xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_tc.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * Copyright (c) 2018 Synopsys, Inc. and/or its affiliates.
4  * stmmac TC Handling (HW only)
5  */
6 
7 #include <net/pkt_cls.h>
8 #include <net/tc_act/tc_gact.h>
9 #include "common.h"
10 #include "dwmac4.h"
11 #include "dwmac5.h"
12 #include "stmmac.h"
13 
14 static void tc_fill_all_pass_entry(struct stmmac_tc_entry *entry)
15 {
16 	memset(entry, 0, sizeof(*entry));
17 	entry->in_use = true;
18 	entry->is_last = true;
19 	entry->is_frag = false;
20 	entry->prio = ~0x0;
21 	entry->handle = 0;
22 	entry->val.match_data = 0x0;
23 	entry->val.match_en = 0x0;
24 	entry->val.af = 1;
25 	entry->val.dma_ch_no = 0x0;
26 }
27 
28 static struct stmmac_tc_entry *tc_find_entry(struct stmmac_priv *priv,
29 					     struct tc_cls_u32_offload *cls,
30 					     bool free)
31 {
32 	struct stmmac_tc_entry *entry, *first = NULL, *dup = NULL;
33 	u32 loc = cls->knode.handle;
34 	int i;
35 
36 	for (i = 0; i < priv->tc_entries_max; i++) {
37 		entry = &priv->tc_entries[i];
38 		if (!entry->in_use && !first && free)
39 			first = entry;
40 		if ((entry->handle == loc) && !free && !entry->is_frag)
41 			dup = entry;
42 	}
43 
44 	if (dup)
45 		return dup;
46 	if (first) {
47 		first->handle = loc;
48 		first->in_use = true;
49 
50 		/* Reset HW values */
51 		memset(&first->val, 0, sizeof(first->val));
52 	}
53 
54 	return first;
55 }
56 
57 static int tc_fill_actions(struct stmmac_tc_entry *entry,
58 			   struct stmmac_tc_entry *frag,
59 			   struct tc_cls_u32_offload *cls)
60 {
61 	struct stmmac_tc_entry *action_entry = entry;
62 	const struct tc_action *act;
63 	struct tcf_exts *exts;
64 	int i;
65 
66 	exts = cls->knode.exts;
67 	if (!tcf_exts_has_actions(exts))
68 		return -EINVAL;
69 	if (frag)
70 		action_entry = frag;
71 
72 	tcf_exts_for_each_action(i, act, exts) {
73 		/* Accept */
74 		if (is_tcf_gact_ok(act)) {
75 			action_entry->val.af = 1;
76 			break;
77 		}
78 		/* Drop */
79 		if (is_tcf_gact_shot(act)) {
80 			action_entry->val.rf = 1;
81 			break;
82 		}
83 
84 		/* Unsupported */
85 		return -EINVAL;
86 	}
87 
88 	return 0;
89 }
90 
91 static int tc_fill_entry(struct stmmac_priv *priv,
92 			 struct tc_cls_u32_offload *cls)
93 {
94 	struct stmmac_tc_entry *entry, *frag = NULL;
95 	struct tc_u32_sel *sel = cls->knode.sel;
96 	u32 off, data, mask, real_off, rem;
97 	u32 prio = cls->common.prio << 16;
98 	int ret;
99 
100 	/* Only 1 match per entry */
101 	if (sel->nkeys <= 0 || sel->nkeys > 1)
102 		return -EINVAL;
103 
104 	off = sel->keys[0].off << sel->offshift;
105 	data = sel->keys[0].val;
106 	mask = sel->keys[0].mask;
107 
108 	switch (ntohs(cls->common.protocol)) {
109 	case ETH_P_ALL:
110 		break;
111 	case ETH_P_IP:
112 		off += ETH_HLEN;
113 		break;
114 	default:
115 		return -EINVAL;
116 	}
117 
118 	if (off > priv->tc_off_max)
119 		return -EINVAL;
120 
121 	real_off = off / 4;
122 	rem = off % 4;
123 
124 	entry = tc_find_entry(priv, cls, true);
125 	if (!entry)
126 		return -EINVAL;
127 
128 	if (rem) {
129 		frag = tc_find_entry(priv, cls, true);
130 		if (!frag) {
131 			ret = -EINVAL;
132 			goto err_unuse;
133 		}
134 
135 		entry->frag_ptr = frag;
