1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53 
54 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN	9000
56 
57 /* Module parameters */
58 #define TX_TIMEO	5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62 
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66 
67 int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70 
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75 
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80 
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84 
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88 
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93 
94 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98 
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
101 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102 
103 #define STMMAC_DEFAULT_LPI_TIMER	1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108 
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110  * but passing this value so user can force to use the chain instead of the ring
111  */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115 
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117 
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122 
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 
125 /**
126  * stmmac_verify_args - verify the driver parameters.
127  * Description: it verifies if some wrong parameter is passed to the driver.
128  * Note that wrong parameters are replaced with the default values.
129  */
130 static void stmmac_verify_args(void)
131 {
132 	if (unlikely(watchdog < 0))
133 		watchdog = TX_TIMEO;
134 	if (unlikely(dma_rxsize < 0))
135 		dma_rxsize = DMA_RX_SIZE;
136 	if (unlikely(dma_txsize < 0))
137 		dma_txsize = DMA_TX_SIZE;
138 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139 		buf_sz = DMA_BUFFER_SIZE;
140 	if (unlikely(flow_ctrl > 1))
141 		flow_ctrl = FLOW_AUTO;
142 	else if (likely(flow_ctrl < 0))
143 		flow_ctrl = FLOW_OFF;
144 	if (unlikely((pause < 0) || (pause > 0xffff)))
145 		pause = PAUSE_TIME;
146 	if (eee_timer < 0)
147 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149 
150 /**
151  * stmmac_clk_csr_set - dynamically set the MDC clock
152  * @priv: driver private structure
153  * Description: this is to dynamically set the MDC clock according to the csr
154  * clock input.
155  * Note:
156  *	If a specific clk_csr value is passed from the platform
157  *	this means that the CSR Clock Range selection cannot be
158  *	changed at run-time and it is fixed (as reported in the driver
159  *	documentation). Viceversa the driver will try to set the MDC
160  *	clock dynamically according to the actual clock input.
161  */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164 	u32 clk_rate;
165 
166 	clk_rate = clk_get_rate(priv->stmmac_clk);
167 
168 	/* Platform provided default clk_csr would be assumed valid
169 	 * for all other cases except for the below mentioned ones.
170 	 * For values higher than the IEEE 802.3 specified frequency
171 	 * we can not estimate the proper divider as it is not known
172 	 * the frequency of clk_csr_i. So we do not change the default
173 	 * divider.
174 	 */
175 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 		if (clk_rate < CSR_F_35M)
177 			priv->clk_csr = STMMAC_CSR_20_35M;
178 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 			priv->clk_csr = STMMAC_CSR_35_60M;
180 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 			priv->clk_csr = STMMAC_CSR_60_100M;
182 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 			priv->clk_csr = STMMAC_CSR_100_150M;
184 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 			priv->clk_csr = STMMAC_CSR_150_250M;
186 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 			priv->clk_csr = STMMAC_CSR_250_300M;
188 	}
189 }
190 
191 static void print_pkt(unsigned char *buf, int len)
192 {
193 	int j;
194 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195 	for (j = 0; j < len; j++) {
196 		if ((j % 16) == 0)
197 			pr_debug("\n %03x:", j);
198 		pr_debug(" %02x", buf[j]);
199 	}
200 	pr_debug("\n");
201 }
202 
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
205 
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210 
211 /**
212  * stmmac_hw_fix_mac_speed: callback for speed selection
213  * @priv: driver private structure
214  * Description: on some platforms (e.g. ST), some HW system configuraton
215  * registers have to be set according to the link speed negotiated.
216  */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219 	struct phy_device *phydev = priv->phydev;
220 
221 	if (likely(priv->plat->fix_mac_speed))
222 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224 
225 /**
226  * stmmac_enable_eee_mode: Check and enter in LPI mode
227  * @priv: driver private structure
228  * Description: this function is to verify and enter in LPI mode for EEE.
229  */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232 	/* Check and enter in LPI mode */
233 	if ((priv->dirty_tx == priv->cur_tx) &&
234 	    (priv->tx_path_in_lpi_mode == false))
235 		priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237 
238 /**
239  * stmmac_disable_eee_mode: disable/exit from EEE
240  * @priv: driver private structure
241  * Description: this function is to exit and disable EEE in case of
242  * LPI state is true. This is called by the xmit.
243  */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
247 	del_timer_sync(&priv->eee_ctrl_timer);
248 	priv->tx_path_in_lpi_mode = false;
249 }
250 
251 /**
252  * stmmac_eee_ctrl_timer: EEE TX SW timer.
253  * @arg : data hook
254  * Description:
255  *  if there is no data transfer and if we are not in LPI state,
256  *  then MAC Transmitter can be moved to LPI state.
257  */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261 
262 	stmmac_enable_eee_mode(priv);
263 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265 
266 /**
267  * stmmac_eee_init: init EEE
268  * @priv: driver private structure
269  * Description:
270  *  If the EEE support has been enabled while configuring the driver,
271  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
272  *  phy can also manage EEE, so enable the LPI state and start the timer
273  *  to verify if the tx path can enter in LPI state.
274  */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277 	bool ret = false;
278 
279 	/* Using PCS we cannot dial with the phy registers at this stage
280 	 * so we do not support extra feature like EEE.
281 	 */
282 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283 	    (priv->pcs == STMMAC_PCS_RTBI))
284 		goto out;
285 
286 	/* MAC core supports the EEE feature. */
287 	if (priv->dma_cap.eee) {
288 		/* Check if the PHY supports EEE */
289 		if (phy_init_eee(priv->phydev, 1))
290 			goto out;
291 
292 		if (!priv->eee_active) {
293 			priv->eee_active = 1;
294 			init_timer(&priv->eee_ctrl_timer);
295 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296 			priv->eee_ctrl_timer.data = (unsigned long)priv;
297 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298 			add_timer(&priv->eee_ctrl_timer);
299 
300 			priv->hw->mac->set_eee_timer(priv->ioaddr,
301 						     STMMAC_DEFAULT_LIT_LS,
302 						     priv->tx_lpi_timer);
303 		} else
304 			/* Set HW EEE according to the speed */
305 			priv->hw->mac->set_eee_pls(priv->ioaddr,
306 						   priv->phydev->link);
307 
308 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309 
310 		ret = true;
311 	}
312 out:
313 	return ret;
314 }
315 
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317  * @priv: driver private structure
318  * @entry : descriptor index to be used.
319  * @skb : the socket buffer
320  * Description :
321  * This function will read timestamp from the descriptor & pass it to stack.
322  * and also perform some sanity checks.
323  */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325 				   unsigned int entry, struct sk_buff *skb)
326 {
327 	struct skb_shared_hwtstamps shhwtstamp;
328 	u64 ns;
329 	void *desc = NULL;
330 
331 	if (!priv->hwts_tx_en)
332 		return;
333 
334 	/* exit if skb doesn't support hw tstamp */
335 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336 		return;
337 
338 	if (priv->adv_ts)
339 		desc = (priv->dma_etx + entry);
340 	else
341 		desc = (priv->dma_tx + entry);
342 
343 	/* check tx tstamp status */
344 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345 		return;
346 
347 	/* get the valid tstamp */
348 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349 
350 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
352 	/* pass tstamp to stack */
353 	skb_tstamp_tx(skb, &shhwtstamp);
354 
355 	return;
356 }
357 
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359  * @priv: driver private structure
360  * @entry : descriptor index to be used.
361  * @skb : the socket buffer
362  * Description :
363  * This function will read received packet's timestamp from the descriptor
364  * and pass it to stack. It also perform some sanity checks.
365  */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367 				   unsigned int entry, struct sk_buff *skb)
368 {
369 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
370 	u64 ns;
371 	void *desc = NULL;
372 
373 	if (!priv->hwts_rx_en)
374 		return;
375 
376 	if (priv->adv_ts)
377 		desc = (priv->dma_erx + entry);
378 	else
379 		desc = (priv->dma_rx + entry);
380 
381 	/* exit if rx tstamp is not valid */
382 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383 		return;
384 
385 	/* get valid tstamp */
386 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387 	shhwtstamp = skb_hwtstamps(skb);
388 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391 
392 /**
393  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
394  *  @dev: device pointer.
395  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
396  *  a proprietary structure used to pass information to the driver.
397  *  Description:
398  *  This function configures the MAC to enable/disable both outgoing(TX)
399  *  and incoming(RX) packets time stamping based on user input.
400  *  Return Value:
401  *  0 on success and an appropriate -ve integer on failure.
402  */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405 	struct stmmac_priv *priv = netdev_priv(dev);
406 	struct hwtstamp_config config;
407 	struct timespec now;
408 	u64 temp = 0;
409 	u32 ptp_v2 = 0;
410 	u32 tstamp_all = 0;
411 	u32 ptp_over_ipv4_udp = 0;
412 	u32 ptp_over_ipv6_udp = 0;
413 	u32 ptp_over_ethernet = 0;
414 	u32 snap_type_sel = 0;
415 	u32 ts_master_en = 0;
416 	u32 ts_event_en = 0;
417 	u32 value = 0;
418 
419 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420 		netdev_alert(priv->dev, "No support for HW time stamping\n");
421 		priv->hwts_tx_en = 0;
422 		priv->hwts_rx_en = 0;
423 
424 		return -EOPNOTSUPP;
425 	}
426 
427 	if (copy_from_user(&config, ifr->ifr_data,
428 			   sizeof(struct hwtstamp_config)))
429 		return -EFAULT;
430 
431 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432 		 __func__, config.flags, config.tx_type, config.rx_filter);
433 
434 	/* reserved for future extensions */
435 	if (config.flags)
436 		return -EINVAL;
437 
438 	switch (config.tx_type) {
439 	case HWTSTAMP_TX_OFF:
440 		priv->hwts_tx_en = 0;
441 		break;
442 	case HWTSTAMP_TX_ON:
443 		priv->hwts_tx_en = 1;
444 		break;
445 	default:
446 		return -ERANGE;
447 	}
448 
449 	if (priv->adv_ts) {
450 		switch (config.rx_filter) {
451 		case HWTSTAMP_FILTER_NONE:
452 			/* time stamp no incoming packet at all */
453 			config.rx_filter = HWTSTAMP_FILTER_NONE;
454 			break;
455 
456 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
457 			/* PTP v1, UDP, any kind of event packet */
458 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
459 			/* take time stamp for all event messages */
460 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
461 
462 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
463 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
464 			break;
465 
466 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
467 			/* PTP v1, UDP, Sync packet */
468 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
469 			/* take time stamp for SYNC messages only */
470 			ts_event_en = PTP_TCR_TSEVNTENA;
471 
472 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
473 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
474 			break;
475 
476 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
477 			/* PTP v1, UDP, Delay_req packet */
478 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
479 			/* take time stamp for Delay_Req messages only */
480 			ts_master_en = PTP_TCR_TSMSTRENA;
481 			ts_event_en = PTP_TCR_TSEVNTENA;
482 
483 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
484 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
485 			break;
486 
487 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
488 			/* PTP v2, UDP, any kind of event packet */
489 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
490 			ptp_v2 = PTP_TCR_TSVER2ENA;
491 			/* take time stamp for all event messages */
492 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
493 
494 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
495 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
496 			break;
497 
498 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
499 			/* PTP v2, UDP, Sync packet */
500 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
501 			ptp_v2 = PTP_TCR_TSVER2ENA;
502 			/* take time stamp for SYNC messages only */
503 			ts_event_en = PTP_TCR_TSEVNTENA;
504 
505 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
506 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
507 			break;
508 
509 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
510 			/* PTP v2, UDP, Delay_req packet */
511 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
512 			ptp_v2 = PTP_TCR_TSVER2ENA;
513 			/* take time stamp for Delay_Req messages only */
514 			ts_master_en = PTP_TCR_TSMSTRENA;
515 			ts_event_en = PTP_TCR_TSEVNTENA;
516 
517 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 			break;
520 
521 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
522 			/* PTP v2/802.AS1 any layer, any kind of event packet */
523 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
524 			ptp_v2 = PTP_TCR_TSVER2ENA;
525 			/* take time stamp for all event messages */
526 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
527 
528 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
529 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
530 			ptp_over_ethernet = PTP_TCR_TSIPENA;
531 			break;
532 
533 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
534 			/* PTP v2/802.AS1, any layer, Sync packet */
535 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
536 			ptp_v2 = PTP_TCR_TSVER2ENA;
537 			/* take time stamp for SYNC messages only */
538 			ts_event_en = PTP_TCR_TSEVNTENA;
539 
540 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 			ptp_over_ethernet = PTP_TCR_TSIPENA;
543 			break;
544 
545 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
546 			/* PTP v2/802.AS1, any layer, Delay_req packet */
547 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
548 			ptp_v2 = PTP_TCR_TSVER2ENA;
549 			/* take time stamp for Delay_Req messages only */
550 			ts_master_en = PTP_TCR_TSMSTRENA;
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			ptp_over_ethernet = PTP_TCR_TSIPENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_ALL:
559 			/* time stamp any incoming packet */
560 			config.rx_filter = HWTSTAMP_FILTER_ALL;
561 			tstamp_all = PTP_TCR_TSENALL;
562 			break;
563 
564 		default:
565 			return -ERANGE;
566 		}
567 	} else {
568 		switch (config.rx_filter) {
569 		case HWTSTAMP_FILTER_NONE:
570 			config.rx_filter = HWTSTAMP_FILTER_NONE;
571 			break;
572 		default:
573 			/* PTP v1, UDP, any kind of event packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
575 			break;
576 		}
577 	}
578 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
579 
580 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
581 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
582 	else {
583 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
584 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
585 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
586 			 ts_master_en | snap_type_sel);
587 
588 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
589 
590 		/* program Sub Second Increment reg */
591 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
592 
593 		/* calculate default added value:
594 		 * formula is :
595 		 * addend = (2^32)/freq_div_ratio;
596 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
597 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
598 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
599 		 *       achive 20ns accuracy.
