1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993 
994 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996 
997 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
998 		switch (speed) {
999 		case SPEED_10000:
1000 			ctrl |= priv->hw->link.xgmii.speed10000;
1001 			break;
1002 		case SPEED_5000:
1003 			ctrl |= priv->hw->link.xgmii.speed5000;
1004 			break;
1005 		case SPEED_2500:
1006 			ctrl |= priv->hw->link.xgmii.speed2500;
1007 			break;
1008 		default:
1009 			return;
1010 		}
1011 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012 		switch (speed) {
1013 		case SPEED_100000:
1014 			ctrl |= priv->hw->link.xlgmii.speed100000;
1015 			break;
1016 		case SPEED_50000:
1017 			ctrl |= priv->hw->link.xlgmii.speed50000;
1018 			break;
1019 		case SPEED_40000:
1020 			ctrl |= priv->hw->link.xlgmii.speed40000;
1021 			break;
1022 		case SPEED_25000:
1023 			ctrl |= priv->hw->link.xlgmii.speed25000;
1024 			break;
1025 		case SPEED_10000:
1026 			ctrl |= priv->hw->link.xgmii.speed10000;
1027 			break;
1028 		case SPEED_2500:
1029 			ctrl |= priv->hw->link.speed2500;
1030 			break;
1031 		case SPEED_1000:
1032 			ctrl |= priv->hw->link.speed1000;
1033 			break;
1034 		default:
1035 			return;
1036 		}
1037 	} else {
1038 		switch (speed) {
1039 		case SPEED_2500:
1040 			ctrl |= priv->hw->link.speed2500;
1041 			break;
1042 		case SPEED_1000:
1043 			ctrl |= priv->hw->link.speed1000;
1044 			break;
1045 		case SPEED_100:
1046 			ctrl |= priv->hw->link.speed100;
1047 			break;
1048 		case SPEED_10:
1049 			ctrl |= priv->hw->link.speed10;
1050 			break;
1051 		default:
1052 			return;
1053 		}
1054 	}
1055 
1056 	priv->speed = speed;
1057 
1058 	if (priv->plat->fix_mac_speed)
1059 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060 
1061 	if (!duplex)
1062 		ctrl &= ~priv->hw->link.duplex;
1063 	else
1064 		ctrl |= priv->hw->link.duplex;
1065 
1066 	/* Flow Control operation */
1067 	if (rx_pause && tx_pause)
1068 		priv->flow_ctrl = FLOW_AUTO;
1069 	else if (rx_pause && !tx_pause)
1070 		priv->flow_ctrl = FLOW_RX;
1071 	else if (!rx_pause && tx_pause)
1072 		priv->flow_ctrl = FLOW_TX;
1073 	else
1074 		priv->flow_ctrl = FLOW_OFF;
1075 
1076 	stmmac_mac_flow_ctrl(priv, duplex);
1077 
1078 	if (ctrl != old_ctrl)
1079 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080 
1081 	stmmac_mac_set(priv, priv->ioaddr, true);
1082 	if (phy && priv->dma_cap.eee) {
1083 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1084 		priv->eee_enabled = stmmac_eee_init(priv);
1085 		priv->tx_lpi_enabled = priv->eee_enabled;
1086 		stmmac_set_eee_pls(priv, priv->hw, true);
1087 	}
1088 
1089 	if (priv->dma_cap.fpesel)
1090 		stmmac_fpe_link_state_handle(priv, true);
1091 }
1092 
1093 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1094 	.mac_select_pcs = stmmac_mac_select_pcs,
1095 	.mac_config = stmmac_mac_config,
1096 	.mac_link_down = stmmac_mac_link_down,
1097 	.mac_link_up = stmmac_mac_link_up,
1098 };
1099 
1100 /**
1101  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1102  * @priv: driver private structure
1103  * Description: this is to verify if the HW supports the PCS.
1104  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1105  * configured for the TBI, RTBI, or SGMII PHY interface.
1106  */
1107 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1108 {
1109 	int interface = priv->plat->interface;
1110 
1111 	if (priv->dma_cap.pcs) {
1112 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1113 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1114 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1115 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1116 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1117 			priv->hw->pcs = STMMAC_PCS_RGMII;
1118 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1119 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1120 			priv->hw->pcs = STMMAC_PCS_SGMII;
1121 		}
1122 	}
1123 }
1124 
1125 /**
1126  * stmmac_init_phy - PHY initialization
1127  * @dev: net device structure
1128  * Description: it initializes the driver's PHY state, and attaches the PHY
1129  * to the mac driver.
1130  *  Return value:
1131  *  0 on success
1132  */
1133 static int stmmac_init_phy(struct net_device *dev)
1134 {
1135 	struct stmmac_priv *priv = netdev_priv(dev);
1136 	struct fwnode_handle *fwnode;
1137 	int ret;
1138 
1139 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1140 	if (!fwnode)
1141 		fwnode = dev_fwnode(priv->device);
1142 
1143 	if (fwnode)
1144 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1145 
1146 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1147 	 * manually parse it
1148 	 */
1149 	if (!fwnode || ret) {
1150 		int addr = priv->plat->phy_addr;
1151 		struct phy_device *phydev;
1152 
1153 		phydev = mdiobus_get_phy(priv->mii, addr);
1154 		if (!phydev) {
1155 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1156 			return -ENODEV;
1157 		}
1158 
1159 		ret = phylink_connect_phy(priv->phylink, phydev);
1160 	}
1161 
1162 	if (!priv->plat->pmt) {
1163 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1164 
1165 		phylink_ethtool_get_wol(priv->phylink, &wol);
1166 		device_set_wakeup_capable(priv->device, !!wol.supported);
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 static int stmmac_phy_setup(struct stmmac_priv *priv)
1173 {
1174 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1175 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1176 	int max_speed = priv->plat->max_speed;
1177 	int mode = priv->plat->phy_interface;
1178 	struct phylink *phylink;
1179 
1180 	priv->phylink_config.dev = &priv->dev->dev;
1181 	priv->phylink_config.type = PHYLINK_NETDEV;
1182 	if (priv->plat->mdio_bus_data)
1183 		priv->phylink_config.ovr_an_inband =
1184 			mdio_bus_data->xpcs_an_inband;
1185 
1186 	if (!fwnode)
1187 		fwnode = dev_fwnode(priv->device);
1188 
1189 	/* Set the platform/firmware specified interface mode */
1190 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1191 
1192 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1193 	if (priv->hw->xpcs)
1194 		xpcs_get_interfaces(priv->hw->xpcs,
1195 				    priv->phylink_config.supported_interfaces);
1196 
1197 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1198 		MAC_10 | MAC_100;
1199 
1200 	if (!max_speed || max_speed >= 1000)
1201 		priv->phylink_config.mac_capabilities |= MAC_1000;
1202 
1203 	if (priv->plat->has_gmac4) {
1204 		if (!max_speed || max_speed >= 2500)
1205 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1206 	} else if (priv->plat->has_xgmac) {
1207 		if (!max_speed || max_speed >= 2500)
1208 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1209 		if (!max_speed || max_speed >= 5000)
1210 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1211 		if (!max_speed || max_speed >= 10000)
1212 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1213 		if (!max_speed || max_speed >= 25000)
1214 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1215 		if (!max_speed || max_speed >= 40000)
1216 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1217 		if (!max_speed || max_speed >= 50000)
1218 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1219 		if (!max_speed || max_speed >= 100000)
1220 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1221 	}
1222 
1223 	/* Half-Duplex can only work with single queue */
1224 	if (priv->plat->tx_queues_to_use > 1)
1225 		priv->phylink_config.mac_capabilities &=
1226 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1227 	priv->phylink_config.mac_managed_pm = true;
1228 
1229 	phylink = phylink_create(&priv->phylink_config, fwnode,
1230 				 mode, &stmmac_phylink_mac_ops);
1231 	if (IS_ERR(phylink))
1232 		return PTR_ERR(phylink);
1233 
1234 	priv->phylink = phylink;
1235 	return 0;
1236 }
1237 
1238 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1239 				    struct stmmac_dma_conf *dma_conf)
1240 {
1241 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1242 	unsigned int desc_size;
1243 	void *head_rx;
1244 	u32 queue;
1245 
1246 	/* Display RX rings */
1247 	for (queue = 0; queue < rx_cnt; queue++) {
1248 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1249 
1250 		pr_info("\tRX Queue %u rings\n", queue);
1251 
1252 		if (priv->extend_desc) {
1253 			head_rx = (void *)rx_q->dma_erx;
1254 			desc_size = sizeof(struct dma_extended_desc);
1255 		} else {
1256 			head_rx = (void *)rx_q->dma_rx;
1257 			desc_size = sizeof(struct dma_desc);
1258 		}
1259 
1260 		/* Display RX ring */
1261 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1262 				    rx_q->dma_rx_phy, desc_size);
1263 	}
1264 }
1265 
1266 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1267 				    struct stmmac_dma_conf *dma_conf)
1268 {
1269 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1270 	unsigned int desc_size;
1271 	void *head_tx;
1272 	u32 queue;
1273 
1274 	/* Display TX rings */
1275 	for (queue = 0; queue < tx_cnt; queue++) {
1276 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1277 
1278 		pr_info("\tTX Queue %d rings\n", queue);
1279 
1280 		if (priv->extend_desc) {
1281 			head_tx = (void *)tx_q->dma_etx;
1282 			desc_size = sizeof(struct dma_extended_desc);
1283 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1284 			head_tx = (void *)tx_q->dma_entx;
1285 			desc_size = sizeof(struct dma_edesc);
1286 		} else {
1287 			head_tx = (void *)tx_q->dma_tx;
1288 			desc_size = sizeof(struct dma_desc);
1289 		}
1290 
1291 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1292 				    tx_q->dma_tx_phy, desc_size);
1293 	}
1294 }
1295 
1296 static void stmmac_display_rings(struct stmmac_priv *priv,
1297 				 struct stmmac_dma_conf *dma_conf)
1298 {
1299 	/* Display RX ring */
1300 	stmmac_display_rx_rings(priv, dma_conf);
1301 
1302 	/* Display TX ring */
1303 	stmmac_display_tx_rings(priv, dma_conf);
1304 }
1305 
1306 static int stmmac_set_bfsize(int mtu, int bufsize)
1307 {
1308 	int ret = bufsize;
1309 
1310 	if (mtu >= BUF_SIZE_8KiB)
1311 		ret = BUF_SIZE_16KiB;
1312 	else if (mtu >= BUF_SIZE_4KiB)
1313 		ret = BUF_SIZE_8KiB;
1314 	else if (mtu >= BUF_SIZE_2KiB)
1315 		ret = BUF_SIZE_4KiB;
1316 	else if (mtu > DEFAULT_BUFSIZE)
1317 		ret = BUF_SIZE_2KiB;
1318 	else
1319 		ret = DEFAULT_BUFSIZE;
1320 
1321 	return ret;
1322 }
1323 
1324 /**
1325  * stmmac_clear_rx_descriptors - clear RX descriptors
1326  * @priv: driver private structure
1327  * @dma_conf: structure to take the dma data
1328  * @queue: RX queue index
1329  * Description: this function is called to clear the RX descriptors
1330  * in case of both basic and extended descriptors are used.
1331  */
1332 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1333 					struct stmmac_dma_conf *dma_conf,
1334 					u32 queue)
1335 {
1336 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1337 	int i;
1338 
1339 	/* Clear the RX descriptors */
1340 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1341 		if (priv->extend_desc)
1342 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1343 					priv->use_riwt, priv->mode,
1344 					(i == dma_conf->dma_rx_size - 1),
1345 					dma_conf->dma_buf_sz);
1346 		else
1347 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1348 					priv->use_riwt, priv->mode,
1349 					(i == dma_conf->dma_rx_size - 1),
1350 					dma_conf->dma_buf_sz);
1351 }
1352 
1353 /**
1354  * stmmac_clear_tx_descriptors - clear tx descriptors
1355  * @priv: driver private structure
1356  * @dma_conf: structure to take the dma data
1357  * @queue: TX queue index.
1358  * Description: this function is called to clear the TX descriptors
1359  * in case of both basic and extended descriptors are used.
1360  */
1361 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1362 					struct stmmac_dma_conf *dma_conf,
1363 					u32 queue)
1364 {
1365 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1366 	int i;
1367 
1368 	/* Clear the TX descriptors */
1369 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1370 		int last = (i == (dma_conf->dma_tx_size - 1));
1371 		struct dma_desc *p;
1372 
1373 		if (priv->extend_desc)
1374 			p = &tx_q->dma_etx[i].basic;
1375 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1376 			p = &tx_q->dma_entx[i].basic;
1377 		else
1378 			p = &tx_q->dma_tx[i];
1379 
1380 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1381 	}
1382 }
1383 
1384 /**
1385  * stmmac_clear_descriptors - clear descriptors
1386  * @priv: driver private structure
1387  * @dma_conf: structure to take the dma data
1388  * Description: this function is called to clear the TX and RX descriptors
1389  * in case of both basic and extended descriptors are used.
1390  */
1391 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1392 				     struct stmmac_dma_conf *dma_conf)
1393 {
1394 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1395 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1396 	u32 queue;
1397 
1398 	/* Clear the RX descriptors */
1399 	for (queue = 0; queue < rx_queue_cnt; queue++)
1400 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1401 
1402 	/* Clear the TX descriptors */
1403 	for (queue = 0; queue < tx_queue_cnt; queue++)
1404 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1405 }
1406 
1407 /**
1408  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1409  * @priv: driver private structure
1410  * @dma_conf: structure to take the dma data
1411  * @p: descriptor pointer
1412  * @i: descriptor index
1413  * @flags: gfp flag
1414  * @queue: RX queue index
1415  * Description: this function is called to allocate a receive buffer, perform
1416  * the DMA mapping and init the descriptor.
1417  */
1418 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1419 				  struct stmmac_dma_conf *dma_conf,
1420 				  struct dma_desc *p,
1421 				  int i, gfp_t flags, u32 queue)
1422 {
1423 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1424 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1425 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1426 
1427 	if (priv->dma_cap.addr64 <= 32)
1428 		gfp |= GFP_DMA32;
1429 
1430 	if (!buf->page) {
1431 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1432 		if (!buf->page)
1433 			return -ENOMEM;
1434 		buf->page_offset = stmmac_rx_offset(priv);
1435 	}
1436 
1437 	if (priv->sph && !buf->sec_page) {
1438 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1439 		if (!buf->sec_page)
1440 			return -ENOMEM;
1441 
1442 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1443 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1444 	} else {
1445 		buf->sec_page = NULL;
1446 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1447 	}
1448 
1449 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1450 
1451 	stmmac_set_desc_addr(priv, p, buf->addr);
1452 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1453 		stmmac_init_desc3(priv, p);
1454 
1455 	return 0;
1456 }
1457 
1458 /**
1459  * stmmac_free_rx_buffer - free RX dma buffers
1460  * @priv: private structure
1461  * @rx_q: RX queue
1462  * @i: buffer index.
1463  */
1464 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1465 				  struct stmmac_rx_queue *rx_q,
1466 				  int i)
1467 {
1468 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1469 
1470 	if (buf->page)
1471 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1472 	buf->page = NULL;
1473 
1474 	if (buf->sec_page)
1475 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1476 	buf->sec_page = NULL;
1477 }
1478 
1479 /**
1480  * stmmac_free_tx_buffer - free RX dma buffers
1481  * @priv: private structure
1482  * @dma_conf: structure to take the dma data
1483  * @queue: RX queue index
1484  * @i: buffer index.
1485  */
1486 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1487 				  struct stmmac_dma_conf *dma_conf,
1488 				  u32 queue, int i)
1489 {
1490 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1491 
1492 	if (tx_q->tx_skbuff_dma[i].buf &&
1493 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1494 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1495 			dma_unmap_page(priv->device,
1496 				       tx_q->tx_skbuff_dma[i].buf,
1497 				       tx_q->tx_skbuff_dma[i].len,
1498 				       DMA_TO_DEVICE);
1499 		else
1500 			dma_unmap_single(priv->device,
1501 					 tx_q->tx_skbuff_dma[i].buf,
1502 					 tx_q->tx_skbuff_dma[i].len,
1503 					 DMA_TO_DEVICE);
1504 	}
1505 
1506 	if (tx_q->xdpf[i] &&
1507 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1508 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1509 		xdp_return_frame(tx_q->xdpf[i]);
1510 		tx_q->xdpf[i] = NULL;
1511 	}
1512 
1513 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1514 		tx_q->xsk_frames_done++;
1515 
1516 	if (tx_q->tx_skbuff[i] &&
1517 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1518 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1519 		tx_q->tx_skbuff[i] = NULL;
1520 	}
1521 
1522 	tx_q->tx_skbuff_dma[i].buf = 0;
1523 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1524 }
1525 
1526 /**
1527  * dma_free_rx_skbufs - free RX dma buffers
1528  * @priv: private structure
1529  * @dma_conf: structure to take the dma data
1530  * @queue: RX queue index
1531  */
1532 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1533 			       struct stmmac_dma_conf *dma_conf,
1534 			       u32 queue)
1535 {
1536 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1537 	int i;
1538 
1539 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1540 		stmmac_free_rx_buffer(priv, rx_q, i);
1541 }
1542 
1543 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1544 				   struct stmmac_dma_conf *dma_conf,
1545 				   u32 queue, gfp_t flags)
1546 {
1547 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1548 	int i;
1549 
1550 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1551 		struct dma_desc *p;
1552 		int ret;
1553 
1554 		if (priv->extend_desc)
1555 			p = &((rx_q->dma_erx + i)->basic);
1556 		else
1557 			p = rx_q->dma_rx + i;
1558 
1559 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1560 					     queue);
1561 		if (ret)
1562 			return ret;
1563 
1564 		rx_q->buf_alloc_num++;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1572  * @priv: private structure
1573  * @dma_conf: structure to take the dma data
1574  * @queue: RX queue index
1575  */
1576 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1577 				struct stmmac_dma_conf *dma_conf,
1578 				u32 queue)
1579 {
1580 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1581 	int i;
1582 
1583 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1584 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1585 
1586 		if (!buf->xdp)
1587 			continue;
1588 
1589 		xsk_buff_free(buf->xdp);
1590 		buf->xdp = NULL;
1591 	}
1592 }
1593 
1594 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1595 				      struct stmmac_dma_conf *dma_conf,
1596 				      u32 queue)
1597 {
1598 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1599 	int i;
1600 
1601 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1602 		struct stmmac_rx_buffer *buf;
1603 		dma_addr_t dma_addr;
1604 		struct dma_desc *p;
1605 
1606 		if (priv->extend_desc)
1607 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1608 		else
1609 			p = rx_q->dma_rx + i;
1610 
1611 		buf = &rx_q->buf_pool[i];
1612 
1613 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1614 		if (!buf->xdp)
1615 			return -ENOMEM;
1616 
1617 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1618 		stmmac_set_desc_addr(priv, p, dma_addr);
1619 		rx_q->buf_alloc_num++;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1626 {
1627 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1628 		return NULL;
1629 
1630 	return xsk_get_pool_from_qid(priv->dev, queue);
1631 }
1632 
1633 /**
1634  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1635  * @priv: driver private structure
1636  * @dma_conf: structure to take the dma data
1637  * @queue: RX queue index
1638  * @flags: gfp flag.
1639  * Description: this function initializes the DMA RX descriptors
1640  * and allocates the socket buffers. It supports the chained and ring
1641  * modes.
1642  */
1643 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1644 				    struct stmmac_dma_conf *dma_conf,
1645 				    u32 queue, gfp_t flags)
1646 {
1647 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1648 	int ret;
1649 
1650 	netif_dbg(priv, probe, priv->dev,
1651 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1652 		  (u32)rx_q->dma_rx_phy);
1653 
1654 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1655 
1656 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1657 
1658 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1659 
1660 	if (rx_q->xsk_pool) {
1661 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1662 						   MEM_TYPE_XSK_BUFF_POOL,
1663 						   NULL));
1664 		netdev_info(priv->dev,
1665 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1666 			    rx_q->queue_index);
1667 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1668 	} else {
1669 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1670 						   MEM_TYPE_PAGE_POOL,
1671 						   rx_q->page_pool));
1672 		netdev_info(priv->dev,
1673 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1674 			    rx_q->queue_index);
1675 	}
1676 
1677 	if (rx_q->xsk_pool) {
1678 		/* RX XDP ZC buffer pool may not be populated, e.g.
1679 		 * xdpsock TX-only.
1680 		 */
1681 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1682 	} else {
1683 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1684 		if (ret < 0)
1685 			return -ENOMEM;
1686 	}
1687 
1688 	/* Setup the chained descriptor addresses */
1689 	if (priv->mode == STMMAC_CHAIN_MODE) {
1690 		if (priv->extend_desc)
1691 			stmmac_mode_init(priv, rx_q->dma_erx,
1692 					 rx_q->dma_rx_phy,
1693 					 dma_conf->dma_rx_size, 1);
1694 		else
1695 			stmmac_mode_init(priv, rx_q->dma_rx,
1696 					 rx_q->dma_rx_phy,
1697 					 dma_conf->dma_rx_size, 0);
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 static int init_dma_rx_desc_rings(struct net_device *dev,
1704 				  struct stmmac_dma_conf *dma_conf,
1705 				  gfp_t flags)
1706 {
1707 	struct stmmac_priv *priv = netdev_priv(dev);
1708 	u32 rx_count = priv->plat->rx_queues_to_use;
1709 	int queue;
1710 	int ret;
1711 
1712 	/* RX INITIALIZATION */
1713 	netif_dbg(priv, probe, priv->dev,
1714 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1715 
1716 	for (queue = 0; queue < rx_count; queue++) {
1717 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1718 		if (ret)
1719 			goto err_init_rx_buffers;
1720 	}
1721 
1722 	return 0;
1723 
1724 err_init_rx_buffers:
1725 	while (queue >= 0) {
1726 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1727 
1728 		if (rx_q->xsk_pool)
1729 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1730 		else
1731 			dma_free_rx_skbufs(priv, dma_conf, queue);
1732 
1733 		rx_q->buf_alloc_num = 0;
1734 		rx_q->xsk_pool = NULL;
1735 
1736 		queue--;
1737 	}
1738 
1739 	return ret;
1740 }
1741 
1742 /**
1743  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1744  * @priv: driver private structure
1745  * @dma_conf: structure to take the dma data
1746  * @queue: TX queue index
1747  * Description: this function initializes the DMA TX descriptors
1748  * and allocates the socket buffers. It supports the chained and ring
1749  * modes.
1750  */
1751 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1752 				    struct stmmac_dma_conf *dma_conf,
1753 				    u32 queue)
1754 {
1755 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1756 	int i;
1757 
1758 	netif_dbg(priv, probe, priv->dev,
1759 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1760 		  (u32)tx_q->dma_tx_phy);
1761 
1762 	/* Setup the chained descriptor addresses */
1763 	if (priv->mode == STMMAC_CHAIN_MODE) {
1764 		if (priv->extend_desc)
1765 			stmmac_mode_init(priv, tx_q->dma_etx,
1766 					 tx_q->dma_tx_phy,
1767 					 dma_conf->dma_tx_size, 1);
1768 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1769 			stmmac_mode_init(priv, tx_q->dma_tx,
1770 					 tx_q->dma_tx_phy,
1771 					 dma_conf->dma_tx_size, 0);
1772 	}
1773 
1774 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1775 
1776 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1777 		struct dma_desc *p;
1778 
1779 		if (priv->extend_desc)
1780 			p = &((tx_q->dma_etx + i)->basic);
1781 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1782 			p = &((tx_q->dma_entx + i)->basic);
1783 		else
1784 			p = tx_q->dma_tx + i;
1785 
1786 		stmmac_clear_desc(priv, p);
1787 
1788 		tx_q->tx_skbuff_dma[i].buf = 0;
1789 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1790 		tx_q->tx_skbuff_dma[i].len = 0;
1791 		tx_q->tx_skbuff_dma[i].last_segment = false;
1792 		tx_q->tx_skbuff[i] = NULL;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 static int init_dma_tx_desc_rings(struct net_device *dev,
1799 				  struct stmmac_dma_conf *dma_conf)
1800 {
1801 	struct stmmac_priv *priv = netdev_priv(dev);
1802 	u32 tx_queue_cnt;
1803 	u32 queue;
1804 
1805 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1806 
1807 	for (queue = 0; queue < tx_queue_cnt; queue++)
1808 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1809 
1810 	return 0;
1811 }
1812 
1813 /**
1814  * init_dma_desc_rings - init the RX/TX descriptor rings
1815  * @dev: net device structure
1816  * @dma_conf: structure to take the dma data
1817  * @flags: gfp flag.
1818  * Description: this function initializes the DMA RX/TX descriptors
1819  * and allocates the socket buffers. It supports the chained and ring
1820  * modes.