136 		entry->val.match_en = (mask << (rem * 8)) &
137 			GENMASK(31, rem * 8);
138 		entry->val.match_data = (data << (rem * 8)) &
139 			GENMASK(31, rem * 8);
140 		entry->val.frame_offset = real_off;
141 		entry->prio = prio;
142 
143 		frag->val.match_en = (mask >> (rem * 8)) &
144 			GENMASK(rem * 8 - 1, 0);
145 		frag->val.match_data = (data >> (rem * 8)) &
146 			GENMASK(rem * 8 - 1, 0);
147 		frag->val.frame_offset = real_off + 1;
148 		frag->prio = prio;
149 		frag->is_frag = true;
150 	} else {
151 		entry->frag_ptr = NULL;
152 		entry->val.match_en = mask;
153 		entry->val.match_data = data;
154 		entry->val.frame_offset = real_off;
155 		entry->prio = prio;
156 	}
157 
158 	ret = tc_fill_actions(entry, frag, cls);
159 	if (ret)
160 		goto err_unuse;
161 
162 	return 0;
163 
164 err_unuse:
165 	if (frag)
166 		frag->in_use = false;
167 	entry->in_use = false;
168 	return ret;
169 }
170 
171 static void tc_unfill_entry(struct stmmac_priv *priv,
172 			    struct tc_cls_u32_offload *cls)
173 {
174 	struct stmmac_tc_entry *entry;
175 
176 	entry = tc_find_entry(priv, cls, false);
177 	if (!entry)
178 		return;
179 
180 	entry->in_use = false;
181 	if (entry->frag_ptr) {
182 		entry = entry->frag_ptr;
183 		entry->is_frag = false;
184 		entry->in_use = false;
185 	}
186 }
187 
188 static int tc_config_knode(struct stmmac_priv *priv,
189 			   struct tc_cls_u32_offload *cls)
190 {
191 	int ret;
192 
193 	ret = tc_fill_entry(priv, cls);
194 	if (ret)
195 		return ret;
196 
197 	ret = stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
198 			priv->tc_entries_max);
199 	if (ret)
200 		goto err_unfill;
201 
202 	return 0;
203 
204 err_unfill:
205 	tc_unfill_entry(priv, cls);
206 	return ret;
207 }
208 
209 static int tc_delete_knode(struct stmmac_priv *priv,
210 			   struct tc_cls_u32_offload *cls)
211 {
212 	/* Set entry and fragments as not used */
213 	tc_unfill_entry(priv, cls);
214 
215 	return stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
216 				 priv->tc_entries_max);
217 }
218 
219 static int tc_setup_cls_u32(struct stmmac_priv *priv,
220 			    struct tc_cls_u32_offload *cls)
221 {
222 	switch (cls->command) {
223 	case TC_CLSU32_REPLACE_KNODE:
224 		tc_unfill_entry(priv, cls);
225 		fallthrough;
226 	case TC_CLSU32_NEW_KNODE:
227 		return tc_config_knode(priv, cls);
228 	case TC_CLSU32_DELETE_KNODE:
229 		return tc_delete_knode(priv, cls);
230 	default:
231 		return -EOPNOTSUPP;
232 	}
233 }
234 
235 static int tc_rfs_init(struct stmmac_priv *priv)
236 {
237 	int i;
238 
239 	priv->rfs_entries_max[STMMAC_RFS_T_VLAN] = 8;
240 
241 	for (i = 0; i < STMMAC_RFS_T_MAX; i++)
242 		priv->rfs_entries_total += priv->rfs_entries_max[i];
243 
244 	priv->rfs_entries = devm_kcalloc(priv->device,
245 					 priv->rfs_entries_total,
246 					 sizeof(*priv->rfs_entries),
247 					 GFP_KERNEL);
248 	if (!priv->rfs_entries)
249 		return -ENOMEM;
250 
251 	dev_info(priv->device, "Enabled RFS Flow TC (entries=%d)\n",
252 		 priv->rfs_entries_total);
253 
254 	return 0;
255 }
256 
257 static int tc_init(struct stmmac_priv *priv)
258 {
259 	struct dma_features *dma_cap = &priv->dma_cap;
260 	unsigned int count;
261 	int ret, i;
262 
263 	if (dma_cap->l3l4fnum) {
264 		priv->flow_entries_max = dma_cap->l3l4fnum;