600 		 *
601 		 * 2^x * y == (y << x), hence
602 		 * 2^32 * 50000000 ==> (50000000 << 32)
603 		 */
604 		temp = (u64) (50000000ULL << 32);
605 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
606 		priv->hw->ptp->config_addend(priv->ioaddr,
607 					     priv->default_addend);
608 
609 		/* initialize system time */
610 		getnstimeofday(&now);
611 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
612 					    now.tv_nsec);
613 	}
614 
615 	return copy_to_user(ifr->ifr_data, &config,
616 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
617 }
618 
619 /**
620  * stmmac_init_ptp: init PTP
621  * @priv: driver private structure
622  * Description: this is to verify if the HW supports the PTPv1 or v2.
623  * This is done by looking at the HW cap. register.
624  * Also it registers the ptp driver.
625  */
626 static int stmmac_init_ptp(struct stmmac_priv *priv)
627 {
628 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
629 		return -EOPNOTSUPP;
630 
631 	if (netif_msg_hw(priv)) {
632 		if (priv->dma_cap.time_stamp) {
633 			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
634 			priv->adv_ts = 0;
635 		}
636 		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
637 			pr_debug
638 			    ("IEEE 1588-2008 Advanced Time Stamp supported\n");
639 			priv->adv_ts = 1;
640 		}
641 	}
642 
643 	priv->hw->ptp = &stmmac_ptp;
644 	priv->hwts_tx_en = 0;
645 	priv->hwts_rx_en = 0;
646 
647 	return stmmac_ptp_register(priv);
648 }
649 
650 static void stmmac_release_ptp(struct stmmac_priv *priv)
651 {
652 	stmmac_ptp_unregister(priv);
653 }
654 
655 /**
656  * stmmac_adjust_link
657  * @dev: net device structure
658  * Description: it adjusts the link parameters.
659  */
660 static void stmmac_adjust_link(struct net_device *dev)
661 {
662 	struct stmmac_priv *priv = netdev_priv(dev);
663 	struct phy_device *phydev = priv->phydev;
664 	unsigned long flags;
665 	int new_state = 0;
666 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
667 
668 	if (phydev == NULL)
669 		return;
670 
671 	spin_lock_irqsave(&priv->lock, flags);
672 
673 	if (phydev->link) {
674 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
675 
676 		/* Now we make sure that we can be in full duplex mode.
677 		 * If not, we operate in half-duplex mode. */
678 		if (phydev->duplex != priv->oldduplex) {
679 			new_state = 1;
680 			if (!(phydev->duplex))
681 				ctrl &= ~priv->hw->link.duplex;
682 			else
683 				ctrl |= priv->hw->link.duplex;
684 			priv->oldduplex = phydev->duplex;
685 		}
686 		/* Flow Control operation */
687 		if (phydev->pause)
688 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
689 						 fc, pause_time);
690 
691 		if (phydev->speed != priv->speed) {
692 			new_state = 1;
693 			switch (phydev->speed) {
694 			case 1000:
695 				if (likely(priv->plat->has_gmac))
696 					ctrl &= ~priv->hw->link.port;
697 				stmmac_hw_fix_mac_speed(priv);
698 				break;
699 			case 100:
700 			case 10:
701 				if (priv->plat->has_gmac) {
702 					ctrl |= priv->hw->link.port;
703 					if (phydev->speed == SPEED_100) {
704 						ctrl |= priv->hw->link.speed;
705 					} else {
706 						ctrl &= ~(priv->hw->link.speed);
707 					}
708 				} else {
709 					ctrl &= ~priv->hw->link.port;
710 				}
711 				stmmac_hw_fix_mac_speed(priv);
712 				break;
713 			default:
714 				if (netif_msg_link(priv))
715 					pr_warn("%s: Speed (%d) not 10/100\n",
716 						dev->name, phydev->speed);
717 				break;
718 			}
719 
720 			priv->speed = phydev->speed;
721 		}
722 
723 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
724 
725 		if (!priv->oldlink) {
726 			new_state = 1;
727 			priv->oldlink = 1;
728 		}
729 	} else if (priv->oldlink) {
730 		new_state = 1;
731 		priv->oldlink = 0;
732 		priv->speed = 0;
733 		priv->oldduplex = -1;
734 	}
735 
736 	if (new_state && netif_msg_link(priv))
737 		phy_print_status(phydev);
738 
739 	/* At this stage, it could be needed to setup the EEE or adjust some
740 	 * MAC related HW registers.
741 	 */
742 	priv->eee_enabled = stmmac_eee_init(priv);
743 
744 	spin_unlock_irqrestore(&priv->lock, flags);
745 }
746 
747 /**
748  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
749  * @priv: driver private structure
750  * Description: this is to verify if the HW supports the PCS.
751  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
752  * configured for the TBI, RTBI, or SGMII PHY interface.
753  */
754 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
755 {
756 	int interface = priv->plat->interface;
757 
758 	if (priv->dma_cap.pcs) {
759 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
760 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
761 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
762 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
763 			pr_debug("STMMAC: PCS RGMII support enable\n");
764 			priv->pcs = STMMAC_PCS_RGMII;
765 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
766 			pr_debug("STMMAC: PCS SGMII support enable\n");
767 			priv->pcs = STMMAC_PCS_SGMII;
768 		}
769 	}
770 }
771 
772 /**
773  * stmmac_init_phy - PHY initialization
774  * @dev: net device structure
775  * Description: it initializes the driver's PHY state, and attaches the PHY
776  * to the mac driver.
777  *  Return value:
778  *  0 on success
779  */
780 static int stmmac_init_phy(struct net_device *dev)
781 {
782 	struct stmmac_priv *priv = netdev_priv(dev);
783 	struct phy_device *phydev;
784 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
785 	char bus_id[MII_BUS_ID_SIZE];
786 	int interface = priv->plat->interface;
787 	priv->oldlink = 0;
788 	priv->speed = 0;
789 	priv->oldduplex = -1;
790 
791 	if (priv->plat->phy_bus_name)
792 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
793 			 priv->plat->phy_bus_name, priv->plat->bus_id);
794 	else
795 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
796 			 priv->plat->bus_id);
797 
798 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
799 		 priv->plat->phy_addr);
800 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
801 
802 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
803 
804 	if (IS_ERR(phydev)) {
805 		pr_err("%s: Could not attach to PHY\n", dev->name);
806 		return PTR_ERR(phydev);
807 	}
808 
809 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
810 	if ((interface == PHY_INTERFACE_MODE_MII) ||
811 	    (interface == PHY_INTERFACE_MODE_RMII))
812 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
813 					 SUPPORTED_1000baseT_Full);
814 
815 	/*
816 	 * Broken HW is sometimes missing the pull-up resistor on the
817 	 * MDIO line, which results in reads to non-existent devices returning
818 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
819 	 * device as well.
820 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
821 	 */
822 	if (phydev->phy_id == 0) {
823 		phy_disconnect(phydev);
824 		return -ENODEV;
825 	}
826 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
827 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
828 
829 	priv->phydev = phydev;
830 
831 	return 0;
832 }
833 
834 /**
835  * stmmac_display_ring: display ring
836  * @head: pointer to the head of the ring passed.
837  * @size: size of the ring.
838  * @extend_desc: to verify if extended descriptors are used.
839  * Description: display the control/status and buffer descriptors.
840  */
841 static void stmmac_display_ring(void *head, int size, int extend_desc)
842 {
843 	int i;
844 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
845 	struct dma_desc *p = (struct dma_desc *)head;
846 
847 	for (i = 0; i < size; i++) {
848 		u64 x;
849 		if (extend_desc) {
850 			x = *(u64 *) ep;
851 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
852 				i, (unsigned int)virt_to_phys(ep),
853 				(unsigned int)x, (unsigned int)(x >> 32),
854 				ep->basic.des2, ep->basic.des3);
855 			ep++;
856 		} else {
857 			x = *(u64 *) p;
858 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
859 				i, (unsigned int)virt_to_phys(p),
860 				(unsigned int)x, (unsigned int)(x >> 32),
861 				p->des2, p->des3);
862 			p++;
863 		}
864 		pr_info("\n");
865 	}
866 }
867 
868 static void stmmac_display_rings(struct stmmac_priv *priv)
869 {
870 	unsigned int txsize = priv->dma_tx_size;
871 	unsigned int rxsize = priv->dma_rx_size;
872 
873 	if (priv->extend_desc) {
874 		pr_info("Extended RX descriptor ring:\n");
875 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
876 		pr_info("Extended TX descriptor ring:\n");
877 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
878 	} else {
879 		pr_info("RX descriptor ring:\n");
880 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
881 		pr_info("TX descriptor ring:\n");
882 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
883 	}
884 }
885 
886 static int stmmac_set_bfsize(int mtu, int bufsize)
887 {
888 	int ret = bufsize;
889 
890 	if (mtu >= BUF_SIZE_4KiB)
891 		ret = BUF_SIZE_8KiB;
892 	else if (mtu >= BUF_SIZE_2KiB)
893 		ret = BUF_SIZE_4KiB;
894 	else if (mtu >= DMA_BUFFER_SIZE)
895 		ret = BUF_SIZE_2KiB;
896 	else
897 		ret = DMA_BUFFER_SIZE;
898 
899 	return ret;
900 }
901 
902 /**
903  * stmmac_clear_descriptors: clear descriptors
904  * @priv: driver private structure
905  * Description: this function is called to clear the tx and rx descriptors
906  * in case of both basic and extended descriptors are used.