1821  */
1822 static int init_dma_desc_rings(struct net_device *dev,
1823 			       struct stmmac_dma_conf *dma_conf,
1824 			       gfp_t flags)
1825 {
1826 	struct stmmac_priv *priv = netdev_priv(dev);
1827 	int ret;
1828 
1829 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1830 	if (ret)
1831 		return ret;
1832 
1833 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1834 
1835 	stmmac_clear_descriptors(priv, dma_conf);
1836 
1837 	if (netif_msg_hw(priv))
1838 		stmmac_display_rings(priv, dma_conf);
1839 
1840 	return ret;
1841 }
1842 
1843 /**
1844  * dma_free_tx_skbufs - free TX dma buffers
1845  * @priv: private structure
1846  * @dma_conf: structure to take the dma data
1847  * @queue: TX queue index
1848  */
1849 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1850 			       struct stmmac_dma_conf *dma_conf,
1851 			       u32 queue)
1852 {
1853 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1854 	int i;
1855 
1856 	tx_q->xsk_frames_done = 0;
1857 
1858 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1859 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1860 
1861 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1862 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1863 		tx_q->xsk_frames_done = 0;
1864 		tx_q->xsk_pool = NULL;
1865 	}
1866 }
1867 
1868 /**
1869  * stmmac_free_tx_skbufs - free TX skb buffers
1870  * @priv: private structure
1871  */
1872 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1873 {
1874 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1875 	u32 queue;
1876 
1877 	for (queue = 0; queue < tx_queue_cnt; queue++)
1878 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1879 }
1880 
1881 /**
1882  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1883  * @priv: private structure
1884  * @dma_conf: structure to take the dma data
1885  * @queue: RX queue index
1886  */
1887 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1888 					 struct stmmac_dma_conf *dma_conf,
1889 					 u32 queue)
1890 {
1891 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1892 
1893 	/* Release the DMA RX socket buffers */
1894 	if (rx_q->xsk_pool)
1895 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1896 	else
1897 		dma_free_rx_skbufs(priv, dma_conf, queue);
1898 
1899 	rx_q->buf_alloc_num = 0;
1900 	rx_q->xsk_pool = NULL;
1901 
1902 	/* Free DMA regions of consistent memory previously allocated */
1903 	if (!priv->extend_desc)
1904 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1905 				  sizeof(struct dma_desc),
1906 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1907 	else
1908 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1909 				  sizeof(struct dma_extended_desc),
1910 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1911 
1912 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1913 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1914 
1915 	kfree(rx_q->buf_pool);
1916 	if (rx_q->page_pool)
1917 		page_pool_destroy(rx_q->page_pool);
1918 }
1919 
1920 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1921 				       struct stmmac_dma_conf *dma_conf)
1922 {
1923 	u32 rx_count = priv->plat->rx_queues_to_use;
1924 	u32 queue;
1925 
1926 	/* Free RX queue resources */
1927 	for (queue = 0; queue < rx_count; queue++)
1928 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1929 }
1930 
1931 /**
1932  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1933  * @priv: private structure
1934  * @dma_conf: structure to take the dma data
1935  * @queue: TX queue index
1936  */
1937 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1938 					 struct stmmac_dma_conf *dma_conf,
1939 					 u32 queue)
1940 {
1941 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1942 	size_t size;
1943 	void *addr;
1944 
1945 	/* Release the DMA TX socket buffers */
1946 	dma_free_tx_skbufs(priv, dma_conf, queue);
1947 
1948 	if (priv->extend_desc) {
1949 		size = sizeof(struct dma_extended_desc);
1950 		addr = tx_q->dma_etx;
1951 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1952 		size = sizeof(struct dma_edesc);
1953 		addr = tx_q->dma_entx;
1954 	} else {
1955 		size = sizeof(struct dma_desc);
1956 		addr = tx_q->dma_tx;
1957 	}
1958 
1959 	size *= dma_conf->dma_tx_size;
1960 
1961 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1962 
1963 	kfree(tx_q->tx_skbuff_dma);
1964 	kfree(tx_q->tx_skbuff);
1965 }
1966 
1967 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1968 				       struct stmmac_dma_conf *dma_conf)
1969 {
1970 	u32 tx_count = priv->plat->tx_queues_to_use;
1971 	u32 queue;
1972 
1973 	/* Free TX queue resources */
1974 	for (queue = 0; queue < tx_count; queue++)
1975 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1976 }
1977 
1978 /**
1979  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1980  * @priv: private structure
1981  * @dma_conf: structure to take the dma data
1982  * @queue: RX queue index
1983  * Description: according to which descriptor can be used (extend or basic)
1984  * this function allocates the resources for TX and RX paths. In case of
1985  * reception, for example, it pre-allocated the RX socket buffer in order to
1986  * allow zero-copy mechanism.
1987  */
1988 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1989 					 struct stmmac_dma_conf *dma_conf,
1990 					 u32 queue)
1991 {
1992 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1993 	struct stmmac_channel *ch = &priv->channel[queue];
1994 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1995 	struct page_pool_params pp_params = { 0 };
1996 	unsigned int num_pages;
1997 	unsigned int napi_id;
1998 	int ret;
1999 
2000 	rx_q->queue_index = queue;
2001 	rx_q->priv_data = priv;
2002 
2003 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2004 	pp_params.pool_size = dma_conf->dma_rx_size;
2005 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2006 	pp_params.order = ilog2(num_pages);
2007 	pp_params.nid = dev_to_node(priv->device);
2008 	pp_params.dev = priv->device;
2009 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2010 	pp_params.offset = stmmac_rx_offset(priv);
2011 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2012 
2013 	rx_q->page_pool = page_pool_create(&pp_params);
2014 	if (IS_ERR(rx_q->page_pool)) {
2015 		ret = PTR_ERR(rx_q->page_pool);
2016 		rx_q->page_pool = NULL;
2017 		return ret;
2018 	}
2019 
2020 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2021 				 sizeof(*rx_q->buf_pool),
2022 				 GFP_KERNEL);
2023 	if (!rx_q->buf_pool)
2024 		return -ENOMEM;
2025 
2026 	if (priv->extend_desc) {
2027 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2028 						   dma_conf->dma_rx_size *
2029 						   sizeof(struct dma_extended_desc),
2030 						   &rx_q->dma_rx_phy,
2031 						   GFP_KERNEL);
2032 		if (!rx_q->dma_erx)
2033 			return -ENOMEM;
2034 
2035 	} else {
2036 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2037 						  dma_conf->dma_rx_size *
2038 						  sizeof(struct dma_desc),
2039 						  &rx_q->dma_rx_phy,
2040 						  GFP_KERNEL);
2041 		if (!rx_q->dma_rx)
2042 			return -ENOMEM;
2043 	}
2044 
2045 	if (stmmac_xdp_is_enabled(priv) &&
2046 	    test_bit(queue, priv->af_xdp_zc_qps))
2047 		napi_id = ch->rxtx_napi.napi_id;
2048 	else
2049 		napi_id = ch->rx_napi.napi_id;
2050 
2051 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2052 			       rx_q->queue_index,
2053 			       napi_id);
2054 	if (ret) {
2055 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2056 		return -EINVAL;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2063 				       struct stmmac_dma_conf *dma_conf)
2064 {
2065 	u32 rx_count = priv->plat->rx_queues_to_use;
2066 	u32 queue;
2067 	int ret;
2068 
2069 	/* RX queues buffers and DMA */
2070 	for (queue = 0; queue < rx_count; queue++) {
2071 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2072 		if (ret)
2073 			goto err_dma;
2074 	}
2075 
2076 	return 0;
2077 
2078 err_dma:
2079 	free_dma_rx_desc_resources(priv, dma_conf);
2080 
2081 	return ret;
2082 }
2083 
2084 /**
2085  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2086  * @priv: private structure
2087  * @dma_conf: structure to take the dma data
2088  * @queue: TX queue index
2089  * Description: according to which descriptor can be used (extend or basic)
2090  * this function allocates the resources for TX and RX paths. In case of
2091  * reception, for example, it pre-allocated the RX socket buffer in order to
2092  * allow zero-copy mechanism.
2093  */
2094 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2095 					 struct stmmac_dma_conf *dma_conf,
2096 					 u32 queue)
2097 {
2098 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2099 	size_t size;
2100 	void *addr;
2101 
2102 	tx_q->queue_index = queue;
2103 	tx_q->priv_data = priv;
2104 
2105 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2106 				      sizeof(*tx_q->tx_skbuff_dma),
2107 				      GFP_KERNEL);
2108 	if (!tx_q->tx_skbuff_dma)
2109 		return -ENOMEM;
2110 
2111 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2112 				  sizeof(struct sk_buff *),
2113 				  GFP_KERNEL);
2114 	if (!tx_q->tx_skbuff)
2115 		return -ENOMEM;
2116 
2117 	if (priv->extend_desc)
2118 		size = sizeof(struct dma_extended_desc);
2119 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2120 		size = sizeof(struct dma_edesc);
2121 	else
2122 		size = sizeof(struct dma_desc);
2123 
2124 	size *= dma_conf->dma_tx_size;
2125 
2126 	addr = dma_alloc_coherent(priv->device, size,
2127 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2128 	if (!addr)
2129 		return -ENOMEM;
2130 
2131 	if (priv->extend_desc)
2132 		tx_q->dma_etx = addr;
2133 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2134 		tx_q->dma_entx = addr;
2135 	else
2136 		tx_q->dma_tx = addr;
2137 
2138 	return 0;
2139 }
2140 
2141 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2142 				       struct stmmac_dma_conf *dma_conf)
2143 {
2144 	u32 tx_count = priv->plat->tx_queues_to_use;
2145 	u32 queue;
2146 	int ret;
2147 
2148 	/* TX queues buffers and DMA */
2149 	for (queue = 0; queue < tx_count; queue++) {
2150 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2151 		if (ret)
2152 			goto err_dma;
2153 	}
2154 
2155 	return 0;
2156 
2157 err_dma:
2158 	free_dma_tx_desc_resources(priv, dma_conf);
2159 	return ret;
2160 }
2161 
2162 /**
2163  * alloc_dma_desc_resources - alloc TX/RX resources.
2164  * @priv: private structure
2165  * @dma_conf: structure to take the dma data
2166  * Description: according to which descriptor can be used (extend or basic)
2167  * this function allocates the resources for TX and RX paths. In case of
2168  * reception, for example, it pre-allocated the RX socket buffer in order to
2169  * allow zero-copy mechanism.
2170  */
2171 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2172 				    struct stmmac_dma_conf *dma_conf)
2173 {
2174 	/* RX Allocation */
2175 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2176 
2177 	if (ret)
2178 		return ret;
2179 
2180 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2181 
2182 	return ret;
2183 }
2184 
2185 /**
2186  * free_dma_desc_resources - free dma desc resources
2187  * @priv: private structure
2188  * @dma_conf: structure to take the dma data
2189  */
2190 static void free_dma_desc_resources(struct stmmac_priv *priv,
2191 				    struct stmmac_dma_conf *dma_conf)
2192 {
2193 	/* Release the DMA TX socket buffers */
2194 	free_dma_tx_desc_resources(priv, dma_conf);
2195 
2196 	/* Release the DMA RX socket buffers later
2197 	 * to ensure all pending XDP_TX buffers are returned.
2198 	 */
2199 	free_dma_rx_desc_resources(priv, dma_conf);
2200 }
2201 
2202 /**
2203  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2204  *  @priv: driver private structure
2205  *  Description: It is used for enabling the rx queues in the MAC
2206  */
2207 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2208 {
2209 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2210 	int queue;
2211 	u8 mode;
2212 
2213 	for (queue = 0; queue < rx_queues_count; queue++) {
2214 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2215 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2216 	}
2217 }
2218 
2219 /**
2220  * stmmac_start_rx_dma - start RX DMA channel
2221  * @priv: driver private structure
2222  * @chan: RX channel index
2223  * Description:
2224  * This starts a RX DMA channel
2225  */
2226 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2227 {
2228 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2229 	stmmac_start_rx(priv, priv->ioaddr, chan);
2230 }
2231 
2232 /**
2233  * stmmac_start_tx_dma - start TX DMA channel
2234  * @priv: driver private structure
2235  * @chan: TX channel index
2236  * Description:
2237  * This starts a TX DMA channel
2238  */
2239 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2240 {
2241 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2242 	stmmac_start_tx(priv, priv->ioaddr, chan);
2243 }
2244 
2245 /**
2246  * stmmac_stop_rx_dma - stop RX DMA channel
2247  * @priv: driver private structure
2248  * @chan: RX channel index
2249  * Description:
2250  * This stops a RX DMA channel
2251  */
2252 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2253 {
2254 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2255 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2256 }
2257 
2258 /**
2259  * stmmac_stop_tx_dma - stop TX DMA channel
2260  * @priv: driver private structure
2261  * @chan: TX channel index
2262  * Description:
2263  * This stops a TX DMA channel
2264  */
2265 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2266 {
2267 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2268 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2269 }
2270 
2271 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2276 	u32 chan;
2277 
2278 	for (chan = 0; chan < dma_csr_ch; chan++) {
2279 		struct stmmac_channel *ch = &priv->channel[chan];
2280 		unsigned long flags;
2281 
2282 		spin_lock_irqsave(&ch->lock, flags);
2283 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2284 		spin_unlock_irqrestore(&ch->lock, flags);
2285 	}
2286 }
2287 
2288 /**
2289  * stmmac_start_all_dma - start all RX and TX DMA channels
2290  * @priv: driver private structure
2291  * Description:
2292  * This starts all the RX and TX DMA channels
2293  */
2294 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2295 {
2296 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2297 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2298 	u32 chan = 0;
2299 
2300 	for (chan = 0; chan < rx_channels_count; chan++)
2301 		stmmac_start_rx_dma(priv, chan);
2302 
2303 	for (chan = 0; chan < tx_channels_count; chan++)
2304 		stmmac_start_tx_dma(priv, chan);
2305 }
2306 
2307 /**
2308  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2309  * @priv: driver private structure
2310  * Description:
2311  * This stops the RX and TX DMA channels
2312  */
2313 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2314 {
2315 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2316 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2317 	u32 chan = 0;
2318 
2319 	for (chan = 0; chan < rx_channels_count; chan++)
2320 		stmmac_stop_rx_dma(priv, chan);
2321 
2322 	for (chan = 0; chan < tx_channels_count; chan++)
2323 		stmmac_stop_tx_dma(priv, chan);
2324 }
2325 
2326 /**
2327  *  stmmac_dma_operation_mode - HW DMA operation mode
2328  *  @priv: driver private structure
2329  *  Description: it is used for configuring the DMA operation mode register in
2330  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2331  */
2332 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2333 {
2334 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2335 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2336 	int rxfifosz = priv->plat->rx_fifo_size;
2337 	int txfifosz = priv->plat->tx_fifo_size;
2338 	u32 txmode = 0;
2339 	u32 rxmode = 0;
2340 	u32 chan = 0;
2341 	u8 qmode = 0;
2342 
2343 	if (rxfifosz == 0)
2344 		rxfifosz = priv->dma_cap.rx_fifo_size;
2345 	if (txfifosz == 0)
2346 		txfifosz = priv->dma_cap.tx_fifo_size;
2347 
2348 	/* Adjust for real per queue fifo size */
2349 	rxfifosz /= rx_channels_count;
2350 	txfifosz /= tx_channels_count;
2351 
2352 	if (priv->plat->force_thresh_dma_mode) {
2353 		txmode = tc;
2354 		rxmode = tc;
2355 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2356 		/*
2357 		 * In case of GMAC, SF mode can be enabled
2358 		 * to perform the TX COE in HW. This depends on:
2359 		 * 1) TX COE if actually supported
2360 		 * 2) There is no bugged Jumbo frame support
2361 		 *    that needs to not insert csum in the TDES.
2362 		 */
2363 		txmode = SF_DMA_MODE;
2364 		rxmode = SF_DMA_MODE;
2365 		priv->xstats.threshold = SF_DMA_MODE;
2366 	} else {
2367 		txmode = tc;
2368 		rxmode = SF_DMA_MODE;
2369 	}
2370 
2371 	/* configure all channels */
2372 	for (chan = 0; chan < rx_channels_count; chan++) {
2373 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2374 		u32 buf_size;
2375 
2376 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2377 
2378 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2379 				rxfifosz, qmode);
2380 
2381 		if (rx_q->xsk_pool) {
2382 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2383 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2384 					      buf_size,
2385 					      chan);
2386 		} else {
2387 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2388 					      priv->dma_conf.dma_buf_sz,
2389 					      chan);
2390 		}
2391 	}
2392 
2393 	for (chan = 0; chan < tx_channels_count; chan++) {
2394 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2395 
2396 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2397 				txfifosz, qmode);
2398 	}
2399 }
2400 
2401 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2402 {
2403 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2404 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2405 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2406 	unsigned int entry = tx_q->cur_tx;
2407 	struct dma_desc *tx_desc = NULL;
2408 	struct xdp_desc xdp_desc;
2409 	bool work_done = true;
2410 
2411 	/* Avoids TX time-out as we are sharing with slow path */
2412 	txq_trans_cond_update(nq);
2413 
2414 	budget = min(budget, stmmac_tx_avail(priv, queue));
2415 
2416 	while (budget-- > 0) {
2417 		dma_addr_t dma_addr;
2418 		bool set_ic;
2419 
2420 		/* We are sharing with slow path and stop XSK TX desc submission when
2421 		 * available TX ring is less than threshold.
2422 		 */
2423 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2424 		    !netif_carrier_ok(priv->dev)) {
2425 			work_done = false;
2426 			break;
2427 		}
2428 
2429 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2430 			break;
2431 
2432 		if (likely(priv->extend_desc))
2433 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2434 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2435 			tx_desc = &tx_q->dma_entx[entry].basic;
2436 		else
2437 			tx_desc = tx_q->dma_tx + entry;
2438 
2439 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2440 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2441 
2442 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2443 
2444 		/* To return XDP buffer to XSK pool, we simple call
2445 		 * xsk_tx_completed(), so we don't need to fill up
2446 		 * 'buf' and 'xdpf'.
2447 		 */
2448 		tx_q->tx_skbuff_dma[entry].buf = 0;
2449 		tx_q->xdpf[entry] = NULL;
2450 
2451 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2452 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2453 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2454 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2455 
2456 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2457 
2458 		tx_q->tx_count_frames++;
2459 
2460 		if (!priv->tx_coal_frames[queue])
2461 			set_ic = false;
2462 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2463 			set_ic = true;
2464 		else
2465 			set_ic = false;
2466 
2467 		if (set_ic) {
2468 			tx_q->tx_count_frames = 0;
2469 			stmmac_set_tx_ic(priv, tx_desc);
2470 			priv->xstats.tx_set_ic_bit++;
2471 		}
2472 
2473 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2474 				       true, priv->mode, true, true,
2475 				       xdp_desc.len);
2476 
2477 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2478 
2479 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2480 		entry = tx_q->cur_tx;
2481 	}
2482 
2483 	if (tx_desc) {
2484 		stmmac_flush_tx_descriptors(priv, queue);
2485 		xsk_tx_release(pool);
2486 	}
2487 
2488 	/* Return true if all of the 3 conditions are met
2489 	 *  a) TX Budget is still available
2490 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2491 	 *     pending XSK TX for transmission)
2492 	 */
2493 	return !!budget && work_done;
2494 }
2495 
2496 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2497 {
2498 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2499 		tc += 64;
2500 
2501 		if (priv->plat->force_thresh_dma_mode)
2502 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2503 		else
2504 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2505 						      chan);
2506 
2507 		priv->xstats.threshold = tc;
2508 	}
2509 }
2510 
2511 /**
2512  * stmmac_tx_clean - to manage the transmission completion
2513  * @priv: driver private structure
2514  * @budget: napi budget limiting this functions packet handling
2515  * @queue: TX queue index
2516  * Description: it reclaims the transmit resources after transmission completes.
2517  */
2518 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2519 {
2520 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2521 	unsigned int bytes_compl = 0, pkts_compl = 0;
2522 	unsigned int entry, xmits = 0, count = 0;
2523 
2524 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2525 
2526 	priv->xstats.tx_clean++;
2527 
2528 	tx_q->xsk_frames_done = 0;
2529 
2530 	entry = tx_q->dirty_tx;
2531 
2532 	/* Try to clean all TX complete frame in 1 shot */
2533 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2534 		struct xdp_frame *xdpf;
2535 		struct sk_buff *skb;
2536 		struct dma_desc *p;
2537 		int status;
2538 
2539 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2540 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2541 			xdpf = tx_q->xdpf[entry];
2542 			skb = NULL;
2543 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2544 			xdpf = NULL;
2545 			skb = tx_q->tx_skbuff[entry];
2546 		} else {
2547 			xdpf = NULL;
2548 			skb = NULL;
2549 		}
2550 
2551 		if (priv->extend_desc)
2552 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2553 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2554 			p = &tx_q->dma_entx[entry].basic;
2555 		else
2556 			p = tx_q->dma_tx + entry;
2557 
2558 		status = stmmac_tx_status(priv, &priv->dev->stats,
2559 				&priv->xstats, p, priv->ioaddr);
2560 		/* Check if the descriptor is owned by the DMA */
2561 		if (unlikely(status & tx_dma_own))
2562 			break;
2563 
2564 		count++;
2565 
2566 		/* Make sure descriptor fields are read after reading
2567 		 * the own bit.
2568 		 */
2569 		dma_rmb();
2570 
2571 		/* Just consider the last segment and ...*/
2572 		if (likely(!(status & tx_not_ls))) {
2573 			/* ... verify the status error condition */
2574 			if (unlikely(status & tx_err)) {
2575 				priv->dev->stats.tx_errors++;
2576 				if (unlikely(status & tx_err_bump_tc))
2577 					stmmac_bump_dma_threshold(priv, queue);
2578 			} else {
2579 				priv->dev->stats.tx_packets++;
2580 				priv->xstats.tx_pkt_n++;
2581 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2582 			}
2583 			if (skb)
2584 				stmmac_get_tx_hwtstamp(priv, p, skb);
2585 		}
2586 
2587 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2588 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2589 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2590 				dma_unmap_page(priv->device,
2591 					       tx_q->tx_skbuff_dma[entry].buf,
2592 					       tx_q->tx_skbuff_dma[entry].len,
2593 					       DMA_TO_DEVICE);
2594 			else
2595 				dma_unmap_single(priv->device,
2596 						 tx_q->tx_skbuff_dma[entry].buf,
2597 						 tx_q->tx_skbuff_dma[entry].len,
2598 						 DMA_TO_DEVICE);
2599 			tx_q->tx_skbuff_dma[entry].buf = 0;
2600 			tx_q->tx_skbuff_dma[entry].len = 0;
2601 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2602 		}
2603 
2604 		stmmac_clean_desc3(priv, tx_q, p);
2605 
2606 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2607 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2608 
2609 		if (xdpf &&
2610 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2611 			xdp_return_frame_rx_napi(xdpf);
2612 			tx_q->xdpf[entry] = NULL;
2613 		}
2614 
2615 		if (xdpf &&
2616 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2617 			xdp_return_frame(xdpf);
2618 			tx_q->xdpf[entry] = NULL;
2619 		}
2620 
2621 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2622 			tx_q->xsk_frames_done++;
2623 
2624 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2625 			if (likely(skb)) {
2626 				pkts_compl++;
2627 				bytes_compl += skb->len;
2628 				dev_consume_skb_any(skb);
2629 				tx_q->tx_skbuff[entry] = NULL;
2630 			}
2631 		}
2632 
2633 		stmmac_release_tx_desc(priv, p, priv->mode);
2634 
2635 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2636 	}
2637 	tx_q->dirty_tx = entry;
2638 
2639 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2640 				  pkts_compl, bytes_compl);
2641 
2642 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2643 								queue))) &&
2644 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2645 
2646 		netif_dbg(priv, tx_done, priv->dev,
2647 			  "%s: restart transmit\n", __func__);
2648 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2649 	}
2650 
2651 	if (tx_q->xsk_pool) {
2652 		bool work_done;
2653 
2654 		if (tx_q->xsk_frames_done)
2655 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2656 
2657 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2658 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2659 
2660 		/* For XSK TX, we try to send as many as possible.
2661 		 * If XSK work done (XSK TX desc empty and budget still
2662 		 * available), return "budget - 1" to reenable TX IRQ.
2663 		 * Else, return "budget" to make NAPI continue polling.