265 		priv->flow_entries = devm_kcalloc(priv->device,
266 						  dma_cap->l3l4fnum,
267 						  sizeof(*priv->flow_entries),
268 						  GFP_KERNEL);
269 		if (!priv->flow_entries)
270 			return -ENOMEM;
271 
272 		for (i = 0; i < priv->flow_entries_max; i++)
273 			priv->flow_entries[i].idx = i;
274 
275 		dev_info(priv->device, "Enabled L3L4 Flow TC (entries=%d)\n",
276 			 priv->flow_entries_max);
277 	}
278 
279 	ret = tc_rfs_init(priv);
280 	if (ret)
281 		return -ENOMEM;
282 
283 	if (!priv->plat->fpe_cfg) {
284 		priv->plat->fpe_cfg = devm_kzalloc(priv->device,
285 						   sizeof(*priv->plat->fpe_cfg),
286 						   GFP_KERNEL);
287 		if (!priv->plat->fpe_cfg)
288 			return -ENOMEM;
289 	} else {
290 		memset(priv->plat->fpe_cfg, 0, sizeof(*priv->plat->fpe_cfg));
291 	}
292 
293 	/* Fail silently as we can still use remaining features, e.g. CBS */
294 	if (!dma_cap->frpsel)
295 		return 0;
296 
297 	switch (dma_cap->frpbs) {
298 	case 0x0:
299 		priv->tc_off_max = 64;
300 		break;
301 	case 0x1:
302 		priv->tc_off_max = 128;
303 		break;
304 	case 0x2:
305 		priv->tc_off_max = 256;
306 		break;
307 	default:
308 		return -EINVAL;
309 	}
310 
311 	switch (dma_cap->frpes) {
312 	case 0x0:
313 		count = 64;
314 		break;
315 	case 0x1:
316 		count = 128;
317 		break;
318 	case 0x2:
319 		count = 256;
320 		break;
321 	default:
322 		return -EINVAL;
323 	}
324 
325 	/* Reserve one last filter which lets all pass */
326 	priv->tc_entries_max = count;
327 	priv->tc_entries = devm_kcalloc(priv->device,
328 			count, sizeof(*priv->tc_entries), GFP_KERNEL);
329 	if (!priv->tc_entries)
330 		return -ENOMEM;
331 
332 	tc_fill_all_pass_entry(&priv->tc_entries[count - 1]);
333 
334 	dev_info(priv->device, "Enabling HW TC (entries=%d, max_off=%d)\n",
335 			priv->tc_entries_max, priv->tc_off_max);
336 
337 	return 0;
338 }
339 
340 static int tc_setup_cbs(struct stmmac_priv *priv,
341 			struct tc_cbs_qopt_offload *qopt)
342 {
343 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
344 	u32 queue = qopt->queue;
345 	u32 ptr, speed_div;
346 	u32 mode_to_use;
347 	u64 value;
348 	int ret;
349 
350 	/* Queue 0 is not AVB capable */
351 	if (queue <= 0 || queue >= tx_queues_count)
352 		return -EINVAL;
353 	if (!priv->dma_cap.av)
354 		return -EOPNOTSUPP;
355 
356 	/* Port Transmit Rate and Speed Divider */
357 	switch (priv->speed) {
358 	case SPEED_10000:
359 		ptr = 32;
360 		speed_div = 10000000;
361 		break;
362 	case SPEED_5000:
363 		ptr = 32;
364 		speed_div = 5000000;
365 		break;
366 	case SPEED_2500:
367 		ptr = 8;
368 		speed_div = 2500000;
369 		break;
370 	case SPEED_1000:
371 		ptr = 8;
372 		speed_div = 1000000;
373 		break;
374 	case SPEED_100:
375 		ptr = 4;
376 		speed_div = 100000;
377 		break;
378 	default:
379 		return -EOPNOTSUPP;
380 	}
381 
382 	mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
383 	if (mode_to_use == MTL_QUEUE_DCB && qopt->enable) {
384 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_AVB);
385 		if (ret)
386 			return ret;
387 
388 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB;
389 	} else if (!qopt->enable) {
390 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue,
391 				       MTL_QUEUE_DCB);
392 		if (ret)
393 			return ret;