907  */
908 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
909 {
910 	int i;
911 	unsigned int txsize = priv->dma_tx_size;
912 	unsigned int rxsize = priv->dma_rx_size;
913 
914 	/* Clear the Rx/Tx descriptors */
915 	for (i = 0; i < rxsize; i++)
916 		if (priv->extend_desc)
917 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
918 						     priv->use_riwt, priv->mode,
919 						     (i == rxsize - 1));
920 		else
921 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
922 						     priv->use_riwt, priv->mode,
923 						     (i == rxsize - 1));
924 	for (i = 0; i < txsize; i++)
925 		if (priv->extend_desc)
926 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
927 						     priv->mode,
928 						     (i == txsize - 1));
929 		else
930 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
931 						     priv->mode,
932 						     (i == txsize - 1));
933 }
934 
935 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
936 				  int i)
937 {
938 	struct sk_buff *skb;
939 
940 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
941 				 GFP_KERNEL);
942 	if (!skb) {
943 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
944 		return -ENOMEM;
945 	}
946 	skb_reserve(skb, NET_IP_ALIGN);
947 	priv->rx_skbuff[i] = skb;
948 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
949 						priv->dma_buf_sz,
950 						DMA_FROM_DEVICE);
951 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
952 		pr_err("%s: DMA mapping error\n", __func__);
953 		dev_kfree_skb_any(skb);
954 		return -EINVAL;
955 	}
956 
957 	p->des2 = priv->rx_skbuff_dma[i];
958 
959 	if ((priv->mode == STMMAC_RING_MODE) &&
960 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
961 		priv->hw->ring->init_desc3(p);
962 
963 	return 0;
964 }
965 
966 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
967 {
968 	if (priv->rx_skbuff[i]) {
969 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
970 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
971 		dev_kfree_skb_any(priv->rx_skbuff[i]);
972 	}
973 	priv->rx_skbuff[i] = NULL;
974 }
975 
976 /**
977  * init_dma_desc_rings - init the RX/TX descriptor rings
978  * @dev: net device structure
979  * Description:  this function initializes the DMA RX/TX descriptors
980  * and allocates the socket buffers. It suppors the chained and ring
981  * modes.
982  */
983 static int init_dma_desc_rings(struct net_device *dev)
984 {
985 	int i;
986 	struct stmmac_priv *priv = netdev_priv(dev);
987 	unsigned int txsize = priv->dma_tx_size;
988 	unsigned int rxsize = priv->dma_rx_size;
989 	unsigned int bfsize = 0;
990 	int ret = -ENOMEM;
991 
992 	/* Set the max buffer size according to the DESC mode
993 	 * and the MTU. Note that RING mode allows 16KiB bsize.
994 	 */
995 	if (priv->mode == STMMAC_RING_MODE)
996 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
997 
998 	if (bfsize < BUF_SIZE_16KiB)
999 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1000 
1001 	if (netif_msg_probe(priv))
1002 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1003 			 txsize, rxsize, bfsize);
1004 
1005 	if (priv->extend_desc) {
1006 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1007 						   sizeof(struct
1008 							  dma_extended_desc),
1009 						   &priv->dma_rx_phy,
1010 						   GFP_KERNEL);
1011 		if (!priv->dma_erx)
1012 			goto err_dma;
1013 
1014 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1015 						   sizeof(struct
1016 							  dma_extended_desc),
1017 						   &priv->dma_tx_phy,
1018 						   GFP_KERNEL);
1019 		if (!priv->dma_etx) {
1020 			dma_free_coherent(priv->device, priv->dma_rx_size *
1021 					sizeof(struct dma_extended_desc),
1022 					priv->dma_erx, priv->dma_rx_phy);
1023 			goto err_dma;
1024 		}
1025 	} else {
1026 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1027 						  sizeof(struct dma_desc),
1028 						  &priv->dma_rx_phy,
1029 						  GFP_KERNEL);
1030 		if (!priv->dma_rx)
1031 			goto err_dma;
1032 
1033 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1034 						  sizeof(struct dma_desc),
1035 						  &priv->dma_tx_phy,
1036 						  GFP_KERNEL);
1037 		if (!priv->dma_tx) {
1038 			dma_free_coherent(priv->device, priv->dma_rx_size *
1039 					sizeof(struct dma_desc),
1040 					priv->dma_rx, priv->dma_rx_phy);
1041 			goto err_dma;
1042 		}
1043 	}
1044 
1045 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1046 					    GFP_KERNEL);
1047 	if (!priv->rx_skbuff_dma)
1048 		goto err_rx_skbuff_dma;
1049 
1050 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1051 					GFP_KERNEL);
1052 	if (!priv->rx_skbuff)
1053 		goto err_rx_skbuff;
1054 
1055 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1056 					    GFP_KERNEL);
1057 	if (!priv->tx_skbuff_dma)
1058 		goto err_tx_skbuff_dma;
1059 
1060 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1061 					GFP_KERNEL);
1062 	if (!priv->tx_skbuff)
1063 		goto err_tx_skbuff;
1064 
1065 	if (netif_msg_probe(priv)) {
1066 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1067 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1068 
1069 		/* RX INITIALIZATION */
1070 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1071 	}
1072 	for (i = 0; i < rxsize; i++) {
1073 		struct dma_desc *p;
1074 		if (priv->extend_desc)
1075 			p = &((priv->dma_erx + i)->basic);
1076 		else
1077 			p = priv->dma_rx + i;
1078 
1079 		ret = stmmac_init_rx_buffers(priv, p, i);
1080 		if (ret)
1081 			goto err_init_rx_buffers;
1082 
1083 		if (netif_msg_probe(priv))
1084 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1085 				 priv->rx_skbuff[i]->data,
1086 				 (unsigned int)priv->rx_skbuff_dma[i]);
1087 	}
1088 	priv->cur_rx = 0;
1089 	priv->dirty_rx = (unsigned int)(i - rxsize);
1090 	priv->dma_buf_sz = bfsize;
1091 	buf_sz = bfsize;
1092 
1093 	/* Setup the chained descriptor addresses */
1094 	if (priv->mode == STMMAC_CHAIN_MODE) {
1095 		if (priv->extend_desc) {
1096 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1097 					      rxsize, 1);
1098 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1099 					      txsize, 1);
1100 		} else {
1101 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1102 					      rxsize, 0);
1103 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1104 					      txsize, 0);
1105 		}
1106 	}
1107 
1108 	/* TX INITIALIZATION */
1109 	for (i = 0; i < txsize; i++) {
1110 		struct dma_desc *p;
1111 		if (priv->extend_desc)
1112 			p = &((priv->dma_etx + i)->basic);
1113 		else
1114 			p = priv->dma_tx + i;
1115 		p->des2 = 0;
1116 		priv->tx_skbuff_dma[i] = 0;
1117 		priv->tx_skbuff[i] = NULL;
1118 	}
1119 
1120 	priv->dirty_tx = 0;
1121 	priv->cur_tx = 0;
1122 
1123 	stmmac_clear_descriptors(priv);
1124 
1125 	if (netif_msg_hw(priv))
1126 		stmmac_display_rings(priv);
1127 
1128 	return 0;
1129 err_init_rx_buffers:
1130 	while (--i >= 0)
1131 		stmmac_free_rx_buffers(priv, i);
1132 	kfree(priv->tx_skbuff);
1133 err_tx_skbuff:
1134 	kfree(priv->tx_skbuff_dma);
1135 err_tx_skbuff_dma:
1136 	kfree(priv->rx_skbuff);
1137 err_rx_skbuff:
1138 	kfree(priv->rx_skbuff_dma);
1139 err_rx_skbuff_dma:
1140 	if (priv->extend_desc) {
1141 		dma_free_coherent(priv->device, priv->dma_tx_size *
1142 				  sizeof(struct dma_extended_desc),
1143 				  priv->dma_etx, priv->dma_tx_phy);
1144 		dma_free_coherent(priv->device, priv->dma_rx_size *
1145 				  sizeof(struct dma_extended_desc),
1146 				  priv->dma_erx, priv->dma_rx_phy);
1147 	} else {
1148 		dma_free_coherent(priv->device,
1149 				priv->dma_tx_size * sizeof(struct dma_desc),
1150 				priv->dma_tx, priv->dma_tx_phy);
1151 		dma_free_coherent(priv->device,
1152 				priv->dma_rx_size * sizeof(struct dma_desc),
1153 				priv->dma_rx, priv->dma_rx_phy);
1154 	}
1155 err_dma:
1156 	return ret;
1157 }
1158 
1159 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1160 {
1161 	int i;
1162 
1163 	for (i = 0; i < priv->dma_rx_size; i++)
1164 		stmmac_free_rx_buffers(priv, i);
1165 }
1166 
1167 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1168 {
1169 	int i;
1170 
1171 	for (i = 0; i < priv->dma_tx_size; i++) {
1172 		if (priv->tx_skbuff[i] != NULL) {
1173 			struct dma_desc *p;
1174 			if (priv->extend_desc)
1175 				p = &((priv->dma_etx + i)->basic);
1176 			else
1177 				p = priv->dma_tx + i;
1178 
1179 			if (priv->tx_skbuff_dma[i])
1180 				dma_unmap_single(priv->device,
1181 						 priv->tx_skbuff_dma[i],
1182 						 priv->hw->desc->get_tx_len(p),
1183 						 DMA_TO_DEVICE);
1184 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1185 			priv->tx_skbuff[i] = NULL;
1186 			priv->tx_skbuff_dma[i] = 0;
1187 		}
1188 	}
1189 }
1190 
1191 static void free_dma_desc_resources(struct stmmac_priv *priv)
1192 {
1193 	/* Release the DMA TX/RX socket buffers */
1194 	dma_free_rx_skbufs(priv);
1195 	dma_free_tx_skbufs(priv);
1196 
1197 	/* Free DMA regions of consistent memory previously allocated */
1198 	if (!priv->extend_desc) {
1199 		dma_free_coherent(priv->device,
1200 				  priv->dma_tx_size * sizeof(struct dma_desc),
1201 				  priv->dma_tx, priv->dma_tx_phy);
1202 		dma_free_coherent(priv->device,
1203 				  priv->dma_rx_size * sizeof(struct dma_desc),
1204 				  priv->dma_rx, priv->dma_rx_phy);
1205 	} else {
1206 		dma_free_coherent(priv->device, priv->dma_tx_size *
1207 				  sizeof(struct dma_extended_desc),
1208 				  priv->dma_etx, priv->dma_tx_phy);
1209 		dma_free_coherent(priv->device, priv->dma_rx_size *
1210 				  sizeof(struct dma_extended_desc),
1211 				  priv->dma_erx, priv->dma_rx_phy);
1212 	}
1213 	kfree(priv->rx_skbuff_dma);
1214 	kfree(priv->rx_skbuff);
1215 	kfree(priv->tx_skbuff_dma);
1216 	kfree(priv->tx_skbuff);
1217 }
1218 
1219 /**
1220  *  stmmac_dma_operation_mode - HW DMA operation mode
1221  *  @priv: driver private structure
1222  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1223  *  or Store-And-Forward capability.
