cp, MII_BMCR);
3541 if (val & BMCR_ANENABLE) {
3542 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3543 &pause);
3544 } else {
3545 if (val & BMCR_FULLDPLX)
3546 full_duplex = 1;
3547
3548 if (val & BMCR_SPEED100)
3549 speed = 100;
3550 else if (val & CAS_BMCR_SPEED1000)
3551 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3552 1000 : 100;
3553 }
3554 cas_mif_poll(cp, 1);
3555
3556 } else {
3557 val = readl(cp->regs + REG_PCS_MII_CTRL);
3558 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3559 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3560 if (val & PCS_MII_CTRL_DUPLEX)
3561 full_duplex = 1;
3562 }
3563 }
3564
3565 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3566 speed, full_duplex ? "full" : "half");
3567
3568 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3569 if (CAS_PHY_MII(cp->phy_type)) {
3570 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3571 if (!full_duplex)
3572 val |= MAC_XIF_DISABLE_ECHO;
3573 }
3574 if (full_duplex)
3575 val |= MAC_XIF_FDPLX_LED;
3576 if (speed == 1000)
3577 val |= MAC_XIF_GMII_MODE;
3578 writel(val, cp->regs + REG_MAC_XIF_CFG);
3579
3580 /* deal with carrier and collision detect. */
3581 val = MAC_TX_CFG_IPG_EN;
3582 if (full_duplex) {
3583 val |= MAC_TX_CFG_IGNORE_CARRIER;
3584 val |= MAC_TX_CFG_IGNORE_COLL;
3585 } else {
3586 #ifndef USE_CSMA_CD_PROTO
3587 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3588 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3589 #endif
3590 }
3591 /* val now set up for REG_MAC_TX_CFG */
3592
3593 /* If gigabit and half-duplex, enable carrier extension
3594 * mode. increase slot time to 512 bytes as well.
3595 * else, disable it and make sure slot time is 64 bytes.
3596 * also activate checksum bug workaround
3597 */
3598 if ((speed == 1000) && !full_duplex) {
3599 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3600 cp->regs + REG_MAC_TX_CFG);
3601
3602 val = readl(cp->regs + REG_MAC_RX_CFG);
3603 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3604 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3605 cp->regs + REG_MAC_RX_CFG);
3606
3607 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3608
3609 cp->crc_size = 4;
3610 /* minimum size gigabit frame at half duplex */
3611 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3612
3613 } else {
3614 writel(val, cp->regs + REG_MAC_TX_CFG);
3615
3616 /* checksum bug workaround. don't strip FCS when in
3617 * half-duplex mode
3618 */
3619 val = readl(cp->regs + REG_MAC_RX_CFG);
3620 if (full_duplex) {
3621 val |= MAC_RX_CFG_STRIP_FCS;
3622 cp->crc_size = 0;
3623 cp->min_frame_size = CAS_MIN_MTU;
3624 } else {
3625 val &= ~MAC_RX_CFG_STRIP_FCS;
3626 cp->crc_size = 4;
3627 cp->min_frame_size = CAS_MIN_FRAME;
3628 }
3629 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3630 cp->regs + REG_MAC_RX_CFG);
3631 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3632 }
3633
3634 if (netif_msg_link(cp)) {
3635 if (pause & 0x01) {
3636 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3637 cp->rx_fifo_size,
3638 cp->rx_pause_off,
3639 cp->rx_pause_on);
3640 } else if (pause & 0x10) {
3641 netdev_info(cp->dev, "TX pause enabled\n");
3642 } else {
3643 netdev_info(cp->dev, "Pause is disabled\n");
3644 }
3645 }
3646
3647 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3648 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3649 if (pause) { /* symmetric or asymmetric pause */
3650 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3651 if (pause & 0x01) { /* symmetric pause */
3652 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3653 }
3654 }
3655 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3656 cas_start_dma(cp);
3657 }
3658
3659 /* Must be invoked under cp->lock. */
cas_init_hw(struct cas * cp,int restart_link)3660 static void cas_init_hw(struct cas *cp, int restart_link)
3661 {
3662 if (restart_link)
3663 cas_phy_init(cp);
3664
3665 cas_init_pause_thresholds(cp);
3666 cas_init_mac(cp);
3667 cas_init_dma(cp);
3668
3669 if (restart_link) {
3670 /* Default aneg parameters */
3671 cp->timer_ticks = 0;
3672 cas_begin_auto_negotiation(cp, NULL);
3673 } else if (cp->lstate == link_up) {
3674 cas_set_link_modes(cp);
3675 netif_carrier_on(cp->dev);
3676 }
3677 }
3678
3679 /* Must be invoked under cp->lock. on earlier cassini boards,
3680 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3681 * let it settle out, and then restore pci state.
3682 */
cas_hard_reset(struct cas * cp)3683 static void cas_hard_reset(struct cas *cp)
3684 {
3685 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3686 udelay(20);
3687 pci_restore_state(cp->pdev);
3688 }
3689
3690
cas_global_reset(struct cas * cp,int blkflag)3691 static void cas_global_reset(struct cas *cp, int blkflag)
3692 {
3693 int limit;
3694
3695 /* issue a global reset. don't use RSTOUT. */
3696 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3697 /* For PCS, when the blkflag is set, we should set the
3698 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3699 * the last autonegotiation from being cleared. We'll
3700 * need some special handling if the chip is set into a
3701 * loopback mode.
3702 */
3703 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3704 cp->regs + REG_SW_RESET);
3705 } else {
3706 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3707 }
3708
3709 /* need to wait at least 3ms before polling register */
3710 mdelay(3);
3711
3712 limit = STOP_TRIES;
3713 while (limit-- > 0) {
3714 u32 val = readl(cp->regs + REG_SW_RESET);
3715 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3716 goto done;
3717 udelay(10);
3718 }
3719 netdev_err(cp->dev, "sw reset failed\n");
3720
3721 done:
3722 /* enable various BIM interrupts */
3723 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3724 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3725
3726 /* clear out pci error status mask for handled errors.
3727 * we don't deal with DMA counter overflows as they happen
3728 * all the time.