394 
395 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB;
396 	}
397 
398 	/* Final adjustments for HW */
399 	value = div_s64(qopt->idleslope * 1024ll * ptr, speed_div);
400 	priv->plat->tx_queues_cfg[queue].idle_slope = value & GENMASK(31, 0);
401 
402 	value = div_s64(-qopt->sendslope * 1024ll * ptr, speed_div);
403 	priv->plat->tx_queues_cfg[queue].send_slope = value & GENMASK(31, 0);
404 
405 	value = qopt->hicredit * 1024ll * 8;
406 	priv->plat->tx_queues_cfg[queue].high_credit = value & GENMASK(31, 0);
407 
408 	value = qopt->locredit * 1024ll * 8;
409 	priv->plat->tx_queues_cfg[queue].low_credit = value & GENMASK(31, 0);
410 
411 	ret = stmmac_config_cbs(priv, priv->hw,
412 				priv->plat->tx_queues_cfg[queue].send_slope,
413 				priv->plat->tx_queues_cfg[queue].idle_slope,
414 				priv->plat->tx_queues_cfg[queue].high_credit,
415 				priv->plat->tx_queues_cfg[queue].low_credit,
416 				queue);
417 	if (ret)
418 		return ret;
419 
420 	dev_info(priv->device, "CBS queue %d: send %d, idle %d, hi %d, lo %d\n",
421 			queue, qopt->sendslope, qopt->idleslope,
422 			qopt->hicredit, qopt->locredit);
423 	return 0;
424 }
425 
426 static int tc_parse_flow_actions(struct stmmac_priv *priv,
427 				 struct flow_action *action,
428 				 struct stmmac_flow_entry *entry,
429 				 struct netlink_ext_ack *extack)
430 {
431 	struct flow_action_entry *act;
432 	int i;
433 
434 	if (!flow_action_has_entries(action))
435 		return -EINVAL;
436 
437 	if (!flow_action_basic_hw_stats_check(action, extack))
438 		return -EOPNOTSUPP;
439 
440 	flow_action_for_each(i, act, action) {
441 		switch (act->id) {
442 		case FLOW_ACTION_DROP:
443 			entry->action |= STMMAC_FLOW_ACTION_DROP;
444 			return 0;
445 		default:
446 			break;
447 		}
448 	}
449 
450 	/* Nothing to do, maybe inverse filter ? */
451 	return 0;
452 }
453 
454 static int tc_add_basic_flow(struct stmmac_priv *priv,
455 			     struct flow_cls_offload *cls,
456 			     struct stmmac_flow_entry *entry)
457 {
458 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
459 	struct flow_dissector *dissector = rule->match.dissector;
460 	struct flow_match_basic match;
461 
462 	/* Nothing to do here */
463 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
464 		return -EINVAL;
465 
466 	flow_rule_match_basic(rule, &match);
467 	entry->ip_proto = match.key->ip_proto;
468 	return 0;
469 }
470 
471 static int tc_add_ip4_flow(struct stmmac_priv *priv,
472 			   struct flow_cls_offload *cls,
473 			   struct stmmac_flow_entry *entry)
474 {
475 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
476 	struct flow_dissector *dissector = rule->match.dissector;
477 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
478 	struct flow_match_ipv4_addrs match;
479 	u32 hw_match;
480 	int ret;
481 
482 	/* Nothing to do here */
483 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS))
484 		return -EINVAL;
485 
486 	flow_rule_match_ipv4_addrs(rule, &match);
487 	hw_match = ntohl(match.key->src) & ntohl(match.mask->src);
488 	if (hw_match) {
489 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
490 					      false, true, inv, hw_match);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	hw_match = ntohl(match.key->dst) & ntohl(match.mask->dst);