1224  */
1225 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1226 {
1227 	if (likely(priv->plat->force_sf_dma_mode ||
1228 		   ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1229 		/*
1230 		 * In case of GMAC, SF mode can be enabled
1231 		 * to perform the TX COE in HW. This depends on:
1232 		 * 1) TX COE if actually supported
1233 		 * 2) There is no bugged Jumbo frame support
1234 		 *    that needs to not insert csum in the TDES.
1235 		 */
1236 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1237 		tc = SF_DMA_MODE;
1238 	} else
1239 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1240 }
1241 
1242 /**
1243  * stmmac_tx_clean:
1244  * @priv: driver private structure
1245  * Description: it reclaims resources after transmission completes.
1246  */
1247 static void stmmac_tx_clean(struct stmmac_priv *priv)
1248 {
1249 	unsigned int txsize = priv->dma_tx_size;
1250 
1251 	spin_lock(&priv->tx_lock);
1252 
1253 	priv->xstats.tx_clean++;
1254 
1255 	while (priv->dirty_tx != priv->cur_tx) {
1256 		int last;
1257 		unsigned int entry = priv->dirty_tx % txsize;
1258 		struct sk_buff *skb = priv->tx_skbuff[entry];
1259 		struct dma_desc *p;
1260 
1261 		if (priv->extend_desc)
1262 			p = (struct dma_desc *)(priv->dma_etx + entry);
1263 		else
1264 			p = priv->dma_tx + entry;
1265 
1266 		/* Check if the descriptor is owned by the DMA. */
1267 		if (priv->hw->desc->get_tx_owner(p))
1268 			break;
1269 
1270 		/* Verify tx error by looking at the last segment. */
1271 		last = priv->hw->desc->get_tx_ls(p);
1272 		if (likely(last)) {
1273 			int tx_error =
1274 			    priv->hw->desc->tx_status(&priv->dev->stats,
1275 						      &priv->xstats, p,
1276 						      priv->ioaddr);
1277 			if (likely(tx_error == 0)) {
1278 				priv->dev->stats.tx_packets++;
1279 				priv->xstats.tx_pkt_n++;
1280 			} else
1281 				priv->dev->stats.tx_errors++;
1282 
1283 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1284 		}
1285 		if (netif_msg_tx_done(priv))
1286 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1287 				 priv->cur_tx, priv->dirty_tx);
1288 
1289 		if (likely(priv->tx_skbuff_dma[entry])) {
1290 			dma_unmap_single(priv->device,
1291 					 priv->tx_skbuff_dma[entry],
1292 					 priv->hw->desc->get_tx_len(p),
1293 					 DMA_TO_DEVICE);
1294 			priv->tx_skbuff_dma[entry] = 0;
1295 		}
1296 		priv->hw->ring->clean_desc3(priv, p);
1297 
1298 		if (likely(skb != NULL)) {
1299 			dev_kfree_skb(skb);
1300 			priv->tx_skbuff[entry] = NULL;
1301 		}
1302 
1303 		priv->hw->desc->release_tx_desc(p, priv->mode);
1304 
1305 		priv->dirty_tx++;
1306 	}
1307 	if (unlikely(netif_queue_stopped(priv->dev) &&
1308 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1309 		netif_tx_lock(priv->dev);
1310 		if (netif_queue_stopped(priv->dev) &&
1311 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1312 			if (netif_msg_tx_done(priv))
1313 				pr_debug("%s: restart transmit\n", __func__);
1314 			netif_wake_queue(priv->dev);
1315 		}
1316 		netif_tx_unlock(priv->dev);
1317 	}
1318 
1319 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1320 		stmmac_enable_eee_mode(priv);
1321 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1322 	}
1323 	spin_unlock(&priv->tx_lock);
1324 }
1325 
1326 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1327 {
1328 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1329 }
1330 
1331 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1332 {
1333 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1334 }
1335 
1336 /**
1337  * stmmac_tx_err: irq tx error mng function
1338  * @priv: driver private structure
1339  * Description: it cleans the descriptors and restarts the transmission
1340  * in case of errors.
1341  */
1342 static void stmmac_tx_err(struct stmmac_priv *priv)
1343 {
1344 	int i;
1345 	int txsize = priv->dma_tx_size;
1346 	netif_stop_queue(priv->dev);
1347 
1348 	priv->hw->dma->stop_tx(priv->ioaddr);
1349 	dma_free_tx_skbufs(priv);
1350 	for (i = 0; i < txsize; i++)
1351 		if (priv->extend_desc)
1352 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1353 						     priv->mode,
1354 						     (i == txsize - 1));
1355 		else
1356 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1357 						     priv->mode,
1358 						     (i == txsize - 1));
1359 	priv->dirty_tx = 0;
1360 	priv->cur_tx = 0;
1361 	priv->hw->dma->start_tx(priv->ioaddr);
1362 
1363 	priv->dev->stats.tx_errors++;
1364 	netif_wake_queue(priv->dev);
1365 }
1366 
1367 /**
1368  * stmmac_dma_interrupt: DMA ISR
1369  * @priv: driver private structure
1370  * Description: this is the DMA ISR. It is called by the main ISR.
1371  * It calls the dwmac dma routine to understand which type of interrupt
1372  * happened. In case of there is a Normal interrupt and either TX or RX
1373  * interrupt happened so the NAPI is scheduled.
1374  */
1375 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1376 {
1377 	int status;
1378 
1379 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1380 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1381 		if (likely(napi_schedule_prep(&priv->napi))) {
1382 			stmmac_disable_dma_irq(priv);
1383 			__napi_schedule(&priv->napi);
1384 		}
1385 	}
1386 	if (unlikely(status & tx_hard_error_bump_tc)) {
1387 		/* Try to bump up the dma threshold on this failure */
1388 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1389 			tc += 64;
1390 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1391 			priv->xstats.threshold = tc;
1392 		}
1393 	} else if (unlikely(status == tx_hard_error))
1394 		stmmac_tx_err(priv);
1395 }
1396 
1397 /**
1398  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1399  * @priv: driver private structure
1400  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1401  */
1402 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1403 {
1404 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1405 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1406 
1407 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1408 
1409 	if (priv->dma_cap.rmon) {
1410 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1411 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1412 	} else
1413 		pr_info(" No MAC Management Counters available\n");
1414 }
1415 
1416 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1417 {
1418 	u32 hwid = priv->hw->synopsys_uid;
1419 
1420 	/* Check Synopsys Id (not available on old chips) */
1421 	if (likely(hwid)) {
1422 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1423 		u32 synid = (hwid & 0x000000ff);
1424 
1425 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1426 			uid, synid);
1427 
1428 		return synid;
1429 	}
1430 	return 0;
1431 }
1432 
1433 /**
1434  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1435  * @priv: driver private structure
1436  * Description: select the Enhanced/Alternate or Normal descriptors.
1437  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1438  * supported by the HW cap. register.
1439  */
1440 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1441 {
1442 	if (priv->plat->enh_desc) {
1443 		pr_info(" Enhanced/Alternate descriptors\n");
1444 
1445 		/* GMAC older than 3.50 has no extended descriptors */
1446 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1447 			pr_info("\tEnabled extended descriptors\n");
1448 			priv->extend_desc = 1;
1449 		} else
1450 			pr_warn("Extended descriptors not supported\n");
1451 
1452 		priv->hw->desc = &enh_desc_ops;
1453 	} else {
1454 		pr_info(" Normal descriptors\n");
1455 		priv->hw->desc = &ndesc_ops;
1456 	}
1457 }
1458 
1459 /**
1460  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1461  * @priv: driver private structure
1462  * Description:
1463  *  new GMAC chip generations have a new register to indicate the
1464  *  presence of the optional feature/functions.
1465  *  This can be also used to override the value passed through the
1466  *  platform and necessary for old MAC10/100 and GMAC chips.
1467  */
1468 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1469 {
1470 	u32 hw_cap = 0;
1471 
1472 	if (priv->hw->dma->get_hw_feature) {
1473 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1474 
1475 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1476 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1477 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1478 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1479 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1480 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1481 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1482 		priv->dma_cap.pmt_remote_wake_up =
1483 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1484 		priv->dma_cap.pmt_magic_frame =
1485 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1486 		/* MMC */
1487 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1488 		/* IEEE 1588-2002 */
1489 		priv->dma_cap.time_stamp =
1490 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1491 		/* IEEE 1588-2008 */
1492 		priv->dma_cap.atime_stamp =
1493 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1494 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1495 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1496 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1497 		/* TX and RX csum */
1498 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1499 		priv->dma_cap.rx_coe_type1 =
1500 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1501 		priv->dma_cap.rx_coe_type2 =
1502 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1503 		priv->dma_cap.rxfifo_over_2048 =
1504 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1505 		/* TX and RX number of channels */
1506 		priv->dma_cap.number_rx_channel =
1507 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1508 		priv->dma_cap.number_tx_channel =
1509 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1510 		/* Alternate (enhanced) DESC mode */
1511 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1512 	}
1513 
1514 	return hw_cap;
1515 }
1516 
1517 /**
1518  * stmmac_check_ether_addr: check if the MAC addr is valid
1519  * @priv: driver private structure
1520  * Description:
1521  * it is to verify if the MAC address is valid, in case of failures it
1522  * generates a random MAC address
1523  */
1524 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1525 {
1526 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1527 		priv->hw->mac->get_umac_addr((void __iomem *)
1528 					     priv->dev->base_addr,
1529 					     priv->dev->dev_addr, 0);
1530 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1531 			eth_hw_addr_random(priv->dev);
1532 	}
1533 	pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1534 		priv->dev->dev_addr);
1535 }
1536 
1537 /**
1538  * stmmac_init_dma_engine: DMA init.
1539  * @priv: driver private structure
1540  * Description:
1541  * It inits the DMA invoking the specific MAC/GMAC callback.
1542  * Some DMA parameters can be passed from the platform;
1543  * in case of these are not passed a default is kept for the MAC or GMAC.
1544  */
1545 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1546 {
1547 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1548 	int mixed_burst = 0;
1549 	int atds = 0;
1550 
1551 	if (priv->plat->dma_cfg) {
1552 		pbl = priv->plat->dma_cfg->pbl;
1553 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1554 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1555 		burst_len = priv->plat->dma_cfg->burst_len;
1556 	}
1557 
1558 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1559 		atds = 1;
1560 
1561 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1562 				   burst_len, priv->dma_tx_phy,
1563 				   priv->dma_rx_phy, atds);
1564 }
1565 
1566 /**
1567  * stmmac_tx_timer: mitigation sw timer for tx.
1568  * @data: data pointer
1569  * Description:
1570  * This is the timer handler to directly invoke the stmmac_tx_clean.