3729 */
3730 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3731 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3732 PCI_ERR_BIM_DMA_READ), cp->regs +
3733 REG_PCI_ERR_STATUS_MASK);
3734
3735 /* set up for MII by default to address mac rx reset timeout
3736 * issue
3737 */
3738 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3739 }
3740
cas_reset(struct cas * cp,int blkflag)3741 static void cas_reset(struct cas *cp, int blkflag)
3742 {
3743 u32 val;
3744
3745 cas_mask_intr(cp);
3746 cas_global_reset(cp, blkflag);
3747 cas_mac_reset(cp);
3748 cas_entropy_reset(cp);
3749
3750 /* disable dma engines. */
3751 val = readl(cp->regs + REG_TX_CFG);
3752 val &= ~TX_CFG_DMA_EN;
3753 writel(val, cp->regs + REG_TX_CFG);
3754
3755 val = readl(cp->regs + REG_RX_CFG);
3756 val &= ~RX_CFG_DMA_EN;
3757 writel(val, cp->regs + REG_RX_CFG);
3758
3759 /* program header parser */
3760 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3761 (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3762 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3763 } else {
3764 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3765 }
3766
3767 /* clear out error registers */
3768 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3769 cas_clear_mac_err(cp);
3770 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3771 }
3772
3773 /* Shut down the chip, must be called with pm_mutex held. */
cas_shutdown(struct cas * cp)3774 static void cas_shutdown(struct cas *cp)
3775 {
3776 unsigned long flags;
3777
3778 /* Make us not-running to avoid timers respawning */
3779 cp->hw_running = 0;
3780
3781 del_timer_sync(&cp->link_timer);
3782
3783 /* Stop the reset task */
3784 #if 0
3785 while (atomic_read(&cp->reset_task_pending_mtu) ||
3786 atomic_read(&cp->reset_task_pending_spare) ||
3787 atomic_read(&cp->reset_task_pending_all))
3788 schedule();
3789
3790 #else
3791 while (atomic_read(&cp->reset_task_pending))
3792 schedule();
3793 #endif
3794 /* Actually stop the chip */
3795 cas_lock_all_save(cp, flags);
3796 cas_reset(cp, 0);
3797 if (cp->cas_flags & CAS_FLAG_SATURN)
3798 cas_phy_powerdown(cp);
3799 cas_unlock_all_restore(cp, flags);
3800 }
3801
cas_change_mtu(struct net_device * dev,int new_mtu)3802 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3803 {
3804 struct cas *cp = netdev_priv(dev);
3805
3806 dev->mtu = new_mtu;
3807 if (!netif_running(dev) || !netif_device_present(dev))
3808 return 0;
3809
3810 /* let the reset task handle it */
3811 #if 1
3812 atomic_inc(&cp->reset_task_pending);
3813 if ((cp->phy_type & CAS_PHY_SERDES)) {
3814 atomic_inc(&cp->reset_task_pending_all);
3815 } else {
3816 atomic_inc(&cp->reset_task_pending_mtu);
3817 }
3818 schedule_work(&cp->reset_task);
3819 #else
3820 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3821 CAS_RESET_ALL : CAS_RESET_MTU);
3822 pr_err("reset called in cas_change_mtu\n");
3823 schedule_work(&cp->reset_task);
3824 #endif
3825
3826 flush_work(&cp->reset_task);
3827 return 0;
3828 }
3829
cas_clean_txd(struct cas * cp,int ring)3830 static void cas_clean_txd(struct cas *cp, int ring)
3831 {
3832 struct cas_tx_desc *txd = cp->init_txds[ring];
3833 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3834 u64 daddr, dlen;
3835 int i, size;
3836
3837 size = TX_DESC_RINGN_SIZE(ring);
3838 for (i = 0; i < size; i++) {
3839 int frag;
3840
3841 if (skbs[i] == NULL)
3842 continue;
3843
3844 skb = skbs[i];
3845 skbs[i] = NULL;
3846
3847 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3848 int ent = i & (size - 1);
3849
3850 /* first buffer is never a tiny buffer and so
3851 * needs to be unmapped.
3852 */
3853 daddr = le64_to_cpu(txd[ent].buffer);
3854 dlen = CAS_VAL(TX_DESC_BUFLEN,
3855 le64_to_cpu(txd[ent].control));
3856 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3857 DMA_TO_DEVICE);
3858
3859 if (frag != skb_shinfo(skb)->nr_frags) {
3860 i++;
3861
3862 /* next buffer might by a tiny buffer.
3863 * skip past it.
3864 */
3865 ent = i & (size - 1);
3866 if (cp->tx_tiny_use[ring][ent].used)
3867 i++;
3868 }
3869 }
3870 dev_kfree_skb_any(skb);
3871 }
3872
3873 /* zero out tiny buf usage */
3874 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3875 }
3876
3877 /* freed on close */
cas_free_rx_desc(struct cas * cp,int ring)3878 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3879 {
3880 cas_page_t **page = cp->rx_pages[ring];
3881 int i, size;
3882
3883 size = RX_DESC_RINGN_SIZE(ring);
3884 for (i = 0; i < size; i++) {
3885 if (page[i]) {
3886 cas_page_free(cp, page[i]);
3887 page[i] = NULL;
3888 }
3889 }
3890 }
3891
cas_free_rxds(struct cas * cp)3892 static void cas_free_rxds(struct cas *cp)
3893 {
3894 int i;
3895
3896 for (i = 0; i < N_RX_DESC_RINGS; i++)
3897 cas_free_rx_desc(cp, i);
3898 }
3899
3900 /* Must be invoked under cp->lock. */
cas_clean_rings(struct cas * cp)3901 static void cas_clean_rings(struct cas *cp)
3902 {
3903 int i;
3904
3905 /* need to clean all tx rings */
3906 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3907 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3908 for (i = 0; i < N_TX_RINGS; i++)
3909 cas_clean_txd(cp, i);
3910
3911 /* zero out init block */
3912 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3913 cas_clean_rxds(cp);
3914 cas_clean_rxcs(cp);
3915 }
3916
3917 /* allocated on open */
cas_alloc_rx_desc(struct cas * cp,int ring)3918 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3919 {
3920 cas_page_t **page = cp->rx_pages[ring];
3921 int size, i = 0;
3922
3923 size = RX_DESC_RINGN_SIZE(ring);
3924 for (i = 0; i < size; i++) {
3925 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3926 return -1;
3927 }
3928 return 0;
3929 }
3930
cas_alloc_rxds(struct cas * cp)3931 static int cas_alloc_rxds(struct cas *cp)
3932 {
3933 int i;
3934
3935 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3936 if (cas_alloc_rx_desc(cp, i) < 0) {
3937 cas_free_rxds(cp);
3938 return -1;
3939 }
3940 }
3941 return 0;
3942 }
3943
cas_reset_task(struct work_struct * work)3944 static void cas_reset_task(struct work_struct *work)
3945 {
3946 struct cas *cp = container_of(work, struct cas, reset_task);
3947 #if 0
3948 int pending = atomic_read(&cp->reset_task_pending);
3949 #else
3950 int pending_all = atomic_read(&cp->reset_task_pending_all);
3951 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3952 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3953
3954 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3955 /* We can have more tasks scheduled than actually
3956 * needed.
3957 */
3958 atomic_dec(&cp->reset_task_pending);
3959 return;
3960 }
3961 #endif
3962 /* The link went down, we reset the ring, but keep
3963 * DMA stopped. Use this function for reset
3964 * on error as well.
3965 */
3966 if (cp->hw_running) {
3967 unsigned long flags;
3968
3969 /* Make sure we don't get interrupts or tx packets */
3970 netif_device_detach(cp->dev);
3971 cas_lock_all_save(cp, flags);
3972
3973 if (cp->opened) {
3974 /* We call cas_spare_recover when we call cas_open.
3975 * but we do not initialize the lists cas_spare_recover
3976 * uses until cas_open is called.