496 	if (hw_match) {
497 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
498 					      false, false, inv, hw_match);
499 		if (ret)
500 			return ret;
501 	}
502 
503 	return 0;
504 }
505 
506 static int tc_add_ports_flow(struct stmmac_priv *priv,
507 			     struct flow_cls_offload *cls,
508 			     struct stmmac_flow_entry *entry)
509 {
510 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
511 	struct flow_dissector *dissector = rule->match.dissector;
512 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
513 	struct flow_match_ports match;
514 	u32 hw_match;
515 	bool is_udp;
516 	int ret;
517 
518 	/* Nothing to do here */
519 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS))
520 		return -EINVAL;
521 
522 	switch (entry->ip_proto) {
523 	case IPPROTO_TCP:
524 		is_udp = false;
525 		break;
526 	case IPPROTO_UDP:
527 		is_udp = true;
528 		break;
529 	default:
530 		return -EINVAL;
531 	}
532 
533 	flow_rule_match_ports(rule, &match);
534 
535 	hw_match = ntohs(match.key->src) & ntohs(match.mask->src);
536 	if (hw_match) {
537 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
538 					      is_udp, true, inv, hw_match);
539 		if (ret)
540 			return ret;
541 	}
542 
543 	hw_match = ntohs(match.key->dst) & ntohs(match.mask->dst);
544 	if (hw_match) {
545 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
546 					      is_udp, false, inv, hw_match);
547 		if (ret)
548 			return ret;
549 	}
550 
551 	entry->is_l4 = true;
552 	return 0;
553 }
554 
555 static struct stmmac_flow_entry *tc_find_flow(struct stmmac_priv *priv,
556 					      struct flow_cls_offload *cls,
557 					      bool get_free)
558 {
559 	int i;
560 
561 	for (i = 0; i < priv->flow_entries_max; i++) {
562 		struct stmmac_flow_entry *entry = &priv->flow_entries[i];
563 
564 		if (entry->cookie == cls->cookie)
565 			return entry;
566 		if (get_free && (entry->in_use == false))
567 			return entry;
568 	}
569 
570 	return NULL;
571 }
572 
573 static struct {
574 	int (*fn)(struct stmmac_priv *priv, struct flow_cls_offload *cls,
575 		  struct stmmac_flow_entry *entry);
576 } tc_flow_parsers[] = {
577 	{ .fn = tc_add_basic_flow },
578 	{ .fn = tc_add_ip4_flow },
579 	{ .fn = tc_add_ports_flow },
580 };
581 
582 static int tc_add_flow(struct stmmac_priv *priv,
583 		       struct flow_cls_offload *cls)
584 {
585 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
586 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
587 	int i, ret;
588 
589 	if (!entry) {
590 		entry = tc_find_flow(priv, cls, true);
591 		if (!entry)
592 			return -ENOENT;
593 	}
594 
595 	ret = tc_parse_flow_actions(priv, &rule->action, entry,
596 				    cls->common.extack);
597 	if (ret)
598 		return ret;
599 
600 	for (i = 0; i < ARRAY_SIZE(tc_flow_parsers); i++) {
601 		ret = tc_flow_parsers[i].fn(priv, cls, entry);
602 		if (!ret)
603 			entry->in_use = true;
604 	}
605 
606 	if (!entry->in_use)
607 		return -EINVAL;
608 
609 	entry->cookie = cls->cookie;
610 	return 0;
611 }
612 
613 static int tc_del_flow(struct stmmac_priv *priv,
614 		       struct flow_cls_offload *cls)
615 {
616 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
617 	int ret;
618 
619 	if (!entry || !entry->in_use)
620 		return -ENOENT;
621 