2664 		 */
2665 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2666 					       STMMAC_XSK_TX_BUDGET_MAX);
2667 		if (work_done)
2668 			xmits = budget - 1;
2669 		else
2670 			xmits = budget;
2671 	}
2672 
2673 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2674 	    priv->eee_sw_timer_en) {
2675 		if (stmmac_enable_eee_mode(priv))
2676 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2677 	}
2678 
2679 	/* We still have pending packets, let's call for a new scheduling */
2680 	if (tx_q->dirty_tx != tx_q->cur_tx)
2681 		hrtimer_start(&tx_q->txtimer,
2682 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2683 			      HRTIMER_MODE_REL);
2684 
2685 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2686 
2687 	/* Combine decisions from TX clean and XSK TX */
2688 	return max(count, xmits);
2689 }
2690 
2691 /**
2692  * stmmac_tx_err - to manage the tx error
2693  * @priv: driver private structure
2694  * @chan: channel index
2695  * Description: it cleans the descriptors and restarts the transmission
2696  * in case of transmission errors.
2697  */
2698 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2699 {
2700 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2701 
2702 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2703 
2704 	stmmac_stop_tx_dma(priv, chan);
2705 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2706 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2707 	stmmac_reset_tx_queue(priv, chan);
2708 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2709 			    tx_q->dma_tx_phy, chan);
2710 	stmmac_start_tx_dma(priv, chan);
2711 
2712 	priv->dev->stats.tx_errors++;
2713 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2714 }
2715 
2716 /**
2717  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2718  *  @priv: driver private structure
2719  *  @txmode: TX operating mode
2720  *  @rxmode: RX operating mode
2721  *  @chan: channel index
2722  *  Description: it is used for configuring of the DMA operation mode in
2723  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2724  *  mode.
2725  */
2726 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2727 					  u32 rxmode, u32 chan)
2728 {
2729 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2730 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2731 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2732 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2733 	int rxfifosz = priv->plat->rx_fifo_size;
2734 	int txfifosz = priv->plat->tx_fifo_size;
2735 
2736 	if (rxfifosz == 0)
2737 		rxfifosz = priv->dma_cap.rx_fifo_size;
2738 	if (txfifosz == 0)
2739 		txfifosz = priv->dma_cap.tx_fifo_size;
2740 
2741 	/* Adjust for real per queue fifo size */
2742 	rxfifosz /= rx_channels_count;
2743 	txfifosz /= tx_channels_count;
2744 
2745 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2746 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2747 }
2748 
2749 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2750 {
2751 	int ret;
2752 
2753 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2754 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2755 	if (ret && (ret != -EINVAL)) {
2756 		stmmac_global_err(priv);
2757 		return true;
2758 	}
2759 
2760 	return false;
2761 }
2762 
2763 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2764 {
2765 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2766 						 &priv->xstats, chan, dir);
2767 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2768 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2769 	struct stmmac_channel *ch = &priv->channel[chan];
2770 	struct napi_struct *rx_napi;
2771 	struct napi_struct *tx_napi;
2772 	unsigned long flags;
2773 
2774 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2775 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2776 
2777 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2778 		if (napi_schedule_prep(rx_napi)) {
2779 			spin_lock_irqsave(&ch->lock, flags);
2780 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2781 			spin_unlock_irqrestore(&ch->lock, flags);
2782 			__napi_schedule(rx_napi);
2783 		}
2784 	}
2785 
2786 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2787 		if (napi_schedule_prep(tx_napi)) {
2788 			spin_lock_irqsave(&ch->lock, flags);
2789 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2790 			spin_unlock_irqrestore(&ch->lock, flags);
2791 			__napi_schedule(tx_napi);
2792 		}
2793 	}
2794 
2795 	return status;
2796 }
2797 
2798 /**
2799  * stmmac_dma_interrupt - DMA ISR
2800  * @priv: driver private structure
2801  * Description: this is the DMA ISR. It is called by the main ISR.
2802  * It calls the dwmac dma routine and schedule poll method in case of some
2803  * work can be done.
2804  */
2805 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2806 {
2807 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2808 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2809 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2810 				tx_channel_count : rx_channel_count;
2811 	u32 chan;
2812 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2813 
2814 	/* Make sure we never check beyond our status buffer. */
2815 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2816 		channels_to_check = ARRAY_SIZE(status);
2817 
2818 	for (chan = 0; chan < channels_to_check; chan++)
2819 		status[chan] = stmmac_napi_check(priv, chan,
2820 						 DMA_DIR_RXTX);
2821 
2822 	for (chan = 0; chan < tx_channel_count; chan++) {
2823 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2824 			/* Try to bump up the dma threshold on this failure */
2825 			stmmac_bump_dma_threshold(priv, chan);
2826 		} else if (unlikely(status[chan] == tx_hard_error)) {
2827 			stmmac_tx_err(priv, chan);
2828 		}
2829 	}
2830 }
2831 
2832 /**
2833  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2834  * @priv: driver private structure
2835  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2836  */
2837 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2838 {
2839 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2840 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2841 
2842 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2843 
2844 	if (priv->dma_cap.rmon) {
2845 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2846 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2847 	} else
2848 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2849 }
2850 
2851 /**
2852  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2853  * @priv: driver private structure
2854  * Description:
2855  *  new GMAC chip generations have a new register to indicate the
2856  *  presence of the optional feature/functions.
2857  *  This can be also used to override the value passed through the
2858  *  platform and necessary for old MAC10/100 and GMAC chips.
2859  */
2860 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2861 {
2862 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2863 }
2864 
2865 /**
2866  * stmmac_check_ether_addr - check if the MAC addr is valid
2867  * @priv: driver private structure
2868  * Description:
2869  * it is to verify if the MAC address is valid, in case of failures it
2870  * generates a random MAC address
2871  */
2872 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2873 {
2874 	u8 addr[ETH_ALEN];
2875 
2876 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2877 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2878 		if (is_valid_ether_addr(addr))
2879 			eth_hw_addr_set(priv->dev, addr);
2880 		else
2881 			eth_hw_addr_random(priv->dev);
2882 		dev_info(priv->device, "device MAC address %pM\n",
2883 			 priv->dev->dev_addr);
2884 	}
2885 }
2886 
2887 /**
2888  * stmmac_init_dma_engine - DMA init.
2889  * @priv: driver private structure
2890  * Description:
2891  * It inits the DMA invoking the specific MAC/GMAC callback.
2892  * Some DMA parameters can be passed from the platform;
2893  * in case of these are not passed a default is kept for the MAC or GMAC.
2894  */
2895 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2896 {
2897 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2898 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2899 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2900 	struct stmmac_rx_queue *rx_q;
2901 	struct stmmac_tx_queue *tx_q;
2902 	u32 chan = 0;
2903 	int atds = 0;
2904 	int ret = 0;
2905 
2906 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2907 		dev_err(priv->device, "Invalid DMA configuration\n");
2908 		return -EINVAL;
2909 	}
2910 
2911 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2912 		atds = 1;
2913 
2914 	ret = stmmac_reset(priv, priv->ioaddr);
2915 	if (ret) {
2916 		dev_err(priv->device, "Failed to reset the dma\n");
2917 		return ret;
2918 	}
2919 
2920 	/* DMA Configuration */
2921 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2922 
2923 	if (priv->plat->axi)
2924 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2925 
2926 	/* DMA CSR Channel configuration */
2927 	for (chan = 0; chan < dma_csr_ch; chan++) {
2928 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2929 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2930 	}
2931 
2932 	/* DMA RX Channel Configuration */
2933 	for (chan = 0; chan < rx_channels_count; chan++) {
2934 		rx_q = &priv->dma_conf.rx_queue[chan];
2935 
2936 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2937 				    rx_q->dma_rx_phy, chan);
2938 
2939 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2940 				     (rx_q->buf_alloc_num *
2941 				      sizeof(struct dma_desc));
2942 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2943 				       rx_q->rx_tail_addr, chan);
2944 	}
2945 
2946 	/* DMA TX Channel Configuration */
2947 	for (chan = 0; chan < tx_channels_count; chan++) {
2948 		tx_q = &priv->dma_conf.tx_queue[chan];
2949 
2950 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2951 				    tx_q->dma_tx_phy, chan);
2952 
2953 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2954 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2955 				       tx_q->tx_tail_addr, chan);
2956 	}
2957 
2958 	return ret;
2959 }
2960 
2961 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2962 {
2963 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2964 
2965 	hrtimer_start(&tx_q->txtimer,
2966 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2967 		      HRTIMER_MODE_REL);
2968 }
2969 
2970 /**
2971  * stmmac_tx_timer - mitigation sw timer for tx.
2972  * @t: data pointer
2973  * Description:
2974  * This is the timer handler to directly invoke the stmmac_tx_clean.
2975  */
2976 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2977 {
2978 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2979 	struct stmmac_priv *priv = tx_q->priv_data;
2980 	struct stmmac_channel *ch;
2981 	struct napi_struct *napi;
2982 
2983 	ch = &priv->channel[tx_q->queue_index];
2984 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2985 
2986 	if (likely(napi_schedule_prep(napi))) {
2987 		unsigned long flags;
2988 
2989 		spin_lock_irqsave(&ch->lock, flags);
2990 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2991 		spin_unlock_irqrestore(&ch->lock, flags);
2992 		__napi_schedule(napi);
2993 	}
2994 
2995 	return HRTIMER_NORESTART;
2996 }
2997 
2998 /**
2999  * stmmac_init_coalesce - init mitigation options.
3000  * @priv: driver private structure
3001  * Description:
3002  * This inits the coalesce parameters: i.e. timer rate,
3003  * timer handler and default threshold used for enabling the
3004  * interrupt on completion bit.
3005  */
3006 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3007 {
3008 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3009 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3010 	u32 chan;
3011 
3012 	for (chan = 0; chan < tx_channel_count; chan++) {
3013 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3014 
3015 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3016 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3017 
3018 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3019 		tx_q->txtimer.function = stmmac_tx_timer;
3020 	}
3021 
3022 	for (chan = 0; chan < rx_channel_count; chan++)
3023 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3024 }
3025 
3026 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3027 {
3028 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3029 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3030 	u32 chan;
3031 
3032 	/* set TX ring length */
3033 	for (chan = 0; chan < tx_channels_count; chan++)
3034 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3035 				       (priv->dma_conf.dma_tx_size - 1), chan);
3036 
3037 	/* set RX ring length */
3038 	for (chan = 0; chan < rx_channels_count; chan++)
3039 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3040 				       (priv->dma_conf.dma_rx_size - 1), chan);
3041 }
3042 
3043 /**
3044  *  stmmac_set_tx_queue_weight - Set TX queue weight
3045  *  @priv: driver private structure
3046  *  Description: It is used for setting TX queues weight
3047  */
3048 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3049 {
3050 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3051 	u32 weight;
3052 	u32 queue;
3053 
3054 	for (queue = 0; queue < tx_queues_count; queue++) {
3055 		weight = priv->plat->tx_queues_cfg[queue].weight;
3056 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3057 	}
3058 }
3059 
3060 /**
3061  *  stmmac_configure_cbs - Configure CBS in TX queue
3062  *  @priv: driver private structure
3063  *  Description: It is used for configuring CBS in AVB TX queues
3064  */
3065 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3066 {
3067 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3068 	u32 mode_to_use;
3069 	u32 queue;
3070 
3071 	/* queue 0 is reserved for legacy traffic */
3072 	for (queue = 1; queue < tx_queues_count; queue++) {
3073 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3074 		if (mode_to_use == MTL_QUEUE_DCB)
3075 			continue;
3076 
3077 		stmmac_config_cbs(priv, priv->hw,
3078 				priv->plat->tx_queues_cfg[queue].send_slope,
3079 				priv->plat->tx_queues_cfg[queue].idle_slope,
3080 				priv->plat->tx_queues_cfg[queue].high_credit,
3081 				priv->plat->tx_queues_cfg[queue].low_credit,
3082 				queue);
3083 	}
3084 }
3085 
3086 /**
3087  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3088  *  @priv: driver private structure
3089  *  Description: It is used for mapping RX queues to RX dma channels
3090  */
3091 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3092 {
3093 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3094 	u32 queue;
3095 	u32 chan;
3096 
3097 	for (queue = 0; queue < rx_queues_count; queue++) {
3098 		chan = priv->plat->rx_queues_cfg[queue].chan;
3099 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3100 	}
3101 }
3102 
3103 /**
3104  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3105  *  @priv: driver private structure
3106  *  Description: It is used for configuring the RX Queue Priority
3107  */
3108 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3109 {
3110 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3111 	u32 queue;
3112 	u32 prio;
3113 
3114 	for (queue = 0; queue < rx_queues_count; queue++) {
3115 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3116 			continue;
3117 
3118 		prio = priv->plat->rx_queues_cfg[queue].prio;
3119 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3120 	}
3121 }
3122 
3123 /**
3124  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3125  *  @priv: driver private structure
3126  *  Description: It is used for configuring the TX Queue Priority
3127  */
3128 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3129 {
3130 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3131 	u32 queue;
3132 	u32 prio;
3133 
3134 	for (queue = 0; queue < tx_queues_count; queue++) {
3135 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3136 			continue;
3137 
3138 		prio = priv->plat->tx_queues_cfg[queue].prio;
3139 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3140 	}
3141 }
3142 
3143 /**
3144  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3145  *  @priv: driver private structure
3146  *  Description: It is used for configuring the RX queue routing
3147  */
3148 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3149 {
3150 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3151 	u32 queue;
3152 	u8 packet;
3153 
3154 	for (queue = 0; queue < rx_queues_count; queue++) {
3155 		/* no specific packet type routing specified for the queue */
3156 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3157 			continue;
3158 
3159 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3160 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3161 	}
3162 }
3163 
3164 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3165 {
3166 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3167 		priv->rss.enable = false;
3168 		return;
3169 	}
3170 
3171 	if (priv->dev->features & NETIF_F_RXHASH)
3172 		priv->rss.enable = true;
3173 	else
3174 		priv->rss.enable = false;
3175 
3176 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3177 			     priv->plat->rx_queues_to_use);
3178 }
3179 
3180 /**
3181  *  stmmac_mtl_configuration - Configure MTL
3182  *  @priv: driver private structure
3183  *  Description: It is used for configurring MTL
3184  */
3185 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3186 {
3187 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3188 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3189 
3190 	if (tx_queues_count > 1)
3191 		stmmac_set_tx_queue_weight(priv);
3192 
3193 	/* Configure MTL RX algorithms */
3194 	if (rx_queues_count > 1)
3195 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3196 				priv->plat->rx_sched_algorithm);
3197 
3198 	/* Configure MTL TX algorithms */
3199 	if (tx_queues_count > 1)
3200 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3201 				priv->plat->tx_sched_algorithm);
3202 
3203 	/* Configure CBS in AVB TX queues */
3204 	if (tx_queues_count > 1)
3205 		stmmac_configure_cbs(priv);
3206 
3207 	/* Map RX MTL to DMA channels */
3208 	stmmac_rx_queue_dma_chan_map(priv);
3209 
3210 	/* Enable MAC RX Queues */
3211 	stmmac_mac_enable_rx_queues(priv);
3212 
3213 	/* Set RX priorities */
3214 	if (rx_queues_count > 1)
3215 		stmmac_mac_config_rx_queues_prio(priv);
3216 
3217 	/* Set TX priorities */
3218 	if (tx_queues_count > 1)
3219 		stmmac_mac_config_tx_queues_prio(priv);
3220 
3221 	/* Set RX routing */
3222 	if (rx_queues_count > 1)
3223 		stmmac_mac_config_rx_queues_routing(priv);
3224 
3225 	/* Receive Side Scaling */
3226 	if (rx_queues_count > 1)
3227 		stmmac_mac_config_rss(priv);
3228 }
3229 
3230 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3231 {
3232 	if (priv->dma_cap.asp) {
3233 		netdev_info(priv->dev, "Enabling Safety Features\n");
3234 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3235 					  priv->plat->safety_feat_cfg);
3236 	} else {
3237 		netdev_info(priv->dev, "No Safety Features support found\n");
3238 	}
3239 }
3240 
3241 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3242 {
3243 	char *name;
3244 
3245 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3246 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3247 
3248 	name = priv->wq_name;
3249 	sprintf(name, "%s-fpe", priv->dev->name);
3250 
3251 	priv->fpe_wq = create_singlethread_workqueue(name);
3252 	if (!priv->fpe_wq) {
3253 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3254 
3255 		return -ENOMEM;
3256 	}
3257 	netdev_info(priv->dev, "FPE workqueue start");
3258 
3259 	return 0;
3260 }
3261 
3262 /**
3263  * stmmac_hw_setup - setup mac in a usable state.
3264  *  @dev : pointer to the device structure.
3265  *  @ptp_register: register PTP if set
3266  *  Description:
3267  *  this is the main function to setup the HW in a usable state because the
3268  *  dma engine is reset, the core registers are configured (e.g. AXI,
3269  *  Checksum features, timers). The DMA is ready to start receiving and
3270  *  transmitting.
3271  *  Return value:
3272  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3273  *  file on failure.
3274  */
3275 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3276 {
3277 	struct stmmac_priv *priv = netdev_priv(dev);
3278 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3279 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3280 	bool sph_en;
3281 	u32 chan;
3282 	int ret;
3283 
3284 	/* DMA initialization and SW reset */
3285 	ret = stmmac_init_dma_engine(priv);
3286 	if (ret < 0) {
3287 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3288 			   __func__);
3289 		return ret;
3290 	}
3291 
3292 	/* Copy the MAC addr into the HW  */
3293 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3294 
3295 	/* PS and related bits will be programmed according to the speed */
3296 	if (priv->hw->pcs) {
3297 		int speed = priv->plat->mac_port_sel_speed;
3298 
3299 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3300 		    (speed == SPEED_1000)) {
3301 			priv->hw->ps = speed;
3302 		} else {
3303 			dev_warn(priv->device, "invalid port speed\n");
3304 			priv->hw->ps = 0;
3305 		}
3306 	}
3307 
3308 	/* Initialize the MAC Core */
3309 	stmmac_core_init(priv, priv->hw, dev);
3310 
3311 	/* Initialize MTL*/
3312 	stmmac_mtl_configuration(priv);
3313 
3314 	/* Initialize Safety Features */
3315 	stmmac_safety_feat_configuration(priv);
3316 
3317 	ret = stmmac_rx_ipc(priv, priv->hw);
3318 	if (!ret) {
3319 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3320 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3321 		priv->hw->rx_csum = 0;
3322 	}
3323 
3324 	/* Enable the MAC Rx/Tx */
3325 	stmmac_mac_set(priv, priv->ioaddr, true);
3326 
3327 	/* Set the HW DMA mode and the COE */
3328 	stmmac_dma_operation_mode(priv);
3329 
3330 	stmmac_mmc_setup(priv);
3331 
3332 	if (ptp_register) {
3333 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3334 		if (ret < 0)
3335 			netdev_warn(priv->dev,
3336 				    "failed to enable PTP reference clock: %pe\n",
3337 				    ERR_PTR(ret));
3338 	}
3339 
3340 	ret = stmmac_init_ptp(priv);
3341 	if (ret == -EOPNOTSUPP)
3342 		netdev_info(priv->dev, "PTP not supported by HW\n");
3343 	else if (ret)
3344 		netdev_warn(priv->dev, "PTP init failed\n");
3345 	else if (ptp_register)
3346 		stmmac_ptp_register(priv);
3347 
3348 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3349 
3350 	/* Convert the timer from msec to usec */
3351 	if (!priv->tx_lpi_timer)
3352 		priv->tx_lpi_timer = eee_timer * 1000;
3353 
3354 	if (priv->use_riwt) {
3355 		u32 queue;
3356 
3357 		for (queue = 0; queue < rx_cnt; queue++) {
3358 			if (!priv->rx_riwt[queue])
3359 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3360 
3361 			stmmac_rx_watchdog(priv, priv->ioaddr,
3362 					   priv->rx_riwt[queue], queue);
3363 		}
3364 	}
3365 
3366 	if (priv->hw->pcs)
3367 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3368 
3369 	/* set TX and RX rings length */
3370 	stmmac_set_rings_length(priv);
3371 
3372 	/* Enable TSO */
3373 	if (priv->tso) {
3374 		for (chan = 0; chan < tx_cnt; chan++) {
3375 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3376 
3377 			/* TSO and TBS cannot co-exist */
3378 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3379 				continue;
3380 
3381 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3382 		}
3383 	}
3384 
3385 	/* Enable Split Header */
3386 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3387 	for (chan = 0; chan < rx_cnt; chan++)
3388 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3389 
3390 
3391 	/* VLAN Tag Insertion */
3392 	if (priv->dma_cap.vlins)
3393 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3394 
3395 	/* TBS */
3396 	for (chan = 0; chan < tx_cnt; chan++) {
3397 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3398 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3399 
3400 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3401 	}
3402 
3403 	/* Configure real RX and TX queues */
3404 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3405 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3406 
3407 	/* Start the ball rolling... */
3408 	stmmac_start_all_dma(priv);
3409 
3410 	if (priv->dma_cap.fpesel) {
3411 		stmmac_fpe_start_wq(priv);
3412 
3413 		if (priv->plat->fpe_cfg->enable)
3414 			stmmac_fpe_handshake(priv, true);
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static void stmmac_hw_teardown(struct net_device *dev)
3421 {
3422 	struct stmmac_priv *priv = netdev_priv(dev);
3423 
3424 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3425 }
3426 
3427 static void stmmac_free_irq(struct net_device *dev,
3428 			    enum request_irq_err irq_err, int irq_idx)
3429 {
3430 	struct stmmac_priv *priv = netdev_priv(dev);
3431 	int j;
3432 
3433 	switch (irq_err) {
3434 	case REQ_IRQ_ERR_ALL:
3435 		irq_idx = priv->plat->tx_queues_to_use;
3436 		fallthrough;
3437 	case REQ_IRQ_ERR_TX:
3438 		for (j = irq_idx - 1; j >= 0; j--) {
3439 			if (priv->tx_irq[j] > 0) {
3440 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3441 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3442 			}
3443 		}
3444 		irq_idx = priv->plat->rx_queues_to_use;
3445 		fallthrough;
3446 	case REQ_IRQ_ERR_RX:
3447 		for (j = irq_idx - 1; j >= 0; j--) {
3448 			if (priv->rx_irq[j] > 0) {
3449 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3450 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3451 			}
3452 		}
3453 
3454 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3455 			free_irq(priv->sfty_ue_irq, dev);
3456 		fallthrough;
3457 	case REQ_IRQ_ERR_SFTY_UE:
3458 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3459 			free_irq(priv->sfty_ce_irq, dev);
3460 		fallthrough;
3461 	case REQ_IRQ_ERR_SFTY_CE:
3462 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3463 			free_irq(priv->lpi_irq, dev);
3464 		fallthrough;
3465 	case REQ_IRQ_ERR_LPI:
3466 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3467 			free_irq(priv->wol_irq, dev);
3468 		fallthrough;
3469 	case REQ_IRQ_ERR_WOL:
3470 		free_irq(dev->irq, dev);
3471 		fallthrough;
3472 	case REQ_IRQ_ERR_MAC:
3473 	case REQ_IRQ_ERR_NO:
3474 		/* If MAC IRQ request error, no more IRQ to free */
3475 		break;
3476 	}
3477 }
3478 
3479 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3480 {
3481 	struct stmmac_priv *priv = netdev_priv(dev);
3482 	enum request_irq_err irq_err;
3483 	cpumask_t cpu_mask;
3484 	int irq_idx = 0;
3485 	char *int_name;
3486 	int ret;
3487 	int i;
3488 
3489 	/* For common interrupt */
3490 	int_name = priv->int_name_mac;
3491 	sprintf(int_name, "%s:%s", dev->name, "mac");
3492 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3493 			  0, int_name, dev);
3494 	if (unlikely(ret < 0)) {
3495 		netdev_err(priv->dev,
3496 			   "%s: alloc mac MSI %d (error: %d)\n",
3497 			   __func__, dev->irq, ret);
3498 		irq_err = REQ_IRQ_ERR_MAC;
3499 		goto irq_error;
3500 	}
3501 
3502 	/* Request the Wake IRQ in case of another line
3503 	 * is used for WoL
3504 	 */
3505 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3506 		int_name = priv->int_name_wol;
3507 		sprintf(int_name, "%s:%s", dev->name, "wol");
3508 		ret = request_irq(priv->wol_irq,
3509 				  stmmac_mac_interrupt,
3510 				  0, int_name, dev);
3511 		if (unlikely(ret < 0)) {
3512 			netdev_err(priv->dev,
3513 				   "%s: alloc wol MSI %d (error: %d)\n",
3514 				   __func__, priv->wol_irq, ret);
3515 			irq_err = REQ_IRQ_ERR_WOL;
3516 			goto irq_error;
3517 		}
3518 	}
3519 
3520 	/* Request the LPI IRQ in case of another line
3521 	 * is used for LPI
3522 	 */
3523 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3524 		int_name = priv->int_name_lpi;
3525 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3526 		ret = request_irq(priv->lpi_irq,
3527 				  stmmac_mac_interrupt,
3528 				  0, int_name, dev);
3529 		if (unlikely(ret < 0)) {
3530 			netdev_err(priv->dev,
3531 				   "%s: alloc lpi MSI %d (error: %d)\n",
3532 				   __func__, priv->lpi_irq, ret);
3533 			irq_err = REQ_IRQ_ERR_LPI;
3534 			goto irq_error;
3535 		}
3536 	}
3537 
3538 	/* Request the Safety Feature Correctible Error line in
3539 	 * case of another line is used
3540 	 */
3541 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3542 		int_name = priv->int_name_sfty_ce;
3543 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3544 		ret = request_irq(priv->sfty_ce_irq,
3545 				  stmmac_safety_interrupt,
3546 				  0, int_name, dev);
3547 		if (unlikely(ret < 0)) {
3548 			netdev_err(priv->dev,
3549 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3550 				   __func__, priv->sfty_ce_irq, ret);
3551 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3552 			goto irq_error;
3553 		}
3554 	}
3555 
3556 	/* Request the Safety Feature Uncorrectible Error line in
3557 	 * case of another line is used
3558 	 */
3559 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3560 		int_name = priv->int_name_sfty_ue;
3561 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3562 		ret = request_irq(priv->sfty_ue_irq,
3563 				  stmmac_safety_interrupt,
3564 				  0, int_name, dev);
3565 		if (unlikely(ret < 0)) {
3566 			netdev_err(priv->dev,
3567 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3568 				   __func__, priv->sfty_ue_irq, ret);
3569 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3570 			goto irq_error;
3571 		}
3572 	}
3573 
3574 	/* Request Rx MSI irq */
3575 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3576 		if (i >= MTL_MAX_RX_QUEUES)
3577 			break;
3578 		if (priv->rx_irq[i] == 0)
3579 			continue;
3580 
3581 		int_name = priv->int_name_rx_irq[i];
3582 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3583 		ret = request_irq(priv->rx_irq[i],
3584 				  stmmac_msi_intr_rx,
3585 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3586 		if (unlikely(ret < 0)) {
3587 			netdev_err(priv->dev,
3588 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3589 				   __func__, i, priv->rx_irq[i], ret);
3590 			irq_err = REQ_IRQ_ERR_RX;
3591 			irq_idx = i;
3592 			goto irq_error;
3593 		}
3594 		cpumask_clear(&cpu_mask);
3595 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3596 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3597 	}
3598 
3599 	/* Request Tx MSI irq */
3600 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3601 		if (i >= MTL_MAX_TX_QUEUES)
3602 			break;
3603 		if (priv->tx_irq[i] == 0)
3604 			continue;
3605 
3606 		int_name = priv->int_name_tx_irq[i];
3607 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3608 		ret = request_irq(priv->tx_irq[i],
3609 				  stmmac_msi_intr_tx,
3610 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3611 		if (unlikely(ret < 0)) {
3612 			netdev_err(priv->dev,
3613 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3614 				   __func__, i, priv->tx_irq[i], ret);
3615 			irq_err = REQ_IRQ_ERR_TX;
3616 			irq_idx = i;
3617 			goto irq_error;
3618 		}
3619 		cpumask_clear(&cpu_mask);
3620 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3621 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3622 	}
3623 
3624 	return 0;
3625 
3626 irq_error:
3627 	stmmac_free_irq(dev, irq_err, irq_idx);
3628 	return ret;
3629 }
3630 
3631 static int stmmac_request_irq_single(struct net_device *dev)
3632 {
3633 	struct stmmac_priv *priv = netdev_priv(dev);
3634 	enum request_irq_err irq_err;
3635 	int ret;
3636 
3637 	ret = request_irq(dev->irq, stmmac_interrupt,
3638 			  IRQF_SHARED, dev->name, dev);
3639 	if (unlikely(ret < 0)) {
3640 		netdev_err(priv->dev,
3641 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3642 			   __func__, dev->irq, ret);
3643 		irq_err = REQ_IRQ_ERR_MAC;
3644 		goto irq_error;
3645 	}
3646 
3647 	/* Request the Wake IRQ in case of another line
3648 	 * is used for WoL
3649 	 */
3650 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3651 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3652 				  IRQF_SHARED, dev->name, dev);
3653 		if (unlikely(ret < 0)) {
3654 			netdev_err(priv->dev,
3655 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3656 				   __func__, priv->wol_irq, ret);
3657 			irq_err = REQ_IRQ_ERR_WOL;
3658 			goto irq_error;
3659 		}
3660 	}
3661 
3662 	/* Request the IRQ lines */
3663 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3664 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3665 				  IRQF_SHARED, dev->name, dev);
3666 		if (unlikely(ret < 0)) {
3667 			netdev_err(priv->dev,
3668 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3669 				   __func__, priv->lpi_irq, ret);
3670 			irq_err = REQ_IRQ_ERR_LPI;
3671 			goto irq_error;
3672 		}
3673 	}
3674 
3675 	return 0;
3676 
3677 irq_error:
3678 	stmmac_free_irq(dev, irq_err, 0);
3679 	return ret;
3680 }
3681 
3682 static int stmmac_request_irq(struct net_device *dev)
3683 {
3684 	struct stmmac_priv *priv = netdev_priv(dev);
3685 	int ret;
3686 
3687 	/* Request the IRQ lines */
3688 	if (priv->plat->multi_msi_en)
3689 		ret = stmmac_request_irq_multi_msi(dev);
3690 	else
3691 		ret = stmmac_request_irq_single(dev);
3692 
3693 	return ret;
3694 }
3695 
3696 /**
3697  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3698  *  @priv: driver private structure
3699  *  @mtu: MTU to setup the dma queue and buf with
3700  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3701  *  Allocate the Tx/Rx DMA queue and init them.