3977 */
3978 cas_spare_recover(cp, GFP_ATOMIC);
3979 }
3980 #if 1
3981 /* test => only pending_spare set */
3982 if (!pending_all && !pending_mtu)
3983 goto done;
3984 #else
3985 if (pending == CAS_RESET_SPARE)
3986 goto done;
3987 #endif
3988 /* when pending == CAS_RESET_ALL, the following
3989 * call to cas_init_hw will restart auto negotiation.
3990 * Setting the second argument of cas_reset to
3991 * !(pending == CAS_RESET_ALL) will set this argument
3992 * to 1 (avoiding reinitializing the PHY for the normal
3993 * PCS case) when auto negotiation is not restarted.
3994 */
3995 #if 1
3996 cas_reset(cp, !(pending_all > 0));
3997 if (cp->opened)
3998 cas_clean_rings(cp);
3999 cas_init_hw(cp, (pending_all > 0));
4000 #else
4001 cas_reset(cp, !(pending == CAS_RESET_ALL));
4002 if (cp->opened)
4003 cas_clean_rings(cp);
4004 cas_init_hw(cp, pending == CAS_RESET_ALL);
4005 #endif
4006
4007 done:
4008 cas_unlock_all_restore(cp, flags);
4009 netif_device_attach(cp->dev);
4010 }
4011 #if 1
4012 atomic_sub(pending_all, &cp->reset_task_pending_all);
4013 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4014 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4015 atomic_dec(&cp->reset_task_pending);
4016 #else
4017 atomic_set(&cp->reset_task_pending, 0);
4018 #endif
4019 }
4020
cas_link_timer(struct timer_list * t)4021 static void cas_link_timer(struct timer_list *t)
4022 {
4023 struct cas *cp = from_timer(cp, t, link_timer);
4024 int mask, pending = 0, reset = 0;
4025 unsigned long flags;
4026
4027 if (link_transition_timeout != 0 &&
4028 cp->link_transition_jiffies_valid &&
4029 time_is_before_jiffies(cp->link_transition_jiffies +
4030 link_transition_timeout)) {
4031 /* One-second counter so link-down workaround doesn't
4032 * cause resets to occur so fast as to fool the switch
4033 * into thinking the link is down.
4034 */
4035 cp->link_transition_jiffies_valid = 0;
4036 }
4037
4038 if (!cp->hw_running)
4039 return;
4040
4041 spin_lock_irqsave(&cp->lock, flags);
4042 cas_lock_tx(cp);
4043 cas_entropy_gather(cp);
4044
4045 /* If the link task is still pending, we just
4046 * reschedule the link timer
4047 */
4048 #if 1
4049 if (atomic_read(&cp->reset_task_pending_all) ||
4050 atomic_read(&cp->reset_task_pending_spare) ||
4051 atomic_read(&cp->reset_task_pending_mtu))
4052 goto done;
4053 #else
4054 if (atomic_read(&cp->reset_task_pending))
4055 goto done;
4056 #endif
4057
4058 /* check for rx cleaning */
4059 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4060 int i, rmask;
4061
4062 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4063 rmask = CAS_FLAG_RXD_POST(i);
4064 if ((mask & rmask) == 0)
4065 continue;
4066
4067 /* post_rxds will do a mod_timer */
4068 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4069 pending = 1;
4070 continue;
4071 }
4072 cp->cas_flags &= ~rmask;
4073 }
4074 }
4075
4076 if (CAS_PHY_MII(cp->phy_type)) {
4077 u16 bmsr;
4078 cas_mif_poll(cp, 0);
4079 bmsr = cas_phy_read(cp, MII_BMSR);
4080 /* WTZ: Solaris driver reads this twice, but that
4081 * may be due to the PCS case and the use of a
4082 * common implementation. Read it twice here to be
4083 * safe.
4084 */
4085 bmsr = cas_phy_read(cp, MII_BMSR);
4086 cas_mif_poll(cp, 1);
4087 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4088 reset = cas_mii_link_check(cp, bmsr);
4089 } else {
4090 reset = cas_pcs_link_check(cp);
4091 }
4092
4093 if (reset)
4094 goto done;
4095
4096 /* check for tx state machine confusion */
4097 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4098 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4099 u32 wptr, rptr;
4100 int tlm = CAS_VAL(MAC_SM_TLM, val);
4101
4102 if (((tlm == 0x5) || (tlm == 0x3)) &&
4103 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4104 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4105 "tx err: MAC_STATE[%08x]\n", val);
4106 reset = 1;
4107 goto done;
4108 }
4109
4110 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4111 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4112 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4113 if ((val == 0) && (wptr != rptr)) {
4114 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4115 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4116 val, wptr, rptr);
4117 reset = 1;
4118 }
4119
4120 if (reset)
4121 cas_hard_reset(cp);
4122 }
4123
4124 done:
4125 if (reset) {
4126 #if 1
4127 atomic_inc(&cp->reset_task_pending);
4128 atomic_inc(&cp->reset_task_pending_all);
4129 schedule_work(&cp->reset_task);
4130 #else
4131 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4132 pr_err("reset called in cas_link_timer\n");
4133 schedule_work(&cp->reset_task);
4134 #endif
4135 }
4136
4137 if (!pending)
4138 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4139 cas_unlock_tx(cp);
4140 spin_unlock_irqrestore(&cp->lock, flags);
4141 }
4142
4143 /* tiny buffers are used to avoid target abort issues with
4144 * older cassini's
4145 */
cas_tx_tiny_free(struct cas * cp)4146 static void cas_tx_tiny_free(struct cas *cp)
4147 {
4148 struct pci_dev *pdev = cp->pdev;
4149 int i;
4150
4151 for (i = 0; i < N_TX_RINGS; i++) {
4152 if (!cp->tx_tiny_bufs[i])
4153 continue;
4154
4155 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4156 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4157 cp->tx_tiny_bufs[i] = NULL;
4158 }
4159 }
4160
cas_tx_tiny_alloc(struct cas * cp)4161 static int cas_tx_tiny_alloc(struct cas *cp)
4162 {
4163 struct pci_dev *pdev = cp->pdev;
4164 int i;
4165
4166 for (i = 0; i < N_TX_RINGS; i++) {
4167 cp->tx_tiny_bufs[i] =
4168 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4169 &cp->tx_tiny_dvma[i], GFP_KERNEL);
4170 if (!cp->tx_tiny_bufs[i]) {
4171 cas_tx_tiny_free(cp);
4172 return -1;
4173 }
4174 }
4175 return 0;
4176 }
4177
4178
cas_open(struct net_device * dev)4179 static int cas_open(struct net_device *dev)
4180 {
4181 struct cas *cp = netdev_priv(dev);
4182 int hw_was_up, err;
4183 unsigned long flags;
4184
4185 mutex_lock(&cp->pm_mutex);
4186
4187 hw_was_up = cp->hw_running;
4188
4189 /* The power-management mutex protects the hw_running
4190 * etc. state so it is safe to do this bit without cp->lock
4191 */
4192 if (!cp->hw_running) {
4193 /* Reset the chip */
4194 cas_lock_all_save(cp, flags);
4195 /* We set the second arg to cas_reset to zero
4196 * because cas_init_hw below will have its second
4197 * argument set to non-zero, which will force
4198 * autonegotiation to start.