622 	if (entry->is_l4) {
623 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, false,
624 					      false, false, false, 0);
625 	} else {
626 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, false,
627 					      false, false, false, 0);
628 	}
629 
630 	entry->in_use = false;
631 	entry->cookie = 0;
632 	entry->is_l4 = false;
633 	return ret;
634 }
635 
636 static struct stmmac_rfs_entry *tc_find_rfs(struct stmmac_priv *priv,
637 					    struct flow_cls_offload *cls,
638 					    bool get_free)
639 {
640 	int i;
641 
642 	for (i = 0; i < priv->rfs_entries_total; i++) {
643 		struct stmmac_rfs_entry *entry = &priv->rfs_entries[i];
644 
645 		if (entry->cookie == cls->cookie)
646 			return entry;
647 		if (get_free && entry->in_use == false)
648 			return entry;
649 	}
650 
651 	return NULL;
652 }
653 
654 #define VLAN_PRIO_FULL_MASK (0x07)
655 
656 static int tc_add_vlan_flow(struct stmmac_priv *priv,
657 			    struct flow_cls_offload *cls)
658 {
659 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
660 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
661 	struct flow_dissector *dissector = rule->match.dissector;
662 	int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
663 	struct flow_match_vlan match;
664 
665 	if (!entry) {
666 		entry = tc_find_rfs(priv, cls, true);
667 		if (!entry)
668 			return -ENOENT;
669 	}
670 
671 	if (priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN] >=
672 	    priv->rfs_entries_max[STMMAC_RFS_T_VLAN])
673 		return -ENOENT;
674 
675 	/* Nothing to do here */
676 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN))
677 		return -EINVAL;
678 
679 	if (tc < 0) {
680 		netdev_err(priv->dev, "Invalid traffic class\n");
681 		return -EINVAL;
682 	}
683 
684 	flow_rule_match_vlan(rule, &match);
685 
686 	if (match.mask->vlan_priority) {
687 		u32 prio;
688 
689 		if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
690 			netdev_err(priv->dev, "Only full mask is supported for VLAN priority");
691 			return -EINVAL;
692 		}
693 
694 		prio = BIT(match.key->vlan_priority);
695 		stmmac_rx_queue_prio(priv, priv->hw, prio, tc);
696 
697 		entry->in_use = true;
698 		entry->cookie = cls->cookie;
699 		entry->tc = tc;
700 		entry->type = STMMAC_RFS_T_VLAN;
701 		priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]++;
702 	}
703 
704 	return 0;
705 }
706 
707 static int tc_del_vlan_flow(struct stmmac_priv *priv,
708 			    struct flow_cls_offload *cls)
709 {
710 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
711 
712 	if (!entry || !entry->in_use || entry->type != STMMAC_RFS_T_VLAN)
713 		return -ENOENT;
714 
715 	stmmac_rx_queue_prio(priv, priv->hw, 0, entry->tc);
716 
717 	entry->in_use = false;
718 	entry->cookie = 0;
719 	entry->tc = 0;
720 	entry->type = 0;
721 
722 	priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]--;
723 
724 	return 0;
725 }
726 
727 static int tc_add_flow_cls(struct stmmac_priv *priv,
728 			   struct flow_cls_offload *cls)
729 {
730 	int ret;
731 
732 	ret = tc_add_flow(priv, cls);
733 	if (!ret)
734 		return ret;
735 
736 	return tc_add_vlan_flow(priv, cls);
737 }
738 
739 static int tc_del_flow_cls(struct stmmac_priv *priv,
740 			   struct flow_cls_offload *cls)
741 {
742 	int ret;
743 