3702  *  Return value:
3703  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3704  */
3705 static struct stmmac_dma_conf *
3706 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3707 {
3708 	struct stmmac_dma_conf *dma_conf;
3709 	int chan, bfsize, ret;
3710 
3711 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3712 	if (!dma_conf) {
3713 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3714 			   __func__);
3715 		return ERR_PTR(-ENOMEM);
3716 	}
3717 
3718 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3719 	if (bfsize < 0)
3720 		bfsize = 0;
3721 
3722 	if (bfsize < BUF_SIZE_16KiB)
3723 		bfsize = stmmac_set_bfsize(mtu, 0);
3724 
3725 	dma_conf->dma_buf_sz = bfsize;
3726 	/* Chose the tx/rx size from the already defined one in the
3727 	 * priv struct. (if defined)
3728 	 */
3729 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3730 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3731 
3732 	if (!dma_conf->dma_tx_size)
3733 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3734 	if (!dma_conf->dma_rx_size)
3735 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3736 
3737 	/* Earlier check for TBS */
3738 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3739 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3740 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3741 
3742 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3743 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3744 	}
3745 
3746 	ret = alloc_dma_desc_resources(priv, dma_conf);
3747 	if (ret < 0) {
3748 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3749 			   __func__);
3750 		goto alloc_error;
3751 	}
3752 
3753 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3754 	if (ret < 0) {
3755 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3756 			   __func__);
3757 		goto init_error;
3758 	}
3759 
3760 	return dma_conf;
3761 
3762 init_error:
3763 	free_dma_desc_resources(priv, dma_conf);
3764 alloc_error:
3765 	kfree(dma_conf);
3766 	return ERR_PTR(ret);
3767 }
3768 
3769 /**
3770  *  __stmmac_open - open entry point of the driver
3771  *  @dev : pointer to the device structure.
3772  *  @dma_conf :  structure to take the dma data
3773  *  Description:
3774  *  This function is the open entry point of the driver.
3775  *  Return value:
3776  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3777  *  file on failure.
3778  */
3779 static int __stmmac_open(struct net_device *dev,
3780 			 struct stmmac_dma_conf *dma_conf)
3781 {
3782 	struct stmmac_priv *priv = netdev_priv(dev);
3783 	int mode = priv->plat->phy_interface;
3784 	u32 chan;
3785 	int ret;
3786 
3787 	ret = pm_runtime_resume_and_get(priv->device);
3788 	if (ret < 0)
3789 		return ret;
3790 
3791 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3792 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3793 	    (!priv->hw->xpcs ||
3794 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3795 		ret = stmmac_init_phy(dev);
3796 		if (ret) {
3797 			netdev_err(priv->dev,
3798 				   "%s: Cannot attach to PHY (error: %d)\n",
3799 				   __func__, ret);
3800 			goto init_phy_error;
3801 		}
3802 	}
3803 
3804 	/* Extra statistics */
3805 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3806 	priv->xstats.threshold = tc;
3807 
3808 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3809 
3810 	buf_sz = dma_conf->dma_buf_sz;
3811 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3812 
3813 	stmmac_reset_queues_param(priv);
3814 
3815 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3816 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3817 		if (ret < 0) {
3818 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3819 				   __func__);
3820 			goto init_error;
3821 		}
3822 	}
3823 
3824 	ret = stmmac_hw_setup(dev, true);
3825 	if (ret < 0) {
3826 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3827 		goto init_error;
3828 	}
3829 
3830 	stmmac_init_coalesce(priv);
3831 
3832 	phylink_start(priv->phylink);
3833 	/* We may have called phylink_speed_down before */
3834 	phylink_speed_up(priv->phylink);
3835 
3836 	ret = stmmac_request_irq(dev);
3837 	if (ret)
3838 		goto irq_error;
3839 
3840 	stmmac_enable_all_queues(priv);
3841 	netif_tx_start_all_queues(priv->dev);
3842 	stmmac_enable_all_dma_irq(priv);
3843 
3844 	return 0;
3845 
3846 irq_error:
3847 	phylink_stop(priv->phylink);
3848 
3849 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3850 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3851 
3852 	stmmac_hw_teardown(dev);
3853 init_error:
3854 	free_dma_desc_resources(priv, &priv->dma_conf);
3855 	phylink_disconnect_phy(priv->phylink);
3856 init_phy_error:
3857 	pm_runtime_put(priv->device);
3858 	return ret;
3859 }
3860 
3861 static int stmmac_open(struct net_device *dev)
3862 {
3863 	struct stmmac_priv *priv = netdev_priv(dev);
3864 	struct stmmac_dma_conf *dma_conf;
3865 	int ret;
3866 
3867 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3868 	if (IS_ERR(dma_conf))
3869 		return PTR_ERR(dma_conf);
3870 
3871 	ret = __stmmac_open(dev, dma_conf);
3872 	kfree(dma_conf);
3873 	return ret;
3874 }
3875 
3876 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3877 {
3878 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3879 
3880 	if (priv->fpe_wq)
3881 		destroy_workqueue(priv->fpe_wq);
3882 
3883 	netdev_info(priv->dev, "FPE workqueue stop");
3884 }
3885 
3886 /**
3887  *  stmmac_release - close entry point of the driver
3888  *  @dev : device pointer.
3889  *  Description:
3890  *  This is the stop entry point of the driver.
3891  */
3892 static int stmmac_release(struct net_device *dev)
3893 {
3894 	struct stmmac_priv *priv = netdev_priv(dev);
3895 	u32 chan;
3896 
3897 	if (device_may_wakeup(priv->device))
3898 		phylink_speed_down(priv->phylink, false);
3899 	/* Stop and disconnect the PHY */
3900 	phylink_stop(priv->phylink);
3901 	phylink_disconnect_phy(priv->phylink);
3902 
3903 	stmmac_disable_all_queues(priv);
3904 
3905 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3906 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3907 
3908 	netif_tx_disable(dev);
3909 
3910 	/* Free the IRQ lines */
3911 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3912 
3913 	if (priv->eee_enabled) {
3914 		priv->tx_path_in_lpi_mode = false;
3915 		del_timer_sync(&priv->eee_ctrl_timer);
3916 	}
3917 
3918 	/* Stop TX/RX DMA and clear the descriptors */
3919 	stmmac_stop_all_dma(priv);
3920 
3921 	/* Release and free the Rx/Tx resources */
3922 	free_dma_desc_resources(priv, &priv->dma_conf);
3923 
3924 	/* Disable the MAC Rx/Tx */
3925 	stmmac_mac_set(priv, priv->ioaddr, false);
3926 
3927 	/* Powerdown Serdes if there is */
3928 	if (priv->plat->serdes_powerdown)
3929 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3930 
3931 	netif_carrier_off(dev);
3932 
3933 	stmmac_release_ptp(priv);
3934 
3935 	pm_runtime_put(priv->device);
3936 
3937 	if (priv->dma_cap.fpesel)
3938 		stmmac_fpe_stop_wq(priv);
3939 
3940 	return 0;
3941 }
3942 
3943 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3944 			       struct stmmac_tx_queue *tx_q)
3945 {
3946 	u16 tag = 0x0, inner_tag = 0x0;
3947 	u32 inner_type = 0x0;
3948 	struct dma_desc *p;
3949 
3950 	if (!priv->dma_cap.vlins)
3951 		return false;
3952 	if (!skb_vlan_tag_present(skb))
3953 		return false;
3954 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3955 		inner_tag = skb_vlan_tag_get(skb);
3956 		inner_type = STMMAC_VLAN_INSERT;
3957 	}
3958 
3959 	tag = skb_vlan_tag_get(skb);
3960 
3961 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3962 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3963 	else
3964 		p = &tx_q->dma_tx[tx_q->cur_tx];
3965 
3966 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3967 		return false;
3968 
3969 	stmmac_set_tx_owner(priv, p);
3970 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3971 	return true;
3972 }
3973 
3974 /**
3975  *  stmmac_tso_allocator - close entry point of the driver
3976  *  @priv: driver private structure
3977  *  @des: buffer start address
3978  *  @total_len: total length to fill in descriptors
3979  *  @last_segment: condition for the last descriptor
3980  *  @queue: TX queue index
3981  *  Description:
3982  *  This function fills descriptor and request new descriptors according to
3983  *  buffer length to fill
3984  */
3985 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3986 				 int total_len, bool last_segment, u32 queue)
3987 {
3988 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3989 	struct dma_desc *desc;
3990 	u32 buff_size;
3991 	int tmp_len;
3992 
3993 	tmp_len = total_len;
3994 
3995 	while (tmp_len > 0) {
3996 		dma_addr_t curr_addr;
3997 
3998 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3999 						priv->dma_conf.dma_tx_size);
4000 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4001 
4002 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4003 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4004 		else
4005 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4006 
4007 		curr_addr = des + (total_len - tmp_len);
4008 		if (priv->dma_cap.addr64 <= 32)
4009 			desc->des0 = cpu_to_le32(curr_addr);
4010 		else
4011 			stmmac_set_desc_addr(priv, desc, curr_addr);
4012 
4013 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4014 			    TSO_MAX_BUFF_SIZE : tmp_len;
4015 
4016 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4017 				0, 1,
4018 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4019 				0, 0);
4020 
4021 		tmp_len -= TSO_MAX_BUFF_SIZE;
4022 	}
4023 }
4024 
4025 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4026 {
4027 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4028 	int desc_size;
4029 
4030 	if (likely(priv->extend_desc))
4031 		desc_size = sizeof(struct dma_extended_desc);
4032 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4033 		desc_size = sizeof(struct dma_edesc);
4034 	else
4035 		desc_size = sizeof(struct dma_desc);
4036 
4037 	/* The own bit must be the latest setting done when prepare the
4038 	 * descriptor and then barrier is needed to make sure that
4039 	 * all is coherent before granting the DMA engine.
4040 	 */
4041 	wmb();
4042 
4043 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4044 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4045 }
4046 
4047 /**
4048  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4049  *  @skb : the socket buffer
4050  *  @dev : device pointer
4051  *  Description: this is the transmit function that is called on TSO frames
4052  *  (support available on GMAC4 and newer chips).
4053  *  Diagram below show the ring programming in case of TSO frames:
4054  *
4055  *  First Descriptor
4056  *   --------
4057  *   | DES0 |---> buffer1 = L2/L3/L4 header
4058  *   | DES1 |---> TCP Payload (can continue on next descr...)
4059  *   | DES2 |---> buffer 1 and 2 len
4060  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4061  *   --------
4062  *	|
4063  *     ...
4064  *	|
4065  *   --------
4066  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4067  *   | DES1 | --|
4068  *   | DES2 | --> buffer 1 and 2 len
4069  *   | DES3 |
4070  *   --------
4071  *
4072  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4073  */
4074 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4075 {
4076 	struct dma_desc *desc, *first, *mss_desc = NULL;
4077 	struct stmmac_priv *priv = netdev_priv(dev);
4078 	int nfrags = skb_shinfo(skb)->nr_frags;
4079 	u32 queue = skb_get_queue_mapping(skb);
4080 	unsigned int first_entry, tx_packets;
4081 	int tmp_pay_len = 0, first_tx;
4082 	struct stmmac_tx_queue *tx_q;
4083 	bool has_vlan, set_ic;
4084 	u8 proto_hdr_len, hdr;
4085 	u32 pay_len, mss;
4086 	dma_addr_t des;
4087 	int i;
4088 
4089 	tx_q = &priv->dma_conf.tx_queue[queue];
4090 	first_tx = tx_q->cur_tx;
4091 
4092 	/* Compute header lengths */
4093 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4094 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4095 		hdr = sizeof(struct udphdr);
4096 	} else {
4097 		proto_hdr_len = skb_tcp_all_headers(skb);
4098 		hdr = tcp_hdrlen(skb);
4099 	}
4100 
4101 	/* Desc availability based on threshold should be enough safe */
4102 	if (unlikely(stmmac_tx_avail(priv, queue) <
4103 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4104 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4105 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4106 								queue));
4107 			/* This is a hard error, log it. */
4108 			netdev_err(priv->dev,
4109 				   "%s: Tx Ring full when queue awake\n",
4110 				   __func__);
4111 		}
4112 		return NETDEV_TX_BUSY;
4113 	}
4114 
4115 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4116 
4117 	mss = skb_shinfo(skb)->gso_size;
4118 
4119 	/* set new MSS value if needed */
4120 	if (mss != tx_q->mss) {
4121 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4122 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4123 		else
4124 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4125 
4126 		stmmac_set_mss(priv, mss_desc, mss);
4127 		tx_q->mss = mss;
4128 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4129 						priv->dma_conf.dma_tx_size);
4130 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4131 	}
4132 
4133 	if (netif_msg_tx_queued(priv)) {
4134 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4135 			__func__, hdr, proto_hdr_len, pay_len, mss);
4136 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4137 			skb->data_len);
4138 	}
4139 
4140 	/* Check if VLAN can be inserted by HW */
4141 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4142 
4143 	first_entry = tx_q->cur_tx;
4144 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4145 
4146 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4147 		desc = &tx_q->dma_entx[first_entry].basic;
4148 	else
4149 		desc = &tx_q->dma_tx[first_entry];
4150 	first = desc;
4151 
4152 	if (has_vlan)
4153 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4154 
4155 	/* first descriptor: fill Headers on Buf1 */
4156 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4157 			     DMA_TO_DEVICE);
4158 	if (dma_mapping_error(priv->device, des))
4159 		goto dma_map_err;
4160 
4161 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4162 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4163 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4164 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4165 
4166 	if (priv->dma_cap.addr64 <= 32) {
4167 		first->des0 = cpu_to_le32(des);
4168 
4169 		/* Fill start of payload in buff2 of first descriptor */
4170 		if (pay_len)
4171 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4172 
4173 		/* If needed take extra descriptors to fill the remaining payload */
4174 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4175 	} else {
4176 		stmmac_set_desc_addr(priv, first, des);
4177 		tmp_pay_len = pay_len;
4178 		des += proto_hdr_len;
4179 		pay_len = 0;
4180 	}
4181 
4182 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4183 
4184 	/* Prepare fragments */
4185 	for (i = 0; i < nfrags; i++) {
4186 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4187 
4188 		des = skb_frag_dma_map(priv->device, frag, 0,
4189 				       skb_frag_size(frag),
4190 				       DMA_TO_DEVICE);
4191 		if (dma_mapping_error(priv->device, des))
4192 			goto dma_map_err;
4193 
4194 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4195 				     (i == nfrags - 1), queue);
4196 
4197 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4198 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4199 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4200 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4201 	}
4202 
4203 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4204 
4205 	/* Only the last descriptor gets to point to the skb. */
4206 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4207 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4208 
4209 	/* Manage tx mitigation */
4210 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4211 	tx_q->tx_count_frames += tx_packets;
4212 
4213 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4214 		set_ic = true;
4215 	else if (!priv->tx_coal_frames[queue])
4216 		set_ic = false;
4217 	else if (tx_packets > priv->tx_coal_frames[queue])
4218 		set_ic = true;
4219 	else if ((tx_q->tx_count_frames %
4220 		  priv->tx_coal_frames[queue]) < tx_packets)
4221 		set_ic = true;
4222 	else
4223 		set_ic = false;
4224 
4225 	if (set_ic) {
4226 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4227 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4228 		else
4229 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4230 
4231 		tx_q->tx_count_frames = 0;
4232 		stmmac_set_tx_ic(priv, desc);
4233 		priv->xstats.tx_set_ic_bit++;
4234 	}
4235 
4236 	/* We've used all descriptors we need for this skb, however,
4237 	 * advance cur_tx so that it references a fresh descriptor.
4238 	 * ndo_start_xmit will fill this descriptor the next time it's
4239 	 * called and stmmac_tx_clean may clean up to this descriptor.
4240 	 */
4241 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4242 
4243 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4244 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4245 			  __func__);
4246 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4247 	}
4248 
4249 	dev->stats.tx_bytes += skb->len;
4250 	priv->xstats.tx_tso_frames++;
4251 	priv->xstats.tx_tso_nfrags += nfrags;
4252 
4253 	if (priv->sarc_type)
4254 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4255 
4256 	skb_tx_timestamp(skb);
4257 
4258 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4259 		     priv->hwts_tx_en)) {
4260 		/* declare that device is doing timestamping */
4261 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4262 		stmmac_enable_tx_timestamp(priv, first);
4263 	}
4264 
4265 	/* Complete the first descriptor before granting the DMA */
4266 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4267 			proto_hdr_len,
4268 			pay_len,
4269 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4270 			hdr / 4, (skb->len - proto_hdr_len));
4271 
4272 	/* If context desc is used to change MSS */
4273 	if (mss_desc) {
4274 		/* Make sure that first descriptor has been completely
4275 		 * written, including its own bit. This is because MSS is
4276 		 * actually before first descriptor, so we need to make
4277 		 * sure that MSS's own bit is the last thing written.
4278 		 */
4279 		dma_wmb();
4280 		stmmac_set_tx_owner(priv, mss_desc);
4281 	}
4282 
4283 	if (netif_msg_pktdata(priv)) {
4284 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4285 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4286 			tx_q->cur_tx, first, nfrags);
4287 		pr_info(">>> frame to be transmitted: ");
4288 		print_pkt(skb->data, skb_headlen(skb));
4289 	}
4290 
4291 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4292 
4293 	stmmac_flush_tx_descriptors(priv, queue);
4294 	stmmac_tx_timer_arm(priv, queue);
4295 
4296 	return NETDEV_TX_OK;
4297 
4298 dma_map_err:
4299 	dev_err(priv->device, "Tx dma map failed\n");
4300 	dev_kfree_skb(skb);
4301 	priv->dev->stats.tx_dropped++;
4302 	return NETDEV_TX_OK;
4303 }
4304 
4305 /**
4306  *  stmmac_xmit - Tx entry point of the driver
4307  *  @skb : the socket buffer
4308  *  @dev : device pointer
4309  *  Description : this is the tx entry point of the driver.
4310  *  It programs the chain or the ring and supports oversized frames
4311  *  and SG feature.