4199 */
4200 cas_reset(cp, 0);
4201 cp->hw_running = 1;
4202 cas_unlock_all_restore(cp, flags);
4203 }
4204
4205 err = -ENOMEM;
4206 if (cas_tx_tiny_alloc(cp) < 0)
4207 goto err_unlock;
4208
4209 /* alloc rx descriptors */
4210 if (cas_alloc_rxds(cp) < 0)
4211 goto err_tx_tiny;
4212
4213 /* allocate spares */
4214 cas_spare_init(cp);
4215 cas_spare_recover(cp, GFP_KERNEL);
4216
4217 /* We can now request the interrupt as we know it's masked
4218 * on the controller. cassini+ has up to 4 interrupts
4219 * that can be used, but you need to do explicit pci interrupt
4220 * mapping to expose them
4221 */
4222 if (request_irq(cp->pdev->irq, cas_interrupt,
4223 IRQF_SHARED, dev->name, (void *) dev)) {
4224 netdev_err(cp->dev, "failed to request irq !\n");
4225 err = -EAGAIN;
4226 goto err_spare;
4227 }
4228
4229 #ifdef USE_NAPI
4230 napi_enable(&cp->napi);
4231 #endif
4232 /* init hw */
4233 cas_lock_all_save(cp, flags);
4234 cas_clean_rings(cp);
4235 cas_init_hw(cp, !hw_was_up);
4236 cp->opened = 1;
4237 cas_unlock_all_restore(cp, flags);
4238
4239 netif_start_queue(dev);
4240 mutex_unlock(&cp->pm_mutex);
4241 return 0;
4242
4243 err_spare:
4244 cas_spare_free(cp);
4245 cas_free_rxds(cp);
4246 err_tx_tiny:
4247 cas_tx_tiny_free(cp);
4248 err_unlock:
4249 mutex_unlock(&cp->pm_mutex);
4250 return err;
4251 }
4252
cas_close(struct net_device * dev)4253 static int cas_close(struct net_device *dev)
4254 {
4255 unsigned long flags;
4256 struct cas *cp = netdev_priv(dev);
4257
4258 #ifdef USE_NAPI
4259 napi_disable(&cp->napi);
4260 #endif
4261 /* Make sure we don't get distracted by suspend/resume */
4262 mutex_lock(&cp->pm_mutex);
4263
4264 netif_stop_queue(dev);
4265
4266 /* Stop traffic, mark us closed */
4267 cas_lock_all_save(cp, flags);
4268 cp->opened = 0;
4269 cas_reset(cp, 0);
4270 cas_phy_init(cp);
4271 cas_begin_auto_negotiation(cp, NULL);
4272 cas_clean_rings(cp);
4273 cas_unlock_all_restore(cp, flags);
4274
4275 free_irq(cp->pdev->irq, (void *) dev);
4276 cas_spare_free(cp);
4277 cas_free_rxds(cp);
4278 cas_tx_tiny_free(cp);
4279 mutex_unlock(&cp->pm_mutex);
4280 return 0;
4281 }
4282
4283 static struct {
4284 const char name[ETH_GSTRING_LEN];
4285 } ethtool_cassini_statnames[] = {
4286 {"collisions"},
4287 {"rx_bytes"},
4288 {"rx_crc_errors"},
4289 {"rx_dropped"},
4290 {"rx_errors"},
4291 {"rx_fifo_errors"},
4292 {"rx_frame_errors"},
4293 {"rx_length_errors"},
4294 {"rx_over_errors"},
4295 {"rx_packets"},
4296 {"tx_aborted_errors"},
4297 {"tx_bytes"},
4298 {"tx_dropped"},
4299 {"tx_errors"},
4300 {"tx_fifo_errors"},
4301 {"tx_packets"}
4302 };
4303 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4304
4305 static struct {
4306 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4307 } ethtool_register_table[] = {
4308 {-MII_BMSR},
4309 {-MII_BMCR},
4310 {REG_CAWR},
4311 {REG_INF_BURST},
4312 {REG_BIM_CFG},
4313 {REG_RX_CFG},
4314 {REG_HP_CFG},
4315 {REG_MAC_TX_CFG},
4316 {REG_MAC_RX_CFG},
4317 {REG_MAC_CTRL_CFG},
4318 {REG_MAC_XIF_CFG},
4319 {REG_MIF_CFG},
4320 {REG_PCS_CFG},
4321 {REG_SATURN_PCFG},
4322 {REG_PCS_MII_STATUS},
4323 {REG_PCS_STATE_MACHINE},
4324 {REG_MAC_COLL_EXCESS},
4325 {REG_MAC_COLL_LATE}
4326 };
4327 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4328 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4329
cas_read_regs(struct cas * cp,u8 * ptr,int len)4330 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4331 {
4332 u8 *p;
4333 int i;
4334 unsigned long flags;
4335
4336 spin_lock_irqsave(&cp->lock, flags);
4337 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4338 u16 hval;
4339 u32 val;
4340 if (ethtool_register_table[i].offsets < 0) {
4341 hval = cas_phy_read(cp,
4342 -ethtool_register_table[i].offsets);
4343 val = hval;
4344 } else {
4345 val= readl(cp->regs+ethtool_register_table[i].offsets);
4346 }
4347 memcpy(p, (u8 *)&val, sizeof(u32));
4348 }
4349 spin_unlock_irqrestore(&cp->lock, flags);
4350 }
4351
cas_get_stats(struct net_device * dev)4352 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4353 {
4354 struct cas *cp = netdev_priv(dev);
4355 struct net_device_stats *stats = cp->net_stats;
4356 unsigned long flags;
4357 int i;
4358 unsigned long tmp;
4359
4360 /* we collate all of the stats into net_stats[N_TX_RING] */
4361 if (!cp->hw_running)
4362 return stats + N_TX_RINGS;
4363
4364 /* collect outstanding stats */
4365 /* WTZ: the Cassini spec gives these as 16 bit counters but
4366 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4367 * in case the chip somehow puts any garbage in the other bits.
4368 * Also, counter usage didn't seem to mach what Adrian did
4369 * in the parts of the code that set these quantities. Made
4370 * that consistent.