1571  */
1572 static void stmmac_tx_timer(unsigned long data)
1573 {
1574 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1575 
1576 	stmmac_tx_clean(priv);
1577 }
1578 
1579 /**
1580  * stmmac_init_tx_coalesce: init tx mitigation options.
1581  * @priv: driver private structure
1582  * Description:
1583  * This inits the transmit coalesce parameters: i.e. timer rate,
1584  * timer handler and default threshold used for enabling the
1585  * interrupt on completion bit.
1586  */
1587 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1588 {
1589 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1590 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1591 	init_timer(&priv->txtimer);
1592 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1593 	priv->txtimer.data = (unsigned long)priv;
1594 	priv->txtimer.function = stmmac_tx_timer;
1595 	add_timer(&priv->txtimer);
1596 }
1597 
1598 /**
1599  *  stmmac_open - open entry point of the driver
1600  *  @dev : pointer to the device structure.
1601  *  Description:
1602  *  This function is the open entry point of the driver.
1603  *  Return value:
1604  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1605  *  file on failure.
1606  */
1607 static int stmmac_open(struct net_device *dev)
1608 {
1609 	struct stmmac_priv *priv = netdev_priv(dev);
1610 	int ret;
1611 
1612 	clk_prepare_enable(priv->stmmac_clk);
1613 
1614 	stmmac_check_ether_addr(priv);
1615 
1616 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1617 	    priv->pcs != STMMAC_PCS_RTBI) {
1618 		ret = stmmac_init_phy(dev);
1619 		if (ret) {
1620 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1621 			       __func__, ret);
1622 			goto phy_error;
1623 		}
1624 	}
1625 
1626 	/* Create and initialize the TX/RX descriptors chains. */
1627 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1628 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1629 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1630 
1631 	ret = init_dma_desc_rings(dev);
1632 	if (ret < 0) {
1633 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1634 		goto dma_desc_error;
1635 	}
1636 
1637 	/* DMA initialization and SW reset */
1638 	ret = stmmac_init_dma_engine(priv);
1639 	if (ret < 0) {
1640 		pr_err("%s: DMA engine initialization failed\n", __func__);
1641 		goto init_error;
1642 	}
1643 
1644 	/* Copy the MAC addr into the HW  */
1645 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1646 
1647 	/* If required, perform hw setup of the bus. */
1648 	if (priv->plat->bus_setup)
1649 		priv->plat->bus_setup(priv->ioaddr);
1650 
1651 	/* Initialize the MAC Core */
1652 	priv->hw->mac->core_init(priv->ioaddr);
1653 
1654 	/* Request the IRQ lines */
1655 	ret = request_irq(dev->irq, stmmac_interrupt,
1656 			  IRQF_SHARED, dev->name, dev);
1657 	if (unlikely(ret < 0)) {
1658 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1659 		       __func__, dev->irq, ret);
1660 		goto init_error;
1661 	}
1662 
1663 	/* Request the Wake IRQ in case of another line is used for WoL */
1664 	if (priv->wol_irq != dev->irq) {
1665 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1666 				  IRQF_SHARED, dev->name, dev);
1667 		if (unlikely(ret < 0)) {
1668 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1669 			       __func__, priv->wol_irq, ret);
1670 			goto wolirq_error;
1671 		}
1672 	}
1673 
1674 	/* Request the IRQ lines */
1675 	if (priv->lpi_irq != -ENXIO) {
1676 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1677 				  dev->name, dev);
1678 		if (unlikely(ret < 0)) {
1679 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1680 			       __func__, priv->lpi_irq, ret);
1681 			goto lpiirq_error;
1682 		}
1683 	}
1684 
1685 	/* Enable the MAC Rx/Tx */
1686 	stmmac_set_mac(priv->ioaddr, true);
1687 
1688 	/* Set the HW DMA mode and the COE */
1689 	stmmac_dma_operation_mode(priv);
1690 
1691 	/* Extra statistics */
1692 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1693 	priv->xstats.threshold = tc;
1694 
1695 	stmmac_mmc_setup(priv);
1696 
1697 	ret = stmmac_init_ptp(priv);
1698 	if (ret)
1699 		pr_warn("%s: failed PTP initialisation\n", __func__);
1700 
1701 #ifdef CONFIG_STMMAC_DEBUG_FS
1702 	ret = stmmac_init_fs(dev);
1703 	if (ret < 0)
1704 		pr_warn("%s: failed debugFS registration\n", __func__);
1705 #endif
1706 	/* Start the ball rolling... */
1707 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1708 	priv->hw->dma->start_tx(priv->ioaddr);
1709 	priv->hw->dma->start_rx(priv->ioaddr);
1710 
1711 	/* Dump DMA/MAC registers */
1712 	if (netif_msg_hw(priv)) {
1713 		priv->hw->mac->dump_regs(priv->ioaddr);
1714 		priv->hw->dma->dump_regs(priv->ioaddr);
1715 	}
1716 
1717 	if (priv->phydev)
1718 		phy_start(priv->phydev);
1719 
1720 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1721 
1722 	priv->eee_enabled = stmmac_eee_init(priv);
1723 
1724 	stmmac_init_tx_coalesce(priv);
1725 
1726 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1727 		priv->rx_riwt = MAX_DMA_RIWT;
1728 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1729 	}
1730 
1731 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1732 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1733 
1734 	napi_enable(&priv->napi);
1735 	netif_start_queue(dev);
1736 
1737 	return 0;
1738 
1739 lpiirq_error:
1740 	if (priv->wol_irq != dev->irq)
1741 		free_irq(priv->wol_irq, dev);
1742 wolirq_error:
1743 	free_irq(dev->irq, dev);
1744 
1745 init_error:
1746 	free_dma_desc_resources(priv);
1747 dma_desc_error:
1748 	if (priv->phydev)
1749 		phy_disconnect(priv->phydev);
1750 phy_error:
1751 	clk_disable_unprepare(priv->stmmac_clk);
1752 
1753 	return ret;
1754 }
1755 
1756 /**
1757  *  stmmac_release - close entry point of the driver
1758  *  @dev : device pointer.
1759  *  Description:
1760  *  This is the stop entry point of the driver.
1761  */
1762 static int stmmac_release(struct net_device *dev)
1763 {
1764 	struct stmmac_priv *priv = netdev_priv(dev);
1765 
1766 	if (priv->eee_enabled)
1767 		del_timer_sync(&priv->eee_ctrl_timer);
1768 
1769 	/* Stop and disconnect the PHY */
1770 	if (priv->phydev) {
1771 		phy_stop(priv->phydev);
1772 		phy_disconnect(priv->phydev);
1773 		priv->phydev = NULL;
1774 	}
1775 
1776 	netif_stop_queue(dev);
1777 
1778 	napi_disable(&priv->napi);
1779 
1780 	del_timer_sync(&priv->txtimer);
1781 
1782 	/* Free the IRQ lines */
1783 	free_irq(dev->irq, dev);
1784 	if (priv->wol_irq != dev->irq)
1785 		free_irq(priv->wol_irq, dev);
1786 	if (priv->lpi_irq != -ENXIO)
1787 		free_irq(priv->lpi_irq, dev);
1788 
1789 	/* Stop TX/RX DMA and clear the descriptors */
1790 	priv->hw->dma->stop_tx(priv->ioaddr);
1791 	priv->hw->dma->stop_rx(priv->ioaddr);
1792 
1793 	/* Release and free the Rx/Tx resources */
1794 	free_dma_desc_resources(priv);
1795 
1796 	/* Disable the MAC Rx/Tx */
1797 	stmmac_set_mac(priv->ioaddr, false);
1798 
1799 	netif_carrier_off(dev);
1800 
1801 #ifdef CONFIG_STMMAC_DEBUG_FS
1802 	stmmac_exit_fs();
1803 #endif
1804 	clk_disable_unprepare(priv->stmmac_clk);
1805 
1806 	stmmac_release_ptp(priv);
1807 
1808 	return 0;
1809 }
1810 
1811 /**
1812  *  stmmac_xmit: Tx entry point of the driver
1813  *  @skb : the socket buffer
1814  *  @dev : device pointer
1815  *  Description : this is the tx entry point of the driver.
1816  *  It programs the chain or the ring and supports oversized frames
1817  *  and SG feature.
1818  */
1819 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1820 {
1821 	struct stmmac_priv *priv = netdev_priv(dev);
1822 	unsigned int txsize = priv->dma_tx_size;
1823 	unsigned int entry;
1824 	int i, csum_insertion = 0, is_jumbo = 0;
1825 	int nfrags = skb_shinfo(skb)->nr_frags;
1826 	struct dma_desc *desc, *first;
1827 	unsigned int nopaged_len = skb_headlen(skb);
1828 
1829 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1830 		if (!netif_queue_stopped(dev)) {
1831 			netif_stop_queue(dev);
1832 			/* This is a hard error, log it. */
1833 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1834 		}
1835 		return NETDEV_TX_BUSY;
1836 	}
1837 
1838 	spin_lock(&priv->tx_lock);
1839 
1840 	if (priv->tx_path_in_lpi_mode)
1841 		stmmac_disable_eee_mode(priv);
1842 
1843 	entry = priv->cur_tx % txsize;
1844 
1845 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1846 
1847 	if (priv->extend_desc)
1848 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1849 	else
1850 		desc = priv->dma_tx + entry;
1851 
1852 	first = desc;
1853 
1854 	priv->tx_skbuff[entry] = skb;
1855 
1856 	/* To program the descriptors according to the size of the frame */
1857 	if (priv->mode == STMMAC_RING_MODE) {
1858 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1859 							priv->plat->enh_desc);
1860 		if (unlikely(is_jumbo))
1861 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1862 							  csum_insertion);
1863 	} else {
1864 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1865 							 priv->plat->enh_desc);
1866 		if (unlikely(is_jumbo))
1867 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1868 							   csum_insertion);
1869 	}
1870 	if (likely(!is_jumbo)) {
1871 		desc->des2 = dma_map_single(priv->device, skb->data,
1872 					    nopaged_len, DMA_TO_DEVICE);
1873 		priv->tx_skbuff_dma[entry] = desc->des2;
1874 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1875 						csum_insertion, priv->mode);
1876 	} else
1877 		desc = first;
1878 
1879 	for (i = 0; i < nfrags; i++) {
1880 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1881 		int len = skb_frag_size(frag);
1882 
1883 		entry = (++priv->cur_tx) % txsize;
1884 		if (priv->extend_desc)
1885 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1886 		else
1887 			desc = priv->dma_tx + entry;
1888 
1889 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1890 					      DMA_TO_DEVICE);
1891 		priv->tx_skbuff_dma[entry] = desc->des2;
1892 		priv->tx_skbuff[entry] = NULL;
1893 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1894 						priv->mode);
1895 		wmb();
1896 		priv->hw->desc->set_tx_owner(desc);
1897 		wmb();
1898 	}
1899 
1900 	/* Finalize the latest segment. */
1901 	priv->hw->desc->close_tx_desc(desc);
1902 
1903 	wmb();
1904 	/* According to the coalesce parameter the IC bit for the latest
1905 	 * segment could be reset and the timer re-started to invoke the
1906 	 * stmmac_tx function. This approach takes care about the fragments.