4312  */
4313 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4314 {
4315 	unsigned int first_entry, tx_packets, enh_desc;
4316 	struct stmmac_priv *priv = netdev_priv(dev);
4317 	unsigned int nopaged_len = skb_headlen(skb);
4318 	int i, csum_insertion = 0, is_jumbo = 0;
4319 	u32 queue = skb_get_queue_mapping(skb);
4320 	int nfrags = skb_shinfo(skb)->nr_frags;
4321 	int gso = skb_shinfo(skb)->gso_type;
4322 	struct dma_edesc *tbs_desc = NULL;
4323 	struct dma_desc *desc, *first;
4324 	struct stmmac_tx_queue *tx_q;
4325 	bool has_vlan, set_ic;
4326 	int entry, first_tx;
4327 	dma_addr_t des;
4328 
4329 	tx_q = &priv->dma_conf.tx_queue[queue];
4330 	first_tx = tx_q->cur_tx;
4331 
4332 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4333 		stmmac_disable_eee_mode(priv);
4334 
4335 	/* Manage oversized TCP frames for GMAC4 device */
4336 	if (skb_is_gso(skb) && priv->tso) {
4337 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4338 			return stmmac_tso_xmit(skb, dev);
4339 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4340 			return stmmac_tso_xmit(skb, dev);
4341 	}
4342 
4343 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4344 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4345 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4346 								queue));
4347 			/* This is a hard error, log it. */
4348 			netdev_err(priv->dev,
4349 				   "%s: Tx Ring full when queue awake\n",
4350 				   __func__);
4351 		}
4352 		return NETDEV_TX_BUSY;
4353 	}
4354 
4355 	/* Check if VLAN can be inserted by HW */
4356 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4357 
4358 	entry = tx_q->cur_tx;
4359 	first_entry = entry;
4360 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4361 
4362 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4363 
4364 	if (likely(priv->extend_desc))
4365 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4366 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4367 		desc = &tx_q->dma_entx[entry].basic;
4368 	else
4369 		desc = tx_q->dma_tx + entry;
4370 
4371 	first = desc;
4372 
4373 	if (has_vlan)
4374 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4375 
4376 	enh_desc = priv->plat->enh_desc;
4377 	/* To program the descriptors according to the size of the frame */
4378 	if (enh_desc)
4379 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4380 
4381 	if (unlikely(is_jumbo)) {
4382 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4383 		if (unlikely(entry < 0) && (entry != -EINVAL))
4384 			goto dma_map_err;
4385 	}
4386 
4387 	for (i = 0; i < nfrags; i++) {
4388 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4389 		int len = skb_frag_size(frag);
4390 		bool last_segment = (i == (nfrags - 1));
4391 
4392 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4393 		WARN_ON(tx_q->tx_skbuff[entry]);
4394 
4395 		if (likely(priv->extend_desc))
4396 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4397 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4398 			desc = &tx_q->dma_entx[entry].basic;
4399 		else
4400 			desc = tx_q->dma_tx + entry;
4401 
4402 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4403 				       DMA_TO_DEVICE);
4404 		if (dma_mapping_error(priv->device, des))
4405 			goto dma_map_err; /* should reuse desc w/o issues */
4406 
4407 		tx_q->tx_skbuff_dma[entry].buf = des;
4408 
4409 		stmmac_set_desc_addr(priv, desc, des);
4410 
4411 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4412 		tx_q->tx_skbuff_dma[entry].len = len;
4413 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4414 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4415 
4416 		/* Prepare the descriptor and set the own bit too */
4417 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4418 				priv->mode, 1, last_segment, skb->len);
4419 	}
4420 
4421 	/* Only the last descriptor gets to point to the skb. */
4422 	tx_q->tx_skbuff[entry] = skb;
4423 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4424 
4425 	/* According to the coalesce parameter the IC bit for the latest
4426 	 * segment is reset and the timer re-started to clean the tx status.
4427 	 * This approach takes care about the fragments: desc is the first
4428 	 * element in case of no SG.
4429 	 */
4430 	tx_packets = (entry + 1) - first_tx;
4431 	tx_q->tx_count_frames += tx_packets;
4432 
4433 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4434 		set_ic = true;
4435 	else if (!priv->tx_coal_frames[queue])
4436 		set_ic = false;
4437 	else if (tx_packets > priv->tx_coal_frames[queue])
4438 		set_ic = true;
4439 	else if ((tx_q->tx_count_frames %
4440 		  priv->tx_coal_frames[queue]) < tx_packets)
4441 		set_ic = true;
4442 	else
4443 		set_ic = false;
4444 
4445 	if (set_ic) {
4446 		if (likely(priv->extend_desc))
4447 			desc = &tx_q->dma_etx[entry].basic;
4448 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4449 			desc = &tx_q->dma_entx[entry].basic;
4450 		else
4451 			desc = &tx_q->dma_tx[entry];
4452 
4453 		tx_q->tx_count_frames = 0;
4454 		stmmac_set_tx_ic(priv, desc);
4455 		priv->xstats.tx_set_ic_bit++;
4456 	}
4457 
4458 	/* We've used all descriptors we need for this skb, however,
4459 	 * advance cur_tx so that it references a fresh descriptor.
4460 	 * ndo_start_xmit will fill this descriptor the next time it's
4461 	 * called and stmmac_tx_clean may clean up to this descriptor.
4462 	 */
4463 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4464 	tx_q->cur_tx = entry;
4465 
4466 	if (netif_msg_pktdata(priv)) {
4467 		netdev_dbg(priv->dev,
4468 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4469 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4470 			   entry, first, nfrags);
4471 
4472 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4473 		print_pkt(skb->data, skb->len);
4474 	}
4475 
4476 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4477 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4478 			  __func__);
4479 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4480 	}
4481 
4482 	dev->stats.tx_bytes += skb->len;
4483 
4484 	if (priv->sarc_type)
4485 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4486 
4487 	skb_tx_timestamp(skb);
4488 
4489 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4490 	 * problems because all the descriptors are actually ready to be
4491 	 * passed to the DMA engine.
4492 	 */
4493 	if (likely(!is_jumbo)) {
4494 		bool last_segment = (nfrags == 0);
4495 
4496 		des = dma_map_single(priv->device, skb->data,
4497 				     nopaged_len, DMA_TO_DEVICE);
4498 		if (dma_mapping_error(priv->device, des))
4499 			goto dma_map_err;
4500 
4501 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4502 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4503 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4504 
4505 		stmmac_set_desc_addr(priv, first, des);
4506 
4507 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4508 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4509 
4510 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4511 			     priv->hwts_tx_en)) {
4512 			/* declare that device is doing timestamping */
4513 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4514 			stmmac_enable_tx_timestamp(priv, first);
4515 		}
4516 
4517 		/* Prepare the first descriptor setting the OWN bit too */
4518 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4519 				csum_insertion, priv->mode, 0, last_segment,
4520 				skb->len);
4521 	}
4522 
4523 	if (tx_q->tbs & STMMAC_TBS_EN) {
4524 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4525 
4526 		tbs_desc = &tx_q->dma_entx[first_entry];
4527 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4528 	}
4529 
4530 	stmmac_set_tx_owner(priv, first);
4531 
4532 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4533 
4534 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4535 
4536 	stmmac_flush_tx_descriptors(priv, queue);
4537 	stmmac_tx_timer_arm(priv, queue);
4538 
4539 	return NETDEV_TX_OK;
4540 
4541 dma_map_err:
4542 	netdev_err(priv->dev, "Tx DMA map failed\n");
4543 	dev_kfree_skb(skb);
4544 	priv->dev->stats.tx_dropped++;
4545 	return NETDEV_TX_OK;
4546 }
4547 
4548 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4549 {
4550 	struct vlan_ethhdr *veth;
4551 	__be16 vlan_proto;
4552 	u16 vlanid;
4553 
4554 	veth = (struct vlan_ethhdr *)skb->data;
4555 	vlan_proto = veth->h_vlan_proto;
4556 
4557 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4558 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4559 	    (vlan_proto == htons(ETH_P_8021AD) &&
4560 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4561 		/* pop the vlan tag */
4562 		vlanid = ntohs(veth->h_vlan_TCI);
4563 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4564 		skb_pull(skb, VLAN_HLEN);
4565 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4566 	}
4567 }
4568 
4569 /**
4570  * stmmac_rx_refill - refill used skb preallocated buffers
4571  * @priv: driver private structure
4572  * @queue: RX queue index
4573  * Description : this is to reallocate the skb for the reception process
4574  * that is based on zero-copy.
4575  */
4576 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4577 {
4578 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4579 	int dirty = stmmac_rx_dirty(priv, queue);
4580 	unsigned int entry = rx_q->dirty_rx;
4581 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4582 
4583 	if (priv->dma_cap.addr64 <= 32)
4584 		gfp |= GFP_DMA32;
4585 
4586 	while (dirty-- > 0) {
4587 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4588 		struct dma_desc *p;
4589 		bool use_rx_wd;
4590 
4591 		if (priv->extend_desc)
4592 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4593 		else
4594 			p = rx_q->dma_rx + entry;
4595 
4596 		if (!buf->page) {
4597 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4598 			if (!buf->page)
4599 				break;
4600 		}
4601 
4602 		if (priv->sph && !buf->sec_page) {
4603 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4604 			if (!buf->sec_page)
4605 				break;
4606 
4607 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4608 		}
4609 
4610 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4611 
4612 		stmmac_set_desc_addr(priv, p, buf->addr);
4613 		if (priv->sph)
4614 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4615 		else
4616 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4617 		stmmac_refill_desc3(priv, rx_q, p);
4618 
4619 		rx_q->rx_count_frames++;
4620 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4621 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4622 			rx_q->rx_count_frames = 0;
4623 
4624 		use_rx_wd = !priv->rx_coal_frames[queue];
4625 		use_rx_wd |= rx_q->rx_count_frames > 0;
4626 		if (!priv->use_riwt)
4627 			use_rx_wd = false;
4628 
4629 		dma_wmb();
4630 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4631 
4632 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4633 	}
4634 	rx_q->dirty_rx = entry;
4635 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4636 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4637 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4638 }
4639 
4640 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4641 				       struct dma_desc *p,
4642 				       int status, unsigned int len)
4643 {
4644 	unsigned int plen = 0, hlen = 0;
4645 	int coe = priv->hw->rx_csum;
4646 
4647 	/* Not first descriptor, buffer is always zero */
4648 	if (priv->sph && len)
4649 		return 0;
4650 
4651 	/* First descriptor, get split header length */
4652 	stmmac_get_rx_header_len(priv, p, &hlen);
4653 	if (priv->sph && hlen) {
4654 		priv->xstats.rx_split_hdr_pkt_n++;
4655 		return hlen;
4656 	}
4657 
4658 	/* First descriptor, not last descriptor and not split header */
4659 	if (status & rx_not_ls)
4660 		return priv->dma_conf.dma_buf_sz;
4661 
4662 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4663 
4664 	/* First descriptor and last descriptor and not split header */
4665 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4666 }
4667 
4668 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4669 				       struct dma_desc *p,
4670 				       int status, unsigned int len)
4671 {
4672 	int coe = priv->hw->rx_csum;
4673 	unsigned int plen = 0;
4674 
4675 	/* Not split header, buffer is not available */
4676 	if (!priv->sph)
4677 		return 0;
4678 
4679 	/* Not last descriptor */
4680 	if (status & rx_not_ls)
4681 		return priv->dma_conf.dma_buf_sz;
4682 
4683 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4684 
4685 	/* Last descriptor */
4686 	return plen - len;
4687 }
4688 
4689 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4690 				struct xdp_frame *xdpf, bool dma_map)
4691 {
4692 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4693 	unsigned int entry = tx_q->cur_tx;
4694 	struct dma_desc *tx_desc;
4695 	dma_addr_t dma_addr;
4696 	bool set_ic;
4697 
4698 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4699 		return STMMAC_XDP_CONSUMED;
4700 
4701 	if (likely(priv->extend_desc))
4702 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4703 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4704 		tx_desc = &tx_q->dma_entx[entry].basic;
4705 	else
4706 		tx_desc = tx_q->dma_tx + entry;
4707 
4708 	if (dma_map) {
4709 		dma_addr = dma_map_single(priv->device, xdpf->data,
4710 					  xdpf->len, DMA_TO_DEVICE);
4711 		if (dma_mapping_error(priv->device, dma_addr))
4712 			return STMMAC_XDP_CONSUMED;
4713 
4714 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4715 	} else {
4716 		struct page *page = virt_to_page(xdpf->data);
4717 
4718 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4719 			   xdpf->headroom;
4720 		dma_sync_single_for_device(priv->device, dma_addr,
4721 					   xdpf->len, DMA_BIDIRECTIONAL);
4722 
4723 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4724 	}
4725 
4726 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4727 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4728 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4729 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4730 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4731 
4732 	tx_q->xdpf[entry] = xdpf;
4733 
4734 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4735 
4736 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4737 			       true, priv->mode, true, true,
4738 			       xdpf->len);
4739 
4740 	tx_q->tx_count_frames++;
4741 
4742 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4743 		set_ic = true;
4744 	else
4745 		set_ic = false;
4746 
4747 	if (set_ic) {
4748 		tx_q->tx_count_frames = 0;
4749 		stmmac_set_tx_ic(priv, tx_desc);
4750 		priv->xstats.tx_set_ic_bit++;
4751 	}
4752 
4753 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4754 
4755 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4756 	tx_q->cur_tx = entry;
4757 
4758 	return STMMAC_XDP_TX;
4759 }
4760 
4761 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4762 				   int cpu)
4763 {
4764 	int index = cpu;
4765 
4766 	if (unlikely(index < 0))
4767 		index = 0;
4768 
4769 	while (index >= priv->plat->tx_queues_to_use)
4770 		index -= priv->plat->tx_queues_to_use;
4771 
4772 	return index;
4773 }
4774 
4775 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4776 				struct xdp_buff *xdp)
4777 {
4778 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4779 	int cpu = smp_processor_id();
4780 	struct netdev_queue *nq;
4781 	int queue;
4782 	int res;
4783 
4784 	if (unlikely(!xdpf))
4785 		return STMMAC_XDP_CONSUMED;
4786 
4787 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4788 	nq = netdev_get_tx_queue(priv->dev, queue);
4789 
4790 	__netif_tx_lock(nq, cpu);
4791 	/* Avoids TX time-out as we are sharing with slow path */
4792 	txq_trans_cond_update(nq);
4793 
4794 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4795 	if (res == STMMAC_XDP_TX)
4796 		stmmac_flush_tx_descriptors(priv, queue);
4797 
4798 	__netif_tx_unlock(nq);
4799 
4800 	return res;
4801 }
4802 
4803 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4804 				 struct bpf_prog *prog,
4805 				 struct xdp_buff *xdp)
4806 {
4807 	u32 act;
4808 	int res;
4809 
4810 	act = bpf_prog_run_xdp(prog, xdp);
4811 	switch (act) {
4812 	case XDP_PASS:
4813 		res = STMMAC_XDP_PASS;
4814 		break;
4815 	case XDP_TX:
4816 		res = stmmac_xdp_xmit_back(priv, xdp);
4817 		break;
4818 	case XDP_REDIRECT:
4819 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4820 			res = STMMAC_XDP_CONSUMED;
4821 		else
4822 			res = STMMAC_XDP_REDIRECT;
4823 		break;
4824 	default:
4825 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4826 		fallthrough;
4827 	case XDP_ABORTED:
4828 		trace_xdp_exception(priv->dev, prog, act);
4829 		fallthrough;
4830 	case XDP_DROP:
4831 		res = STMMAC_XDP_CONSUMED;
4832 		break;
4833 	}
4834 
4835 	return res;
4836 }
4837 
4838 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4839 					   struct xdp_buff *xdp)
4840 {
4841 	struct bpf_prog *prog;
4842 	int res;
4843 
4844 	prog = READ_ONCE(priv->xdp_prog);
4845 	if (!prog) {
4846 		res = STMMAC_XDP_PASS;
4847 		goto out;
4848 	}
4849 
4850 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4851 out:
4852 	return ERR_PTR(-res);
4853 }
4854 
4855 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4856 				   int xdp_status)
4857 {
4858 	int cpu = smp_processor_id();
4859 	int queue;
4860 
4861 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4862 
4863 	if (xdp_status & STMMAC_XDP_TX)
4864 		stmmac_tx_timer_arm(priv, queue);
4865 
4866 	if (xdp_status & STMMAC_XDP_REDIRECT)
4867 		xdp_do_flush();
4868 }
4869 
4870 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4871 					       struct xdp_buff *xdp)
4872 {
4873 	unsigned int metasize = xdp->data - xdp->data_meta;
4874 	unsigned int datasize = xdp->data_end - xdp->data;
4875 	struct sk_buff *skb;
4876 
4877 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4878 			       xdp->data_end - xdp->data_hard_start,
4879 			       GFP_ATOMIC | __GFP_NOWARN);
4880 	if (unlikely(!skb))
4881 		return NULL;
4882 
4883 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4884 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4885 	if (metasize)
4886 		skb_metadata_set(skb, metasize);
4887 
4888 	return skb;
4889 }
4890 
4891 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4892 				   struct dma_desc *p, struct dma_desc *np,
4893 				   struct xdp_buff *xdp)
4894 {
4895 	struct stmmac_channel *ch = &priv->channel[queue];
4896 	unsigned int len = xdp->data_end - xdp->data;
4897 	enum pkt_hash_types hash_type;
4898 	int coe = priv->hw->rx_csum;
4899 	struct sk_buff *skb;
4900 	u32 hash;
4901 
4902 	skb = stmmac_construct_skb_zc(ch, xdp);
4903 	if (!skb) {
4904 		priv->dev->stats.rx_dropped++;
4905 		return;
4906 	}
4907 
4908 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4909 	stmmac_rx_vlan(priv->dev, skb);
4910 	skb->protocol = eth_type_trans(skb, priv->dev);
4911 
4912 	if (unlikely(!coe))
4913 		skb_checksum_none_assert(skb);
4914 	else
4915 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4916 
4917 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4918 		skb_set_hash(skb, hash, hash_type);
4919 
4920 	skb_record_rx_queue(skb, queue);
4921 	napi_gro_receive(&ch->rxtx_napi, skb);
4922 
4923 	priv->dev->stats.rx_packets++;
4924 	priv->dev->stats.rx_bytes += len;
4925 }
4926 
4927 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4928 {
4929 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4930 	unsigned int entry = rx_q->dirty_rx;
4931 	struct dma_desc *rx_desc = NULL;
4932 	bool ret = true;
4933 
4934 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4935 
4936 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4937 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4938 		dma_addr_t dma_addr;
4939 		bool use_rx_wd;
4940 
4941 		if (!buf->xdp) {
4942 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4943 			if (!buf->xdp) {
4944 				ret = false;
4945 				break;
4946 			}
4947 		}
4948 
4949 		if (priv->extend_desc)
4950 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4951 		else
4952 			rx_desc = rx_q->dma_rx + entry;
4953 
4954 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4955 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4956 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4957 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4958 
4959 		rx_q->rx_count_frames++;
4960 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4961 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4962 			rx_q->rx_count_frames = 0;
4963 
4964 		use_rx_wd = !priv->rx_coal_frames[queue];
4965 		use_rx_wd |= rx_q->rx_count_frames > 0;
4966 		if (!priv->use_riwt)
4967 			use_rx_wd = false;
4968 
4969 		dma_wmb();
4970 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4971 
4972 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4973 	}
4974 
4975 	if (rx_desc) {
4976 		rx_q->dirty_rx = entry;
4977 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4978 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4979 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4980 	}
4981 
4982 	return ret;
4983 }
4984 
4985 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4986 {
4987 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4988 	unsigned int count = 0, error = 0, len = 0;
4989 	int dirty = stmmac_rx_dirty(priv, queue);
4990 	unsigned int next_entry = rx_q->cur_rx;
4991 	unsigned int desc_size;
4992 	struct bpf_prog *prog;
4993 	bool failure = false;
4994 	int xdp_status = 0;
4995 	int status = 0;
4996 
4997 	if (netif_msg_rx_status(priv)) {
4998 		void *rx_head;
4999 
5000 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5001 		if (priv->extend_desc) {
5002 			rx_head = (void *)rx_q->dma_erx;
5003 			desc_size = sizeof(struct dma_extended_desc);
5004 		} else {
5005 			rx_head = (void *)rx_q->dma_rx;
5006 			desc_size = sizeof(struct dma_desc);
5007 		}
5008 
5009 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5010 				    rx_q->dma_rx_phy, desc_size);
5011 	}
5012 	while (count < limit) {
5013 		struct stmmac_rx_buffer *buf;
5014 		unsigned int buf1_len = 0;
5015 		struct dma_desc *np, *p;
5016 		int entry;
5017 		int res;
5018 
5019 		if (!count && rx_q->state_saved) {
5020 			error = rx_q->state.error;
5021 			len = rx_q->state.len;
5022 		} else {
5023 			rx_q->state_saved = false;
5024 			error = 0;
5025 			len = 0;
5026 		}
5027 
5028 		if (count >= limit)
5029 			break;
5030 
5031 read_again:
5032 		buf1_len = 0;
5033 		entry = next_entry;
5034 		buf = &rx_q->buf_pool[entry];
5035 
5036 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5037 			failure = failure ||
5038 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5039 			dirty = 0;
5040 		}
5041 
5042 		if (priv->extend_desc)
5043 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5044 		else
5045 			p = rx_q->dma_rx + entry;
5046 
5047 		/* read the status of the incoming frame */
5048 		status = stmmac_rx_status(priv, &priv->dev->stats,
5049 					  &priv->xstats, p);
5050 		/* check if managed by the DMA otherwise go ahead */
5051 		if (unlikely(status & dma_own))
5052 			break;
5053 
5054 		/* Prefetch the next RX descriptor */
5055 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5056 						priv->dma_conf.dma_rx_size);
5057 		next_entry = rx_q->cur_rx;
5058 
5059 		if (priv->extend_desc)
5060 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5061 		else
5062 			np = rx_q->dma_rx + next_entry;
5063 
5064 		prefetch(np);
5065 
5066 		/* Ensure a valid XSK buffer before proceed */
5067 		if (!buf->xdp)
5068 			break;
5069 
5070 		if (priv->extend_desc)
5071 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5072 						  &priv->xstats,
5073 						  rx_q->dma_erx + entry);
5074 		if (unlikely(status == discard_frame)) {
5075 			xsk_buff_free(buf->xdp);
5076 			buf->xdp = NULL;
5077 			dirty++;
5078 			error = 1;
5079 			if (!priv->hwts_rx_en)
5080 				priv->dev->stats.rx_errors++;
5081 		}
5082 
5083 		if (unlikely(error && (status & rx_not_ls)))
5084 			goto read_again;
5085 		if (unlikely(error)) {
5086 			count++;
5087 			continue;
5088 		}
5089 
5090 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5091 		if (likely(status & rx_not_ls)) {
5092 			xsk_buff_free(buf->xdp);
5093 			buf->xdp = NULL;
5094 			dirty++;
5095 			count++;
5096 			goto read_again;
5097 		}
5098 
5099 		/* XDP ZC Frame only support primary buffers for now */
5100 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5101 		len += buf1_len;
5102 
5103 		/* ACS is disabled; strip manually. */
5104 		if (likely(!(status & rx_not_ls))) {
5105 			buf1_len -= ETH_FCS_LEN;
5106 			len -= ETH_FCS_LEN;
5107 		}
5108 
5109 		/* RX buffer is good and fit into a XSK pool buffer */
5110 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5111 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5112 
5113 		prog = READ_ONCE(priv->xdp_prog);
5114 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5115 
5116 		switch (res) {
5117 		case STMMAC_XDP_PASS:
5118 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5119 			xsk_buff_free(buf->xdp);
5120 			break;
5121 		case STMMAC_XDP_CONSUMED:
5122 			xsk_buff_free(buf->xdp);
5123 			priv->dev->stats.rx_dropped++;
5124 			break;
5125 		case STMMAC_XDP_TX:
5126 		case STMMAC_XDP_REDIRECT:
5127 			xdp_status |= res;
5128 			break;
5129 		}
5130 
5131 		buf->xdp = NULL;
5132 		dirty++;
5133 		count++;
5134 	}
5135 
5136 	if (status & rx_not_ls) {
5137 		rx_q->state_saved = true;
5138 		rx_q->state.error = error;
5139 		rx_q->state.len = len;
5140 	}
5141 
5142 	stmmac_finalize_xdp_rx(priv, xdp_status);
5143 
5144 	priv->xstats.rx_pkt_n += count;
5145 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5146 
5147 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5148 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5149 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5150 		else
5151 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5152 
5153 		return (int)count;
5154 	}
5155 
5156 	return failure ? limit : (int)count;
5157 }
5158 
5159 /**
5160  * stmmac_rx - manage the receive process
5161  * @priv: driver private structure
5162  * @limit: napi bugget
5163  * @queue: RX queue index.
5164  * Description :  this the function called by the napi poll method.
5165  * It gets all the frames inside the ring.