4371 */
4372 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4373 stats[N_TX_RINGS].rx_crc_errors +=
4374 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4375 stats[N_TX_RINGS].rx_frame_errors +=
4376 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4377 stats[N_TX_RINGS].rx_length_errors +=
4378 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4379 #if 1
4380 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4381 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4382 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4383 stats[N_TX_RINGS].collisions +=
4384 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4385 #else
4386 stats[N_TX_RINGS].tx_aborted_errors +=
4387 readl(cp->regs + REG_MAC_COLL_EXCESS);
4388 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4389 readl(cp->regs + REG_MAC_COLL_LATE);
4390 #endif
4391 cas_clear_mac_err(cp);
4392
4393 /* saved bits that are unique to ring 0 */
4394 spin_lock(&cp->stat_lock[0]);
4395 stats[N_TX_RINGS].collisions += stats[0].collisions;
4396 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4397 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4398 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4399 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4400 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4401 spin_unlock(&cp->stat_lock[0]);
4402
4403 for (i = 0; i < N_TX_RINGS; i++) {
4404 spin_lock(&cp->stat_lock[i]);
4405 stats[N_TX_RINGS].rx_length_errors +=
4406 stats[i].rx_length_errors;
4407 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4408 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4409 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4410 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4411 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4412 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4413 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4414 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4415 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4416 memset(stats + i, 0, sizeof(struct net_device_stats));
4417 spin_unlock(&cp->stat_lock[i]);
4418 }
4419 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4420 return stats + N_TX_RINGS;
4421 }
4422
4423
cas_set_multicast(struct net_device * dev)4424 static void cas_set_multicast(struct net_device *dev)
4425 {
4426 struct cas *cp = netdev_priv(dev);
4427 u32 rxcfg, rxcfg_new;
4428 unsigned long flags;
4429 int limit = STOP_TRIES;
4430
4431 if (!cp->hw_running)
4432 return;
4433
4434 spin_lock_irqsave(&cp->lock, flags);
4435 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4436
4437 /* disable RX MAC and wait for completion */
4438 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4439 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4440 if (!limit--)
4441 break;
4442 udelay(10);
4443 }
4444
4445 /* disable hash filter and wait for completion */
4446 limit = STOP_TRIES;
4447 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4448 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4449 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4450 if (!limit--)
4451 break;
4452 udelay(10);
4453 }
4454
4455 /* program hash filters */
4456 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4457 rxcfg |= rxcfg_new;
4458 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4459 spin_unlock_irqrestore(&cp->lock, flags);
4460 }
4461
cas_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)4462 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4463 {
4464 struct cas *cp = netdev_priv(dev);
4465 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4466 strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4467 strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4468 }
4469
cas_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)4470 static int cas_get_link_ksettings(struct net_device *dev,
4471 struct ethtool_link_ksettings *cmd)
4472 {
4473 struct cas *cp = netdev_priv(dev);
4474 u16 bmcr;
4475 int full_duplex, speed, pause;
4476 unsigned long flags;
4477 enum link_state linkstate = link_up;
4478 u32 supported, advertising;
4479
4480 advertising = 0;
4481 supported = SUPPORTED_Autoneg;
4482 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4483 supported |= SUPPORTED_1000baseT_Full;
4484 advertising |= ADVERTISED_1000baseT_Full;
4485 }
4486
4487 /* Record PHY settings if HW is on. */
4488 spin_lock_irqsave(&cp->lock, flags);
4489 bmcr = 0;
4490 linkstate = cp->lstate;
4491 if (CAS_PHY_MII(cp->phy_type)) {
4492 cmd->base.port = PORT_MII;
4493 cmd->base.phy_address = cp->phy_addr;
4494 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4495 ADVERTISED_10baseT_Half |
4496 ADVERTISED_10baseT_Full |
4497 ADVERTISED_100baseT_Half |
4498 ADVERTISED_100baseT_Full;
4499
4500 supported |=
4501 (SUPPORTED_10baseT_Half |
4502 SUPPORTED_10baseT_Full |
4503 SUPPORTED_100baseT_Half |
4504 SUPPORTED_100baseT_Full |
4505 SUPPORTED_TP | SUPPORTED_MII);
4506
4507 if (cp->hw_running) {
4508 cas_mif_poll(cp, 0);
4509 bmcr = cas_phy_read(cp, MII_BMCR);
4510 cas_read_mii_link_mode(cp, &full_duplex,
4511 &speed, &pause);
4512 cas_mif_poll(cp, 1);
4513 }
4514
4515 } else {
4516 cmd->base.port = PORT_FIBRE;
4517 cmd->base.phy_address = 0;
4518 supported |= SUPPORTED_FIBRE;
4519 advertising |= ADVERTISED_FIBRE;
4520
4521 if (cp->hw_running) {
4522 /* pcs uses the same bits as mii */
4523 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4524 cas_read_pcs_link_mode(cp, &full_duplex,
4525 &speed, &pause);
4526 }
4527 }
4528 spin_unlock_irqrestore(&cp->lock, flags);
4529
4530 if (bmcr & BMCR_ANENABLE) {
4531 advertising |= ADVERTISED_Autoneg;
4532 cmd->base.autoneg = AUTONEG_ENABLE;
4533 cmd->base.speed = ((speed == 10) ?
4534 SPEED_10 :
4535 ((speed == 1000) ?
4536 SPEED_1000 : SPEED_100));
4537 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4538 } else {
4539 cmd->base.autoneg = AUTONEG_DISABLE;
4540 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4541 SPEED_1000 :
4542 ((bmcr & BMCR_SPEED100) ?
4543 SPEED_100 : SPEED_10));
4544 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4545 DUPLEX_FULL : DUPLEX_HALF;
4546 }
4547 if (linkstate != link_up) {
4548 /* Force these to "unknown" if the link is not up and
4549 * autonogotiation in enabled. We can set the link
4550 * speed to 0, but not cmd->duplex,
4551 * because its legal values are 0 and 1. Ethtool will
4552 * print the value reported in parentheses after the
4553 * word "Unknown" for unrecognized values.
4554 *
4555 * If in forced mode, we report the speed and duplex
4556 * settings that we configured.