1907 	 */
1908 	priv->tx_count_frames += nfrags + 1;
1909 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1910 		priv->hw->desc->clear_tx_ic(desc);
1911 		priv->xstats.tx_reset_ic_bit++;
1912 		mod_timer(&priv->txtimer,
1913 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1914 	} else
1915 		priv->tx_count_frames = 0;
1916 
1917 	/* To avoid raise condition */
1918 	priv->hw->desc->set_tx_owner(first);
1919 	wmb();
1920 
1921 	priv->cur_tx++;
1922 
1923 	if (netif_msg_pktdata(priv)) {
1924 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1925 			__func__, (priv->cur_tx % txsize),
1926 			(priv->dirty_tx % txsize), entry, first, nfrags);
1927 
1928 		if (priv->extend_desc)
1929 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1930 		else
1931 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1932 
1933 		pr_debug(">>> frame to be transmitted: ");
1934 		print_pkt(skb->data, skb->len);
1935 	}
1936 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1937 		if (netif_msg_hw(priv))
1938 			pr_debug("%s: stop transmitted packets\n", __func__);
1939 		netif_stop_queue(dev);
1940 	}
1941 
1942 	dev->stats.tx_bytes += skb->len;
1943 
1944 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1945 		     priv->hwts_tx_en)) {
1946 		/* declare that device is doing timestamping */
1947 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1948 		priv->hw->desc->enable_tx_timestamp(first);
1949 	}
1950 
1951 	if (!priv->hwts_tx_en)
1952 		skb_tx_timestamp(skb);
1953 
1954 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1955 
1956 	spin_unlock(&priv->tx_lock);
1957 
1958 	return NETDEV_TX_OK;
1959 }
1960 
1961 /**
1962  * stmmac_rx_refill: refill used skb preallocated buffers
1963  * @priv: driver private structure
1964  * Description : this is to reallocate the skb for the reception process
1965  * that is based on zero-copy.
1966  */
1967 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1968 {
1969 	unsigned int rxsize = priv->dma_rx_size;
1970 	int bfsize = priv->dma_buf_sz;
1971 
1972 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1973 		unsigned int entry = priv->dirty_rx % rxsize;
1974 		struct dma_desc *p;
1975 
1976 		if (priv->extend_desc)
1977 			p = (struct dma_desc *)(priv->dma_erx + entry);
1978 		else
1979 			p = priv->dma_rx + entry;
1980 
1981 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1982 			struct sk_buff *skb;
1983 
1984 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1985 
1986 			if (unlikely(skb == NULL))
1987 				break;
1988 
1989 			priv->rx_skbuff[entry] = skb;
1990 			priv->rx_skbuff_dma[entry] =
1991 			    dma_map_single(priv->device, skb->data, bfsize,
1992 					   DMA_FROM_DEVICE);
1993 
1994 			p->des2 = priv->rx_skbuff_dma[entry];
1995 
1996 			priv->hw->ring->refill_desc3(priv, p);
1997 
1998 			if (netif_msg_rx_status(priv))
1999 				pr_debug("\trefill entry #%d\n", entry);
2000 		}
2001 		wmb();
2002 		priv->hw->desc->set_rx_owner(p);
2003 		wmb();
2004 	}
2005 }
2006 
2007 /**
2008  * stmmac_rx_refill: refill used skb preallocated buffers
2009  * @priv: driver private structure
2010  * @limit: napi bugget.
2011  * Description :  this the function called by the napi poll method.
2012  * It gets all the frames inside the ring.
2013  */
2014 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2015 {
2016 	unsigned int rxsize = priv->dma_rx_size;
2017 	unsigned int entry = priv->cur_rx % rxsize;
2018 	unsigned int next_entry;
2019 	unsigned int count = 0;
2020 	int coe = priv->plat->rx_coe;
2021 
2022 	if (netif_msg_rx_status(priv)) {
2023 		pr_debug("%s: descriptor ring:\n", __func__);
2024 		if (priv->extend_desc)
2025 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2026 		else
2027 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2028 	}
2029 	while (count < limit) {
2030 		int status;
2031 		struct dma_desc *p;
2032 
2033 		if (priv->extend_desc)
2034 			p = (struct dma_desc *)(priv->dma_erx + entry);
2035 		else
2036 			p = priv->dma_rx + entry;
2037 
2038 		if (priv->hw->desc->get_rx_owner(p))
2039 			break;
2040 
2041 		count++;
2042 
2043 		next_entry = (++priv->cur_rx) % rxsize;
2044 		if (priv->extend_desc)
2045 			prefetch(priv->dma_erx + next_entry);
2046 		else
2047 			prefetch(priv->dma_rx + next_entry);
2048 
2049 		/* read the status of the incoming frame */
2050 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2051 						   &priv->xstats, p);
2052 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2053 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2054 							   &priv->xstats,
2055 							   priv->dma_erx +
2056 							   entry);
2057 		if (unlikely(status == discard_frame)) {
2058 			priv->dev->stats.rx_errors++;
2059 			if (priv->hwts_rx_en && !priv->extend_desc) {
2060 				/* DESC2 & DESC3 will be overwitten by device
2061 				 * with timestamp value, hence reinitialize
2062 				 * them in stmmac_rx_refill() function so that
2063 				 * device can reuse it.
2064 				 */
2065 				priv->rx_skbuff[entry] = NULL;
2066 				dma_unmap_single(priv->device,
2067 						 priv->rx_skbuff_dma[entry],
2068 						 priv->dma_buf_sz,
2069 						 DMA_FROM_DEVICE);
2070 			}
2071 		} else {
2072 			struct sk_buff *skb;
2073 			int frame_len;
2074 
2075 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2076 
2077 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2078 			 * Type frames (LLC/LLC-SNAP)
2079 			 */
2080 			if (unlikely(status != llc_snap))
2081 				frame_len -= ETH_FCS_LEN;
2082 
2083 			if (netif_msg_rx_status(priv)) {
2084 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2085 					 p, entry, p->des2);
2086 				if (frame_len > ETH_FRAME_LEN)
2087 					pr_debug("\tframe size %d, COE: %d\n",
2088 						 frame_len, status);
2089 			}
2090 			skb = priv->rx_skbuff[entry];
2091 			if (unlikely(!skb)) {
2092 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2093 				       priv->dev->name);
2094 				priv->dev->stats.rx_dropped++;
2095 				break;
2096 			}
2097 			prefetch(skb->data - NET_IP_ALIGN);
2098 			priv->rx_skbuff[entry] = NULL;
2099 
2100 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2101 
2102 			skb_put(skb, frame_len);
2103 			dma_unmap_single(priv->device,
2104 					 priv->rx_skbuff_dma[entry],
2105 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2106 
2107 			if (netif_msg_pktdata(priv)) {
2108 				pr_debug("frame received (%dbytes)", frame_len);
2109 				print_pkt(skb->data, frame_len);
2110 			}
2111 
2112 			skb->protocol = eth_type_trans(skb, priv->dev);
2113 
2114 			if (unlikely(!coe))
2115 				skb_checksum_none_assert(skb);
2116 			else
2117 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2118 
2119 			napi_gro_receive(&priv->napi, skb);
2120 
2121 			priv->dev->stats.rx_packets++;
2122 			priv->dev->stats.rx_bytes += frame_len;
2123 		}
2124 		entry = next_entry;
2125 	}
2126 
2127 	stmmac_rx_refill(priv);
2128 
2129 	priv->xstats.rx_pkt_n += count;
2130 
2131 	return count;
2132 }
2133 
2134 /**
2135  *  stmmac_poll - stmmac poll method (NAPI)
2136  *  @napi : pointer to the napi structure.
2137  *  @budget : maximum number of packets that the current CPU can receive from
2138  *	      all interfaces.
2139  *  Description :
2140  *  To look at the incoming frames and clear the tx resources.
2141  */
2142 static int stmmac_poll(struct napi_struct *napi, int budget)
2143 {
2144 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2145 	int work_done = 0;
2146 
2147 	priv->xstats.napi_poll++;
2148 	stmmac_tx_clean(priv);
2149 
2150 	work_done = stmmac_rx(priv, budget);
2151 	if (work_done < budget) {
2152 		napi_complete(napi);
2153 		stmmac_enable_dma_irq(priv);
2154 	}
2155 	return work_done;
2156 }
2157 
2158 /**
2159  *  stmmac_tx_timeout
2160  *  @dev : Pointer to net device structure
2161  *  Description: this function is called when a packet transmission fails to
2162  *   complete within a reasonable time. The driver will mark the error in the
2163  *   netdev structure and arrange for the device to be reset to a sane state
2164  *   in order to transmit a new packet.
2165  */
2166 static void stmmac_tx_timeout(struct net_device *dev)
2167 {
2168 	struct stmmac_priv *priv = netdev_priv(dev);
2169 
2170 	/* Clear Tx resources and restart transmitting again */
2171 	stmmac_tx_err(priv);
2172 }
2173 
2174 /* Configuration changes (passed on by ifconfig) */
2175 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2176 {
2177 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2178 		return -EBUSY;
2179 
2180 	/* Don't allow changing the I/O address */
2181 	if (map->base_addr != dev->base_addr) {
2182 		pr_warn("%s: can't change I/O address\n", dev->name);
2183 		return -EOPNOTSUPP;
2184 	}
2185 
2186 	/* Don't allow changing the IRQ */
2187 	if (map->irq != dev->irq) {
2188 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2189 		return -EOPNOTSUPP;
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 /**
2196  *  stmmac_set_rx_mode - entry point for multicast addressing
2197  *  @dev : pointer to the device structure
2198  *  Description:
2199  *  This function is a driver entry point which gets called by the kernel
2200  *  whenever multicast addresses must be enabled/disabled.
2201  *  Return value:
2202  *  void.
2203  */
2204 static void stmmac_set_rx_mode(struct net_device *dev)
2205 {
2206 	struct stmmac_priv *priv = netdev_priv(dev);
2207 
2208 	spin_lock(&priv->lock);
2209 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2210 	spin_unlock(&priv->lock);
2211 }
2212 
2213 /**
2214  *  stmmac_change_mtu - entry point to change MTU size for the device.
2215  *  @dev : device pointer.
2216  *  @new_mtu : the new MTU size for the device.
2217  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2218  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2219  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2220  *  Return value:
2221  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2222  *  file on failure.
2223  */
2224 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2225 {
2226 	struct stmmac_priv *priv = netdev_priv(dev);
2227 	int max_mtu;
2228 
2229 	if (netif_running(dev)) {
2230 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2231 		return -EBUSY;
2232 	}
2233 
2234 	if (priv->plat->enh_desc)
2235 		max_mtu = JUMBO_LEN;
2236 	else
2237 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2238 
2239 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2240 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2241 		return -EINVAL;
2242 	}
2243 
2244 	dev->mtu = new_mtu;
2245 	netdev_update_features(dev);
2246 
2247 	return 0;
2248 }
2249 
2250 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2251 					     netdev_features_t features)
2252 {
2253 	struct stmmac_priv *priv = netdev_priv(dev);
2254 
2255 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2256 		features &= ~NETIF_F_RXCSUM;
2257 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2258 		features &= ~NETIF_F_IPV6_CSUM;
2259 	if (!priv->plat->tx_coe)
2260 		features &= ~NETIF_F_ALL_CSUM;
2261 
2262 	/* Some GMAC devices have a bugged Jumbo frame support that
2263 	 * needs to have the Tx COE disabled for oversized frames
2264 	 * (due to limited buffer sizes). In this case we disable
2265 	 * the TX csum insertionin the TDES and not use SF.