5166  */
5167 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5168 {
5169 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5170 	struct stmmac_channel *ch = &priv->channel[queue];
5171 	unsigned int count = 0, error = 0, len = 0;
5172 	int status = 0, coe = priv->hw->rx_csum;
5173 	unsigned int next_entry = rx_q->cur_rx;
5174 	enum dma_data_direction dma_dir;
5175 	unsigned int desc_size;
5176 	struct sk_buff *skb = NULL;
5177 	struct xdp_buff xdp;
5178 	int xdp_status = 0;
5179 	int buf_sz;
5180 
5181 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5182 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5183 
5184 	if (netif_msg_rx_status(priv)) {
5185 		void *rx_head;
5186 
5187 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5188 		if (priv->extend_desc) {
5189 			rx_head = (void *)rx_q->dma_erx;
5190 			desc_size = sizeof(struct dma_extended_desc);
5191 		} else {
5192 			rx_head = (void *)rx_q->dma_rx;
5193 			desc_size = sizeof(struct dma_desc);
5194 		}
5195 
5196 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5197 				    rx_q->dma_rx_phy, desc_size);
5198 	}
5199 	while (count < limit) {
5200 		unsigned int buf1_len = 0, buf2_len = 0;
5201 		enum pkt_hash_types hash_type;
5202 		struct stmmac_rx_buffer *buf;
5203 		struct dma_desc *np, *p;
5204 		int entry;
5205 		u32 hash;
5206 
5207 		if (!count && rx_q->state_saved) {
5208 			skb = rx_q->state.skb;
5209 			error = rx_q->state.error;
5210 			len = rx_q->state.len;
5211 		} else {
5212 			rx_q->state_saved = false;
5213 			skb = NULL;
5214 			error = 0;
5215 			len = 0;
5216 		}
5217 
5218 		if (count >= limit)
5219 			break;
5220 
5221 read_again:
5222 		buf1_len = 0;
5223 		buf2_len = 0;
5224 		entry = next_entry;
5225 		buf = &rx_q->buf_pool[entry];
5226 
5227 		if (priv->extend_desc)
5228 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5229 		else
5230 			p = rx_q->dma_rx + entry;
5231 
5232 		/* read the status of the incoming frame */
5233 		status = stmmac_rx_status(priv, &priv->dev->stats,
5234 				&priv->xstats, p);
5235 		/* check if managed by the DMA otherwise go ahead */
5236 		if (unlikely(status & dma_own))
5237 			break;
5238 
5239 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5240 						priv->dma_conf.dma_rx_size);
5241 		next_entry = rx_q->cur_rx;
5242 
5243 		if (priv->extend_desc)
5244 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5245 		else
5246 			np = rx_q->dma_rx + next_entry;
5247 
5248 		prefetch(np);
5249 
5250 		if (priv->extend_desc)
5251 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5252 					&priv->xstats, rx_q->dma_erx + entry);
5253 		if (unlikely(status == discard_frame)) {
5254 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5255 			buf->page = NULL;
5256 			error = 1;
5257 			if (!priv->hwts_rx_en)
5258 				priv->dev->stats.rx_errors++;
5259 		}
5260 
5261 		if (unlikely(error && (status & rx_not_ls)))
5262 			goto read_again;
5263 		if (unlikely(error)) {
5264 			dev_kfree_skb(skb);
5265 			skb = NULL;
5266 			count++;
5267 			continue;
5268 		}
5269 
5270 		/* Buffer is good. Go on. */
5271 
5272 		prefetch(page_address(buf->page) + buf->page_offset);
5273 		if (buf->sec_page)
5274 			prefetch(page_address(buf->sec_page));
5275 
5276 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5277 		len += buf1_len;
5278 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5279 		len += buf2_len;
5280 
5281 		/* ACS is disabled; strip manually. */
5282 		if (likely(!(status & rx_not_ls))) {
5283 			if (buf2_len) {
5284 				buf2_len -= ETH_FCS_LEN;
5285 				len -= ETH_FCS_LEN;
5286 			} else if (buf1_len) {
5287 				buf1_len -= ETH_FCS_LEN;
5288 				len -= ETH_FCS_LEN;
5289 			}
5290 		}
5291 
5292 		if (!skb) {
5293 			unsigned int pre_len, sync_len;
5294 
5295 			dma_sync_single_for_cpu(priv->device, buf->addr,
5296 						buf1_len, dma_dir);
5297 
5298 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5299 			xdp_prepare_buff(&xdp, page_address(buf->page),
5300 					 buf->page_offset, buf1_len, false);
5301 
5302 			pre_len = xdp.data_end - xdp.data_hard_start -
5303 				  buf->page_offset;
5304 			skb = stmmac_xdp_run_prog(priv, &xdp);
5305 			/* Due xdp_adjust_tail: DMA sync for_device
5306 			 * cover max len CPU touch
5307 			 */
5308 			sync_len = xdp.data_end - xdp.data_hard_start -
5309 				   buf->page_offset;
5310 			sync_len = max(sync_len, pre_len);
5311 
5312 			/* For Not XDP_PASS verdict */
5313 			if (IS_ERR(skb)) {
5314 				unsigned int xdp_res = -PTR_ERR(skb);
5315 
5316 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5317 					page_pool_put_page(rx_q->page_pool,
5318 							   virt_to_head_page(xdp.data),
5319 							   sync_len, true);
5320 					buf->page = NULL;
5321 					priv->dev->stats.rx_dropped++;
5322 
5323 					/* Clear skb as it was set as
5324 					 * status by XDP program.
5325 					 */
5326 					skb = NULL;
5327 
5328 					if (unlikely((status & rx_not_ls)))
5329 						goto read_again;
5330 
5331 					count++;
5332 					continue;
5333 				} else if (xdp_res & (STMMAC_XDP_TX |
5334 						      STMMAC_XDP_REDIRECT)) {
5335 					xdp_status |= xdp_res;
5336 					buf->page = NULL;
5337 					skb = NULL;
5338 					count++;
5339 					continue;
5340 				}
5341 			}
5342 		}
5343 
5344 		if (!skb) {
5345 			/* XDP program may expand or reduce tail */
5346 			buf1_len = xdp.data_end - xdp.data;
5347 
5348 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5349 			if (!skb) {
5350 				priv->dev->stats.rx_dropped++;
5351 				count++;
5352 				goto drain_data;
5353 			}
5354 
5355 			/* XDP program may adjust header */
5356 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5357 			skb_put(skb, buf1_len);
5358 
5359 			/* Data payload copied into SKB, page ready for recycle */
5360 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5361 			buf->page = NULL;
5362 		} else if (buf1_len) {
5363 			dma_sync_single_for_cpu(priv->device, buf->addr,
5364 						buf1_len, dma_dir);
5365 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5366 					buf->page, buf->page_offset, buf1_len,
5367 					priv->dma_conf.dma_buf_sz);
5368 
5369 			/* Data payload appended into SKB */
5370 			page_pool_release_page(rx_q->page_pool, buf->page);
5371 			buf->page = NULL;
5372 		}
5373 
5374 		if (buf2_len) {
5375 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5376 						buf2_len, dma_dir);
5377 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5378 					buf->sec_page, 0, buf2_len,
5379 					priv->dma_conf.dma_buf_sz);
5380 
5381 			/* Data payload appended into SKB */
5382 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5383 			buf->sec_page = NULL;
5384 		}
5385 
5386 drain_data:
5387 		if (likely(status & rx_not_ls))
5388 			goto read_again;
5389 		if (!skb)
5390 			continue;
5391 
5392 		/* Got entire packet into SKB. Finish it. */
5393 
5394 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5395 		stmmac_rx_vlan(priv->dev, skb);
5396 		skb->protocol = eth_type_trans(skb, priv->dev);
5397 
5398 		if (unlikely(!coe))
5399 			skb_checksum_none_assert(skb);
5400 		else
5401 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5402 
5403 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5404 			skb_set_hash(skb, hash, hash_type);
5405 
5406 		skb_record_rx_queue(skb, queue);
5407 		napi_gro_receive(&ch->rx_napi, skb);
5408 		skb = NULL;
5409 
5410 		priv->dev->stats.rx_packets++;
5411 		priv->dev->stats.rx_bytes += len;
5412 		count++;
5413 	}
5414 
5415 	if (status & rx_not_ls || skb) {
5416 		rx_q->state_saved = true;
5417 		rx_q->state.skb = skb;
5418 		rx_q->state.error = error;
5419 		rx_q->state.len = len;
5420 	}
5421 
5422 	stmmac_finalize_xdp_rx(priv, xdp_status);
5423 
5424 	stmmac_rx_refill(priv, queue);
5425 
5426 	priv->xstats.rx_pkt_n += count;
5427 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5428 
5429 	return count;
5430 }
5431 
5432 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5433 {
5434 	struct stmmac_channel *ch =
5435 		container_of(napi, struct stmmac_channel, rx_napi);
5436 	struct stmmac_priv *priv = ch->priv_data;
5437 	u32 chan = ch->index;
5438 	int work_done;
5439 
5440 	priv->xstats.napi_poll++;
5441 
5442 	work_done = stmmac_rx(priv, budget, chan);
5443 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5444 		unsigned long flags;
5445 
5446 		spin_lock_irqsave(&ch->lock, flags);
5447 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5448 		spin_unlock_irqrestore(&ch->lock, flags);
5449 	}
5450 
5451 	return work_done;
5452 }
5453 
5454 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5455 {
5456 	struct stmmac_channel *ch =
5457 		container_of(napi, struct stmmac_channel, tx_napi);
5458 	struct stmmac_priv *priv = ch->priv_data;
5459 	u32 chan = ch->index;
5460 	int work_done;
5461 
5462 	priv->xstats.napi_poll++;
5463 
5464 	work_done = stmmac_tx_clean(priv, budget, chan);
5465 	work_done = min(work_done, budget);
5466 
5467 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5468 		unsigned long flags;
5469 
5470 		spin_lock_irqsave(&ch->lock, flags);
5471 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5472 		spin_unlock_irqrestore(&ch->lock, flags);
5473 	}
5474 
5475 	return work_done;
5476 }
5477 
5478 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5479 {
5480 	struct stmmac_channel *ch =
5481 		container_of(napi, struct stmmac_channel, rxtx_napi);
5482 	struct stmmac_priv *priv = ch->priv_data;
5483 	int rx_done, tx_done, rxtx_done;
5484 	u32 chan = ch->index;
5485 
5486 	priv->xstats.napi_poll++;
5487 
5488 	tx_done = stmmac_tx_clean(priv, budget, chan);
5489 	tx_done = min(tx_done, budget);
5490 
5491 	rx_done = stmmac_rx_zc(priv, budget, chan);
5492 
5493 	rxtx_done = max(tx_done, rx_done);
5494 
5495 	/* If either TX or RX work is not complete, return budget
5496 	 * and keep pooling
5497 	 */
5498 	if (rxtx_done >= budget)
5499 		return budget;
5500 
5501 	/* all work done, exit the polling mode */
5502 	if (napi_complete_done(napi, rxtx_done)) {
5503 		unsigned long flags;
5504 
5505 		spin_lock_irqsave(&ch->lock, flags);
5506 		/* Both RX and TX work done are compelte,
5507 		 * so enable both RX & TX IRQs.
5508 		 */
5509 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5510 		spin_unlock_irqrestore(&ch->lock, flags);
5511 	}
5512 
5513 	return min(rxtx_done, budget - 1);
5514 }
5515 
5516 /**
5517  *  stmmac_tx_timeout
5518  *  @dev : Pointer to net device structure
5519  *  @txqueue: the index of the hanging transmit queue
5520  *  Description: this function is called when a packet transmission fails to
5521  *   complete within a reasonable time. The driver will mark the error in the
5522  *   netdev structure and arrange for the device to be reset to a sane state
5523  *   in order to transmit a new packet.
5524  */
5525 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5526 {
5527 	struct stmmac_priv *priv = netdev_priv(dev);
5528 
5529 	stmmac_global_err(priv);
5530 }
5531 
5532 /**
5533  *  stmmac_set_rx_mode - entry point for multicast addressing
5534  *  @dev : pointer to the device structure
5535  *  Description:
5536  *  This function is a driver entry point which gets called by the kernel
5537  *  whenever multicast addresses must be enabled/disabled.
5538  *  Return value:
5539  *  void.
5540  */
5541 static void stmmac_set_rx_mode(struct net_device *dev)
5542 {
5543 	struct stmmac_priv *priv = netdev_priv(dev);
5544 
5545 	stmmac_set_filter(priv, priv->hw, dev);
5546 }
5547 
5548 /**
5549  *  stmmac_change_mtu - entry point to change MTU size for the device.
5550  *  @dev : device pointer.
5551  *  @new_mtu : the new MTU size for the device.
5552  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5553  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5554  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5555  *  Return value:
5556  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5557  *  file on failure.
5558  */
5559 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5560 {
5561 	struct stmmac_priv *priv = netdev_priv(dev);
5562 	int txfifosz = priv->plat->tx_fifo_size;
5563 	struct stmmac_dma_conf *dma_conf;
5564 	const int mtu = new_mtu;
5565 	int ret;
5566 
5567 	if (txfifosz == 0)
5568 		txfifosz = priv->dma_cap.tx_fifo_size;
5569 
5570 	txfifosz /= priv->plat->tx_queues_to_use;
5571 
5572 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5573 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5574 		return -EINVAL;
5575 	}
5576 
5577 	new_mtu = STMMAC_ALIGN(new_mtu);
5578 
5579 	/* If condition true, FIFO is too small or MTU too large */
5580 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5581 		return -EINVAL;
5582 
5583 	if (netif_running(dev)) {
5584 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5585 		/* Try to allocate the new DMA conf with the new mtu */
5586 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5587 		if (IS_ERR(dma_conf)) {
5588 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5589 				   mtu);
5590 			return PTR_ERR(dma_conf);
5591 		}
5592 
5593 		stmmac_release(dev);
5594 
5595 		ret = __stmmac_open(dev, dma_conf);
5596 		kfree(dma_conf);
5597 		if (ret) {
5598 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5599 			return ret;
5600 		}
5601 
5602 		stmmac_set_rx_mode(dev);
5603 	}
5604 
5605 	dev->mtu = mtu;
5606 	netdev_update_features(dev);
5607 
5608 	return 0;
5609 }
5610 
5611 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5612 					     netdev_features_t features)
5613 {
5614 	struct stmmac_priv *priv = netdev_priv(dev);
5615 
5616 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5617 		features &= ~NETIF_F_RXCSUM;
5618 
5619 	if (!priv->plat->tx_coe)
5620 		features &= ~NETIF_F_CSUM_MASK;
5621 
5622 	/* Some GMAC devices have a bugged Jumbo frame support that
5623 	 * needs to have the Tx COE disabled for oversized frames
5624 	 * (due to limited buffer sizes). In this case we disable
5625 	 * the TX csum insertion in the TDES and not use SF.
5626 	 */
5627 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5628 		features &= ~NETIF_F_CSUM_MASK;
5629 
5630 	/* Disable tso if asked by ethtool */
5631 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5632 		if (features & NETIF_F_TSO)
5633 			priv->tso = true;
5634 		else
5635 			priv->tso = false;
5636 	}
5637 
5638 	return features;
5639 }
5640 
5641 static int stmmac_set_features(struct net_device *netdev,
5642 			       netdev_features_t features)
5643 {
5644 	struct stmmac_priv *priv = netdev_priv(netdev);
5645 
5646 	/* Keep the COE Type in case of csum is supporting */
5647 	if (features & NETIF_F_RXCSUM)
5648 		priv->hw->rx_csum = priv->plat->rx_coe;
5649 	else
5650 		priv->hw->rx_csum = 0;
5651 	/* No check needed because rx_coe has been set before and it will be
5652 	 * fixed in case of issue.
5653 	 */
5654 	stmmac_rx_ipc(priv, priv->hw);
5655 
5656 	if (priv->sph_cap) {
5657 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5658 		u32 chan;
5659 
5660 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5661 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5662 	}
5663 
5664 	return 0;
5665 }
5666 
5667 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5668 {
5669 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5670 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5671 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5672 	bool *hs_enable = &fpe_cfg->hs_enable;
5673 
5674 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5675 		return;
5676 
5677 	/* If LP has sent verify mPacket, LP is FPE capable */
5678 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5679 		if (*lp_state < FPE_STATE_CAPABLE)
5680 			*lp_state = FPE_STATE_CAPABLE;
5681 
5682 		/* If user has requested FPE enable, quickly response */
5683 		if (*hs_enable)
5684 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5685 						MPACKET_RESPONSE);
5686 	}
5687 
5688 	/* If Local has sent verify mPacket, Local is FPE capable */
5689 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5690 		if (*lo_state < FPE_STATE_CAPABLE)
5691 			*lo_state = FPE_STATE_CAPABLE;
5692 	}
5693 
5694 	/* If LP has sent response mPacket, LP is entering FPE ON */
5695 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5696 		*lp_state = FPE_STATE_ENTERING_ON;
5697 
5698 	/* If Local has sent response mPacket, Local is entering FPE ON */
5699 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5700 		*lo_state = FPE_STATE_ENTERING_ON;
5701 
5702 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5703 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5704 	    priv->fpe_wq) {
5705 		queue_work(priv->fpe_wq, &priv->fpe_task);
5706 	}
5707 }
5708 
5709 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5710 {
5711 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5712 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5713 	u32 queues_count;
5714 	u32 queue;
5715 	bool xmac;
5716 
5717 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5718 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5719 
5720 	if (priv->irq_wake)
5721 		pm_wakeup_event(priv->device, 0);
5722 
5723 	if (priv->dma_cap.estsel)
5724 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5725 				      &priv->xstats, tx_cnt);
5726 
5727 	if (priv->dma_cap.fpesel) {
5728 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5729 						   priv->dev);
5730 
5731 		stmmac_fpe_event_status(priv, status);
5732 	}
5733 
5734 	/* To handle GMAC own interrupts */
5735 	if ((priv->plat->has_gmac) || xmac) {
5736 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5737 
5738 		if (unlikely(status)) {
5739 			/* For LPI we need to save the tx status */
5740 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5741 				priv->tx_path_in_lpi_mode = true;
5742 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5743 				priv->tx_path_in_lpi_mode = false;
5744 		}
5745 
5746 		for (queue = 0; queue < queues_count; queue++) {
5747 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5748 							    queue);
5749 		}
5750 
5751 		/* PCS link status */
5752 		if (priv->hw->pcs) {
5753 			if (priv->xstats.pcs_link)
5754 				netif_carrier_on(priv->dev);
5755 			else
5756 				netif_carrier_off(priv->dev);
5757 		}
5758 
5759 		stmmac_timestamp_interrupt(priv, priv);
5760 	}
5761 }
5762 
5763 /**
5764  *  stmmac_interrupt - main ISR
5765  *  @irq: interrupt number.
5766  *  @dev_id: to pass the net device pointer.
5767  *  Description: this is the main driver interrupt service routine.
5768  *  It can call:
5769  *  o DMA service routine (to manage incoming frame reception and transmission
5770  *    status)
5771  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5772  *    interrupts.
5773  */
5774 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5775 {
5776 	struct net_device *dev = (struct net_device *)dev_id;
5777 	struct stmmac_priv *priv = netdev_priv(dev);
5778 
5779 	/* Check if adapter is up */
5780 	if (test_bit(STMMAC_DOWN, &priv->state))
5781 		return IRQ_HANDLED;
5782 
5783 	/* Check if a fatal error happened */
5784 	if (stmmac_safety_feat_interrupt(priv))
5785 		return IRQ_HANDLED;
5786 
5787 	/* To handle Common interrupts */
5788 	stmmac_common_interrupt(priv);
5789 
5790 	/* To handle DMA interrupts */
5791 	stmmac_dma_interrupt(priv);
5792 
5793 	return IRQ_HANDLED;
5794 }
5795 
5796 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5797 {
5798 	struct net_device *dev = (struct net_device *)dev_id;
5799 	struct stmmac_priv *priv = netdev_priv(dev);
5800 
5801 	if (unlikely(!dev)) {
5802 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5803 		return IRQ_NONE;
5804 	}
5805 
5806 	/* Check if adapter is up */
5807 	if (test_bit(STMMAC_DOWN, &priv->state))
5808 		return IRQ_HANDLED;
5809 
5810 	/* To handle Common interrupts */
5811 	stmmac_common_interrupt(priv);
5812 
5813 	return IRQ_HANDLED;
5814 }
5815 
5816 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5817 {
5818 	struct net_device *dev = (struct net_device *)dev_id;
5819 	struct stmmac_priv *priv = netdev_priv(dev);
5820 
5821 	if (unlikely(!dev)) {
5822 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5823 		return IRQ_NONE;
5824 	}
5825 
5826 	/* Check if adapter is up */
5827 	if (test_bit(STMMAC_DOWN, &priv->state))
5828 		return IRQ_HANDLED;
5829 
5830 	/* Check if a fatal error happened */
5831 	stmmac_safety_feat_interrupt(priv);
5832 
5833 	return IRQ_HANDLED;
5834 }
5835 
5836 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5837 {
5838 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5839 	struct stmmac_dma_conf *dma_conf;
5840 	int chan = tx_q->queue_index;
5841 	struct stmmac_priv *priv;
5842 	int status;
5843 
5844 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5845 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5846 
5847 	if (unlikely(!data)) {
5848 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5849 		return IRQ_NONE;
5850 	}
5851 
5852 	/* Check if adapter is up */
5853 	if (test_bit(STMMAC_DOWN, &priv->state))
5854 		return IRQ_HANDLED;
5855 
5856 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5857 
5858 	if (unlikely(status & tx_hard_error_bump_tc)) {
5859 		/* Try to bump up the dma threshold on this failure */
5860 		stmmac_bump_dma_threshold(priv, chan);
5861 	} else if (unlikely(status == tx_hard_error)) {
5862 		stmmac_tx_err(priv, chan);
5863 	}
5864 
5865 	return IRQ_HANDLED;
5866 }
5867 
5868 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5869 {
5870 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5871 	struct stmmac_dma_conf *dma_conf;
5872 	int chan = rx_q->queue_index;
5873 	struct stmmac_priv *priv;
5874 
5875 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5876 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5877 
5878 	if (unlikely(!data)) {
5879 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5880 		return IRQ_NONE;
5881 	}
5882 
5883 	/* Check if adapter is up */
5884 	if (test_bit(STMMAC_DOWN, &priv->state))
5885 		return IRQ_HANDLED;
5886 
5887 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5888 
5889 	return IRQ_HANDLED;
5890 }
5891 
5892 #ifdef CONFIG_NET_POLL_CONTROLLER
5893 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5894  * to allow network I/O with interrupts disabled.
5895  */
5896 static void stmmac_poll_controller(struct net_device *dev)
5897 {
5898 	struct stmmac_priv *priv = netdev_priv(dev);
5899 	int i;
5900 
5901 	/* If adapter is down, do nothing */
5902 	if (test_bit(STMMAC_DOWN, &priv->state))
5903 		return;
5904 
5905 	if (priv->plat->multi_msi_en) {
5906 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5907 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5908 
5909 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5910 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5911 	} else {
5912 		disable_irq(dev->irq);
5913 		stmmac_interrupt(dev->irq, dev);
5914 		enable_irq(dev->irq);
5915 	}
5916 }
5917 #endif
5918 
5919 /**
5920  *  stmmac_ioctl - Entry point for the Ioctl
5921  *  @dev: Device pointer.
5922  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5923  *  a proprietary structure used to pass information to the driver.
5924  *  @cmd: IOCTL command
5925  *  Description:
5926  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5927  */
5928 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5929 {
5930 	struct stmmac_priv *priv = netdev_priv (dev);
5931 	int ret = -EOPNOTSUPP;
5932 
5933 	if (!netif_running(dev))
5934 		return -EINVAL;
5935 
5936 	switch (cmd) {
5937 	case SIOCGMIIPHY:
5938 	case SIOCGMIIREG:
5939 	case SIOCSMIIREG:
5940 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5941 		break;
5942 	case SIOCSHWTSTAMP:
5943 		ret = stmmac_hwtstamp_set(dev, rq);
5944 		break;
5945 	case SIOCGHWTSTAMP:
5946 		ret = stmmac_hwtstamp_get(dev, rq);
5947 		break;
5948 	default:
5949 		break;
5950 	}
5951 
5952 	return ret;
5953 }
5954 
5955 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5956 				    void *cb_priv)
5957 {
5958 	struct stmmac_priv *priv = cb_priv;
5959 	int ret = -EOPNOTSUPP;
5960 
5961 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5962 		return ret;
5963 
5964 	__stmmac_disable_all_queues(priv);
5965 
5966 	switch (type) {
5967 	case TC_SETUP_CLSU32:
5968 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5969 		break;
5970 	case TC_SETUP_CLSFLOWER:
5971 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5972 		break;
5973 	default:
5974 		break;
5975 	}
5976 
5977 	stmmac_enable_all_queues(priv);
5978 	return ret;
5979 }
5980 
5981 static LIST_HEAD(stmmac_block_cb_list);
5982 
5983 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5984 			   void *type_data)
5985 {
5986 	struct stmmac_priv *priv = netdev_priv(ndev);
5987 
5988 	switch (type) {
5989 	case TC_SETUP_BLOCK:
5990 		return flow_block_cb_setup_simple(type_data,
5991 						  &stmmac_block_cb_list,
5992 						  stmmac_setup_tc_block_cb,
5993 						  priv, priv, true);
5994 	case TC_SETUP_QDISC_CBS:
5995 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5996 	case TC_SETUP_QDISC_TAPRIO:
5997 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5998 	case TC_SETUP_QDISC_ETF:
5999 		return stmmac_tc_setup_etf(priv, priv, type_data);
6000 	default:
6001 		return -EOPNOTSUPP;
6002 	}
6003 }
6004 
6005 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6006 			       struct net_device *sb_dev)
6007 {
6008 	int gso = skb_shinfo(skb)->gso_type;
6009 
6010 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6011 		/*
6012 		 * There is no way to determine the number of TSO/USO
6013 		 * capable Queues. Let's use always the Queue 0
6014 		 * because if TSO/USO is supported then at least this
6015 		 * one will be capable.