4557 */
4558 if (cp->link_cntl & BMCR_ANENABLE) {
4559 cmd->base.speed = 0;
4560 cmd->base.duplex = 0xff;
4561 } else {
4562 cmd->base.speed = SPEED_10;
4563 if (cp->link_cntl & BMCR_SPEED100) {
4564 cmd->base.speed = SPEED_100;
4565 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4566 cmd->base.speed = SPEED_1000;
4567 }
4568 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4569 DUPLEX_FULL : DUPLEX_HALF;
4570 }
4571 }
4572
4573 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4574 supported);
4575 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4576 advertising);
4577
4578 return 0;
4579 }
4580
cas_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)4581 static int cas_set_link_ksettings(struct net_device *dev,
4582 const struct ethtool_link_ksettings *cmd)
4583 {
4584 struct cas *cp = netdev_priv(dev);
4585 unsigned long flags;
4586 u32 speed = cmd->base.speed;
4587
4588 /* Verify the settings we care about. */
4589 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4590 cmd->base.autoneg != AUTONEG_DISABLE)
4591 return -EINVAL;
4592
4593 if (cmd->base.autoneg == AUTONEG_DISABLE &&
4594 ((speed != SPEED_1000 &&
4595 speed != SPEED_100 &&
4596 speed != SPEED_10) ||
4597 (cmd->base.duplex != DUPLEX_HALF &&
4598 cmd->base.duplex != DUPLEX_FULL)))
4599 return -EINVAL;
4600
4601 /* Apply settings and restart link process. */
4602 spin_lock_irqsave(&cp->lock, flags);
4603 cas_begin_auto_negotiation(cp, cmd);
4604 spin_unlock_irqrestore(&cp->lock, flags);
4605 return 0;
4606 }
4607
cas_nway_reset(struct net_device * dev)4608 static int cas_nway_reset(struct net_device *dev)
4609 {
4610 struct cas *cp = netdev_priv(dev);
4611 unsigned long flags;
4612
4613 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4614 return -EINVAL;
4615
4616 /* Restart link process. */
4617 spin_lock_irqsave(&cp->lock, flags);
4618 cas_begin_auto_negotiation(cp, NULL);
4619 spin_unlock_irqrestore(&cp->lock, flags);
4620
4621 return 0;
4622 }
4623
cas_get_link(struct net_device * dev)4624 static u32 cas_get_link(struct net_device *dev)
4625 {
4626 struct cas *cp = netdev_priv(dev);
4627 return cp->lstate == link_up;
4628 }
4629
cas_get_msglevel(struct net_device * dev)4630 static u32 cas_get_msglevel(struct net_device *dev)
4631 {
4632 struct cas *cp = netdev_priv(dev);
4633 return cp->msg_enable;
4634 }
4635
cas_set_msglevel(struct net_device * dev,u32 value)4636 static void cas_set_msglevel(struct net_device *dev, u32 value)
4637 {
4638 struct cas *cp = netdev_priv(dev);
4639 cp->msg_enable = value;
4640 }
4641
cas_get_regs_len(struct net_device * dev)4642 static int cas_get_regs_len(struct net_device *dev)
4643 {
4644 struct cas *cp = netdev_priv(dev);
4645 return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4646 }
4647
cas_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)4648 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4649 void *p)
4650 {
4651 struct cas *cp = netdev_priv(dev);
4652 regs->version = 0;
4653 /* cas_read_regs handles locks (cp->lock). */
4654 cas_read_regs(cp, p, regs->len / sizeof(u32));
4655 }
4656
cas_get_sset_count(struct net_device * dev,int sset)4657 static int cas_get_sset_count(struct net_device *dev, int sset)
4658 {
4659 switch (sset) {
4660 case ETH_SS_STATS:
4661 return CAS_NUM_STAT_KEYS;
4662 default:
4663 return -EOPNOTSUPP;
4664 }
4665 }
4666
cas_get_strings(struct net_device * dev,u32 stringset,u8 * data)4667 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4668 {
4669 memcpy(data, ðtool_cassini_statnames,
4670 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4671 }
4672
cas_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * data)4673 static void cas_get_ethtool_stats(struct net_device *dev,
4674 struct ethtool_stats *estats, u64 *data)
4675 {
4676 struct cas *cp = netdev_priv(dev);
4677 struct net_device_stats *stats = cas_get_stats(cp->dev);
4678 int i = 0;
4679 data[i++] = stats->collisions;
4680 data[i++] = stats->rx_bytes;
4681 data[i++] = stats->rx_crc_errors;
4682 data[i++] = stats->rx_dropped;
4683 data[i++] = stats->rx_errors;
4684 data[i++] = stats->rx_fifo_errors;
4685 data[i++] = stats->rx_frame_errors;
4686 data[i++] = stats->rx_length_errors;
4687 data[i++] = stats->rx_over_errors;
4688 data[i++] = stats->rx_packets;
4689 data[i++] = stats->tx_aborted_errors;
4690 data[i++] = stats->tx_bytes;
4691 data[i++] = stats->tx_dropped;
4692 data[i++] = stats->tx_errors;
4693 data[i++] = stats->tx_fifo_errors;
4694 data[i++] = stats->tx_packets;
4695 BUG_ON(i != CAS_NUM_STAT_KEYS);
4696 }
4697
4698 static const struct ethtool_ops cas_ethtool_ops = {
4699 .get_drvinfo = cas_get_drvinfo,
4700 .nway_reset = cas_nway_reset,
4701 .get_link = cas_get_link,
4702 .get_msglevel = cas_get_msglevel,
4703 .set_msglevel = cas_set_msglevel,
4704 .get_regs_len = cas_get_regs_len,
4705 .get_regs = cas_get_regs,
4706 .get_sset_count = cas_get_sset_count,
4707 .get_strings = cas_get_strings,
4708 .get_ethtool_stats = cas_get_ethtool_stats,
4709 .get_link_ksettings = cas_get_link_ksettings,
4710 .set_link_ksettings = cas_set_link_ksettings,
4711 };
4712
cas_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4713 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4714 {
4715 struct cas *cp = netdev_priv(dev);
4716 struct mii_ioctl_data *data = if_mii(ifr);
4717 unsigned long flags;
4718 int rc = -EOPNOTSUPP;
4719
4720 /* Hold the PM mutex while doing ioctl's or we may collide
4721 * with open/close and power management and oops.
4722 */
4723 mutex_lock(&cp->pm_mutex);
4724 switch (cmd) {
4725 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4726 data->phy_id = cp->phy_addr;
4727 fallthrough;
4728
4729 case SIOCGMIIREG: /* Read MII PHY register. */
4730 spin_lock_irqsave(&cp->lock, flags);
4731 cas_mif_poll(cp, 0);
4732 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4733 cas_mif_poll(cp, 1);
4734 spin_unlock_irqrestore(&cp->lock, flags);
4735 rc = 0;
4736 break;
4737
4738 case SIOCSMIIREG: /* Write MII PHY register. */
4739 spin_lock_irqsave(&cp->lock, flags);
4740 cas_mif_poll(cp, 0);
4741 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4742 cas_mif_poll(cp, 1);
4743 spin_unlock_irqrestore(&cp->lock, flags);
4744 break;
4745 default:
4746 break;
4747 }
4748
4749 mutex_unlock(&cp->pm_mutex);
4750 return rc;
4751 }
4752
4753 /* When this chip sits underneath an Intel 31154 bridge, it is the
4754 * only subordinate device and we can tweak the bridge settings to
4755 * reflect that fact.
4756 */
cas_program_bridge(struct pci_dev * cas_pdev)4757 static void cas_program_bridge(struct pci_dev *cas_pdev)
4758 {
4759 struct pci_dev *pdev = cas_pdev->bus->self;
4760 u32 val;
4761
4762 if (!pdev)
4763 return;
4764
4765 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4766 return;
4767
4768 /* Clear bit 10 (Bus Parking Control) in the Secondary
4769 * Arbiter Control/Status Register which lives at offset
4770 * 0x41. Using a 32-bit word read/modify/write at 0x40
4771 * is much simpler so that's how we do this.
4772 */
4773 pci_read_config_dword(pdev, 0x40, &val);
4774 val &= ~0x00040000;
4775 pci_write_config_dword(pdev, 0x40, val);
4776
4777 /* Max out the Multi-Transaction Timer settings since
4778 * Cassini is the only device present.
4779 *
4780 * The register is 16-bit and lives at 0x50. When the
4781 * settings are enabled, it extends the GRANT# signal
4782 * for a requestor after a transaction is complete. This
4783 * allows the next request to run without first needing
4784 * to negotiate the GRANT# signal back.
4785 *
4786 * Bits 12:10 define the grant duration:
4787 *
4788 * 1 -- 16 clocks
4789 * 2 -- 32 clocks
4790 * 3 -- 64 clocks
4791 * 4 -- 128 clocks
4792 * 5 -- 256 clocks
4793 *
4794 * All other values are illegal.