744 	ret = tc_del_flow(priv, cls);
745 	if (!ret)
746 		return ret;
747 
748 	return tc_del_vlan_flow(priv, cls);
749 }
750 
751 static int tc_setup_cls(struct stmmac_priv *priv,
752 			struct flow_cls_offload *cls)
753 {
754 	int ret = 0;
755 
756 	/* When RSS is enabled, the filtering will be bypassed */
757 	if (priv->rss.enable)
758 		return -EBUSY;
759 
760 	switch (cls->command) {
761 	case FLOW_CLS_REPLACE:
762 		ret = tc_add_flow_cls(priv, cls);
763 		break;
764 	case FLOW_CLS_DESTROY:
765 		ret = tc_del_flow_cls(priv, cls);
766 		break;
767 	default:
768 		return -EOPNOTSUPP;
769 	}
770 
771 	return ret;
772 }
773 
774 struct timespec64 stmmac_calc_tas_basetime(ktime_t old_base_time,
775 					   ktime_t current_time,
776 					   u64 cycle_time)
777 {
778 	struct timespec64 time;
779 
780 	if (ktime_after(old_base_time, current_time)) {
781 		time = ktime_to_timespec64(old_base_time);
782 	} else {
783 		s64 n;
784 		ktime_t base_time;
785 
786 		n = div64_s64(ktime_sub_ns(current_time, old_base_time),
787 			      cycle_time);
788 		base_time = ktime_add_ns(old_base_time,
789 					 (n + 1) * cycle_time);
790 
791 		time = ktime_to_timespec64(base_time);
792 	}
793 
794 	return time;
795 }
796 
797 static int tc_setup_taprio(struct stmmac_priv *priv,
798 			   struct tc_taprio_qopt_offload *qopt)
799 {
800 	u32 size, wid = priv->dma_cap.estwid, dep = priv->dma_cap.estdep;
801 	struct plat_stmmacenet_data *plat = priv->plat;
802 	struct timespec64 time, current_time, qopt_time;
803 	ktime_t current_time_ns;
804 	bool fpe = false;
805 	int i, ret = 0;
806 	u64 ctr;
807 
808 	if (!priv->dma_cap.estsel)
809 		return -EOPNOTSUPP;
810 
811 	switch (wid) {
812 	case 0x1:
813 		wid = 16;
814 		break;
815 	case 0x2:
816 		wid = 20;
817 		break;
818 	case 0x3:
819 		wid = 24;
820 		break;
821 	default:
822 		return -EOPNOTSUPP;
823 	}
824 
825 	switch (dep) {
826 	case 0x1:
827 		dep = 64;
828 		break;
829 	case 0x2:
830 		dep = 128;
831 		break;
832 	case 0x3:
833 		dep = 256;
834 		break;
835 	case 0x4:
836 		dep = 512;
837 		break;
838 	case 0x5:
839 		dep = 1024;
840 		break;
841 	default:
842 		return -EOPNOTSUPP;
843 	}
844 
845 	if (!qopt->enable)
846 		goto disable;
847 	if (qopt->num_entries >= dep)
848 		return -EINVAL;
849 	if (!qopt->cycle_time)
850 		return -ERANGE;
851 
852 	if (!plat->est) {
853 		plat->est = devm_kzalloc(priv->device, sizeof(*plat->est),
854 					 GFP_KERNEL);
855 		if (!plat->est)
856 			return -ENOMEM;
857 
858 		mutex_init(&priv->plat->est->lock);
859 	} else {
860 		memset(plat->est, 0, sizeof(*plat->est));
861 	}
862 
863 	size = qopt->num_entries;
864 
865 	mutex_lock(&priv->plat->est->lock);
866 	priv->plat->est->gcl_size = size;
867 	priv->plat->est->enable = qopt->enable;
868 	mutex_unlock(&priv->plat->est->lock);
869 
870 	for (i = 0; i < size; i++) {
871 		s64 delta_ns = qopt->entries[i].interval;
872 		u32 gates = qopt->entries[i].gate_mask;
873 
874 		if (delta_ns > GENMASK(wid, 0))
875 			return -ERANGE;
876 		if (gates > GENMASK(31 - wid, 0))
877 			return -ERANGE;
878 
879 		switch (qopt->entries[i].command) {
880 		case TC_TAPRIO_CMD_SET_GATES:
881 			if (fpe)
882 				return -EINVAL;
883 			break;
884 		case TC_TAPRIO_CMD_SET_AND_HOLD:
885 			gates |= BIT(0);