2266 	 */
2267 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2268 		features &= ~NETIF_F_ALL_CSUM;
2269 
2270 	return features;
2271 }
2272 
2273 /**
2274  *  stmmac_interrupt - main ISR
2275  *  @irq: interrupt number.
2276  *  @dev_id: to pass the net device pointer.
2277  *  Description: this is the main driver interrupt service routine.
2278  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2279  *  interrupts.
2280  */
2281 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2282 {
2283 	struct net_device *dev = (struct net_device *)dev_id;
2284 	struct stmmac_priv *priv = netdev_priv(dev);
2285 
2286 	if (unlikely(!dev)) {
2287 		pr_err("%s: invalid dev pointer\n", __func__);
2288 		return IRQ_NONE;
2289 	}
2290 
2291 	/* To handle GMAC own interrupts */
2292 	if (priv->plat->has_gmac) {
2293 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2294 							    dev->base_addr,
2295 							    &priv->xstats);
2296 		if (unlikely(status)) {
2297 			/* For LPI we need to save the tx status */
2298 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2299 				priv->tx_path_in_lpi_mode = true;
2300 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2301 				priv->tx_path_in_lpi_mode = false;
2302 		}
2303 	}
2304 
2305 	/* To handle DMA interrupts */
2306 	stmmac_dma_interrupt(priv);
2307 
2308 	return IRQ_HANDLED;
2309 }
2310 
2311 #ifdef CONFIG_NET_POLL_CONTROLLER
2312 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2313  * to allow network I/O with interrupts disabled.
2314  */
2315 static void stmmac_poll_controller(struct net_device *dev)
2316 {
2317 	disable_irq(dev->irq);
2318 	stmmac_interrupt(dev->irq, dev);
2319 	enable_irq(dev->irq);
2320 }
2321 #endif
2322 
2323 /**
2324  *  stmmac_ioctl - Entry point for the Ioctl
2325  *  @dev: Device pointer.
2326  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2327  *  a proprietary structure used to pass information to the driver.
2328  *  @cmd: IOCTL command
2329  *  Description:
2330  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2331  */
2332 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2333 {
2334 	struct stmmac_priv *priv = netdev_priv(dev);
2335 	int ret = -EOPNOTSUPP;
2336 
2337 	if (!netif_running(dev))
2338 		return -EINVAL;
2339 
2340 	switch (cmd) {
2341 	case SIOCGMIIPHY:
2342 	case SIOCGMIIREG:
2343 	case SIOCSMIIREG:
2344 		if (!priv->phydev)
2345 			return -EINVAL;
2346 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2347 		break;
2348 	case SIOCSHWTSTAMP:
2349 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2350 		break;
2351 	default:
2352 		break;
2353 	}
2354 
2355 	return ret;
2356 }
2357 
2358 #ifdef CONFIG_STMMAC_DEBUG_FS
2359 static struct dentry *stmmac_fs_dir;
2360 static struct dentry *stmmac_rings_status;
2361 static struct dentry *stmmac_dma_cap;
2362 
2363 static void sysfs_display_ring(void *head, int size, int extend_desc,
2364 			       struct seq_file *seq)
2365 {
2366 	int i;
2367 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2368 	struct dma_desc *p = (struct dma_desc *)head;
2369 
2370 	for (i = 0; i < size; i++) {
2371 		u64 x;
2372 		if (extend_desc) {
2373 			x = *(u64 *) ep;
2374 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2375 				   i, (unsigned int)virt_to_phys(ep),
2376 				   (unsigned int)x, (unsigned int)(x >> 32),
2377 				   ep->basic.des2, ep->basic.des3);
2378 			ep++;
2379 		} else {
2380 			x = *(u64 *) p;
2381 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2382 				   i, (unsigned int)virt_to_phys(ep),
2383 				   (unsigned int)x, (unsigned int)(x >> 32),
2384 				   p->des2, p->des3);
2385 			p++;
2386 		}
2387 		seq_printf(seq, "\n");
2388 	}
2389 }
2390 
2391 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2392 {
2393 	struct net_device *dev = seq->private;
2394 	struct stmmac_priv *priv = netdev_priv(dev);
2395 	unsigned int txsize = priv->dma_tx_size;
2396 	unsigned int rxsize = priv->dma_rx_size;
2397 
2398 	if (priv->extend_desc) {
2399 		seq_printf(seq, "Extended RX descriptor ring:\n");
2400 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2401 		seq_printf(seq, "Extended TX descriptor ring:\n");
2402 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2403 	} else {
2404 		seq_printf(seq, "RX descriptor ring:\n");
2405 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2406 		seq_printf(seq, "TX descriptor ring:\n");
2407 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2414 {
2415 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2416 }
2417 
2418 static const struct file_operations stmmac_rings_status_fops = {
2419 	.owner = THIS_MODULE,
2420 	.open = stmmac_sysfs_ring_open,
2421 	.read = seq_read,
2422 	.llseek = seq_lseek,
2423 	.release = single_release,
2424 };
2425 
2426 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2427 {
2428 	struct net_device *dev = seq->private;
2429 	struct stmmac_priv *priv = netdev_priv(dev);
2430 
2431 	if (!priv->hw_cap_support) {
2432 		seq_printf(seq, "DMA HW features not supported\n");
2433 		return 0;
2434 	}
2435 
2436 	seq_printf(seq, "==============================\n");
2437 	seq_printf(seq, "\tDMA HW features\n");
2438 	seq_printf(seq, "==============================\n");
2439 
2440 	seq_printf(seq, "\t10/100 Mbps %s\n",
2441 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2442 	seq_printf(seq, "\t1000 Mbps %s\n",
2443 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2444 	seq_printf(seq, "\tHalf duple %s\n",
2445 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2446 	seq_printf(seq, "\tHash Filter: %s\n",
2447 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2448 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2449 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2450 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2451 		   (priv->dma_cap.pcs) ? "Y" : "N");
2452 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2453 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2454 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2455 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2456 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2457 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2458 	seq_printf(seq, "\tRMON module: %s\n",
2459 		   (priv->dma_cap.rmon) ? "Y" : "N");
2460 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2461 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2462 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2463 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2464 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2465 		   (priv->dma_cap.eee) ? "Y" : "N");
2466 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2467 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2468 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2469 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2470 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2471 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2472 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2473 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2474 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2475 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2476 		   priv->dma_cap.number_rx_channel);
2477 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2478 		   priv->dma_cap.number_tx_channel);
2479 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2480 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2481 
2482 	return 0;
2483 }
2484 
2485 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2486 {
2487 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2488 }
2489 
2490 static const struct file_operations stmmac_dma_cap_fops = {
2491 	.owner = THIS_MODULE,
2492 	.open = stmmac_sysfs_dma_cap_open,
2493 	.read = seq_read,
2494 	.llseek = seq_lseek,
2495 	.release = single_release,
2496 };
2497 
2498 static int stmmac_init_fs(struct net_device *dev)
2499 {
2500 	/* Create debugfs entries */
2501 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2502 
2503 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2504 		pr_err("ERROR %s, debugfs create directory failed\n",
2505 		       STMMAC_RESOURCE_NAME);
2506 
2507 		return -ENOMEM;
2508 	}
2509 
2510 	/* Entry to report DMA RX/TX rings */
2511 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2512 						  S_IRUGO, stmmac_fs_dir, dev,
2513 						  &stmmac_rings_status_fops);
2514 
2515 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2516 		pr_info("ERROR creating stmmac ring debugfs file\n");
2517 		debugfs_remove(stmmac_fs_dir);
2518 
2519 		return -ENOMEM;
2520 	}
2521 
2522 	/* Entry to report the DMA HW features */
2523 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2524 					     dev, &stmmac_dma_cap_fops);
2525 
2526 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2527 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2528 		debugfs_remove(stmmac_rings_status);
2529 		debugfs_remove(stmmac_fs_dir);
2530 
2531 		return -ENOMEM;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 static void stmmac_exit_fs(void)
2538 {
2539 	debugfs_remove(stmmac_rings_status);
2540 	debugfs_remove(stmmac_dma_cap);
2541 	debugfs_remove(stmmac_fs_dir);
2542 }
2543 #endif /* CONFIG_STMMAC_DEBUG_FS */
2544 
2545 static const struct net_device_ops stmmac_netdev_ops = {
2546 	.ndo_open = stmmac_open,
2547 	.ndo_start_xmit = stmmac_xmit,
2548 	.ndo_stop = stmmac_release,
2549 	.ndo_change_mtu = stmmac_change_mtu,
2550 	.ndo_fix_features = stmmac_fix_features,
2551 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2552 	.ndo_tx_timeout = stmmac_tx_timeout,
2553 	.ndo_do_ioctl = stmmac_ioctl,
2554 	.ndo_set_config = stmmac_config,
2555 #ifdef CONFIG_NET_POLL_CONTROLLER
2556 	.ndo_poll_controller = stmmac_poll_controller,
2557 #endif
2558 	.ndo_set_mac_address = eth_mac_addr,
2559 };
2560 
2561 /**
2562  *  stmmac_hw_init - Init the MAC device
2563  *  @priv: driver private structure
2564  *  Description: this function detects which MAC device
2565  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2566  *  (if supported) and sets the driver's features (for example
2567  *  to use the ring or chaine mode or support the normal/enh
2568  *  descriptor structure).
2569  */
2570 static int stmmac_hw_init(struct stmmac_priv *priv)
2571 {
2572 	int ret;
2573 	struct mac_device_info *mac;
2574 
2575 	/* Identify the MAC HW device */
2576 	if (priv->plat->has_gmac) {
2577 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2578 		mac = dwmac1000_setup(priv->ioaddr);
2579 	} else {
2580 		mac = dwmac100_setup(priv->ioaddr);
2581 	}
2582 	if (!mac)
2583 		return -ENOMEM;
2584 
2585 	priv->hw = mac;
2586 
2587 	/* Get and dump the chip ID */
2588 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2589 
2590 	/* To use the chained or ring mode */
2591 	if (chain_mode) {
2592 		priv->hw->chain = &chain_mode_ops;
2593 		pr_info(" Chain mode enabled\n");
2594 		priv->mode = STMMAC_CHAIN_MODE;
2595 	} else {
2596 		priv->hw->ring = &ring_mode_ops;
2597 		pr_info(" Ring mode enabled\n");
2598 		priv->mode = STMMAC_RING_MODE;
2599 	}
2600 
2601 	/* Get the HW capability (new GMAC newer than 3.50a) */
2602 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2603 	if (priv->hw_cap_support) {
2604 		pr_info(" DMA HW capability register supported");
2605 
2606 		/* We can override some gmac/dma configuration fields: e.g.
2607 		 * enh_desc, tx_coe (e.g. that are passed through the
2608 		 * platform) with the values from the HW capability
2609 		 * register (if supported).