4795 *
4796 * Bits 09:00 define which REQ/GNT signal pairs get the
4797 * GRANT# signal treatment. We set them all.
4798 */
4799 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4800
4801 /* The Read Prefecth Policy register is 16-bit and sits at
4802 * offset 0x52. It enables a "smart" pre-fetch policy. We
4803 * enable it and max out all of the settings since only one
4804 * device is sitting underneath and thus bandwidth sharing is
4805 * not an issue.
4806 *
4807 * The register has several 3 bit fields, which indicates a
4808 * multiplier applied to the base amount of prefetching the
4809 * chip would do. These fields are at:
4810 *
4811 * 15:13 --- ReRead Primary Bus
4812 * 12:10 --- FirstRead Primary Bus
4813 * 09:07 --- ReRead Secondary Bus
4814 * 06:04 --- FirstRead Secondary Bus
4815 *
4816 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4817 * get enabled on. Bit 3 is a grouped enabler which controls
4818 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4819 * the individual REQ/GNT pairs [2:0].
4820 */
4821 pci_write_config_word(pdev, 0x52,
4822 (0x7 << 13) |
4823 (0x7 << 10) |
4824 (0x7 << 7) |
4825 (0x7 << 4) |
4826 (0xf << 0));
4827
4828 /* Force cacheline size to 0x8 */
4829 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4830
4831 /* Force latency timer to maximum setting so Cassini can
4832 * sit on the bus as long as it likes.
4833 */
4834 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4835 }
4836
4837 static const struct net_device_ops cas_netdev_ops = {
4838 .ndo_open = cas_open,
4839 .ndo_stop = cas_close,
4840 .ndo_start_xmit = cas_start_xmit,
4841 .ndo_get_stats = cas_get_stats,
4842 .ndo_set_rx_mode = cas_set_multicast,
4843 .ndo_eth_ioctl = cas_ioctl,
4844 .ndo_tx_timeout = cas_tx_timeout,
4845 .ndo_change_mtu = cas_change_mtu,
4846 .ndo_set_mac_address = eth_mac_addr,
4847 .ndo_validate_addr = eth_validate_addr,
4848 #ifdef CONFIG_NET_POLL_CONTROLLER
4849 .ndo_poll_controller = cas_netpoll,
4850 #endif
4851 };
4852
cas_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4853 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4854 {
4855 static int cas_version_printed = 0;
4856 unsigned long casreg_len;
4857 struct net_device *dev;
4858 struct cas *cp;
4859 u16 pci_cmd;
4860 int i, err;
4861 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4862
4863 if (cas_version_printed++ == 0)
4864 pr_info("%s", version);
4865
4866 err = pci_enable_device(pdev);
4867 if (err) {
4868 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4869 return err;
4870 }
4871
4872 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4873 dev_err(&pdev->dev, "Cannot find proper PCI device "
4874 "base address, aborting\n");
4875 err = -ENODEV;
4876 goto err_out_disable_pdev;
4877 }
4878
4879 dev = alloc_etherdev(sizeof(*cp));
4880 if (!dev) {
4881 err = -ENOMEM;
4882 goto err_out_disable_pdev;
4883 }
4884 SET_NETDEV_DEV(dev, &pdev->dev);
4885
4886 err = pci_request_regions(pdev, dev->name);
4887 if (err) {
4888 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4889 goto err_out_free_netdev;
4890 }
4891 pci_set_master(pdev);
4892
4893 /* we must always turn on parity response or else parity
4894 * doesn't get generated properly. disable SERR/PERR as well.
4895 * in addition, we want to turn MWI on.
4896 */
4897 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4898 pci_cmd &= ~PCI_COMMAND_SERR;
4899 pci_cmd |= PCI_COMMAND_PARITY;
4900 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4901 if (pci_try_set_mwi(pdev))
4902 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4903
4904 cas_program_bridge(pdev);
4905
4906 /*
4907 * On some architectures, the default cache line size set
4908 * by pci_try_set_mwi reduces perforamnce. We have to increase
4909 * it for this case. To start, we'll print some configuration
4910 * data.
4911 */
4912 #if 1
4913 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4914 &orig_cacheline_size);
4915 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4916 cas_cacheline_size =
4917 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4918 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4919 if (pci_write_config_byte(pdev,
4920 PCI_CACHE_LINE_SIZE,
4921 cas_cacheline_size)) {
4922 dev_err(&pdev->dev, "Could not set PCI cache "
4923 "line size\n");
4924 goto err_out_free_res;
4925 }
4926 }
4927 #endif
4928
4929
4930 /* Configure DMA attributes. */
4931 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4932 if (err) {
4933 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4934 goto err_out_free_res;
4935 }
4936
4937 casreg_len = pci_resource_len(pdev, 0);
4938
4939 cp = netdev_priv(dev);
4940 cp->pdev = pdev;
4941 #if 1
4942 /* A value of 0 indicates we never explicitly set it */
4943 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4944 #endif
4945 cp->dev = dev;
4946 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4947 cassini_debug;
4948
4949 #if defined(CONFIG_SPARC)
4950 cp->of_node = pci_device_to_OF_node(pdev);
4951 #endif
4952
4953 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4954 cp->link_transition_jiffies_valid = 0;
4955
4956 spin_lock_init(&cp->lock);
4957 spin_lock_init(&cp->rx_inuse_lock);
4958 spin_lock_init(&cp->rx_spare_lock);
4959 for (i = 0; i < N_TX_RINGS; i++) {
4960 spin_lock_init(&cp->stat_lock[i]);
4961 spin_lock_init(&cp->tx_lock[i]);
4962 }
4963 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4964 mutex_init(&cp->pm_mutex);
4965
4966 timer_setup(&cp->link_timer, cas_link_timer, 0);
4967
4968 #if 1
4969 /* Just in case the implementation of atomic operations
4970 * change so that an explicit initialization is necessary.