6016 		 */
6017 		return 0;
6018 	}
6019 
6020 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6021 }
6022 
6023 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6024 {
6025 	struct stmmac_priv *priv = netdev_priv(ndev);
6026 	int ret = 0;
6027 
6028 	ret = pm_runtime_resume_and_get(priv->device);
6029 	if (ret < 0)
6030 		return ret;
6031 
6032 	ret = eth_mac_addr(ndev, addr);
6033 	if (ret)
6034 		goto set_mac_error;
6035 
6036 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6037 
6038 set_mac_error:
6039 	pm_runtime_put(priv->device);
6040 
6041 	return ret;
6042 }
6043 
6044 #ifdef CONFIG_DEBUG_FS
6045 static struct dentry *stmmac_fs_dir;
6046 
6047 static void sysfs_display_ring(void *head, int size, int extend_desc,
6048 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6049 {
6050 	int i;
6051 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6052 	struct dma_desc *p = (struct dma_desc *)head;
6053 	dma_addr_t dma_addr;
6054 
6055 	for (i = 0; i < size; i++) {
6056 		if (extend_desc) {
6057 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6058 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6059 				   i, &dma_addr,
6060 				   le32_to_cpu(ep->basic.des0),
6061 				   le32_to_cpu(ep->basic.des1),
6062 				   le32_to_cpu(ep->basic.des2),
6063 				   le32_to_cpu(ep->basic.des3));
6064 			ep++;
6065 		} else {
6066 			dma_addr = dma_phy_addr + i * sizeof(*p);
6067 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6068 				   i, &dma_addr,
6069 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6070 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6071 			p++;
6072 		}
6073 		seq_printf(seq, "\n");
6074 	}
6075 }
6076 
6077 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6078 {
6079 	struct net_device *dev = seq->private;
6080 	struct stmmac_priv *priv = netdev_priv(dev);
6081 	u32 rx_count = priv->plat->rx_queues_to_use;
6082 	u32 tx_count = priv->plat->tx_queues_to_use;
6083 	u32 queue;
6084 
6085 	if ((dev->flags & IFF_UP) == 0)
6086 		return 0;
6087 
6088 	for (queue = 0; queue < rx_count; queue++) {
6089 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6090 
6091 		seq_printf(seq, "RX Queue %d:\n", queue);
6092 
6093 		if (priv->extend_desc) {
6094 			seq_printf(seq, "Extended descriptor ring:\n");
6095 			sysfs_display_ring((void *)rx_q->dma_erx,
6096 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6097 		} else {
6098 			seq_printf(seq, "Descriptor ring:\n");
6099 			sysfs_display_ring((void *)rx_q->dma_rx,
6100 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6101 		}
6102 	}
6103 
6104 	for (queue = 0; queue < tx_count; queue++) {
6105 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6106 
6107 		seq_printf(seq, "TX Queue %d:\n", queue);
6108 
6109 		if (priv->extend_desc) {
6110 			seq_printf(seq, "Extended descriptor ring:\n");
6111 			sysfs_display_ring((void *)tx_q->dma_etx,
6112 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6113 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6114 			seq_printf(seq, "Descriptor ring:\n");
6115 			sysfs_display_ring((void *)tx_q->dma_tx,
6116 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6117 		}
6118 	}
6119 
6120 	return 0;
6121 }
6122 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6123 
6124 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6125 {
6126 	struct net_device *dev = seq->private;
6127 	struct stmmac_priv *priv = netdev_priv(dev);
6128 
6129 	if (!priv->hw_cap_support) {
6130 		seq_printf(seq, "DMA HW features not supported\n");
6131 		return 0;
6132 	}
6133 
6134 	seq_printf(seq, "==============================\n");
6135 	seq_printf(seq, "\tDMA HW features\n");
6136 	seq_printf(seq, "==============================\n");
6137 
6138 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6139 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6140 	seq_printf(seq, "\t1000 Mbps: %s\n",
6141 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6142 	seq_printf(seq, "\tHalf duplex: %s\n",
6143 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6144 	seq_printf(seq, "\tHash Filter: %s\n",
6145 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6146 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6147 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6148 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6149 		   (priv->dma_cap.pcs) ? "Y" : "N");
6150 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6151 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6152 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6153 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6154 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6155 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6156 	seq_printf(seq, "\tRMON module: %s\n",
6157 		   (priv->dma_cap.rmon) ? "Y" : "N");
6158 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6159 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6160 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6161 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6162 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6163 		   (priv->dma_cap.eee) ? "Y" : "N");
6164 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6165 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6166 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6167 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6168 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6169 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6170 	} else {
6171 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6172 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6173 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6174 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6175 	}
6176 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6177 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6178 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6179 		   priv->dma_cap.number_rx_channel);
6180 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6181 		   priv->dma_cap.number_tx_channel);
6182 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6183 		   priv->dma_cap.number_rx_queues);
6184 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6185 		   priv->dma_cap.number_tx_queues);
6186 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6187 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6188 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6189 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6190 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6191 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6192 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6193 		   priv->dma_cap.pps_out_num);
6194 	seq_printf(seq, "\tSafety Features: %s\n",
6195 		   priv->dma_cap.asp ? "Y" : "N");
6196 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6197 		   priv->dma_cap.frpsel ? "Y" : "N");
6198 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6199 		   priv->dma_cap.addr64);
6200 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6201 		   priv->dma_cap.rssen ? "Y" : "N");
6202 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6203 		   priv->dma_cap.vlhash ? "Y" : "N");
6204 	seq_printf(seq, "\tSplit Header: %s\n",
6205 		   priv->dma_cap.sphen ? "Y" : "N");
6206 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6207 		   priv->dma_cap.vlins ? "Y" : "N");
6208 	seq_printf(seq, "\tDouble VLAN: %s\n",
6209 		   priv->dma_cap.dvlan ? "Y" : "N");
6210 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6211 		   priv->dma_cap.l3l4fnum);
6212 	seq_printf(seq, "\tARP Offloading: %s\n",
6213 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6214 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6215 		   priv->dma_cap.estsel ? "Y" : "N");
6216 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6217 		   priv->dma_cap.fpesel ? "Y" : "N");
6218 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6219 		   priv->dma_cap.tbssel ? "Y" : "N");
6220 	return 0;
6221 }
6222 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6223 
6224 /* Use network device events to rename debugfs file entries.
6225  */
6226 static int stmmac_device_event(struct notifier_block *unused,
6227 			       unsigned long event, void *ptr)
6228 {
6229 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6230 	struct stmmac_priv *priv = netdev_priv(dev);
6231 
6232 	if (dev->netdev_ops != &stmmac_netdev_ops)
6233 		goto done;
6234 
6235 	switch (event) {
6236 	case NETDEV_CHANGENAME:
6237 		if (priv->dbgfs_dir)
6238 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6239 							 priv->dbgfs_dir,
6240 							 stmmac_fs_dir,
6241 							 dev->name);
6242 		break;
6243 	}
6244 done:
6245 	return NOTIFY_DONE;
6246 }
6247 
6248 static struct notifier_block stmmac_notifier = {
6249 	.notifier_call = stmmac_device_event,
6250 };
6251 
6252 static void stmmac_init_fs(struct net_device *dev)
6253 {
6254 	struct stmmac_priv *priv = netdev_priv(dev);
6255 
6256 	rtnl_lock();
6257 
6258 	/* Create per netdev entries */
6259 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6260 
6261 	/* Entry to report DMA RX/TX rings */
6262 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6263 			    &stmmac_rings_status_fops);
6264 
6265 	/* Entry to report the DMA HW features */
6266 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6267 			    &stmmac_dma_cap_fops);
6268 
6269 	rtnl_unlock();
6270 }
6271 
6272 static void stmmac_exit_fs(struct net_device *dev)
6273 {
6274 	struct stmmac_priv *priv = netdev_priv(dev);
6275 
6276 	debugfs_remove_recursive(priv->dbgfs_dir);
6277 }
6278 #endif /* CONFIG_DEBUG_FS */
6279 
6280 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6281 {
6282 	unsigned char *data = (unsigned char *)&vid_le;
6283 	unsigned char data_byte = 0;
6284 	u32 crc = ~0x0;
6285 	u32 temp = 0;
6286 	int i, bits;
6287 
6288 	bits = get_bitmask_order(VLAN_VID_MASK);
6289 	for (i = 0; i < bits; i++) {
6290 		if ((i % 8) == 0)
6291 			data_byte = data[i / 8];
6292 
6293 		temp = ((crc & 1) ^ data_byte) & 1;
6294 		crc >>= 1;
6295 		data_byte >>= 1;
6296 
6297 		if (temp)
6298 			crc ^= 0xedb88320;
6299 	}
6300 
6301 	return crc;
6302 }
6303 
6304 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6305 {
6306 	u32 crc, hash = 0;
6307 	__le16 pmatch = 0;
6308 	int count = 0;
6309 	u16 vid = 0;
6310 
6311 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6312 		__le16 vid_le = cpu_to_le16(vid);
6313 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6314 		hash |= (1 << crc);
6315 		count++;
6316 	}
6317 
6318 	if (!priv->dma_cap.vlhash) {
6319 		if (count > 2) /* VID = 0 always passes filter */
6320 			return -EOPNOTSUPP;
6321 
6322 		pmatch = cpu_to_le16(vid);
6323 		hash = 0;
6324 	}
6325 
6326 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6327 }
6328 
6329 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6330 {
6331 	struct stmmac_priv *priv = netdev_priv(ndev);
6332 	bool is_double = false;
6333 	int ret;
6334 
6335 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6336 		is_double = true;
6337 
6338 	set_bit(vid, priv->active_vlans);
6339 	ret = stmmac_vlan_update(priv, is_double);
6340 	if (ret) {
6341 		clear_bit(vid, priv->active_vlans);
6342 		return ret;
6343 	}
6344 
6345 	if (priv->hw->num_vlan) {
6346 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6347 		if (ret)
6348 			return ret;
6349 	}
6350 
6351 	return 0;
6352 }
6353 
6354 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6355 {
6356 	struct stmmac_priv *priv = netdev_priv(ndev);
6357 	bool is_double = false;
6358 	int ret;
6359 
6360 	ret = pm_runtime_resume_and_get(priv->device);
6361 	if (ret < 0)
6362 		return ret;
6363 
6364 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6365 		is_double = true;
6366 
6367 	clear_bit(vid, priv->active_vlans);
6368 
6369 	if (priv->hw->num_vlan) {
6370 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6371 		if (ret)
6372 			goto del_vlan_error;
6373 	}
6374 
6375 	ret = stmmac_vlan_update(priv, is_double);
6376 
6377 del_vlan_error:
6378 	pm_runtime_put(priv->device);
6379 
6380 	return ret;
6381 }
6382 
6383 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6384 {
6385 	struct stmmac_priv *priv = netdev_priv(dev);
6386 
6387 	switch (bpf->command) {
6388 	case XDP_SETUP_PROG:
6389 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6390 	case XDP_SETUP_XSK_POOL:
6391 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6392 					     bpf->xsk.queue_id);
6393 	default:
6394 		return -EOPNOTSUPP;
6395 	}
6396 }
6397 
6398 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6399 			   struct xdp_frame **frames, u32 flags)
6400 {
6401 	struct stmmac_priv *priv = netdev_priv(dev);
6402 	int cpu = smp_processor_id();
6403 	struct netdev_queue *nq;
6404 	int i, nxmit = 0;
6405 	int queue;
6406 
6407 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6408 		return -ENETDOWN;
6409 
6410 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6411 		return -EINVAL;
6412 
6413 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6414 	nq = netdev_get_tx_queue(priv->dev, queue);
6415 
6416 	__netif_tx_lock(nq, cpu);
6417 	/* Avoids TX time-out as we are sharing with slow path */
6418 	txq_trans_cond_update(nq);
6419 
6420 	for (i = 0; i < num_frames; i++) {
6421 		int res;
6422 
6423 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6424 		if (res == STMMAC_XDP_CONSUMED)
6425 			break;
6426 
6427 		nxmit++;
6428 	}
6429 
6430 	if (flags & XDP_XMIT_FLUSH) {
6431 		stmmac_flush_tx_descriptors(priv, queue);
6432 		stmmac_tx_timer_arm(priv, queue);
6433 	}
6434 
6435 	__netif_tx_unlock(nq);
6436 
6437 	return nxmit;
6438 }
6439 
6440 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6441 {
6442 	struct stmmac_channel *ch = &priv->channel[queue];
6443 	unsigned long flags;
6444 
6445 	spin_lock_irqsave(&ch->lock, flags);
6446 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6447 	spin_unlock_irqrestore(&ch->lock, flags);
6448 
6449 	stmmac_stop_rx_dma(priv, queue);
6450 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6451 }
6452 
6453 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6454 {
6455 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6456 	struct stmmac_channel *ch = &priv->channel[queue];
6457 	unsigned long flags;
6458 	u32 buf_size;
6459 	int ret;
6460 
6461 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6462 	if (ret) {
6463 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6464 		return;
6465 	}
6466 
6467 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6468 	if (ret) {
6469 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6470 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6471 		return;
6472 	}
6473 
6474 	stmmac_reset_rx_queue(priv, queue);
6475 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6476 
6477 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6478 			    rx_q->dma_rx_phy, rx_q->queue_index);
6479 
6480 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6481 			     sizeof(struct dma_desc));
6482 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6483 			       rx_q->rx_tail_addr, rx_q->queue_index);
6484 
6485 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6486 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6487 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6488 				      buf_size,
6489 				      rx_q->queue_index);
6490 	} else {
6491 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6492 				      priv->dma_conf.dma_buf_sz,
6493 				      rx_q->queue_index);
6494 	}
6495 
6496 	stmmac_start_rx_dma(priv, queue);
6497 
6498 	spin_lock_irqsave(&ch->lock, flags);
6499 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6500 	spin_unlock_irqrestore(&ch->lock, flags);
6501 }
6502 
6503 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6504 {
6505 	struct stmmac_channel *ch = &priv->channel[queue];
6506 	unsigned long flags;
6507 
6508 	spin_lock_irqsave(&ch->lock, flags);
6509 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6510 	spin_unlock_irqrestore(&ch->lock, flags);
6511 
6512 	stmmac_stop_tx_dma(priv, queue);
6513 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6514 }
6515 
6516 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6517 {
6518 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6519 	struct stmmac_channel *ch = &priv->channel[queue];
6520 	unsigned long flags;
6521 	int ret;
6522 
6523 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6524 	if (ret) {
6525 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6526 		return;
6527 	}
6528 
6529 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6530 	if (ret) {
6531 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6532 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6533 		return;
6534 	}
6535 
6536 	stmmac_reset_tx_queue(priv, queue);
6537 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6538 
6539 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6540 			    tx_q->dma_tx_phy, tx_q->queue_index);
6541 
6542 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6543 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6544 
6545 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6546 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6547 			       tx_q->tx_tail_addr, tx_q->queue_index);
6548 
6549 	stmmac_start_tx_dma(priv, queue);
6550 
6551 	spin_lock_irqsave(&ch->lock, flags);
6552 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6553 	spin_unlock_irqrestore(&ch->lock, flags);
6554 }
6555 
6556 void stmmac_xdp_release(struct net_device *dev)
6557 {
6558 	struct stmmac_priv *priv = netdev_priv(dev);
6559 	u32 chan;
6560 
6561 	/* Ensure tx function is not running */
6562 	netif_tx_disable(dev);
6563 
6564 	/* Disable NAPI process */
6565 	stmmac_disable_all_queues(priv);
6566 
6567 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6568 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6569 
6570 	/* Free the IRQ lines */
6571 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6572 
6573 	/* Stop TX/RX DMA channels */
6574 	stmmac_stop_all_dma(priv);
6575 
6576 	/* Release and free the Rx/Tx resources */
6577 	free_dma_desc_resources(priv, &priv->dma_conf);
6578 
6579 	/* Disable the MAC Rx/Tx */
6580 	stmmac_mac_set(priv, priv->ioaddr, false);
6581 
6582 	/* set trans_start so we don't get spurious
6583 	 * watchdogs during reset
6584 	 */
6585 	netif_trans_update(dev);
6586 	netif_carrier_off(dev);
6587 }
6588 
6589 int stmmac_xdp_open(struct net_device *dev)
6590 {
6591 	struct stmmac_priv *priv = netdev_priv(dev);
6592 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6593 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6594 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6595 	struct stmmac_rx_queue *rx_q;
6596 	struct stmmac_tx_queue *tx_q;
6597 	u32 buf_size;
6598 	bool sph_en;
6599 	u32 chan;
6600 	int ret;
6601 
6602 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6603 	if (ret < 0) {
6604 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6605 			   __func__);
6606 		goto dma_desc_error;
6607 	}
6608 
6609 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6610 	if (ret < 0) {
6611 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6612 			   __func__);
6613 		goto init_error;
6614 	}
6615 
6616 	/* DMA CSR Channel configuration */
6617 	for (chan = 0; chan < dma_csr_ch; chan++) {
6618 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6619 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6620 	}
6621 
6622 	/* Adjust Split header */
6623 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6624 
6625 	/* DMA RX Channel Configuration */
6626 	for (chan = 0; chan < rx_cnt; chan++) {
6627 		rx_q = &priv->dma_conf.rx_queue[chan];
6628 
6629 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6630 				    rx_q->dma_rx_phy, chan);
6631 
6632 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6633 				     (rx_q->buf_alloc_num *
6634 				      sizeof(struct dma_desc));
6635 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6636 				       rx_q->rx_tail_addr, chan);
6637 
6638 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6639 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6640 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6641 					      buf_size,
6642 					      rx_q->queue_index);
6643 		} else {
6644 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6645 					      priv->dma_conf.dma_buf_sz,
6646 					      rx_q->queue_index);
6647 		}
6648 
6649 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6650 	}
6651 
6652 	/* DMA TX Channel Configuration */
6653 	for (chan = 0; chan < tx_cnt; chan++) {
6654 		tx_q = &priv->dma_conf.tx_queue[chan];
6655 
6656 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6657 				    tx_q->dma_tx_phy, chan);
6658 
6659 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6660 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6661 				       tx_q->tx_tail_addr, chan);
6662 
6663 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6664 		tx_q->txtimer.function = stmmac_tx_timer;
6665 	}
6666 
6667 	/* Enable the MAC Rx/Tx */
6668 	stmmac_mac_set(priv, priv->ioaddr, true);
6669 
6670 	/* Start Rx & Tx DMA Channels */
6671 	stmmac_start_all_dma(priv);
6672 
6673 	ret = stmmac_request_irq(dev);
6674 	if (ret)
6675 		goto irq_error;
6676 
6677 	/* Enable NAPI process*/
6678 	stmmac_enable_all_queues(priv);
6679 	netif_carrier_on(dev);
6680 	netif_tx_start_all_queues(dev);
6681 	stmmac_enable_all_dma_irq(priv);
6682 
6683 	return 0;
6684 
6685 irq_error:
6686 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6687 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6688 
6689 	stmmac_hw_teardown(dev);
6690 init_error:
6691 	free_dma_desc_resources(priv, &priv->dma_conf);
6692 dma_desc_error:
6693 	return ret;
6694 }
6695 
6696 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6697 {
6698 	struct stmmac_priv *priv = netdev_priv(dev);
6699 	struct stmmac_rx_queue *rx_q;
6700 	struct stmmac_tx_queue *tx_q;
6701 	struct stmmac_channel *ch;
6702 
6703 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6704 	    !netif_carrier_ok(priv->dev))
6705 		return -ENETDOWN;
6706 
6707 	if (!stmmac_xdp_is_enabled(priv))
6708 		return -EINVAL;
6709 
6710 	if (queue >= priv->plat->rx_queues_to_use ||
6711 	    queue >= priv->plat->tx_queues_to_use)
6712 		return -EINVAL;
6713 
6714 	rx_q = &priv->dma_conf.rx_queue[queue];
6715 	tx_q = &priv->dma_conf.tx_queue[queue];
6716 	ch = &priv->channel[queue];
6717 
6718 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6719 		return -EINVAL;
6720 
6721 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6722 		/* EQoS does not have per-DMA channel SW interrupt,
6723 		 * so we schedule RX Napi straight-away.
6724 		 */
6725 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6726 			__napi_schedule(&ch->rxtx_napi);
6727 	}
6728 
6729 	return 0;
6730 }
6731 
6732 static const struct net_device_ops stmmac_netdev_ops = {
6733 	.ndo_open = stmmac_open,
6734 	.ndo_start_xmit = stmmac_xmit,
6735 	.ndo_stop = stmmac_release,
6736 	.ndo_change_mtu = stmmac_change_mtu,
6737 	.ndo_fix_features = stmmac_fix_features,
6738 	.ndo_set_features = stmmac_set_features,
6739 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6740 	.ndo_tx_timeout = stmmac_tx_timeout,
6741 	.ndo_eth_ioctl = stmmac_ioctl,
6742 	.ndo_setup_tc = stmmac_setup_tc,
6743 	.ndo_select_queue = stmmac_select_queue,
6744 #ifdef CONFIG_NET_POLL_CONTROLLER
6745 	.ndo_poll_controller = stmmac_poll_controller,
6746 #endif
6747 	.ndo_set_mac_address = stmmac_set_mac_address,
6748 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6749 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6750 	.ndo_bpf = stmmac_bpf,
6751 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6752 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6753 };
6754 
6755 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6756 {
6757 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6758 		return;
6759 	if (test_bit(STMMAC_DOWN, &priv->state))
6760 		return;
6761 
6762 	netdev_err(priv->dev, "Reset adapter.\n");
6763 
6764 	rtnl_lock();
6765 	netif_trans_update(priv->dev);
6766 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6767 		usleep_range(1000, 2000);
6768 
6769 	set_bit(STMMAC_DOWN, &priv->state);
6770 	dev_close(priv->dev);
6771 	dev_open(priv->dev, NULL);
6772 	clear_bit(STMMAC_DOWN, &priv->state);
6773 	clear_bit(STMMAC_RESETING, &priv->state);
6774 	rtnl_unlock();
6775 }
6776 
6777 static void stmmac_service_task(struct work_struct *work)
6778 {
6779 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6780 			service_task);
6781 
6782 	stmmac_reset_subtask(priv);
6783 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6784 }
6785 
6786 /**
6787  *  stmmac_hw_init - Init the MAC device
6788  *  @priv: driver private structure
6789  *  Description: this function is to configure the MAC device according to
6790  *  some platform parameters or the HW capability register. It prepares the
6791  *  driver to use either ring or chain modes and to setup either enhanced or
6792  *  normal descriptors.
6793  */
6794 static int stmmac_hw_init(struct stmmac_priv *priv)
6795 {
6796 	int ret;
6797 
6798 	/* dwmac-sun8i only work in chain mode */
6799 	if (priv->plat->has_sun8i)
6800 		chain_mode = 1;
6801 	priv->chain_mode = chain_mode;
6802 
6803 	/* Initialize HW Interface */
6804 	ret = stmmac_hwif_init(priv);
6805 	if (ret)
6806 		return ret;
6807 
6808 	/* Get the HW capability (new GMAC newer than 3.50a) */
6809 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6810 	if (priv->hw_cap_support) {
6811 		dev_info(priv->device, "DMA HW capability register supported\n");
6812 
6813 		/* We can override some gmac/dma configuration fields: e.g.
6814 		 * enh_desc, tx_coe (e.g. that are passed through the
6815 		 * platform) with the values from the HW capability
6816 		 * register (if supported).
6817 		 */
6818 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6819 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6820 				!priv->plat->use_phy_wol;
6821 		priv->hw->pmt = priv->plat->pmt;
6822 		if (priv->dma_cap.hash_tb_sz) {
6823 			priv->hw->multicast_filter_bins =
6824 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6825 			priv->hw->mcast_bits_log2 =
6826 					ilog2(priv->hw->multicast_filter_bins);
6827 		}
6828 
6829 		/* TXCOE doesn't work in thresh DMA mode */
6830 		if (priv->plat->force_thresh_dma_mode)
6831 			priv->plat->tx_coe = 0;
6832 		else
6833 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6834 
6835 		/* In case of GMAC4 rx_coe is from HW cap register. */
6836 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6837 
6838 		if (priv->dma_cap.rx_coe_type2)
6839 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6840 		else if (priv->dma_cap.rx_coe_type1)
6841 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6842 
6843 	} else {
6844 		dev_info(priv->device, "No HW DMA feature register supported\n");
6845 	}
6846 
6847 	if (priv->plat->rx_coe) {
6848 		priv->hw->rx_csum = priv->plat->rx_coe;
6849 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6850 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6851 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6852 	}
6853 	if (priv->plat->tx_coe)
6854 		dev_info(priv->device, "TX Checksum insertion supported\n");
6855 
6856 	if (priv->plat->pmt) {
6857 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6858 		device_set_wakeup_capable(priv->device, 1);
6859 	}
6860 
6861 	if (priv->dma_cap.tsoen)
6862 		dev_info(priv->device, "TSO supported\n");
6863 
6864 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6865 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6866 
6867 	/* Run HW quirks, if any */
6868 	if (priv->hwif_quirks) {
6869 		ret = priv->hwif_quirks(priv);
6870 		if (ret)
6871 			return ret;
6872 	}
6873 
6874 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6875 	 * In some case, for example on bugged HW this feature
6876 	 * has to be disable and this can be done by passing the
6877 	 * riwt_off field from the platform.