2610 		 */
2611 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2612 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2613 
2614 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2615 
2616 		if (priv->dma_cap.rx_coe_type2)
2617 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2618 		else if (priv->dma_cap.rx_coe_type1)
2619 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2620 
2621 	} else
2622 		pr_info(" No HW DMA feature register supported");
2623 
2624 	/* To use alternate (extended) or normal descriptor structures */
2625 	stmmac_selec_desc_mode(priv);
2626 
2627 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2628 	if (!ret) {
2629 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2630 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2631 	}
2632 
2633 	if (priv->plat->rx_coe)
2634 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2635 			priv->plat->rx_coe);
2636 	if (priv->plat->tx_coe)
2637 		pr_info(" TX Checksum insertion supported\n");
2638 
2639 	if (priv->plat->pmt) {
2640 		pr_info(" Wake-Up On Lan supported\n");
2641 		device_set_wakeup_capable(priv->device, 1);
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 /**
2648  * stmmac_dvr_probe
2649  * @device: device pointer
2650  * @plat_dat: platform data pointer
2651  * @addr: iobase memory address
2652  * Description: this is the main probe function used to
2653  * call the alloc_etherdev, allocate the priv structure.
2654  */
2655 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2656 				     struct plat_stmmacenet_data *plat_dat,
2657 				     void __iomem *addr)
2658 {
2659 	int ret = 0;
2660 	struct net_device *ndev = NULL;
2661 	struct stmmac_priv *priv;
2662 
2663 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2664 	if (!ndev)
2665 		return NULL;
2666 
2667 	SET_NETDEV_DEV(ndev, device);
2668 
2669 	priv = netdev_priv(ndev);
2670 	priv->device = device;
2671 	priv->dev = ndev;
2672 
2673 	ether_setup(ndev);
2674 
2675 	stmmac_set_ethtool_ops(ndev);
2676 	priv->pause = pause;
2677 	priv->plat = plat_dat;
2678 	priv->ioaddr = addr;
2679 	priv->dev->base_addr = (unsigned long)addr;
2680 
2681 	/* Verify driver arguments */
2682 	stmmac_verify_args();
2683 
2684 	/* Override with kernel parameters if supplied XXX CRS XXX
2685 	 * this needs to have multiple instances
2686 	 */
2687 	if ((phyaddr >= 0) && (phyaddr <= 31))
2688 		priv->plat->phy_addr = phyaddr;
2689 
2690 	/* Init MAC and get the capabilities */
2691 	ret = stmmac_hw_init(priv);
2692 	if (ret)
2693 		goto error_free_netdev;
2694 
2695 	ndev->netdev_ops = &stmmac_netdev_ops;
2696 
2697 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2698 			    NETIF_F_RXCSUM;
2699 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2700 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2701 #ifdef STMMAC_VLAN_TAG_USED
2702 	/* Both mac100 and gmac support receive VLAN tag detection */
2703 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2704 #endif
2705 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2706 
2707 	if (flow_ctrl)
2708 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2709 
2710 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2711 	 * In some case, for example on bugged HW this feature
2712 	 * has to be disable and this can be done by passing the
2713 	 * riwt_off field from the platform.
2714 	 */
2715 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2716 		priv->use_riwt = 1;
2717 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2718 	}
2719 
2720 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2721 
2722 	spin_lock_init(&priv->lock);
2723 	spin_lock_init(&priv->tx_lock);
2724 
2725 	ret = register_netdev(ndev);
2726 	if (ret) {
2727 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2728 		goto error_netdev_register;
2729 	}
2730 
2731 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2732 	if (IS_ERR(priv->stmmac_clk)) {
2733 		pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2734 		goto error_clk_get;
2735 	}
2736 
2737 	/* If a specific clk_csr value is passed from the platform
2738 	 * this means that the CSR Clock Range selection cannot be
2739 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2740 	 * set the MDC clock dynamically according to the csr actual
2741 	 * clock input.
2742 	 */
2743 	if (!priv->plat->clk_csr)
2744 		stmmac_clk_csr_set(priv);
2745 	else
2746 		priv->clk_csr = priv->plat->clk_csr;
2747 
2748 	stmmac_check_pcs_mode(priv);
2749 
2750 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2751 	    priv->pcs != STMMAC_PCS_RTBI) {
2752 		/* MDIO bus Registration */
2753 		ret = stmmac_mdio_register(ndev);
2754 		if (ret < 0) {
2755 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2756 				 __func__, priv->plat->bus_id);
2757 			goto error_mdio_register;
2758 		}
2759 	}
2760 
2761 	return priv;
2762 
2763 error_mdio_register:
2764 	clk_put(priv->stmmac_clk);
2765 error_clk_get:
2766 	unregister_netdev(ndev);
2767 error_netdev_register:
2768 	netif_napi_del(&priv->napi);
2769 error_free_netdev:
2770 	free_netdev(ndev);
2771 
2772 	return NULL;
2773 }
2774 
2775 /**
2776  * stmmac_dvr_remove
2777  * @ndev: net device pointer
2778  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2779  * changes the link status, releases the DMA descriptor rings.
2780  */
2781 int stmmac_dvr_remove(struct net_device *ndev)
2782 {
2783 	struct stmmac_priv *priv = netdev_priv(ndev);
2784 
2785 	pr_info("%s:\n\tremoving driver", __func__);
2786 
2787 	priv->hw->dma->stop_rx(priv->ioaddr);
2788 	priv->hw->dma->stop_tx(priv->ioaddr);
2789 
2790 	stmmac_set_mac(priv->ioaddr, false);
2791 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2792 	    priv->pcs != STMMAC_PCS_RTBI)
2793 		stmmac_mdio_unregister(ndev);
2794 	netif_carrier_off(ndev);
2795 	unregister_netdev(ndev);
2796 	free_netdev(ndev);
2797 
2798 	return 0;
2799 }
2800 
2801 #ifdef CONFIG_PM
2802 int stmmac_suspend(struct net_device *ndev)
2803 {
2804 	struct stmmac_priv *priv = netdev_priv(ndev);
2805 	unsigned long flags;
2806 
2807 	if (!ndev || !netif_running(ndev))
2808 		return 0;
2809 
2810 	if (priv->phydev)
2811 		phy_stop(priv->phydev);
2812 
2813 	spin_lock_irqsave(&priv->lock, flags);
2814 
2815 	netif_device_detach(ndev);
2816 	netif_stop_queue(ndev);
2817 
2818 	napi_disable(&priv->napi);
2819 
2820 	/* Stop TX/RX DMA */
2821 	priv->hw->dma->stop_tx(priv->ioaddr);
2822 	priv->hw->dma->stop_rx(priv->ioaddr);
2823 
2824 	stmmac_clear_descriptors(priv);
2825 
2826 	/* Enable Power down mode by programming the PMT regs */
2827 	if (device_may_wakeup(priv->device))
2828 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2829 	else {
2830 		stmmac_set_mac(priv->ioaddr, false);
2831 		/* Disable clock in case of PWM is off */
2832 		clk_disable_unprepare(priv->stmmac_clk);
2833 	}
2834 	spin_unlock_irqrestore(&priv->lock, flags);
2835 	return 0;
2836 }
2837 
2838 int stmmac_resume(struct net_device *ndev)
2839 {
2840 	struct stmmac_priv *priv = netdev_priv(ndev);
2841 	unsigned long flags;
2842 
2843 	if (!netif_running(ndev))
2844 		return 0;
2845 
2846 	spin_lock_irqsave(&priv->lock, flags);
2847 
2848 	/* Power Down bit, into the PM register, is cleared
2849 	 * automatically as soon as a magic packet or a Wake-up frame
2850 	 * is received. Anyway, it's better to manually clear
2851 	 * this bit because it can generate problems while resuming
2852 	 * from another devices (e.g. serial console).
2853 	 */
2854 	if (device_may_wakeup(priv->device))
2855 		priv->hw->mac->pmt(priv->ioaddr, 0);
2856 	else
2857 		/* enable the clk prevously disabled */
2858 		clk_prepare_enable(priv->stmmac_clk);
2859 
2860 	netif_device_attach(ndev);
2861 
2862 	/* Enable the MAC and DMA */
2863 	stmmac_set_mac(priv->ioaddr, true);
2864 	priv->hw->dma->start_tx(priv->ioaddr);
2865 	priv->hw->dma->start_rx(priv->ioaddr);
2866 
2867 	napi_enable(&priv->napi);
2868 
2869 	netif_start_queue(ndev);
2870 
2871 	spin_unlock_irqrestore(&priv->lock, flags);
2872 
2873 	if (priv->phydev)
2874 		phy_start(priv->phydev);
2875 
2876 	return 0;
2877 }
2878 
2879 int stmmac_freeze(struct net_device *ndev)
2880 {
2881 	if (!ndev || !netif_running(ndev))
2882 		return 0;
2883 
2884 	return stmmac_release(ndev);
2885 }
2886 
2887 int stmmac_restore(struct net_device *ndev)
2888 {
2889 	if (!ndev || !netif_running(ndev))
2890 		return 0;
2891 
2892 	return stmmac_open(ndev);
2893 }
2894 #endif /* CONFIG_PM */
2895 
2896 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2897  * depending on the configuration selected.
2898  */
2899 static int __init stmmac_init(void)
2900 {
2901 	int ret;
2902 
2903 	ret = stmmac_register_platform();
2904 	if (ret)
2905 		goto err;
2906 	ret = stmmac_register_pci();
2907 	if (ret)
2908 		goto err_pci;
2909 	return 0;
2910 err_pci:
2911 	stmmac_unregister_platform();
2912 err:
2913 	pr_err("stmmac: driver registration failed\n");
2914 	return ret;
2915 }
2916 
2917 static void __exit stmmac_exit(void)
2918 {
2919 	stmmac_unregister_platform();
2920 	stmmac_unregister_pci();
2921 }
2922 
2923 module_init(stmmac_init);
2924 module_exit(stmmac_exit);
2925 
2926 #ifndef MODULE
2927 static int __init stmmac_cmdline_opt(char *str)
2928 {
2929 	char *opt;
2930 
2931 	if (!str || !*str)
2932 		return -EINVAL;
2933 	while ((opt = strsep(&str, ",")) != NULL) {
2934 		if (!strncmp(opt, "debug:", 6)) {
2935 			if (kstrtoint(opt + 6, 0, &debug))
2936 				goto err;
2937 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2938 			if (kstrtoint(opt + 8, 0, &phyaddr))
2939 				goto err;
2940 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2941 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2942 				goto err;
2943 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2944 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2945 				goto err;
2946 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2947 			if (kstrtoint(opt + 7, 0, &buf_sz))
2948 				goto err;
2949 		} else if (!strncmp(opt, "tc:", 3)) {
2950 			if (kstrtoint(opt + 3, 0, &tc))
2951 				goto err;
2952 		} else if (!strncmp(opt, "watchdog:", 9)) {
2953 			if (kstrtoint(opt + 9, 0, &watchdog))
2954 				goto err;
2955 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2956 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2957 				goto err;
2958 		} else if (!strncmp(opt, "pause:", 6)) {
2959 			if (kstrtoint(opt + 6, 0, &pause))
2960 				goto err;
2961 		} else if (!strncmp(opt, "eee_timer:", 10)) {
2962 			if (kstrtoint(opt + 10, 0, &eee_timer))
2963 				goto err;
2964 		} else if (!strncmp(opt, "chain_mode:", 11)) {
2965 			if (kstrtoint(opt + 11, 0, &chain_mode))
2966 				goto err;
2967 		}
2968 	}
2969 	return 0;
2970 
2971 err:
2972 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2973 	return -EINVAL;
2974 }
2975 
2976 __setup("stmmaceth=", stmmac_cmdline_opt);
2977 #endif /* MODULE */
2978 
2979 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2980 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2981 MODULE_LICENSE("GPL");
2982