4971 */
4972 atomic_set(&cp->reset_task_pending, 0);
4973 atomic_set(&cp->reset_task_pending_all, 0);
4974 atomic_set(&cp->reset_task_pending_spare, 0);
4975 atomic_set(&cp->reset_task_pending_mtu, 0);
4976 #endif
4977 INIT_WORK(&cp->reset_task, cas_reset_task);
4978
4979 /* Default link parameters */
4980 if (link_mode >= 0 && link_mode < 6)
4981 cp->link_cntl = link_modes[link_mode];
4982 else
4983 cp->link_cntl = BMCR_ANENABLE;
4984 cp->lstate = link_down;
4985 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4986 netif_carrier_off(cp->dev);
4987 cp->timer_ticks = 0;
4988
4989 /* give us access to cassini registers */
4990 cp->regs = pci_iomap(pdev, 0, casreg_len);
4991 if (!cp->regs) {
4992 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4993 goto err_out_free_res;
4994 }
4995 cp->casreg_len = casreg_len;
4996
4997 pci_save_state(pdev);
4998 cas_check_pci_invariants(cp);
4999 cas_hard_reset(cp);
5000 cas_reset(cp, 0);
5001 if (cas_check_invariants(cp))
5002 goto err_out_iounmap;
5003 if (cp->cas_flags & CAS_FLAG_SATURN)
5004 cas_saturn_firmware_init(cp);
5005
5006 cp->init_block =
5007 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5008 &cp->block_dvma, GFP_KERNEL);
5009 if (!cp->init_block) {
5010 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5011 goto err_out_iounmap;
5012 }
5013
5014 for (i = 0; i < N_TX_RINGS; i++)
5015 cp->init_txds[i] = cp->init_block->txds[i];
5016
5017 for (i = 0; i < N_RX_DESC_RINGS; i++)
5018 cp->init_rxds[i] = cp->init_block->rxds[i];
5019
5020 for (i = 0; i < N_RX_COMP_RINGS; i++)
5021 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5022
5023 for (i = 0; i < N_RX_FLOWS; i++)
5024 skb_queue_head_init(&cp->rx_flows[i]);
5025
5026 dev->netdev_ops = &cas_netdev_ops;
5027 dev->ethtool_ops = &cas_ethtool_ops;
5028 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5029
5030 #ifdef USE_NAPI
5031 netif_napi_add(dev, &cp->napi, cas_poll);
5032 #endif
5033 dev->irq = pdev->irq;
5034 dev->dma = 0;
5035
5036 /* Cassini features. */
5037 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5038 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5039
5040 dev->features |= NETIF_F_HIGHDMA;
5041
5042 /* MTU range: 60 - varies or 9000 */
5043 dev->min_mtu = CAS_MIN_MTU;
5044 dev->max_mtu = CAS_MAX_MTU;
5045
5046 if (register_netdev(dev)) {
5047 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5048 goto err_out_free_consistent;
5049 }
5050
5051 i = readl(cp->regs + REG_BIM_CFG);
5052 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5053 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5054 (i & BIM_CFG_32BIT) ? "32" : "64",
5055 (i & BIM_CFG_66MHZ) ? "66" : "33",
5056 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5057 dev->dev_addr);
5058
5059 pci_set_drvdata(pdev, dev);
5060 cp->hw_running = 1;
5061 cas_entropy_reset(cp);
5062 cas_phy_init(cp);
5063 cas_begin_auto_negotiation(cp, NULL);
5064 return 0;
5065
5066 err_out_free_consistent:
5067 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5068 cp->init_block, cp->block_dvma);
5069
5070 err_out_iounmap:
5071 mutex_lock(&cp->pm_mutex);
5072 if (cp->hw_running)
5073 cas_shutdown(cp);
5074 mutex_unlock(&cp->pm_mutex);
5075
5076 vfree(cp->fw_data);
5077
5078 pci_iounmap(pdev, cp->regs);
5079
5080
5081 err_out_free_res:
5082 pci_release_regions(pdev);
5083
5084 /* Try to restore it in case the error occurred after we
5085 * set it.
5086 */
5087 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5088
5089 err_out_free_netdev:
5090 free_netdev(dev);
5091
5092 err_out_disable_pdev:
5093 pci_disable_device(pdev);
5094 return -ENODEV;
5095 }
5096
cas_remove_one(struct pci_dev * pdev)5097 static void cas_remove_one(struct pci_dev *pdev)
5098 {
5099 struct net_device *dev = pci_get_drvdata(pdev);
5100 struct cas *cp;
5101 if (!dev)
5102 return;
5103
5104 cp = netdev_priv(dev);
5105 unregister_netdev(dev);
5106
5107 vfree(cp->fw_data);
5108
5109 mutex_lock(&cp->pm_mutex);
5110 cancel_work_sync(&cp->reset_task);
5111 if (cp->hw_running)
5112 cas_shutdown(cp);
5113 mutex_unlock(&cp->pm_mutex);
5114
5115 #if 1
5116 if (cp->orig_cacheline_size) {
5117 /* Restore the cache line size if we had modified
5118 * it.
5119 */
5120 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5121 cp->orig_cacheline_size);
5122 }
5123 #endif
5124 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5125 cp->init_block, cp->block_dvma);
5126 pci_iounmap(pdev, cp->regs);
5127 free_netdev(dev);
5128 pci_release_regions(pdev);
5129 pci_disable_device(pdev);
5130 }
5131
cas_suspend(struct device * dev_d)5132 static int __maybe_unused cas_suspend(struct device *dev_d)
5133 {
5134 struct net_device *dev = dev_get_drvdata(dev_d);
5135 struct cas *cp = netdev_priv(dev);
5136 unsigned long flags;
5137
5138 mutex_lock(&cp->pm_mutex);
5139
5140 /* If the driver is opened, we stop the DMA */
5141 if (cp->opened) {
5142 netif_device_detach(dev);
5143
5144 cas_lock_all_save(cp, flags);
5145
5146 /* We can set the second arg of cas_reset to 0
5147 * because on resume, we'll call cas_init_hw with
5148 * its second arg set so that autonegotiation is
5149 * restarted.
5150 */
5151 cas_reset(cp, 0);
5152 cas_clean_rings(cp);
5153 cas_unlock_all_restore(cp, flags);
5154 }
5155
5156 if (cp->hw_running)
5157 cas_shutdown(cp);
5158 mutex_unlock(&cp->pm_mutex);
5159
5160 return 0;
5161 }
5162
cas_resume(struct device * dev_d)5163 static int __maybe_unused cas_resume(struct device *dev_d)
5164 {
5165 struct net_device *dev = dev_get_drvdata(dev_d);
5166 struct cas *cp = netdev_priv(dev);
5167
5168 netdev_info(dev, "resuming\n");
5169
5170 mutex_lock(&cp->pm_mutex);
5171 cas_hard_reset(cp);
5172 if (cp->opened) {
5173 unsigned long flags;
5174 cas_lock_all_save(cp, flags);
5175 cas_reset(cp, 0);
5176 cp->hw_running = 1;
5177 cas_clean_rings(cp);
5178 cas_init_hw(cp, 1);
5179 cas_unlock_all_restore(cp, flags);
5180
5181 netif_device_attach(dev);
5182 }
5183 mutex_unlock(&cp->pm_mutex);
5184 return 0;
5185 }
5186
5187 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5188
5189 static struct pci_driver cas_driver = {
5190 .name = DRV_MODULE_NAME,
5191 .id_table = cas_pci_tbl,
5192 .probe = cas_init_one,
5193 .remove = cas_remove_one,
5194 .driver.pm = &cas_pm_ops,
5195 };
5196
cas_init(void)5197 static int __init cas_init(void)
5198 {
5199 if (linkdown_timeout > 0)
5200 link_transition_timeout = linkdown_timeout * HZ;
5201 else
5202 link_transition_timeout = 0;
5203
5204 return pci_register_driver(&cas_driver);
5205 }
5206
cas_cleanup(void)5207 static void __exit cas_cleanup(void)
5208 {
5209 pci_unregister_driver(&cas_driver);
5210 }
5211
5212 module_init(cas_init);
5213 module_exit(cas_cleanup);
5214