6878 	 */
6879 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6880 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6881 		priv->use_riwt = 1;
6882 		dev_info(priv->device,
6883 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6884 	}
6885 
6886 	return 0;
6887 }
6888 
6889 static void stmmac_napi_add(struct net_device *dev)
6890 {
6891 	struct stmmac_priv *priv = netdev_priv(dev);
6892 	u32 queue, maxq;
6893 
6894 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6895 
6896 	for (queue = 0; queue < maxq; queue++) {
6897 		struct stmmac_channel *ch = &priv->channel[queue];
6898 
6899 		ch->priv_data = priv;
6900 		ch->index = queue;
6901 		spin_lock_init(&ch->lock);
6902 
6903 		if (queue < priv->plat->rx_queues_to_use) {
6904 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6905 		}
6906 		if (queue < priv->plat->tx_queues_to_use) {
6907 			netif_napi_add_tx(dev, &ch->tx_napi,
6908 					  stmmac_napi_poll_tx);
6909 		}
6910 		if (queue < priv->plat->rx_queues_to_use &&
6911 		    queue < priv->plat->tx_queues_to_use) {
6912 			netif_napi_add(dev, &ch->rxtx_napi,
6913 				       stmmac_napi_poll_rxtx);
6914 		}
6915 	}
6916 }
6917 
6918 static void stmmac_napi_del(struct net_device *dev)
6919 {
6920 	struct stmmac_priv *priv = netdev_priv(dev);
6921 	u32 queue, maxq;
6922 
6923 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6924 
6925 	for (queue = 0; queue < maxq; queue++) {
6926 		struct stmmac_channel *ch = &priv->channel[queue];
6927 
6928 		if (queue < priv->plat->rx_queues_to_use)
6929 			netif_napi_del(&ch->rx_napi);
6930 		if (queue < priv->plat->tx_queues_to_use)
6931 			netif_napi_del(&ch->tx_napi);
6932 		if (queue < priv->plat->rx_queues_to_use &&
6933 		    queue < priv->plat->tx_queues_to_use) {
6934 			netif_napi_del(&ch->rxtx_napi);
6935 		}
6936 	}
6937 }
6938 
6939 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6940 {
6941 	struct stmmac_priv *priv = netdev_priv(dev);
6942 	int ret = 0;
6943 
6944 	if (netif_running(dev))
6945 		stmmac_release(dev);
6946 
6947 	stmmac_napi_del(dev);
6948 
6949 	priv->plat->rx_queues_to_use = rx_cnt;
6950 	priv->plat->tx_queues_to_use = tx_cnt;
6951 
6952 	stmmac_napi_add(dev);
6953 
6954 	if (netif_running(dev))
6955 		ret = stmmac_open(dev);
6956 
6957 	return ret;
6958 }
6959 
6960 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6961 {
6962 	struct stmmac_priv *priv = netdev_priv(dev);
6963 	int ret = 0;
6964 
6965 	if (netif_running(dev))
6966 		stmmac_release(dev);
6967 
6968 	priv->dma_conf.dma_rx_size = rx_size;
6969 	priv->dma_conf.dma_tx_size = tx_size;
6970 
6971 	if (netif_running(dev))
6972 		ret = stmmac_open(dev);
6973 
6974 	return ret;
6975 }
6976 
6977 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6978 static void stmmac_fpe_lp_task(struct work_struct *work)
6979 {
6980 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6981 						fpe_task);
6982 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6983 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6984 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6985 	bool *hs_enable = &fpe_cfg->hs_enable;
6986 	bool *enable = &fpe_cfg->enable;
6987 	int retries = 20;
6988 
6989 	while (retries-- > 0) {
6990 		/* Bail out immediately if FPE handshake is OFF */
6991 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6992 			break;
6993 
6994 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6995 		    *lp_state == FPE_STATE_ENTERING_ON) {
6996 			stmmac_fpe_configure(priv, priv->ioaddr,
6997 					     priv->plat->tx_queues_to_use,
6998 					     priv->plat->rx_queues_to_use,
6999 					     *enable);
7000 
7001 			netdev_info(priv->dev, "configured FPE\n");
7002 
7003 			*lo_state = FPE_STATE_ON;
7004 			*lp_state = FPE_STATE_ON;
7005 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7006 			break;
7007 		}
7008 
7009 		if ((*lo_state == FPE_STATE_CAPABLE ||
7010 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7011 		     *lp_state != FPE_STATE_ON) {
7012 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7013 				    *lo_state, *lp_state);
7014 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7015 						MPACKET_VERIFY);
7016 		}
7017 		/* Sleep then retry */
7018 		msleep(500);
7019 	}
7020 
7021 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7022 }
7023 
7024 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7025 {
7026 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7027 		if (enable) {
7028 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7029 						MPACKET_VERIFY);
7030 		} else {
7031 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7032 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7033 		}
7034 
7035 		priv->plat->fpe_cfg->hs_enable = enable;
7036 	}
7037 }
7038 
7039 /**
7040  * stmmac_dvr_probe
7041  * @device: device pointer
7042  * @plat_dat: platform data pointer
7043  * @res: stmmac resource pointer
7044  * Description: this is the main probe function used to
7045  * call the alloc_etherdev, allocate the priv structure.
7046  * Return:
7047  * returns 0 on success, otherwise errno.
7048  */
7049 int stmmac_dvr_probe(struct device *device,
7050 		     struct plat_stmmacenet_data *plat_dat,
7051 		     struct stmmac_resources *res)
7052 {
7053 	struct net_device *ndev = NULL;
7054 	struct stmmac_priv *priv;
7055 	u32 rxq;
7056 	int i, ret = 0;
7057 
7058 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7059 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7060 	if (!ndev)
7061 		return -ENOMEM;
7062 
7063 	SET_NETDEV_DEV(ndev, device);
7064 
7065 	priv = netdev_priv(ndev);
7066 	priv->device = device;
7067 	priv->dev = ndev;
7068 
7069 	stmmac_set_ethtool_ops(ndev);
7070 	priv->pause = pause;
7071 	priv->plat = plat_dat;
7072 	priv->ioaddr = res->addr;
7073 	priv->dev->base_addr = (unsigned long)res->addr;
7074 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7075 
7076 	priv->dev->irq = res->irq;
7077 	priv->wol_irq = res->wol_irq;
7078 	priv->lpi_irq = res->lpi_irq;
7079 	priv->sfty_ce_irq = res->sfty_ce_irq;
7080 	priv->sfty_ue_irq = res->sfty_ue_irq;
7081 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7082 		priv->rx_irq[i] = res->rx_irq[i];
7083 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7084 		priv->tx_irq[i] = res->tx_irq[i];
7085 
7086 	if (!is_zero_ether_addr(res->mac))
7087 		eth_hw_addr_set(priv->dev, res->mac);
7088 
7089 	dev_set_drvdata(device, priv->dev);
7090 
7091 	/* Verify driver arguments */
7092 	stmmac_verify_args();
7093 
7094 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7095 	if (!priv->af_xdp_zc_qps)
7096 		return -ENOMEM;
7097 
7098 	/* Allocate workqueue */
7099 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7100 	if (!priv->wq) {
7101 		dev_err(priv->device, "failed to create workqueue\n");
7102 		ret = -ENOMEM;
7103 		goto error_wq_init;
7104 	}
7105 
7106 	INIT_WORK(&priv->service_task, stmmac_service_task);
7107 
7108 	/* Initialize Link Partner FPE workqueue */
7109 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7110 
7111 	/* Override with kernel parameters if supplied XXX CRS XXX
7112 	 * this needs to have multiple instances
7113 	 */
7114 	if ((phyaddr >= 0) && (phyaddr <= 31))
7115 		priv->plat->phy_addr = phyaddr;
7116 
7117 	if (priv->plat->stmmac_rst) {
7118 		ret = reset_control_assert(priv->plat->stmmac_rst);
7119 		reset_control_deassert(priv->plat->stmmac_rst);
7120 		/* Some reset controllers have only reset callback instead of
7121 		 * assert + deassert callbacks pair.
7122 		 */
7123 		if (ret == -ENOTSUPP)
7124 			reset_control_reset(priv->plat->stmmac_rst);
7125 	}
7126 
7127 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7128 	if (ret == -ENOTSUPP)
7129 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7130 			ERR_PTR(ret));
7131 
7132 	/* Init MAC and get the capabilities */
7133 	ret = stmmac_hw_init(priv);
7134 	if (ret)
7135 		goto error_hw_init;
7136 
7137 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7138 	 */
7139 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7140 		priv->plat->dma_cfg->dche = false;
7141 
7142 	stmmac_check_ether_addr(priv);
7143 
7144 	ndev->netdev_ops = &stmmac_netdev_ops;
7145 
7146 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7147 			    NETIF_F_RXCSUM;
7148 
7149 	ret = stmmac_tc_init(priv, priv);
7150 	if (!ret) {
7151 		ndev->hw_features |= NETIF_F_HW_TC;
7152 	}
7153 
7154 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7155 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7156 		if (priv->plat->has_gmac4)
7157 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7158 		priv->tso = true;
7159 		dev_info(priv->device, "TSO feature enabled\n");
7160 	}
7161 
7162 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7163 		ndev->hw_features |= NETIF_F_GRO;
7164 		priv->sph_cap = true;
7165 		priv->sph = priv->sph_cap;
7166 		dev_info(priv->device, "SPH feature enabled\n");
7167 	}
7168 
7169 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7170 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7171 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7172 	 * So overwrite dma_cap.addr64 according to HW real design.
7173 	 */
7174 	if (priv->plat->addr64)
7175 		priv->dma_cap.addr64 = priv->plat->addr64;
7176 
7177 	if (priv->dma_cap.addr64) {
7178 		ret = dma_set_mask_and_coherent(device,
7179 				DMA_BIT_MASK(priv->dma_cap.addr64));
7180 		if (!ret) {
7181 			dev_info(priv->device, "Using %d bits DMA width\n",
7182 				 priv->dma_cap.addr64);
7183 
7184 			/*
7185 			 * If more than 32 bits can be addressed, make sure to
7186 			 * enable enhanced addressing mode.
7187 			 */
7188 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7189 				priv->plat->dma_cfg->eame = true;
7190 		} else {
7191 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7192 			if (ret) {
7193 				dev_err(priv->device, "Failed to set DMA Mask\n");
7194 				goto error_hw_init;
7195 			}
7196 
7197 			priv->dma_cap.addr64 = 32;
7198 		}
7199 	}
7200 
7201 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7202 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7203 #ifdef STMMAC_VLAN_TAG_USED
7204 	/* Both mac100 and gmac support receive VLAN tag detection */
7205 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7206 	if (priv->dma_cap.vlhash) {
7207 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7208 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7209 	}
7210 	if (priv->dma_cap.vlins) {
7211 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7212 		if (priv->dma_cap.dvlan)
7213 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7214 	}
7215 #endif
7216 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7217 
7218 	/* Initialize RSS */
7219 	rxq = priv->plat->rx_queues_to_use;
7220 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7221 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7222 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7223 
7224 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7225 		ndev->features |= NETIF_F_RXHASH;
7226 
7227 	/* MTU range: 46 - hw-specific max */
7228 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7229 	if (priv->plat->has_xgmac)
7230 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7231 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7232 		ndev->max_mtu = JUMBO_LEN;
7233 	else
7234 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7235 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7236 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7237 	 */
7238 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7239 	    (priv->plat->maxmtu >= ndev->min_mtu))
7240 		ndev->max_mtu = priv->plat->maxmtu;
7241 	else if (priv->plat->maxmtu < ndev->min_mtu)
7242 		dev_warn(priv->device,
7243 			 "%s: warning: maxmtu having invalid value (%d)\n",
7244 			 __func__, priv->plat->maxmtu);
7245 
7246 	if (flow_ctrl)
7247 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7248 
7249 	/* Setup channels NAPI */
7250 	stmmac_napi_add(ndev);
7251 
7252 	mutex_init(&priv->lock);
7253 
7254 	/* If a specific clk_csr value is passed from the platform
7255 	 * this means that the CSR Clock Range selection cannot be
7256 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7257 	 * set the MDC clock dynamically according to the csr actual
7258 	 * clock input.
7259 	 */
7260 	if (priv->plat->clk_csr >= 0)
7261 		priv->clk_csr = priv->plat->clk_csr;
7262 	else
7263 		stmmac_clk_csr_set(priv);
7264 
7265 	stmmac_check_pcs_mode(priv);
7266 
7267 	pm_runtime_get_noresume(device);
7268 	pm_runtime_set_active(device);
7269 	if (!pm_runtime_enabled(device))
7270 		pm_runtime_enable(device);
7271 
7272 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7273 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7274 		/* MDIO bus Registration */
7275 		ret = stmmac_mdio_register(ndev);
7276 		if (ret < 0) {
7277 			dev_err_probe(priv->device, ret,
7278 				      "%s: MDIO bus (id: %d) registration failed\n",
7279 				      __func__, priv->plat->bus_id);
7280 			goto error_mdio_register;
7281 		}
7282 	}
7283 
7284 	if (priv->plat->speed_mode_2500)
7285 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7286 
7287 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7288 		ret = stmmac_xpcs_setup(priv->mii);
7289 		if (ret)
7290 			goto error_xpcs_setup;
7291 	}
7292 
7293 	ret = stmmac_phy_setup(priv);
7294 	if (ret) {
7295 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7296 		goto error_phy_setup;
7297 	}
7298 
7299 	ret = register_netdev(ndev);
7300 	if (ret) {
7301 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7302 			__func__, ret);
7303 		goto error_netdev_register;
7304 	}
7305 
7306 #ifdef CONFIG_DEBUG_FS
7307 	stmmac_init_fs(ndev);
7308 #endif
7309 
7310 	if (priv->plat->dump_debug_regs)
7311 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7312 
7313 	/* Let pm_runtime_put() disable the clocks.
7314 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7315 	 */
7316 	pm_runtime_put(device);
7317 
7318 	return ret;
7319 
7320 error_netdev_register:
7321 	phylink_destroy(priv->phylink);
7322 error_xpcs_setup:
7323 error_phy_setup:
7324 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7325 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7326 		stmmac_mdio_unregister(ndev);
7327 error_mdio_register:
7328 	stmmac_napi_del(ndev);
7329 error_hw_init:
7330 	destroy_workqueue(priv->wq);
7331 error_wq_init:
7332 	bitmap_free(priv->af_xdp_zc_qps);
7333 
7334 	return ret;
7335 }
7336 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7337 
7338 /**
7339  * stmmac_dvr_remove
7340  * @dev: device pointer
7341  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7342  * changes the link status, releases the DMA descriptor rings.
7343  */
7344 int stmmac_dvr_remove(struct device *dev)
7345 {
7346 	struct net_device *ndev = dev_get_drvdata(dev);
7347 	struct stmmac_priv *priv = netdev_priv(ndev);
7348 
7349 	netdev_info(priv->dev, "%s: removing driver", __func__);
7350 
7351 	pm_runtime_get_sync(dev);
7352 
7353 	stmmac_stop_all_dma(priv);
7354 	stmmac_mac_set(priv, priv->ioaddr, false);
7355 	netif_carrier_off(ndev);
7356 	unregister_netdev(ndev);
7357 
7358 	/* Serdes power down needs to happen after VLAN filter
7359 	 * is deleted that is triggered by unregister_netdev().
7360 	 */
7361 	if (priv->plat->serdes_powerdown)
7362 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7363 
7364 #ifdef CONFIG_DEBUG_FS
7365 	stmmac_exit_fs(ndev);
7366 #endif
7367 	phylink_destroy(priv->phylink);
7368 	if (priv->plat->stmmac_rst)
7369 		reset_control_assert(priv->plat->stmmac_rst);
7370 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7371 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7372 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7373 		stmmac_mdio_unregister(ndev);
7374 	destroy_workqueue(priv->wq);
7375 	mutex_destroy(&priv->lock);
7376 	bitmap_free(priv->af_xdp_zc_qps);
7377 
7378 	pm_runtime_disable(dev);
7379 	pm_runtime_put_noidle(dev);
7380 
7381 	return 0;
7382 }
7383 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7384 
7385 /**
7386  * stmmac_suspend - suspend callback
7387  * @dev: device pointer
7388  * Description: this is the function to suspend the device and it is called
7389  * by the platform driver to stop the network queue, release the resources,
7390  * program the PMT register (for WoL), clean and release driver resources.
7391  */
7392 int stmmac_suspend(struct device *dev)
7393 {
7394 	struct net_device *ndev = dev_get_drvdata(dev);
7395 	struct stmmac_priv *priv = netdev_priv(ndev);
7396 	u32 chan;
7397 
7398 	if (!ndev || !netif_running(ndev))
7399 		return 0;
7400 
7401 	mutex_lock(&priv->lock);
7402 
7403 	netif_device_detach(ndev);
7404 
7405 	stmmac_disable_all_queues(priv);
7406 
7407 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7408 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7409 
7410 	if (priv->eee_enabled) {
7411 		priv->tx_path_in_lpi_mode = false;
7412 		del_timer_sync(&priv->eee_ctrl_timer);
7413 	}
7414 
7415 	/* Stop TX/RX DMA */
7416 	stmmac_stop_all_dma(priv);
7417 
7418 	if (priv->plat->serdes_powerdown)
7419 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7420 
7421 	/* Enable Power down mode by programming the PMT regs */
7422 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7423 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7424 		priv->irq_wake = 1;
7425 	} else {
7426 		stmmac_mac_set(priv, priv->ioaddr, false);
7427 		pinctrl_pm_select_sleep_state(priv->device);
7428 	}
7429 
7430 	mutex_unlock(&priv->lock);
7431 
7432 	rtnl_lock();
7433 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7434 		phylink_suspend(priv->phylink, true);
7435 	} else {
7436 		if (device_may_wakeup(priv->device))
7437 			phylink_speed_down(priv->phylink, false);
7438 		phylink_suspend(priv->phylink, false);
7439 	}
7440 	rtnl_unlock();
7441 
7442 	if (priv->dma_cap.fpesel) {
7443 		/* Disable FPE */
7444 		stmmac_fpe_configure(priv, priv->ioaddr,
7445 				     priv->plat->tx_queues_to_use,
7446 				     priv->plat->rx_queues_to_use, false);
7447 
7448 		stmmac_fpe_handshake(priv, false);
7449 		stmmac_fpe_stop_wq(priv);
7450 	}
7451 
7452 	priv->speed = SPEED_UNKNOWN;
7453 	return 0;
7454 }
7455 EXPORT_SYMBOL_GPL(stmmac_suspend);
7456 
7457 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7458 {
7459 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7460 
7461 	rx_q->cur_rx = 0;
7462 	rx_q->dirty_rx = 0;
7463 }
7464 
7465 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7466 {
7467 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7468 
7469 	tx_q->cur_tx = 0;
7470 	tx_q->dirty_tx = 0;
7471 	tx_q->mss = 0;
7472 
7473 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7474 }
7475 
7476 /**
7477  * stmmac_reset_queues_param - reset queue parameters
7478  * @priv: device pointer
7479  */
7480 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7481 {
7482 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7483 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7484 	u32 queue;
7485 
7486 	for (queue = 0; queue < rx_cnt; queue++)
7487 		stmmac_reset_rx_queue(priv, queue);
7488 
7489 	for (queue = 0; queue < tx_cnt; queue++)
7490 		stmmac_reset_tx_queue(priv, queue);
7491 }
7492 
7493 /**
7494  * stmmac_resume - resume callback
7495  * @dev: device pointer
7496  * Description: when resume this function is invoked to setup the DMA and CORE
7497  * in a usable state.
7498  */
7499 int stmmac_resume(struct device *dev)
7500 {
7501 	struct net_device *ndev = dev_get_drvdata(dev);
7502 	struct stmmac_priv *priv = netdev_priv(ndev);
7503 	int ret;
7504 
7505 	if (!netif_running(ndev))
7506 		return 0;
7507 
7508 	/* Power Down bit, into the PM register, is cleared
7509 	 * automatically as soon as a magic packet or a Wake-up frame
7510 	 * is received. Anyway, it's better to manually clear
7511 	 * this bit because it can generate problems while resuming
7512 	 * from another devices (e.g. serial console).
7513 	 */
7514 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7515 		mutex_lock(&priv->lock);
7516 		stmmac_pmt(priv, priv->hw, 0);
7517 		mutex_unlock(&priv->lock);
7518 		priv->irq_wake = 0;
7519 	} else {
7520 		pinctrl_pm_select_default_state(priv->device);
7521 		/* reset the phy so that it's ready */
7522 		if (priv->mii)
7523 			stmmac_mdio_reset(priv->mii);
7524 	}
7525 
7526 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7527 		ret = priv->plat->serdes_powerup(ndev,
7528 						 priv->plat->bsp_priv);
7529 
7530 		if (ret < 0)
7531 			return ret;
7532 	}
7533 
7534 	rtnl_lock();
7535 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7536 		phylink_resume(priv->phylink);
7537 	} else {
7538 		phylink_resume(priv->phylink);
7539 		if (device_may_wakeup(priv->device))
7540 			phylink_speed_up(priv->phylink);
7541 	}
7542 	rtnl_unlock();
7543 
7544 	rtnl_lock();
7545 	mutex_lock(&priv->lock);
7546 
7547 	stmmac_reset_queues_param(priv);
7548 
7549 	stmmac_free_tx_skbufs(priv);
7550 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7551 
7552 	stmmac_hw_setup(ndev, false);
7553 	stmmac_init_coalesce(priv);
7554 	stmmac_set_rx_mode(ndev);
7555 
7556 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7557 
7558 	stmmac_enable_all_queues(priv);
7559 	stmmac_enable_all_dma_irq(priv);
7560 
7561 	mutex_unlock(&priv->lock);
7562 	rtnl_unlock();
7563 
7564 	netif_device_attach(ndev);
7565 
7566 	return 0;
7567 }
7568 EXPORT_SYMBOL_GPL(stmmac_resume);
7569 
7570 #ifndef MODULE
7571 static int __init stmmac_cmdline_opt(char *str)
7572 {
7573 	char *opt;
7574 
7575 	if (!str || !*str)
7576 		return 1;
7577 	while ((opt = strsep(&str, ",")) != NULL) {
7578 		if (!strncmp(opt, "debug:", 6)) {
7579 			if (kstrtoint(opt + 6, 0, &debug))
7580 				goto err;
7581 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7582 			if (kstrtoint(opt + 8, 0, &phyaddr))
7583 				goto err;
7584 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7585 			if (kstrtoint(opt + 7, 0, &buf_sz))
7586 				goto err;
7587 		} else if (!strncmp(opt, "tc:", 3)) {
7588 			if (kstrtoint(opt + 3, 0, &tc))
7589 				goto err;
7590 		} else if (!strncmp(opt, "watchdog:", 9)) {
7591 			if (kstrtoint(opt + 9, 0, &watchdog))
7592 				goto err;
7593 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7594 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7595 				goto err;
7596 		} else if (!strncmp(opt, "pause:", 6)) {
7597 			if (kstrtoint(opt + 6, 0, &pause))
7598 				goto err;
7599 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7600 			if (kstrtoint(opt + 10, 0, &eee_timer))
7601 				goto err;
7602 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7603 			if (kstrtoint(opt + 11, 0, &chain_mode))
7604 				goto err;
7605 		}
7606 	}
7607 	return 1;
7608 
7609 err:
7610 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7611 	return 1;
7612 }
7613 
7614 __setup("stmmaceth=", stmmac_cmdline_opt);
7615 #endif /* MODULE */
7616 
7617 static int __init stmmac_init(void)
7618 {
7619 #ifdef CONFIG_DEBUG_FS
7620 	/* Create debugfs main directory if it doesn't exist yet */
7621 	if (!stmmac_fs_dir)
7622 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7623 	register_netdevice_notifier(&stmmac_notifier);
7624 #endif
7625 
7626 	return 0;
7627 }
7628 
7629 static void __exit stmmac_exit(void)
7630 {
7631 #ifdef CONFIG_DEBUG_FS
7632 	unregister_netdevice_notifier(&stmmac_notifier);
7633 	debugfs_remove_recursive(stmmac_fs_dir);
7634 #endif
7635 }
7636 
7637 module_init(stmmac_init)
7638 module_exit(stmmac_exit)
7639 
7640 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7641 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7642 MODULE_LICENSE("GPL");
7643