886 			fpe = true;
887 			break;
888 		case TC_TAPRIO_CMD_SET_AND_RELEASE:
889 			gates &= ~BIT(0);
890 			fpe = true;
891 			break;
892 		default:
893 			return -EOPNOTSUPP;
894 		}
895 
896 		priv->plat->est->gcl[i] = delta_ns | (gates << wid);
897 	}
898 
899 	mutex_lock(&priv->plat->est->lock);
900 	/* Adjust for real system time */
901 	priv->ptp_clock_ops.gettime64(&priv->ptp_clock_ops, &current_time);
902 	current_time_ns = timespec64_to_ktime(current_time);
903 	time = stmmac_calc_tas_basetime(qopt->base_time, current_time_ns,
904 					qopt->cycle_time);
905 
906 	priv->plat->est->btr[0] = (u32)time.tv_nsec;
907 	priv->plat->est->btr[1] = (u32)time.tv_sec;
908 
909 	qopt_time = ktime_to_timespec64(qopt->base_time);
910 	priv->plat->est->btr_reserve[0] = (u32)qopt_time.tv_nsec;
911 	priv->plat->est->btr_reserve[1] = (u32)qopt_time.tv_sec;
912 
913 	ctr = qopt->cycle_time;
914 	priv->plat->est->ctr[0] = do_div(ctr, NSEC_PER_SEC);
915 	priv->plat->est->ctr[1] = (u32)ctr;
916 
917 	if (fpe && !priv->dma_cap.fpesel) {
918 		mutex_unlock(&priv->plat->est->lock);
919 		return -EOPNOTSUPP;
920 	}
921 
922 	/* Actual FPE register configuration will be done after FPE handshake
923 	 * is success.
924 	 */
925 	priv->plat->fpe_cfg->enable = fpe;
926 
927 	ret = stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
928 				   priv->plat->clk_ptp_rate);
929 	mutex_unlock(&priv->plat->est->lock);
930 	if (ret) {
931 		netdev_err(priv->dev, "failed to configure EST\n");
932 		goto disable;
933 	}
934 
935 	netdev_info(priv->dev, "configured EST\n");
936 
937 	if (fpe) {
938 		stmmac_fpe_handshake(priv, true);
939 		netdev_info(priv->dev, "start FPE handshake\n");
940 	}
941 
942 	return 0;
943 
944 disable:
945 	if (priv->plat->est) {
946 		mutex_lock(&priv->plat->est->lock);
947 		priv->plat->est->enable = false;
948 		stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
949 				     priv->plat->clk_ptp_rate);
950 		mutex_unlock(&priv->plat->est->lock);
951 	}
952 
953 	priv->plat->fpe_cfg->enable = false;
954 	stmmac_fpe_configure(priv, priv->ioaddr,
955 			     priv->plat->tx_queues_to_use,
956 			     priv->plat->rx_queues_to_use,
957 			     false);
958 	netdev_info(priv->dev, "disabled FPE\n");
959 
960 	stmmac_fpe_handshake(priv, false);
961 	netdev_info(priv->dev, "stop FPE handshake\n");
962 
963 	return ret;
964 }
965 
966 static int tc_setup_etf(struct stmmac_priv *priv,
967 			struct tc_etf_qopt_offload *qopt)
968 {
969 	if (!priv->dma_cap.tbssel)
970 		return -EOPNOTSUPP;
971 	if (qopt->queue >= priv->plat->tx_queues_to_use)
972 		return -EINVAL;
973 	if (!(priv->tx_queue[qopt->queue].tbs & STMMAC_TBS_AVAIL))
974 		return -EINVAL;
975 
976 	if (qopt->enable)
977 		priv->tx_queue[qopt->queue].tbs |= STMMAC_TBS_EN;
978 	else
979 		priv->tx_queue[qopt->queue].tbs &= ~STMMAC_TBS_EN;
980 
981 	netdev_info(priv->dev, "%s ETF for Queue %d\n",
982 		    qopt->enable ? "enabled" : "disabled", qopt->queue);
983 	return 0;
984 }
985 
986 const struct stmmac_tc_ops dwmac510_tc_ops = {
987 	.init = tc_init,
988 	.setup_cls_u32 = tc_setup_cls_u32,
989 	.setup_cbs = tc_setup_cbs,
990 	.setup_cls = tc_setup_cls,
991 	.setup_taprio = tc_setup_taprio,
992 	.setup_etf = tc_setup_etf,
993 };
994